code
stringlengths 82
53.2k
| code_codestyle
int64 0
721
| style_context
stringlengths 91
41.9k
| style_context_codestyle
int64 0
699
| label
int64 0
1
|
---|---|---|---|---|
'''simple docstring'''
from typing import Dict, List, Optional, Union
import numpy as np
from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict
from ...image_transforms import (
center_crop,
get_resize_output_image_size,
normalize,
rescale,
resize,
to_channel_dimension_format,
)
from ...image_utils import (
IMAGENET_STANDARD_MEAN,
IMAGENET_STANDARD_STD,
ChannelDimension,
ImageInput,
PILImageResampling,
make_list_of_images,
to_numpy_array,
valid_images,
)
from ...utils import TensorType, logging
__UpperCamelCase = logging.get_logger(__name__)
class _A ( __lowercase ):
lowercase__: List[Any] = ['''pixel_values''']
def __init__( self : Any , __magic_name__ : bool = True , __magic_name__ : Optional[Dict[str, int]] = None , __magic_name__ : PILImageResampling = PILImageResampling.BILINEAR , __magic_name__ : bool = True , __magic_name__ : Dict[str, int] = None , __magic_name__ : bool = True , __magic_name__ : Union[int, float] = 1 / 2_55 , __magic_name__ : bool = True , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , **__magic_name__ : Any , ) -> None:
"""simple docstring"""
super().__init__(**__magic_name__ )
__snake_case : Optional[int] = size if size is not None else {"""shortest_edge""": 2_56}
__snake_case : Dict = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
__snake_case : Union[str, Any] = crop_size if crop_size is not None else {"""height""": 2_24, """width""": 2_24}
__snake_case : Any = get_size_dict(__magic_name__ )
__snake_case : Optional[Any] = do_resize
__snake_case : Dict = size
__snake_case : Any = resample
__snake_case : str = do_center_crop
__snake_case : Optional[int] = crop_size
__snake_case : int = do_rescale
__snake_case : Optional[Any] = rescale_factor
__snake_case : Any = do_normalize
__snake_case : List[str] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN
__snake_case : Optional[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD
def lowercase__ ( self : List[Any] , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : PILImageResampling = PILImageResampling.BICUBIC , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray:
"""simple docstring"""
__snake_case : Optional[Any] = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
if "shortest_edge" not in size:
raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' )
__snake_case : Union[str, Any] = get_resize_output_image_size(__magic_name__ , size=size["""shortest_edge"""] , default_to_square=__magic_name__ )
return resize(__magic_name__ , size=__magic_name__ , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : Dict[str, int] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Union[str, Any] , ) -> np.ndarray:
"""simple docstring"""
__snake_case : int = get_size_dict(__magic_name__ )
return center_crop(__magic_name__ , size=(size["""height"""], size["""width"""]) , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : str , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Any ) -> np.ndarray:
"""simple docstring"""
return rescale(__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : Dict , __magic_name__ : np.ndarray , __magic_name__ : Union[float, List[float]] , __magic_name__ : Union[float, List[float]] , __magic_name__ : Optional[Union[str, ChannelDimension]] = None , **__magic_name__ : Optional[int] , ) -> np.ndarray:
"""simple docstring"""
return normalize(__magic_name__ , mean=__magic_name__ , std=__magic_name__ , data_format=__magic_name__ , **__magic_name__ )
def lowercase__ ( self : int , __magic_name__ : ImageInput , __magic_name__ : Optional[bool] = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : PILImageResampling = None , __magic_name__ : bool = None , __magic_name__ : Dict[str, int] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[float] = None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[float, List[float]]] = None , __magic_name__ : Optional[Union[str, TensorType]] = None , __magic_name__ : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__magic_name__ : List[Any] , ) -> Optional[int]:
"""simple docstring"""
__snake_case : List[Any] = do_resize if do_resize is not None else self.do_resize
__snake_case : Optional[int] = size if size is not None else self.size
__snake_case : Any = get_size_dict(__magic_name__ , default_to_square=__magic_name__ )
__snake_case : List[Any] = resample if resample is not None else self.resample
__snake_case : str = do_center_crop if do_center_crop is not None else self.do_center_crop
__snake_case : str = crop_size if crop_size is not None else self.crop_size
__snake_case : str = get_size_dict(__magic_name__ )
__snake_case : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale
__snake_case : Optional[int] = rescale_factor if rescale_factor is not None else self.rescale_factor
__snake_case : Tuple = do_normalize if do_normalize is not None else self.do_normalize
__snake_case : Optional[Any] = image_mean if image_mean is not None else self.image_mean
__snake_case : Tuple = image_std if image_std is not None else self.image_std
__snake_case : int = make_list_of_images(__magic_name__ )
if not valid_images(__magic_name__ ):
raise ValueError(
"""Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """
"""torch.Tensor, tf.Tensor or jax.ndarray.""" )
if do_resize and size is None:
raise ValueError("""Size must be specified if do_resize is True.""" )
if do_center_crop and crop_size is None:
raise ValueError("""Crop size must be specified if do_center_crop is True.""" )
if do_rescale and rescale_factor is None:
raise ValueError("""Rescale factor must be specified if do_rescale is True.""" )
if do_normalize and (image_mean is None or image_std is None):
raise ValueError("""Image mean and std must be specified if do_normalize is True.""" )
# All transformations expect numpy arrays.
__snake_case : str = [to_numpy_array(__magic_name__ ) for image in images]
if do_resize:
__snake_case : int = [self.resize(image=__magic_name__ , size=__magic_name__ , resample=__magic_name__ ) for image in images]
if do_center_crop:
__snake_case : Any = [self.center_crop(image=__magic_name__ , size=__magic_name__ ) for image in images]
if do_rescale:
__snake_case : List[Any] = [self.rescale(image=__magic_name__ , scale=__magic_name__ ) for image in images]
if do_normalize:
__snake_case : Tuple = [self.normalize(image=__magic_name__ , mean=__magic_name__ , std=__magic_name__ ) for image in images]
__snake_case : Dict = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images]
__snake_case : Union[str, Any] = {"""pixel_values""": images}
return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
| 26 |
'''simple docstring'''
import argparse
import json
import os
import torch
from torch import nn
from transformers import NllbMoeConfig, NllbMoeModel
from transformers.modeling_utils import dtype_byte_size
from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME
def _a ( _lowerCamelCase ) -> List[Any]:
"""simple docstring"""
__snake_case : Union[str, Any] = [
"""encoder.version""",
"""decoder.version""",
"""model.encoder.version""",
"""model.decoder.version""",
"""decoder.output_projection.weight""",
"""_float_tensor""",
"""encoder.embed_positions._float_tensor""",
"""decoder.embed_positions._float_tensor""",
]
for k in ignore_keys:
state_dict.pop(_lowerCamelCase , _lowerCamelCase )
def _a ( _lowerCamelCase ) -> List[str]:
"""simple docstring"""
__snake_case , __snake_case : Dict = emb.weight.shape
__snake_case : Optional[int] = nn.Linear(_lowerCamelCase , _lowerCamelCase , bias=_lowerCamelCase )
__snake_case : Union[str, Any] = emb.weight.data
return lin_layer
def _a ( _lowerCamelCase , _lowerCamelCase=None ) -> Union[str, Any]:
"""simple docstring"""
__snake_case : Any = {}
for old_key in state_dict.keys():
__snake_case : Union[str, Any] = old_key
if "moe_layer.experts." in key:
if expert_idx is not None:
__snake_case : Tuple = key.replace("""moe_layer.experts.0""" , F'''ffn.experts.expert_{expert_idx}''' )
else:
__snake_case : Optional[int] = key.replace("""moe_layer.experts.""" , """ffn.experts.expert_""" )
if "gate" in key:
__snake_case : Dict = key.replace(""".moe_layer.gate.wg""" , """.ffn.router.classifier""" )
if "fc2" and "experts" not in key:
__snake_case : Union[str, Any] = key.replace(""".fc2.""" , """.ffn.fc2.""" )
if "fc1" and "experts" not in key:
__snake_case : Optional[int] = key.replace(""".fc1.""" , """.ffn.fc1.""" )
if ".encoder_attn." in key:
__snake_case : Tuple = key.replace(""".encoder_attn.""" , """.cross_attention.""" )
if "encoder_attn_layer_norm" in key:
__snake_case : Union[str, Any] = key.replace("""encoder_attn_layer_norm""" , """cross_attention_layer_norm""" )
if "final_layer_norm" in key:
__snake_case : str = key.replace("""final_layer_norm""" , """ff_layer_norm""" )
__snake_case : str = state_dict[old_key]
return new_dict
def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = WEIGHTS_NAME ) -> Dict:
"""simple docstring"""
__snake_case : Optional[int] = []
__snake_case : Dict = 0
os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase )
for expert in range(_lowerCamelCase ):
__snake_case : Tuple = switch_checkpoint_path + F'''-rank-{expert}.pt'''
if os.path.isfile(_lowerCamelCase ):
__snake_case : Dict = torch.load(_lowerCamelCase )["""model"""]
remove_ignore_keys_(_lowerCamelCase )
__snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase )
__snake_case : List[Any] = os.path.join(
_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) )
torch.save(_lowerCamelCase , _lowerCamelCase )
sharded_state_dicts.append(expert_state.keys() )
total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size(
expert_state[list(_lowerCamelCase )[0]].dtype )
# Add the last block
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{len(_lowerCamelCase )+1:05d}-of-???.bin''' ) )
__snake_case : str = torch.load(switch_checkpoint_path + """-shared.pt""" )["""model"""]
remove_ignore_keys_(_lowerCamelCase )
__snake_case : Optional[Any] = rename_fairseq_keys(_lowerCamelCase , _lowerCamelCase )
__snake_case : List[str] = shared_weights["""decoder.embed_tokens.weight"""]
sharded_state_dicts.append(shared_weights.keys() )
# If we only have the shared weights (dummy model/experts saved on the same file)
if len(_lowerCamelCase ) == 1:
__snake_case : Optional[Any] = os.path.join(_lowerCamelCase , _lowerCamelCase )
torch.save(_lowerCamelCase , _lowerCamelCase )
return {weights_name: sharded_state_dicts[0]}, None
else:
torch.save(_lowerCamelCase , _lowerCamelCase )
# Otherwise, let's build the index
__snake_case : Tuple = {}
for idx, shard in enumerate(_lowerCamelCase ):
__snake_case : Any = weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-{len(_lowerCamelCase ):05d}.bin''' )
__snake_case : int = os.path.join(_lowerCamelCase , weights_name.replace(""".bin""" , F'''-{idx+1:05d}-of-???.bin''' ) )
os.rename(_lowerCamelCase , os.path.join(_lowerCamelCase , _lowerCamelCase ) )
for key in shard:
__snake_case : str = shard_file
# Add the metadata
__snake_case : Optional[Any] = {"""total_size""": total_size}
__snake_case : int = {"""metadata""": metadata, """weight_map""": weight_map}
with open(os.path.join(_lowerCamelCase , _lowerCamelCase ) , """w""" , encoding="""utf-8""" ) as f:
__snake_case : Union[str, Any] = json.dumps(_lowerCamelCase , indent=2 , sort_keys=_lowerCamelCase ) + """\n"""
f.write(_lowerCamelCase )
return metadata, index
if __name__ == "__main__":
__UpperCamelCase = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--nllb_moe_checkpoint_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000",
type=str,
required=False,
help="Path to a directory containing a folder per layer. Follows the original Google format.",
)
parser.add_argument("--dtype", default="float32", type=str, required=False, help="dtype of the saved model")
parser.add_argument(
"--pytorch_dump_folder_path",
default="/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b",
type=str,
required=False,
help="Path to the output pytorch model.",
)
__UpperCamelCase = parser.parse_args()
__UpperCamelCase , __UpperCamelCase = shard_on_the_fly(
args.nllb_moe_checkpoint_path,
args.pytorch_dump_folder_path,
128,
args.dtype,
)
__UpperCamelCase = NllbMoeConfig.from_pretrained(
"facebook/nllb-200-3.3B", encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128
)
config.save_pretrained(args.pytorch_dump_folder_path)
__UpperCamelCase = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path)
print("Done")
model.save_pretrained(args.pytorch_dump_folder_path)
| 26 | 1 |
from __future__ import annotations
from scipy.special import comb # type: ignore
class A_ :
"""simple docstring"""
def __init__( self :str , lowerCAmelCase__ :list[tuple[float, float]] ) -> str:
'''simple docstring'''
snake_case_ : Any = list_of_points
# Degree determines the flexibility of the curve.
# Degree = 1 will produce a straight line.
snake_case_ : Optional[Any] = len(lowerCAmelCase__ ) - 1
def _A ( self :int , lowerCAmelCase__ :float ) -> list[float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
snake_case_ : list[float] = []
for i in range(len(self.list_of_points ) ):
# basis function for each i
output_values.append(
comb(self.degree , lowerCAmelCase__ ) * ((1 - t) ** (self.degree - i)) * (t**i) )
# the basis must sum up to 1 for it to produce a valid Bezier curve.
assert round(sum(lowerCAmelCase__ ) , 5 ) == 1
return output_values
def _A ( self :List[Any] , lowerCAmelCase__ :float ) -> tuple[float, float]:
'''simple docstring'''
assert 0 <= t <= 1, "Time t must be between 0 and 1."
snake_case_ : Optional[int] = self.basis_function(lowerCAmelCase__ )
snake_case_ : Any = 0.0
snake_case_ : str = 0.0
for i in range(len(self.list_of_points ) ):
# For all points, sum up the product of i-th basis function and i-th point.
x += basis_function[i] * self.list_of_points[i][0]
y += basis_function[i] * self.list_of_points[i][1]
return (x, y)
def _A ( self :Tuple , lowerCAmelCase__ :float = 0.0_1 ) -> Union[str, Any]:
'''simple docstring'''
from matplotlib import pyplot as plt # type: ignore
snake_case_ : list[float] = [] # x coordinates of points to plot
snake_case_ : list[float] = [] # y coordinates of points to plot
snake_case_ : Optional[int] = 0.0
while t <= 1:
snake_case_ : Optional[int] = self.bezier_curve_function(lowerCAmelCase__ )
to_plot_x.append(value[0] )
to_plot_y.append(value[1] )
t += step_size
snake_case_ : str = [i[0] for i in self.list_of_points]
snake_case_ : int = [i[1] for i in self.list_of_points]
plt.plot(
lowerCAmelCase__ , lowerCAmelCase__ , color="blue" , label="Curve of Degree " + str(self.degree ) , )
plt.scatter(lowerCAmelCase__ , lowerCAmelCase__ , color="red" , label="Control Points" )
plt.legend()
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1
BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2
BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
| 715 |
'''simple docstring'''
import json
import os
import unittest
from transformers import MgpstrTokenizer
from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class A_ (a_ , unittest.TestCase ):
"""simple docstring"""
a__ = MgpstrTokenizer
a__ = False
a__ = {}
a__ = False
def _A ( self :List[str] ) -> List[str]:
'''simple docstring'''
super().setUp()
# fmt: off
snake_case_ : Dict = ["[GO]", "[s]", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "a", "b", "c", "d", "e", "f", "g", "h", "i", "j", "k", "l", "m", "n", "o", "p", "q", "r", "s", "t", "u", "v", "w", "x", "y", "z"]
# fmt: on
snake_case_ : List[str] = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
snake_case_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] )
with open(self.vocab_file , "w" , encoding="utf-8" ) as fp:
fp.write(json.dumps(lowerCAmelCase__ ) + "\n" )
def _A ( self :Optional[Any] , **lowerCAmelCase__ :Optional[Any] ) -> Dict:
'''simple docstring'''
return MgpstrTokenizer.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def _A ( self :Dict , lowerCAmelCase__ :Any ) -> str:
'''simple docstring'''
snake_case_ : Dict = "tester"
snake_case_ : Tuple = "tester"
return input_text, output_text
@unittest.skip("MGP-STR always lower cases letters." )
def _A ( self :Dict ) -> str:
'''simple docstring'''
pass
def _A ( self :Tuple ) -> Union[str, Any]:
'''simple docstring'''
snake_case_ : List[str] = self.get_tokenizers(do_lower_case=lowerCAmelCase__ )
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_ : Tuple = "[SPECIAL_TOKEN]"
tokenizer.add_special_tokens({"cls_token": special_token} )
snake_case_ : str = tokenizer.encode([special_token] , add_special_tokens=lowerCAmelCase__ )
self.assertEqual(len(lowerCAmelCase__ ) , 1 )
snake_case_ : Tuple = tokenizer.decode(lowerCAmelCase__ , skip_special_tokens=lowerCAmelCase__ )
self.assertTrue(special_token not in decoded )
def _A ( self :int ) -> List[str]:
'''simple docstring'''
snake_case_ : Dict = self.get_tokenizers()
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}''' ):
snake_case_, snake_case_ : str = self.get_input_output_texts(lowerCAmelCase__ )
snake_case_ : Union[str, Any] = tokenizer.tokenize(lowerCAmelCase__ )
snake_case_ : List[Any] = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ )
snake_case_ : Dict = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
snake_case_ : List[str] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ )
self.assertNotEqual(len(lowerCAmelCase__ ) , 0 )
snake_case_ : List[str] = tokenizer.decode(lowerCAmelCase__ )
self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ )
self.assertEqual(text_a.replace(" " , "" ) , lowerCAmelCase__ )
@unittest.skip("MGP-STR tokenizer only handles one sequence." )
def _A ( self :Union[str, Any] ) -> Any:
'''simple docstring'''
pass
@unittest.skip("inputs cannot be pretokenized in MgpstrTokenizer" )
def _A ( self :int ) -> Dict:
'''simple docstring'''
pass
| 656 | 0 |
"""simple docstring"""
import copy
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
lowerCAmelCase : Tuple = logging.get_logger(__name__)
lowerCAmelCase : Dict = {
"""microsoft/conditional-detr-resnet-50""": (
"""https://huggingface.co/microsoft/conditional-detr-resnet-50/resolve/main/config.json"""
),
}
class __magic_name__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = "conditional_detr"
__UpperCamelCase = ["past_key_values"]
__UpperCamelCase = {
"hidden_size": "d_model",
"num_attention_heads": "encoder_attention_heads",
}
def __init__( self , _a=True , _a=None , _a=3 , _a=300 , _a=6 , _a=2_048 , _a=8 , _a=6 , _a=2_048 , _a=8 , _a=0.0 , _a=0.0 , _a=True , _a="relu" , _a=256 , _a=0.1 , _a=0.0 , _a=0.0 , _a=0.02 , _a=1.0 , _a=False , _a="sine" , _a="resnet50" , _a=True , _a=False , _a=2 , _a=5 , _a=2 , _a=1 , _a=1 , _a=2 , _a=5 , _a=2 , _a=0.25 , **_a , ):
"""simple docstring"""
if backbone_config is not None and use_timm_backbone:
raise ValueError("""You can't specify both `backbone_config` and `use_timm_backbone`.""" )
if not use_timm_backbone:
if backbone_config is None:
logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" )
lowerCamelCase = CONFIG_MAPPING["""resnet"""](out_features=["""stage4"""] )
elif isinstance(_a , _a ):
lowerCamelCase = backbone_config.get("""model_type""" )
lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
lowerCamelCase = config_class.from_dict(_a )
lowerCamelCase = use_timm_backbone
lowerCamelCase = backbone_config
lowerCamelCase = num_channels
lowerCamelCase = num_queries
lowerCamelCase = d_model
lowerCamelCase = encoder_ffn_dim
lowerCamelCase = encoder_layers
lowerCamelCase = encoder_attention_heads
lowerCamelCase = decoder_ffn_dim
lowerCamelCase = decoder_layers
lowerCamelCase = decoder_attention_heads
lowerCamelCase = dropout
lowerCamelCase = attention_dropout
lowerCamelCase = activation_dropout
lowerCamelCase = activation_function
lowerCamelCase = init_std
lowerCamelCase = init_xavier_std
lowerCamelCase = encoder_layerdrop
lowerCamelCase = decoder_layerdrop
lowerCamelCase = encoder_layers
lowerCamelCase = auxiliary_loss
lowerCamelCase = position_embedding_type
lowerCamelCase = backbone
lowerCamelCase = use_pretrained_backbone
lowerCamelCase = dilation
# Hungarian matcher
lowerCamelCase = class_cost
lowerCamelCase = bbox_cost
lowerCamelCase = giou_cost
# Loss coefficients
lowerCamelCase = mask_loss_coefficient
lowerCamelCase = dice_loss_coefficient
lowerCamelCase = cls_loss_coefficient
lowerCamelCase = bbox_loss_coefficient
lowerCamelCase = giou_loss_coefficient
lowerCamelCase = focal_alpha
super().__init__(is_encoder_decoder=_a , **_a )
@property
def _lowerCAmelCase ( self ):
"""simple docstring"""
return self.encoder_attention_heads
@property
def _lowerCAmelCase ( self ):
"""simple docstring"""
return self.d_model
def _lowerCAmelCase ( self ):
"""simple docstring"""
lowerCamelCase = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
lowerCamelCase = self.backbone_config.to_dict()
lowerCamelCase = self.__class__.model_type
return output
class __magic_name__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = version.parse("1.11" )
@property
def _lowerCAmelCase ( self ):
"""simple docstring"""
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
("""pixel_mask""", {0: """batch"""}),
] )
@property
def _lowerCAmelCase ( self ):
"""simple docstring"""
return 1e-5
@property
def _lowerCAmelCase ( self ):
"""simple docstring"""
return 12
| 543 |
"""simple docstring"""
import collections
import os
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
lowerCAmelCase : Any = logging.get_logger(__name__)
lowerCAmelCase : int = """▁"""
lowerCAmelCase : str = {"""vocab_file""": """prophetnet.tokenizer"""}
lowerCAmelCase : Union[str, Any] = {
"""vocab_file""": {
"""microsoft/xprophetnet-large-wiki100-cased""": (
"""https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer"""
),
}
}
lowerCAmelCase : Any = {
"""microsoft/xprophetnet-large-wiki100-cased""": {"""do_lower_case""": False},
}
lowerCAmelCase : List[Any] = {
"""microsoft/xprophetnet-large-wiki100-cased""": 512,
}
def a__ ( snake_case__ ) -> int:
lowerCamelCase = collections.OrderedDict()
with open(snake_case__ , """r""" , encoding="""utf-8""" ) as reader:
lowerCamelCase = reader.readlines()
for index, token in enumerate(snake_case__ ):
lowerCamelCase = token.rstrip("""\n""" )
lowerCamelCase = index
return vocab
class __magic_name__ ( UpperCAmelCase__ ):
'''simple docstring'''
__UpperCamelCase = VOCAB_FILES_NAMES
__UpperCamelCase = PRETRAINED_VOCAB_FILES_MAP
__UpperCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
__UpperCamelCase = ["input_ids", "attention_mask"]
def __init__( self , _a , _a="[SEP]" , _a="[SEP]" , _a="[SEP]" , _a="[UNK]" , _a="[PAD]" , _a="[CLS]" , _a="[MASK]" , _a = None , **_a , ):
"""simple docstring"""
lowerCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=_a , eos_token=_a , sep_token=_a , unk_token=_a , pad_token=_a , cls_token=_a , mask_token=_a , sp_model_kwargs=self.sp_model_kwargs , **_a , )
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"""You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"""
""" pip install sentencepiece""" )
raise
lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(str(_a ) )
lowerCamelCase = vocab_file
# Original fairseq vocab and spm vocab must be "aligned":
# Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
# -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ----
# fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-'
# spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a'
# put special tokens and [unused] tokens into the vocab
lowerCamelCase = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4}
for i in range(10 ):
lowerCamelCase = f'[unused{i}]'
lowerCamelCase = 5 + i
# The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab
lowerCamelCase = 12
lowerCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()}
for k in self.fairseq_tokens_to_ids.keys():
self.unique_no_split_tokens.append(_a )
def __getstate__( self ):
"""simple docstring"""
lowerCamelCase = self.__dict__.copy()
lowerCamelCase = None
return state
def __setstate__( self , _a ):
"""simple docstring"""
lowerCamelCase = d
try:
import sentencepiece as spm
except ImportError:
logger.warning(
"""You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece"""
""" pip install sentencepiece""" )
raise
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
lowerCamelCase = {}
lowerCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def _lowerCAmelCase ( self , _a , _a = None , _a = False ):
"""simple docstring"""
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a )
if token_ids_a is None:
return ([0] * len(_a )) + [1]
return ([0] * len(_a )) + [1] + ([0] * len(_a )) + [1]
def _lowerCAmelCase ( self , _a , _a = None ):
"""simple docstring"""
lowerCamelCase = [self.sep_token_id]
if token_ids_a is None:
return len(token_ids_a + sep ) * [0]
return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0]
@property
def _lowerCAmelCase ( self ):
"""simple docstring"""
return len(self.sp_model ) + self.fairseq_offset
def _lowerCAmelCase ( self ):
"""simple docstring"""
lowerCamelCase = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def _lowerCAmelCase ( self , _a ):
"""simple docstring"""
return self.sp_model.encode(_a , out_type=_a )
def _lowerCAmelCase ( self , _a ):
"""simple docstring"""
if token in self.fairseq_tokens_to_ids:
return self.fairseq_tokens_to_ids[token]
lowerCamelCase = self.sp_model.PieceToId(_a )
# Need to return unknown token if the SP model returned 0
return spm_id + self.fairseq_offset if spm_id else self.unk_token_id
def _lowerCAmelCase ( self , _a ):
"""simple docstring"""
if index in self.fairseq_ids_to_tokens:
return self.fairseq_ids_to_tokens[index]
return self.sp_model.IdToPiece(index - self.fairseq_offset )
def _lowerCAmelCase ( self , _a ):
"""simple docstring"""
lowerCamelCase = """""".join(_a ).replace(_a , """ """ ).strip()
return out_string
def _lowerCAmelCase ( self , _a , _a = None ):
"""simple docstring"""
if not os.path.isdir(_a ):
logger.error(f'Vocabulary path ({save_directory}) should be a directory' )
return
lowerCamelCase = os.path.join(
_a , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _a )
elif not os.path.isfile(self.vocab_file ):
with open(_a , """wb""" ) as fi:
lowerCamelCase = self.sp_model.serialized_model_proto()
fi.write(_a )
return (out_vocab_file,)
def _lowerCAmelCase ( self , _a , _a = None ):
"""simple docstring"""
if token_ids_a is None:
return token_ids_a + [self.sep_token_id]
lowerCamelCase = [self.sep_token_id]
return token_ids_a + sep + token_ids_a + sep
| 543 | 1 |
'''simple docstring'''
class lowerCamelCase_ :
'''simple docstring'''
def __init__( self : Tuple ) -> Optional[Any]:
A : str = {}
def SCREAMING_SNAKE_CASE__ ( self : int ) -> None:
print(self.vertex )
for i in self.vertex:
print(lowercase_ , " -> " , " -> ".join([str(lowercase_ ) for j in self.vertex[i]] ) )
def SCREAMING_SNAKE_CASE__ ( self : Any , __lowerCamelCase : int , __lowerCamelCase : int ) -> None:
if from_vertex in self.vertex:
self.vertex[from_vertex].append(lowercase_ )
else:
# else make a new vertex
A : Optional[Any] = [to_vertex]
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> None:
A : Dict = [False] * len(self.vertex )
# call the recursive helper function
for i in range(len(self.vertex ) ):
if not visited[i]:
self.dfs_recursive(lowercase_ , lowercase_ )
def SCREAMING_SNAKE_CASE__ ( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : list ) -> None:
A : List[str] = True
print(lowercase_ , end=" " )
# Recur for all the vertices that are adjacent to this node
for i in self.vertex:
if not visited[i]:
self.dfs_recursive(lowercase_ , lowercase_ )
if __name__ == "__main__":
__SCREAMING_SNAKE_CASE = Graph()
g.add_edge(0, 1)
g.add_edge(0, 2)
g.add_edge(1, 2)
g.add_edge(2, 0)
g.add_edge(2, 3)
g.add_edge(3, 3)
g.print_graph()
print("""DFS:""")
g.dfs()
# OUTPUT:
# 0 -> 1 -> 2
# 1 -> 2
# 2 -> 0 -> 3
# 3 -> 3
# DFS:
# 0 1 2 3 | 715 |
from dataclasses import dataclass, field
from typing import ClassVar, Dict
from ..features import Features, Sequence, Value
from .base import TaskTemplate
@dataclass(frozen=_A )
class lowerCamelCase_ ( _A ):
'''simple docstring'''
# `task` is not a ClassVar since we want it to be part of the `asdict` output for JSON serialization
a__ = field(default="question-answering-extractive" ,metadata={"include_in_asdict_even_if_is_default": True} )
a__ = Features({"question": Value("string" ), "context": Value("string" )} )
a__ = Features(
{
"answers": Sequence(
{
"text": Value("string" ),
"answer_start": Value("int32" ),
} )
} )
a__ = "question"
a__ = "context"
a__ = "answers"
@property
def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> Dict[str, str]:
return {self.question_column: "question", self.context_column: "context", self.answers_column: "answers"} | 17 | 0 |
from typing import Tuple, Union
from ...modeling_outputs import BackboneOutput
from ...modeling_utils import PreTrainedModel
from ...utils import is_timm_available, is_torch_available, requires_backends
from ...utils.backbone_utils import BackboneMixin
from .configuration_timm_backbone import TimmBackboneConfig
if is_timm_available():
import timm
if is_torch_available():
from torch import Tensor
class _snake_case ( UpperCAmelCase_ , UpperCAmelCase_ ):
__lowerCAmelCase : List[Any] = 'pixel_values'
__lowerCAmelCase : Union[str, Any] = False
__lowerCAmelCase : List[Any] = TimmBackboneConfig
def __init__( self , SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
requires_backends(self , """timm""")
super().__init__(SCREAMING_SNAKE_CASE_)
lowercase__ : List[Any] = config
if config.backbone is None:
raise ValueError("""backbone is not set in the config. Please set it to a timm model name.""")
if config.backbone not in timm.list_models():
raise ValueError(f'backbone {config.backbone} is not supported by timm.')
if hasattr(SCREAMING_SNAKE_CASE_ , """out_features""") and config.out_features is not None:
raise ValueError("""out_features is not supported by TimmBackbone. Please use out_indices instead.""")
lowercase__ : Any = getattr(SCREAMING_SNAKE_CASE_ , """use_pretrained_backbone""" , SCREAMING_SNAKE_CASE_)
if pretrained is None:
raise ValueError("""use_pretrained_backbone is not set in the config. Please set it to True or False.""")
# We just take the final layer by default. This matches the default for the transformers models.
lowercase__ : Optional[int] = config.out_indices if getattr(SCREAMING_SNAKE_CASE_ , """out_indices""" , SCREAMING_SNAKE_CASE_) is not None else (-1,)
lowercase__ : List[str] = timm.create_model(
config.backbone , pretrained=SCREAMING_SNAKE_CASE_ , features_only=config.features_only , in_chans=config.num_channels , out_indices=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
# These are used to control the output of the model when called. If output_hidden_states is True, then
# return_layers is modified to include all layers.
lowercase__ : List[str] = self._backbone.return_layers
lowercase__ : Union[str, Any] = {layer["""module"""]: str(SCREAMING_SNAKE_CASE_) for i, layer in enumerate(self._backbone.feature_info.info)}
super()._init_backbone(SCREAMING_SNAKE_CASE_)
@classmethod
def lowercase__ ( cls , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
requires_backends(cls , ["""vision""", """timm"""])
from ...models.timm_backbone import TimmBackboneConfig
lowercase__ : Dict = kwargs.pop("""config""" , TimmBackboneConfig())
lowercase__ : List[str] = kwargs.pop("""use_timm_backbone""" , SCREAMING_SNAKE_CASE_)
if not use_timm:
raise ValueError("""use_timm_backbone must be True for timm backbones""")
lowercase__ : Union[str, Any] = kwargs.pop("""num_channels""" , config.num_channels)
lowercase__ : Optional[int] = kwargs.pop("""features_only""" , config.features_only)
lowercase__ : int = kwargs.pop("""use_pretrained_backbone""" , config.use_pretrained_backbone)
lowercase__ : Any = kwargs.pop("""out_indices""" , config.out_indices)
lowercase__ : List[str] = TimmBackboneConfig(
backbone=SCREAMING_SNAKE_CASE_ , num_channels=SCREAMING_SNAKE_CASE_ , features_only=SCREAMING_SNAKE_CASE_ , use_pretrained_backbone=SCREAMING_SNAKE_CASE_ , out_indices=SCREAMING_SNAKE_CASE_ , )
return super()._from_config(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
def lowercase__ ( self , SCREAMING_SNAKE_CASE_):
'''simple docstring'''
pass
def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_):
'''simple docstring'''
lowercase__ : Union[str, Any] = return_dict if return_dict is not None else self.config.use_return_dict
lowercase__ : List[Any] = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowercase__ : Optional[Any] = output_attentions if output_attentions is not None else self.config.output_attentions
if output_attentions:
raise ValueError("""Cannot output attentions for timm backbones at the moment""")
if output_hidden_states:
# We modify the return layers to include all the stages of the backbone
lowercase__ : List[str] = self._all_layers
lowercase__ : Optional[int] = self._backbone(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : Optional[int] = self._return_layers
lowercase__ : Optional[Any] = tuple(hidden_states[i] for i in self.out_indices)
else:
lowercase__ : int = self._backbone(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_)
lowercase__ : List[str] = None
lowercase__ : Optional[Any] = tuple(SCREAMING_SNAKE_CASE_)
lowercase__ : int = tuple(SCREAMING_SNAKE_CASE_) if hidden_states is not None else None
if not return_dict:
lowercase__ : Union[str, Any] = (feature_maps,)
if output_hidden_states:
lowercase__ : Optional[Any] = output + (hidden_states,)
return output
return BackboneOutput(feature_maps=SCREAMING_SNAKE_CASE_ , hidden_states=SCREAMING_SNAKE_CASE_ , attentions=SCREAMING_SNAKE_CASE_)
| 12 |
'''simple docstring'''
import math_equivalence # From: git+https://github.com/hendrycks/math.git
import datasets
A = '''\
@article{hendrycksmath2021,
title={Measuring Mathematical Problem Solving With the MATH Dataset},
author={Dan Hendrycks
and Collin Burns
and Saurav Kadavath
and Akul Arora
and Steven Basart
and Eric Tang
and Dawn Song
and Jacob Steinhardt},
journal={arXiv preprint arXiv:2103.03874},
year={2021}
}
'''
A = '''\
This metric is used to assess performance on the Mathematics Aptitude Test of Heuristics (MATH) dataset.
It first canonicalizes the inputs (e.g., converting "1/2" to "\\frac{1}{2}") and then computes accuracy.
'''
A = R'''
Calculates accuracy after canonicalizing inputs.
Args:
predictions: list of predictions to score. Each prediction
is a string that contains natural language and LaTex.
references: list of reference for each prediction. Each
reference is a string that contains natural language
and LaTex.
Returns:
accuracy: accuracy after canonicalizing inputs
(e.g., converting "1/2" to "\\frac{1}{2}")
Examples:
>>> metric = datasets.load_metric("competition_math")
>>> results = metric.compute(references=["\\frac{1}{2}"], predictions=["1/2"])
>>> print(results)
{\'accuracy\': 1.0}
'''
@datasets.utils.file_utils.add_end_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class __SCREAMING_SNAKE_CASE ( datasets.Metric ):
'''simple docstring'''
def _lowerCamelCase ( self : List[Any] ) -> Union[str, Any]:
return datasets.MetricInfo(
description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features(
{
'predictions': datasets.Value('string' ),
'references': datasets.Value('string' ),
} ) ,homepage='https://github.com/hendrycks/math' ,codebase_urls=['https://github.com/hendrycks/math'] ,)
def _lowerCamelCase ( self : int ,UpperCamelCase : int ,UpperCamelCase : Optional[int] ) -> Optional[Any]:
_lowercase : Optional[int] = 0.0
for i, j in zip(UpperCamelCase ,UpperCamelCase ):
n_correct += 1.0 if math_equivalence.is_equiv(UpperCamelCase ,UpperCamelCase ) else 0.0
_lowercase : Any = n_correct / len(UpperCamelCase )
return {
"accuracy": accuracy,
} | 125 | 0 |
from PIL import Image
def lowercase_ ( __snake_case : Image , __snake_case : int ) -> Image:
'''simple docstring'''
snake_case__ :int = (2_59 * (level + 2_55)) / (2_55 * (2_59 - level))
def contrast(__snake_case : int ) -> int:
return int(1_28 + factor * (c - 1_28) )
return img.point(__snake_case )
if __name__ == "__main__":
# Load image
with Image.open("image_data/lena.jpg") as img:
# Change contrast to 170
__UpperCAmelCase : Dict = change_contrast(img, 1_7_0)
cont_img.save("image_data/lena_high_contrast.png", format="png") | 57 |
def lowercase_ ( __snake_case : list ) -> list:
'''simple docstring'''
if any(not isinstance(__snake_case , __snake_case ) or x < 0 for x in sequence ):
raise TypeError("Sequence must be list of non-negative integers" )
for _ in range(len(__snake_case ) ):
for i, (rod_upper, rod_lower) in enumerate(zip(__snake_case , sequence[1:] ) ):
if rod_upper > rod_lower:
sequence[i] -= rod_upper - rod_lower
sequence[i + 1] += rod_upper - rod_lower
return sequence
if __name__ == "__main__":
assert bead_sort([5, 4, 3, 2, 1]) == [1, 2, 3, 4, 5]
assert bead_sort([7, 9, 4, 3, 5]) == [3, 4, 5, 7, 9] | 57 | 1 |
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
SCREAMING_SNAKE_CASE__ : List[str] = {
"configuration_autoformer": [
"AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"AutoformerConfig",
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
SCREAMING_SNAKE_CASE__ : Optional[Any] = [
"AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"AutoformerForPrediction",
"AutoformerModel",
"AutoformerPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_autoformer import (
AUTOFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
AutoformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_autoformer import (
AUTOFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
AutoformerForPrediction,
AutoformerModel,
AutoformerPreTrainedModel,
)
else:
import sys
SCREAMING_SNAKE_CASE__ : str = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 205 | from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class _lowercase ( snake_case_ ):
lowercase = ['image_processor', 'tokenizer']
lowercase = 'BlipImageProcessor'
lowercase = 'AutoTokenizer'
def __init__( self : Optional[int] , snake_case : Tuple , snake_case : Union[str, Any] ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase_ : Tuple = False
super().__init__(snake_case , snake_case )
UpperCamelCase_ : Optional[Any] = self.image_processor
def __call__( self : str , snake_case : ImageInput = None , snake_case : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , snake_case : bool = True , snake_case : Union[bool, str, PaddingStrategy] = False , snake_case : Union[bool, str, TruncationStrategy] = None , snake_case : Optional[int] = None , snake_case : int = 0 , snake_case : Optional[int] = None , snake_case : Optional[bool] = None , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = False , snake_case : bool = True , snake_case : Optional[Union[str, TensorType]] = None , **snake_case : str , ) -> BatchEncoding:
"""simple docstring"""
if images is None and text is None:
raise ValueError('You have to specify either images or text.' )
# Get only text
if images is None:
UpperCamelCase_ : Union[str, Any] = self.tokenizer
UpperCamelCase_ : List[Any] = self.tokenizer(
text=snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , stride=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , return_overflowing_tokens=snake_case , return_special_tokens_mask=snake_case , return_offsets_mapping=snake_case , return_token_type_ids=snake_case , return_length=snake_case , verbose=snake_case , return_tensors=snake_case , **snake_case , )
return text_encoding
# add pixel_values
UpperCamelCase_ : Union[str, Any] = self.image_processor(snake_case , return_tensors=snake_case )
if text is not None:
UpperCamelCase_ : Optional[Any] = self.tokenizer(
text=snake_case , add_special_tokens=snake_case , padding=snake_case , truncation=snake_case , max_length=snake_case , stride=snake_case , pad_to_multiple_of=snake_case , return_attention_mask=snake_case , return_overflowing_tokens=snake_case , return_special_tokens_mask=snake_case , return_offsets_mapping=snake_case , return_token_type_ids=snake_case , return_length=snake_case , verbose=snake_case , return_tensors=snake_case , **snake_case , )
else:
UpperCamelCase_ : Any = None
if text_encoding is not None:
encoding_image_processor.update(snake_case )
return encoding_image_processor
def SCREAMING_SNAKE_CASE__ ( self : int , *snake_case : Union[str, Any] , **snake_case : Any ) -> str:
"""simple docstring"""
return self.tokenizer.batch_decode(*snake_case , **snake_case )
def SCREAMING_SNAKE_CASE__ ( self : Dict , *snake_case : str , **snake_case : Tuple ) -> List[str]:
"""simple docstring"""
return self.tokenizer.decode(*snake_case , **snake_case )
@property
# Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names
def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCamelCase_ : Any = self.tokenizer.model_input_names
UpperCamelCase_ : Optional[Any] = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 417 | 0 |
"""simple docstring"""
import inspect
import unittest
from transformers import SegformerConfig, is_torch_available, is_vision_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
MODEL_MAPPING,
SegformerForImageClassification,
SegformerForSemanticSegmentation,
SegformerModel,
)
from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import SegformerImageProcessor
class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ):
'''simple docstring'''
def UpperCamelCase__ ( self ) -> Optional[Any]:
A = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(lowerCamelCase_ ,"""hidden_sizes""" ) )
self.parent.assertTrue(hasattr(lowerCamelCase_ ,"""num_attention_heads""" ) )
self.parent.assertTrue(hasattr(lowerCamelCase_ ,"""num_encoder_blocks""" ) )
class lowerCamelCase__ :
'''simple docstring'''
def __init__( self ,lowerCamelCase_ ,lowerCamelCase_=1_3 ,lowerCamelCase_=6_4 ,lowerCamelCase_=3 ,lowerCamelCase_=4 ,lowerCamelCase_=[2, 2, 2, 2] ,lowerCamelCase_=[8, 4, 2, 1] ,lowerCamelCase_=[1_6, 3_2, 6_4, 1_2_8] ,lowerCamelCase_=[1, 4, 8, 1_6] ,lowerCamelCase_=[1, 2, 4, 8] ,lowerCamelCase_=True ,lowerCamelCase_=True ,lowerCamelCase_="gelu" ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.1 ,lowerCamelCase_=0.02 ,lowerCamelCase_=3 ,lowerCamelCase_=None ,) -> Optional[Any]:
A = parent
A = batch_size
A = image_size
A = num_channels
A = num_encoder_blocks
A = sr_ratios
A = depths
A = hidden_sizes
A = downsampling_rates
A = num_attention_heads
A = is_training
A = use_labels
A = hidden_act
A = hidden_dropout_prob
A = attention_probs_dropout_prob
A = initializer_range
A = num_labels
A = scope
def UpperCamelCase__ ( self ) -> List[Any]:
A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
A = None
if self.use_labels:
A = ids_tensor([self.batch_size, self.image_size, self.image_size] ,self.num_labels )
A = self.get_config()
return config, pixel_values, labels
def UpperCamelCase__ ( self ) -> str:
return SegformerConfig(
image_size=self.image_size ,num_channels=self.num_channels ,num_encoder_blocks=self.num_encoder_blocks ,depths=self.depths ,hidden_sizes=self.hidden_sizes ,num_attention_heads=self.num_attention_heads ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,initializer_range=self.initializer_range ,)
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[Any]:
A = SegformerModel(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
A = model(lowerCamelCase_ )
A = A = self.image_size // (self.downsampling_rates[-1] * 2)
self.parent.assertEqual(
result.last_hidden_state.shape ,(self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> int:
A = self.num_labels
A = SegformerForSemanticSegmentation(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
A = model(lowerCamelCase_ )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
A = model(lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertEqual(
result.logits.shape ,(self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) )
self.parent.assertGreater(result.loss ,0.0 )
def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]:
A = 1
A = SegformerForSemanticSegmentation(config=lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
A = torch.randint(0 ,1 ,(self.batch_size, self.image_size, self.image_size) ).to(lowerCamelCase_ )
A = model(lowerCamelCase_ ,labels=lowerCamelCase_ )
self.parent.assertGreater(result.loss ,0.0 )
def UpperCamelCase__ ( self ) -> str:
A = self.prepare_config_and_inputs()
A , A , A = config_and_inputs
A = {"""pixel_values""": pixel_values}
return config, inputs_dict
@require_torch
class lowerCamelCase__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase = (
(
SegformerModel,
SegformerForSemanticSegmentation,
SegformerForImageClassification,
)
if is_torch_available()
else ()
)
_lowerCamelCase = (
{
'''feature-extraction''': SegformerModel,
'''image-classification''': SegformerForImageClassification,
'''image-segmentation''': SegformerForSemanticSegmentation,
}
if is_torch_available()
else {}
)
_lowerCamelCase = True
_lowerCamelCase = False
_lowerCamelCase = False
_lowerCamelCase = False
def UpperCamelCase__ ( self ) -> str:
A = SegformerModelTester(self )
A = SegformerConfigTester(self ,config_class=lowerCamelCase_ )
def UpperCamelCase__ ( self ) -> Any:
self.config_tester.run_common_tests()
def UpperCamelCase__ ( self ) -> Dict:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase_ )
def UpperCamelCase__ ( self ) -> int:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCamelCase_ )
def UpperCamelCase__ ( self ) -> List[Any]:
A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_segmentation(*lowerCamelCase_ )
@unittest.skip("""SegFormer does not use inputs_embeds""" )
def UpperCamelCase__ ( self ) -> Optional[int]:
pass
@unittest.skip("""SegFormer does not have get_input_embeddings method and get_output_embeddings methods""" )
def UpperCamelCase__ ( self ) -> Dict:
pass
def UpperCamelCase__ ( self ) -> str:
A , A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = model_class(lowerCamelCase_ )
A = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A = [*signature.parameters.keys()]
A = ["""pixel_values"""]
self.assertListEqual(arg_names[:1] ,lowerCamelCase_ )
def UpperCamelCase__ ( self ) -> int:
A , A = self.model_tester.prepare_config_and_inputs_for_common()
A = True
for model_class in self.all_model_classes:
A = True
A = False
A = True
A = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
A = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
A = outputs.attentions
A = sum(self.model_tester.depths )
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A = True
A = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
A = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
A = outputs.attentions
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
# verify the first attentions (first block, first layer)
A = (self.model_tester.image_size // 4) ** 2
A = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,)
# verify the last attentions (last block, last layer)
A = (self.model_tester.image_size // 3_2) ** 2
A = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2
self.assertListEqual(
list(attentions[-1].shape[-3:] ) ,[self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] ,)
A = len(lowerCamelCase_ )
# Check attention is always last and order is fine
A = True
A = True
A = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
A = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
self.assertEqual(out_len + 1 ,len(lowerCamelCase_ ) )
A = outputs.attentions
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
# verify the first attentions (first block, first layer)
A = (self.model_tester.image_size // 4) ** 2
A = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) ,[self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] ,)
def UpperCamelCase__ ( self ) -> int:
def check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ):
A = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.eval()
with torch.no_grad():
A = model(**self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ) )
A = outputs.hidden_states
A = self.model_tester.num_encoder_blocks
self.assertEqual(len(lowerCamelCase_ ) ,lowerCamelCase_ )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) ,[
self.model_tester.hidden_sizes[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] ,)
A , A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A = True
check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A = True
check_hidden_states_output(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ )
def UpperCamelCase__ ( self ) -> Optional[Any]:
if not self.model_tester.is_training:
return
A , A = self.model_tester.prepare_config_and_inputs_for_common()
A = True
for model_class in self.all_model_classes:
if model_class in get_values(lowerCamelCase_ ):
continue
A = model_class(lowerCamelCase_ )
model.to(lowerCamelCase_ )
model.train()
A = self._prepare_for_class(lowerCamelCase_ ,lowerCamelCase_ ,return_labels=lowerCamelCase_ )
A = model(**lowerCamelCase_ ).loss
loss.backward()
@unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" )
def UpperCamelCase__ ( self ) -> Optional[int]:
pass
@slow
def UpperCamelCase__ ( self ) -> Optional[Any]:
for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A = SegformerModel.from_pretrained(lowerCamelCase_ )
self.assertIsNotNone(lowerCamelCase_ )
def _A ( ):
"""simple docstring"""
A = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" )
return image
@require_torch
class lowerCamelCase__ ( unittest.TestCase ):
'''simple docstring'''
@slow
def UpperCamelCase__ ( self ) -> int:
# only resize + normalize
A = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) ,keep_ratio=lowerCamelCase_ ,align=lowerCamelCase_ ,do_random_crop=lowerCamelCase_ )
A = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to(
lowerCamelCase_ )
A = prepare_img()
A = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" )
A = encoded_inputs.pixel_values.to(lowerCamelCase_ )
with torch.no_grad():
A = model(lowerCamelCase_ )
A = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) )
self.assertEqual(outputs.logits.shape ,lowerCamelCase_ )
A = torch.tensor(
[
[[-4.63_10, -5.52_32, -6.23_56], [-5.19_21, -6.14_44, -6.59_96], [-5.44_24, -6.27_90, -6.75_74]],
[[-12.13_91, -13.31_22, -13.95_54], [-12.87_32, -13.93_52, -14.35_63], [-12.94_38, -13.82_26, -14.25_13]],
[[-12.51_34, -13.46_86, -14.49_15], [-12.86_69, -14.43_43, -14.77_58], [-13.25_23, -14.58_19, -15.06_94]],
] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,lowerCamelCase_ ,atol=1E-4 ) )
@slow
def UpperCamelCase__ ( self ) -> Optional[int]:
# only resize + normalize
A = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) ,keep_ratio=lowerCamelCase_ ,align=lowerCamelCase_ ,do_random_crop=lowerCamelCase_ )
A = SegformerForSemanticSegmentation.from_pretrained(
"""nvidia/segformer-b1-finetuned-cityscapes-1024-1024""" ).to(lowerCamelCase_ )
A = prepare_img()
A = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" )
A = encoded_inputs.pixel_values.to(lowerCamelCase_ )
with torch.no_grad():
A = model(lowerCamelCase_ )
A = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) )
self.assertEqual(outputs.logits.shape ,lowerCamelCase_ )
A = torch.tensor(
[
[[-13.57_48, -13.91_11, -12.65_00], [-14.35_00, -15.36_83, -14.23_28], [-14.75_32, -16.04_24, -15.60_87]],
[[-17.16_51, -15.87_25, -12.96_53], [-17.25_80, -17.37_18, -14.82_23], [-16.60_58, -16.87_83, -16.74_52]],
[[-3.64_56, -3.02_09, -1.42_03], [-3.07_97, -3.19_59, -2.00_00], [-1.87_57, -1.92_17, -1.69_97]],
] ).to(lowerCamelCase_ )
self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] ,lowerCamelCase_ ,atol=1E-1 ) )
@slow
def UpperCamelCase__ ( self ) -> Union[str, Any]:
# only resize + normalize
A = SegformerImageProcessor(
image_scale=(5_1_2, 5_1_2) ,keep_ratio=lowerCamelCase_ ,align=lowerCamelCase_ ,do_random_crop=lowerCamelCase_ )
A = SegformerForSemanticSegmentation.from_pretrained("""nvidia/segformer-b0-finetuned-ade-512-512""" ).to(
lowerCamelCase_ )
A = prepare_img()
A = image_processor(images=lowerCamelCase_ ,return_tensors="""pt""" )
A = encoded_inputs.pixel_values.to(lowerCamelCase_ )
with torch.no_grad():
A = model(lowerCamelCase_ )
A = outputs.logits.detach().cpu()
A = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ ,target_sizes=[(5_0_0, 3_0_0)] )
A = torch.Size((5_0_0, 3_0_0) )
self.assertEqual(segmentation[0].shape ,lowerCamelCase_ )
A = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ )
A = torch.Size((1_2_8, 1_2_8) )
self.assertEqual(segmentation[0].shape ,lowerCamelCase_ )
| 716 |
"""simple docstring"""
import argparse
import json
import os
from pathlib import Path
import requests
import torch
from transformers import JukeboxConfig, JukeboxModel
from transformers.utils import logging
logging.set_verbosity_info()
UpperCAmelCase =logging.get_logger(__name__)
UpperCAmelCase ="https://openaipublic.azureedge.net/jukebox/models/"
UpperCAmelCase ={
"jukebox-1b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"1b_lyrics/prior_level_2.pth.tar",
],
"jukebox-5b-lyrics": [
"5b/vqvae.pth.tar",
"5b/prior_level_0.pth.tar",
"5b/prior_level_1.pth.tar",
"5b_lyrics/prior_level_2.pth.tar",
],
}
def _A ( _a : Optional[Any] ):
"""simple docstring"""
if key.endswith(""".model.1.bias""" ) and len(key.split(""".""" ) ) > 1_0:
A = key.replace(""".model.1.bias""" , """.conv1d_1.bias""" )
elif key.endswith(""".model.1.weight""" ) and len(key.split(""".""" ) ) > 1_0:
A = key.replace(""".model.1.weight""" , """.conv1d_1.weight""" )
elif key.endswith(""".model.3.bias""" ) and len(key.split(""".""" ) ) > 1_0:
A = key.replace(""".model.3.bias""" , """.conv1d_2.bias""" )
elif key.endswith(""".model.3.weight""" ) and len(key.split(""".""" ) ) > 1_0:
A = key.replace(""".model.3.weight""" , """.conv1d_2.weight""" )
if "conditioner_blocks.0." in key:
A = key.replace("""conditioner_blocks.0""" , """conditioner_blocks""" )
if "prime_prior" in key:
A = key.replace("""prime_prior""" , """encoder""" )
if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key:
A = key.replace(""".emb.""" , """.""" )
if key.endswith("""k""" ): # replace vqvae.X.k with vqvae.X.codebook
return key.replace(""".k""" , """.codebook""" )
if "y_emb." in key:
return key.replace("""y_emb.""" , """metadata_embedding.""" )
if "x_emb.emb." in key:
A = key.replace("""0.x_emb.emb""" , """embed_tokens""" )
if "prime_state_ln" in key:
return key.replace("""prime_state_ln""" , """encoder.final_layer_norm""" )
if ".ln" in key:
return key.replace(""".ln""" , """.layer_norm""" )
if "_ln" in key:
return key.replace("""_ln""" , """_layer_norm""" )
if "prime_state_proj" in key:
return key.replace("""prime_state_proj""" , """encoder.proj_in""" )
if "prime_x_out" in key:
return key.replace("""prime_x_out""" , """encoder.lm_head""" )
if "prior.x_out" in key:
return key.replace("""x_out""" , """fc_proj_out""" )
if "x_emb" in key:
return key.replace("""x_emb""" , """embed_tokens""" )
return key
def _A ( _a : Union[str, Any] , _a : Union[str, Any] , _a : Union[str, Any] , _a : List[Any] ):
"""simple docstring"""
A = {}
import re
A = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
A = re.compile(
r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
A = re.compile(r"""encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
A = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)""" )
A = re.compile(
r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
A = re.compile(r"""decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)""" )
A = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)""" )
A = re.compile(
r"""conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)""" )
A = re.compile(r"""conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)""" )
for original_key, value in state_dict.items():
# rename vqvae.encoder keys
if re_encoder_block_conv_in.fullmatch(_a ):
A = re_encoder_block_conv_in.match(_a )
A = regex_match.groups()
A = int(groups[2] ) * 2 + int(groups[3] )
A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}'
A = re_encoder_block_conv_in.sub(_a , _a )
elif re_encoder_block_resnet.fullmatch(_a ):
A = re_encoder_block_resnet.match(_a )
A = regex_match.groups()
A = int(groups[2] ) * 2 + int(groups[3] )
A = {"""1""": 1, """3""": 2}[groups[-2]]
A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.'
A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
A = prefix + resnet_block
A = re_encoder_block_resnet.sub(_a , _a )
elif re_encoder_block_proj_out.fullmatch(_a ):
A = re_encoder_block_proj_out.match(_a )
A = regex_match.groups()
A = f'encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}'
A = re_encoder_block_proj_out.sub(_a , _a )
# rename vqvae.decoder keys
elif re_decoder_block_conv_out.fullmatch(_a ):
A = re_decoder_block_conv_out.match(_a )
A = regex_match.groups()
A = int(groups[2] ) * 2 + int(groups[3] ) - 2
A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}'
A = re_decoder_block_conv_out.sub(_a , _a )
elif re_decoder_block_resnet.fullmatch(_a ):
A = re_decoder_block_resnet.match(_a )
A = regex_match.groups()
A = int(groups[2] ) * 2 + int(groups[3] ) - 2
A = {"""1""": 1, """3""": 2}[groups[-2]]
A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.'
A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
A = prefix + resnet_block
A = re_decoder_block_resnet.sub(_a , _a )
elif re_decoder_block_proj_in.fullmatch(_a ):
A = re_decoder_block_proj_in.match(_a )
A = regex_match.groups()
A = f'decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}'
A = re_decoder_block_proj_in.sub(_a , _a )
# rename prior cond.model to upsampler.upsample_block and resnet
elif re_prior_cond_conv_out.fullmatch(_a ):
A = re_prior_cond_conv_out.match(_a )
A = regex_match.groups()
A = int(groups[1] ) * 2 + int(groups[2] ) - 2
A = f'conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}'
A = re_prior_cond_conv_out.sub(_a , _a )
elif re_prior_cond_resnet.fullmatch(_a ):
A = re_prior_cond_resnet.match(_a )
A = regex_match.groups()
A = int(groups[1] ) * 2 + int(groups[2] ) - 2
A = {"""1""": 1, """3""": 2}[groups[-2]]
A = f'conditioner_blocks.upsampler.upsample_block.{block_index}.'
A = f'resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}'
A = prefix + resnet_block
A = re_prior_cond_resnet.sub(_a , _a )
elif re_prior_cond_proj_in.fullmatch(_a ):
A = re_prior_cond_proj_in.match(_a )
A = regex_match.groups()
A = f'conditioner_blocks.upsampler.proj_in.{groups[-1]}'
A = re_prior_cond_proj_in.sub(_a , _a )
# keep original key
else:
A = original_key
A = replace_key(_a )
if f'{key_prefix}.{key}' not in model_state_dict or key is None:
print(f'failed converting {original_key} to {key}, does not match' )
# handle missmatched shape
elif value.shape != model_state_dict[f'{key_prefix}.{key}'].shape:
A = model_state_dict[f'{key_prefix}.{key}']
print(f'{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match' )
A = original_key
A = original_key
A = value
return new_dict
@torch.no_grad()
def _A ( _a : Optional[Any]=None , _a : str=None ):
"""simple docstring"""
for file in MODEL_MAPPING[model_name]:
if not os.path.isfile(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' ):
A = requests.get(f'{PREFIX}{file}' , allow_redirects=_a )
os.makedirs(f'{pytorch_dump_folder_path}/' , exist_ok=_a )
open(f'{pytorch_dump_folder_path}/{file.split("/" )[-1]}' , """wb""" ).write(r.content )
A = MODEL_MAPPING[model_name.split("""/""" )[-1]]
A = JukeboxConfig.from_pretrained(_a )
A = JukeboxModel(_a )
A = []
A = {}
for i, dict_name in enumerate(_a ):
A = torch.load(f'{pytorch_dump_folder_path}/{dict_name.split("/" )[-1]}' )["""model"""]
A = {}
for k in old_dic.keys():
if k.endswith(""".b""" ):
A = old_dic[k]
elif k.endswith(""".w""" ):
A = old_dic[k]
elif "level_2" not in dict_name and "cond.model." in k:
A = old_dic[k]
else:
A = old_dic[k]
A = """vqvae""" if i == 0 else f'priors.{3 - i}'
A = fix_jukebox_keys(_a , model.state_dict() , _a , _a )
weight_dict.append(_a )
A = weight_dict.pop(0 )
model.vqvae.load_state_dict(_a )
for i in range(len(_a ) ):
model.priors[i].load_state_dict(weight_dict[2 - i] )
Path(_a ).mkdir(exist_ok=_a )
with open(f'{pytorch_dump_folder_path}/mapping.json' , """w""" ) as txtfile:
json.dump(_a , _a )
print(f'Saving model {model_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(_a )
return weight_dict
if __name__ == "__main__":
UpperCAmelCase =argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--model_name",
default="jukebox-5b-lyrics",
type=str,
help="Name of the model you'd like to convert.",
)
parser.add_argument(
"--pytorch_dump_folder_path",
default="jukebox-5b-lyrics-converted",
type=str,
help="Path to the output PyTorch model directory.",
)
UpperCAmelCase =parser.parse_args()
convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
| 255 | 0 |
import os
import re
import warnings
from shutil import copyfile
from typing import List, Optional, Tuple
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import is_sentencepiece_available, logging
if is_sentencepiece_available():
from .tokenization_ta import TaTokenizer
else:
_A : Tuple = None
_A : int = logging.get_logger(__name__)
_A : Tuple = {"""vocab_file""": """spiece.model""", """tokenizer_file""": """tokenizer.json"""}
_A : Optional[Any] = {
"""vocab_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/spiece.model""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/spiece.model""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/spiece.model""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/spiece.model""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/spiece.model""",
},
"""tokenizer_file""": {
"""t5-small""": """https://huggingface.co/t5-small/resolve/main/tokenizer.json""",
"""t5-base""": """https://huggingface.co/t5-base/resolve/main/tokenizer.json""",
"""t5-large""": """https://huggingface.co/t5-large/resolve/main/tokenizer.json""",
"""t5-3b""": """https://huggingface.co/t5-3b/resolve/main/tokenizer.json""",
"""t5-11b""": """https://huggingface.co/t5-11b/resolve/main/tokenizer.json""",
},
}
# TODO(PVP) - this should be removed in Transformers v5
_A : str = {
"""t5-small""": 5_12,
"""t5-base""": 5_12,
"""t5-large""": 5_12,
"""t5-3b""": 5_12,
"""t5-11b""": 5_12,
}
class __snake_case ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
lowerCamelCase__ : int = VOCAB_FILES_NAMES
lowerCamelCase__ : str = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ : Union[str, Any] = ["""input_ids""", """attention_mask"""]
lowerCamelCase__ : Union[str, Any] = TaTokenizer
lowerCamelCase__ : List[int] = []
def __init__( self , A_=None , A_=None , A_="</s>" , A_="<unk>" , A_="<pad>" , A_=1_00 , A_=None , **A_ , ):
'''simple docstring'''
if extra_ids > 0 and additional_special_tokens is None:
SCREAMING_SNAKE_CASE__ = [f'''<extra_id_{i}>''' for i in range(A_ )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra special tokens
SCREAMING_SNAKE_CASE__ = len(set(filter(lambda A_ : bool('''extra_id_''' in str(A_ ) ) , A_ ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
super().__init__(
A_ , tokenizer_file=A_ , eos_token=A_ , unk_token=A_ , pad_token=A_ , extra_ids=A_ , additional_special_tokens=A_ , **A_ , )
SCREAMING_SNAKE_CASE__ = vocab_file
SCREAMING_SNAKE_CASE__ = False if not self.vocab_file else True
SCREAMING_SNAKE_CASE__ = extra_ids
@staticmethod
def lowercase_ ( A_ , A_ , A_ ):
'''simple docstring'''
if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes:
SCREAMING_SNAKE_CASE__ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f''' {pretrained_model_name_or_path} automatically truncating your input to'''
f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , A_ , )
return max_model_length
def lowercase_ ( self , A_ , A_ = None ):
'''simple docstring'''
if not self.can_save_slow_tokenizer:
raise ValueError(
'''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow '''
'''tokenizer.''' )
if not os.path.isdir(A_ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
SCREAMING_SNAKE_CASE__ = os.path.join(
A_ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ):
copyfile(self.vocab_file , A_ )
logger.info(f'''Copy vocab file to {out_vocab_file}''' )
return (out_vocab_file,)
def lowercase_ ( self , A_ , A_ = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = token_ids_a + [self.eos_token_id]
if token_ids_a is None:
return self.prefix_tokens + token_ids_a
else:
SCREAMING_SNAKE_CASE__ = token_ids_a + [self.eos_token_id]
return self.prefix_tokens + token_ids_a + token_ids_a
def lowercase_ ( self , A_ , A_ = None ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def lowercase_ ( self ):
'''simple docstring'''
return list(
set(filter(lambda A_ : bool(re.search(r'''<extra_id_\d+>''' , A_ ) ) is not None , self.additional_special_tokens ) ) )
def lowercase_ ( self ):
'''simple docstring'''
return [self.convert_tokens_to_ids(A_ ) for token in self.get_sentinel_tokens()]
| 100 | import argparse
from pathlib import Path
import requests
import torch
from PIL import Image
from transformers import (
RobertaTokenizer,
TrOCRConfig,
TrOCRForCausalLM,
TrOCRProcessor,
VisionEncoderDecoderModel,
ViTConfig,
ViTImageProcessor,
ViTModel,
)
from transformers.utils import logging
logging.set_verbosity_info()
lowerCamelCase__ = logging.get_logger(__name__)
def _lowerCamelCase( __snake_case , __snake_case ) -> Dict:
__snake_case = []
for i in range(encoder_config.num_hidden_layers ):
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm1.weight""", f"""encoder.encoder.layer.{i}.layernorm_before.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm1.bias""", f"""encoder.encoder.layer.{i}.layernorm_before.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.weight""", f"""encoder.encoder.layer.{i}.attention.output.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.attn.proj.bias""", f"""encoder.encoder.layer.{i}.attention.output.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.norm2.weight""", f"""encoder.encoder.layer.{i}.layernorm_after.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.norm2.bias""", f"""encoder.encoder.layer.{i}.layernorm_after.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.weight""", f"""encoder.encoder.layer.{i}.intermediate.dense.weight""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc1.bias""", f"""encoder.encoder.layer.{i}.intermediate.dense.bias""") )
rename_keys.append(
(f"""encoder.deit.blocks.{i}.mlp.fc2.weight""", f"""encoder.encoder.layer.{i}.output.dense.weight""") )
rename_keys.append((f"""encoder.deit.blocks.{i}.mlp.fc2.bias""", f"""encoder.encoder.layer.{i}.output.dense.bias""") )
# cls token, position embeddings and patch embeddings of encoder
rename_keys.extend(
[
("encoder.deit.cls_token", "encoder.embeddings.cls_token"),
("encoder.deit.pos_embed", "encoder.embeddings.position_embeddings"),
("encoder.deit.patch_embed.proj.weight", "encoder.embeddings.patch_embeddings.projection.weight"),
("encoder.deit.patch_embed.proj.bias", "encoder.embeddings.patch_embeddings.projection.bias"),
("encoder.deit.norm.weight", "encoder.layernorm.weight"),
("encoder.deit.norm.bias", "encoder.layernorm.bias"),
] )
return rename_keys
def _lowerCamelCase( __snake_case , __snake_case ) -> Dict:
for i in range(encoder_config.num_hidden_layers ):
# queries, keys and values (only weights, no biases)
__snake_case = state_dict.pop(f"""encoder.deit.blocks.{i}.attn.qkv.weight""" )
__snake_case = in_proj_weight[
: encoder_config.hidden_size, :
]
__snake_case = in_proj_weight[
encoder_config.hidden_size : encoder_config.hidden_size * 2, :
]
__snake_case = in_proj_weight[
-encoder_config.hidden_size :, :
]
def _lowerCamelCase( __snake_case , __snake_case , __snake_case ) -> List[Any]:
__snake_case = dct.pop(__snake_case )
__snake_case = val
def _lowerCamelCase( __snake_case ) -> str:
if "handwritten" in checkpoint_url:
__snake_case = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-00.jpg" # industry
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-12.jpg" # have
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02-10.jpg" # let
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122-02.jpg" #
# url = "https://fki.tic.heia-fr.ch/static/img/a01-122.jpg"
elif "printed" in checkpoint_url or "stage1" in checkpoint_url:
__snake_case = "https://www.researchgate.net/profile/Dinh-Sang/publication/338099565/figure/fig8/AS:840413229350922@1577381536857/An-receipt-example-in-the-SROIE-2019-dataset_Q640.jpg"
__snake_case = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ).convert("RGB" )
return im
@torch.no_grad()
def _lowerCamelCase( __snake_case , __snake_case ) -> int:
__snake_case = ViTConfig(image_size=384 , qkv_bias=__snake_case )
__snake_case = TrOCRConfig()
# size of the architecture
if "base" in checkpoint_url:
__snake_case = 768
elif "large" in checkpoint_url:
# use ViT-large encoder
__snake_case = 1024
__snake_case = 4096
__snake_case = 24
__snake_case = 16
__snake_case = 1024
else:
raise ValueError("Should either find 'base' or 'large' in checkpoint URL" )
# the large-printed + stage1 checkpoints uses sinusoidal position embeddings, no layernorm afterwards
if "large-printed" in checkpoint_url or "stage1" in checkpoint_url:
__snake_case = False
__snake_case = "relu"
__snake_case = 1024
__snake_case = True
__snake_case = False
__snake_case = False
# load HuggingFace model
__snake_case = ViTModel(__snake_case , add_pooling_layer=__snake_case )
__snake_case = TrOCRForCausalLM(__snake_case )
__snake_case = VisionEncoderDecoderModel(encoder=__snake_case , decoder=__snake_case )
model.eval()
# load state_dict of original model, rename some keys
__snake_case = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" , check_hash=__snake_case )["model"]
__snake_case = create_rename_keys(__snake_case , __snake_case )
for src, dest in rename_keys:
rename_key(__snake_case , __snake_case , __snake_case )
read_in_q_k_v(__snake_case , __snake_case )
# remove parameters we don't need
del state_dict["encoder.deit.head.weight"]
del state_dict["encoder.deit.head.bias"]
del state_dict["decoder.version"]
# add prefix to decoder keys
for key, val in state_dict.copy().items():
__snake_case = state_dict.pop(__snake_case )
if key.startswith("decoder" ) and "output_projection" not in key:
__snake_case = val
else:
__snake_case = val
# load state dict
model.load_state_dict(__snake_case )
# Check outputs on an image
__snake_case = ViTImageProcessor(size=encoder_config.image_size )
__snake_case = RobertaTokenizer.from_pretrained("roberta-large" )
__snake_case = TrOCRProcessor(__snake_case , __snake_case )
__snake_case = processor(images=prepare_img(__snake_case ) , return_tensors="pt" ).pixel_values
# verify logits
__snake_case = torch.tensor([[model.config.decoder.decoder_start_token_id]] )
__snake_case = model(pixel_values=__snake_case , decoder_input_ids=__snake_case )
__snake_case = outputs.logits
__snake_case = torch.Size([1, 1, 5_0265] )
if "trocr-base-handwritten" in checkpoint_url:
__snake_case = torch.tensor(
[-1.4_5_0_2, -4.6_6_8_3, -0.5_3_4_7, -2.9_2_9_1, 9.1_4_3_5, -3.0_5_7_1, 8.9_7_6_4, 1.7_5_6_0, 8.7_3_5_8, -1.5_3_1_1] )
elif "trocr-large-handwritten" in checkpoint_url:
__snake_case = torch.tensor(
[-2.6_4_3_7, -1.3_1_2_9, -2.2_5_9_6, -5.3_4_5_5, 6.3_5_3_9, 1.7_6_0_4, 5.4_9_9_1, 1.4_7_0_2, 5.6_1_1_3, 2.0_1_7_0] )
elif "trocr-base-printed" in checkpoint_url:
__snake_case = torch.tensor(
[-5.6_8_1_6, -5.8_3_8_8, 1.1_3_9_8, -6.9_0_3_4, 6.8_5_0_5, -2.4_3_9_3, 1.2_2_8_4, -1.0_2_3_2, -1.9_6_6_1, -3.9_2_1_0] )
elif "trocr-large-printed" in checkpoint_url:
__snake_case = torch.tensor(
[-6.0_1_6_2, -7.0_9_5_9, 4.4_1_5_5, -5.1_0_6_3, 7.0_4_6_8, -3.1_6_3_1, 2.6_4_6_6, -0.3_0_8_1, -0.8_1_0_6, -1.7_5_3_5] )
if "stage1" not in checkpoint_url:
assert logits.shape == expected_shape, "Shape of logits not as expected"
assert torch.allclose(logits[0, 0, :10] , __snake_case , atol=1e-3 ), "First elements of logits not as expected"
Path(__snake_case ).mkdir(exist_ok=__snake_case )
print(f"""Saving model to {pytorch_dump_folder_path}""" )
model.save_pretrained(__snake_case )
print(f"""Saving processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(__snake_case )
if __name__ == "__main__":
lowerCamelCase__ = argparse.ArgumentParser()
parser.add_argument(
'--checkpoint_url',
default='https://layoutlm.blob.core.windows.net/trocr/model_zoo/fairseq/trocr-base-handwritten.pt',
type=str,
help='URL to the original PyTorch checkpoint (.pth file).',
)
parser.add_argument(
'--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.'
)
lowerCamelCase__ = parser.parse_args()
convert_tr_ocr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
| 524 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
a_ : Optional[int] = logging.get_logger(__name__)
a_ : str = {}
class __UpperCamelCase ( _lowercase ):
"""simple docstring"""
_lowercase : Optional[int] = '''llama'''
_lowercase : Dict = ['''past_key_values''']
def __init__( self , SCREAMING_SNAKE_CASE=3_2_0_0_0 , SCREAMING_SNAKE_CASE=4_0_9_6 , SCREAMING_SNAKE_CASE=1_1_0_0_8 , SCREAMING_SNAKE_CASE=3_2 , SCREAMING_SNAKE_CASE=3_2 , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE="silu" , SCREAMING_SNAKE_CASE=2_0_4_8 , SCREAMING_SNAKE_CASE=0.02 , SCREAMING_SNAKE_CASE=1e-6 , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=0 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=2 , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE , ) -> Optional[int]:
a__ = vocab_size
a__ = max_position_embeddings
a__ = hidden_size
a__ = intermediate_size
a__ = num_hidden_layers
a__ = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a__ = num_attention_heads
a__ = num_key_value_heads
a__ = hidden_act
a__ = initializer_range
a__ = rms_norm_eps
a__ = pretraining_tp
a__ = use_cache
a__ = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=SCREAMING_SNAKE_CASE , bos_token_id=SCREAMING_SNAKE_CASE , eos_token_id=SCREAMING_SNAKE_CASE , tie_word_embeddings=SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE , )
def _UpperCAmelCase ( self ) -> List[Any]:
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , SCREAMING_SNAKE_CASE ) or len(self.rope_scaling ) != 2:
raise ValueError(
'''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, '''
f"got {self.rope_scaling}" )
a__ = self.rope_scaling.get('''type''' , SCREAMING_SNAKE_CASE )
a__ = self.rope_scaling.get('''factor''' , SCREAMING_SNAKE_CASE )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f"`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}" )
if rope_scaling_factor is None or not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) or rope_scaling_factor <= 1.0:
raise ValueError(f"`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}" )
| 703 |
import random
def __a ( __UpperCAmelCase , __UpperCAmelCase ):
a__ , a__ , a__ = [], [], []
for element in data:
if element < pivot:
less.append(__UpperCAmelCase )
elif element > pivot:
greater.append(__UpperCAmelCase )
else:
equal.append(__UpperCAmelCase )
return less, equal, greater
def __a ( __UpperCAmelCase , __UpperCAmelCase ):
# index = len(items) // 2 when trying to find the median
# (value of index when items is sorted)
# invalid input
if index >= len(__UpperCAmelCase ) or index < 0:
return None
a__ = items[random.randint(0 , len(__UpperCAmelCase ) - 1 )]
a__ = 0
a__ , a__ , a__ = _partition(__UpperCAmelCase , __UpperCAmelCase )
a__ = len(__UpperCAmelCase )
a__ = len(__UpperCAmelCase )
# index is the pivot
if m <= index < m + count:
return pivot
# must be in smaller
elif m > index:
return quick_select(__UpperCAmelCase , __UpperCAmelCase )
# must be in larger
else:
return quick_select(__UpperCAmelCase , index - (m + count) )
| 148 | 0 |
# Copyright 2023 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import torch
from ..models.clipseg import CLIPSegForImageSegmentation
from ..utils import is_vision_available, requires_backends
from .base import PipelineTool
if is_vision_available():
from PIL import Image
class lowerCAmelCase_ ( lowerCAmelCase_ ):
__a : Any = (
'''This is a tool that creates a segmentation mask of an image according to a label. It cannot create an image.'''
'''It takes two arguments named `image` which should be the original image, and `label` which should be a text '''
'''describing the elements what should be identified in the segmentation mask. The tool returns the mask.'''
)
__a : Dict = '''CIDAS/clipseg-rd64-refined'''
__a : List[str] = '''image_segmenter'''
__a : Optional[int] = CLIPSegForImageSegmentation
__a : Dict = ['''image''', '''text''']
__a : Any = ['''image''']
def __init__( self ,*snake_case__ ,**snake_case__ ):
requires_backends(self ,['vision'] )
super().__init__(*_snake_case ,**_snake_case )
def snake_case ( self ,snake_case__ ,snake_case__ ):
return self.pre_processor(text=[label] ,images=[image] ,padding=_snake_case ,return_tensors='pt' )
def snake_case ( self ,snake_case__ ):
with torch.no_grad():
SCREAMING_SNAKE_CASE_ : str = self.model(**_snake_case ).logits
return logits
def snake_case ( self ,snake_case__ ):
SCREAMING_SNAKE_CASE_ : Any = outputs.cpu().detach().numpy()
SCREAMING_SNAKE_CASE_ : Optional[int] = 0
SCREAMING_SNAKE_CASE_ : Optional[int] = 1
return Image.fromarray((array * 255).astype(np.uinta ) )
| 105 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__lowerCAmelCase : Tuple = {
"configuration_mgp_str": ["MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP", "MgpstrConfig"],
"processing_mgp_str": ["MgpstrProcessor"],
"tokenization_mgp_str": ["MgpstrTokenizer"],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__lowerCAmelCase : List[str] = [
"MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST",
"MgpstrModel",
"MgpstrPreTrainedModel",
"MgpstrForSceneTextRecognition",
]
if TYPE_CHECKING:
from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig
from .processing_mgp_str import MgpstrProcessor
from .tokenization_mgp_str import MgpstrTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_mgp_str import (
MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST,
MgpstrForSceneTextRecognition,
MgpstrModel,
MgpstrPreTrainedModel,
)
else:
import sys
__lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 509 | 0 |
from __future__ import annotations
def snake_case( __magic_name__ ) -> bool:
'''simple docstring'''
return len(set(__magic_name__ ) ) == len(__magic_name__ )
if __name__ == "__main__":
import doctest
doctest.testmod() | 596 |
import random
import unittest
import torch
from diffusers import IFImgaImgSuperResolutionPipeline
from diffusers.utils import floats_tensor
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.testing_utils import skip_mps, torch_device
from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS
from ..test_pipelines_common import PipelineTesterMixin
from . import IFPipelineTesterMixin
@skip_mps
class _A ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ):
_UpperCamelCase : Optional[int] = IFImgaImgSuperResolutionPipeline
_UpperCamelCase : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''width''', '''height'''}
_UpperCamelCase : Dict = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''original_image'''} )
_UpperCamelCase : str = PipelineTesterMixin.required_optional_params - {'''latents'''}
def __a ( self : Tuple ) -> Optional[Any]:
"""simple docstring"""
return self._get_superresolution_dummy_components()
def __a ( self : List[str] , _A : Optional[Any] , _A : Union[str, Any]=0 ) -> Optional[int]:
"""simple docstring"""
if str(_A ).startswith('''mps''' ):
lowercase : List[Any] = torch.manual_seed(_A )
else:
lowercase : Dict = torch.Generator(device=_A ).manual_seed(_A )
lowercase : int = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A )
lowercase : List[Any] = floats_tensor((1, 3, 16, 16) , rng=random.Random(_A ) ).to(_A )
lowercase : Optional[Any] = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''original_image''': original_image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''output_type''': '''numpy''',
}
return inputs
@unittest.skipIf(
torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , )
def __a ( self : Optional[Any] ) -> Dict:
"""simple docstring"""
self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1E-3 )
def __a ( self : Tuple ) -> List[str]:
"""simple docstring"""
self._test_save_load_optional_components()
@unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' )
def __a ( self : Any ) -> str:
"""simple docstring"""
super().test_save_load_floataa(expected_max_diff=1E-1 )
def __a ( self : List[Any] ) -> List[str]:
"""simple docstring"""
self._test_attention_slicing_forward_pass(expected_max_diff=1E-2 )
def __a ( self : int ) -> List[str]:
"""simple docstring"""
self._test_save_load_local()
def __a ( self : Optional[int] ) -> Union[str, Any]:
"""simple docstring"""
self._test_inference_batch_single_identical(
expected_max_diff=1E-2 , ) | 596 | 1 |
'''simple docstring'''
def __lowerCamelCase ( A__ ) -> bool:
"""simple docstring"""
UpperCamelCase = n ** (1 / 3)
return (val * val * val) == n
if __name__ == "__main__":
print(perfect_cube(27))
print(perfect_cube(4))
| 430 |
'''simple docstring'''
def __lowerCamelCase ( A__ ) -> str:
"""simple docstring"""
UpperCamelCase = int(A__ )
if decimal in (0, 1): # Exit cases for the recursion
return str(A__ )
UpperCamelCase , UpperCamelCase = divmod(A__ , 2 )
return binary_recursive(A__ ) + str(A__ )
def __lowerCamelCase ( A__ ) -> str:
"""simple docstring"""
UpperCamelCase = str(A__ ).strip()
if not number:
raise ValueError('No input value was provided' )
UpperCamelCase = '-' if number.startswith('-' ) else ''
UpperCamelCase = number.lstrip('-' )
if not number.isnumeric():
raise ValueError('Input value is not an integer' )
return F"""{negative}0b{binary_recursive(int(A__ ) )}"""
if __name__ == "__main__":
from doctest import testmod
testmod()
| 430 | 1 |
'''simple docstring'''
from __future__ import annotations
A = [True] * 1_000_001
A = 2
while i * i <= 1_000_000:
if seive[i]:
for j in range(i * i, 1_000_001, i):
A = False
i += 1
def snake_case_ ( a__ : int ):
"""simple docstring"""
return seive[n]
def snake_case_ ( a__ : int ):
"""simple docstring"""
return any(digit in """02468""" for digit in str(a__ ) )
def snake_case_ ( a__ : int = 1_00_00_00 ):
"""simple docstring"""
__lowercase = [2] # result already includes the number 2.
for num in range(3 ,limit + 1 ,2 ):
if is_prime(a__ ) and not contains_an_even_digit(a__ ):
__lowercase = str(a__ )
__lowercase = [int(str_num[j:] + str_num[:j] ) for j in range(len(a__ ) )]
if all(is_prime(a__ ) for i in list_nums ):
result.append(a__ )
return result
def snake_case_ ( ):
"""simple docstring"""
return len(find_circular_primes() )
if __name__ == "__main__":
print(F"""{len(find_circular_primes()) = }""")
| 710 |
'''simple docstring'''
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class SCREAMING_SNAKE_CASE:
def __init__( self , lowerCamelCase__ , lowerCamelCase__=13 , lowerCamelCase__=7 , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=True , lowerCamelCase__=99 , lowerCamelCase__=32 , lowerCamelCase__=2 , lowerCamelCase__=4 , lowerCamelCase__=37 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=512 , lowerCamelCase__=16 , lowerCamelCase__=2 , lowerCamelCase__=0.02 , lowerCamelCase__=3 , lowerCamelCase__=4 , lowerCamelCase__=None , lowerCamelCase__=1000 , ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = parent
__lowercase = batch_size
__lowercase = seq_length
__lowercase = is_training
__lowercase = use_input_mask
__lowercase = use_token_type_ids
__lowercase = use_labels
__lowercase = vocab_size
__lowercase = hidden_size
__lowercase = num_hidden_layers
__lowercase = num_attention_heads
__lowercase = intermediate_size
__lowercase = hidden_act
__lowercase = hidden_dropout_prob
__lowercase = attention_probs_dropout_prob
__lowercase = max_position_embeddings
__lowercase = type_vocab_size
__lowercase = type_sequence_label_size
__lowercase = initializer_range
__lowercase = num_labels
__lowercase = num_choices
__lowercase = scope
__lowercase = range_bbox
def snake_case__ ( self ) -> Tuple:
"""simple docstring"""
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
__lowercase = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
__lowercase = bbox[i, j, 3]
__lowercase = bbox[i, j, 1]
__lowercase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
__lowercase = bbox[i, j, 2]
__lowercase = bbox[i, j, 0]
__lowercase = t
__lowercase = tf.convert_to_tensor(lowerCamelCase__ )
__lowercase = None
if self.use_input_mask:
__lowercase = random_attention_mask([self.batch_size, self.seq_length] )
__lowercase = None
if self.use_token_type_ids:
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__lowercase = None
__lowercase = None
__lowercase = None
if self.use_labels:
__lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__lowercase = ids_tensor([self.batch_size] , self.num_choices )
__lowercase = LayoutLMConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]:
"""simple docstring"""
__lowercase = TFLayoutLMModel(config=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ , lowerCamelCase__ , token_type_ids=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ , lowerCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]:
"""simple docstring"""
__lowercase = TFLayoutLMForMaskedLM(config=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFLayoutLMForSequenceClassification(config=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
__lowercase = self.num_labels
__lowercase = TFLayoutLMForTokenClassification(config=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Tuple:
"""simple docstring"""
__lowercase = TFLayoutLMForQuestionAnswering(config=lowerCamelCase__ )
__lowercase = model(lowerCamelCase__ , lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def snake_case__ ( self ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.prepare_config_and_inputs()
(
(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,(
__lowercase
) ,
) = config_and_inputs
__lowercase = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_tf
class SCREAMING_SNAKE_CASE( __A , __A , unittest.TestCase ):
snake_case_ : Union[str, Any] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
snake_case_ : Tuple = (
{
"""feature-extraction""": TFLayoutLMModel,
"""fill-mask""": TFLayoutLMForMaskedLM,
"""text-classification""": TFLayoutLMForSequenceClassification,
"""token-classification""": TFLayoutLMForTokenClassification,
"""zero-shot""": TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case_ : Optional[int] = False
snake_case_ : Optional[int] = True
snake_case_ : Tuple = 10
def snake_case__ ( self ) -> Optional[int]:
"""simple docstring"""
__lowercase = TFLayoutLMModelTester(self )
__lowercase = ConfigTester(self , config_class=lowerCamelCase__ , hidden_size=37 )
def snake_case__ ( self ) -> List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def snake_case__ ( self ) -> Optional[int]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*lowerCamelCase__ )
def snake_case__ ( self ) -> Tuple:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*lowerCamelCase__ )
def snake_case__ ( self ) -> Any:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*lowerCamelCase__ )
def snake_case__ ( self ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*lowerCamelCase__ )
def snake_case__ ( self ) -> Tuple:
"""simple docstring"""
__lowercase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*lowerCamelCase__ )
@slow
def snake_case__ ( self ) -> Dict:
"""simple docstring"""
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
__lowercase = TFLayoutLMModel.from_pretrained(lowerCamelCase__ )
self.assertIsNotNone(lowerCamelCase__ )
@unittest.skip("""Onnx compliancy broke with TF 2.10""" )
def snake_case__ ( self ) -> str:
"""simple docstring"""
pass
def snake_case_ ( ):
"""simple docstring"""
__lowercase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231
__lowercase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
__lowercase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231
__lowercase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
__lowercase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class SCREAMING_SNAKE_CASE( unittest.TestCase ):
@slow
def snake_case__ ( self ) -> Optional[Any]:
"""simple docstring"""
__lowercase = TFLayoutLMModel.from_pretrained("""microsoft/layoutlm-base-uncased""" )
__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs()
# forward pass
__lowercase = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )
# test the sequence output on [0, :3, :3]
__lowercase = tf.convert_to_tensor(
[[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , )
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , lowerCamelCase__ , atol=1E-3 ) )
# test the pooled output on [1, :3]
__lowercase = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , lowerCamelCase__ , atol=1E-3 ) )
@slow
def snake_case__ ( self ) -> Union[str, Any]:
"""simple docstring"""
__lowercase = TFLayoutLMForSequenceClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=2 )
__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs()
# forward pass
__lowercase = model(
input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=tf.convert_to_tensor([1, 1] ) , )
# test whether we get a loss as a scalar
__lowercase = outputs.loss
__lowercase = (2,)
self.assertEqual(loss.shape , lowerCamelCase__ )
# test the shape of the logits
__lowercase = outputs.logits
__lowercase = (2, 2)
self.assertEqual(logits.shape , lowerCamelCase__ )
@slow
def snake_case__ ( self ) -> Optional[Any]:
"""simple docstring"""
__lowercase = TFLayoutLMForTokenClassification.from_pretrained("""microsoft/layoutlm-base-uncased""" , num_labels=13 )
__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs()
# forward pass
__lowercase = model(
input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ , labels=lowerCamelCase__ )
# test the shape of the logits
__lowercase = outputs.logits
__lowercase = tf.convert_to_tensor((2, 25, 13) )
self.assertEqual(logits.shape , lowerCamelCase__ )
@slow
def snake_case__ ( self ) -> str:
"""simple docstring"""
__lowercase = TFLayoutLMForQuestionAnswering.from_pretrained("""microsoft/layoutlm-base-uncased""" )
__lowercase ,__lowercase ,__lowercase ,__lowercase ,__lowercase = prepare_layoutlm_batch_inputs()
# forward pass
__lowercase = model(input_ids=lowerCamelCase__ , bbox=lowerCamelCase__ , attention_mask=lowerCamelCase__ , token_type_ids=lowerCamelCase__ )
# test the shape of the logits
__lowercase = tf.convert_to_tensor((2, 25) )
self.assertEqual(outputs.start_logits.shape , lowerCamelCase__ )
self.assertEqual(outputs.end_logits.shape , lowerCamelCase__ )
| 163 | 0 |
def UpperCamelCase_ ( ) -> int:
return [
a * b * (1_000 - a - b)
for a in range(1 , 999 )
for b in range(__a , 999 )
if (a * a + b * b == (1_000 - a - b) ** 2)
][0]
if __name__ == "__main__":
print(f"""{solution() = }""")
| 37 |
import inspect
import unittest
from math import floor
from transformers import CvtConfig
from transformers.file_utils import cached_property, is_torch_available, is_vision_available
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import CvtForImageClassification, CvtModel
from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
from transformers import AutoImageProcessor
class __magic_name__ (__lowercase ):
def __a ( self ) -> Optional[int]:
lowerCAmelCase_ = self.config_class(**self.inputs_dict )
self.parent.assertTrue(hasattr(_a , "embed_dim" ) )
self.parent.assertTrue(hasattr(_a , "num_heads" ) )
class __magic_name__ :
def __init__( self , _a , _a=13 , _a=64 , _a=3 , _a=[16, 48, 96] , _a=[1, 3, 6] , _a=[1, 2, 10] , _a=[7, 3, 3] , _a=[4, 2, 2] , _a=[2, 1, 1] , _a=[2, 2, 2] , _a=[False, False, True] , _a=[0.0, 0.0, 0.0] , _a=0.0_2 , _a=1E-12 , _a=True , _a=True , _a=2 , ) -> int:
lowerCAmelCase_ = parent
lowerCAmelCase_ = batch_size
lowerCAmelCase_ = image_size
lowerCAmelCase_ = patch_sizes
lowerCAmelCase_ = patch_stride
lowerCAmelCase_ = patch_padding
lowerCAmelCase_ = is_training
lowerCAmelCase_ = use_labels
lowerCAmelCase_ = num_labels
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = embed_dim
lowerCAmelCase_ = num_heads
lowerCAmelCase_ = stride_kv
lowerCAmelCase_ = depth
lowerCAmelCase_ = cls_token
lowerCAmelCase_ = attention_drop_rate
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = layer_norm_eps
def __a ( self ) -> Any:
lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
lowerCAmelCase_ = None
if self.use_labels:
lowerCAmelCase_ = ids_tensor([self.batch_size] , self.num_labels )
lowerCAmelCase_ = self.get_config()
return config, pixel_values, labels
def __a ( self ) -> str:
return CvtConfig(
image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , )
def __a ( self , _a , _a , _a ) -> List[Any]:
lowerCAmelCase_ = CvtModel(config=_a )
model.to(_a )
model.eval()
lowerCAmelCase_ = model(_a )
lowerCAmelCase_ = (self.image_size, self.image_size)
lowerCAmelCase_ , lowerCAmelCase_ = image_size[0], image_size[1]
for i in range(len(self.depth ) ):
lowerCAmelCase_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
lowerCAmelCase_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) )
def __a ( self , _a , _a , _a ) -> Optional[Any]:
lowerCAmelCase_ = self.num_labels
lowerCAmelCase_ = CvtForImageClassification(_a )
model.to(_a )
model.eval()
lowerCAmelCase_ = model(_a , labels=_a )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def __a ( self ) -> Union[str, Any]:
lowerCAmelCase_ = self.prepare_config_and_inputs()
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs
lowerCAmelCase_ = {"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ):
lowerCamelCase__ = (CvtModel, CvtForImageClassification) if is_torch_available() else ()
lowerCamelCase__ = (
{'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification}
if is_torch_available()
else {}
)
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
lowerCamelCase__ = False
def __a ( self ) -> List[Any]:
lowerCAmelCase_ = CvtModelTester(self )
lowerCAmelCase_ = ConfigTester(self , config_class=_a , has_text_modality=_a , hidden_size=37 )
def __a ( self ) -> Any:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def __a ( self ) -> List[str]:
return
@unittest.skip(reason="Cvt does not output attentions" )
def __a ( self ) -> Optional[Any]:
pass
@unittest.skip(reason="Cvt does not use inputs_embeds" )
def __a ( self ) -> str:
pass
@unittest.skip(reason="Cvt does not support input and output embeddings" )
def __a ( self ) -> Union[str, Any]:
pass
def __a ( self ) -> Union[str, Any]:
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ = model_class(_a )
lowerCAmelCase_ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
lowerCAmelCase_ = [*signature.parameters.keys()]
lowerCAmelCase_ = ["pixel_values"]
self.assertListEqual(arg_names[:1] , _a )
def __a ( self ) -> Tuple:
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*_a )
def __a ( self ) -> List[Any]:
def check_hidden_states_output(_a , _a , _a ):
lowerCAmelCase_ = model_class(_a )
model.to(_a )
model.eval()
with torch.no_grad():
lowerCAmelCase_ = model(**self._prepare_for_class(_a , _a ) )
lowerCAmelCase_ = outputs.hidden_states
lowerCAmelCase_ = len(self.model_tester.depth )
self.assertEqual(len(_a ) , _a )
# verify the first hidden states (first block)
self.assertListEqual(
list(hidden_states[0].shape[-3:] ) , [
self.model_tester.embed_dim[0],
self.model_tester.image_size // 4,
self.model_tester.image_size // 4,
] , )
lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
lowerCAmelCase_ = True
check_hidden_states_output(_a , _a , _a )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
lowerCAmelCase_ = True
check_hidden_states_output(_a , _a , _a )
def __a ( self ) -> Optional[Any]:
lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*_a )
@unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." )
def __a ( self ) -> Optional[Any]:
pass
@slow
def __a ( self ) -> Any:
for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
lowerCAmelCase_ = CvtModel.from_pretrained(_a )
self.assertIsNotNone(_a )
def A():
lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" )
return image
@require_torch
@require_vision
class __magic_name__ (unittest.TestCase ):
@cached_property
def __a ( self ) -> str:
return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] )
@slow
def __a ( self ) -> List[str]:
lowerCAmelCase_ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a )
lowerCAmelCase_ = self.default_image_processor
lowerCAmelCase_ = prepare_img()
lowerCAmelCase_ = image_processor(images=_a , return_tensors="pt" ).to(_a )
# forward pass
with torch.no_grad():
lowerCAmelCase_ = model(**_a )
# verify the logits
lowerCAmelCase_ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , _a )
lowerCAmelCase_ = torch.tensor([0.9_2_8_5, 0.9_0_1_5, -0.3_1_5_0] ).to(_a )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , _a , atol=1E-4 ) )
| 122 | 0 |
"""simple docstring"""
from __future__ import annotations
import os
from typing import Any
import requests
__lowercase = """https://api.github.com"""
# https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user
__lowercase = BASE_URL + """/user"""
# https://github.com/settings/tokens
__lowercase = os.environ.get("""USER_TOKEN""", """""")
def lowercase ( A_ )-> dict[Any, Any]:
'''simple docstring'''
a : Optional[Any] = {
"Authorization": F'''token {auth_token}''',
"Accept": "application/vnd.github.v3+json",
}
return requests.get(A_ , headers=A_ ).json()
if __name__ == "__main__": # pragma: no cover
if USER_TOKEN:
for key, value in fetch_github_info(USER_TOKEN).items():
print(f'''{key}: {value}''')
else:
raise ValueError("""'USER_TOKEN' field cannot be empty.""")
| 700 |
"""simple docstring"""
import argparse
import json
import os
from tensorflow.core.protobuf.saved_model_pba import SavedModel
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
__lowercase = """."""
# Internal TensorFlow ops that can be safely ignored (mostly specific to a saved model)
__lowercase = [
"""Assert""",
"""AssignVariableOp""",
"""EmptyTensorList""",
"""MergeV2Checkpoints""",
"""ReadVariableOp""",
"""ResourceGather""",
"""RestoreV2""",
"""SaveV2""",
"""ShardedFilename""",
"""StatefulPartitionedCall""",
"""StaticRegexFullMatch""",
"""VarHandleOp""",
]
def lowercase ( A_ , A_ , A_ )-> Optional[Any]:
'''simple docstring'''
a : str = SavedModel()
a : List[Any] = []
with open(os.path.join(A_ , "utils" , "tf_ops" , "onnx.json" ) ) as f:
a : Optional[int] = json.load(A_ )["opsets"]
for i in range(1 , opset + 1 ):
onnx_ops.extend(onnx_opsets[str(A_ )] )
with open(A_ , "rb" ) as f:
saved_model.ParseFromString(f.read() )
a : List[str] = set()
# Iterate over every metagraph in case there is more than one (a saved model can contain multiple graphs)
for meta_graph in saved_model.meta_graphs:
# Add operations in the graph definition
model_op_names.update(node.op for node in meta_graph.graph_def.node )
# Go through the functions in the graph definition
for func in meta_graph.graph_def.library.function:
# Add operations in each function
model_op_names.update(node.op for node in func.node_def )
# Convert to list, sorted if you want
a : Union[str, Any] = sorted(A_ )
a : Dict = []
for op in model_op_names:
if op not in onnx_ops and op not in INTERNAL_OPS:
incompatible_ops.append(A_ )
if strict and len(A_ ) > 0:
raise Exception(F'''Found the following incompatible ops for the opset {opset}:\n''' + incompatible_ops )
elif len(A_ ) > 0:
print(F'''Found the following incompatible ops for the opset {opset}:''' )
print(*A_ , sep="\n" )
else:
print(F'''The saved model {saved_model_path} can properly be converted with ONNX.''' )
if __name__ == "__main__":
__lowercase = argparse.ArgumentParser()
parser.add_argument("""--saved_model_path""", help="""Path of the saved model to check (the .pb file).""")
parser.add_argument(
"""--opset""", default=12, type=int, help="""The ONNX opset against which the model has to be tested."""
)
parser.add_argument(
"""--framework""", choices=["""onnx"""], default="""onnx""", help="""Frameworks against which to test the saved model."""
)
parser.add_argument(
"""--strict""", action="""store_true""", help="""Whether make the checking strict (raise errors) or not (raise warnings)"""
)
__lowercase = parser.parse_args()
if args.framework == "onnx":
onnx_compliancy(args.saved_model_path, args.strict, args.opset)
| 135 | 0 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
_lowercase = logging.get_logger(__name__)
_lowercase = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt'''}
# See all LED models at https://huggingface.co/models?filter=LED
_lowercase = {
'''vocab_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json''',
},
'''merges_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt''',
},
'''tokenizer_file''': {
'''allenai/led-base-16384''': '''https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json''',
},
}
_lowercase = {
'''allenai/led-base-16384''': 16384,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def UpperCamelCase ( ):
lowerCAmelCase_ : Optional[int] = (
list(range(ord("!") , ord("~") + 1)) + list(range(ord("¡") , ord("¬") + 1)) + list(range(ord("®") , ord("ÿ") + 1))
)
lowerCAmelCase_ : List[Any] = bs[:]
lowerCAmelCase_ : Optional[int] = 0
for b in range(2**8):
if b not in bs:
bs.append(snake_case__)
cs.append(2**8 + n)
n += 1
lowerCAmelCase_ : Tuple = [chr(snake_case__) for n in cs]
return dict(zip(snake_case__ , snake_case__))
def UpperCamelCase ( snake_case__):
lowerCAmelCase_ : str = set()
lowerCAmelCase_ : List[Any] = word[0]
for char in word[1:]:
pairs.add((prev_char, char))
lowerCAmelCase_ : Union[str, Any] = char
return pairs
class __snake_case ( snake_case__ ):
"""simple docstring"""
UpperCamelCase_ = VOCAB_FILES_NAMES
UpperCamelCase_ = PRETRAINED_VOCAB_FILES_MAP
UpperCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
UpperCamelCase_ = ['input_ids', 'attention_mask']
def __init__( self : int ,lowerCAmelCase__ : Tuple ,lowerCAmelCase__ : Any ,lowerCAmelCase__ : Tuple="replace" ,lowerCAmelCase__ : Optional[int]="<s>" ,lowerCAmelCase__ : Optional[int]="</s>" ,lowerCAmelCase__ : Tuple="</s>" ,lowerCAmelCase__ : int="<s>" ,lowerCAmelCase__ : Union[str, Any]="<unk>" ,lowerCAmelCase__ : str="<pad>" ,lowerCAmelCase__ : Tuple="<mask>" ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : Tuple ,) -> Any:
'''simple docstring'''
lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else bos_token
lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else eos_token
lowerCAmelCase_ : int = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else sep_token
lowerCAmelCase_ : Any = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else cls_token
lowerCAmelCase_ : Tuple = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else unk_token
lowerCAmelCase_ : Any = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
lowerCAmelCase_ : Optional[int] = AddedToken(lowerCAmelCase__ ,lstrip=lowerCAmelCase__ ,rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ ,lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ ,bos_token=lowerCAmelCase__ ,eos_token=lowerCAmelCase__ ,unk_token=lowerCAmelCase__ ,sep_token=lowerCAmelCase__ ,cls_token=lowerCAmelCase__ ,pad_token=lowerCAmelCase__ ,mask_token=lowerCAmelCase__ ,add_prefix_space=lowerCAmelCase__ ,**lowerCAmelCase__ ,)
with open(lowerCAmelCase__ ,encoding="utf-8" ) as vocab_handle:
lowerCAmelCase_ : List[str] = json.load(lowerCAmelCase__ )
lowerCAmelCase_ : Optional[int] = {v: k for k, v in self.encoder.items()}
lowerCAmelCase_ : Optional[int] = errors # how to handle errors in decoding
lowerCAmelCase_ : Optional[int] = bytes_to_unicode()
lowerCAmelCase_ : str = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ ,encoding="utf-8" ) as merges_handle:
lowerCAmelCase_ : List[str] = merges_handle.read().split("\n" )[1:-1]
lowerCAmelCase_ : List[Any] = [tuple(merge.split() ) for merge in bpe_merges]
lowerCAmelCase_ : Union[str, Any] = dict(zip(lowerCAmelCase__ ,range(len(lowerCAmelCase__ ) ) ) )
lowerCAmelCase_ : Dict = {}
lowerCAmelCase_ : List[str] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
lowerCAmelCase_ : Any = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def UpperCAmelCase_ ( self : Dict ) -> Dict:
'''simple docstring'''
return len(self.encoder )
def UpperCAmelCase_ ( self : Dict ) -> str:
'''simple docstring'''
return dict(self.encoder ,**self.added_tokens_encoder )
def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Dict ) -> Dict:
'''simple docstring'''
if token in self.cache:
return self.cache[token]
lowerCAmelCase_ : Union[str, Any] = tuple(lowerCAmelCase__ )
lowerCAmelCase_ : str = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
lowerCAmelCase_ : Optional[int] = min(lowerCAmelCase__ ,key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ ,float("inf" ) ) )
if bigram not in self.bpe_ranks:
break
lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] = bigram
lowerCAmelCase_ : Tuple = []
lowerCAmelCase_ : str = 0
while i < len(lowerCAmelCase__ ):
try:
lowerCAmelCase_ : Union[str, Any] = word.index(lowerCAmelCase__ ,lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
lowerCAmelCase_ : List[str] = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
lowerCAmelCase_ : Optional[int] = tuple(lowerCAmelCase__ )
lowerCAmelCase_ : Tuple = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
lowerCAmelCase_ : Dict = get_pairs(lowerCAmelCase__ )
lowerCAmelCase_ : Optional[Any] = " ".join(lowerCAmelCase__ )
lowerCAmelCase_ : Optional[Any] = word
return word
def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Dict ) -> Optional[Any]:
'''simple docstring'''
lowerCAmelCase_ : Any = []
for token in re.findall(self.pat ,lowerCAmelCase__ ):
lowerCAmelCase_ : Optional[int] = "".join(
self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(" " ) )
return bpe_tokens
def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ) -> Tuple:
'''simple docstring'''
return self.encoder.get(lowerCAmelCase__ ,self.encoder.get(self.unk_token ) )
def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : Union[str, Any] ) -> Optional[int]:
'''simple docstring'''
return self.decoder.get(lowerCAmelCase__ )
def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[Any] ) -> Any:
'''simple docstring'''
lowerCAmelCase_ : int = "".join(lowerCAmelCase__ )
lowerCAmelCase_ : Dict = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" ,errors=self.errors )
return text
def UpperCAmelCase_ ( self : Tuple ,lowerCAmelCase__ : str ,lowerCAmelCase__ : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
lowerCAmelCase_ : Optional[int] = os.path.join(
lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] )
lowerCAmelCase_ : List[str] = os.path.join(
lowerCAmelCase__ ,(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] )
with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as f:
f.write(json.dumps(self.encoder ,indent=2 ,sort_keys=lowerCAmelCase__ ,ensure_ascii=lowerCAmelCase__ ) + "\n" )
lowerCAmelCase_ : Dict = 0
with open(lowerCAmelCase__ ,"w" ,encoding="utf-8" ) as writer:
writer.write("#version: 0.2\n" )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() ,key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
" Please check that the tokenizer is not corrupted!" )
lowerCAmelCase_ : List[Any] = token_index
writer.write(" ".join(lowerCAmelCase__ ) + "\n" )
index += 1
return vocab_file, merge_file
def UpperCAmelCase_ ( self : str ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
lowerCAmelCase_ : Union[str, Any] = [self.cls_token_id]
lowerCAmelCase_ : str = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ,lowerCAmelCase__ : bool = False ) -> List[int]:
'''simple docstring'''
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ ,token_ids_a=lowerCAmelCase__ ,already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def UpperCAmelCase_ ( self : List[Any] ,lowerCAmelCase__ : List[int] ,lowerCAmelCase__ : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = [self.sep_token_id]
lowerCAmelCase_ : Tuple = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def UpperCAmelCase_ ( self : Union[str, Any] ,lowerCAmelCase__ : Union[str, Any] ,lowerCAmelCase__ : Optional[int]=False ,**lowerCAmelCase__ : str ) -> Union[str, Any]:
'''simple docstring'''
lowerCAmelCase_ : Optional[int] = kwargs.pop("add_prefix_space" ,self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
lowerCAmelCase_ : List[str] = " " + text
return (text, kwargs)
def UpperCAmelCase_ ( self : List[str] ,lowerCAmelCase__ : Union[Dict[str, EncodedInput], BatchEncoding] ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD ,lowerCAmelCase__ : Optional[int] = None ,lowerCAmelCase__ : Optional[bool] = None ,) -> dict:
'''simple docstring'''
lowerCAmelCase_ : int = super()._pad(
encoded_inputs=lowerCAmelCase__ ,max_length=lowerCAmelCase__ ,padding_strategy=lowerCAmelCase__ ,pad_to_multiple_of=lowerCAmelCase__ ,return_attention_mask=lowerCAmelCase__ ,)
# Load from model defaults
if return_attention_mask is None:
lowerCAmelCase_ : List[Any] = "attention_mask" in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
lowerCAmelCase_ : Dict = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
lowerCAmelCase_ : List[Any] = len(encoded_inputs["global_attention_mask"] ) != len(lowerCAmelCase__ )
if needs_to_be_padded:
lowerCAmelCase_ : Union[str, Any] = len(lowerCAmelCase__ ) - len(encoded_inputs["global_attention_mask"] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
lowerCAmelCase_ : Optional[int] = (
encoded_inputs["global_attention_mask"] + [-1] * difference
)
elif self.padding_side == "left":
lowerCAmelCase_ : List[Any] = [-1] * difference + encoded_inputs[
"global_attention_mask"
]
else:
raise ValueError("Invalid padding strategy:" + str(self.padding_side ) )
return encoded_inputs
| 659 |
import argparse
import glob
import importlib.util
import os
import re
import black
from doc_builder.style_doc import style_docstrings_in_code
# All paths are set with the intent you should run this script from the root of the repo with the command
# python utils/check_copies.py
_lowercase = '''src/diffusers'''
_lowercase = '''.'''
# This is to make sure the diffusers module imported is the one in the repo.
_lowercase = importlib.util.spec_from_file_location(
'''diffusers''',
os.path.join(DIFFUSERS_PATH, '''__init__.py'''),
submodule_search_locations=[DIFFUSERS_PATH],
)
_lowercase = spec.loader.load_module()
def UpperCamelCase ( snake_case__ , snake_case__):
return line.startswith(snake_case__) or len(snake_case__) <= 1 or re.search(R"^\s*\)(\s*->.*:|:)\s*$" , snake_case__) is not None
def UpperCamelCase ( snake_case__):
lowerCAmelCase_ : Tuple = object_name.split(".")
lowerCAmelCase_ : Union[str, Any] = 0
# First let's find the module where our object lives.
lowerCAmelCase_ : Union[str, Any] = parts[i]
while i < len(snake_case__) and not os.path.isfile(os.path.join(snake_case__ , F'''{module}.py''')):
i += 1
if i < len(snake_case__):
lowerCAmelCase_ : Dict = os.path.join(snake_case__ , parts[i])
if i >= len(snake_case__):
raise ValueError(F'''`object_name` should begin with the name of a module of diffusers but got {object_name}.''')
with open(os.path.join(snake_case__ , F'''{module}.py''') , "r" , encoding="utf-8" , newline="\n") as f:
lowerCAmelCase_ : Optional[Any] = f.readlines()
# Now let's find the class / func in the code!
lowerCAmelCase_ : Union[str, Any] = ""
lowerCAmelCase_ : int = 0
for name in parts[i + 1 :]:
while (
line_index < len(snake_case__) and re.search(RF'''^{indent}(class|def)\s+{name}(\(|\:)''' , lines[line_index]) is None
):
line_index += 1
indent += " "
line_index += 1
if line_index >= len(snake_case__):
raise ValueError(F''' {object_name} does not match any function or class in {module}.''')
# We found the beginning of the class / func, now let's find the end (when the indent diminishes).
lowerCAmelCase_ : Union[str, Any] = line_index
while line_index < len(snake_case__) and _should_continue(lines[line_index] , snake_case__):
line_index += 1
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1]) <= 1:
line_index -= 1
lowerCAmelCase_ : List[str] = lines[start_index:line_index]
return "".join(snake_case__)
_lowercase = re.compile(r'''^(\s*)#\s*Copied from\s+diffusers\.(\S+\.\S+)\s*($|\S.*$)''')
_lowercase = re.compile(r'''^\s*(\S+)->(\S+)(\s+.*|$)''')
_lowercase = re.compile(r'''<FILL\s+[^>]*>''')
def UpperCamelCase ( snake_case__):
lowerCAmelCase_ : Any = code.split("\n")
lowerCAmelCase_ : Any = 0
while idx < len(snake_case__) and len(lines[idx]) == 0:
idx += 1
if idx < len(snake_case__):
return re.search(R"^(\s*)\S" , lines[idx]).groups()[0]
return ""
def UpperCamelCase ( snake_case__):
lowerCAmelCase_ : Dict = len(get_indent(snake_case__)) > 0
if has_indent:
lowerCAmelCase_ : Dict = F'''class Bla:\n{code}'''
lowerCAmelCase_ : Optional[int] = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=1_19 , preview=snake_case__)
lowerCAmelCase_ : Optional[Any] = black.format_str(snake_case__ , mode=snake_case__)
lowerCAmelCase_ , lowerCAmelCase_ : List[Any] = style_docstrings_in_code(snake_case__)
return result[len("class Bla:\n") :] if has_indent else result
def UpperCamelCase ( snake_case__ , snake_case__=False):
with open(snake_case__ , "r" , encoding="utf-8" , newline="\n") as f:
lowerCAmelCase_ : Tuple = f.readlines()
lowerCAmelCase_ : Tuple = []
lowerCAmelCase_ : Union[str, Any] = 0
# Not a for loop cause `lines` is going to change (if `overwrite=True`).
while line_index < len(snake_case__):
lowerCAmelCase_ : Optional[int] = _re_copy_warning.search(lines[line_index])
if search is None:
line_index += 1
continue
# There is some copied code here, let's retrieve the original.
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : str = search.groups()
lowerCAmelCase_ : int = find_code_in_diffusers(snake_case__)
lowerCAmelCase_ : Dict = get_indent(snake_case__)
lowerCAmelCase_ : Union[str, Any] = line_index + 1 if indent == theoretical_indent else line_index + 2
lowerCAmelCase_ : str = theoretical_indent
lowerCAmelCase_ : Union[str, Any] = start_index
# Loop to check the observed code, stop when indentation diminishes or if we see a End copy comment.
lowerCAmelCase_ : Optional[int] = True
while line_index < len(snake_case__) and should_continue:
line_index += 1
if line_index >= len(snake_case__):
break
lowerCAmelCase_ : Dict = lines[line_index]
lowerCAmelCase_ : List[str] = _should_continue(snake_case__ , snake_case__) and re.search(F'''^{indent}# End copy''' , snake_case__) is None
# Clean up empty lines at the end (if any).
while len(lines[line_index - 1]) <= 1:
line_index -= 1
lowerCAmelCase_ : Dict = lines[start_index:line_index]
lowerCAmelCase_ : Optional[int] = "".join(snake_case__)
# Remove any nested `Copied from` comments to avoid circular copies
lowerCAmelCase_ : List[Any] = [line for line in theoretical_code.split("\n") if _re_copy_warning.search(snake_case__) is None]
lowerCAmelCase_ : Optional[Any] = "\n".join(snake_case__)
# Before comparing, use the `replace_pattern` on the original code.
if len(snake_case__) > 0:
lowerCAmelCase_ : List[str] = replace_pattern.replace("with" , "").split(",")
lowerCAmelCase_ : Tuple = [_re_replace_pattern.search(snake_case__) for p in patterns]
for pattern in patterns:
if pattern is None:
continue
lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ : List[str] = pattern.groups()
lowerCAmelCase_ : int = re.sub(snake_case__ , snake_case__ , snake_case__)
if option.strip() == "all-casing":
lowerCAmelCase_ : List[str] = re.sub(obja.lower() , obja.lower() , snake_case__)
lowerCAmelCase_ : int = re.sub(obja.upper() , obja.upper() , snake_case__)
# Blackify after replacement. To be able to do that, we need the header (class or function definition)
# from the previous line
lowerCAmelCase_ : List[Any] = blackify(lines[start_index - 1] + theoretical_code)
lowerCAmelCase_ : Union[str, Any] = theoretical_code[len(lines[start_index - 1]) :]
# Test for a diff and act accordingly.
if observed_code != theoretical_code:
diffs.append([object_name, start_index])
if overwrite:
lowerCAmelCase_ : List[Any] = lines[:start_index] + [theoretical_code] + lines[line_index:]
lowerCAmelCase_ : Union[str, Any] = start_index + 1
if overwrite and len(snake_case__) > 0:
# Warn the user a file has been modified.
print(F'''Detected changes, rewriting {filename}.''')
with open(snake_case__ , "w" , encoding="utf-8" , newline="\n") as f:
f.writelines(snake_case__)
return diffs
def UpperCamelCase ( snake_case__ = False):
lowerCAmelCase_ : Tuple = glob.glob(os.path.join(snake_case__ , "**/*.py") , recursive=snake_case__)
lowerCAmelCase_ : int = []
for filename in all_files:
lowerCAmelCase_ : Union[str, Any] = is_copy_consistent(snake_case__ , snake_case__)
diffs += [F'''- {filename}: copy does not match {d[0]} at line {d[1]}''' for d in new_diffs]
if not overwrite and len(snake_case__) > 0:
lowerCAmelCase_ : Optional[Any] = "\n".join(snake_case__)
raise Exception(
"Found the following copy inconsistencies:\n"
+ diff
+ "\nRun `make fix-copies` or `python utils/check_copies.py --fix_and_overwrite` to fix them.")
if __name__ == "__main__":
_lowercase = argparse.ArgumentParser()
parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''')
_lowercase = parser.parse_args()
check_copies(args.fix_and_overwrite)
| 659 | 1 |
"""simple docstring"""
import argparse
import collections
import json
from pathlib import Path
import requests
import torch
import yaml
from huggingface_hub import hf_hub_download
from PIL import Image
from transformers import (
MobileViTImageProcessor,
MobileViTVaConfig,
MobileViTVaForImageClassification,
MobileViTVaForSemanticSegmentation,
)
from transformers.utils import logging
logging.set_verbosity_info()
UpperCamelCase : List[Any] = logging.get_logger(__name__)
def A ( snake_case :Optional[int] ) -> Any:
print('Loading config file...' )
def flatten_yaml_as_dict(snake_case :Optional[int] , snake_case :List[str]="" , snake_case :str="." ):
__UpperCamelCase = []
for k, v in d.items():
__UpperCamelCase = parent_key + sep + k if parent_key else k
if isinstance(a_ , collections.abc.MutableMapping ):
items.extend(flatten_yaml_as_dict(a_ , a_ , sep=a_ ).items() )
else:
items.append((new_key, v) )
return dict(a_ )
__UpperCamelCase = argparse.Namespace()
with open(a_ , 'r' ) as yaml_file:
try:
__UpperCamelCase = yaml.load(a_ , Loader=yaml.FullLoader )
__UpperCamelCase = flatten_yaml_as_dict(a_ )
for k, v in flat_cfg.items():
setattr(a_ , a_ , a_ )
except yaml.YAMLError as exc:
logger.error('Error while loading config file: {}. Error message: {}'.format(a_ , str(a_ ) ) )
return config
def A ( snake_case :Any , snake_case :Any ) -> Tuple:
__UpperCamelCase = MobileViTVaConfig()
__UpperCamelCase = False
# dataset
if task_name.startswith('imagenet1k_' ):
__UpperCamelCase = 1_0_0_0
if int(task_name.strip().split('_' )[-1] ) == 3_8_4:
__UpperCamelCase = 3_8_4
else:
__UpperCamelCase = 2_5_6
__UpperCamelCase = '''imagenet-1k-id2label.json'''
elif task_name.startswith('imagenet21k_to_1k_' ):
__UpperCamelCase = 2_1_0_0_0
if int(task_name.strip().split('_' )[-1] ) == 3_8_4:
__UpperCamelCase = 3_8_4
else:
__UpperCamelCase = 2_5_6
__UpperCamelCase = '''imagenet-22k-id2label.json'''
elif task_name.startswith('ade20k_' ):
__UpperCamelCase = 1_5_1
__UpperCamelCase = 5_1_2
__UpperCamelCase = '''ade20k-id2label.json'''
__UpperCamelCase = True
elif task_name.startswith('voc_' ):
__UpperCamelCase = 2_1
__UpperCamelCase = 5_1_2
__UpperCamelCase = '''pascal-voc-id2label.json'''
__UpperCamelCase = True
# orig_config
__UpperCamelCase = load_orig_config_file(a_ )
assert getattr(a_ , 'model.classification.name' , -1 ) == "mobilevit_v2", "Invalid model"
__UpperCamelCase = getattr(a_ , 'model.classification.mitv2.width_multiplier' , 1.0 )
assert (
getattr(a_ , 'model.classification.mitv2.attn_norm_layer' , -1 ) == "layer_norm_2d"
), "Norm layers other than layer_norm_2d is not supported"
__UpperCamelCase = getattr(a_ , 'model.classification.activation.name' , 'swish' )
# config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256)
if is_segmentation_model:
__UpperCamelCase = getattr(a_ , 'model.segmentation.output_stride' , 1_6 )
if "_deeplabv3" in task_name:
__UpperCamelCase = getattr(a_ , 'model.segmentation.deeplabv3.aspp_rates' , [1_2, 2_4, 3_6] )
__UpperCamelCase = getattr(a_ , 'model.segmentation.deeplabv3.aspp_out_channels' , 5_1_2 )
__UpperCamelCase = getattr(a_ , 'model.segmentation.deeplabv3.aspp_dropout' , 0.1 )
# id2label
__UpperCamelCase = '''huggingface/label-files'''
__UpperCamelCase = json.load(open(hf_hub_download(a_ , a_ , repo_type='dataset' ) , 'r' ) )
__UpperCamelCase = {int(a_ ): v for k, v in idalabel.items()}
__UpperCamelCase = idalabel
__UpperCamelCase = {v: k for k, v in idalabel.items()}
return config
def A ( snake_case :str , snake_case :Optional[int] , snake_case :Any ) -> int:
__UpperCamelCase = dct.pop(a_ )
__UpperCamelCase = val
def A ( snake_case :str , snake_case :Dict=False ) -> int:
if base_model:
__UpperCamelCase = ''''''
else:
__UpperCamelCase = '''mobilevitv2.'''
__UpperCamelCase = []
for k in state_dict.keys():
if k[:8] == "encoder.":
__UpperCamelCase = k[8:]
else:
__UpperCamelCase = k
if ".block." in k:
__UpperCamelCase = k_new.replace('.block.' , '.' )
if ".conv." in k:
__UpperCamelCase = k_new.replace('.conv.' , '.convolution.' )
if ".norm." in k:
__UpperCamelCase = k_new.replace('.norm.' , '.normalization.' )
if "conv_1." in k:
__UpperCamelCase = k_new.replace('conv_1.' , f'{model_prefix}conv_stem.' )
for i in [1, 2]:
if f'layer_{i}.' in k:
__UpperCamelCase = k_new.replace(f'layer_{i}.' , f'{model_prefix}encoder.layer.{i-1}.layer.' )
if ".exp_1x1." in k:
__UpperCamelCase = k_new.replace('.exp_1x1.' , '.expand_1x1.' )
if ".red_1x1." in k:
__UpperCamelCase = k_new.replace('.red_1x1.' , '.reduce_1x1.' )
for i in [3, 4, 5]:
if f'layer_{i}.0.' in k:
__UpperCamelCase = k_new.replace(f'layer_{i}.0.' , f'{model_prefix}encoder.layer.{i-1}.downsampling_layer.' )
if f'layer_{i}.1.local_rep.0.' in k:
__UpperCamelCase = k_new.replace(f'layer_{i}.1.local_rep.0.' , f'{model_prefix}encoder.layer.{i-1}.conv_kxk.' )
if f'layer_{i}.1.local_rep.1.' in k:
__UpperCamelCase = k_new.replace(f'layer_{i}.1.local_rep.1.' , f'{model_prefix}encoder.layer.{i-1}.conv_1x1.' )
for i in [3, 4, 5]:
if i == 3:
__UpperCamelCase = [0, 1]
elif i == 4:
__UpperCamelCase = [0, 1, 2, 3]
elif i == 5:
__UpperCamelCase = [0, 1, 2]
for j in j_in:
if f'layer_{i}.1.global_rep.{j}.' in k:
__UpperCamelCase = k_new.replace(
f'layer_{i}.1.global_rep.{j}.' , f'{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}.' )
if f'layer_{i}.1.global_rep.{j+1}.' in k:
__UpperCamelCase = k_new.replace(
f'layer_{i}.1.global_rep.{j+1}.' , f'{model_prefix}encoder.layer.{i-1}.layernorm.' )
if f'layer_{i}.1.conv_proj.' in k:
__UpperCamelCase = k_new.replace(f'layer_{i}.1.conv_proj.' , f'{model_prefix}encoder.layer.{i-1}.conv_projection.' )
if "pre_norm_attn.0." in k:
__UpperCamelCase = k_new.replace('pre_norm_attn.0.' , 'layernorm_before.' )
if "pre_norm_attn.1." in k:
__UpperCamelCase = k_new.replace('pre_norm_attn.1.' , 'attention.' )
if "pre_norm_ffn.0." in k:
__UpperCamelCase = k_new.replace('pre_norm_ffn.0.' , 'layernorm_after.' )
if "pre_norm_ffn.1." in k:
__UpperCamelCase = k_new.replace('pre_norm_ffn.1.' , 'ffn.conv1.' )
if "pre_norm_ffn.3." in k:
__UpperCamelCase = k_new.replace('pre_norm_ffn.3.' , 'ffn.conv2.' )
if "classifier.1." in k:
__UpperCamelCase = k_new.replace('classifier.1.' , 'classifier.' )
if "seg_head." in k:
__UpperCamelCase = k_new.replace('seg_head.' , 'segmentation_head.' )
if ".aspp_layer." in k:
__UpperCamelCase = k_new.replace('.aspp_layer.' , '.' )
if ".aspp_pool." in k:
__UpperCamelCase = k_new.replace('.aspp_pool.' , '.' )
rename_keys.append((k, k_new) )
return rename_keys
def A ( snake_case :Tuple ) -> str:
__UpperCamelCase = []
for k in state_dict.keys():
if k.startswith('seg_head.aux_head.' ):
keys_to_ignore.append(a_ )
for k in keys_to_ignore:
state_dict.pop(a_ , a_ )
def A ( ) -> Tuple:
__UpperCamelCase = '''http://images.cocodataset.org/val2017/000000039769.jpg'''
# url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg"
__UpperCamelCase = Image.open(requests.get(a_ , stream=a_ ).raw )
return im
@torch.no_grad()
def A ( snake_case :Tuple , snake_case :str , snake_case :List[str] , snake_case :Optional[int] ) -> str:
__UpperCamelCase = get_mobilevitva_config(a_ , a_ )
# load original state_dict
__UpperCamelCase = torch.load(a_ , map_location='cpu' )
# load huggingface model
if task_name.startswith('ade20k_' ) or task_name.startswith('voc_' ):
__UpperCamelCase = MobileViTVaForSemanticSegmentation(a_ ).eval()
__UpperCamelCase = False
else:
__UpperCamelCase = MobileViTVaForImageClassification(a_ ).eval()
__UpperCamelCase = False
# remove and rename some keys of load the original model
__UpperCamelCase = checkpoint
remove_unused_keys(a_ )
__UpperCamelCase = create_rename_keys(a_ , base_model=a_ )
for rename_key_src, rename_key_dest in rename_keys:
rename_key(a_ , a_ , a_ )
# load modified state_dict
model.load_state_dict(a_ )
# Check outputs on an image, prepared by MobileViTImageProcessor
__UpperCamelCase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 )
__UpperCamelCase = image_processor(images=prepare_img() , return_tensors='pt' )
__UpperCamelCase = model(**a_ )
# verify classification model
if task_name.startswith('imagenet' ):
__UpperCamelCase = outputs.logits
__UpperCamelCase = logits.argmax(-1 ).item()
print('Predicted class:' , model.config.idalabel[predicted_class_idx] )
if task_name.startswith('imagenet1k_256' ) and config.width_multiplier == 1.0:
# expected_logits for base variant
__UpperCamelCase = torch.tensor([-1.6_336e00, -7.3_204e-02, -5.1_883e-01] )
assert torch.allclose(logits[0, :3] , a_ , atol=1e-4 )
Path(a_ ).mkdir(exist_ok=a_ )
print(f'Saving model {task_name} to {pytorch_dump_folder_path}' )
model.save_pretrained(a_ )
print(f'Saving image processor to {pytorch_dump_folder_path}' )
image_processor.save_pretrained(a_ )
if __name__ == "__main__":
UpperCamelCase : Union[str, Any] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--task",
default="imagenet1k_256",
type=str,
help=(
"Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . "
"\n Classification (ImageNet-1k)\n - MobileViTV2 (256x256) : imagenet1k_256\n - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384\n - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) :\n imagenet21k_to_1k_256\n - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on\n ImageNet-1k 384x384) : imagenet21k_to_1k_384\n Segmentation\n - ADE20K Dataset : ade20k_deeplabv3\n - Pascal VOC 2012 Dataset: voc_deeplabv3\n "
),
choices=[
"imagenet1k_256",
"imagenet1k_384",
"imagenet21k_to_1k_256",
"imagenet21k_to_1k_384",
"ade20k_deeplabv3",
"voc_deeplabv3",
],
)
parser.add_argument(
"--orig_checkpoint_path", required=True, type=str, help="Path to the original state dict (.pt file)."
)
parser.add_argument("--orig_config_path", required=True, type=str, help="Path to the original config file.")
parser.add_argument(
"--pytorch_dump_folder_path", required=True, type=str, help="Path to the output PyTorch model directory."
)
UpperCamelCase : Tuple = parser.parse_args()
convert_mobilevitva_checkpoint(
args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path
)
| 713 |
"""simple docstring"""
import argparse
import struct
import unittest
class __lowerCAmelCase :
def __init__( self , __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = data
# Initialize hash values
__UpperCamelCase = [
0x6a_09_e6_67,
0xbb_67_ae_85,
0x3c_6e_f3_72,
0xa5_4f_f5_3a,
0x51_0e_52_7f,
0x9b_05_68_8c,
0x1f_83_d9_ab,
0x5b_e0_cd_19,
]
# Initialize round constants
__UpperCamelCase = [
0x42_8a_2f_98,
0x71_37_44_91,
0xb5_c0_fb_cf,
0xe9_b5_db_a5,
0x39_56_c2_5b,
0x59_f1_11_f1,
0x92_3f_82_a4,
0xab_1c_5e_d5,
0xd8_07_aa_98,
0x12_83_5b_01,
0x24_31_85_be,
0x55_0c_7d_c3,
0x72_be_5d_74,
0x80_de_b1_fe,
0x9b_dc_06_a7,
0xc1_9b_f1_74,
0xe4_9b_69_c1,
0xef_be_47_86,
0x0f_c1_9d_c6,
0x24_0c_a1_cc,
0x2d_e9_2c_6f,
0x4a_74_84_aa,
0x5c_b0_a9_dc,
0x76_f9_88_da,
0x98_3e_51_52,
0xa8_31_c6_6d,
0xb0_03_27_c8,
0xbf_59_7f_c7,
0xc6_e0_0b_f3,
0xd5_a7_91_47,
0x06_ca_63_51,
0x14_29_29_67,
0x27_b7_0a_85,
0x2e_1b_21_38,
0x4d_2c_6d_fc,
0x53_38_0d_13,
0x65_0a_73_54,
0x76_6a_0a_bb,
0x81_c2_c9_2e,
0x92_72_2c_85,
0xa2_bf_e8_a1,
0xa8_1a_66_4b,
0xc2_4b_8b_70,
0xc7_6c_51_a3,
0xd1_92_e8_19,
0xd6_99_06_24,
0xf4_0e_35_85,
0x10_6a_a0_70,
0x19_a4_c1_16,
0x1e_37_6c_08,
0x27_48_77_4c,
0x34_b0_bc_b5,
0x39_1c_0c_b3,
0x4e_d8_aa_4a,
0x5b_9c_ca_4f,
0x68_2e_6f_f3,
0x74_8f_82_ee,
0x78_a5_63_6f,
0x84_c8_78_14,
0x8c_c7_02_08,
0x90_be_ff_fa,
0xa4_50_6c_eb,
0xbe_f9_a3_f7,
0xc6_71_78_f2,
]
__UpperCamelCase = self.preprocessing(self.data )
self.final_hash()
@staticmethod
def UpperCAmelCase ( __UpperCAmelCase ):
'''simple docstring'''
__UpperCamelCase = b'\x80' + (b'\x00' * (63 - (len(__UpperCAmelCase ) + 8) % 64))
__UpperCamelCase = struct.pack('>Q' , (len(__UpperCAmelCase ) * 8) )
return data + padding + big_endian_integer
def UpperCAmelCase ( self ):
'''simple docstring'''
__UpperCamelCase = [
self.preprocessed_data[x : x + 64]
for x in range(0 , len(self.preprocessed_data ) , 64 )
]
for block in self.blocks:
# Convert the given block into a list of 4 byte integers
__UpperCamelCase = list(struct.unpack('>16L' , __UpperCAmelCase ) )
# add 48 0-ed integers
words += [0] * 48
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self.hashes
for index in range(0 , 64 ):
if index > 15:
# modify the zero-ed indexes at the end of the array
__UpperCamelCase = (
self.ror(words[index - 15] , 7 )
^ self.ror(words[index - 15] , 18 )
^ (words[index - 15] >> 3)
)
__UpperCamelCase = (
self.ror(words[index - 2] , 17 )
^ self.ror(words[index - 2] , 19 )
^ (words[index - 2] >> 10)
)
__UpperCamelCase = (
words[index - 16] + sa + words[index - 7] + sa
) % 0x1_00_00_00_00
# Compression
__UpperCamelCase = self.ror(__UpperCAmelCase , 6 ) ^ self.ror(__UpperCAmelCase , 11 ) ^ self.ror(__UpperCAmelCase , 25 )
__UpperCamelCase = (e & f) ^ ((~e & 0xff_ff_ff_ff) & g)
__UpperCamelCase = (
h + sa + ch + self.round_constants[index] + words[index]
) % 0x1_00_00_00_00
__UpperCamelCase = self.ror(__UpperCAmelCase , 2 ) ^ self.ror(__UpperCAmelCase , 13 ) ^ self.ror(__UpperCAmelCase , 22 )
__UpperCamelCase = (a & b) ^ (a & c) ^ (b & c)
__UpperCamelCase = (sa + maj) % 0x1_00_00_00_00
__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = (
g,
f,
e,
((d + tempa) % 0x1_00_00_00_00),
c,
b,
a,
((tempa + tempa) % 0x1_00_00_00_00),
)
__UpperCamelCase = [a, b, c, d, e, f, g, h]
# Modify final values
__UpperCamelCase = [
((element + mutated_hash_values[index]) % 0x1_00_00_00_00)
for index, element in enumerate(self.hashes )
]
__UpperCamelCase = ''.join([hex(__UpperCAmelCase )[2:].zfill(8 ) for value in self.hashes] )
def UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ):
'''simple docstring'''
return 0xff_ff_ff_ff & (value << (32 - rotations)) | (value >> rotations)
class __lowerCAmelCase ( unittest.TestCase ):
def UpperCAmelCase ( self ):
'''simple docstring'''
import hashlib
__UpperCamelCase = bytes('Test String' , 'utf-8' )
self.assertEqual(SHAaaa(__UpperCAmelCase ).hash , hashlib.shaaaa(__UpperCAmelCase ).hexdigest() )
def A ( ) -> None:
import doctest
doctest.testmod()
__UpperCamelCase = argparse.ArgumentParser()
parser.add_argument(
'-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , )
parser.add_argument(
'-f' , '--file' , dest='input_file' , help='Hash contents of a file' )
__UpperCamelCase = parser.parse_args()
__UpperCamelCase = args.input_string
# hash input should be a bytestring
if args.input_file:
with open(args.input_file , 'rb' ) as f:
__UpperCamelCase = f.read()
else:
__UpperCamelCase = bytes(snake_case , 'utf-8' )
print(SHAaaa(snake_case ).hash )
if __name__ == "__main__":
main()
| 293 | 0 |
from __future__ import annotations
import math
import random
from typing import Any
class __magic_name__ :
def __init__( self : List[Any] ):
UpperCAmelCase = []
UpperCAmelCase = 0
UpperCAmelCase = 0
def _UpperCAmelCase ( self : Union[str, Any] ):
return self.head == self.tail
def _UpperCAmelCase ( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : Any ):
self.data.append(__SCREAMING_SNAKE_CASE )
UpperCAmelCase = self.tail + 1
def _UpperCAmelCase ( self : Tuple ):
UpperCAmelCase = self.data[self.head]
UpperCAmelCase = self.head + 1
return ret
def _UpperCAmelCase ( self : List[str] ):
return self.tail - self.head
def _UpperCAmelCase ( self : Tuple ):
print(self.data )
print("**************" )
print(self.data[self.head : self.tail] )
class __magic_name__ :
def __init__( self : Tuple ,__SCREAMING_SNAKE_CASE : Any ):
UpperCAmelCase = data
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = 1
def _UpperCAmelCase ( self : Optional[int] ):
return self.data
def _UpperCAmelCase ( self : List[str] ):
return self.left
def _UpperCAmelCase ( self : Union[str, Any] ):
return self.right
def _UpperCAmelCase ( self : Any ):
return self.height
def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any ):
UpperCAmelCase = data
def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : MyNode | None ):
UpperCAmelCase = node
def _UpperCAmelCase ( self : Optional[Any] ,__SCREAMING_SNAKE_CASE : MyNode | None ):
UpperCAmelCase = node
def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : int ):
UpperCAmelCase = height
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
if node is None:
return 0
return node.get_height()
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
if a > b:
return a
return b
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
print("left rotation node:" , node.get_data() )
UpperCAmelCase = node.get_left()
assert ret is not None
node.set_left(ret.get_right() )
ret.set_right(_lowerCAmelCase )
UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(_lowerCAmelCase )
UpperCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(_lowerCAmelCase )
return ret
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
print("right rotation node:" , node.get_data() )
UpperCAmelCase = node.get_right()
assert ret is not None
node.set_right(ret.get_left() )
ret.set_left(_lowerCAmelCase )
UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(_lowerCAmelCase )
UpperCAmelCase = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1
ret.set_height(_lowerCAmelCase )
return ret
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
UpperCAmelCase = node.get_left()
assert left_child is not None
node.set_left(left_rotation(_lowerCAmelCase ) )
return right_rotation(_lowerCAmelCase )
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
UpperCAmelCase = node.get_right()
assert right_child is not None
node.set_right(right_rotation(_lowerCAmelCase ) )
return left_rotation(_lowerCAmelCase )
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
if node is None:
return MyNode(_lowerCAmelCase )
if data < node.get_data():
node.set_left(insert_node(node.get_left() , _lowerCAmelCase ) )
if (
get_height(node.get_left() ) - get_height(node.get_right() ) == 2
): # an unbalance detected
UpperCAmelCase = node.get_left()
assert left_child is not None
if (
data < left_child.get_data()
): # new node is the left child of the left child
UpperCAmelCase = right_rotation(_lowerCAmelCase )
else:
UpperCAmelCase = lr_rotation(_lowerCAmelCase )
else:
node.set_right(insert_node(node.get_right() , _lowerCAmelCase ) )
if get_height(node.get_right() ) - get_height(node.get_left() ) == 2:
UpperCAmelCase = node.get_right()
assert right_child is not None
if data < right_child.get_data():
UpperCAmelCase = rl_rotation(_lowerCAmelCase )
else:
UpperCAmelCase = left_rotation(_lowerCAmelCase )
UpperCAmelCase = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1
node.set_height(_lowerCAmelCase )
return node
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
while True:
UpperCAmelCase = root.get_right()
if right_child is None:
break
UpperCAmelCase = right_child
return root.get_data()
def __UpperCamelCase ( _lowerCAmelCase ):
"""simple docstring"""
while True:
UpperCAmelCase = root.get_left()
if left_child is None:
break
UpperCAmelCase = left_child
return root.get_data()
def __UpperCamelCase ( _lowerCAmelCase , _lowerCAmelCase ):
"""simple docstring"""
UpperCAmelCase = root.get_left()
UpperCAmelCase = root.get_right()
if root.get_data() == data:
if left_child is not None and right_child is not None:
UpperCAmelCase = get_left_most(_lowerCAmelCase )
root.set_data(_lowerCAmelCase )
root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) )
elif left_child is not None:
UpperCAmelCase = left_child
elif right_child is not None:
UpperCAmelCase = right_child
else:
return None
elif root.get_data() > data:
if left_child is None:
print("No such data" )
return root
else:
root.set_left(del_node(_lowerCAmelCase , _lowerCAmelCase ) )
else: # root.get_data() < data
if right_child is None:
return root
else:
root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) )
if get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == 2:
assert right_child is not None
if get_height(right_child.get_right() ) > get_height(right_child.get_left() ):
UpperCAmelCase = left_rotation(_lowerCAmelCase )
else:
UpperCAmelCase = rl_rotation(_lowerCAmelCase )
elif get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == -2:
assert left_child is not None
if get_height(left_child.get_left() ) > get_height(left_child.get_right() ):
UpperCAmelCase = right_rotation(_lowerCAmelCase )
else:
UpperCAmelCase = lr_rotation(_lowerCAmelCase )
UpperCAmelCase = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1
root.set_height(_lowerCAmelCase )
return root
class __magic_name__ :
def __init__( self : Tuple ):
UpperCAmelCase = None
def _UpperCAmelCase ( self : Optional[int] ):
return get_height(self.root )
def _UpperCAmelCase ( self : List[Any] ,__SCREAMING_SNAKE_CASE : Any ):
print("insert:" + str(__SCREAMING_SNAKE_CASE ) )
UpperCAmelCase = insert_node(self.root ,__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Any ):
print("delete:" + str(__SCREAMING_SNAKE_CASE ) )
if self.root is None:
print("Tree is empty!" )
return
UpperCAmelCase = del_node(self.root ,__SCREAMING_SNAKE_CASE )
def __str__( self : Dict ,): # a level traversale, gives a more intuitive look on the tree
UpperCAmelCase = ""
UpperCAmelCase = MyQueue()
q.push(self.root )
UpperCAmelCase = self.get_height()
if layer == 0:
return output
UpperCAmelCase = 0
while not q.is_empty():
UpperCAmelCase = q.pop()
UpperCAmelCase = " " * int(math.pow(2 ,layer - 1 ) )
output += space
if node is None:
output += "*"
q.push(__SCREAMING_SNAKE_CASE )
q.push(__SCREAMING_SNAKE_CASE )
else:
output += str(node.get_data() )
q.push(node.get_left() )
q.push(node.get_right() )
output += space
UpperCAmelCase = cnt + 1
for i in range(1_0_0 ):
if cnt == math.pow(2 ,__SCREAMING_SNAKE_CASE ) - 1:
UpperCAmelCase = layer - 1
if layer == 0:
output += "\n*************************************"
return output
output += "\n"
break
output += "\n*************************************"
return output
def __UpperCamelCase ( ):
"""simple docstring"""
import doctest
doctest.testmod()
if __name__ == "__main__":
_test()
__lowerCAmelCase =AVLtree()
__lowerCAmelCase =list(range(10))
random.shuffle(lst)
for i in lst:
t.insert(i)
print(str(t))
random.shuffle(lst)
for i in lst:
t.del_node(i)
print(str(t))
| 333 |
from __future__ import annotations
import unittest
import numpy as np
from transformers import LayoutLMConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.layoutlm.modeling_tf_layoutlm import (
TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFLayoutLMForMaskedLM,
TFLayoutLMForQuestionAnswering,
TFLayoutLMForSequenceClassification,
TFLayoutLMForTokenClassification,
TFLayoutLMModel,
)
class __magic_name__ :
def __init__( self : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str=1_3 ,__SCREAMING_SNAKE_CASE : Optional[Any]=7 ,__SCREAMING_SNAKE_CASE : Optional[Any]=True ,__SCREAMING_SNAKE_CASE : List[str]=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : int=True ,__SCREAMING_SNAKE_CASE : Tuple=9_9 ,__SCREAMING_SNAKE_CASE : str=3_2 ,__SCREAMING_SNAKE_CASE : Any=2 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=4 ,__SCREAMING_SNAKE_CASE : Tuple=3_7 ,__SCREAMING_SNAKE_CASE : List[str]="gelu" ,__SCREAMING_SNAKE_CASE : List[Any]=0.1 ,__SCREAMING_SNAKE_CASE : Optional[int]=0.1 ,__SCREAMING_SNAKE_CASE : Tuple=5_1_2 ,__SCREAMING_SNAKE_CASE : Dict=1_6 ,__SCREAMING_SNAKE_CASE : Tuple=2 ,__SCREAMING_SNAKE_CASE : List[str]=0.02 ,__SCREAMING_SNAKE_CASE : Optional[Any]=3 ,__SCREAMING_SNAKE_CASE : Dict=4 ,__SCREAMING_SNAKE_CASE : Union[str, Any]=None ,__SCREAMING_SNAKE_CASE : Dict=1_0_0_0 ,):
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = seq_length
UpperCAmelCase = is_training
UpperCAmelCase = use_input_mask
UpperCAmelCase = use_token_type_ids
UpperCAmelCase = use_labels
UpperCAmelCase = vocab_size
UpperCAmelCase = hidden_size
UpperCAmelCase = num_hidden_layers
UpperCAmelCase = num_attention_heads
UpperCAmelCase = intermediate_size
UpperCAmelCase = hidden_act
UpperCAmelCase = hidden_dropout_prob
UpperCAmelCase = attention_probs_dropout_prob
UpperCAmelCase = max_position_embeddings
UpperCAmelCase = type_vocab_size
UpperCAmelCase = type_sequence_label_size
UpperCAmelCase = initializer_range
UpperCAmelCase = num_labels
UpperCAmelCase = num_choices
UpperCAmelCase = scope
UpperCAmelCase = range_bbox
def _UpperCAmelCase ( self : Dict ):
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size )
# convert bbox to numpy since TF does not support item assignment
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length, 4] ,self.range_bbox ).numpy()
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
UpperCAmelCase = bbox[i, j, 3]
UpperCAmelCase = bbox[i, j, 1]
UpperCAmelCase = t
if bbox[i, j, 2] < bbox[i, j, 0]:
UpperCAmelCase = bbox[i, j, 2]
UpperCAmelCase = bbox[i, j, 0]
UpperCAmelCase = t
UpperCAmelCase = tf.convert_to_tensor(__SCREAMING_SNAKE_CASE )
UpperCAmelCase = None
if self.use_input_mask:
UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] )
UpperCAmelCase = None
if self.use_token_type_ids:
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size )
UpperCAmelCase = None
UpperCAmelCase = None
UpperCAmelCase = None
if self.use_labels:
UpperCAmelCase = ids_tensor([self.batch_size] ,self.type_sequence_label_size )
UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels )
UpperCAmelCase = ids_tensor([self.batch_size] ,self.num_choices )
UpperCAmelCase = LayoutLMConfig(
vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,)
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : str ):
UpperCAmelCase = TFLayoutLMModel(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self : Dict ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Any ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : List[Any] ):
UpperCAmelCase = TFLayoutLMForMaskedLM(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self : Union[str, Any] ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : List[Any] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Tuple ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFLayoutLMForSequenceClassification(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self : List[str] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : str ,__SCREAMING_SNAKE_CASE : Union[str, Any] ):
UpperCAmelCase = self.num_labels
UpperCAmelCase = TFLayoutLMForTokenClassification(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self : Optional[int] ,__SCREAMING_SNAKE_CASE : Union[str, Any] ,__SCREAMING_SNAKE_CASE : Optional[int] ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : Dict ,__SCREAMING_SNAKE_CASE : int ,__SCREAMING_SNAKE_CASE : Optional[Any] ,__SCREAMING_SNAKE_CASE : List[str] ,__SCREAMING_SNAKE_CASE : str ):
UpperCAmelCase = TFLayoutLMForQuestionAnswering(config=__SCREAMING_SNAKE_CASE )
UpperCAmelCase = model(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self : List[Any] ):
UpperCAmelCase = self.prepare_config_and_inputs()
(
(
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) , (
UpperCAmelCase
) ,
) = config_and_inputs
UpperCAmelCase = {
"input_ids": input_ids,
"bbox": bbox,
"token_type_ids": token_type_ids,
"attention_mask": input_mask,
}
return config, inputs_dict
@require_tf
class __magic_name__ ( _a , _a , unittest.TestCase):
_UpperCAmelCase : Optional[int] = (
(
TFLayoutLMModel,
TFLayoutLMForMaskedLM,
TFLayoutLMForTokenClassification,
TFLayoutLMForSequenceClassification,
TFLayoutLMForQuestionAnswering,
)
if is_tf_available()
else ()
)
_UpperCAmelCase : str = (
{
'feature-extraction': TFLayoutLMModel,
'fill-mask': TFLayoutLMForMaskedLM,
'text-classification': TFLayoutLMForSequenceClassification,
'token-classification': TFLayoutLMForTokenClassification,
'zero-shot': TFLayoutLMForSequenceClassification,
}
if is_tf_available()
else {}
)
_UpperCAmelCase : Tuple = False
_UpperCAmelCase : int = True
_UpperCAmelCase : Union[str, Any] = 10
def _UpperCAmelCase ( self : Tuple ):
UpperCAmelCase = TFLayoutLMModelTester(self )
UpperCAmelCase = ConfigTester(self ,config_class=__SCREAMING_SNAKE_CASE ,hidden_size=3_7 )
def _UpperCAmelCase ( self : List[str] ):
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : Dict ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_sequence_classification(*__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : Any ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*__SCREAMING_SNAKE_CASE )
def _UpperCAmelCase ( self : List[str] ):
UpperCAmelCase = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*__SCREAMING_SNAKE_CASE )
@slow
def _UpperCAmelCase ( self : List[str] ):
for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCAmelCase = TFLayoutLMModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
@unittest.skip("Onnx compliancy broke with TF 2.10" )
def _UpperCAmelCase ( self : List[str] ):
pass
def __UpperCamelCase ( ):
"""simple docstring"""
UpperCAmelCase = tf.convert_to_tensor([[1_01,10_19,10_14,10_16,10_37,1_28_49,47_47,10_04,1_42_46,22_78,54_39,45_24,50_02,29_30,21_93,29_30,43_41,32_08,10_05,10_55,21_71,28_48,1_13_00,35_31,1_02],[1_01,40_70,40_34,70_20,10_24,30_58,10_15,10_13,28_61,10_13,60_70,1_92_74,27_72,62_05,2_78_14,1_61_47,1_61_47,43_43,20_47,1_02_83,1_09_69,1_43_89,10_12,23_38,1_02]] ) # noqa: E231
UpperCAmelCase = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231
UpperCAmelCase = tf.convert_to_tensor([[[0,0,0,0],[4_23,2_37,4_40,2_51],[4_27,2_72,4_41,2_87],[4_19,1_15,4_37,1_29],[9_61,8_85,9_92,9_12],[2_56,38,3_30,58],[2_56,38,3_30,58],[3_36,42,3_53,57],[3_60,39,4_01,56],[3_60,39,4_01,56],[4_11,39,4_71,59],[4_79,41,5_28,59],[5_33,39,6_30,60],[67,1_13,1_34,1_31],[1_41,1_15,2_09,1_32],[68,1_49,1_33,1_66],[1_41,1_49,1_87,1_64],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[1_95,1_48,2_87,1_65],[2_95,1_48,3_49,1_65],[4_41,1_49,4_92,1_66],[4_97,1_49,5_46,1_64],[64,2_01,1_25,2_18],[10_00,10_00,10_00,10_00]],[[0,0,0,0],[6_62,1_50,7_54,1_66],[6_65,1_99,7_42,2_11],[5_19,2_13,5_54,2_28],[5_19,2_13,5_54,2_28],[1_34,4_33,1_87,4_54],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[1_30,4_67,2_04,4_80],[3_14,4_69,3_76,4_82],[5_04,6_84,5_82,7_06],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[9_41,8_25,9_73,9_00],[6_10,7_49,6_52,7_65],[1_30,6_59,1_68,6_72],[1_76,6_57,2_37,6_72],[2_38,6_57,3_12,6_72],[4_43,6_53,6_28,6_72],[4_43,6_53,6_28,6_72],[7_16,3_01,8_25,3_17],[10_00,10_00,10_00,10_00]]] ) # noqa: E231
UpperCAmelCase = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231
# these are sequence labels (i.e. at the token level)
UpperCAmelCase = tf.convert_to_tensor([[-1_00,10,10,10,9,1,-1_00,7,7,-1_00,7,7,4,2,5,2,8,8,-1_00,-1_00,5,0,3,2,-1_00],[-1_00,12,12,12,-1_00,12,10,-1_00,-1_00,-1_00,-1_00,10,12,9,-1_00,-1_00,-1_00,10,10,10,9,12,-1_00,10,-1_00]] ) # noqa: E231
# fmt: on
return input_ids, attention_mask, bbox, token_type_ids, labels
@require_tf
class __magic_name__ ( unittest.TestCase):
@slow
def _UpperCAmelCase ( self : Any ):
UpperCAmelCase = TFLayoutLMModel.from_pretrained("microsoft/layoutlm-base-uncased" )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
# test the sequence output on [0, :3, :3]
UpperCAmelCase = tf.convert_to_tensor(
[[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] ,)
self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) )
# test the pooled output on [1, :3]
UpperCAmelCase = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] )
self.assertTrue(np.allclose(outputs.pooler_output[1, :3] ,__SCREAMING_SNAKE_CASE ,atol=1e-3 ) )
@slow
def _UpperCAmelCase ( self : Union[str, Any] ):
# initialize model with randomly initialized sequence classification head
UpperCAmelCase = TFLayoutLMForSequenceClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=2 )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
UpperCAmelCase = model(
input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=tf.convert_to_tensor([1, 1] ) ,)
# test whether we get a loss as a scalar
UpperCAmelCase = outputs.loss
UpperCAmelCase = (2,)
self.assertEqual(loss.shape ,__SCREAMING_SNAKE_CASE )
# test the shape of the logits
UpperCAmelCase = outputs.logits
UpperCAmelCase = (2, 2)
self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE )
@slow
def _UpperCAmelCase ( self : Tuple ):
# initialize model with randomly initialized token classification head
UpperCAmelCase = TFLayoutLMForTokenClassification.from_pretrained("microsoft/layoutlm-base-uncased" ,num_labels=1_3 )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
UpperCAmelCase = model(
input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE ,labels=__SCREAMING_SNAKE_CASE )
# test the shape of the logits
UpperCAmelCase = outputs.logits
UpperCAmelCase = tf.convert_to_tensor((2, 2_5, 1_3) )
self.assertEqual(logits.shape ,__SCREAMING_SNAKE_CASE )
@slow
def _UpperCAmelCase ( self : List[Any] ):
# initialize model with randomly initialized token classification head
UpperCAmelCase = TFLayoutLMForQuestionAnswering.from_pretrained("microsoft/layoutlm-base-uncased" )
UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = prepare_layoutlm_batch_inputs()
# forward pass
UpperCAmelCase = model(input_ids=__SCREAMING_SNAKE_CASE ,bbox=__SCREAMING_SNAKE_CASE ,attention_mask=__SCREAMING_SNAKE_CASE ,token_type_ids=__SCREAMING_SNAKE_CASE )
# test the shape of the logits
UpperCAmelCase = tf.convert_to_tensor((2, 2_5) )
self.assertEqual(outputs.start_logits.shape ,__SCREAMING_SNAKE_CASE )
self.assertEqual(outputs.end_logits.shape ,__SCREAMING_SNAKE_CASE )
| 333 | 1 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class _UpperCAmelCase ( unittest.TestCase ):
"""simple docstring"""
def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=7 , lowerCAmelCase_=3 , lowerCAmelCase_=18 , lowerCAmelCase_=30 , lowerCAmelCase_=4_00 , lowerCAmelCase_=True , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_=False , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=[0.5, 0.5, 0.5] , lowerCAmelCase_=[0.5, 0.5, 0.5] , ):
'''simple docstring'''
a_ : Optional[int] = parent
a_ : Union[str, Any] = batch_size
a_ : Any = num_channels
a_ : Tuple = image_size
a_ : Any = min_resolution
a_ : Dict = max_resolution
a_ : Optional[Any] = do_resize
a_ : Tuple = size if size is not None else {"""height""": 18, """width""": 20}
a_ : int = do_thumbnail
a_ : Optional[int] = do_align_axis
a_ : Tuple = do_pad
a_ : int = do_normalize
a_ : Tuple = image_mean
a_ : Optional[Any] = image_std
def _lowerCAmelCase ( self ):
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class _UpperCAmelCase ( lowerCAmelCase__ ,unittest.TestCase ):
"""simple docstring"""
a_ = DonutImageProcessor if is_vision_available() else None
def _lowerCAmelCase ( self ):
'''simple docstring'''
a_ : Optional[int] = DonutImageProcessingTester(self )
@property
def _lowerCAmelCase ( self ):
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def _lowerCAmelCase ( self ):
'''simple docstring'''
a_ : Any = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_resize""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """size""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_thumbnail""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_align_long_axis""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_pad""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """do_normalize""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """image_mean""" ) )
self.assertTrue(hasattr(lowerCAmelCase_ , """image_std""" ) )
def _lowerCAmelCase ( self ):
'''simple docstring'''
a_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""height""": 18, """width""": 20} )
a_ : str = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {"""height""": 42, """width""": 42} )
# Previous config had dimensions in (width, height) order
a_ : Any = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {"""height""": 84, """width""": 42} )
def _lowerCAmelCase ( self ):
'''simple docstring'''
pass
@is_flaky()
def _lowerCAmelCase ( self ):
'''simple docstring'''
a_ : Dict = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
a_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , Image.Image )
# Test not batched input
a_ : Dict = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
a_ : int = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def _lowerCAmelCase ( self ):
'''simple docstring'''
a_ : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
a_ : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , numpify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , np.ndarray )
# Test not batched input
a_ : Optional[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
a_ : Dict = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
@is_flaky()
def _lowerCAmelCase ( self ):
'''simple docstring'''
a_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
a_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase_ , torchify=lowerCAmelCase_ )
for image in image_inputs:
self.assertIsInstance(lowerCAmelCase_ , torch.Tensor )
# Test not batched input
a_ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
# Test batched
a_ : Any = image_processing(lowerCAmelCase_ , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size["""height"""],
self.image_processor_tester.size["""width"""],
) , )
| 460 |
'''simple docstring'''
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_flax_available,
is_tf_available,
is_torch_available,
)
__snake_case: Dict = {"configuration_encoder_decoder": ["EncoderDecoderConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case: List[str] = ["EncoderDecoderModel"]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case: Any = ["TFEncoderDecoderModel"]
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__snake_case: List[str] = ["FlaxEncoderDecoderModel"]
if TYPE_CHECKING:
from .configuration_encoder_decoder import EncoderDecoderConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_encoder_decoder import EncoderDecoderModel
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_encoder_decoder import TFEncoderDecoderModel
try:
if not is_flax_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel
else:
import sys
__snake_case: Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 460 | 1 |
'''simple docstring'''
import argparse
import torch
from safetensors.torch import load_file
from diffusers import StableDiffusionPipeline
def UpperCAmelCase__ ( UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str , UpperCAmelCase_ : Tuple ) -> int:
# load base model
__lowerCamelCase : List[Any] = StableDiffusionPipeline.from_pretrained(UpperCAmelCase_ , torch_dtype=torch.floataa )
# load LoRA weight from .safetensors
__lowerCamelCase : List[str] = load_file(UpperCAmelCase_ )
__lowerCamelCase : Dict = []
# directly update weight in diffusers model
for key in state_dict:
# it is suggested to print out the key, it usually will be something like below
# "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight"
# as we have set the alpha beforehand, so just skip
if ".alpha" in key or key in visited:
continue
if "text" in key:
__lowerCamelCase : Optional[int] = key.split('.' )[0].split(LORA_PREFIX_TEXT_ENCODER + '_' )[-1].split('_' )
__lowerCamelCase : Union[str, Any] = pipeline.text_encoder
else:
__lowerCamelCase : int = key.split('.' )[0].split(LORA_PREFIX_UNET + '_' )[-1].split('_' )
__lowerCamelCase : Any = pipeline.unet
# find the target layer
__lowerCamelCase : List[Any] = layer_infos.pop(0 )
while len(UpperCAmelCase_ ) > -1:
try:
__lowerCamelCase : Optional[int] = curr_layer.__getattr__(UpperCAmelCase_ )
if len(UpperCAmelCase_ ) > 0:
__lowerCamelCase : str = layer_infos.pop(0 )
elif len(UpperCAmelCase_ ) == 0:
break
except Exception:
if len(UpperCAmelCase_ ) > 0:
temp_name += "_" + layer_infos.pop(0 )
else:
__lowerCamelCase : Dict = layer_infos.pop(0 )
__lowerCamelCase : Optional[int] = []
if "lora_down" in key:
pair_keys.append(key.replace('lora_down' , 'lora_up' ) )
pair_keys.append(UpperCAmelCase_ )
else:
pair_keys.append(UpperCAmelCase_ )
pair_keys.append(key.replace('lora_up' , 'lora_down' ) )
# update weight
if len(state_dict[pair_keys[0]].shape ) == 4:
__lowerCamelCase : List[Any] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
__lowerCamelCase : Optional[int] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_ , UpperCAmelCase_ ).unsqueeze(2 ).unsqueeze(3 )
else:
__lowerCamelCase : Optional[int] = state_dict[pair_keys[0]].to(torch.floataa )
__lowerCamelCase : Any = state_dict[pair_keys[1]].to(torch.floataa )
curr_layer.weight.data += alpha * torch.mm(UpperCAmelCase_ , UpperCAmelCase_ )
# update visited list
for item in pair_keys:
visited.append(UpperCAmelCase_ )
return pipeline
if __name__ == "__main__":
A__ : List[str] = argparse.ArgumentParser()
parser.add_argument(
"""--base_model_path""", default=None, type=str, required=True, help="""Path to the base model in diffusers format."""
)
parser.add_argument(
"""--checkpoint_path""", default=None, type=str, required=True, help="""Path to the checkpoint to convert."""
)
parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--lora_prefix_unet""", default="""lora_unet""", type=str, help="""The prefix of UNet weight in safetensors"""
)
parser.add_argument(
"""--lora_prefix_text_encoder""",
default="""lora_te""",
type=str,
help="""The prefix of text encoder weight in safetensors""",
)
parser.add_argument("""--alpha""", default=0.7_5, type=float, help="""The merging ratio in W = W0 + alpha * deltaW""")
parser.add_argument(
"""--to_safetensors""", action="""store_true""", help="""Whether to store pipeline in safetensors format or not."""
)
parser.add_argument("""--device""", type=str, help="""Device to use (e.g. cpu, cuda:0, cuda:1, etc.)""")
A__ : Optional[int] = parser.parse_args()
A__ : Tuple = args.base_model_path
A__ : List[Any] = args.checkpoint_path
A__ : Union[str, Any] = args.dump_path
A__ : List[Any] = args.lora_prefix_unet
A__ : Tuple = args.lora_prefix_text_encoder
A__ : Tuple = args.alpha
A__ : Tuple = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha)
A__ : List[Any] = pipe.to(args.device)
pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
| 13 |
'''simple docstring'''
from __future__ import annotations
A__ : int = 10
def UpperCAmelCase__ ( UpperCAmelCase_ : list[int] ) -> list[int]:
__lowerCamelCase : List[Any] = 1
__lowerCamelCase : Any = max(UpperCAmelCase_ )
while placement <= max_digit:
# declare and initialize empty buckets
__lowerCamelCase : list[list] = [[] for _ in range(UpperCAmelCase_ )]
# split list_of_ints between the buckets
for i in list_of_ints:
__lowerCamelCase : List[Any] = int((i / placement) % RADIX )
buckets[tmp].append(UpperCAmelCase_ )
# put each buckets' contents into list_of_ints
__lowerCamelCase : Tuple = 0
for b in range(UpperCAmelCase_ ):
for i in buckets[b]:
__lowerCamelCase : List[Any] = i
a += 1
# move to next
placement *= RADIX
return list_of_ints
if __name__ == "__main__":
import doctest
doctest.testmod()
| 13 | 1 |
import enum
import shutil
import sys
lowerCamelCase__ , lowerCamelCase__ = shutil.get_terminal_size()
lowerCamelCase__ = {'''UP''': '''A''', '''DOWN''': '''B''', '''RIGHT''': '''C''', '''LEFT''': '''D'''}
class __magic_name__ (enum.Enum ):
lowerCamelCase__ = 0
lowerCamelCase__ = 1
def A(__a: int , __a: Optional[int]="" ):
sys.stdout.write(str(__a ) + end )
sys.stdout.flush()
def A(__a: Optional[int] , __a: Union[str, Any] , __a: Optional[int]="" ):
forceWrite(F"\u001b[{color}m{content}\u001b[0m" , __a )
def A():
forceWrite("\r" )
def A(__a: int , __a: str ):
forceWrite(F"\033[{num_lines}{CURSOR_TO_CHAR[direction.upper()]}" )
def A():
forceWrite(" " * TERMINAL_WIDTH )
reset_cursor()
def A():
reset_cursor()
forceWrite("-" * TERMINAL_WIDTH )
| 714 |
import copy
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union
if TYPE_CHECKING:
from ...processing_utils import ProcessorMixin
from ...utils import TensorType
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
lowerCamelCase__ = logging.get_logger(__name__)
lowerCamelCase__ = {
'''google/owlvit-base-patch32''': '''https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json''',
'''google/owlvit-base-patch16''': '''https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json''',
'''google/owlvit-large-patch14''': '''https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json''',
}
class __magic_name__ (__lowercase ):
lowerCamelCase__ = '''owlvit_text_model'''
def __init__( self , _a=49408 , _a=512 , _a=2048 , _a=12 , _a=8 , _a=16 , _a="quick_gelu" , _a=1E-5 , _a=0.0 , _a=0.0_2 , _a=1.0 , _a=0 , _a=49406 , _a=49407 , **_a , ) -> List[str]:
super().__init__(pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , **_a )
lowerCAmelCase_ = vocab_size
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = attention_dropout
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = initializer_factor
@classmethod
def __a ( cls , _a , **_a ) -> "PretrainedConfig":
cls._set_token_in_kwargs(_a )
lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(_a , **_a )
# get the text config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
lowerCAmelCase_ = config_dict["text_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(_a , **_a )
class __magic_name__ (__lowercase ):
lowerCamelCase__ = '''owlvit_vision_model'''
def __init__( self , _a=768 , _a=3072 , _a=12 , _a=12 , _a=3 , _a=768 , _a=32 , _a="quick_gelu" , _a=1E-5 , _a=0.0 , _a=0.0_2 , _a=1.0 , **_a , ) -> Union[str, Any]:
super().__init__(**_a )
lowerCAmelCase_ = hidden_size
lowerCAmelCase_ = intermediate_size
lowerCAmelCase_ = num_hidden_layers
lowerCAmelCase_ = num_attention_heads
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = image_size
lowerCAmelCase_ = patch_size
lowerCAmelCase_ = hidden_act
lowerCAmelCase_ = layer_norm_eps
lowerCAmelCase_ = attention_dropout
lowerCAmelCase_ = initializer_range
lowerCAmelCase_ = initializer_factor
@classmethod
def __a ( cls , _a , **_a ) -> "PretrainedConfig":
cls._set_token_in_kwargs(_a )
lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(_a , **_a )
# get the vision config dict if we are loading from OwlViTConfig
if config_dict.get("model_type" ) == "owlvit":
lowerCAmelCase_ = config_dict["vision_config"]
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(_a , **_a )
class __magic_name__ (__lowercase ):
lowerCamelCase__ = '''owlvit'''
lowerCamelCase__ = True
def __init__( self , _a=None , _a=None , _a=512 , _a=2.6_5_9_2 , _a=True , **_a , ) -> Tuple:
super().__init__(**_a )
if text_config is None:
lowerCAmelCase_ = {}
logger.info("text_config is None. Initializing the OwlViTTextConfig with default values." )
if vision_config is None:
lowerCAmelCase_ = {}
logger.info("vision_config is None. initializing the OwlViTVisionConfig with default values." )
lowerCAmelCase_ = OwlViTTextConfig(**_a )
lowerCAmelCase_ = OwlViTVisionConfig(**_a )
lowerCAmelCase_ = projection_dim
lowerCAmelCase_ = logit_scale_init_value
lowerCAmelCase_ = return_dict
lowerCAmelCase_ = 1.0
@classmethod
def __a ( cls , _a , **_a ) -> "PretrainedConfig":
cls._set_token_in_kwargs(_a )
lowerCAmelCase_ , lowerCAmelCase_ = cls.get_config_dict(_a , **_a )
if "model_type" in config_dict and hasattr(cls , "model_type" ) and config_dict["model_type"] != cls.model_type:
logger.warning(
f"You are using a model of type {config_dict['model_type']} to instantiate a model of type "
f"{cls.model_type}. This is not supported for all configurations of models and can yield errors." )
return cls.from_dict(_a , **_a )
@classmethod
def __a ( cls , _a , _a , **_a ) -> Union[str, Any]:
lowerCAmelCase_ = {}
lowerCAmelCase_ = text_config
lowerCAmelCase_ = vision_config
return cls.from_dict(_a , **_a )
def __a ( self ) -> int:
lowerCAmelCase_ = copy.deepcopy(self.__dict__ )
lowerCAmelCase_ = self.text_config.to_dict()
lowerCAmelCase_ = self.vision_config.to_dict()
lowerCAmelCase_ = self.__class__.model_type
return output
class __magic_name__ (__lowercase ):
@property
def __a ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("input_ids", {0: "batch", 1: "sequence"}),
("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}),
("attention_mask", {0: "batch", 1: "sequence"}),
] )
@property
def __a ( self ) -> Mapping[str, Mapping[int, str]]:
return OrderedDict(
[
("logits_per_image", {0: "batch"}),
("logits_per_text", {0: "batch"}),
("text_embeds", {0: "batch"}),
("image_embeds", {0: "batch"}),
] )
@property
def __a ( self ) -> float:
return 1E-4
def __a ( self , _a , _a = -1 , _a = -1 , _a = None , ) -> Mapping[str, Any]:
lowerCAmelCase_ = super().generate_dummy_inputs(
processor.tokenizer , batch_size=_a , seq_length=_a , framework=_a )
lowerCAmelCase_ = super().generate_dummy_inputs(
processor.image_processor , batch_size=_a , framework=_a )
return {**text_input_dict, **image_input_dict}
@property
def __a ( self ) -> int:
return 14
| 226 | 0 |
def _A ( __snake_case :Union[str, Any] , __snake_case :Any ) -> Optional[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ""
for i in table:
res += inp[i - 1]
return res
def _A ( __snake_case :Union[str, Any] ) -> int:
"""simple docstring"""
return data[1:] + data[0]
def _A ( __snake_case :List[str] , __snake_case :List[str] ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = ""
for i in range(len(lowerCAmelCase_ ) ):
if a[i] == b[i]:
res += "0"
else:
res += "1"
return res
def _A ( __snake_case :Any , __snake_case :int ) -> List[Any]:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = int("0b" + data[0] + data[-1] , 2 )
__SCREAMING_SNAKE_CASE = int("0b" + data[1:3] , 2 )
return bin(s[row][col] )[2:]
def _A ( __snake_case :List[Any] , __snake_case :Optional[int] , __snake_case :List[Any] , __snake_case :Union[str, Any] , __snake_case :str ) -> Any:
"""simple docstring"""
__SCREAMING_SNAKE_CASE = message[:4]
__SCREAMING_SNAKE_CASE = message[4:]
__SCREAMING_SNAKE_CASE = apply_table(lowerCAmelCase_ , lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = xor(lowerCAmelCase_ , lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = apply_sbox(lowerCAmelCase_ , temp[:4] ) # noqa: E741
__SCREAMING_SNAKE_CASE = apply_sbox(lowerCAmelCase_ , temp[4:] )
__SCREAMING_SNAKE_CASE = "0" * (2 - len(lowerCAmelCase_ )) + l # noqa: E741
__SCREAMING_SNAKE_CASE = "0" * (2 - len(lowerCAmelCase_ )) + r
__SCREAMING_SNAKE_CASE = apply_table(l + r , lowerCAmelCase_ )
__SCREAMING_SNAKE_CASE = xor(lowerCAmelCase_ , lowerCAmelCase_ )
return temp + right
if __name__ == "__main__":
_snake_case : Tuple = input('Enter 10 bit key: ')
_snake_case : Dict = input('Enter 8 bit message: ')
_snake_case : Tuple = [6, 3, 7, 4, 8, 5, 10, 9]
_snake_case : Optional[int] = [3, 5, 2, 7, 4, 10, 1, 9, 8, 6]
_snake_case : Union[str, Any] = [2, 4, 3, 1]
_snake_case : int = [2, 6, 3, 1, 4, 8, 5, 7]
_snake_case : Any = [4, 1, 3, 5, 7, 2, 8, 6]
_snake_case : int = [4, 1, 2, 3, 2, 3, 4, 1]
_snake_case : str = [[1, 0, 3, 2], [3, 2, 1, 0], [0, 2, 1, 3], [3, 1, 3, 2]]
_snake_case : Dict = [[0, 1, 2, 3], [2, 0, 1, 3], [3, 0, 1, 0], [2, 1, 0, 3]]
# key generation
_snake_case : Optional[Any] = apply_table(key, paa_table)
_snake_case : List[str] = temp[:5]
_snake_case : Optional[Any] = temp[5:]
_snake_case : List[str] = left_shift(left)
_snake_case : int = left_shift(right)
_snake_case : Union[str, Any] = apply_table(left + right, pa_table)
_snake_case : Tuple = left_shift(left)
_snake_case : int = left_shift(right)
_snake_case : int = left_shift(left)
_snake_case : Tuple = left_shift(right)
_snake_case : Optional[int] = apply_table(left + right, pa_table)
# encryption
_snake_case : Optional[int] = apply_table(message, IP)
_snake_case : Union[str, Any] = function(expansion, sa, sa, keya, temp)
_snake_case : str = temp[4:] + temp[:4]
_snake_case : Union[str, Any] = function(expansion, sa, sa, keya, temp)
_snake_case : Tuple = apply_table(temp, IP_inv)
print('Cipher text is:', CT)
# decryption
_snake_case : Optional[Any] = apply_table(CT, IP)
_snake_case : Any = function(expansion, sa, sa, keya, temp)
_snake_case : int = temp[4:] + temp[:4]
_snake_case : List[Any] = function(expansion, sa, sa, keya, temp)
_snake_case : int = apply_table(temp, IP_inv)
print('Plain text after decypting is:', PT)
| 693 |
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
# rely on isort to merge the imports
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available
__magic_name__ = {
'''configuration_vivit''': ['''VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''VivitConfig'''],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = ['''VivitImageProcessor''']
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__magic_name__ = [
'''VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''VivitModel''',
'''VivitPreTrainedModel''',
'''VivitForVideoClassification''',
]
if TYPE_CHECKING:
from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_vivit import VivitImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_vivit import (
VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST,
VivitForVideoClassification,
VivitModel,
VivitPreTrainedModel,
)
else:
import sys
__magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 250 | 0 |
from typing import Any
class _SCREAMING_SNAKE_CASE :
def __init__( self : List[str] , __lowerCamelCase : Any ):
UpperCamelCase :Optional[Any] = data
UpperCamelCase :Optional[int] = None
def __repr__( self : List[Any] ):
return F"""Node({self.data})"""
class _SCREAMING_SNAKE_CASE :
def __init__( self : Any ):
UpperCamelCase :Any = None
def __iter__( self : Optional[Any] ):
UpperCamelCase :Optional[Any] = self.head
while node:
yield node.data
UpperCamelCase :int = node.next
def __len__( self : List[str] ):
return sum(1 for _ in self )
def __repr__( self : Any ):
return "->".join([str(__lowerCamelCase ) for item in self] )
def __getitem__( self : Optional[int] , __lowerCamelCase : int ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self : List[str] , __lowerCamelCase : int , __lowerCamelCase : Any ):
if not 0 <= index < len(self ):
raise ValueError("""list index out of range.""" )
UpperCamelCase :Tuple = self.head
for _ in range(__lowerCamelCase ):
UpperCamelCase :Dict = current.next
UpperCamelCase :Dict = data
def _A ( self : Optional[int] , __lowerCamelCase : Any ):
self.insert_nth(len(self ) , __lowerCamelCase )
def _A ( self : Optional[Any] , __lowerCamelCase : Any ):
self.insert_nth(0 , __lowerCamelCase )
def _A ( self : int , __lowerCamelCase : int , __lowerCamelCase : Any ):
if not 0 <= index <= len(self ):
raise IndexError("""list index out of range""" )
UpperCamelCase :List[str] = Node(__lowerCamelCase )
if self.head is None:
UpperCamelCase :Union[str, Any] = new_node
elif index == 0:
UpperCamelCase :Optional[Any] = self.head # link new_node to head
UpperCamelCase :str = new_node
else:
UpperCamelCase :Dict = self.head
for _ in range(index - 1 ):
UpperCamelCase :List[str] = temp.next
UpperCamelCase :Optional[Any] = temp.next
UpperCamelCase :List[Any] = new_node
def _A ( self : Dict ): # print every node data
print(self )
def _A ( self : Dict ):
return self.delete_nth(0 )
def _A ( self : Optional[int] ): # delete from tail
return self.delete_nth(len(self ) - 1 )
def _A ( self : List[Any] , __lowerCamelCase : int = 0 ):
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("""List index out of range.""" )
UpperCamelCase :Dict = self.head # default first node
if index == 0:
UpperCamelCase :Optional[Any] = self.head.next
else:
UpperCamelCase :List[Any] = self.head
for _ in range(index - 1 ):
UpperCamelCase :Any = temp.next
UpperCamelCase :Optional[int] = temp.next
UpperCamelCase :List[Any] = temp.next.next
return delete_node.data
def _A ( self : List[Any] ):
return self.head is None
def _A ( self : Tuple ):
UpperCamelCase :int = None
UpperCamelCase :Dict = self.head
while current:
# Store the current node's next node.
UpperCamelCase :Any = current.next
# Make the current node's next point backwards
UpperCamelCase :Dict = prev
# Make the previous node be the current node
UpperCamelCase :List[str] = current
# Make the current node the next node (to progress iteration)
UpperCamelCase :Any = next_node
# Return prev in order to put the head at the end
UpperCamelCase :List[Any] = prev
def SCREAMING_SNAKE_CASE_ ( ) -> None:
"""simple docstring"""
UpperCamelCase :Dict = LinkedList()
assert linked_list.is_empty() is True
assert str(__magic_name__ ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(10 ):
assert len(__magic_name__ ) == i
linked_list.insert_nth(__magic_name__ , i + 1 )
assert str(__magic_name__ ) == "->".join(str(__magic_name__ ) for i in range(1 , 11 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(11 )
assert str(__magic_name__ ) == "->".join(str(__magic_name__ ) for i in range(0 , 12 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 10
assert linked_list.delete_tail() == 11
assert len(__magic_name__ ) == 9
assert str(__magic_name__ ) == "->".join(str(__magic_name__ ) for i in range(1 , 10 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
UpperCamelCase :int = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(__magic_name__ ) == "->".join(str(__magic_name__ ) for i in range(-8 , 1 ) )
def SCREAMING_SNAKE_CASE_ ( ) -> None:
"""simple docstring"""
UpperCamelCase :Optional[int] = [
-9,
100,
Node(7734_5112 ),
"""dlrow olleH""",
7,
5555,
0,
-192.55555,
"""Hello, world!""",
77.9,
Node(10 ),
None,
None,
12.20,
]
UpperCamelCase :Optional[Any] = LinkedList()
for i in test_input:
linked_list.insert_tail(__magic_name__ )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(__magic_name__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
UpperCamelCase :int = linked_list.delete_head()
assert result == -9
assert (
str(__magic_name__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
UpperCamelCase :Optional[Any] = linked_list.delete_tail()
assert result == 12.2
assert (
str(__magic_name__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
UpperCamelCase :Any = linked_list.delete_nth(10 )
assert result is None
assert (
str(__magic_name__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("""Hello again, world!""" ) )
assert (
str(__magic_name__ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(__magic_name__ )
assert (
str(__magic_name__ )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(__magic_name__ )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def SCREAMING_SNAKE_CASE_ ( ) -> Optional[Any]:
"""simple docstring"""
from doctest import testmod
testmod()
UpperCamelCase :Tuple = LinkedList()
linked_list.insert_head(input("""Inserting 1st at head """ ).strip() )
linked_list.insert_head(input("""Inserting 2nd at head """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
linked_list.insert_tail(input("""\nInserting 1st at tail """ ).strip() )
linked_list.insert_tail(input("""Inserting 2nd at tail """ ).strip() )
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nDelete head""" )
linked_list.delete_head()
print("""Delete tail""" )
linked_list.delete_tail()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nReverse linked list""" )
linked_list.reverse()
print("""\nPrint list:""" )
linked_list.print_list()
print("""\nString representation of linked list:""" )
print(__magic_name__ )
print("""\nReading/changing Node data using indexing:""" )
print(f"""Element at Position 1: {linked_list[1]}""" )
UpperCamelCase :Optional[int] = input("""Enter New Value: """ ).strip()
print("""New list:""" )
print(__magic_name__ )
print(f"""length of linked_list is : {len(__magic_name__ )}""" )
if __name__ == "__main__":
main()
| 590 |
import json
import os
from pathlib import Path
from shutil import copyfile
from typing import Any, Dict, List, Optional, Tuple, Union
import sentencepiece
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
UpperCAmelCase_ : Dict = logging.get_logger(__name__)
UpperCAmelCase_ : str = '''▁'''
UpperCAmelCase_ : str = {
'''vocab_file''': '''vocab.json''',
'''spm_file''': '''sentencepiece.bpe.model''',
}
UpperCAmelCase_ : List[str] = {
'''vocab_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json'''
),
},
'''spm_file''': {
'''facebook/s2t-small-librispeech-asr''': (
'''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model'''
)
},
}
UpperCAmelCase_ : Any = {
'''facebook/s2t-small-librispeech-asr''': 10_24,
}
UpperCAmelCase_ : Tuple = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de''']
UpperCAmelCase_ : int = {'''mustc''': MUSTC_LANGS}
class _SCREAMING_SNAKE_CASE ( _a ):
snake_case__ : Optional[int] = VOCAB_FILES_NAMES
snake_case__ : Tuple = PRETRAINED_VOCAB_FILES_MAP
snake_case__ : Union[str, Any] = MAX_MODEL_INPUT_SIZES
snake_case__ : Optional[int] = ["""input_ids""", """attention_mask"""]
snake_case__ : List[int] = []
def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : int , ):
UpperCamelCase :List[str] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_upper_case=__lowerCamelCase , do_lower_case=__lowerCamelCase , tgt_lang=__lowerCamelCase , lang_codes=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , )
UpperCamelCase :List[str] = do_upper_case
UpperCamelCase :int = do_lower_case
UpperCamelCase :Dict = load_json(__lowerCamelCase )
UpperCamelCase :Optional[int] = {v: k for k, v in self.encoder.items()}
UpperCamelCase :Optional[Any] = spm_file
UpperCamelCase :str = load_spm(__lowerCamelCase , self.sp_model_kwargs )
if lang_codes is not None:
UpperCamelCase :Dict = lang_codes
UpperCamelCase :List[str] = LANGUAGES[lang_codes]
UpperCamelCase :List[Any] = [F"""<lang:{lang}>""" for lang in self.langs]
UpperCamelCase :int = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs}
UpperCamelCase :Union[str, Any] = self.lang_tokens
UpperCamelCase :Tuple = tgt_lang if tgt_lang is not None else self.langs[0]
self.set_tgt_lang_special_tokens(self._tgt_lang )
else:
UpperCamelCase :Optional[Any] = {}
@property
def _A ( self : Any ):
return len(self.encoder )
@property
def _A ( self : int ):
return self._tgt_lang
@tgt_lang.setter
def _A ( self : Union[str, Any] , __lowerCamelCase : int ):
UpperCamelCase :str = new_tgt_lang
self.set_tgt_lang_special_tokens(__lowerCamelCase )
def _A ( self : Dict , __lowerCamelCase : str ):
UpperCamelCase :int = self.lang_code_to_id[tgt_lang]
UpperCamelCase :Optional[int] = [lang_code_id]
def _A ( self : Union[str, Any] , __lowerCamelCase : str ):
return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase )
def _A ( self : Optional[int] , __lowerCamelCase : List[str] ):
return self.encoder.get(__lowerCamelCase , self.encoder[self.unk_token] )
def _A ( self : Optional[int] , __lowerCamelCase : int ):
return self.decoder.get(__lowerCamelCase , self.unk_token )
def _A ( self : Union[str, Any] , __lowerCamelCase : List[str] ):
UpperCamelCase :Any = []
UpperCamelCase :Dict = """"""
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
UpperCamelCase :Dict = self.sp_model.decode(__lowerCamelCase )
out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " "
UpperCamelCase :Dict = []
else:
current_sub_tokens.append(__lowerCamelCase )
UpperCamelCase :Dict = self.sp_model.decode(__lowerCamelCase )
out_string += decoded.upper() if self.do_upper_case else decoded
return out_string.strip()
def _A ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=None ):
if token_ids_a is None:
return self.prefix_tokens + token_ids_a + [self.eos_token_id]
# We don't expect to process pairs, but leave the pair logic for API consistency
return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id]
def _A ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase )
UpperCamelCase :Tuple = [1] * len(self.prefix_tokens )
UpperCamelCase :Tuple = [1]
if token_ids_a is None:
return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones
return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones
def _A ( self : Any ):
UpperCamelCase :Optional[Any] = self.encoder.copy()
vocab.update(self.added_tokens_encoder )
return vocab
def __getstate__( self : List[Any] ):
UpperCamelCase :Optional[int] = self.__dict__.copy()
UpperCamelCase :List[str] = None
return state
def __setstate__( self : int , __lowerCamelCase : Dict ):
UpperCamelCase :List[str] = d
# for backward compatibility
if not hasattr(self , """sp_model_kwargs""" ):
UpperCamelCase :int = {}
UpperCamelCase :Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs )
def _A ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ):
UpperCamelCase :Union[str, Any] = Path(__lowerCamelCase )
assert save_dir.is_dir(), F"""{save_directory} should be a directory"""
UpperCamelCase :Any = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""]
)
UpperCamelCase :str = save_dir / (
(filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""]
)
save_json(self.encoder , __lowerCamelCase )
if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.spm_file ):
copyfile(self.spm_file , __lowerCamelCase )
elif not os.path.isfile(self.spm_file ):
with open(__lowerCamelCase , """wb""" ) as fi:
UpperCamelCase :Any = self.sp_model.serialized_model_proto()
fi.write(__lowerCamelCase )
return (str(__lowerCamelCase ), str(__lowerCamelCase ))
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor:
"""simple docstring"""
UpperCamelCase :int = sentencepiece.SentencePieceProcessor(**__magic_name__ )
spm.Load(str(__magic_name__ ) )
return spm
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Union[Dict, List]:
"""simple docstring"""
with open(__magic_name__ , """r""" ) as f:
return json.load(__magic_name__ )
def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : str ) -> None:
"""simple docstring"""
with open(__magic_name__ , """w""" ) as f:
json.dump(__magic_name__ , __magic_name__ , indent=2 )
| 590 | 1 |
"""simple docstring"""
import json
import os
import unittest
from transformers import AutoTokenizer, GPTaTokenizer, GPTaTokenizerFast
from transformers.models.gpta.tokenization_gpta import VOCAB_FILES_NAMES
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase , unittest.TestCase ):
lowercase__ = GPTaTokenizer
lowercase__ = GPTaTokenizerFast
lowercase__ = True
lowercase__ = {"""add_prefix_space""": True}
lowercase__ = False
def _UpperCAmelCase ( self : List[Any]):
"""simple docstring"""
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
lowercase_ = [
"""l""",
"""o""",
"""w""",
"""e""",
"""r""",
"""s""",
"""t""",
"""i""",
"""d""",
"""n""",
"""\u0120""",
"""\u0120l""",
"""\u0120n""",
"""\u0120lo""",
"""\u0120low""",
"""er""",
"""\u0120lowest""",
"""\u0120newer""",
"""\u0120wider""",
"""<unk>""",
"""<|endoftext|>""",
]
lowercase_ = dict(zip(lowercase__ , range(len(lowercase__))))
lowercase_ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""]
lowercase_ = {"""unk_token""": """<unk>"""}
lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""])
lowercase_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""])
with open(self.vocab_file , """w""" , encoding="""utf-8""") as fp:
fp.write(json.dumps(lowercase__) + """\n""")
with open(self.merges_file , """w""" , encoding="""utf-8""") as fp:
fp.write("""\n""".join(lowercase__))
def _UpperCAmelCase ( self : Any , **lowerCAmelCase_ : int):
"""simple docstring"""
kwargs.update(self.special_tokens_map)
return GPTaTokenizer.from_pretrained(self.tmpdirname , **lowercase__)
def _UpperCAmelCase ( self : List[str] , **lowerCAmelCase_ : Tuple):
"""simple docstring"""
kwargs.update(self.special_tokens_map)
return GPTaTokenizerFast.from_pretrained(self.tmpdirname , **lowercase__)
def _UpperCAmelCase ( self : int , lowerCAmelCase_ : str):
"""simple docstring"""
lowercase_ = """lower newer"""
lowercase_ = """lower newer"""
return input_text, output_text
def _UpperCAmelCase ( self : Dict):
"""simple docstring"""
lowercase_ = GPTaTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map)
lowercase_ = """lower newer"""
lowercase_ = ["""\u0120low""", """er""", """\u0120""", """n""", """e""", """w""", """er"""]
lowercase_ = tokenizer.tokenize(lowercase__ , add_prefix_space=lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
lowercase_ = tokens + [tokenizer.unk_token]
lowercase_ = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowercase__) , lowercase__)
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
if not self.test_rust_tokenizer:
return
lowercase_ = self.get_tokenizer()
lowercase_ = self.get_rust_tokenizer(add_prefix_space=lowercase__)
lowercase_ = """lower newer"""
# Testing tokenization
lowercase_ = tokenizer.tokenize(lowercase__ , add_prefix_space=lowercase__)
lowercase_ = rust_tokenizer.tokenize(lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
# Testing conversion to ids without special tokens
lowercase_ = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__ , add_prefix_space=lowercase__)
lowercase_ = rust_tokenizer.encode(lowercase__ , add_special_tokens=lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
# Testing conversion to ids with special tokens
lowercase_ = self.get_rust_tokenizer(add_prefix_space=lowercase__)
lowercase_ = tokenizer.encode(lowercase__ , add_prefix_space=lowercase__)
lowercase_ = rust_tokenizer.encode(lowercase__)
self.assertListEqual(lowercase__ , lowercase__)
# Testing the unknown token
lowercase_ = tokens + [rust_tokenizer.unk_token]
lowercase_ = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9]
self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowercase__) , lowercase__)
def _UpperCAmelCase ( self : Optional[int] , *lowerCAmelCase_ : List[Any] , **lowerCAmelCase_ : Any):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : List[str]=1_5):
"""simple docstring"""
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})'''):
lowercase_ = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__)
# Simple input
lowercase_ = """This is a simple input"""
lowercase_ = ["""This is a simple input 1""", """This is a simple input 2"""]
lowercase_ = ("""This is a simple input""", """This is a pair""")
lowercase_ = [
("""This is a simple input 1""", """This is a simple input 2"""),
("""This is a simple pair 1""", """This is a simple pair 2"""),
]
# Simple input tests
self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding="""max_length""")
# Simple input
self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding="""max_length""")
# Simple input
self.assertRaises(
lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding="""max_length""" , )
# Pair input
self.assertRaises(lowercase__ , tokenizer_r.encode , lowercase__ , max_length=lowercase__ , padding="""max_length""")
# Pair input
self.assertRaises(lowercase__ , tokenizer_r.encode_plus , lowercase__ , max_length=lowercase__ , padding="""max_length""")
# Pair input
self.assertRaises(
lowercase__ , tokenizer_r.batch_encode_plus , lowercase__ , max_length=lowercase__ , padding="""max_length""" , )
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , pad_token="""<pad>""")
# Simple input
lowercase_ = """This is a simple input"""
lowercase_ = ["""This is a simple input looooooooong""", """This is a simple input"""]
lowercase_ = ("""This is a simple input""", """This is a pair""")
lowercase_ = [
("""This is a simple input loooooong""", """This is a simple input"""),
("""This is a simple pair loooooong""", """This is a simple pair"""),
]
lowercase_ = tokenizer.pad_token_id
lowercase_ = tokenizer(lowercase__ , padding="""max_length""" , max_length=3_0 , return_tensors="""np""")
lowercase_ = tokenizer(lowercase__ , padding=lowercase__ , truncate=lowercase__ , return_tensors="""np""")
lowercase_ = tokenizer(*lowercase__ , padding="""max_length""" , max_length=6_0 , return_tensors="""np""")
lowercase_ = tokenizer(lowercase__ , padding=lowercase__ , truncate=lowercase__ , return_tensors="""np""")
# s
# test single string max_length padding
self.assertEqual(out_s["""input_ids"""].shape[-1] , 3_0)
self.assertTrue(pad_token_id in out_s["""input_ids"""])
self.assertTrue(0 in out_s["""attention_mask"""])
# s2
# test automatic padding
self.assertEqual(out_sa["""input_ids"""].shape[-1] , 3_3)
# long slice doesn't have padding
self.assertFalse(pad_token_id in out_sa["""input_ids"""][0])
self.assertFalse(0 in out_sa["""attention_mask"""][0])
# short slice does have padding
self.assertTrue(pad_token_id in out_sa["""input_ids"""][1])
self.assertTrue(0 in out_sa["""attention_mask"""][1])
# p
# test single pair max_length padding
self.assertEqual(out_p["""input_ids"""].shape[-1] , 6_0)
self.assertTrue(pad_token_id in out_p["""input_ids"""])
self.assertTrue(0 in out_p["""attention_mask"""])
# p2
# test automatic padding pair
self.assertEqual(out_pa["""input_ids"""].shape[-1] , 5_2)
# long slice pair doesn't have padding
self.assertFalse(pad_token_id in out_pa["""input_ids"""][0])
self.assertFalse(0 in out_pa["""attention_mask"""][0])
# short slice pair does have padding
self.assertTrue(pad_token_id in out_pa["""input_ids"""][1])
self.assertTrue(0 in out_pa["""attention_mask"""][1])
def _UpperCAmelCase ( self : Optional[Any]):
"""simple docstring"""
lowercase_ = """$$$"""
lowercase_ = GPTaTokenizer.from_pretrained(self.tmpdirname , bos_token=lowercase__ , add_bos_token=lowercase__)
lowercase_ = """This is a simple input"""
lowercase_ = ["""This is a simple input 1""", """This is a simple input 2"""]
lowercase_ = tokenizer.bos_token_id
lowercase_ = tokenizer(lowercase__)
lowercase_ = tokenizer(lowercase__)
self.assertEqual(out_s.input_ids[0] , lowercase__)
self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids))
lowercase_ = tokenizer.decode(out_s.input_ids)
lowercase_ = tokenizer.batch_decode(out_sa.input_ids)
self.assertEqual(decode_s.split()[0] , lowercase__)
self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa))
def _UpperCAmelCase ( self : Any):
"""simple docstring"""
pass
def _UpperCAmelCase ( self : int):
"""simple docstring"""
lowercase_ = [self.get_tokenizer(do_lower_case=lowercase__ , add_bos_token=lowercase__)]
for tokenizer in tokenizers:
with self.subTest(F'''{tokenizer.__class__.__name__}'''):
lowercase_ = """Encode this."""
lowercase_ = """This one too please."""
lowercase_ = tokenizer.encode(lowercase__ , add_special_tokens=lowercase__)
encoded_sequence += tokenizer.encode(lowercase__ , add_special_tokens=lowercase__)
lowercase_ = tokenizer.encode_plus(
lowercase__ , lowercase__ , add_special_tokens=lowercase__ , return_special_tokens_mask=lowercase__ , )
lowercase_ = encoded_sequence_dict["""input_ids"""]
lowercase_ = encoded_sequence_dict["""special_tokens_mask"""]
self.assertEqual(len(lowercase__) , len(lowercase__))
lowercase_ = [
(x if not special_tokens_mask[i] else None) for i, x in enumerate(lowercase__)
]
lowercase_ = [x for x in filtered_sequence if x is not None]
self.assertEqual(lowercase__ , lowercase__)
@require_tokenizers
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Tuple):
"""simple docstring"""
lowercase_ = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=lowercase__)
lowercase_ = """A photo of a cat"""
lowercase_ = tokenizer.encode(
lowercase__ , )
self.assertEqual(lowercase__ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8])
tokenizer.save_pretrained("""test_opt""")
lowercase_ = AutoTokenizer.from_pretrained("""./test_opt""")
lowercase_ = tokenizer.encode(
lowercase__ , )
self.assertEqual(lowercase__ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8])
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , use_slow=lowercase__)
lowercase_ = """A photo of a cat"""
lowercase_ = tokenizer.encode(
lowercase__ , )
# Same as above
self.assertEqual(lowercase__ , [2, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8])
@unittest.skip("""This test is failing because of a bug in the fast tokenizer""")
def _UpperCAmelCase ( self : Union[str, Any]):
"""simple docstring"""
lowercase_ = AutoTokenizer.from_pretrained("""facebook/opt-350m""" , from_slow=lowercase__)
lowercase_ = """bos"""
lowercase_ = tokenizer.get_vocab()["""bos"""]
lowercase_ = """A photo of a cat"""
lowercase_ = tokenizer.encode(
lowercase__ , )
# We changed the bos token
self.assertEqual(lowercase__ , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8])
tokenizer.save_pretrained("""./tok""")
lowercase_ = AutoTokenizer.from_pretrained("""./tok""")
self.assertTrue(tokenizer.is_fast)
lowercase_ = tokenizer.encode(
lowercase__ , )
self.assertEqual(lowercase__ , [3_1_9_5_7, 2_5_0, 1_3_4_5, 9, 1_0, 4_7_5_8])
| 567 |
"""simple docstring"""
from __future__ import annotations
def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[list[str]] , SCREAMING_SNAKE_CASE__ : int , ):
"""simple docstring"""
snake_case_ : Any = len(SCREAMING_SNAKE_CASE__ )
# If row is equal to the size of the board it means there are a queen in each row in
# the current board (possible_board)
if row == n:
# We convert the variable possible_board that looks like this: [1, 3, 0, 2] to
# this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . ']
boards.append([""". """ * i + """Q """ + """. """ * (n - 1 - i) for i in possible_board] )
return
# We iterate each column in the row to find all possible results in each row
for col in range(SCREAMING_SNAKE_CASE__ ):
# We apply that we learned previously. First we check that in the current board
# (possible_board) there are not other same value because if there is it means
# that there are a collision in vertical. Then we apply the two formulas we
# learned before:
#
# 45º: y - x = b or 45: row - col = b
# 135º: y + x = b or row + col = b.
#
# And we verify if the results of this two formulas not exist in their variables
# respectively. (diagonal_right_collisions, diagonal_left_collisions)
#
# If any or these are True it means there is a collision so we continue to the
# next value in the for loop.
if (
col in possible_board
or row - col in diagonal_right_collisions
or row + col in diagonal_left_collisions
):
continue
# If it is False we call dfs function again and we update the inputs
depth_first_search(
[*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , )
def SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ : int ):
"""simple docstring"""
snake_case_ : list[list[str]] = []
depth_first_search([] , [] , [] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ )
# Print all the boards
for board in boards:
for column in board:
print(SCREAMING_SNAKE_CASE__ )
print("""""" )
print(len(SCREAMING_SNAKE_CASE__ ) , """solutions were found.""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
n_queens_solution(4)
| 480 | 0 |
import argparse
import os
import re
snake_case__ : Dict = 'src/diffusers'
# Pattern that looks at the indentation in a line.
snake_case__ : int = re.compile(R'^(\s*)\S')
# Pattern that matches `"key":" and puts `key` in group 0.
snake_case__ : Optional[int] = re.compile(R'^\s*"([^"]+)":')
# Pattern that matches `_import_structure["key"]` and puts `key` in group 0.
snake_case__ : Optional[int] = re.compile(R'^\s*_import_structure\["([^"]+)"\]')
# Pattern that matches `"key",` and puts `key` in group 0.
snake_case__ : List[Any] = re.compile(R'^\s*"([^"]+)",\s*$')
# Pattern that matches any `[stuff]` and puts `stuff` in group 0.
snake_case__ : Optional[Any] = re.compile(R'\[([^\]]+)\]')
def __lowerCamelCase ( A__ : Any ) -> Tuple:
lowerCamelCase_ : List[str] = _re_indent.search(A__ )
return "" if search is None else search.groups()[0]
def __lowerCamelCase ( A__ : Optional[int] , A__ : Optional[Any]="" , A__ : Union[str, Any]=None , A__ : str=None ) -> List[str]:
lowerCamelCase_ : List[str] = 0
lowerCamelCase_ : Tuple = code.split("""\n""" )
if start_prompt is not None:
while not lines[index].startswith(A__ ):
index += 1
lowerCamelCase_ : Union[str, Any] = ["""\n""".join(lines[:index] )]
else:
lowerCamelCase_ : str = []
# We split into blocks until we get to the `end_prompt` (or the end of the block).
lowerCamelCase_ : Any = [lines[index]]
index += 1
while index < len(A__ ) and (end_prompt is None or not lines[index].startswith(A__ )):
if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level:
if len(A__ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ):
current_block.append(lines[index] )
blocks.append("""\n""".join(A__ ) )
if index < len(A__ ) - 1:
lowerCamelCase_ : Optional[Any] = [lines[index + 1]]
index += 1
else:
lowerCamelCase_ : List[Any] = []
else:
blocks.append("""\n""".join(A__ ) )
lowerCamelCase_ : Optional[Any] = [lines[index]]
else:
current_block.append(lines[index] )
index += 1
# Adds current block if it's nonempty.
if len(A__ ) > 0:
blocks.append("""\n""".join(A__ ) )
# Add final block after end_prompt if provided.
if end_prompt is not None and index < len(A__ ):
blocks.append("""\n""".join(lines[index:] ) )
return blocks
def __lowerCamelCase ( A__ : Union[str, Any] ) -> int:
def _inner(A__ : str ):
return key(A__ ).lower().replace("""_""" , """""" )
return _inner
def __lowerCamelCase ( A__ : Union[str, Any] , A__ : str=None ) -> Tuple:
# If no key is provided, we use a noop.
def noop(A__ : Dict ):
return x
if key is None:
lowerCamelCase_ : int = noop
# Constants are all uppercase, they go first.
lowerCamelCase_ : str = [obj for obj in objects if key(A__ ).isupper()]
# Classes are not all uppercase but start with a capital, they go second.
lowerCamelCase_ : Any = [obj for obj in objects if key(A__ )[0].isupper() and not key(A__ ).isupper()]
# Functions begin with a lowercase, they go last.
lowerCamelCase_ : Optional[int] = [obj for obj in objects if not key(A__ )[0].isupper()]
lowerCamelCase_ : List[str] = ignore_underscore(A__ )
return sorted(A__ , key=A__ ) + sorted(A__ , key=A__ ) + sorted(A__ , key=A__ )
def __lowerCamelCase ( A__ : Optional[Any] ) -> int:
# This inner function sort imports between [ ].
def _replace(A__ : Union[str, Any] ):
lowerCamelCase_ : List[Any] = match.groups()[0]
if "," not in imports:
return f'''[{imports}]'''
lowerCamelCase_ : List[Any] = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowerCamelCase_ : List[str] = keys[:-1]
return "[" + ", ".join([f'''"{k}"''' for k in sort_objects(A__ )] ) + "]"
lowerCamelCase_ : Any = import_statement.split("""\n""" )
if len(A__ ) > 3:
# Here we have to sort internal imports that are on several lines (one per name):
# key: [
# "object1",
# "object2",
# ...
# ]
# We may have to ignore one or two lines on each side.
lowerCamelCase_ : Any = 2 if lines[1].strip() == """[""" else 1
lowerCamelCase_ : List[Any] = [(i, _re_strip_line.search(A__ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )]
lowerCamelCase_ : Any = sort_objects(A__ , key=lambda A__ : x[1] )
lowerCamelCase_ : List[str] = [lines[x[0] + idx] for x in sorted_indices]
return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] )
elif len(A__ ) == 3:
# Here we have to sort internal imports that are on one separate line:
# key: [
# "object1", "object2", ...
# ]
if _re_bracket_content.search(lines[1] ) is not None:
lowerCamelCase_ : Tuple = _re_bracket_content.sub(_replace , lines[1] )
else:
lowerCamelCase_ : Tuple = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )]
# We will have a final empty element if the line finished with a comma.
if len(keys[-1] ) == 0:
lowerCamelCase_ : Tuple = keys[:-1]
lowerCamelCase_ : List[str] = get_indent(lines[1] ) + """, """.join([f'''"{k}"''' for k in sort_objects(A__ )] )
return "\n".join(A__ )
else:
# Finally we have to deal with imports fitting on one line
lowerCamelCase_ : Optional[int] = _re_bracket_content.sub(_replace , A__ )
return import_statement
def __lowerCamelCase ( A__ : List[Any] , A__ : List[Any]=True ) -> Union[str, Any]:
with open(A__ , """r""" ) as f:
lowerCamelCase_ : List[str] = f.read()
if "_import_structure" not in code:
return
# Blocks of indent level 0
lowerCamelCase_ : Any = split_code_in_indented_blocks(
A__ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" )
# We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt).
for block_idx in range(1 , len(A__ ) - 1 ):
# Check if the block contains some `_import_structure`s thingy to sort.
lowerCamelCase_ : Optional[int] = main_blocks[block_idx]
lowerCamelCase_ : Dict = block.split("""\n""" )
# Get to the start of the imports.
lowerCamelCase_ : Optional[int] = 0
while line_idx < len(A__ ) and "_import_structure" not in block_lines[line_idx]:
# Skip dummy import blocks
if "import dummy" in block_lines[line_idx]:
lowerCamelCase_ : Optional[int] = len(A__ )
else:
line_idx += 1
if line_idx >= len(A__ ):
continue
# Ignore beginning and last line: they don't contain anything.
lowerCamelCase_ : int = """\n""".join(block_lines[line_idx:-1] )
lowerCamelCase_ : str = get_indent(block_lines[1] )
# Slit the internal block into blocks of indent level 1.
lowerCamelCase_ : str = split_code_in_indented_blocks(A__ , indent_level=A__ )
# We have two categories of import key: list or _import_structure[key].append/extend
lowerCamelCase_ : Any = _re_direct_key if """_import_structure""" in block_lines[0] else _re_indirect_key
# Grab the keys, but there is a trap: some lines are empty or just comments.
lowerCamelCase_ : Optional[Any] = [(pattern.search(A__ ).groups()[0] if pattern.search(A__ ) is not None else None) for b in internal_blocks]
# We only sort the lines with a key.
lowerCamelCase_ : Optional[Any] = [(i, key) for i, key in enumerate(A__ ) if key is not None]
lowerCamelCase_ : str = [x[0] for x in sorted(A__ , key=lambda A__ : x[1] )]
# We reorder the blocks by leaving empty lines/comments as they were and reorder the rest.
lowerCamelCase_ : int = 0
lowerCamelCase_ : Tuple = []
for i in range(len(A__ ) ):
if keys[i] is None:
reordered_blocks.append(internal_blocks[i] )
else:
lowerCamelCase_ : Dict = sort_objects_in_import(internal_blocks[sorted_indices[count]] )
reordered_blocks.append(A__ )
count += 1
# And we put our main block back together with its first and last line.
lowerCamelCase_ : Union[str, Any] = """\n""".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] )
if code != "\n".join(A__ ):
if check_only:
return True
else:
print(f'''Overwriting {file}.''' )
with open(A__ , """w""" ) as f:
f.write("""\n""".join(A__ ) )
def __lowerCamelCase ( A__ : Optional[int]=True ) -> Union[str, Any]:
lowerCamelCase_ : Optional[Any] = []
for root, _, files in os.walk(A__ ):
if "__init__.py" in files:
lowerCamelCase_ : int = sort_imports(os.path.join(A__ , """__init__.py""" ) , check_only=A__ )
if result:
lowerCamelCase_ : int = [os.path.join(A__ , """__init__.py""" )]
if len(A__ ) > 0:
raise ValueError(f'''Would overwrite {len(A__ )} files, run `make style`.''' )
if __name__ == "__main__":
snake_case__ : Dict = argparse.ArgumentParser()
parser.add_argument('--check_only', action='store_true', help='Whether to only check or fix style.')
snake_case__ : Dict = parser.parse_args()
sort_imports_in_all_inits(check_only=args.check_only)
| 716 |
import qiskit
def __lowerCamelCase ( A__ : int = 2 ) -> qiskit.result.counts.Counts:
lowerCamelCase_ : List[Any] = qubits
# Using Aer's simulator
lowerCamelCase_ : Tuple = qiskit.Aer.get_backend("""aer_simulator""" )
# Creating a Quantum Circuit acting on the q register
lowerCamelCase_ : int = qiskit.QuantumCircuit(A__ , A__ )
# Adding a H gate on qubit 0 (now q0 in superposition)
circuit.h(0 )
for i in range(1 , A__ ):
# Adding CX (CNOT) gate
circuit.cx(i - 1 , A__ )
# Mapping the quantum measurement to the classical bits
circuit.measure(list(range(A__ ) ) , list(range(A__ ) ) )
# Now measuring any one qubit would affect other qubits to collapse
# their super position and have same state as the measured one.
# Executing the circuit on the simulator
lowerCamelCase_ : Union[str, Any] = qiskit.execute(A__ , A__ , shots=1000 )
return job.result().get_counts(A__ )
if __name__ == "__main__":
print(F'Total count for various states are: {quantum_entanglement(3)}')
| 171 | 0 |
'''simple docstring'''
import warnings
from typing import List, Optional, Union
from ...image_utils import ImageInput
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ):
'''simple docstring'''
SCREAMING_SNAKE_CASE_ = ['image_processor', 'tokenizer']
SCREAMING_SNAKE_CASE_ = 'FlavaImageProcessor'
SCREAMING_SNAKE_CASE_ = ('BertTokenizer', 'BertTokenizerFast')
def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]:
'''simple docstring'''
lowerCamelCase_ = None
if "feature_extractor" in kwargs:
warnings.warn(
'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`'
' instead.' , SCREAMING_SNAKE_CASE_ , )
lowerCamelCase_ = kwargs.pop('feature_extractor' )
lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor
if image_processor is None:
raise ValueError('You need to specify an `image_processor`.' )
if tokenizer is None:
raise ValueError('You need to specify a `tokenizer`.' )
super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
lowerCamelCase_ = self.image_processor
def __call__( self , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = 0 , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = None , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = False , SCREAMING_SNAKE_CASE_ = True , SCREAMING_SNAKE_CASE_ = None , **SCREAMING_SNAKE_CASE_ , ) -> Union[str, Any]:
'''simple docstring'''
if text is None and images is None:
raise ValueError('You have to specify either text or images. Both cannot be none.' )
if text is not None:
lowerCamelCase_ = self.tokenizer(
text=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , stride=SCREAMING_SNAKE_CASE_ , pad_to_multiple_of=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_overflowing_tokens=SCREAMING_SNAKE_CASE_ , return_special_tokens_mask=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , return_length=SCREAMING_SNAKE_CASE_ , verbose=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if images is not None:
lowerCamelCase_ = self.image_processor(
SCREAMING_SNAKE_CASE_ , return_image_mask=SCREAMING_SNAKE_CASE_ , return_codebook_pixels=SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ , )
if text is not None and images is not None:
encoding.update(SCREAMING_SNAKE_CASE_ )
return encoding
elif text is not None:
return encoding
else:
return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Tuple:
'''simple docstring'''
return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
def UpperCamelCase( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Optional[int]:
'''simple docstring'''
return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
@property
def UpperCamelCase( self ) -> List[Any]:
'''simple docstring'''
lowerCamelCase_ = self.tokenizer.model_input_names
lowerCamelCase_ = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
@property
def UpperCamelCase( self ) -> Optional[int]:
'''simple docstring'''
warnings.warn(
'`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE_ , )
return self.image_processor_class
@property
def UpperCamelCase( self ) -> Optional[Any]:
'''simple docstring'''
warnings.warn(
'`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE_ , )
return self.image_processor
| 42 |
"""simple docstring"""
import argparse
import json
import math
import os
import time
import traceback
import zipfile
from collections import Counter
import requests
def _A ( __lowercase , __lowercase=None ):
"""simple docstring"""
lowerCamelCase__ = None
if token is not None:
lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""}
lowerCamelCase__ = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"""
lowerCamelCase__ = requests.get(__lowercase , headers=__lowercase ).json()
lowerCamelCase__ = {}
try:
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
lowerCamelCase__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(__lowercase ):
lowerCamelCase__ = requests.get(url + f"""&page={i + 2}""" , headers=__lowercase ).json()
job_links.update({job["""name"""]: job["""html_url"""] for job in result["""jobs"""]} )
return job_links
except Exception:
print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _A ( __lowercase , __lowercase=None ):
"""simple docstring"""
lowerCamelCase__ = None
if token is not None:
lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""}
lowerCamelCase__ = f"""https://api.github.com/repos/huggingface/transformers/actions/runs/{worflow_run_id}/artifacts?per_page=100"""
lowerCamelCase__ = requests.get(__lowercase , headers=__lowercase ).json()
lowerCamelCase__ = {}
try:
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
lowerCamelCase__ = math.ceil((result["""total_count"""] - 100) / 100 )
for i in range(__lowercase ):
lowerCamelCase__ = requests.get(url + f"""&page={i + 2}""" , headers=__lowercase ).json()
artifacts.update({artifact["""name"""]: artifact["""archive_download_url"""] for artifact in result["""artifacts"""]} )
return artifacts
except Exception:
print(f"""Unknown error, could not fetch links:\n{traceback.format_exc()}""" )
return {}
def _A ( __lowercase , __lowercase , __lowercase , __lowercase ):
"""simple docstring"""
lowerCamelCase__ = None
if token is not None:
lowerCamelCase__ = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"""Bearer {token}"""}
lowerCamelCase__ = requests.get(__lowercase , headers=__lowercase , allow_redirects=__lowercase )
lowerCamelCase__ = result.headers["""Location"""]
lowerCamelCase__ = requests.get(__lowercase , allow_redirects=__lowercase )
lowerCamelCase__ = os.path.join(__lowercase , f"""{artifact_name}.zip""" )
with open(__lowercase , """wb""" ) as fp:
fp.write(response.content )
def _A ( __lowercase , __lowercase=None ):
"""simple docstring"""
lowerCamelCase__ = []
lowerCamelCase__ = []
lowerCamelCase__ = None
with zipfile.ZipFile(__lowercase ) as z:
for filename in z.namelist():
if not os.path.isdir(__lowercase ):
# read the file
if filename in ["failures_line.txt", "summary_short.txt", "job_name.txt"]:
with z.open(__lowercase ) as f:
for line in f:
lowerCamelCase__ = line.decode("""UTF-8""" ).strip()
if filename == "failures_line.txt":
try:
# `error_line` is the place where `error` occurs
lowerCamelCase__ = line[: line.index(""": """ )]
lowerCamelCase__ = line[line.index(""": """ ) + len(""": """ ) :]
errors.append([error_line, error] )
except Exception:
# skip un-related lines
pass
elif filename == "summary_short.txt" and line.startswith("""FAILED """ ):
# `test` is the test method that failed
lowerCamelCase__ = line[len("""FAILED """ ) :]
failed_tests.append(__lowercase )
elif filename == "job_name.txt":
lowerCamelCase__ = line
if len(__lowercase ) != len(__lowercase ):
raise ValueError(
f"""`errors` and `failed_tests` should have the same number of elements. Got {len(__lowercase )} for `errors` """
f"""and {len(__lowercase )} for `failed_tests` instead. The test reports in {artifact_zip_path} have some"""
""" problem.""" )
lowerCamelCase__ = None
if job_name and job_links:
lowerCamelCase__ = job_links.get(__lowercase , __lowercase )
# A list with elements of the form (line of error, error, failed test)
lowerCamelCase__ = [x + [y] + [job_link] for x, y in zip(__lowercase , __lowercase )]
return result
def _A ( __lowercase , __lowercase=None ):
"""simple docstring"""
lowerCamelCase__ = []
lowerCamelCase__ = [os.path.join(__lowercase , __lowercase ) for p in os.listdir(__lowercase ) if p.endswith(""".zip""" )]
for p in paths:
errors.extend(get_errors_from_single_artifact(__lowercase , job_links=__lowercase ) )
return errors
def _A ( __lowercase , __lowercase=None ):
"""simple docstring"""
lowerCamelCase__ = Counter()
counter.update([x[1] for x in logs] )
lowerCamelCase__ = counter.most_common()
lowerCamelCase__ = {}
for error, count in counts:
if error_filter is None or error not in error_filter:
lowerCamelCase__ = {"""count""": count, """failed_tests""": [(x[2], x[0]) for x in logs if x[1] == error]}
lowerCamelCase__ = dict(sorted(r.items() , key=lambda __lowercase : item[1]["count"] , reverse=__lowercase ) )
return r
def _A ( __lowercase ):
"""simple docstring"""
lowerCamelCase__ = test.split("""::""" )[0]
if test.startswith("""tests/models/""" ):
lowerCamelCase__ = test.split("""/""" )[2]
else:
lowerCamelCase__ = None
return test
def _A ( __lowercase , __lowercase=None ):
"""simple docstring"""
lowerCamelCase__ = [(x[0], x[1], get_model(x[2] )) for x in logs]
lowerCamelCase__ = [x for x in logs if x[2] is not None]
lowerCamelCase__ = {x[2] for x in logs}
lowerCamelCase__ = {}
for test in tests:
lowerCamelCase__ = Counter()
# count by errors in `test`
counter.update([x[1] for x in logs if x[2] == test] )
lowerCamelCase__ = counter.most_common()
lowerCamelCase__ = {error: count for error, count in counts if (error_filter is None or error not in error_filter)}
lowerCamelCase__ = sum(error_counts.values() )
if n_errors > 0:
lowerCamelCase__ = {"""count""": n_errors, """errors""": error_counts}
lowerCamelCase__ = dict(sorted(r.items() , key=lambda __lowercase : item[1]["count"] , reverse=__lowercase ) )
return r
def _A ( __lowercase ):
"""simple docstring"""
lowerCamelCase__ = """| no. | error | status |"""
lowerCamelCase__ = """|-:|:-|:-|"""
lowerCamelCase__ = [header, sep]
for error in reduced_by_error:
lowerCamelCase__ = reduced_by_error[error]["""count"""]
lowerCamelCase__ = f"""| {count} | {error[:100]} | |"""
lines.append(__lowercase )
return "\n".join(__lowercase )
def _A ( __lowercase ):
"""simple docstring"""
lowerCamelCase__ = """| model | no. of errors | major error | count |"""
lowerCamelCase__ = """|-:|-:|-:|-:|"""
lowerCamelCase__ = [header, sep]
for model in reduced_by_model:
lowerCamelCase__ = reduced_by_model[model]["""count"""]
lowerCamelCase__ , lowerCamelCase__ = list(reduced_by_model[model]["""errors"""].items() )[0]
lowerCamelCase__ = f"""| {model} | {count} | {error[:60]} | {_count} |"""
lines.append(__lowercase )
return "\n".join(__lowercase )
if __name__ == "__main__":
__magic_name__ = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
parser.add_argument(
"""--output_dir""",
type=str,
required=True,
help="""Where to store the downloaded artifacts and other result files.""",
)
parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""")
__magic_name__ = parser.parse_args()
os.makedirs(args.output_dir, exist_ok=True)
__magic_name__ = get_job_links(args.workflow_run_id, token=args.token)
__magic_name__ = {}
# To deal with `workflow_call` event, where a job name is the combination of the job names in the caller and callee.
# For example, `PyTorch 1.11 / Model tests (models/albert, single-gpu)`.
if _job_links:
for k, v in _job_links.items():
# This is how GitHub actions combine job names.
if " / " in k:
__magic_name__ = k.find(""" / """)
__magic_name__ = k[index + len(""" / """) :]
__magic_name__ = v
with open(os.path.join(args.output_dir, """job_links.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(job_links, fp, ensure_ascii=False, indent=4)
__magic_name__ = get_artifacts_links(args.workflow_run_id, token=args.token)
with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(artifacts, fp, ensure_ascii=False, indent=4)
for idx, (name, url) in enumerate(artifacts.items()):
download_artifact(name, url, args.output_dir, args.token)
# Be gentle to GitHub
time.sleep(1)
__magic_name__ = get_all_errors(args.output_dir, job_links=job_links)
# `e[1]` is the error
__magic_name__ = Counter()
counter.update([e[1] for e in errors])
# print the top 30 most common test errors
__magic_name__ = counter.most_common(30)
for item in most_common:
print(item)
with open(os.path.join(args.output_dir, """errors.json"""), """w""", encoding="""UTF-8""") as fp:
json.dump(errors, fp, ensure_ascii=False, indent=4)
__magic_name__ = reduce_by_error(errors)
__magic_name__ = reduce_by_model(errors)
__magic_name__ = make_github_table(reduced_by_error)
__magic_name__ = make_github_table_per_model(reduced_by_model)
with open(os.path.join(args.output_dir, """reduced_by_error.txt"""), """w""", encoding="""UTF-8""") as fp:
fp.write(sa)
with open(os.path.join(args.output_dir, """reduced_by_model.txt"""), """w""", encoding="""UTF-8""") as fp:
fp.write(sa)
| 129 | 0 |
"""simple docstring"""
import collections
import os
import re
from pathlib import Path
UpperCAmelCase = "src/transformers"
# Matches is_xxx_available()
UpperCAmelCase = re.compile(r"is\_([a-z_]*)_available()")
# Catches a one-line _import_struct = {xxx}
UpperCAmelCase = re.compile(r"^_import_structure\s+=\s+\{([^\}]+)\}")
# Catches a line with a key-values pattern: "bla": ["foo", "bar"]
UpperCAmelCase = re.compile(r"\s+\"\S*\":\s+\[([^\]]*)\]")
# Catches a line if not is_foo_available
UpperCAmelCase = re.compile(r"^\s*if\s+not\s+is\_[a-z_]*\_available\(\)")
# Catches a line _import_struct["bla"].append("foo")
UpperCAmelCase = re.compile(r"^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)")
# Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"]
UpperCAmelCase = re.compile(r"^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]")
# Catches a line with an object between quotes and a comma: "MyModel",
UpperCAmelCase = re.compile(r"^\s+\"([^\"]+)\",")
# Catches a line with objects between brackets only: ["foo", "bar"],
UpperCAmelCase = re.compile(r"^\s+\[([^\]]+)\]")
# Catches a line with from foo import bar, bla, boo
UpperCAmelCase = re.compile(r"\s+from\s+\S*\s+import\s+([^\(\s].*)\n")
# Catches a line with try:
UpperCAmelCase = re.compile(r"^\s*try:")
# Catches a line with else:
UpperCAmelCase = re.compile(r"^\s*else:")
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[int]:
'''simple docstring'''
if _re_test_backend.search(__lowerCAmelCase ) is None:
return None
lowercase_ = [b[0] for b in _re_backend.findall(__lowerCAmelCase )]
backends.sort()
return "_and_".join(__lowerCAmelCase )
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Optional[Any]:
'''simple docstring'''
with open(__lowerCAmelCase , """r""" , encoding="""utf-8""" , newline="""\n""" ) as f:
lowercase_ = f.readlines()
lowercase_ = 0
while line_index < len(__lowerCAmelCase ) and not lines[line_index].startswith("""_import_structure = {""" ):
line_index += 1
# If this is a traditional init, just return.
if line_index >= len(__lowerCAmelCase ):
return None
# First grab the objects without a specific backend in _import_structure
lowercase_ = []
while not lines[line_index].startswith("""if TYPE_CHECKING""" ) and find_backend(lines[line_index] ) is None:
lowercase_ = lines[line_index]
# If we have everything on a single line, let's deal with it.
if _re_one_line_import_struct.search(__lowerCAmelCase ):
lowercase_ = _re_one_line_import_struct.search(__lowerCAmelCase ).groups()[0]
lowercase_ = re.findall(R"""\[([^\]]+)\]""" , __lowerCAmelCase )
for imp in imports:
objects.extend([obj[1:-1] for obj in imp.split(""", """ )] )
line_index += 1
continue
lowercase_ = _re_import_struct_key_value.search(__lowerCAmelCase )
if single_line_import_search is not None:
lowercase_ = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(""", """ ) if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
line_index += 1
lowercase_ = {"""none""": objects}
# Let's continue with backend-specific objects in _import_structure
while not lines[line_index].startswith("""if TYPE_CHECKING""" ):
# If the line is an if not is_backend_available, we grab all objects associated.
lowercase_ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowercase_ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowercase_ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 4 ):
lowercase_ = lines[line_index]
if _re_import_struct_add_one.search(__lowerCAmelCase ) is not None:
objects.append(_re_import_struct_add_one.search(__lowerCAmelCase ).groups()[0] )
elif _re_import_struct_add_many.search(__lowerCAmelCase ) is not None:
lowercase_ = _re_import_struct_add_many.search(__lowerCAmelCase ).groups()[0].split(""", """ )
lowercase_ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif _re_between_brackets.search(__lowerCAmelCase ) is not None:
lowercase_ = _re_between_brackets.search(__lowerCAmelCase ).groups()[0].split(""", """ )
lowercase_ = [obj[1:-1] for obj in imports if len(__lowerCAmelCase ) > 0]
objects.extend(__lowerCAmelCase )
elif _re_quote_object.search(__lowerCAmelCase ) is not None:
objects.append(_re_quote_object.search(__lowerCAmelCase ).groups()[0] )
elif line.startswith(""" """ * 8 + """\"""" ):
objects.append(line[9:-3] )
elif line.startswith(""" """ * 12 + """\"""" ):
objects.append(line[13:-3] )
line_index += 1
lowercase_ = objects
else:
line_index += 1
# At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend
lowercase_ = []
while (
line_index < len(__lowerCAmelCase )
and find_backend(lines[line_index] ) is None
and not lines[line_index].startswith("""else""" )
):
lowercase_ = lines[line_index]
lowercase_ = _re_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 8 ):
objects.append(line[8:-2] )
line_index += 1
lowercase_ = {"""none""": objects}
# Let's continue with backend-specific objects
while line_index < len(__lowerCAmelCase ):
# If the line is an if is_backend_available, we grab all objects associated.
lowercase_ = find_backend(lines[line_index] )
# Check if the backend declaration is inside a try block:
if _re_try.search(lines[line_index - 1] ) is None:
lowercase_ = None
if backend is not None:
line_index += 1
# Scroll until we hit the else block of try-except-else
while _re_else.search(lines[line_index] ) is None:
line_index += 1
line_index += 1
lowercase_ = []
# Until we unindent, add backend objects to the list
while len(lines[line_index] ) <= 1 or lines[line_index].startswith(""" """ * 8 ):
lowercase_ = lines[line_index]
lowercase_ = _re_import.search(__lowerCAmelCase )
if single_line_import_search is not None:
objects.extend(single_line_import_search.groups()[0].split(""", """ ) )
elif line.startswith(""" """ * 12 ):
objects.append(line[12:-2] )
line_index += 1
lowercase_ = objects
else:
line_index += 1
return import_dict_objects, type_hint_objects
def _SCREAMING_SNAKE_CASE (__lowerCAmelCase , __lowerCAmelCase ) -> Union[str, Any]:
'''simple docstring'''
def find_duplicates(__lowerCAmelCase ):
return [k for k, v in collections.Counter(__lowerCAmelCase ).items() if v > 1]
if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ):
return ["Both sides of the init do not have the same backends!"]
lowercase_ = []
for key in import_dict_objects.keys():
lowercase_ = find_duplicates(import_dict_objects[key] )
if duplicate_imports:
errors.append(F'''Duplicate _import_structure definitions for: {duplicate_imports}''' )
lowercase_ = find_duplicates(type_hint_objects[key] )
if duplicate_type_hints:
errors.append(F'''Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}''' )
if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ):
lowercase_ = """base imports""" if key == """none""" else F'''{key} backend'''
errors.append(F'''Differences for {name}:''' )
for a in type_hint_objects[key]:
if a not in import_dict_objects[key]:
errors.append(F''' {a} in TYPE_HINT but not in _import_structure.''' )
for a in import_dict_objects[key]:
if a not in type_hint_objects[key]:
errors.append(F''' {a} in _import_structure but not in TYPE_HINT.''' )
return errors
def _SCREAMING_SNAKE_CASE () -> List[Any]:
'''simple docstring'''
lowercase_ = []
for root, _, files in os.walk(__lowerCAmelCase ):
if "__init__.py" in files:
lowercase_ = os.path.join(__lowerCAmelCase , """__init__.py""" )
lowercase_ = parse_init(__lowerCAmelCase )
if objects is not None:
lowercase_ = analyze_results(*__lowerCAmelCase )
if len(__lowerCAmelCase ) > 0:
lowercase_ = F'''Problem in {fname}, both halves do not define the same objects.\n{errors[0]}'''
failures.append("""\n""".join(__lowerCAmelCase ) )
if len(__lowerCAmelCase ) > 0:
raise ValueError("""\n\n""".join(__lowerCAmelCase ) )
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
'''simple docstring'''
lowercase_ = []
for path, directories, files in os.walk(__lowerCAmelCase ):
for folder in directories:
# Ignore private modules
if folder.startswith("""_""" ):
directories.remove(__lowerCAmelCase )
continue
# Ignore leftovers from branches (empty folders apart from pycache)
if len(list((Path(__lowerCAmelCase ) / folder).glob("""*.py""" ) ) ) == 0:
continue
lowercase_ = str((Path(__lowerCAmelCase ) / folder).relative_to(__lowerCAmelCase ) )
lowercase_ = short_path.replace(os.path.sep , """.""" )
submodules.append(__lowerCAmelCase )
for fname in files:
if fname == "__init__.py":
continue
lowercase_ = str((Path(__lowerCAmelCase ) / fname).relative_to(__lowerCAmelCase ) )
lowercase_ = short_path.replace(""".py""" , """""" ).replace(os.path.sep , """.""" )
if len(submodule.split(""".""" ) ) == 1:
submodules.append(__lowerCAmelCase )
return submodules
UpperCAmelCase = [
"convert_pytorch_checkpoint_to_tf2",
"modeling_flax_pytorch_utils",
"models.esm.openfold_utils",
]
def _SCREAMING_SNAKE_CASE () -> Union[str, Any]:
'''simple docstring'''
from transformers.utils import direct_transformers_import
lowercase_ = direct_transformers_import(__lowerCAmelCase )
lowercase_ = set(transformers._import_structure.keys() )
# This contains all the base keys of the _import_structure object defined in the init, but if the user is missing
# some optional dependencies, they may not have all of them. Thus we read the init to read all additions and
# (potentiall re-) add them.
with open(os.path.join(__lowerCAmelCase , """__init__.py""" ) , """r""" ) as f:
lowercase_ = f.read()
import_structure_keys.update(set(re.findall(R"""import_structure\[\"([^\"]*)\"\]""" , __lowerCAmelCase ) ) )
lowercase_ = [
module
for module in get_transformers_submodules()
if module not in IGNORE_SUBMODULES and module not in import_structure_keys
]
if len(__lowerCAmelCase ) > 0:
lowercase_ = """\n""".join(F'''- {module}''' for module in module_not_registered )
raise ValueError(
"""The following submodules are not properly registed in the main init of Transformers:\n"""
F'''{list_of_modules}\n'''
"""Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.""" )
if __name__ == "__main__":
check_all_inits()
check_submodules()
| 705 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
UpperCAmelCase : Optional[Any] = {"configuration_wavlm": ["WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP", "WavLMConfig"]}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
UpperCAmelCase : str = [
"WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST",
"WavLMForAudioFrameClassification",
"WavLMForCTC",
"WavLMForSequenceClassification",
"WavLMForXVector",
"WavLMModel",
"WavLMPreTrainedModel",
]
if TYPE_CHECKING:
from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_wavlm import (
WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST,
WavLMForAudioFrameClassification,
WavLMForCTC,
WavLMForSequenceClassification,
WavLMForXVector,
WavLMModel,
WavLMPreTrainedModel,
)
else:
import sys
UpperCAmelCase : Optional[Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 100 | 0 |
# Author: OMKAR PATHAK, Nwachukwu Chidiebere
# Use a Python dictionary to construct the graph.
from __future__ import annotations
from pprint import pformat
from typing import Generic, TypeVar
a_ :Any = TypeVar('T')
class lowercase ( Generic[T] ):
def __init__( self : Union[str, Any] , _lowercase : bool = True ):
SCREAMING_SNAKE_CASE__ : dict[T, list[T]] = {} # dictionary of lists
SCREAMING_SNAKE_CASE__ : int = directed
def lowercase__ ( self : Optional[Any] , _lowercase : T , _lowercase : T ):
if not self.directed: # For undirected graphs
# if both source vertex and destination vertex are both present in the
# adjacency list, add destination vertex to source vertex list of adjacent
# vertices and add source vertex to destination vertex list of adjacent
# vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_lowercase )
self.adj_list[destination_vertex].append(_lowercase )
# if only source vertex is present in adjacency list, add destination vertex
# to source vertex list of adjacent vertices, then create a new vertex with
# destination vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_lowercase )
SCREAMING_SNAKE_CASE__ : List[str] = [source_vertex]
# if only destination vertex is present in adjacency list, add source vertex
# to destination vertex list of adjacent vertices, then create a new vertex
# with source vertex as key and assign a list containing the source vertex
# as it's first adjacent vertex.
elif destination_vertex in self.adj_list:
self.adj_list[destination_vertex].append(_lowercase )
SCREAMING_SNAKE_CASE__ : List[Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and assign a list
# containing the destination vertex as it's first adjacent vertex also
# create a new vertex with destination vertex as key and assign a list
# containing the source vertex as it's first adjacent vertex.
else:
SCREAMING_SNAKE_CASE__ : List[str] = [destination_vertex]
SCREAMING_SNAKE_CASE__ : str = [source_vertex]
else: # For directed graphs
# if both source vertex and destination vertex are present in adjacency
# list, add destination vertex to source vertex list of adjacent vertices.
if source_vertex in self.adj_list and destination_vertex in self.adj_list:
self.adj_list[source_vertex].append(_lowercase )
# if only source vertex is present in adjacency list, add destination
# vertex to source vertex list of adjacent vertices and create a new vertex
# with destination vertex as key, which has no adjacent vertex
elif source_vertex in self.adj_list:
self.adj_list[source_vertex].append(_lowercase )
SCREAMING_SNAKE_CASE__ : Tuple = []
# if only destination vertex is present in adjacency list, create a new
# vertex with source vertex as key and assign a list containing destination
# vertex as first adjacent vertex
elif destination_vertex in self.adj_list:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = [destination_vertex]
# if both source vertex and destination vertex are not present in adjacency
# list, create a new vertex with source vertex as key and a list containing
# destination vertex as it's first adjacent vertex. Then create a new vertex
# with destination vertex as key, which has no adjacent vertex
else:
SCREAMING_SNAKE_CASE__ : List[Any] = [destination_vertex]
SCREAMING_SNAKE_CASE__ : Any = []
return self
def __repr__( self : Tuple ):
return pformat(self.adj_list )
| 35 |
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import numpy as np
import torch
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput, randn_tensor
from .scheduling_utils import SchedulerMixin
@dataclass
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->UnCLIP
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ):
"""simple docstring"""
lowercase : torch.FloatTensor
lowercase : Optional[torch.FloatTensor] = None
def UpperCAmelCase_ (_lowerCAmelCase : List[Any] , _lowerCAmelCase : List[str]=0.999 , _lowerCAmelCase : str="cosine" , ):
if alpha_transform_type == "cosine":
def alpha_bar_fn(_lowerCAmelCase : Any ):
return math.cos((t + 0.008) / 1.008 * math.pi / 2 ) ** 2
elif alpha_transform_type == "exp":
def alpha_bar_fn(_lowerCAmelCase : Tuple ):
return math.exp(t * -12.0 )
else:
raise ValueError(F'''Unsupported alpha_tranform_type: {alpha_transform_type}''' )
__UpperCamelCase : Dict = []
for i in range(_lowerCAmelCase ):
__UpperCamelCase : Union[str, Any] = i / num_diffusion_timesteps
__UpperCamelCase : Tuple = (i + 1) / num_diffusion_timesteps
betas.append(min(1 - alpha_bar_fn(_lowerCAmelCase ) / alpha_bar_fn(_lowerCAmelCase ) , _lowerCAmelCase ) )
return torch.tensor(_lowerCAmelCase , dtype=torch.floataa )
class SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ):
"""simple docstring"""
@register_to_config
def __init__( self , __UpperCamelCase = 10_00 , __UpperCamelCase = "fixed_small_log" , __UpperCamelCase = True , __UpperCamelCase = 1.0 , __UpperCamelCase = "epsilon" , __UpperCamelCase = "squaredcos_cap_v2" , ) -> Tuple:
'''simple docstring'''
if beta_schedule != "squaredcos_cap_v2":
raise ValueError("UnCLIPScheduler only supports `beta_schedule`: 'squaredcos_cap_v2'" )
__UpperCamelCase : List[str] = betas_for_alpha_bar(__UpperCamelCase )
__UpperCamelCase : Optional[Any] = 1.0 - self.betas
__UpperCamelCase : List[Any] = torch.cumprod(self.alphas , dim=0 )
__UpperCamelCase : Optional[int] = torch.tensor(1.0 )
# standard deviation of the initial noise distribution
__UpperCamelCase : List[str] = 1.0
# setable values
__UpperCamelCase : List[str] = None
__UpperCamelCase : str = torch.from_numpy(np.arange(0 , __UpperCamelCase )[::-1].copy() )
__UpperCamelCase : Union[str, Any] = variance_type
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> torch.FloatTensor:
'''simple docstring'''
return sample
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase = None ) -> Optional[Any]:
'''simple docstring'''
__UpperCamelCase : Any = num_inference_steps
__UpperCamelCase : List[str] = (self.config.num_train_timesteps - 1) / (self.num_inference_steps - 1)
__UpperCamelCase : List[str] = (np.arange(0 , __UpperCamelCase ) * step_ratio).round()[::-1].copy().astype(np.intaa )
__UpperCamelCase : Any = torch.from_numpy(__UpperCamelCase ).to(__UpperCamelCase )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None ) -> Any:
'''simple docstring'''
if prev_timestep is None:
__UpperCamelCase : Union[str, Any] = t - 1
__UpperCamelCase : Union[str, Any] = self.alphas_cumprod[t]
__UpperCamelCase : Optional[int] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__UpperCamelCase : int = 1 - alpha_prod_t
__UpperCamelCase : Union[str, Any] = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__UpperCamelCase : str = self.betas[t]
else:
__UpperCamelCase : Optional[int] = 1 - alpha_prod_t / alpha_prod_t_prev
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
# and sample from it to get previous sample
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
__UpperCamelCase : Union[str, Any] = beta_prod_t_prev / beta_prod_t * beta
if variance_type is None:
__UpperCamelCase : Any = self.config.variance_type
# hacks - were probably added for training stability
if variance_type == "fixed_small_log":
__UpperCamelCase : Dict = torch.log(torch.clamp(__UpperCamelCase , min=1E-20 ) )
__UpperCamelCase : Dict = torch.exp(0.5 * variance )
elif variance_type == "learned_range":
# NOTE difference with DDPM scheduler
__UpperCamelCase : Tuple = variance.log()
__UpperCamelCase : str = beta.log()
__UpperCamelCase : Union[str, Any] = (predicted_variance + 1) / 2
__UpperCamelCase : Union[str, Any] = frac * max_log + (1 - frac) * min_log
return variance
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = None , __UpperCamelCase=None , __UpperCamelCase = True , ) -> Union[UnCLIPSchedulerOutput, Tuple]:
'''simple docstring'''
__UpperCamelCase : Dict = timestep
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type == "learned_range":
__UpperCamelCase , __UpperCamelCase : Optional[Any] = torch.split(__UpperCamelCase , sample.shape[1] , dim=1 )
else:
__UpperCamelCase : Any = None
# 1. compute alphas, betas
if prev_timestep is None:
__UpperCamelCase : List[str] = t - 1
__UpperCamelCase : Optional[int] = self.alphas_cumprod[t]
__UpperCamelCase : List[Any] = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.one
__UpperCamelCase : Tuple = 1 - alpha_prod_t
__UpperCamelCase : Tuple = 1 - alpha_prod_t_prev
if prev_timestep == t - 1:
__UpperCamelCase : Any = self.betas[t]
__UpperCamelCase : Any = self.alphas[t]
else:
__UpperCamelCase : List[Any] = 1 - alpha_prod_t / alpha_prod_t_prev
__UpperCamelCase : Union[str, Any] = 1 - beta
# 2. compute predicted original sample from predicted noise also called
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
if self.config.prediction_type == "epsilon":
__UpperCamelCase : int = (sample - beta_prod_t ** 0.5 * model_output) / alpha_prod_t ** 0.5
elif self.config.prediction_type == "sample":
__UpperCamelCase : Any = model_output
else:
raise ValueError(
f'''prediction_type given as {self.config.prediction_type} must be one of `epsilon` or `sample`'''
" for the UnCLIPScheduler." )
# 3. Clip "predicted x_0"
if self.config.clip_sample:
__UpperCamelCase : Optional[int] = torch.clamp(
__UpperCamelCase , -self.config.clip_sample_range , self.config.clip_sample_range )
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__UpperCamelCase : Dict = (alpha_prod_t_prev ** 0.5 * beta) / beta_prod_t
__UpperCamelCase : List[str] = alpha ** 0.5 * beta_prod_t_prev / beta_prod_t
# 5. Compute predicted previous sample µ_t
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
__UpperCamelCase : List[Any] = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
# 6. Add noise
__UpperCamelCase : int = 0
if t > 0:
__UpperCamelCase : str = randn_tensor(
model_output.shape , dtype=model_output.dtype , generator=__UpperCamelCase , device=model_output.device )
__UpperCamelCase : int = self._get_variance(
__UpperCamelCase , predicted_variance=__UpperCamelCase , prev_timestep=__UpperCamelCase , )
if self.variance_type == "fixed_small_log":
__UpperCamelCase : Any = variance
elif self.variance_type == "learned_range":
__UpperCamelCase : List[Any] = (0.5 * variance).exp()
else:
raise ValueError(
f'''variance_type given as {self.variance_type} must be one of `fixed_small_log` or `learned_range`'''
" for the UnCLIPScheduler." )
__UpperCamelCase : Tuple = variance * variance_noise
__UpperCamelCase : Optional[int] = pred_prev_sample + variance
if not return_dict:
return (pred_prev_sample,)
return UnCLIPSchedulerOutput(prev_sample=__UpperCamelCase , pred_original_sample=__UpperCamelCase )
def __lowerCamelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , ) -> torch.FloatTensor:
'''simple docstring'''
__UpperCamelCase : Union[str, Any] = self.alphas_cumprod.to(device=original_samples.device , dtype=original_samples.dtype )
__UpperCamelCase : Any = timesteps.to(original_samples.device )
__UpperCamelCase : List[Any] = alphas_cumprod[timesteps] ** 0.5
__UpperCamelCase : List[str] = sqrt_alpha_prod.flatten()
while len(sqrt_alpha_prod.shape ) < len(original_samples.shape ):
__UpperCamelCase : List[Any] = sqrt_alpha_prod.unsqueeze(-1 )
__UpperCamelCase : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5
__UpperCamelCase : Union[str, Any] = sqrt_one_minus_alpha_prod.flatten()
while len(sqrt_one_minus_alpha_prod.shape ) < len(original_samples.shape ):
__UpperCamelCase : Tuple = sqrt_one_minus_alpha_prod.unsqueeze(-1 )
__UpperCamelCase : Optional[int] = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
return noisy_samples | 327 | 0 |
import inspect
import jax
import jax.lax as lax
import jax.numpy as jnp
from ..utils import add_start_docstrings
from ..utils.logging import get_logger
__A =get_logger(__name__)
__A =R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n"
class UpperCAmelCase__ :
'''simple docstring'''
@add_start_docstrings(a_ )
def __call__( self : List[Any] , a_ : jnp.ndarray , a_ : jnp.ndarray ):
'''simple docstring'''
raise NotImplementedError(
F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
class UpperCAmelCase__ :
'''simple docstring'''
@add_start_docstrings(a_ )
def __call__( self : Any , a_ : jnp.ndarray , a_ : jnp.ndarray ):
'''simple docstring'''
raise NotImplementedError(
F'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' )
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
@add_start_docstrings(a_ )
def __call__( self : str , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int , **a_ : Tuple ):
'''simple docstring'''
for processor in self:
__UpperCAmelCase : int = inspect.signature(processor.__call__ ).parameters
if len(a_ ) > 3:
if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ):
raise ValueError(
F'Make sure that all the required parameters: {list(function_args.keys() )} for '
F'{processor.__class__} are passed to the logits processor.' )
__UpperCAmelCase : Optional[Any] = processor(a_ , a_ , a_ , **a_ )
else:
__UpperCAmelCase : List[str] = processor(a_ , a_ , a_ )
return scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : int , a_ : float ):
'''simple docstring'''
if not isinstance(a_ , a_ ) or not (temperature > 0):
raise ValueError(F'`temperature` has to be a strictly positive float, but is {temperature}' )
__UpperCAmelCase : Dict = temperature
def __call__( self : Optional[int] , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : Union[str, Any] = scores / self.temperature
return scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : List[Any] , a_ : float , a_ : float = -float('''Inf''' ) , a_ : int = 1 ):
'''simple docstring'''
if not isinstance(a_ , a_ ) or (top_p < 0 or top_p > 1.0):
raise ValueError(F'`top_p` has to be a float > 0 and < 1, but is {top_p}' )
if not isinstance(a_ , a_ ) or (min_tokens_to_keep < 1):
raise ValueError(F'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' )
__UpperCAmelCase : List[Any] = top_p
__UpperCAmelCase : Union[str, Any] = filter_value
__UpperCAmelCase : List[str] = min_tokens_to_keep
def __call__( self : List[str] , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int ):
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Dict = lax.top_k(a_ , scores.shape[-1] )
__UpperCAmelCase : List[str] = jnp.full_like(a_ , self.filter_value )
__UpperCAmelCase : Tuple = jax.nn.softmax(a_ , axis=-1 ).cumsum(axis=-1 )
__UpperCAmelCase : List[str] = cumulative_probs < self.top_p
# include the token that is higher than top_p as well
__UpperCAmelCase : int = jnp.roll(a_ , 1 )
score_mask |= score_mask.at[:, 0].set(a_ )
# min tokens to keep
__UpperCAmelCase : int = score_mask.at[:, : self.min_tokens_to_keep].set(a_ )
__UpperCAmelCase : Optional[int] = jnp.where(a_ , a_ , a_ )
__UpperCAmelCase : Union[str, Any] = jax.lax.sort_key_val(a_ , a_ )[-1]
return next_scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : Dict , a_ : int , a_ : float = -float('''Inf''' ) , a_ : int = 1 ):
'''simple docstring'''
if not isinstance(a_ , a_ ) or top_k <= 0:
raise ValueError(F'`top_k` has to be a strictly positive integer, but is {top_k}' )
__UpperCAmelCase : Union[str, Any] = max(a_ , a_ )
__UpperCAmelCase : Any = filter_value
def __call__( self : Tuple , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int ):
'''simple docstring'''
__UpperCAmelCase , __UpperCAmelCase : Optional[Any] = scores.shape
__UpperCAmelCase : Any = jnp.full(batch_size * vocab_size , self.filter_value )
__UpperCAmelCase : Union[str, Any] = min(self.top_k , scores.shape[-1] ) # Safety check
__UpperCAmelCase , __UpperCAmelCase : Optional[int] = lax.top_k(a_ , a_ )
__UpperCAmelCase : Optional[Any] = jnp.broadcast_to((jnp.arange(a_ ) * vocab_size)[:, None] , (batch_size, topk) ).flatten()
__UpperCAmelCase : str = topk_scores.flatten()
__UpperCAmelCase : Optional[Any] = topk_indices.flatten() + shift
__UpperCAmelCase : Dict = next_scores_flat.at[topk_indices_flat].set(a_ )
__UpperCAmelCase : List[str] = next_scores_flat.reshape(a_ , a_ )
return next_scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : Dict = bos_token_id
def __call__( self : Tuple , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = jnp.full(scores.shape , -float('''inf''' ) )
__UpperCAmelCase : List[str] = 1 - jnp.bool_(cur_len - 1 )
__UpperCAmelCase : str = jnp.where(a_ , new_scores.at[:, self.bos_token_id].set(0 ) , a_ )
return scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : Any , a_ : int , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : Dict = max_length
__UpperCAmelCase : Optional[int] = eos_token_id
def __call__( self : Union[str, Any] , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = jnp.full(scores.shape , -float('''inf''' ) )
__UpperCAmelCase : int = 1 - jnp.bool_(cur_len - self.max_length + 1 )
__UpperCAmelCase : List[Any] = jnp.where(a_ , new_scores.at[:, self.eos_token_id].set(0 ) , a_ )
return scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : str , a_ : int , a_ : int ):
'''simple docstring'''
if not isinstance(a_ , a_ ) or min_length < 0:
raise ValueError(F'`min_length` has to be a positive integer, but is {min_length}' )
if not isinstance(a_ , a_ ) or eos_token_id < 0:
raise ValueError(F'`eos_token_id` has to be a positive integer, but is {eos_token_id}' )
__UpperCAmelCase : List[Any] = min_length
__UpperCAmelCase : Union[str, Any] = eos_token_id
def __call__( self : Union[str, Any] , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : Any = 1 - jnp.clip(cur_len - self.min_length , 0 , 1 )
__UpperCAmelCase : Union[str, Any] = jnp.where(a_ , scores.at[:, self.eos_token_id].set(-float('''inf''' ) ) , a_ )
return scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , a_ : Optional[Any] , a_ : Tuple ):
'''simple docstring'''
__UpperCAmelCase : Optional[int] = list(a_ )
__UpperCAmelCase : Union[str, Any] = begin_index
def __call__( self : List[str] , a_ : int , a_ : Union[str, Any] , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : str = 1 - jnp.bool_(cur_len - self.begin_index )
__UpperCAmelCase : Union[str, Any] = jnp.where(a_ , scores.at[:, self.begin_suppress_tokens].set(-float('''inf''' ) ) , a_ )
return scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : Tuple , a_ : list ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = list(a_ )
def __call__( self : Any , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int ):
'''simple docstring'''
__UpperCAmelCase : List[Any] = scores.at[..., self.suppress_tokens].set(-float('''inf''' ) )
return scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : Optional[int] , a_ : Dict ):
'''simple docstring'''
__UpperCAmelCase : int = dict(a_ )
# Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the
# index of the array corresponds to the index of the token to be forced, for XLA compatibility.
# Indexes without forced tokens will have a negative value.
__UpperCAmelCase : Optional[Any] = jnp.ones((max(force_token_map.keys() ) + 1) , dtype=jnp.intaa ) * -1
for index, token in force_token_map.items():
if token is not None:
__UpperCAmelCase : Any = force_token_array.at[index].set(a_ )
__UpperCAmelCase : Optional[int] = jnp.intaa(a_ )
def __call__( self : Optional[int] , a_ : jnp.ndarray , a_ : jnp.ndarray , a_ : int ):
'''simple docstring'''
def _force_token(a_ : Dict ):
__UpperCAmelCase : Any = scores.shape[0]
__UpperCAmelCase : List[str] = self.force_token_array[generation_idx]
__UpperCAmelCase : Union[str, Any] = jnp.ones_like(a_ , dtype=scores.dtype ) * -float('''inf''' )
__UpperCAmelCase : Optional[Any] = jnp.zeros((batch_size, 1) , dtype=scores.dtype )
__UpperCAmelCase : int = lax.dynamic_update_slice(a_ , a_ , (0, current_token) )
return new_scores
__UpperCAmelCase : str = lax.cond(
cur_len >= self.force_token_array.shape[0] , lambda: scores , lambda: lax.cond(
self.force_token_array[cur_len] >= 0 , lambda: _force_token(a_ ) , lambda: scores , ) , )
return scores
class UpperCAmelCase__ ( __UpperCamelCase ):
'''simple docstring'''
def __init__( self : Dict , a_ : List[Any] , a_ : str , a_ : List[str] ):
'''simple docstring'''
__UpperCAmelCase : Optional[Any] = generate_config.eos_token_id
__UpperCAmelCase : int = generate_config.no_timestamps_token_id
__UpperCAmelCase : Optional[int] = generate_config.no_timestamps_token_id + 1
__UpperCAmelCase : str = decoder_input_length + 1
if generate_config.is_multilingual:
# room for language token and task token
self.begin_index += 2
if hasattr(a_ , '''max_initial_timestamp_index''' ):
__UpperCAmelCase : Dict = generate_config.max_initial_timestamp_index
else:
__UpperCAmelCase : List[Any] = model_config.vocab_size
if self.max_initial_timestamp_index is None:
__UpperCAmelCase : Optional[int] = model_config.vocab_size
def __call__( self : Optional[Any] , a_ : Dict , a_ : List[Any] , a_ : List[str] ):
'''simple docstring'''
__UpperCAmelCase : int = scores.at[:, self.no_timestamps_token_id].set(-float('''inf''' ) )
def handle_pairs(a_ : List[str] , a_ : str ):
__UpperCAmelCase : List[str] = jnp.where((cur_len - self.begin_index) >= 1 , a_ , a_ )
__UpperCAmelCase : int = jnp.where(
input_ids_k[cur_len - 1] >= self.timestamp_begin , True and last_was_timestamp , a_ , )
__UpperCAmelCase : Any = jnp.where((cur_len - self.begin_index) < 2 , a_ , a_ )
__UpperCAmelCase : Any = jnp.where(
input_ids_k[cur_len - 2] >= self.timestamp_begin , a_ , a_ , )
return jnp.where(
a_ , jnp.where(
penultimate_was_timestamp > 0 , scores_k.at[self.timestamp_begin :].set(-float('''inf''' ) ) , scores_k.at[: self.eos_token_id].set(-float('''inf''' ) ) , ) , a_ , )
__UpperCAmelCase : List[Any] = jax.vmap(a_ )(a_ , a_ )
__UpperCAmelCase : List[str] = jnp.where(cur_len == self.begin_index , a_ , a_ )
__UpperCAmelCase : Tuple = jnp.where(
self.max_initial_timestamp_index is not None , True and apply_max_initial_timestamp , a_ , )
__UpperCAmelCase : Any = self.timestamp_begin + self.max_initial_timestamp_index
__UpperCAmelCase : Optional[int] = jnp.where(
a_ , scores.at[:, last_allowed + 1 :].set(-float('''inf''' ) ) , a_ , )
# if sum of probability over timestamps is above any other token, sample timestamp
__UpperCAmelCase : str = jax.nn.log_softmax(a_ , axis=-1 )
def handle_cumulative_probs(a_ : Any , a_ : Union[str, Any] ):
__UpperCAmelCase : Tuple = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] , axis=-1 )
__UpperCAmelCase : Any = jnp.max(logprobs_k[: self.timestamp_begin] )
return jnp.where(
timestamp_logprob > max_text_token_logprob , scores_k.at[: self.timestamp_begin].set(-float('''inf''' ) ) , a_ , )
__UpperCAmelCase : Union[str, Any] = jax.vmap(a_ )(a_ , a_ )
return scores
| 241 |
def a ( _UpperCAmelCase : list[int] , _UpperCAmelCase : list[int] ):
'''simple docstring'''
__UpperCAmelCase : Dict = len(_UpperCAmelCase )
print('''The following activities are selected:''' )
# The first activity is always selected
__UpperCAmelCase : str = 0
print(_UpperCAmelCase , end=''',''' )
# Consider rest of the activities
for j in range(_UpperCAmelCase ):
# If this activity has start time greater than
# or equal to the finish time of previously
# selected activity, then select it
if start[j] >= finish[i]:
print(_UpperCAmelCase , end=''',''' )
__UpperCAmelCase : int = j
if __name__ == "__main__":
import doctest
doctest.testmod()
__A =[1, 3, 0, 5, 8, 5]
__A =[2, 4, 6, 7, 9, 9]
print_max_activities(start, finish)
| 241 | 1 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def __lowercase( UpperCAmelCase__ ):
"""simple docstring"""
return {key.lstrip("-" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def __lowercase( ):
"""simple docstring"""
lowerCamelCase = ArgumentParser(
"HuggingFace Datasets CLI tool" , usage="datasets-cli <command> [<args>]" , allow_abbrev=UpperCAmelCase__ )
lowerCamelCase = parser.add_subparsers(help="datasets-cli command helpers" )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(UpperCAmelCase__ )
EnvironmentCommand.register_subcommand(UpperCAmelCase__ )
TestCommand.register_subcommand(UpperCAmelCase__ )
RunBeamCommand.register_subcommand(UpperCAmelCase__ )
DummyDataCommand.register_subcommand(UpperCAmelCase__ )
# Parse args
lowerCamelCase , lowerCamelCase = parser.parse_known_args()
if not hasattr(UpperCAmelCase__ , "func" ):
parser.print_help()
exit(1 )
lowerCamelCase = parse_unknown_args(UpperCAmelCase__ )
# Run
lowerCamelCase = args.func(UpperCAmelCase__ , **UpperCAmelCase__ )
service.run()
if __name__ == "__main__":
main() | 623 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward
from ...modeling_outputs import (
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import logging
from .configuration_regnet import RegNetConfig
a_ : Optional[int] = logging.get_logger(__name__)
# General docstring
a_ : List[str] = 'RegNetConfig'
# Base docstring
a_ : Union[str, Any] = 'facebook/regnet-y-040'
a_ : Optional[Any] = [1, 1_0_8_8, 7, 7]
# Image classification docstring
a_ : Dict = 'facebook/regnet-y-040'
a_ : List[Any] = 'tabby, tabby cat'
a_ : Union[str, Any] = [
'facebook/regnet-y-040',
# See all regnet models at https://huggingface.co/models?filter=regnet
]
class lowerCamelCase__ ( nn.Module):
"""simple docstring"""
def __init__(self , __a , __a , __a = 3 , __a = 1 , __a = 1 , __a = "relu" , ):
'''simple docstring'''
super().__init__()
lowerCamelCase = nn.Convad(
__a , __a , kernel_size=__a , stride=__a , padding=kernel_size // 2 , groups=__a , bias=__a , )
lowerCamelCase = nn.BatchNormad(__a )
lowerCamelCase = ACTaFN[activation] if activation is not None else nn.Identity()
def _a (self , __a ):
'''simple docstring'''
lowerCamelCase = self.convolution(__a )
lowerCamelCase = self.normalization(__a )
lowerCamelCase = self.activation(__a )
return hidden_state
class lowerCamelCase__ ( nn.Module):
"""simple docstring"""
def __init__(self , __a ):
'''simple docstring'''
super().__init__()
lowerCamelCase = RegNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act )
lowerCamelCase = config.num_channels
def _a (self , __a ):
'''simple docstring'''
lowerCamelCase = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"Make sure that the channel dimension of the pixel values match with the one set in the configuration." )
lowerCamelCase = self.embedder(__a )
return hidden_state
class lowerCamelCase__ ( nn.Module):
"""simple docstring"""
def __init__(self , __a , __a , __a = 2 ):
'''simple docstring'''
super().__init__()
lowerCamelCase = nn.Convad(__a , __a , kernel_size=1 , stride=__a , bias=__a )
lowerCamelCase = nn.BatchNormad(__a )
def _a (self , __a ):
'''simple docstring'''
lowerCamelCase = self.convolution(__a )
lowerCamelCase = self.normalization(__a )
return hidden_state
class lowerCamelCase__ ( nn.Module):
"""simple docstring"""
def __init__(self , __a , __a ):
'''simple docstring'''
super().__init__()
lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
lowerCamelCase = nn.Sequential(
nn.Convad(__a , __a , kernel_size=1 ) , nn.ReLU() , nn.Convad(__a , __a , kernel_size=1 ) , nn.Sigmoid() , )
def _a (self , __a ):
'''simple docstring'''
lowerCamelCase = self.pooler(__a )
lowerCamelCase = self.attention(__a )
lowerCamelCase = hidden_state * attention
return hidden_state
class lowerCamelCase__ ( nn.Module):
"""simple docstring"""
def __init__(self , __a , __a , __a , __a = 1 ):
'''simple docstring'''
super().__init__()
lowerCamelCase = in_channels != out_channels or stride != 1
lowerCamelCase = max(1 , out_channels // config.groups_width )
lowerCamelCase = (
RegNetShortCut(__a , __a , stride=__a ) if should_apply_shortcut else nn.Identity()
)
lowerCamelCase = nn.Sequential(
RegNetConvLayer(__a , __a , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__a , __a , stride=__a , groups=__a , activation=config.hidden_act ) , RegNetConvLayer(__a , __a , kernel_size=1 , activation=__a ) , )
lowerCamelCase = ACTaFN[config.hidden_act]
def _a (self , __a ):
'''simple docstring'''
lowerCamelCase = hidden_state
lowerCamelCase = self.layer(__a )
lowerCamelCase = self.shortcut(__a )
hidden_state += residual
lowerCamelCase = self.activation(__a )
return hidden_state
class lowerCamelCase__ ( nn.Module):
"""simple docstring"""
def __init__(self , __a , __a , __a , __a = 1 ):
'''simple docstring'''
super().__init__()
lowerCamelCase = in_channels != out_channels or stride != 1
lowerCamelCase = max(1 , out_channels // config.groups_width )
lowerCamelCase = (
RegNetShortCut(__a , __a , stride=__a ) if should_apply_shortcut else nn.Identity()
)
lowerCamelCase = nn.Sequential(
RegNetConvLayer(__a , __a , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(__a , __a , stride=__a , groups=__a , activation=config.hidden_act ) , RegNetSELayer(__a , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(__a , __a , kernel_size=1 , activation=__a ) , )
lowerCamelCase = ACTaFN[config.hidden_act]
def _a (self , __a ):
'''simple docstring'''
lowerCamelCase = hidden_state
lowerCamelCase = self.layer(__a )
lowerCamelCase = self.shortcut(__a )
hidden_state += residual
lowerCamelCase = self.activation(__a )
return hidden_state
class lowerCamelCase__ ( nn.Module):
"""simple docstring"""
def __init__(self , __a , __a , __a , __a = 2 , __a = 2 , ):
'''simple docstring'''
super().__init__()
lowerCamelCase = RegNetXLayer if config.layer_type == "x" else RegNetYLayer
lowerCamelCase = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(
__a , __a , __a , stride=__a , ) , *[layer(__a , __a , __a ) for _ in range(depth - 1 )] , )
def _a (self , __a ):
'''simple docstring'''
lowerCamelCase = self.layers(__a )
return hidden_state
class lowerCamelCase__ ( nn.Module):
"""simple docstring"""
def __init__(self , __a ):
'''simple docstring'''
super().__init__()
lowerCamelCase = nn.ModuleList([] )
# based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input
self.stages.append(
RegNetStage(
__a , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
lowerCamelCase = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(__a , config.depths[1:] ):
self.stages.append(RegNetStage(__a , __a , __a , depth=__a ) )
def _a (self , __a , __a = False , __a = True ):
'''simple docstring'''
lowerCamelCase = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
lowerCamelCase = hidden_states + (hidden_state,)
lowerCamelCase = stage_module(__a )
if output_hidden_states:
lowerCamelCase = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(last_hidden_state=__a , hidden_states=__a )
class lowerCamelCase__ ( UpperCAmelCase_):
"""simple docstring"""
_A = RegNetConfig
_A = 'regnet'
_A = 'pixel_values'
_A = True
def _a (self , __a ):
'''simple docstring'''
if isinstance(__a , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode="fan_out" , nonlinearity="relu" )
elif isinstance(__a , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def _a (self , __a , __a=False ):
'''simple docstring'''
if isinstance(__a , __a ):
lowerCamelCase = value
a_ : Dict = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
a_ : Optional[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
'The bare RegNet model outputting raw features without any specific head on top.' , UpperCAmelCase_ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet
class lowerCamelCase__ ( UpperCAmelCase_):
"""simple docstring"""
def __init__(self , __a ):
'''simple docstring'''
super().__init__(__a )
lowerCamelCase = config
lowerCamelCase = RegNetEmbeddings(__a )
lowerCamelCase = RegNetEncoder(__a )
lowerCamelCase = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__a )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=__a , config_class=_CONFIG_FOR_DOC , modality="vision" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def _a (self , __a , __a = None , __a = None ):
'''simple docstring'''
lowerCamelCase = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase = self.embedder(__a )
lowerCamelCase = self.encoder(
__a , output_hidden_states=__a , return_dict=__a )
lowerCamelCase = encoder_outputs[0]
lowerCamelCase = self.pooler(__a )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=__a , pooler_output=__a , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
'\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , UpperCAmelCase_ , )
# Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet
class lowerCamelCase__ ( UpperCAmelCase_):
"""simple docstring"""
def __init__(self , __a ):
'''simple docstring'''
super().__init__(__a )
lowerCamelCase = config.num_labels
lowerCamelCase = RegNetModel(__a )
# classification head
lowerCamelCase = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(__a )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__a , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def _a (self , __a = None , __a = None , __a = None , __a = None , ):
'''simple docstring'''
lowerCamelCase = return_dict if return_dict is not None else self.config.use_return_dict
lowerCamelCase = self.regnet(__a , output_hidden_states=__a , return_dict=__a )
lowerCamelCase = outputs.pooler_output if return_dict else outputs[1]
lowerCamelCase = self.classifier(__a )
lowerCamelCase = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
lowerCamelCase = "regression"
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
lowerCamelCase = "single_label_classification"
else:
lowerCamelCase = "multi_label_classification"
if self.config.problem_type == "regression":
lowerCamelCase = MSELoss()
if self.num_labels == 1:
lowerCamelCase = loss_fct(logits.squeeze() , labels.squeeze() )
else:
lowerCamelCase = loss_fct(__a , __a )
elif self.config.problem_type == "single_label_classification":
lowerCamelCase = CrossEntropyLoss()
lowerCamelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
lowerCamelCase = BCEWithLogitsLoss()
lowerCamelCase = loss_fct(__a , __a )
if not return_dict:
lowerCamelCase = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=__a , logits=__a , hidden_states=outputs.hidden_states ) | 623 | 1 |
import os
from typing import BinaryIO, Optional, Union
import numpy as np
import pyarrow.parquet as pq
from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config
from ..features.features import FeatureType, _visit
from ..formatting import query_table
from ..packaged_modules import _PACKAGED_DATASETS_MODULES
from ..packaged_modules.parquet.parquet import Parquet
from ..utils import logging
from ..utils.typing import NestedDataStructureLike, PathLike
from .abc import AbstractDatasetReader
def lowerCamelCase ( UpperCAmelCase_ : Features )-> List[Any]:
"""simple docstring"""
a =np.inf
def set_batch_size(UpperCAmelCase_ : FeatureType ) -> None:
nonlocal batch_size
if isinstance(snake_case_ , snake_case_ ):
a =min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS )
elif isinstance(snake_case_ , snake_case_ ):
a =min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS )
elif isinstance(snake_case_ , snake_case_ ) and feature.dtype == "binary":
a =min(snake_case_ , config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS )
_visit(snake_case_ , snake_case_ )
return None if batch_size is np.inf else batch_size
class UpperCAmelCase__ ( UpperCamelCase_ ):
'''simple docstring'''
def __init__( self , _lowerCAmelCase , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = None , _lowerCAmelCase = False , _lowerCAmelCase = False , _lowerCAmelCase = None , **_lowerCAmelCase , ):
super().__init__(
__A , split=__A , features=__A , cache_dir=__A , keep_in_memory=__A , streaming=__A , num_proc=__A , **__A , )
a =path_or_paths if isinstance(__A , __A ) else {self.split: path_or_paths}
a =_PACKAGED_DATASETS_MODULES["parquet"][1]
a =Parquet(
cache_dir=__A , data_files=__A , features=__A , hash=__A , **__A , )
def lowerCAmelCase__ ( self ):
# Build iterable dataset
if self.streaming:
a =self.builder.as_streaming_dataset(split=self.split )
# Build regular (map-style) dataset
else:
a =None
a =None
a =None
a =None
self.builder.download_and_prepare(
download_config=__A , download_mode=__A , verification_mode=__A , base_path=__A , num_proc=self.num_proc , )
a =self.builder.as_dataset(
split=self.split , verification_mode=__A , in_memory=self.keep_in_memory )
return dataset
class UpperCAmelCase__ :
'''simple docstring'''
def __init__( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = None , **_lowerCAmelCase , ):
a =dataset
a =path_or_buf
a =batch_size or get_writer_batch_size(dataset.features )
a =parquet_writer_kwargs
def lowerCAmelCase__ ( self ):
a =self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE
if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ):
with open(self.path_or_buf , """wb+""" ) as buffer:
a =self._write(file_obj=__A , batch_size=__A , **self.parquet_writer_kwargs )
else:
a =self._write(file_obj=self.path_or_buf , batch_size=__A , **self.parquet_writer_kwargs )
return written
def lowerCAmelCase__ ( self , _lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ):
a =0
a =parquet_writer_kwargs.pop("""path_or_buf""" , __A )
a =self.dataset.features.arrow_schema
a =pq.ParquetWriter(__A , schema=__A , **__A )
for offset in logging.tqdm(
range(0 , len(self.dataset ) , __A ) , unit="""ba""" , disable=not logging.is_progress_bar_enabled() , desc="""Creating parquet from Arrow format""" , ):
a =query_table(
table=self.dataset._data , key=slice(__A , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , )
writer.write_table(__A )
written += batch.nbytes
writer.close()
return written
| 703 |
from typing import TYPE_CHECKING
from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
_lowerCamelCase = {
'''configuration_trajectory_transformer''': [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''',
'''TrajectoryTransformerConfig''',
],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
_lowerCamelCase = [
'''TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''',
'''TrajectoryTransformerModel''',
'''TrajectoryTransformerPreTrainedModel''',
'''load_tf_weights_in_trajectory_transformer''',
]
if TYPE_CHECKING:
from .configuration_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
TrajectoryTransformerConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_trajectory_transformer import (
TRAJECTORY_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
TrajectoryTransformerModel,
TrajectoryTransformerPreTrainedModel,
load_tf_weights_in_trajectory_transformer,
)
else:
import sys
_lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
| 321 | 0 |
"""simple docstring"""
import gc
import unittest
from diffusers import FlaxDPMSolverMultistepScheduler, FlaxStableDiffusionPipeline
from diffusers.utils import is_flax_available, slow
from diffusers.utils.testing_utils import require_flax
if is_flax_available():
import jax
import jax.numpy as jnp
from flax.jax_utils import replicate
from flax.training.common_utils import shard
@slow
@require_flax
class lowerCAmelCase_ (unittest.TestCase ):
"""simple docstring"""
def __magic_name__ (self ) -> Dict:
"""simple docstring"""
super().tearDown()
gc.collect()
def __magic_name__ (self ) -> Optional[int]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : int = FlaxStableDiffusionPipeline.from_pretrained(
"""stabilityai/stable-diffusion-2""" , revision="""bf16""" , dtype=jnp.bfloataa , )
SCREAMING_SNAKE_CASE__ : Any = '''A painting of a squirrel eating a burger'''
SCREAMING_SNAKE_CASE__ : List[Any] = jax.device_count()
SCREAMING_SNAKE_CASE__ : Optional[Any] = num_samples * [prompt]
SCREAMING_SNAKE_CASE__ : Optional[Any] = sd_pipe.prepare_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : List[str] = replicate(_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Dict = shard(_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Dict = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ : Optional[Any] = jax.random.split(_lowerCamelCase , jax.device_count() )
SCREAMING_SNAKE_CASE__ : Dict = sd_pipe(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_inference_steps=25 , jit=_lowerCamelCase )[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
SCREAMING_SNAKE_CASE__ : List[str] = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = images[0, 2_53:2_56, 2_53:2_56, -1]
SCREAMING_SNAKE_CASE__ : List[Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
SCREAMING_SNAKE_CASE__ : str = jnp.array([0.4238, 0.4414, 0.4395, 0.4453, 0.4629, 0.4590, 0.4531, 0.45508, 0.4512] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
def __magic_name__ (self ) -> List[str]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ : Optional[int] = '''stabilityai/stable-diffusion-2'''
SCREAMING_SNAKE_CASE__ : Dict = FlaxDPMSolverMultistepScheduler.from_pretrained(_lowerCamelCase , subfolder="""scheduler""" )
SCREAMING_SNAKE_CASE__ : str = FlaxStableDiffusionPipeline.from_pretrained(
_lowerCamelCase , scheduler=_lowerCamelCase , revision="""bf16""" , dtype=jnp.bfloataa , )
SCREAMING_SNAKE_CASE__ : Optional[int] = scheduler_params
SCREAMING_SNAKE_CASE__ : List[str] = '''A painting of a squirrel eating a burger'''
SCREAMING_SNAKE_CASE__ : Tuple = jax.device_count()
SCREAMING_SNAKE_CASE__ : List[str] = num_samples * [prompt]
SCREAMING_SNAKE_CASE__ : List[Any] = sd_pipe.prepare_inputs(_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = replicate(_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Tuple = shard(_lowerCamelCase )
SCREAMING_SNAKE_CASE__ : Tuple = jax.random.PRNGKey(0 )
SCREAMING_SNAKE_CASE__ : str = jax.random.split(_lowerCamelCase , jax.device_count() )
SCREAMING_SNAKE_CASE__ : List[str] = sd_pipe(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , num_inference_steps=25 , jit=_lowerCamelCase )[0]
assert images.shape == (jax.device_count(), 1, 7_68, 7_68, 3)
SCREAMING_SNAKE_CASE__ : int = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] )
SCREAMING_SNAKE_CASE__ : List[str] = images[0, 2_53:2_56, 2_53:2_56, -1]
SCREAMING_SNAKE_CASE__ : Union[str, Any] = jnp.asarray(jax.device_get(image_slice.flatten() ) )
SCREAMING_SNAKE_CASE__ : int = jnp.array([0.4336, 0.42969, 0.4453, 0.4199, 0.4297, 0.4531, 0.4434, 0.4434, 0.4297] )
print(F'''output_slice: {output_slice}''' )
assert jnp.abs(output_slice - expected_slice ).max() < 1E-2
| 223 |
import secrets
from random import shuffle
from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation
def __lowerCamelCase ( UpperCAmelCase_ : int = 8 ):
"""simple docstring"""
a :Optional[int] = ascii_letters + digits + punctuation
return "".join(secrets.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) )
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ):
"""simple docstring"""
i -= len(UpperCAmelCase_ )
a :Tuple = i // 3
a :int = i % 3
# chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) +
# random_number(digits, i / 3) + random_characters(punctuation, i / 3)
a :Union[str, Any] = (
chars_incl
+ random(UpperCAmelCase_ , quotient + remainder )
+ random(UpperCAmelCase_ , UpperCAmelCase_ )
+ random(UpperCAmelCase_ , UpperCAmelCase_ )
)
a :Dict = list(UpperCAmelCase_ )
shuffle(UpperCAmelCase_ )
return "".join(UpperCAmelCase_ )
# random is a generalised function for letters, characters and numbers
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int ):
"""simple docstring"""
return "".join(secrets.choice(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ) )
def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Tuple ):
"""simple docstring"""
pass # Put your code here...
def __lowerCamelCase ( UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : str ):
"""simple docstring"""
pass # Put your code here...
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : Optional[int] ):
"""simple docstring"""
pass # Put your code here...
def __lowerCamelCase ( UpperCAmelCase_ : str , UpperCAmelCase_ : int = 8 ):
"""simple docstring"""
if len(UpperCAmelCase_ ) < min_length:
# Your Password must be at least 8 characters long
return False
a :Dict = any(char in ascii_uppercase for char in password )
a :Optional[int] = any(char in ascii_lowercase for char in password )
a :Tuple = any(char in digits for char in password )
a :Any = any(char in punctuation for char in password )
return upper and lower and num and spec_char
# Passwords should contain UPPERCASE, lowerase
# numbers, and special characters
def __lowerCamelCase ( ):
"""simple docstring"""
a :int = int(input('''Please indicate the max length of your password: ''' ).strip() )
a :Union[str, Any] = input(
'''Please indicate the characters that must be in your password: ''' ).strip()
print('''Password generated:''' , password_generator(UpperCAmelCase_ ) )
print(
'''Alternative Password generated:''' , alternative_password_generator(UpperCAmelCase_ , UpperCAmelCase_ ) , )
print('''[If you are thinking of using this passsword, You better save it.]''' )
if __name__ == "__main__":
main()
| 445 | 0 |
"""simple docstring"""
def lowercase ( UpperCamelCase : int ):
"""simple docstring"""
assert (
isinstance(UpperCamelCase , UpperCamelCase ) and number_of_steps > 0
), F'''number_of_steps needs to be positive integer, your input {number_of_steps}'''
if number_of_steps == 1:
return 1
A__ , A__ : str =1, 1
for _ in range(number_of_steps - 1 ):
A__ , A__ : Dict =current + previous, current
return current
if __name__ == "__main__":
import doctest
doctest.testmod()
| 595 | """simple docstring"""
import copy
import inspect
import unittest
import numpy as np
from huggingface_hub import hf_hub_download
from transformers import TimesformerConfig
from transformers.models.auto import get_values
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import (
MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING,
TimesformerForVideoClassification,
TimesformerModel,
)
from transformers.models.timesformer.modeling_timesformer import TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from transformers import VideoMAEImageProcessor
class __lowerCAmelCase :
'''simple docstring'''
def __init__( self : int , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[str]=13 , UpperCamelCase__ : Optional[Any]=10 , UpperCamelCase__ : int=3 , UpperCamelCase__ : int=2 , UpperCamelCase__ : List[str]=2 , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Union[str, Any]=32 , UpperCamelCase__ : Dict=5 , UpperCamelCase__ : Optional[int]=4 , UpperCamelCase__ : Any=37 , UpperCamelCase__ : Optional[Any]="gelu" , UpperCamelCase__ : Any=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Any=10 , UpperCamelCase__ : Union[str, Any]=0.02 , UpperCamelCase__ : int="divided_space_time" , UpperCamelCase__ : Tuple=None , ):
A__ : str =parent
A__ : str =batch_size
A__ : Any =image_size
A__ : Union[str, Any] =num_channels
A__ : str =patch_size
A__ : Union[str, Any] =num_frames
A__ : Any =is_training
A__ : Optional[int] =use_labels
A__ : Optional[int] =hidden_size
A__ : Union[str, Any] =num_hidden_layers
A__ : List[str] =num_attention_heads
A__ : Tuple =intermediate_size
A__ : List[Any] =hidden_act
A__ : str =hidden_dropout_prob
A__ : Optional[Any] =attention_probs_dropout_prob
A__ : Dict =attention_type
A__ : str =initializer_range
A__ : str =scope
A__ : int =num_labels
# in TimeSformer, the number of spatial tokens equals num_frames * num_patches per frame + 1 CLS token
A__ : Optional[Any] =(image_size // patch_size) ** 2
A__ : List[Any] =(num_frames) * self.num_patches_per_frame + 1
def _UpperCAmelCase ( self : str ):
A__ : Dict =floats_tensor(
[self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] )
A__ : List[Any] =None
if self.use_labels:
A__ : List[str] =ids_tensor([self.batch_size] , self.num_labels )
A__ : List[Any] =self.get_config()
return config, pixel_values, labels
def _UpperCAmelCase ( self : Tuple ):
A__ : Tuple =TimesformerConfig(
image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , attention_type=self.attention_type , )
A__ : Tuple =self.num_labels
return config
def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ):
A__ : Union[str, Any] =TimesformerModel(config=UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
A__ : Union[str, Any] =model(UpperCamelCase__ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def _UpperCAmelCase ( self : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Union[str, Any] ):
A__ : Union[str, Any] =TimesformerForVideoClassification(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
A__ : int =model(UpperCamelCase__ )
# verify the logits shape
A__ : Optional[int] =torch.Size((self.batch_size, self.num_labels) )
self.parent.assertEqual(result.logits.shape , UpperCamelCase__ )
def _UpperCAmelCase ( self : Optional[int] ):
A__ : int =self.prepare_config_and_inputs()
A__ , A__ , A__ : Tuple =config_and_inputs
A__ : int ={"pixel_values": pixel_values}
return config, inputs_dict
@require_torch
class __lowerCAmelCase ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase):
'''simple docstring'''
__magic_name__ : Any = (TimesformerModel, TimesformerForVideoClassification) if is_torch_available() else ()
__magic_name__ : Optional[Any] = (
{"""feature-extraction""": TimesformerModel, """video-classification""": TimesformerForVideoClassification}
if is_torch_available()
else {}
)
__magic_name__ : int = False
__magic_name__ : Optional[Any] = False
__magic_name__ : int = False
__magic_name__ : Tuple = False
def _UpperCAmelCase ( self : List[str] ):
A__ : Optional[Any] =TimesformerModelTester(self )
A__ : int =ConfigTester(
self , config_class=UpperCamelCase__ , has_text_modality=UpperCamelCase__ , hidden_size=37 )
def _UpperCAmelCase ( self : str , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[str]=False ):
A__ : str =copy.deepcopy(UpperCamelCase__ )
if return_labels:
if model_class in get_values(UpperCamelCase__ ):
A__ : List[str] =torch.zeros(
self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase__ )
return inputs_dict
def _UpperCAmelCase ( self : Any ):
self.config_tester.run_common_tests()
@unittest.skip(reason="TimeSformer does not use inputs_embeds" )
def _UpperCAmelCase ( self : Union[str, Any] ):
pass
def _UpperCAmelCase ( self : Tuple ):
A__ , A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ : Dict =model_class(UpperCamelCase__ )
self.assertIsInstance(model.get_input_embeddings() , (nn.Module) )
A__ : Any =model.get_output_embeddings()
self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) )
def _UpperCAmelCase ( self : Union[str, Any] ):
A__ , A__ : Dict =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ : Optional[int] =model_class(UpperCamelCase__ )
A__ : Dict =inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
A__ : Any =[*signature.parameters.keys()]
A__ : Union[str, Any] =["pixel_values"]
self.assertListEqual(arg_names[:1] , UpperCamelCase__ )
def _UpperCAmelCase ( self : Optional[Any] ):
A__ : int =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCamelCase__ )
def _UpperCAmelCase ( self : List[Any] ):
A__ : str =self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_video_classification(*UpperCamelCase__ )
@slow
def _UpperCAmelCase ( self : Any ):
for model_name in TIMESFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
A__ : Dict =TimesformerModel.from_pretrained(UpperCamelCase__ )
self.assertIsNotNone(UpperCamelCase__ )
def _UpperCAmelCase ( self : Dict ):
if not self.has_attentions:
pass
else:
A__ , A__ : Any =self.model_tester.prepare_config_and_inputs_for_common()
A__ : Optional[Any] =True
for model_class in self.all_model_classes:
A__ : Tuple =self.model_tester.seq_length
A__ : Optional[int] =self.model_tester.num_frames
A__ : List[Any] =True
A__ : Optional[Any] =False
A__ : List[Any] =True
A__ : Optional[Any] =model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
with torch.no_grad():
A__ : Optional[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) )
A__ : Tuple =outputs.attentions
self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers )
# check that output_attentions also work using config
del inputs_dict["output_attentions"]
A__ : Any =True
A__ : int =model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
with torch.no_grad():
A__ : Optional[Any] =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) )
A__ : str =outputs.attentions
self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
A__ : int =len(UpperCamelCase__ )
# Check attention is always last and order is fine
A__ : List[Any] =True
A__ : Optional[Any] =True
A__ : Optional[Any] =model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
with torch.no_grad():
A__ : Any =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) )
self.assertEqual(out_len + 1 , len(UpperCamelCase__ ) )
A__ : Optional[int] =outputs.attentions
self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers )
# attentions has shape (batch_size x num_frames) x num_heads x (num_patches per frame + 1) x (num_patches per frame + 1)
self.assertListEqual(
list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len // num_frames + 1, seq_len // num_frames + 1] , )
def _UpperCAmelCase ( self : Any ):
def check_hidden_states_output(UpperCamelCase__ : Any , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str ):
A__ : Any =model_class(UpperCamelCase__ )
model.to(UpperCamelCase__ )
model.eval()
with torch.no_grad():
A__ : int =model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) )
A__ : Optional[Any] =outputs.hidden_states
A__ : Optional[int] =self.model_tester.num_hidden_layers + 1
self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ )
A__ : List[Any] =self.model_tester.seq_length
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , )
A__ , A__ : Any =self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
A__ : Any =True
check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
A__ : Optional[int] =True
check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
def lowercase ( ):
"""simple docstring"""
A__ : Any =hf_hub_download(
repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" )
A__ : Union[str, Any] =np.load(UpperCamelCase )
return list(UpperCamelCase )
@require_torch
@require_vision
class __lowerCAmelCase ( unittest.TestCase):
'''simple docstring'''
@cached_property
def _UpperCAmelCase ( self : List[Any] ):
# logits were tested with a different mean and std, so we use the same here
return (
VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] )
if is_vision_available()
else None
)
@slow
def _UpperCAmelCase ( self : List[Any] ):
A__ : Any =TimesformerForVideoClassification.from_pretrained("facebook/timesformer-base-finetuned-k400" ).to(
UpperCamelCase__ )
A__ : Dict =self.default_image_processor
A__ : Tuple =prepare_video()
A__ : Dict =image_processor(video[:8] , return_tensors="pt" ).to(UpperCamelCase__ )
# forward pass
with torch.no_grad():
A__ : Optional[int] =model(**UpperCamelCase__ )
# verify the logits
A__ : Optional[Any] =torch.Size((1, 400) )
self.assertEqual(outputs.logits.shape , UpperCamelCase__ )
A__ : Dict =torch.tensor([-0.3016, -0.7713, -0.4205] ).to(UpperCamelCase__ )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1E-4 ) )
| 595 | 1 |
from dataclasses import dataclass
from typing import Dict, Optional, Union
import torch
import torch.nn.functional as F
from torch import nn
from ..configuration_utils import ConfigMixin, register_to_config
from ..utils import BaseOutput
from .attention import BasicTransformerBlock
from .attention_processor import AttentionProcessor, AttnProcessor
from .embeddings import TimestepEmbedding, Timesteps
from .modeling_utils import ModelMixin
@dataclass
class lowercase ( a ):
lowercase__ : torch.FloatTensor
class lowercase ( a , a ):
@register_to_config
def __init__( self : Union[str, Any] , _UpperCamelCase : int = 32 , _UpperCamelCase : int = 64 , _UpperCamelCase : int = 20 , _UpperCamelCase : int = 768 , _UpperCamelCase : Optional[int]=77 , _UpperCamelCase : Dict=4 , _UpperCamelCase : float = 0.0 , _UpperCamelCase : str = "silu" , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = None , _UpperCamelCase : Optional[str] = "linear" , _UpperCamelCase : Optional[str] = "prd" , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , _UpperCamelCase : Optional[int] = None , ) -> Any:
'''simple docstring'''
super().__init__()
SCREAMING_SNAKE_CASE = num_attention_heads
SCREAMING_SNAKE_CASE = attention_head_dim
SCREAMING_SNAKE_CASE = num_attention_heads * attention_head_dim
SCREAMING_SNAKE_CASE = additional_embeddings
SCREAMING_SNAKE_CASE = time_embed_dim or inner_dim
SCREAMING_SNAKE_CASE = embedding_proj_dim or embedding_dim
SCREAMING_SNAKE_CASE = clip_embed_dim or embedding_dim
SCREAMING_SNAKE_CASE = Timesteps(_UpperCamelCase , _UpperCamelCase , 0 )
SCREAMING_SNAKE_CASE = TimestepEmbedding(_UpperCamelCase , _UpperCamelCase , out_dim=_UpperCamelCase , act_fn=_UpperCamelCase )
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCamelCase , _UpperCamelCase )
if embedding_proj_norm_type is None:
SCREAMING_SNAKE_CASE = None
elif embedding_proj_norm_type == "layer":
SCREAMING_SNAKE_CASE = nn.LayerNorm(_UpperCamelCase )
else:
raise ValueError(F"unsupported embedding_proj_norm_type: {embedding_proj_norm_type}" )
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCamelCase , _UpperCamelCase )
if encoder_hid_proj_type is None:
SCREAMING_SNAKE_CASE = None
elif encoder_hid_proj_type == "linear":
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCamelCase , _UpperCamelCase )
else:
raise ValueError(F"unsupported encoder_hid_proj_type: {encoder_hid_proj_type}" )
SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _UpperCamelCase ) )
if added_emb_type == "prd":
SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , 1 , _UpperCamelCase ) )
elif added_emb_type is None:
SCREAMING_SNAKE_CASE = None
else:
raise ValueError(
F"`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `'prd'` or `None`." )
SCREAMING_SNAKE_CASE = nn.ModuleList(
[
BasicTransformerBlock(
_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , dropout=_UpperCamelCase , activation_fn="gelu" , attention_bias=_UpperCamelCase , )
for d in range(_UpperCamelCase )
] )
if norm_in_type == "layer":
SCREAMING_SNAKE_CASE = nn.LayerNorm(_UpperCamelCase )
elif norm_in_type is None:
SCREAMING_SNAKE_CASE = None
else:
raise ValueError(F"Unsupported norm_in_type: {norm_in_type}." )
SCREAMING_SNAKE_CASE = nn.LayerNorm(_UpperCamelCase )
SCREAMING_SNAKE_CASE = nn.Linear(_UpperCamelCase , _UpperCamelCase )
SCREAMING_SNAKE_CASE = torch.full(
[num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -1_0_0_0_0.0 )
causal_attention_mask.triu_(1 )
SCREAMING_SNAKE_CASE = causal_attention_mask[None, ...]
self.register_buffer("causal_attention_mask" , _UpperCamelCase , persistent=_UpperCamelCase )
SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , _UpperCamelCase ) )
SCREAMING_SNAKE_CASE = nn.Parameter(torch.zeros(1 , _UpperCamelCase ) )
@property
# Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors
def __snake_case( self : int ) -> Dict[str, AttentionProcessor]:
'''simple docstring'''
SCREAMING_SNAKE_CASE = {}
def fn_recursive_add_processors(_UpperCamelCase : str , _UpperCamelCase : torch.nn.Module , _UpperCamelCase : Dict[str, AttentionProcessor] ):
if hasattr(_UpperCamelCase , "set_processor" ):
SCREAMING_SNAKE_CASE = module.processor
for sub_name, child in module.named_children():
fn_recursive_add_processors(F"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase )
return processors
for name, module in self.named_children():
fn_recursive_add_processors(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
return processors
def __snake_case( self : Any , _UpperCamelCase : Union[AttentionProcessor, Dict[str, AttentionProcessor]] ) -> List[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE = len(self.attn_processors.keys() )
if isinstance(_UpperCamelCase , _UpperCamelCase ) and len(_UpperCamelCase ) != count:
raise ValueError(
F"A dict of processors was passed, but the number of processors {len(_UpperCamelCase )} does not match the"
F" number of attention layers: {count}. Please make sure to pass {count} processor classes." )
def fn_recursive_attn_processor(_UpperCamelCase : str , _UpperCamelCase : torch.nn.Module , _UpperCamelCase : int ):
if hasattr(_UpperCamelCase , "set_processor" ):
if not isinstance(_UpperCamelCase , _UpperCamelCase ):
module.set_processor(_UpperCamelCase )
else:
module.set_processor(processor.pop(F"{name}.processor" ) )
for sub_name, child in module.named_children():
fn_recursive_attn_processor(F"{name}.{sub_name}" , _UpperCamelCase , _UpperCamelCase )
for name, module in self.named_children():
fn_recursive_attn_processor(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase )
def __snake_case( self : List[str] ) -> Tuple:
'''simple docstring'''
self.set_attn_processor(AttnProcessor() )
def __snake_case( self : int , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Union[torch.Tensor, float, int] , _UpperCamelCase : torch.FloatTensor , _UpperCamelCase : Optional[torch.FloatTensor] = None , _UpperCamelCase : Optional[torch.BoolTensor] = None , _UpperCamelCase : bool = True , ) -> Optional[Any]:
'''simple docstring'''
SCREAMING_SNAKE_CASE = hidden_states.shape[0]
SCREAMING_SNAKE_CASE = timestep
if not torch.is_tensor(_UpperCamelCase ):
SCREAMING_SNAKE_CASE = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device )
elif torch.is_tensor(_UpperCamelCase ) and len(timesteps.shape ) == 0:
SCREAMING_SNAKE_CASE = timesteps[None].to(hidden_states.device )
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
SCREAMING_SNAKE_CASE = timesteps * torch.ones(_UpperCamelCase , dtype=timesteps.dtype , device=timesteps.device )
SCREAMING_SNAKE_CASE = self.time_proj(_UpperCamelCase )
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might be fp16, so we need to cast here.
SCREAMING_SNAKE_CASE = timesteps_projected.to(dtype=self.dtype )
SCREAMING_SNAKE_CASE = self.time_embedding(_UpperCamelCase )
if self.embedding_proj_norm is not None:
SCREAMING_SNAKE_CASE = self.embedding_proj_norm(_UpperCamelCase )
SCREAMING_SNAKE_CASE = self.embedding_proj(_UpperCamelCase )
if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None:
SCREAMING_SNAKE_CASE = self.encoder_hidden_states_proj(_UpperCamelCase )
elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None:
raise ValueError("`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set" )
SCREAMING_SNAKE_CASE = self.proj_in(_UpperCamelCase )
SCREAMING_SNAKE_CASE = self.positional_embedding.to(hidden_states.dtype )
SCREAMING_SNAKE_CASE = []
SCREAMING_SNAKE_CASE = 0
if encoder_hidden_states is not None:
additional_embeds.append(_UpperCamelCase )
additional_embeddings_len += encoder_hidden_states.shape[1]
if len(proj_embeddings.shape ) == 2:
SCREAMING_SNAKE_CASE = proj_embeddings[:, None, :]
if len(hidden_states.shape ) == 2:
SCREAMING_SNAKE_CASE = hidden_states[:, None, :]
SCREAMING_SNAKE_CASE = additional_embeds + [
proj_embeddings,
time_embeddings[:, None, :],
hidden_states,
]
if self.prd_embedding is not None:
SCREAMING_SNAKE_CASE = self.prd_embedding.to(hidden_states.dtype ).expand(_UpperCamelCase , -1 , -1 )
additional_embeds.append(_UpperCamelCase )
SCREAMING_SNAKE_CASE = torch.cat(
_UpperCamelCase , dim=1 , )
# Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens
SCREAMING_SNAKE_CASE = additional_embeddings_len + proj_embeddings.shape[1] + 1
if positional_embeddings.shape[1] < hidden_states.shape[1]:
SCREAMING_SNAKE_CASE = F.pad(
_UpperCamelCase , (
0,
0,
additional_embeddings_len,
self.prd_embedding.shape[1] if self.prd_embedding is not None else 0,
) , value=0.0 , )
SCREAMING_SNAKE_CASE = hidden_states + positional_embeddings
if attention_mask is not None:
SCREAMING_SNAKE_CASE = (1 - attention_mask.to(hidden_states.dtype )) * -1_0_0_0_0.0
SCREAMING_SNAKE_CASE = F.pad(_UpperCamelCase , (0, self.additional_embeddings) , value=0.0 )
SCREAMING_SNAKE_CASE = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype )
SCREAMING_SNAKE_CASE = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 )
if self.norm_in is not None:
SCREAMING_SNAKE_CASE = self.norm_in(_UpperCamelCase )
for block in self.transformer_blocks:
SCREAMING_SNAKE_CASE = block(_UpperCamelCase , attention_mask=_UpperCamelCase )
SCREAMING_SNAKE_CASE = self.norm_out(_UpperCamelCase )
if self.prd_embedding is not None:
SCREAMING_SNAKE_CASE = hidden_states[:, -1]
else:
SCREAMING_SNAKE_CASE = hidden_states[:, additional_embeddings_len:]
SCREAMING_SNAKE_CASE = self.proj_to_clip_embeddings(_UpperCamelCase )
if not return_dict:
return (predicted_image_embedding,)
return PriorTransformerOutput(predicted_image_embedding=_UpperCamelCase )
def __snake_case( self : List[str] , _UpperCamelCase : Any ) -> Any:
'''simple docstring'''
SCREAMING_SNAKE_CASE = (prior_latents * self.clip_std) + self.clip_mean
return prior_latents
| 403 | import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_squeezebert import SqueezeBertTokenizer
_lowerCamelCase : Optional[Any] = logging.get_logger(__name__)
_lowerCamelCase : List[Any] = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''}
_lowerCamelCase : Optional[int] = {
'''vocab_file''': {
'''squeezebert/squeezebert-uncased''': (
'''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/vocab.txt'''
),
'''squeezebert/squeezebert-mnli''': '''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/vocab.txt''',
'''squeezebert/squeezebert-mnli-headless''': (
'''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/vocab.txt'''
),
},
'''tokenizer_file''': {
'''squeezebert/squeezebert-uncased''': (
'''https://huggingface.co/squeezebert/squeezebert-uncased/resolve/main/tokenizer.json'''
),
'''squeezebert/squeezebert-mnli''': (
'''https://huggingface.co/squeezebert/squeezebert-mnli/resolve/main/tokenizer.json'''
),
'''squeezebert/squeezebert-mnli-headless''': (
'''https://huggingface.co/squeezebert/squeezebert-mnli-headless/resolve/main/tokenizer.json'''
),
},
}
_lowerCamelCase : List[str] = {
'''squeezebert/squeezebert-uncased''': 5_12,
'''squeezebert/squeezebert-mnli''': 5_12,
'''squeezebert/squeezebert-mnli-headless''': 5_12,
}
_lowerCamelCase : int = {
'''squeezebert/squeezebert-uncased''': {'''do_lower_case''': True},
'''squeezebert/squeezebert-mnli''': {'''do_lower_case''': True},
'''squeezebert/squeezebert-mnli-headless''': {'''do_lower_case''': True},
}
class lowercase ( a ):
lowercase__ : Optional[Any] = VOCAB_FILES_NAMES
lowercase__ : Dict = PRETRAINED_VOCAB_FILES_MAP
lowercase__ : Optional[Any] = PRETRAINED_INIT_CONFIGURATION
lowercase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowercase__ : str = SqueezeBertTokenizer
def __init__( self : Dict , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Any=None , _UpperCamelCase : Optional[int]=True , _UpperCamelCase : List[Any]="[UNK]" , _UpperCamelCase : List[Any]="[SEP]" , _UpperCamelCase : Tuple="[PAD]" , _UpperCamelCase : int="[CLS]" , _UpperCamelCase : Tuple="[MASK]" , _UpperCamelCase : List[Any]=True , _UpperCamelCase : Optional[Any]=None , **_UpperCamelCase : Any , ) -> Optional[Any]:
'''simple docstring'''
super().__init__(
_UpperCamelCase , tokenizer_file=_UpperCamelCase , do_lower_case=_UpperCamelCase , unk_token=_UpperCamelCase , sep_token=_UpperCamelCase , pad_token=_UpperCamelCase , cls_token=_UpperCamelCase , mask_token=_UpperCamelCase , tokenize_chinese_chars=_UpperCamelCase , strip_accents=_UpperCamelCase , **_UpperCamelCase , )
SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("lowercase" , _UpperCamelCase ) != do_lower_case
or normalizer_state.get("strip_accents" , _UpperCamelCase ) != strip_accents
or normalizer_state.get("handle_chinese_chars" , _UpperCamelCase ) != tokenize_chinese_chars
):
SCREAMING_SNAKE_CASE = getattr(_UpperCamelCase , normalizer_state.pop("type" ) )
SCREAMING_SNAKE_CASE = do_lower_case
SCREAMING_SNAKE_CASE = strip_accents
SCREAMING_SNAKE_CASE = tokenize_chinese_chars
SCREAMING_SNAKE_CASE = normalizer_class(**_UpperCamelCase )
SCREAMING_SNAKE_CASE = do_lower_case
def __snake_case( self : Tuple , _UpperCamelCase : List[str] , _UpperCamelCase : Optional[Any]=None ) -> int:
'''simple docstring'''
SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def __snake_case( self : Union[str, Any] , _UpperCamelCase : List[int] , _UpperCamelCase : Optional[List[int]] = None ) -> List[int]:
'''simple docstring'''
SCREAMING_SNAKE_CASE = [self.sep_token_id]
SCREAMING_SNAKE_CASE = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def __snake_case( self : Optional[Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) -> Tuple[str]:
'''simple docstring'''
SCREAMING_SNAKE_CASE = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase )
return tuple(_UpperCamelCase )
| 403 | 1 |
"""simple docstring"""
from math import acos, sin
from typing import List, Tuple, Union
import numpy as np
import torch
from PIL import Image
from ...models import AutoencoderKL, UNetaDConditionModel
from ...schedulers import DDIMScheduler, DDPMScheduler
from ...utils import randn_tensor
from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput
from .mel import Mel
class _UpperCamelCase ( a__ ):
"""simple docstring"""
snake_case_ = ['vqvae']
def __init__( self : Optional[Any] , snake_case : List[str] , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Tuple , ) -> str:
'''simple docstring'''
super().__init__()
self.register_modules(unet=_A , scheduler=_A , mel=_A , vqvae=_A )
def _UpperCAmelCase ( self : Optional[int] ) -> Any:
'''simple docstring'''
return 50 if isinstance(self.scheduler , _A ) else 1000
@torch.no_grad()
def __call__( self : Tuple , snake_case : Optional[int] = 1 , snake_case : Union[str, Any] = None , snake_case : Dict = None , snake_case : Tuple = 0 , snake_case : Any = 0 , snake_case : List[str] = None , snake_case : str = None , snake_case : List[str] = 0 , snake_case : Dict = 0 , snake_case : int = None , snake_case : Optional[int] = 0 , snake_case : int = None , snake_case : int = None , snake_case : Optional[Any]=True , ) -> Any:
'''simple docstring'''
__magic_name__ : List[str] = steps or self.get_default_steps()
self.scheduler.set_timesteps(_A )
__magic_name__ : Optional[Any] = step_generator or generator
# For backwards compatibility
if type(self.unet.config.sample_size ) == int:
__magic_name__ : Tuple = (self.unet.config.sample_size, self.unet.config.sample_size)
if noise is None:
__magic_name__ : Optional[Any] = randn_tensor(
(
batch_size,
self.unet.config.in_channels,
self.unet.config.sample_size[0],
self.unet.config.sample_size[1],
) , generator=_A , device=self.device , )
__magic_name__ : Dict = noise
__magic_name__ : Optional[Any] = None
if audio_file is not None or raw_audio is not None:
self.mel.load_audio(_A , _A )
__magic_name__ : Union[str, Any] = self.mel.audio_slice_to_image(_A )
__magic_name__ : int = np.frombuffer(input_image.tobytes() , dtype='''uint8''' ).reshape(
(input_image.height, input_image.width) )
__magic_name__ : int = (input_image / 255) * 2 - 1
__magic_name__ : str = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float ).to(self.device )
if self.vqvae is not None:
__magic_name__ : List[Any] = self.vqvae.encode(torch.unsqueeze(_A , 0 ) ).latent_dist.sample(
generator=_A )[0]
__magic_name__ : Tuple = self.vqvae.config.scaling_factor * input_images
if start_step > 0:
__magic_name__ : List[Any] = self.scheduler.add_noise(_A , _A , self.scheduler.timesteps[start_step - 1] )
__magic_name__ : Optional[Any] = (
self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length
)
__magic_name__ : Optional[Any] = int(mask_start_secs * pixels_per_second )
__magic_name__ : Optional[int] = int(mask_end_secs * pixels_per_second )
__magic_name__ : int = self.scheduler.add_noise(_A , _A , torch.tensor(self.scheduler.timesteps[start_step:] ) )
for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:] ) ):
if isinstance(self.unet , _A ):
__magic_name__ : str = self.unet(_A , _A , _A )['sample']
else:
__magic_name__ : Any = self.unet(_A , _A )['sample']
if isinstance(self.scheduler , _A ):
__magic_name__ : Union[str, Any] = self.scheduler.step(
model_output=_A , timestep=_A , sample=_A , eta=_A , generator=_A , )['prev_sample']
else:
__magic_name__ : Any = self.scheduler.step(
model_output=_A , timestep=_A , sample=_A , generator=_A , )['prev_sample']
if mask is not None:
if mask_start > 0:
__magic_name__ : Any = mask[:, step, :, :mask_start]
if mask_end > 0:
__magic_name__ : Optional[Any] = mask[:, step, :, -mask_end:]
if self.vqvae is not None:
# 0.18215 was scaling factor used in training to ensure unit variance
__magic_name__ : Union[str, Any] = 1 / self.vqvae.config.scaling_factor * images
__magic_name__ : Any = self.vqvae.decode(_A )['sample']
__magic_name__ : Any = (images / 2 + 0.5).clamp(0 , 1 )
__magic_name__ : Tuple = images.cpu().permute(0 , 2 , 3 , 1 ).numpy()
__magic_name__ : Any = (images * 255).round().astype('''uint8''' )
__magic_name__ : Any = list(
(Image.fromarray(_[:, :, 0] ) for _ in images)
if images.shape[3] == 1
else (Image.fromarray(_A , mode='''RGB''' ).convert('''L''' ) for _ in images) )
__magic_name__ : Dict = [self.mel.image_to_audio(_A ) for _ in images]
if not return_dict:
return images, (self.mel.get_sample_rate(), audios)
return BaseOutput(**AudioPipelineOutput(np.array(_A )[:, np.newaxis, :] ) , **ImagePipelineOutput(_A ) )
@torch.no_grad()
def _UpperCAmelCase ( self : Optional[Any] , snake_case : Optional[int] , snake_case : Tuple = 50 ) -> Tuple:
'''simple docstring'''
assert isinstance(self.scheduler , _A )
self.scheduler.set_timesteps(_A )
__magic_name__ : Dict = np.array(
[np.frombuffer(image.tobytes() , dtype='''uint8''' ).reshape((1, image.height, image.width) ) for image in images] )
__magic_name__ : Dict = (sample / 255) * 2 - 1
__magic_name__ : List[str] = torch.Tensor(_A ).to(self.device )
for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,) ) ):
__magic_name__ : Tuple = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps
__magic_name__ : Optional[int] = self.scheduler.alphas_cumprod[t]
__magic_name__ : Dict = (
self.scheduler.alphas_cumprod[prev_timestep]
if prev_timestep >= 0
else self.scheduler.final_alpha_cumprod
)
__magic_name__ : Union[str, Any] = 1 - alpha_prod_t
__magic_name__ : Union[str, Any] = self.unet(_A , _A )['sample']
__magic_name__ : Optional[int] = (1 - alpha_prod_t_prev) ** 0.5 * model_output
__magic_name__ : Any = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5)
__magic_name__ : Dict = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output
return sample
@staticmethod
def _UpperCAmelCase ( snake_case : Any , snake_case : Optional[Any] , snake_case : Dict ) -> Optional[int]:
'''simple docstring'''
__magic_name__ : int = acos(torch.dot(torch.flatten(_A ) , torch.flatten(_A ) ) / torch.norm(_A ) / torch.norm(_A ) )
return sin((1 - alpha) * theta ) * xa / sin(_A ) + sin(alpha * theta ) * xa / sin(_A ) | 716 |
"""simple docstring"""
from __future__ import annotations
import unittest
from transformers import MobileBertConfig, is_tf_available
from transformers.models.auto import get_values
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_MODEL_FOR_PRETRAINING_MAPPING,
TFMobileBertForMaskedLM,
TFMobileBertForMultipleChoice,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertModel,
)
@require_tf
class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ):
"""simple docstring"""
snake_case_ = (
(
TFMobileBertModel,
TFMobileBertForMaskedLM,
TFMobileBertForNextSentencePrediction,
TFMobileBertForPreTraining,
TFMobileBertForQuestionAnswering,
TFMobileBertForSequenceClassification,
TFMobileBertForTokenClassification,
TFMobileBertForMultipleChoice,
)
if is_tf_available()
else ()
)
snake_case_ = (
{
'feature-extraction': TFMobileBertModel,
'fill-mask': TFMobileBertForMaskedLM,
'question-answering': TFMobileBertForQuestionAnswering,
'text-classification': TFMobileBertForSequenceClassification,
'token-classification': TFMobileBertForTokenClassification,
'zero-shot': TFMobileBertForSequenceClassification,
}
if is_tf_available()
else {}
)
snake_case_ = False
snake_case_ = False
def _UpperCAmelCase ( self : Dict , snake_case : List[Any] , snake_case : Dict , snake_case : int=False ) -> Tuple:
'''simple docstring'''
__magic_name__ : Optional[int] = super()._prepare_for_class(snake_case , snake_case , return_labels=snake_case )
if return_labels:
if model_class in get_values(snake_case ):
__magic_name__ : int = tf.zeros(self.model_tester.batch_size , dtype=tf.intaa )
return inputs_dict
class _UpperCamelCase ( lowerCamelCase__ ):
"""simple docstring"""
def __init__( self : Tuple , snake_case : Tuple , snake_case : int=13 , snake_case : Any=7 , snake_case : str=True , snake_case : List[Any]=True , snake_case : int=True , snake_case : Any=True , snake_case : List[Any]=99 , snake_case : Any=32 , snake_case : List[str]=32 , snake_case : Union[str, Any]=2 , snake_case : Union[str, Any]=4 , snake_case : List[Any]=37 , snake_case : Tuple="gelu" , snake_case : str=0.1 , snake_case : Dict=0.1 , snake_case : List[Any]=512 , snake_case : Dict=16 , snake_case : int=2 , snake_case : Union[str, Any]=0.02 , snake_case : Optional[Any]=3 , snake_case : int=4 , snake_case : Dict=None , ) -> int:
'''simple docstring'''
__magic_name__ : Dict = parent
__magic_name__ : Dict = batch_size
__magic_name__ : Dict = seq_length
__magic_name__ : Optional[Any] = is_training
__magic_name__ : Union[str, Any] = use_input_mask
__magic_name__ : Optional[Any] = use_token_type_ids
__magic_name__ : Optional[Any] = use_labels
__magic_name__ : Union[str, Any] = vocab_size
__magic_name__ : Dict = hidden_size
__magic_name__ : List[str] = num_hidden_layers
__magic_name__ : Union[str, Any] = num_attention_heads
__magic_name__ : Optional[int] = intermediate_size
__magic_name__ : Dict = hidden_act
__magic_name__ : List[Any] = hidden_dropout_prob
__magic_name__ : Optional[int] = attention_probs_dropout_prob
__magic_name__ : str = max_position_embeddings
__magic_name__ : Union[str, Any] = type_vocab_size
__magic_name__ : List[str] = type_sequence_label_size
__magic_name__ : int = initializer_range
__magic_name__ : int = num_labels
__magic_name__ : Union[str, Any] = num_choices
__magic_name__ : List[Any] = scope
__magic_name__ : str = embedding_size
def _UpperCAmelCase ( self : List[Any] ) -> List[str]:
'''simple docstring'''
__magic_name__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
__magic_name__ : Optional[Any] = None
if self.use_input_mask:
__magic_name__ : Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] )
__magic_name__ : Any = None
if self.use_token_type_ids:
__magic_name__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
__magic_name__ : str = None
__magic_name__ : Tuple = None
__magic_name__ : List[str] = None
if self.use_labels:
__magic_name__ : str = ids_tensor([self.batch_size] , self.type_sequence_label_size )
__magic_name__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
__magic_name__ : List[str] = ids_tensor([self.batch_size] , self.num_choices )
__magic_name__ : Union[str, Any] = MobileBertConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , embedding_size=self.embedding_size , )
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def _UpperCAmelCase ( self : Dict , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : str , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[Any] ) -> str:
'''simple docstring'''
__magic_name__ : Optional[Any] = TFMobileBertModel(config=snake_case )
__magic_name__ : List[str] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ : Dict = model(snake_case )
__magic_name__ : str = [input_ids, input_mask]
__magic_name__ : List[str] = model(snake_case )
__magic_name__ : Tuple = model(snake_case )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def _UpperCAmelCase ( self : Optional[Any] , snake_case : int , snake_case : int , snake_case : Dict , snake_case : List[Any] , snake_case : Optional[Any] , snake_case : Any , snake_case : List[str] ) -> str:
'''simple docstring'''
__magic_name__ : Dict = TFMobileBertForMaskedLM(config=snake_case )
__magic_name__ : Any = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ : Tuple = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def _UpperCAmelCase ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : str , snake_case : Tuple , snake_case : List[str] ) -> Optional[Any]:
'''simple docstring'''
__magic_name__ : Optional[int] = TFMobileBertForNextSentencePrediction(config=snake_case )
__magic_name__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ : str = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) )
def _UpperCAmelCase ( self : Any , snake_case : str , snake_case : List[Any] , snake_case : List[str] , snake_case : Dict , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[Any] ) -> str:
'''simple docstring'''
__magic_name__ : Dict = TFMobileBertForPreTraining(config=snake_case )
__magic_name__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ : Optional[int] = model(snake_case )
self.parent.assertEqual(
result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) )
def _UpperCAmelCase ( self : Optional[int] , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : Optional[int] ) -> Optional[int]:
'''simple docstring'''
__magic_name__ : Union[str, Any] = self.num_labels
__magic_name__ : List[Any] = TFMobileBertForSequenceClassification(config=snake_case )
__magic_name__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ : Dict = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _UpperCAmelCase ( self : Union[str, Any] , snake_case : Any , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Union[str, Any] , snake_case : Any , snake_case : Dict , snake_case : Any ) -> int:
'''simple docstring'''
__magic_name__ : Tuple = self.num_choices
__magic_name__ : Dict = TFMobileBertForMultipleChoice(config=snake_case )
__magic_name__ : Optional[int] = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : str = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : int = tf.tile(tf.expand_dims(snake_case , 1 ) , (1, self.num_choices, 1) )
__magic_name__ : str = {
'''input_ids''': multiple_choice_inputs_ids,
'''attention_mask''': multiple_choice_input_mask,
'''token_type_ids''': multiple_choice_token_type_ids,
}
__magic_name__ : str = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) )
def _UpperCAmelCase ( self : List[Any] , snake_case : Any , snake_case : Dict , snake_case : Dict , snake_case : int , snake_case : Any , snake_case : Dict , snake_case : str ) -> List[Any]:
'''simple docstring'''
__magic_name__ : Tuple = self.num_labels
__magic_name__ : int = TFMobileBertForTokenClassification(config=snake_case )
__magic_name__ : str = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ : List[Any] = model(snake_case )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def _UpperCAmelCase ( self : int , snake_case : Tuple , snake_case : List[Any] , snake_case : Tuple , snake_case : str , snake_case : Optional[int] , snake_case : Tuple , snake_case : List[str] ) -> List[Any]:
'''simple docstring'''
__magic_name__ : int = TFMobileBertForQuestionAnswering(config=snake_case )
__magic_name__ : Union[str, Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids}
__magic_name__ : Any = model(snake_case )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def _UpperCAmelCase ( self : Union[str, Any] ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ : str = self.prepare_config_and_inputs()
(
(
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) , (
__magic_name__
) ,
) : int = config_and_inputs
__magic_name__ : Optional[Any] = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask}
return config, inputs_dict
def _UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ : Optional[int] = TFMobileBertModelTest.TFMobileBertModelTester(self )
__magic_name__ : Tuple = ConfigTester(self , config_class=snake_case , hidden_size=37 )
def _UpperCAmelCase ( self : Any ) -> Optional[Any]:
'''simple docstring'''
self.config_tester.run_common_tests()
def _UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_model(*snake_case )
def _UpperCAmelCase ( self : Tuple ) -> Any:
'''simple docstring'''
__magic_name__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_masked_lm(*snake_case )
def _UpperCAmelCase ( self : Any ) -> List[str]:
'''simple docstring'''
__magic_name__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_multiple_choice(*snake_case )
def _UpperCAmelCase ( self : Optional[int] ) -> List[str]:
'''simple docstring'''
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*snake_case )
def _UpperCAmelCase ( self : List[str] ) -> List[str]:
'''simple docstring'''
__magic_name__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_pretraining(*snake_case )
def _UpperCAmelCase ( self : Any ) -> Any:
'''simple docstring'''
__magic_name__ : Optional[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_question_answering(*snake_case )
def _UpperCAmelCase ( self : List[Any] ) -> int:
'''simple docstring'''
__magic_name__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_sequence_classification(*snake_case )
def _UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ : List[Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_mobilebert_for_token_classification(*snake_case )
@slow
def _UpperCAmelCase ( self : Dict ) -> Tuple:
'''simple docstring'''
for model_name in ["google/mobilebert-uncased"]:
__magic_name__ : str = TFMobileBertModel.from_pretrained(snake_case )
self.assertIsNotNone(snake_case )
@require_tf
class _UpperCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def _UpperCAmelCase ( self : Optional[Any] ) -> Union[str, Any]:
'''simple docstring'''
__magic_name__ : Dict = TFMobileBertForPreTraining.from_pretrained('''google/mobilebert-uncased''' )
__magic_name__ : List[str] = tf.constant([[0, 1, 2, 3, 4, 5]] )
__magic_name__ : List[str] = model(snake_case )[0]
__magic_name__ : Tuple = [1, 6, 3_0522]
self.assertEqual(output.shape , snake_case )
__magic_name__ : Union[str, Any] = tf.constant(
[
[
[-4.591_9547, -9.24_8295, -9.64_5256],
[-6.730_6175, -6.44_0284, -6.605_2837],
[-7.274_3506, -6.784_7915, -6.02_4673],
]
] )
tf.debugging.assert_near(output[:, :3, :3] , snake_case , atol=1e-4 )
| 147 | 0 |
"""simple docstring"""
from collections import OrderedDict
from typing import Mapping
from packaging import version
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices
__magic_name__ : Any = logging.get_logger(__name__)
__magic_name__ : Tuple = {
"""microsoft/resnet-50""": """https://huggingface.co/microsoft/resnet-50/blob/main/config.json""",
}
class lowercase__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__lowerCAmelCase : List[str] = """resnet"""
__lowerCAmelCase : List[Any] = ["""basic""", """bottleneck"""]
def __init__( self , _A=3 , _A=6_4 , _A=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , _A=[3, 4, 6, 3] , _A="bottleneck" , _A="relu" , _A=False , _A=None , _A=None , **_A , ):
'''simple docstring'''
super().__init__(**_A )
if layer_type not in self.layer_types:
raise ValueError(f"""layer_type={layer_type} is not one of {",".join(self.layer_types )}""" )
UpperCamelCase : List[Any] = num_channels
UpperCamelCase : str = embedding_size
UpperCamelCase : List[Any] = hidden_sizes
UpperCamelCase : str = depths
UpperCamelCase : Tuple = layer_type
UpperCamelCase : Tuple = hidden_act
UpperCamelCase : str = downsample_in_first_stage
UpperCamelCase : str = ["""stem"""] + [f"""stage{idx}""" for idx in range(1 , len(_A ) + 1 )]
UpperCamelCase , UpperCamelCase : Union[str, Any] = get_aligned_output_features_output_indices(
out_features=_A , out_indices=_A , stage_names=self.stage_names )
class lowercase__ ( __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
__lowerCAmelCase : Any = version.parse("""1.11""" )
@property
def _a ( self ):
'''simple docstring'''
return OrderedDict(
[
("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}),
] )
@property
def _a ( self ):
'''simple docstring'''
return 1e-3
| 102 |
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING
if is_torch_available():
import torch
from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING
UpperCAmelCase_ = logging.get_logger(__name__)
@add_end_docstrings(_A)
class lowerCamelCase__ ( _A):
"""simple docstring"""
def __init__( self : Optional[int] , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : List[str] ) -> List[str]:
super().__init__(*__lowerCAmelCase , **__lowerCAmelCase )
requires_backends(self , '''vision''' )
self.check_model_type(
TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == '''tf''' else MODEL_FOR_VISION_2_SEQ_MAPPING )
def snake_case_ ( self : Any , __lowerCAmelCase : Dict=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Optional[Any]=None ) -> int:
_A = {}
_A = {}
if prompt is not None:
_A = prompt
if generate_kwargs is not None:
_A = generate_kwargs
if max_new_tokens is not None:
if "generate_kwargs" not in forward_kwargs:
_A = {}
if "max_new_tokens" in forward_kwargs["generate_kwargs"]:
raise ValueError(
'''\'max_new_tokens\' is defined twice, once in \'generate_kwargs\' and once as a direct parameter,'''
''' please use only one''' )
_A = max_new_tokens
return preprocess_params, forward_kwargs, {}
def __call__( self : List[str] , __lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **__lowerCAmelCase : Union[str, Any] ) -> Union[str, Any]:
return super().__call__(__lowerCAmelCase , **__lowerCAmelCase )
def snake_case_ ( self : List[Any] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any]=None ) -> int:
_A = load_image(__lowerCAmelCase )
if prompt is not None:
if not isinstance(__lowerCAmelCase , __lowerCAmelCase ):
raise ValueError(
f'''Received an invalid text input, got - {type(__lowerCAmelCase )} - but expected a single string. '''
'''Note also that one single text can be provided for conditional image to text generation.''' )
_A = self.model.config.model_type
if model_type == "git":
_A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework )
_A = self.tokenizer(text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids
_A = [self.tokenizer.cls_token_id] + input_ids
_A = torch.tensor(__lowerCAmelCase ).unsqueeze(0 )
model_inputs.update({'''input_ids''': input_ids} )
elif model_type == "pix2struct":
_A = self.image_processor(images=__lowerCAmelCase , header_text=__lowerCAmelCase , return_tensors=self.framework )
elif model_type != "vision-encoder-decoder":
# vision-encoder-decoder does not support conditional generation
_A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework )
_A = self.tokenizer(__lowerCAmelCase , return_tensors=self.framework )
model_inputs.update(__lowerCAmelCase )
else:
raise ValueError(f'''Model type {model_type} does not support conditional text generation''' )
else:
_A = self.image_processor(images=__lowerCAmelCase , return_tensors=self.framework )
if self.model.config.model_type == "git" and prompt is None:
_A = None
return model_inputs
def snake_case_ ( self : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Dict=None ) -> str:
# Git model sets `model_inputs["input_ids"] = None` in `preprocess` (when `prompt=None`). In batch model, the
# pipeline will group them into a list of `None`, which fail `_forward`. Avoid this by checking it first.
if (
"input_ids" in model_inputs
and isinstance(model_inputs['''input_ids'''] , __lowerCAmelCase )
and all(x is None for x in model_inputs['''input_ids'''] )
):
_A = None
if generate_kwargs is None:
_A = {}
# FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py`
# parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas
# the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name`
# in the `_prepare_model_inputs` method.
_A = model_inputs.pop(self.model.main_input_name )
_A = self.model.generate(__lowerCAmelCase , **__lowerCAmelCase , **__lowerCAmelCase )
return model_outputs
def snake_case_ ( self : Dict , __lowerCAmelCase : Any ) -> Union[str, Any]:
_A = []
for output_ids in model_outputs:
_A = {
'''generated_text''': self.tokenizer.decode(
__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase , )
}
records.append(__lowerCAmelCase )
return records
| 2 | 0 |
import os
from distutils.util import strtobool
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any:
for e in env_keys:
lowercase__ = int(os.environ.get(_SCREAMING_SNAKE_CASE , -1 ) )
if val >= 0:
return val
return default
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=False ) -> Optional[int]:
lowercase__ = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) )
return strtobool(_SCREAMING_SNAKE_CASE ) == 1 # As its name indicates `strtobool` actually returns an int...
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE="no" ) -> Union[str, Any]:
lowercase__ = os.environ.get(_SCREAMING_SNAKE_CASE , str(_SCREAMING_SNAKE_CASE ) )
return value
| 45 |
import os
import zipfile
import requests
from get_ci_error_statistics import download_artifact, get_artifacts_links
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=7 ) -> List[Any]:
lowercase__ = None
if token is not None:
lowercase__ = {'Accept': 'application/vnd.github+json', 'Authorization': F"""Bearer {token}"""}
# The id of a workflow (not of a workflow run)
lowercase__ = '636036'
lowercase__ = F"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs"""
# On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results
url += F"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}"""
lowercase__ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json()
return result["workflow_runs"]
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
lowercase__ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE )
lowercase__ = None
for workflow_run in workflow_runs:
if workflow_run["status"] == "completed":
lowercase__ = workflow_run['id']
break
return workflow_run_id
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Tuple:
lowercase__ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE )
if workflow_run_id is not None:
lowercase__ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE )
for artifact_name in artifact_names:
if artifact_name in artifacts_links:
lowercase__ = artifacts_links[artifact_name]
download_artifact(
artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE )
def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Dict:
get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )
lowercase__ = {}
for artifact_name in artifact_names:
lowercase__ = os.path.join(_SCREAMING_SNAKE_CASE , F"""{artifact_name}.zip""" )
if os.path.isfile(_SCREAMING_SNAKE_CASE ):
lowercase__ = {}
with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z:
for filename in z.namelist():
if not os.path.isdir(_SCREAMING_SNAKE_CASE ):
# read the file
with z.open(_SCREAMING_SNAKE_CASE ) as f:
lowercase__ = f.read().decode('UTF-8' )
return results
| 45 | 1 |
def SCREAMING_SNAKE_CASE( __UpperCamelCase ) -> bool:
if num < 0:
return False
a__ : int = num
a__ : int = 0
while num > 0:
a__ : Any = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()
| 191 |
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_tf_available,
is_torch_available,
is_vision_available,
)
lowerCamelCase = {
"""configuration_blip""": [
"""BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP""",
"""BlipConfig""",
"""BlipTextConfig""",
"""BlipVisionConfig""",
],
"""processing_blip""": ["""BlipProcessor"""],
}
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = ["""BlipImageProcessor"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""BlipModel""",
"""BlipPreTrainedModel""",
"""BlipForConditionalGeneration""",
"""BlipForQuestionAnswering""",
"""BlipVisionModel""",
"""BlipTextModel""",
"""BlipForImageTextRetrieval""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowerCamelCase = [
"""TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFBlipModel""",
"""TFBlipPreTrainedModel""",
"""TFBlipForConditionalGeneration""",
"""TFBlipForQuestionAnswering""",
"""TFBlipVisionModel""",
"""TFBlipTextModel""",
"""TFBlipForImageTextRetrieval""",
]
if TYPE_CHECKING:
from .configuration_blip import BLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipConfig, BlipTextConfig, BlipVisionConfig
from .processing_blip import BlipProcessor
try:
if not is_vision_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .image_processing_blip import BlipImageProcessor
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_blip import (
BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
BlipForConditionalGeneration,
BlipForImageTextRetrieval,
BlipForQuestionAnswering,
BlipModel,
BlipPreTrainedModel,
BlipTextModel,
BlipVisionModel,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_blip import (
TF_BLIP_PRETRAINED_MODEL_ARCHIVE_LIST,
TFBlipForConditionalGeneration,
TFBlipForImageTextRetrieval,
TFBlipForQuestionAnswering,
TFBlipModel,
TFBlipPreTrainedModel,
TFBlipTextModel,
TFBlipVisionModel,
)
else:
import sys
lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 191 | 1 |
"""simple docstring"""
from math import ceil
def a__ ( SCREAMING_SNAKE_CASE : int = 1_0_0_1 ):
'''simple docstring'''
lowerCAmelCase : int = 1
for i in range(1 , int(ceil(n / 2.0 ) ) ):
lowerCAmelCase : Optional[int] = 2 * i + 1
lowerCAmelCase : Optional[int] = 2 * i
lowerCAmelCase : str = total + 4 * odd**2 - 6 * even
return total
if __name__ == "__main__":
import sys
if len(sys.argv) == 1:
print(solution())
else:
try:
lowerCAmelCase__ = int(sys.argv[1])
print(solution(n))
except ValueError:
print('''Invalid entry - please enter a number''')
| 707 |
"""simple docstring"""
from typing import Any
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self , snake_case__ ):
"""simple docstring"""
lowerCAmelCase : Dict = data
lowerCAmelCase : Any = None
def __repr__( self ):
"""simple docstring"""
return f"""Node({self.data})"""
class SCREAMING_SNAKE_CASE__ :
"""simple docstring"""
def __init__( self ):
"""simple docstring"""
lowerCAmelCase : Tuple = None
def __iter__( self ):
"""simple docstring"""
lowerCAmelCase : Any = self.head
while node:
yield node.data
lowerCAmelCase : Optional[int] = node.next
def __len__( self ):
"""simple docstring"""
return sum(1 for _ in self )
def __repr__( self ):
"""simple docstring"""
return "->".join([str(snake_case__ ) for item in self] )
def __getitem__( self , snake_case__ ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError("list index out of range." )
for i, node in enumerate(self ):
if i == index:
return node
return None
def __setitem__( self , snake_case__ , snake_case__ ):
"""simple docstring"""
if not 0 <= index < len(self ):
raise ValueError("list index out of range." )
lowerCAmelCase : Union[str, Any] = self.head
for _ in range(snake_case__ ):
lowerCAmelCase : int = current.next
lowerCAmelCase : List[str] = data
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
self.insert_nth(len(self ) , snake_case__ )
def lowercase__ ( self , snake_case__ ):
"""simple docstring"""
self.insert_nth(0 , snake_case__ )
def lowercase__ ( self , snake_case__ , snake_case__ ):
"""simple docstring"""
if not 0 <= index <= len(self ):
raise IndexError("list index out of range" )
lowerCAmelCase : Optional[int] = Node(snake_case__ )
if self.head is None:
lowerCAmelCase : Any = new_node
elif index == 0:
lowerCAmelCase : Any = self.head # link new_node to head
lowerCAmelCase : Union[str, Any] = new_node
else:
lowerCAmelCase : List[str] = self.head
for _ in range(index - 1 ):
lowerCAmelCase : int = temp.next
lowerCAmelCase : int = temp.next
lowerCAmelCase : Dict = new_node
def lowercase__ ( self ): # print every node data
"""simple docstring"""
print(self )
def lowercase__ ( self ):
"""simple docstring"""
return self.delete_nth(0 )
def lowercase__ ( self ): # delete from tail
"""simple docstring"""
return self.delete_nth(len(self ) - 1 )
def lowercase__ ( self , snake_case__ = 0 ):
"""simple docstring"""
if not 0 <= index <= len(self ) - 1: # test if index is valid
raise IndexError("List index out of range." )
lowerCAmelCase : List[Any] = self.head # default first node
if index == 0:
lowerCAmelCase : Optional[int] = self.head.next
else:
lowerCAmelCase : List[str] = self.head
for _ in range(index - 1 ):
lowerCAmelCase : Union[str, Any] = temp.next
lowerCAmelCase : Optional[Any] = temp.next
lowerCAmelCase : Any = temp.next.next
return delete_node.data
def lowercase__ ( self ):
"""simple docstring"""
return self.head is None
def lowercase__ ( self ):
"""simple docstring"""
lowerCAmelCase : str = None
lowerCAmelCase : Optional[int] = self.head
while current:
# Store the current node's next node.
lowerCAmelCase : List[Any] = current.next
# Make the current node's next point backwards
lowerCAmelCase : Dict = prev
# Make the previous node be the current node
lowerCAmelCase : List[str] = current
# Make the current node the next node (to progress iteration)
lowerCAmelCase : int = next_node
# Return prev in order to put the head at the end
lowerCAmelCase : Tuple = prev
def a__ ( ):
'''simple docstring'''
lowerCAmelCase : Tuple = LinkedList()
assert linked_list.is_empty() is True
assert str(SCREAMING_SNAKE_CASE ) == ""
try:
linked_list.delete_head()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
for i in range(1_0 ):
assert len(SCREAMING_SNAKE_CASE ) == i
linked_list.insert_nth(SCREAMING_SNAKE_CASE , i + 1 )
assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_1 ) )
linked_list.insert_head(0 )
linked_list.insert_tail(1_1 )
assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(0 , 1_2 ) )
assert linked_list.delete_head() == 0
assert linked_list.delete_nth(9 ) == 1_0
assert linked_list.delete_tail() == 1_1
assert len(SCREAMING_SNAKE_CASE ) == 9
assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(1 , 1_0 ) )
assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True
for i in range(0 , 9 ):
lowerCAmelCase : Optional[Any] = -i
assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True
linked_list.reverse()
assert str(SCREAMING_SNAKE_CASE ) == "->".join(str(SCREAMING_SNAKE_CASE ) for i in range(-8 , 1 ) )
def a__ ( ):
'''simple docstring'''
lowerCAmelCase : List[str] = [
-9,
1_0_0,
Node(7_7_3_4_5_1_1_2 ),
"dlrow olleH",
7,
5_5_5_5,
0,
-192.55_555,
"Hello, world!",
77.9,
Node(1_0 ),
None,
None,
12.20,
]
lowerCAmelCase : List[str] = LinkedList()
for i in test_input:
linked_list.insert_tail(SCREAMING_SNAKE_CASE )
# Check if it's empty or not
assert linked_list.is_empty() is False
assert (
str(SCREAMING_SNAKE_CASE ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->"
"-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the head
lowerCAmelCase : str = linked_list.delete_head()
assert result == -9
assert (
str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None->12.2"
)
# Delete the tail
lowerCAmelCase : Union[str, Any] = linked_list.delete_tail()
assert result == 12.2
assert (
str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None->None"
)
# Delete a node in specific location in linked list
lowerCAmelCase : List[str] = linked_list.delete_nth(1_0 )
assert result is None
assert (
str(SCREAMING_SNAKE_CASE ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->"
"Hello, world!->77.9->Node(10)->None"
)
# Add a Node instance to its head
linked_list.insert_head(Node("Hello again, world!" ) )
assert (
str(SCREAMING_SNAKE_CASE )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None"
)
# Add None to its tail
linked_list.insert_tail(SCREAMING_SNAKE_CASE )
assert (
str(SCREAMING_SNAKE_CASE )
== "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->"
"7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None"
)
# Reverse the linked list
linked_list.reverse()
assert (
str(SCREAMING_SNAKE_CASE )
== "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->"
"7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)"
)
def a__ ( ):
'''simple docstring'''
from doctest import testmod
testmod()
lowerCAmelCase : Optional[Any] = LinkedList()
linked_list.insert_head(input("Inserting 1st at head " ).strip() )
linked_list.insert_head(input("Inserting 2nd at head " ).strip() )
print("\nPrint list:" )
linked_list.print_list()
linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() )
linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() )
print("\nPrint list:" )
linked_list.print_list()
print("\nDelete head" )
linked_list.delete_head()
print("Delete tail" )
linked_list.delete_tail()
print("\nPrint list:" )
linked_list.print_list()
print("\nReverse linked list" )
linked_list.reverse()
print("\nPrint list:" )
linked_list.print_list()
print("\nString representation of linked list:" )
print(SCREAMING_SNAKE_CASE )
print("\nReading/changing Node data using indexing:" )
print(f"""Element at Position 1: {linked_list[1]}""" )
lowerCAmelCase : Any = input("Enter New Value: " ).strip()
print("New list:" )
print(SCREAMING_SNAKE_CASE )
print(f"""length of linked_list is : {len(SCREAMING_SNAKE_CASE )}""" )
if __name__ == "__main__":
main()
| 681 | 0 |
def a_ ( ) -> Optional[Any]:
"""simple docstring"""
for n in range(1 , 1_000_000 ):
yield n * (n + 1) // 2
def a_ ( __magic_name__ ) -> List[Any]:
"""simple docstring"""
snake_case : List[str] = 1
snake_case : int = 2
while i * i <= n:
snake_case : Tuple = 0
while n % i == 0:
n //= i
multiplicity += 1
divisors_count *= multiplicity + 1
i += 1
if n > 1:
divisors_count *= 2
return divisors_count
def a_ ( ) -> Union[str, Any]:
"""simple docstring"""
return next(i for i in triangle_number_generator() if count_divisors(__magic_name__ ) > 500 )
if __name__ == "__main__":
print(solution())
| 598 |
import operator as op
def a_ ( __magic_name__ ) -> Any:
"""simple docstring"""
snake_case : str = []
snake_case : Any = lambda __magic_name__ , __magic_name__ : int(x / y ) # noqa: E731 integer division operation
snake_case : Optional[Any] = {
'''^''': op.pow,
'''*''': op.mul,
'''/''': div,
'''+''': op.add,
'''-''': op.sub,
} # operators & their respective operation
# print table header
print('''Symbol'''.center(8 ) , '''Action'''.center(12 ) , '''Stack''' , sep=''' | ''' )
print('''-''' * (30 + len(__magic_name__ )) )
for x in post_fix:
if x.isdigit(): # if x in digit
stack.append(__magic_name__ ) # append x to stack
# output in tabular format
print(x.rjust(8 ) , ('''push(''' + x + ''')''').ljust(12 ) , ''','''.join(__magic_name__ ) , sep=''' | ''' )
else:
snake_case : Optional[int] = stack.pop() # pop stack
# output in tabular format
print(''''''.rjust(8 ) , ('''pop(''' + b + ''')''').ljust(12 ) , ''','''.join(__magic_name__ ) , sep=''' | ''' )
snake_case : Optional[Any] = stack.pop() # pop stack
# output in tabular format
print(''''''.rjust(8 ) , ('''pop(''' + a + ''')''').ljust(12 ) , ''','''.join(__magic_name__ ) , sep=''' | ''' )
stack.append(
str(opr[x](int(__magic_name__ ) , int(__magic_name__ ) ) ) ) # evaluate the 2 values popped from stack & push result to stack
# output in tabular format
print(
x.rjust(8 ) , ('''push(''' + a + x + b + ''')''').ljust(12 ) , ''','''.join(__magic_name__ ) , sep=''' | ''' , )
return int(stack[0] )
if __name__ == "__main__":
_a : Union[str, Any] = input('\n\nEnter a Postfix Equation (space separated) = ').split(' ')
print('\n\tResult = ', solve(Postfix))
| 598 | 1 |
'''simple docstring'''
from typing import Dict
import numpy as np
from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging
from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException
if is_tf_available():
import tensorflow as tf
from ..tf_utils import stable_softmax
if is_torch_available():
import torch
UpperCAmelCase_ : Any = logging.get_logger(__name__)
@add_end_docstrings(
A , r'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , )
class UpperCAmelCase__ ( A ):
def lowerCamelCase_ ( self : Dict,__A : GenericTensor ):
if self.framework == "tf":
_lowerCamelCase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()
elif self.framework == "pt":
_lowerCamelCase : int = torch.nonzero(input_ids == self.tokenizer.mask_token_id,as_tuple=__A )
else:
raise ValueError("Unsupported framework" )
return masked_index
def lowerCamelCase_ ( self : Dict,__A : GenericTensor ):
_lowerCamelCase : List[Any] = self.get_masked_index(__A )
_lowerCamelCase : List[Any] = np.prod(masked_index.shape )
if numel < 1:
raise PipelineException(
"fill-mask",self.model.base_model_prefix,f'No mask_token ({self.tokenizer.mask_token}) found on the input',)
def lowerCamelCase_ ( self : Optional[Any],__A : GenericTensor ):
if isinstance(__A,__A ):
for model_input in model_inputs:
self._ensure_exactly_one_mask_token(model_input["input_ids"][0] )
else:
for input_ids in model_inputs["input_ids"]:
self._ensure_exactly_one_mask_token(__A )
def lowerCamelCase_ ( self : List[str],__A : Tuple,__A : List[Any]=None,**__A : str ):
if return_tensors is None:
_lowerCamelCase : Optional[int] = self.framework
_lowerCamelCase : List[Any] = self.tokenizer(__A,return_tensors=__A )
self.ensure_exactly_one_mask_token(__A )
return model_inputs
def lowerCamelCase_ ( self : List[Any],__A : Union[str, Any] ):
_lowerCamelCase : Any = self.model(**__A )
_lowerCamelCase : Optional[Any] = model_inputs["input_ids"]
return model_outputs
def lowerCamelCase_ ( self : List[str],__A : int,__A : Optional[Any]=5,__A : int=None ):
# Cap top_k if there are targets
if target_ids is not None and target_ids.shape[0] < top_k:
_lowerCamelCase : str = target_ids.shape[0]
_lowerCamelCase : int = model_outputs["input_ids"][0]
_lowerCamelCase : int = model_outputs["logits"]
if self.framework == "tf":
_lowerCamelCase : Any = tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0]
_lowerCamelCase : List[Any] = outputs.numpy()
_lowerCamelCase : List[str] = outputs[0, masked_index, :]
_lowerCamelCase : Dict = stable_softmax(__A,axis=-1 )
if target_ids is not None:
_lowerCamelCase : Dict = tf.gather_nd(tf.squeeze(__A,0 ),target_ids.reshape(-1,1 ) )
_lowerCamelCase : int = tf.expand_dims(__A,0 )
_lowerCamelCase : Tuple = tf.math.top_k(__A,k=__A )
_lowerCamelCase , _lowerCamelCase : Union[str, Any] = topk.values.numpy(), topk.indices.numpy()
else:
_lowerCamelCase : List[Any] = torch.nonzero(input_ids == self.tokenizer.mask_token_id,as_tuple=__A ).squeeze(-1 )
# Fill mask pipeline supports only one ${mask_token} per sample
_lowerCamelCase : List[str] = outputs[0, masked_index, :]
_lowerCamelCase : Optional[Any] = logits.softmax(dim=-1 )
if target_ids is not None:
_lowerCamelCase : List[Any] = probs[..., target_ids]
_lowerCamelCase , _lowerCamelCase : Optional[int] = probs.topk(__A )
_lowerCamelCase : int = []
_lowerCamelCase : Tuple = values.shape[0] == 1
for i, (_values, _predictions) in enumerate(zip(values.tolist(),predictions.tolist() ) ):
_lowerCamelCase : List[Any] = []
for v, p in zip(_values,_predictions ):
# Copy is important since we're going to modify this array in place
_lowerCamelCase : Optional[Any] = input_ids.numpy().copy()
if target_ids is not None:
_lowerCamelCase : List[str] = target_ids[p].tolist()
_lowerCamelCase : Optional[int] = p
# Filter padding out:
_lowerCamelCase : Any = tokens[np.where(tokens != self.tokenizer.pad_token_id )]
# Originally we skip special tokens to give readable output.
# For multi masks though, the other [MASK] would be removed otherwise
# making the output look odd, so we add them back
_lowerCamelCase : str = self.tokenizer.decode(__A,skip_special_tokens=__A )
_lowerCamelCase : Any = {"score": v, "token": p, "token_str": self.tokenizer.decode([p] ), "sequence": sequence}
row.append(__A )
result.append(__A )
if single_mask:
return result[0]
return result
def lowerCamelCase_ ( self : Optional[Any],__A : Tuple,__A : Optional[Any]=None ):
if isinstance(__A,__A ):
_lowerCamelCase : Tuple = [targets]
try:
_lowerCamelCase : Dict = self.tokenizer.get_vocab()
except Exception:
_lowerCamelCase : Optional[int] = {}
_lowerCamelCase : List[str] = []
for target in targets:
_lowerCamelCase : Dict = vocab.get(__A,__A )
if id_ is None:
_lowerCamelCase : int = self.tokenizer(
__A,add_special_tokens=__A,return_attention_mask=__A,return_token_type_ids=__A,max_length=1,truncation=__A,)["input_ids"]
if len(__A ) == 0:
logger.warning(
f'The specified target token `{target}` does not exist in the model vocabulary. '
"We cannot replace it with anything meaningful, ignoring it" )
continue
_lowerCamelCase : List[str] = input_ids[0]
# XXX: If users encounter this pass
# it becomes pretty slow, so let's make sure
# The warning enables them to fix the input to
# get faster performance.
logger.warning(
f'The specified target token `{target}` does not exist in the model vocabulary. '
f'Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`.' )
target_ids.append(id_ )
_lowerCamelCase : Any = list(set(__A ) )
if len(__A ) == 0:
raise ValueError("At least one target must be provided when passed." )
_lowerCamelCase : List[Any] = np.array(__A )
return target_ids
def lowerCamelCase_ ( self : str,__A : Any=None,__A : int=None ):
_lowerCamelCase : List[str] = {}
if targets is not None:
_lowerCamelCase : Optional[int] = self.get_target_ids(__A,__A )
_lowerCamelCase : Union[str, Any] = target_ids
if top_k is not None:
_lowerCamelCase : Optional[int] = top_k
if self.tokenizer.mask_token_id is None:
raise PipelineException(
"fill-mask",self.model.base_model_prefix,"The tokenizer does not define a `mask_token`." )
return {}, {}, postprocess_params
def __call__( self : int,__A : List[str],*__A : Dict,**__A : List[str] ):
_lowerCamelCase : List[str] = super().__call__(__A,**__A )
if isinstance(__A,__A ) and len(__A ) == 1:
return outputs[0]
return outputs | 11 |
'''simple docstring'''
import os
import time
from dataclasses import dataclass, field
from enum import Enum
from typing import Dict, List, Optional, Union
import torch
from filelock import FileLock
from torch.utils.data import Dataset
from ...models.auto.modeling_auto import MODEL_FOR_QUESTION_ANSWERING_MAPPING
from ...tokenization_utils import PreTrainedTokenizer
from ...utils import logging
from ..processors.squad import SquadFeatures, SquadVaProcessor, SquadVaProcessor, squad_convert_examples_to_features
UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__)
UpperCAmelCase_ : Any = list(MODEL_FOR_QUESTION_ANSWERING_MAPPING.keys())
UpperCAmelCase_ : str = tuple(conf.model_type for conf in MODEL_CONFIG_CLASSES)
@dataclass
class UpperCAmelCase__ :
lowerCAmelCase_ = field(
default=A , metadata={'help': 'Model type selected in the list: ' + ', '.join(A )} )
lowerCAmelCase_ = field(
default=A , metadata={'help': 'The input data dir. Should contain the .json files for the SQuAD task.'} )
lowerCAmelCase_ = field(
default=128 , metadata={
'help': (
'The maximum total input sequence length after tokenization. Sequences longer '
'than this will be truncated, sequences shorter will be padded.'
)
} , )
lowerCAmelCase_ = field(
default=128 , metadata={'help': 'When splitting up a long document into chunks, how much stride to take between chunks.'} , )
lowerCAmelCase_ = field(
default=64 , metadata={
'help': (
'The maximum number of tokens for the question. Questions longer than this will '
'be truncated to this length.'
)
} , )
lowerCAmelCase_ = field(
default=30 , metadata={
'help': (
'The maximum length of an answer that can be generated. This is needed because the start '
'and end predictions are not conditioned on one another.'
)
} , )
lowerCAmelCase_ = field(
default=A , metadata={'help': 'Overwrite the cached training and evaluation sets'} )
lowerCAmelCase_ = field(
default=A , metadata={'help': 'If true, the SQuAD examples contain some that do not have an answer.'} )
lowerCAmelCase_ = field(
default=0.0 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowerCAmelCase_ = field(
default=20 , metadata={'help': 'If null_score - best_non_null is greater than the threshold predict null.'} )
lowerCAmelCase_ = field(
default=0 , metadata={
'help': (
'language id of input for language-specific xlm models (see'
' tokenization_xlm.PRETRAINED_INIT_CONFIGURATION)'
)
} , )
lowerCAmelCase_ = field(default=1 , metadata={'help': 'multiple threads for converting example to features'} )
class UpperCAmelCase__ ( A ):
lowerCAmelCase_ = 'train'
lowerCAmelCase_ = 'dev'
class UpperCAmelCase__ ( A ):
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
lowerCAmelCase_ = 42
def __init__( self : Optional[int],__A : SquadDataTrainingArguments,__A : PreTrainedTokenizer,__A : Optional[int] = None,__A : Union[str, Split] = Split.train,__A : Optional[bool] = False,__A : Optional[str] = None,__A : Optional[str] = "pt",):
_lowerCamelCase : Tuple = args
_lowerCamelCase : List[str] = is_language_sensitive
_lowerCamelCase : Dict = SquadVaProcessor() if args.version_2_with_negative else SquadVaProcessor()
if isinstance(__A,__A ):
try:
_lowerCamelCase : Union[str, Any] = Split[mode]
except KeyError:
raise KeyError("mode is not a valid split name" )
_lowerCamelCase : str = mode
# Load data features from cache or dataset file
_lowerCamelCase : str = "v2" if args.version_2_with_negative else "v1"
_lowerCamelCase : Optional[Any] = os.path.join(
cache_dir if cache_dir is not None else args.data_dir,f'cached_{mode.value}_{tokenizer.__class__.__name__}_{args.max_seq_length}_{version_tag}',)
# Make sure only the first process in distributed training processes the dataset,
# and the others will use the cache.
_lowerCamelCase : Tuple = cached_features_file + ".lock"
with FileLock(__A ):
if os.path.exists(__A ) and not args.overwrite_cache:
_lowerCamelCase : int = time.time()
_lowerCamelCase : int = torch.load(__A )
# Legacy cache files have only features, while new cache files
# will have dataset and examples also.
_lowerCamelCase : Union[str, Any] = self.old_features["features"]
_lowerCamelCase : List[Any] = self.old_features.get("dataset",__A )
_lowerCamelCase : List[Any] = self.old_features.get("examples",__A )
logger.info(
f'Loading features from cached file {cached_features_file} [took %.3f s]',time.time() - start )
if self.dataset is None or self.examples is None:
logger.warning(
f'Deleting cached file {cached_features_file} will allow dataset and examples to be cached in'
" future run" )
else:
if mode == Split.dev:
_lowerCamelCase : Dict = self.processor.get_dev_examples(args.data_dir )
else:
_lowerCamelCase : Dict = self.processor.get_train_examples(args.data_dir )
_lowerCamelCase , _lowerCamelCase : Dict = squad_convert_examples_to_features(
examples=self.examples,tokenizer=__A,max_seq_length=args.max_seq_length,doc_stride=args.doc_stride,max_query_length=args.max_query_length,is_training=mode == Split.train,threads=args.threads,return_dataset=__A,)
_lowerCamelCase : List[Any] = time.time()
torch.save(
{"features": self.features, "dataset": self.dataset, "examples": self.examples},__A,)
# ^ This seems to take a lot of time so I want to investigate why and how we can improve.
logger.info(
f'Saving features into cached file {cached_features_file} [took {time.time() - start:.3f} s]' )
def __len__( self : Optional[Any] ):
return len(self.features )
def __getitem__( self : Tuple,__A : str ):
# Convert to Tensors and build dataset
_lowerCamelCase : List[str] = self.features[i]
_lowerCamelCase : List[str] = torch.tensor(feature.input_ids,dtype=torch.long )
_lowerCamelCase : Optional[int] = torch.tensor(feature.attention_mask,dtype=torch.long )
_lowerCamelCase : Union[str, Any] = torch.tensor(feature.token_type_ids,dtype=torch.long )
_lowerCamelCase : str = torch.tensor(feature.cls_index,dtype=torch.long )
_lowerCamelCase : str = torch.tensor(feature.p_mask,dtype=torch.float )
_lowerCamelCase : Tuple = torch.tensor(feature.is_impossible,dtype=torch.float )
_lowerCamelCase : Optional[Any] = {
"input_ids": input_ids,
"attention_mask": attention_mask,
"token_type_ids": token_type_ids,
}
if self.args.model_type in ["xlm", "roberta", "distilbert", "camembert"]:
del inputs["token_type_ids"]
if self.args.model_type in ["xlnet", "xlm"]:
inputs.update({"cls_index": cls_index, "p_mask": p_mask} )
if self.args.version_2_with_negative:
inputs.update({"is_impossible": is_impossible} )
if self.is_language_sensitive:
inputs.update({"langs": (torch.ones(input_ids.shape,dtype=torch.intaa ) * self.args.lang_id)} )
if self.mode == Split.train:
_lowerCamelCase : List[str] = torch.tensor(feature.start_position,dtype=torch.long )
_lowerCamelCase : Any = torch.tensor(feature.end_position,dtype=torch.long )
inputs.update({"start_positions": start_positions, "end_positions": end_positions} )
return inputs | 11 | 1 |
"""simple docstring"""
import contextlib
import importlib
import io
import unittest
import transformers
# Try to import everything from transformers to ensure every object can be loaded.
from transformers import * # noqa F406
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch
from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available
if is_torch_available():
from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification
if is_tf_available():
from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification
if is_flax_available():
from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification
a_ : str = DUMMY_UNKNOWN_IDENTIFIER
# An actual model hosted on huggingface.co
a_ : Optional[Any] = '''main'''
# Default branch name
a_ : int = '''f2c752cfc5c0ab6f4bdec59acea69eefbee381c2'''
# One particular commit (not the top of `main`)
a_ : Any = '''aaaaaaa'''
# This commit does not exist, so we should 404.
a_ : Optional[Any] = '''d9e9f15bc825e4b2c9249e9578f884bbcb5e3684'''
# Sha-1 of config.json on the top of `main`, for checking purposes
a_ : Optional[Any] = '''4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3'''
@contextlib.contextmanager
def UpperCAmelCase ( ) -> Any:
print('Welcome!' )
yield
print('Bye!' )
@contextlib.contextmanager
def UpperCAmelCase ( ) -> List[Any]:
print('Bonjour!' )
yield
print('Au revoir!' )
class __lowercase( unittest.TestCase ):
'''simple docstring'''
def snake_case_ ( self ):
# If the spec is missing, importlib would not be able to import the module dynamically.
assert transformers.__spec__ is not None
assert importlib.util.find_spec('transformers' ) is not None
class __lowercase( unittest.TestCase ):
'''simple docstring'''
@unittest.mock.patch('sys.stdout' , new_callable=io.StringIO )
def snake_case_ ( self , __a ):
with ContextManagers([] ):
print('Transformers are awesome!' )
# The print statement adds a new line at the end of the output
self.assertEqual(mock_stdout.getvalue() , 'Transformers are awesome!\n' )
@unittest.mock.patch('sys.stdout' , new_callable=io.StringIO )
def snake_case_ ( self , __a ):
with ContextManagers([context_en()] ):
print('Transformers are awesome!' )
# The output should be wrapped with an English welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , 'Welcome!\nTransformers are awesome!\nBye!\n' )
@unittest.mock.patch('sys.stdout' , new_callable=io.StringIO )
def snake_case_ ( self , __a ):
with ContextManagers([context_fr(), context_en()] ):
print('Transformers are awesome!' )
# The output should be wrapped with an English and French welcome and goodbye
self.assertEqual(mock_stdout.getvalue() , 'Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n' )
@require_torch
def snake_case_ ( self ):
self.assertEqual(find_labels(_lowerCamelCase ) , ['labels'] )
self.assertEqual(find_labels(_lowerCamelCase ) , ['labels', 'next_sentence_label'] )
self.assertEqual(find_labels(_lowerCamelCase ) , ['start_positions', 'end_positions'] )
class __lowercase( __UpperCAmelCase ):
'''simple docstring'''
pass
self.assertEqual(find_labels(_lowerCamelCase ) , ['labels'] )
@require_tf
def snake_case_ ( self ):
self.assertEqual(find_labels(_lowerCamelCase ) , ['labels'] )
self.assertEqual(find_labels(_lowerCamelCase ) , ['labels', 'next_sentence_label'] )
self.assertEqual(find_labels(_lowerCamelCase ) , ['start_positions', 'end_positions'] )
class __lowercase( __UpperCAmelCase ):
'''simple docstring'''
pass
self.assertEqual(find_labels(_lowerCamelCase ) , ['labels'] )
@require_flax
def snake_case_ ( self ):
# Flax models don't have labels
self.assertEqual(find_labels(_lowerCamelCase ) , [] )
self.assertEqual(find_labels(_lowerCamelCase ) , [] )
self.assertEqual(find_labels(_lowerCamelCase ) , [] )
class __lowercase( __UpperCAmelCase ):
'''simple docstring'''
pass
self.assertEqual(find_labels(_lowerCamelCase ) , [] )
| 594 |
"""simple docstring"""
import os
import re
import warnings
from shutil import copyfile
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple
import sentencepiece as spm
from ...tokenization_utils import PreTrainedTokenizer
if TYPE_CHECKING:
from ...tokenization_utils_base import TextInput
from ...utils import logging
_lowerCamelCase = logging.get_logger(__name__)
_lowerCamelCase = {'''vocab_file''': '''spiece.model'''}
_lowerCamelCase = {
'''vocab_file''': {
'''t5-small''': '''https://huggingface.co/t5-small/resolve/main/spiece.model''',
'''t5-base''': '''https://huggingface.co/t5-base/resolve/main/spiece.model''',
'''t5-large''': '''https://huggingface.co/t5-large/resolve/main/spiece.model''',
'''t5-3b''': '''https://huggingface.co/t5-3b/resolve/main/spiece.model''',
'''t5-11b''': '''https://huggingface.co/t5-11b/resolve/main/spiece.model''',
}
}
# TODO(PVP) - this should be removed in Transformers v5
_lowerCamelCase = {
'''t5-small''': 5_12,
'''t5-base''': 5_12,
'''t5-large''': 5_12,
'''t5-3b''': 5_12,
'''t5-11b''': 5_12,
}
_lowerCamelCase = '''▁'''
class snake_case ( __UpperCAmelCase ):
lowerCamelCase__ = VOCAB_FILES_NAMES
lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP
lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
lowerCamelCase__ = ['''input_ids''', '''attention_mask''']
def __init__( self :int , _lowerCamelCase :Optional[Any] , _lowerCamelCase :Union[str, Any]="</s>" , _lowerCamelCase :List[Any]="<unk>" , _lowerCamelCase :Union[str, Any]="<pad>" , _lowerCamelCase :int=1_0_0 , _lowerCamelCase :Union[str, Any]=None , _lowerCamelCase :Optional[Dict[str, Any]] = None , _lowerCamelCase :int=True , **_lowerCamelCase :List[Any] , ):
# Add extra_ids to the special token list
if extra_ids > 0 and additional_special_tokens is None:
__SCREAMING_SNAKE_CASE : Union[str, Any] = [f'''<extra_id_{i}>''' for i in range(_lowerCamelCase )]
elif extra_ids > 0 and additional_special_tokens is not None:
# Check that we have the right number of extra_id special tokens
__SCREAMING_SNAKE_CASE : Optional[int] = len(set(filter(lambda _lowerCamelCase : bool('''extra_id''' in str(_lowerCamelCase ) ) , _lowerCamelCase ) ) )
if extra_tokens != extra_ids:
raise ValueError(
f'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are'''
''' provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids'''
''' tokens''' )
if legacy:
logger.warning_once(
f'''You are using the legacy behaviour of the {self.__class__}. This means that tokens that come after special tokens will not be properly handled. We recommend you to'''
''' read the related pull request available at https://github.com/huggingface/transformers/pull/24565''' )
__SCREAMING_SNAKE_CASE : Optional[Any] = legacy
__SCREAMING_SNAKE_CASE : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs
super().__init__(
eos_token=_lowerCamelCase , unk_token=_lowerCamelCase , pad_token=_lowerCamelCase , extra_ids=_lowerCamelCase , additional_special_tokens=_lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , legacy=_lowerCamelCase , **_lowerCamelCase , )
__SCREAMING_SNAKE_CASE : Tuple = vocab_file
__SCREAMING_SNAKE_CASE : List[str] = extra_ids
__SCREAMING_SNAKE_CASE : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(_lowerCamelCase )
@staticmethod
def SCREAMING_SNAKE_CASE_ ( _lowerCamelCase :str , _lowerCamelCase :Union[str, Any] , _lowerCamelCase :int ):
if pretrained_model_name_or_path in TaTokenizer.max_model_input_sizes:
__SCREAMING_SNAKE_CASE : Any = TaTokenizer.max_model_input_sizes[pretrained_model_name_or_path]
if init_max_model_length is not None and init_max_model_length != max_model_length:
return init_max_model_length
elif init_max_model_length is None:
warnings.warn(
'''This tokenizer was incorrectly instantiated with a model max length of'''
f''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this'''
''' behavior is kept to avoid breaking backwards compatibility when padding/encoding with'''
''' `truncation is True`.\n- Be aware that you SHOULD NOT rely on'''
f''' {pretrained_model_name_or_path} automatically truncating your input to'''
f''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences'''
f''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with'''
''' `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please'''
''' instantiate this tokenizer with `model_max_length` set to your preferred value.''' , _lowerCamelCase , )
return max_model_length
@property
def SCREAMING_SNAKE_CASE_ ( self :Tuple ):
return self.sp_model.get_piece_size() + self._extra_ids
def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ):
__SCREAMING_SNAKE_CASE : str = {self.convert_ids_to_tokens(_lowerCamelCase ): i for i in range(self.vocab_size )}
vocab.update(self.added_tokens_encoder )
return vocab
def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None , _lowerCamelCase :bool = False ):
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=_lowerCamelCase , token_ids_a=_lowerCamelCase , already_has_special_tokens=_lowerCamelCase )
# normal case: some special tokens
if token_ids_a is None:
return ([0] * len(_lowerCamelCase )) + [1]
return ([0] * len(_lowerCamelCase )) + [1] + ([0] * len(_lowerCamelCase )) + [1]
def SCREAMING_SNAKE_CASE_ ( self :List[str] ):
return list(
set(filter(lambda _lowerCamelCase : bool(re.search(r'''<extra_id_\d+>''' , _lowerCamelCase ) ) is not None , self.additional_special_tokens ) ) )
def SCREAMING_SNAKE_CASE_ ( self :List[Any] ):
return [self._convert_token_to_id(_lowerCamelCase ) for token in self.get_sentinel_tokens()]
def SCREAMING_SNAKE_CASE_ ( self :Any , _lowerCamelCase :List[int] ):
if len(_lowerCamelCase ) > 0 and token_ids[-1] == self.eos_token_id:
warnings.warn(
f'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated'''
''' eos tokens being added.''' )
return token_ids
else:
return token_ids + [self.eos_token_id]
def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ):
__SCREAMING_SNAKE_CASE : List[str] = [self.eos_token_id]
if token_ids_a is None:
return len(token_ids_a + eos ) * [0]
return len(token_ids_a + eos + token_ids_a + eos ) * [0]
def SCREAMING_SNAKE_CASE_ ( self :List[Any] , _lowerCamelCase :List[int] , _lowerCamelCase :Optional[List[int]] = None ):
__SCREAMING_SNAKE_CASE : Optional[Any] = self._add_eos_if_not_present(_lowerCamelCase )
if token_ids_a is None:
return token_ids_a
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = self._add_eos_if_not_present(_lowerCamelCase )
return token_ids_a + token_ids_a
def __getstate__( self :Union[str, Any] ):
__SCREAMING_SNAKE_CASE : Any = self.__dict__.copy()
__SCREAMING_SNAKE_CASE : List[str] = None
return state
def __setstate__( self :Optional[Any] , _lowerCamelCase :List[str] ):
__SCREAMING_SNAKE_CASE : Tuple = d
# for backward compatibility
if not hasattr(self , '''sp_model_kwargs''' ):
__SCREAMING_SNAKE_CASE : Optional[int] = {}
__SCREAMING_SNAKE_CASE : Optional[int] = spm.SentencePieceProcessor(**self.sp_model_kwargs )
self.sp_model.Load(self.vocab_file )
def SCREAMING_SNAKE_CASE_ ( self :int , _lowerCamelCase :"TextInput" , **_lowerCamelCase :str ):
# Replace the SPIECE_UNDERLINE with a space to make sure SPIECE_UNDERLINE is only used at
# the beginning of the text
if not self.legacy:
__SCREAMING_SNAKE_CASE : Dict = SPIECE_UNDERLINE + text.replace(_lowerCamelCase , ''' ''' )
return super().tokenize(_lowerCamelCase , **_lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :List[Any] , **_lowerCamelCase :Dict ):
if not self.legacy:
__SCREAMING_SNAKE_CASE : str = text.startswith(_lowerCamelCase )
if is_first:
__SCREAMING_SNAKE_CASE : str = text[1:]
__SCREAMING_SNAKE_CASE : Tuple = self.sp_model.encode(_lowerCamelCase , out_type=_lowerCamelCase )
if not self.legacy and not is_first and not text.startswith(''' ''' ) and tokens[0].startswith(_lowerCamelCase ):
__SCREAMING_SNAKE_CASE : Optional[int] = ([tokens[0][1:]] if len(tokens[0] ) > 1 else []) + tokens[1:]
return tokens
def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :Optional[Any] ):
if token.startswith('''<extra_id_''' ):
__SCREAMING_SNAKE_CASE : Tuple = re.match(r'''<extra_id_(\d+)>''' , _lowerCamelCase )
__SCREAMING_SNAKE_CASE : Union[str, Any] = int(match.group(1 ) )
return self.vocab_size - num - 1
return self.sp_model.piece_to_id(_lowerCamelCase )
def SCREAMING_SNAKE_CASE_ ( self :str , _lowerCamelCase :Optional[int] ):
if index < self.sp_model.get_piece_size():
__SCREAMING_SNAKE_CASE : List[Any] = self.sp_model.IdToPiece(_lowerCamelCase )
else:
__SCREAMING_SNAKE_CASE : Dict = f'''<extra_id_{self.vocab_size - 1 - index}>'''
return token
def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :Any ):
__SCREAMING_SNAKE_CASE : str = []
__SCREAMING_SNAKE_CASE : Dict = ''''''
__SCREAMING_SNAKE_CASE : Dict = False
for token in tokens:
# make sure that special tokens are not decoded using sentencepiece model
if token in self.all_special_tokens:
if not prev_is_special:
out_string += " "
out_string += self.sp_model.decode(_lowerCamelCase ) + token
__SCREAMING_SNAKE_CASE : List[str] = True
__SCREAMING_SNAKE_CASE : str = []
else:
current_sub_tokens.append(_lowerCamelCase )
__SCREAMING_SNAKE_CASE : int = False
out_string += self.sp_model.decode(_lowerCamelCase )
return out_string.strip()
def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , _lowerCamelCase :str , _lowerCamelCase :Optional[str] = None ):
if not os.path.isdir(_lowerCamelCase ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__SCREAMING_SNAKE_CASE : List[str] = os.path.join(
_lowerCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
if os.path.abspath(self.vocab_file ) != os.path.abspath(_lowerCamelCase ) and os.path.isfile(self.vocab_file ):
copyfile(self.vocab_file , _lowerCamelCase )
elif not os.path.isfile(self.vocab_file ):
with open(_lowerCamelCase , '''wb''' ) as fi:
__SCREAMING_SNAKE_CASE : Any = self.sp_model.serialized_model_proto()
fi.write(_lowerCamelCase )
return (out_vocab_file,)
| 674 | 0 |
'''simple docstring'''
from __future__ import annotations
from collections.abc import MutableSequence
class lowerCAmelCase__ :
'''simple docstring'''
def __init__( self : int , snake_case__ : Tuple , snake_case__ : Optional[Any] ) -> None:
if len(lowercase__ ) != degree + 1:
raise ValueError(
'The number of coefficients should be equal to the degree + 1.' )
_lowerCamelCase = list(lowercase__ )
_lowerCamelCase = degree
def __add__( self : str , snake_case__ : int ) -> Polynomial:
if self.degree > polynomial_a.degree:
_lowerCamelCase = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , lowercase__ )
else:
_lowerCamelCase = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , lowercase__ )
def __sub__( self : str , snake_case__ : List[str] ) -> Polynomial:
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self : Dict ) -> Polynomial:
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self : Optional[Any] , snake_case__ : Dict ) -> Polynomial:
_lowerCamelCase = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , lowercase__ )
def _snake_case ( self : Tuple , snake_case__ : int ) -> int | float:
_lowerCamelCase = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self : Dict ) -> str:
_lowerCamelCase = ''''''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(lowercase__ )
return polynomial
def __repr__( self : Union[str, Any] ) -> str:
return self.__str__()
def _snake_case ( self : Dict ) -> Polynomial:
_lowerCamelCase = [0] * self.degree
for i in range(self.degree ):
_lowerCamelCase = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , lowercase__ )
def _snake_case ( self : Any , snake_case__ : Any = 0 ) -> Polynomial:
_lowerCamelCase = [0] * (self.degree + 2)
_lowerCamelCase = constant
for i in range(self.degree + 1 ):
_lowerCamelCase = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , lowercase__ )
def __eq__( self : Tuple , snake_case__ : Dict ) -> bool:
if not isinstance(lowercase__ , lowercase__ ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self : Union[str, Any] , snake_case__ : Union[str, Any] ) -> bool:
return not self.__eq__(lowercase__ ) | 703 | import copy
from typing import Dict, Optional
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
from ..detr import DetrConfig
from ..swin import SwinConfig
A = {
'facebook/maskformer-swin-base-ade': (
'https://huggingface.co/facebook/maskformer-swin-base-ade/blob/main/config.json'
)
# See all MaskFormer models at https://huggingface.co/models?filter=maskformer
}
A = logging.get_logger(__name__)
class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ):
'''simple docstring'''
lowerCAmelCase_ = 'maskformer'
lowerCAmelCase_ = {'hidden_size': 'mask_feature_size'}
lowerCAmelCase_ = ['resnet', 'swin']
lowerCAmelCase_ = ['detr']
def __init__( self : int , snake_case__ : int = 2_5_6 , snake_case__ : int = 2_5_6 , snake_case__ : float = 0.1 , snake_case__ : bool = False , snake_case__ : Optional[Dict] = None , snake_case__ : Optional[Dict] = None , snake_case__ : float = 0.02 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 1.0 , snake_case__ : float = 20.0 , snake_case__ : Optional[bool] = None , **snake_case__ : Dict , ) -> int:
if backbone_config is None:
# fall back to https://huggingface.co/microsoft/swin-base-patch4-window12-384-in22k
_lowerCamelCase = SwinConfig(
image_size=3_8_4 , in_channels=3 , patch_size=4 , embed_dim=1_2_8 , depths=[2, 2, 1_8, 2] , num_heads=[4, 8, 1_6, 3_2] , window_size=1_2 , drop_path_rate=0.3 , out_features=['stage1', 'stage2', 'stage3', 'stage4'] , )
if isinstance(snake_case__ , snake_case__ ):
_lowerCamelCase = backbone_config.pop('model_type' )
_lowerCamelCase = CONFIG_MAPPING[backbone_model_type]
_lowerCamelCase = config_class.from_dict(snake_case__ )
# verify that the backbone is supported
if backbone_config.model_type not in self.backbones_supported:
logger.warning_once(
f"""Backbone {backbone_config.model_type} is not a supported model and may not be compatible with MaskFormer. """
f"""Supported model types: {",".join(self.backbones_supported )}""" )
if decoder_config is None:
# fall back to https://huggingface.co/facebook/detr-resnet-50
_lowerCamelCase = DetrConfig()
else:
# verify that the decoder is supported
_lowerCamelCase = (
decoder_config.pop('model_type' ) if isinstance(snake_case__ , snake_case__ ) else decoder_config.model_type
)
if decoder_type not in self.decoders_supported:
raise ValueError(
f"""Transformer Decoder {decoder_type} not supported, please use one of"""
f""" {",".join(self.decoders_supported )}""" )
if isinstance(snake_case__ , snake_case__ ):
_lowerCamelCase = CONFIG_MAPPING[decoder_type]
_lowerCamelCase = config_class.from_dict(snake_case__ )
_lowerCamelCase = backbone_config
_lowerCamelCase = decoder_config
# main feature dimension for the model
_lowerCamelCase = fpn_feature_size
_lowerCamelCase = mask_feature_size
# initializer
_lowerCamelCase = init_std
_lowerCamelCase = init_xavier_std
# Hungarian matcher && loss
_lowerCamelCase = cross_entropy_weight
_lowerCamelCase = dice_weight
_lowerCamelCase = mask_weight
_lowerCamelCase = use_auxiliary_loss
_lowerCamelCase = no_object_weight
_lowerCamelCase = output_auxiliary_logits
_lowerCamelCase = self.decoder_config.encoder_attention_heads
_lowerCamelCase = self.decoder_config.num_hidden_layers
super().__init__(**snake_case__ )
@classmethod
def _snake_case ( cls : Optional[int] , snake_case__ : PretrainedConfig , snake_case__ : PretrainedConfig , **snake_case__ : Tuple ) -> List[str]:
return cls(
backbone_config=snake_case__ , decoder_config=snake_case__ , **snake_case__ , )
def _snake_case ( self : Optional[Any] ) -> Dict[str, any]:
_lowerCamelCase = copy.deepcopy(self.__dict__ )
_lowerCamelCase = self.backbone_config.to_dict()
_lowerCamelCase = self.decoder_config.to_dict()
_lowerCamelCase = self.__class__.model_type
return output | 234 | 0 |
'''simple docstring'''
import unittest
import numpy as np
import torch
from diffusers import VersatileDiffusionImageVariationPipeline
from diffusers.utils.testing_utils import load_image, require_torch_gpu, slow, torch_device
_UpperCAmelCase : List[Any] = False
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
pass
@slow
@require_torch_gpu
class lowercase_ ( unittest.TestCase ):
"""simple docstring"""
def __UpperCAmelCase ( self : List[str] ) -> Dict:
_A = VersatileDiffusionImageVariationPipeline.from_pretrained('shi-labs/versatile-diffusion' )
pipe.to(UpperCamelCase__ )
pipe.set_progress_bar_config(disable=UpperCamelCase__ )
_A = load_image(
'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' )
_A = torch.manual_seed(0 )
_A = pipe(
image=UpperCamelCase__, generator=UpperCamelCase__, guidance_scale=7.5, num_inference_steps=50, output_type='numpy', ).images
_A = image[0, 2_53:2_56, 2_53:2_56, -1]
assert image.shape == (1, 5_12, 5_12, 3)
_A = np.array([0.0_441, 0.0_469, 0.0_507, 0.0_575, 0.0_632, 0.0_650, 0.0_865, 0.0_909, 0.0_945] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
| 107 | '''simple docstring'''
import platform
from argparse import ArgumentParser
import huggingface_hub
from .. import __version__ as version
from ..utils import is_accelerate_available, is_torch_available, is_transformers_available, is_xformers_available
from . import BaseDiffusersCLICommand
def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] ):
return EnvironmentCommand()
class lowercase_ ( _UpperCamelCase ):
"""simple docstring"""
@staticmethod
def __UpperCAmelCase ( UpperCamelCase__ : ArgumentParser ) -> List[str]:
_A = parser.add_parser('env' )
download_parser.set_defaults(func=UpperCamelCase__ )
def __UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]:
_A = huggingface_hub.__version__
_A = 'not installed'
_A = 'NA'
if is_torch_available():
import torch
_A = torch.__version__
_A = torch.cuda.is_available()
_A = 'not installed'
if is_transformers_available():
import transformers
_A = transformers.__version__
_A = 'not installed'
if is_accelerate_available():
import accelerate
_A = accelerate.__version__
_A = 'not installed'
if is_xformers_available():
import xformers
_A = xformers.__version__
_A = {
'`diffusers` version': version,
'Platform': platform.platform(),
'Python version': platform.python_version(),
'PyTorch version (GPU?)': f'{pt_version} ({pt_cuda_available})',
'Huggingface_hub version': hub_version,
'Transformers version': transformers_version,
'Accelerate version': accelerate_version,
'xFormers version': xformers_version,
'Using GPU in script?': '<fill in>',
'Using distributed or parallel set-up in script?': '<fill in>',
}
print('\nCopy-and-paste the text below in your GitHub issue and FILL OUT the two last points.\n' )
print(self.format_dict(UpperCamelCase__ ) )
return info
@staticmethod
def __UpperCAmelCase ( UpperCamelCase__ : List[Any] ) -> Dict:
return "\n".join([f'- {prop}: {val}' for prop, val in d.items()] ) + "\n"
| 107 | 1 |
from typing import Optional
import torch
import torch.utils.checkpoint
from torch import Tensor, nn
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
from ...activations import ACTaFN
from ...modeling_outputs import (
BackboneOutput,
BaseModelOutputWithNoAttention,
BaseModelOutputWithPoolingAndNoAttention,
ImageClassifierOutputWithNoAttention,
)
from ...modeling_utils import PreTrainedModel
from ...utils import (
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
replace_return_docstrings,
)
from ...utils.backbone_utils import BackboneMixin
from .configuration_resnet import ResNetConfig
__SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__)
# General docstring
__SCREAMING_SNAKE_CASE : str = 'ResNetConfig'
# Base docstring
__SCREAMING_SNAKE_CASE : Any = 'microsoft/resnet-50'
__SCREAMING_SNAKE_CASE : Tuple = [1, 2_048, 7, 7]
# Image classification docstring
__SCREAMING_SNAKE_CASE : Optional[Any] = 'microsoft/resnet-50'
__SCREAMING_SNAKE_CASE : Optional[int] = 'tiger cat'
__SCREAMING_SNAKE_CASE : Tuple = [
'microsoft/resnet-50',
# See all resnet models at https://huggingface.co/models?filter=resnet
]
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 3 , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Convad(
UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=UpperCAmelCase_ , stride=UpperCAmelCase_ , padding=kernel_size // 2 , bias=UpperCAmelCase_ )
snake_case_ = nn.BatchNormad(UpperCAmelCase_ )
snake_case_ = ACTaFN[activation] if activation is not None else nn.Identity()
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = self.convolution(UpperCAmelCase_ )
snake_case_ = self.normalization(UpperCAmelCase_ )
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Optional[Any] , UpperCAmelCase_ : ResNetConfig ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = ResNetConvLayer(
config.num_channels , config.embedding_size , kernel_size=7 , stride=2 , activation=config.hidden_act )
snake_case_ = nn.MaxPoolad(kernel_size=3 , stride=2 , padding=1 )
snake_case_ = config.num_channels
def lowerCAmelCase ( self : List[Any] , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = pixel_values.shape[1]
if num_channels != self.num_channels:
raise ValueError(
"""Make sure that the channel dimension of the pixel values match with the one set in the configuration.""" )
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.pooler(UpperCAmelCase_ )
return embedding
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Union[str, Any] , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.Convad(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , stride=UpperCAmelCase_ , bias=UpperCAmelCase_ )
snake_case_ = nn.BatchNormad(UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = self.convolution(UpperCAmelCase_ )
snake_case_ = self.normalization(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = in_channels != out_channels or stride != 1
snake_case_ = (
ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity()
)
snake_case_ = nn.Sequential(
ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , activation=UpperCAmelCase_ ) , )
snake_case_ = ACTaFN[activation]
def lowerCAmelCase ( self : Optional[Any] , UpperCAmelCase_ : Optional[Any] ) ->Tuple:
"""simple docstring"""
snake_case_ = hidden_state
snake_case_ = self.layer(UpperCAmelCase_ )
snake_case_ = self.shortcut(UpperCAmelCase_ )
hidden_state += residual
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : str = "relu" , UpperCAmelCase_ : int = 4 ) ->Tuple:
"""simple docstring"""
super().__init__()
snake_case_ = in_channels != out_channels or stride != 1
snake_case_ = out_channels // reduction
snake_case_ = (
ResNetShortCut(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) if should_apply_shortcut else nn.Identity()
)
snake_case_ = nn.Sequential(
ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ ) , ResNetConvLayer(UpperCAmelCase_ , UpperCAmelCase_ , kernel_size=1 , activation=UpperCAmelCase_ ) , )
snake_case_ = ACTaFN[activation]
def lowerCAmelCase ( self : List[str] , UpperCAmelCase_ : List[Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = hidden_state
snake_case_ = self.layer(UpperCAmelCase_ )
snake_case_ = self.shortcut(UpperCAmelCase_ )
hidden_state += residual
snake_case_ = self.activation(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : ResNetConfig , UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int = 2 , UpperCAmelCase_ : int = 2 , ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = ResNetBottleNeckLayer if config.layer_type == """bottleneck""" else ResNetBasicLayer
snake_case_ = nn.Sequential(
# downsampling is done in the first layer with stride of 2
layer(UpperCAmelCase_ , UpperCAmelCase_ , stride=UpperCAmelCase_ , activation=config.hidden_act ) , *[layer(UpperCAmelCase_ , UpperCAmelCase_ , activation=config.hidden_act ) for _ in range(depth - 1 )] , )
def lowerCAmelCase ( self : Dict , UpperCAmelCase_ : Tensor ) ->Tensor:
"""simple docstring"""
snake_case_ = input
for layer in self.layers:
snake_case_ = layer(UpperCAmelCase_ )
return hidden_state
class __A (nn.Module):
'''simple docstring'''
def __init__( self : Tuple , UpperCAmelCase_ : ResNetConfig ) ->List[Any]:
"""simple docstring"""
super().__init__()
snake_case_ = nn.ModuleList([] )
# based on `downsample_in_first_stage` the first layer of the first stage may or may not downsample the input
self.stages.append(
ResNetStage(
UpperCAmelCase_ , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) )
snake_case_ = zip(config.hidden_sizes , config.hidden_sizes[1:] )
for (in_channels, out_channels), depth in zip(UpperCAmelCase_ , config.depths[1:] ):
self.stages.append(ResNetStage(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , depth=UpperCAmelCase_ ) )
def lowerCAmelCase ( self : Tuple , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : bool = False , UpperCAmelCase_ : bool = True ) ->BaseModelOutputWithNoAttention:
"""simple docstring"""
snake_case_ = () if output_hidden_states else None
for stage_module in self.stages:
if output_hidden_states:
snake_case_ = hidden_states + (hidden_state,)
snake_case_ = stage_module(UpperCAmelCase_ )
if output_hidden_states:
snake_case_ = hidden_states + (hidden_state,)
if not return_dict:
return tuple(v for v in [hidden_state, hidden_states] if v is not None )
return BaseModelOutputWithNoAttention(
last_hidden_state=UpperCAmelCase_ , hidden_states=UpperCAmelCase_ , )
class __A (snake_case__):
'''simple docstring'''
__lowercase: List[Any] = ResNetConfig
__lowercase: List[Any] = """resnet"""
__lowercase: Optional[Any] = """pixel_values"""
__lowercase: List[Any] = True
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : str ) ->Tuple:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , nn.Convad ):
nn.init.kaiming_normal_(module.weight , mode="""fan_out""" , nonlinearity="""relu""" )
elif isinstance(UpperCAmelCase_ , (nn.BatchNormad, nn.GroupNorm) ):
nn.init.constant_(module.weight , 1 )
nn.init.constant_(module.bias , 0 )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Optional[int]=False ) ->Tuple:
"""simple docstring"""
if isinstance(UpperCAmelCase_ , UpperCAmelCase_ ):
snake_case_ = value
__SCREAMING_SNAKE_CASE : int = R'\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`ResNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n'
__SCREAMING_SNAKE_CASE : List[Any] = R'\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n'
@add_start_docstrings(
"""The bare ResNet model outputting raw features without any specific head on top.""" , snake_case__ , )
class __A (snake_case__):
'''simple docstring'''
def __init__( self : str , UpperCAmelCase_ : Tuple ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
snake_case_ = config
snake_case_ = ResNetEmbeddings(UpperCAmelCase_ )
snake_case_ = ResNetEncoder(UpperCAmelCase_ )
snake_case_ = nn.AdaptiveAvgPoolad((1, 1) )
# Initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , )
def lowerCAmelCase ( self : Optional[int] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None ) ->BaseModelOutputWithPoolingAndNoAttention:
"""simple docstring"""
snake_case_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.encoder(
UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = encoder_outputs[0]
snake_case_ = self.pooler(UpperCAmelCase_ )
if not return_dict:
return (last_hidden_state, pooled_output) + encoder_outputs[1:]
return BaseModelOutputWithPoolingAndNoAttention(
last_hidden_state=UpperCAmelCase_ , pooler_output=UpperCAmelCase_ , hidden_states=encoder_outputs.hidden_states , )
@add_start_docstrings(
"""
ResNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for
ImageNet.
""" , snake_case__ , )
class __A (snake_case__):
'''simple docstring'''
def __init__( self : int , UpperCAmelCase_ : int ) ->Any:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
snake_case_ = config.num_labels
snake_case_ = ResNetModel(UpperCAmelCase_ )
# classification head
snake_case_ = nn.Sequential(
nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@add_code_sample_docstrings(
checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : Optional[torch.FloatTensor] = None , UpperCAmelCase_ : Optional[torch.LongTensor] = None , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None , ) ->ImageClassifierOutputWithNoAttention:
"""simple docstring"""
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = self.resnet(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = outputs.pooler_output if return_dict else outputs[1]
snake_case_ = self.classifier(UpperCAmelCase_ )
snake_case_ = None
if labels is not None:
if self.config.problem_type is None:
if self.num_labels == 1:
snake_case_ = """regression"""
elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
snake_case_ = """single_label_classification"""
else:
snake_case_ = """multi_label_classification"""
if self.config.problem_type == "regression":
snake_case_ = MSELoss()
if self.num_labels == 1:
snake_case_ = loss_fct(logits.squeeze() , labels.squeeze() )
else:
snake_case_ = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ )
elif self.config.problem_type == "single_label_classification":
snake_case_ = CrossEntropyLoss()
snake_case_ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) )
elif self.config.problem_type == "multi_label_classification":
snake_case_ = BCEWithLogitsLoss()
snake_case_ = loss_fct(UpperCAmelCase_ , UpperCAmelCase_ )
if not return_dict:
snake_case_ = (logits,) + outputs[2:]
return (loss,) + output if loss is not None else output
return ImageClassifierOutputWithNoAttention(loss=UpperCAmelCase_ , logits=UpperCAmelCase_ , hidden_states=outputs.hidden_states )
@add_start_docstrings(
"""
ResNet backbone, to be used with frameworks like DETR and MaskFormer.
""" , snake_case__ , )
class __A (snake_case__ , snake_case__):
'''simple docstring'''
def __init__( self : List[Any] , UpperCAmelCase_ : Any ) ->Union[str, Any]:
"""simple docstring"""
super().__init__(UpperCAmelCase_ )
super()._init_backbone(UpperCAmelCase_ )
snake_case_ = [config.embedding_size] + config.hidden_sizes
snake_case_ = ResNetEmbeddings(UpperCAmelCase_ )
snake_case_ = ResNetEncoder(UpperCAmelCase_ )
# initialize weights and apply final processing
self.post_init()
@add_start_docstrings_to_model_forward(UpperCAmelCase_ )
@replace_return_docstrings(output_type=UpperCAmelCase_ , config_class=_CONFIG_FOR_DOC )
def lowerCAmelCase ( self : str , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Optional[bool] = None , UpperCAmelCase_ : Optional[bool] = None ) ->BackboneOutput:
"""simple docstring"""
snake_case_ = return_dict if return_dict is not None else self.config.use_return_dict
snake_case_ = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
snake_case_ = self.embedder(UpperCAmelCase_ )
snake_case_ = self.encoder(UpperCAmelCase_ , output_hidden_states=UpperCAmelCase_ , return_dict=UpperCAmelCase_ )
snake_case_ = outputs.hidden_states
snake_case_ = ()
for idx, stage in enumerate(self.stage_names ):
if stage in self.out_features:
feature_maps += (hidden_states[idx],)
if not return_dict:
snake_case_ = (feature_maps,)
if output_hidden_states:
output += (outputs.hidden_states,)
return output
return BackboneOutput(
feature_maps=UpperCAmelCase_ , hidden_states=outputs.hidden_states if output_hidden_states else None , attentions=UpperCAmelCase_ , )
| 713 |
"""simple docstring"""
import unittest
from transformers import LiltConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
LiltForQuestionAnswering,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltModel,
)
from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST
class __A :
'''simple docstring'''
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any]=13 , UpperCAmelCase_ : Optional[int]=7 , UpperCAmelCase_ : List[str]=True , UpperCAmelCase_ : int=True , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : List[str]=99 , UpperCAmelCase_ : Dict=24 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[Any]=6 , UpperCAmelCase_ : int=37 , UpperCAmelCase_ : Optional[Any]="gelu" , UpperCAmelCase_ : Optional[Any]=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Any=512 , UpperCAmelCase_ : str=16 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : Optional[int]=0.02 , UpperCAmelCase_ : Tuple=3 , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : Any=1_000 , ) ->Tuple:
"""simple docstring"""
snake_case_ = parent
snake_case_ = batch_size
snake_case_ = seq_length
snake_case_ = is_training
snake_case_ = use_input_mask
snake_case_ = use_token_type_ids
snake_case_ = use_labels
snake_case_ = vocab_size
snake_case_ = hidden_size
snake_case_ = num_hidden_layers
snake_case_ = num_attention_heads
snake_case_ = intermediate_size
snake_case_ = hidden_act
snake_case_ = hidden_dropout_prob
snake_case_ = attention_probs_dropout_prob
snake_case_ = max_position_embeddings
snake_case_ = type_vocab_size
snake_case_ = type_sequence_label_size
snake_case_ = initializer_range
snake_case_ = num_labels
snake_case_ = scope
snake_case_ = range_bbox
def lowerCAmelCase ( self : Tuple ) ->int:
"""simple docstring"""
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox )
# Ensure that bbox is legal
for i in range(bbox.shape[0] ):
for j in range(bbox.shape[1] ):
if bbox[i, j, 3] < bbox[i, j, 1]:
snake_case_ = bbox[i, j, 3]
snake_case_ = bbox[i, j, 1]
snake_case_ = t
if bbox[i, j, 2] < bbox[i, j, 0]:
snake_case_ = bbox[i, j, 2]
snake_case_ = bbox[i, j, 0]
snake_case_ = t
snake_case_ = None
if self.use_input_mask:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
snake_case_ = None
if self.use_token_type_ids:
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
snake_case_ = None
snake_case_ = None
if self.use_labels:
snake_case_ = ids_tensor([self.batch_size] , self.type_sequence_label_size )
snake_case_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
snake_case_ = self.get_config()
return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
return LiltConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Optional[int] , ) ->str:
"""simple docstring"""
snake_case_ = LiltModel(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ )
snake_case_ = model(UpperCAmelCase_ , bbox=UpperCAmelCase_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) )
def lowerCAmelCase ( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : Union[str, Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : str , UpperCAmelCase_ : List[Any] , ) ->Dict:
"""simple docstring"""
snake_case_ = self.num_labels
snake_case_ = LiltForTokenClassification(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , labels=UpperCAmelCase_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase ( self : Any , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : str , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , ) ->Dict:
"""simple docstring"""
snake_case_ = LiltForQuestionAnswering(config=UpperCAmelCase_ )
model.to(UpperCAmelCase_ )
model.eval()
snake_case_ = model(
UpperCAmelCase_ , bbox=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , token_type_ids=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , )
self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) )
self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) )
def lowerCAmelCase ( self : int ) ->Optional[int]:
"""simple docstring"""
snake_case_ = self.prepare_config_and_inputs()
(
(
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) , (
snake_case_
) ,
) = config_and_inputs
snake_case_ = {
"""input_ids""": input_ids,
"""bbox""": bbox,
"""token_type_ids""": token_type_ids,
"""attention_mask""": input_mask,
}
return config, inputs_dict
@require_torch
class __A (snake_case__ , snake_case__ , snake_case__ , unittest.TestCase):
'''simple docstring'''
__lowercase: Optional[int] = (
(
LiltModel,
LiltForSequenceClassification,
LiltForTokenClassification,
LiltForQuestionAnswering,
)
if is_torch_available()
else ()
)
__lowercase: Optional[Any] = (
{
"""feature-extraction""": LiltModel,
"""question-answering""": LiltForQuestionAnswering,
"""text-classification""": LiltForSequenceClassification,
"""token-classification""": LiltForTokenClassification,
"""zero-shot""": LiltForSequenceClassification,
}
if is_torch_available()
else {}
)
__lowercase: Union[str, Any] = False
__lowercase: List[str] = False
def lowerCAmelCase ( self : str , UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] ) ->Optional[int]:
"""simple docstring"""
return True
def lowerCAmelCase ( self : Dict ) ->Union[str, Any]:
"""simple docstring"""
snake_case_ = LiltModelTester(self )
snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 )
def lowerCAmelCase ( self : str ) ->List[Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCAmelCase ( self : List[str] ) ->int:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Union[str, Any] ) ->List[str]:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
snake_case_ = type
self.model_tester.create_and_check_model(*UpperCAmelCase_ )
def lowerCAmelCase ( self : List[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*UpperCAmelCase_ )
def lowerCAmelCase ( self : Optional[Any] ) ->Dict:
"""simple docstring"""
snake_case_ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_question_answering(*UpperCAmelCase_ )
@slow
def lowerCAmelCase ( self : Union[str, Any] ) ->Optional[int]:
"""simple docstring"""
for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
snake_case_ = LiltModel.from_pretrained(UpperCAmelCase_ )
self.assertIsNotNone(UpperCAmelCase_ )
@require_torch
@slow
class __A (unittest.TestCase):
'''simple docstring'''
def lowerCAmelCase ( self : Optional[int] ) ->Dict:
"""simple docstring"""
snake_case_ = LiltModel.from_pretrained("""SCUT-DLVCLab/lilt-roberta-en-base""" ).to(UpperCAmelCase_ )
snake_case_ = torch.tensor([[1, 2]] , device=UpperCAmelCase_ )
snake_case_ = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=UpperCAmelCase_ )
# forward pass
with torch.no_grad():
snake_case_ = model(input_ids=UpperCAmelCase_ , bbox=UpperCAmelCase_ )
snake_case_ = torch.Size([1, 2, 768] )
snake_case_ = torch.tensor(
[[-0.0_653, 0.0_950, -0.0_061], [-0.0_545, 0.0_926, -0.0_324]] , device=UpperCAmelCase_ , )
self.assertTrue(outputs.last_hidden_state.shape , UpperCAmelCase_ )
self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , UpperCAmelCase_ , atol=1E-3 ) )
| 2 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase : Any = logging.get_logger(__name__)
UpperCamelCase : int = {}
class A__ ( A__ ):
"""simple docstring"""
_lowercase = 'llama'
_lowercase = ['past_key_values']
def __init__( self : Dict , lowerCamelCase__ : str=32_000 , lowerCamelCase__ : Dict=4_096 , lowerCamelCase__ : Tuple=11_008 , lowerCamelCase__ : str=32 , lowerCamelCase__ : Tuple=32 , lowerCamelCase__ : int=None , lowerCamelCase__ : Union[str, Any]="silu" , lowerCamelCase__ : Any=2_048 , lowerCamelCase__ : Tuple=0.02 , lowerCamelCase__ : Dict=1E-6 , lowerCamelCase__ : int=True , lowerCamelCase__ : List[Any]=0 , lowerCamelCase__ : Optional[int]=1 , lowerCamelCase__ : List[str]=2 , lowerCamelCase__ : Optional[int]=1 , lowerCamelCase__ : Tuple=False , lowerCamelCase__ : Optional[int]=None , **lowerCamelCase__ : Union[str, Any] , ):
a__ : List[str] = vocab_size
a__ : str = max_position_embeddings
a__ : Dict = hidden_size
a__ : List[str] = intermediate_size
a__ : Dict = num_hidden_layers
a__ : Optional[Any] = num_attention_heads
# for backward compatibility
if num_key_value_heads is None:
a__ : Tuple = num_attention_heads
a__ : str = num_key_value_heads
a__ : Dict = hidden_act
a__ : Optional[int] = initializer_range
a__ : str = rms_norm_eps
a__ : Optional[Any] = pretraining_tp
a__ : int = use_cache
a__ : Union[str, Any] = rope_scaling
self._rope_scaling_validation()
super().__init__(
pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , tie_word_embeddings=lowerCamelCase__ , **lowerCamelCase__ , )
def _UpperCamelCase( self : Any ):
if self.rope_scaling is None:
return
if not isinstance(self.rope_scaling , lowerCamelCase__ ) or len(self.rope_scaling ) != 2:
raise ValueError(
"`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, "
f'''got {self.rope_scaling}''' )
a__ : Tuple = self.rope_scaling.get("type" , lowerCamelCase__ )
a__ : Tuple = self.rope_scaling.get("factor" , lowerCamelCase__ )
if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]:
raise ValueError(
f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' )
if rope_scaling_factor is None or not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or rope_scaling_factor <= 1.0:
raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
| 37 | from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available
__a : Tuple = {
"""configuration_luke""": ["""LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LukeConfig"""],
"""tokenization_luke""": ["""LukeTokenizer"""],
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
__a : Dict = [
"""LUKE_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""LukeForEntityClassification""",
"""LukeForEntityPairClassification""",
"""LukeForEntitySpanClassification""",
"""LukeForMultipleChoice""",
"""LukeForQuestionAnswering""",
"""LukeForSequenceClassification""",
"""LukeForTokenClassification""",
"""LukeForMaskedLM""",
"""LukeModel""",
"""LukePreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig
from .tokenization_luke import LukeTokenizer
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_luke import (
LUKE_PRETRAINED_MODEL_ARCHIVE_LIST,
LukeForEntityClassification,
LukeForEntityPairClassification,
LukeForEntitySpanClassification,
LukeForMaskedLM,
LukeForMultipleChoice,
LukeForQuestionAnswering,
LukeForSequenceClassification,
LukeForTokenClassification,
LukeModel,
LukePreTrainedModel,
)
else:
import sys
__a : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__) | 534 | 0 |
'''simple docstring'''
from itertools import product
from cva import COLOR_BGR2GRAY, cvtColor, imread, imshow, waitKey
from numpy import dot, exp, mgrid, pi, ravel, square, uinta, zeros
def __UpperCamelCase ( _lowercase, _lowercase ) -> Union[str, Any]:
_lowercase : int = k_size // 2
_lowercase : List[Any] = mgrid[0 - center : k_size - center, 0 - center : k_size - center]
_lowercase : Optional[int] = 1 / (2 * pi * sigma) * exp(-(square(_lowercase ) + square(_lowercase )) / (2 * square(_lowercase )) )
return g
def __UpperCamelCase ( _lowercase, _lowercase, _lowercase ) -> Optional[int]:
_lowercase : Any = image.shape[0], image.shape[1]
# dst image height and width
_lowercase : List[str] = height - k_size + 1
_lowercase : List[str] = width - k_size + 1
# im2col, turn the k_size*k_size pixels into a row and np.vstack all rows
_lowercase : Optional[int] = zeros((dst_height * dst_width, k_size * k_size) )
_lowercase : List[str] = 0
for i, j in product(range(_lowercase ), range(_lowercase ) ):
_lowercase : Optional[int] = ravel(image[i : i + k_size, j : j + k_size] )
_lowercase : Optional[Any] = window
row += 1
# turn the kernel into shape(k*k, 1)
_lowercase : Optional[Any] = gen_gaussian_kernel(_lowercase, _lowercase )
_lowercase : str = ravel(_lowercase )
# reshape and get the dst image
_lowercase : List[str] = dot(_lowercase, _lowercase ).reshape(_lowercase, _lowercase ).astype(_lowercase )
return dst
if __name__ == "__main__":
# read original image
_A : Optional[int] =imread(r'''../image_data/lena.jpg''')
# turn image in gray scale value
_A : Union[str, Any] =cvtColor(img, COLOR_BGR2GRAY)
# get values with two different mask size
_A : Dict =gaussian_filter(gray, 3, sigma=1)
_A : Optional[int] =gaussian_filter(gray, 5, sigma=0.8)
# show result images
imshow('''gaussian filter with 3x3 mask''', gaussianaxa)
imshow('''gaussian filter with 5x5 mask''', gaussianaxa)
waitKey()
| 709 |
'''simple docstring'''
from collections import UserDict
from typing import List, Union
from ..utils import (
add_end_docstrings,
is_tf_available,
is_torch_available,
is_vision_available,
logging,
requires_backends,
)
from .base import PIPELINE_INIT_ARGS, Pipeline
if is_vision_available():
from PIL import Image
from ..image_utils import load_image
if is_torch_available():
from ..models.auto.modeling_auto import MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if is_tf_available():
from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
from ..tf_utils import stable_softmax
_A : Optional[int] =logging.get_logger(__name__)
@add_end_docstrings(A )
class lowerCamelCase__ ( A ):
'''simple docstring'''
def __init__( self : Tuple , **UpperCamelCase_ : List[str] ) -> int:
'''simple docstring'''
super().__init__(**UpperCamelCase_ )
requires_backends(self , 'vision' )
self.check_model_type(
TF_MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING
if self.framework == 'tf'
else MODEL_FOR_ZERO_SHOT_IMAGE_CLASSIFICATION_MAPPING )
def __call__( self : int , UpperCamelCase_ : Union[str, List[str], "Image", List["Image"]] , **UpperCamelCase_ : Tuple ) -> List[Any]:
'''simple docstring'''
return super().__call__(UpperCamelCase_ , **UpperCamelCase_ )
def __UpperCAmelCase ( self : List[Any] , **UpperCamelCase_ : str ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = {}
if "candidate_labels" in kwargs:
_lowercase : Union[str, Any] = kwargs['candidate_labels']
if "hypothesis_template" in kwargs:
_lowercase : int = kwargs['hypothesis_template']
return preprocess_params, {}, {}
def __UpperCAmelCase ( self : Tuple , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : str="This is a photo of {}." ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : Dict = load_image(UpperCamelCase_ )
_lowercase : List[str] = self.image_processor(images=[image] , return_tensors=self.framework )
_lowercase : Optional[Any] = candidate_labels
_lowercase : List[Any] = [hypothesis_template.format(UpperCamelCase_ ) for x in candidate_labels]
_lowercase : Union[str, Any] = self.tokenizer(UpperCamelCase_ , return_tensors=self.framework , padding=UpperCamelCase_ )
_lowercase : Any = [text_inputs]
return inputs
def __UpperCAmelCase ( self : str , UpperCamelCase_ : Union[str, Any] ) -> Optional[Any]:
'''simple docstring'''
_lowercase : Optional[Any] = model_inputs.pop('candidate_labels' )
_lowercase : List[str] = model_inputs.pop('text_inputs' )
if isinstance(text_inputs[0] , UpperCamelCase_ ):
_lowercase : Optional[int] = text_inputs[0]
else:
# Batching case.
_lowercase : List[str] = text_inputs[0][0]
_lowercase : Optional[Any] = self.model(**UpperCamelCase_ , **UpperCamelCase_ )
_lowercase : Optional[Any] = {
'candidate_labels': candidate_labels,
'logits': outputs.logits_per_image,
}
return model_outputs
def __UpperCAmelCase ( self : Optional[int] , UpperCamelCase_ : int ) -> List[str]:
'''simple docstring'''
_lowercase : Optional[int] = model_outputs.pop('candidate_labels' )
_lowercase : Optional[int] = model_outputs['logits'][0]
if self.framework == "pt":
_lowercase : List[Any] = logits.softmax(dim=-1 ).squeeze(-1 )
_lowercase : Tuple = probs.tolist()
if not isinstance(UpperCamelCase_ , UpperCamelCase_ ):
_lowercase : List[Any] = [scores]
elif self.framework == "tf":
_lowercase : Optional[int] = stable_softmax(UpperCamelCase_ , axis=-1 )
_lowercase : List[Any] = probs.numpy().tolist()
else:
raise ValueError(F'''Unsupported framework: {self.framework}''' )
_lowercase : List[Any] = [
{'score': score, 'label': candidate_label}
for score, candidate_label in sorted(zip(UpperCamelCase_ , UpperCamelCase_ ) , key=lambda UpperCamelCase_ : -x[0] )
]
return result
| 4 | 0 |
'''simple docstring'''
import unittest
from transformers import is_torch_available
from transformers.testing_utils import require_torch
if is_torch_available():
import torch
from transformers.generation import DisjunctiveConstraint
@require_torch
class _a ( unittest.TestCase ):
'''simple docstring'''
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : Optional[Any] = [[1, 2, 4], [1, 2, 3, 4]]
SCREAMING_SNAKE_CASE : List[Any] = DisjunctiveConstraint(A )
self.assertTrue(isinstance(dc.token_ids, A ) )
with self.assertRaises(A ):
DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) )
with self.assertRaises(A ):
DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : str = [[1, 2], [1, 2, 3, 4]]
with self.assertRaises(A ):
DisjunctiveConstraint(A ) # fails here
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[Any] = [[1, 2, 3], [1, 2, 4]]
SCREAMING_SNAKE_CASE : List[str] = DisjunctiveConstraint(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = dc.update(1 )
SCREAMING_SNAKE_CASE : Dict = stepped is True and completed is False and reset is False
self.assertTrue(A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = dc.update(2 )
SCREAMING_SNAKE_CASE : int = stepped is True and completed is False and reset is False
self.assertTrue(A )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = dc.update(3 )
SCREAMING_SNAKE_CASE : Union[str, Any] = stepped is True and completed is True and reset is False
self.assertTrue(A )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 3] )
def UpperCamelCase_ ( self ):
'''simple docstring'''
SCREAMING_SNAKE_CASE : List[str] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]]
SCREAMING_SNAKE_CASE : Optional[Any] = DisjunctiveConstraint(A )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = dc.update(4 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.current_seq == [1, 2, 4] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.current_seq == [1, 2, 4, 5] )
dc.reset()
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = dc.update(1 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 3 )
self.assertTrue(dc.current_seq == [1] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = dc.update(2 )
self.assertTrue(not dc.completed )
self.assertTrue(dc.remaining() == 2 )
self.assertTrue(dc.current_seq == [1, 2] )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = dc.update(5 )
self.assertTrue(dc.completed ) # Completed!
self.assertTrue(dc.remaining() == 0 )
self.assertTrue(dc.current_seq == [1, 2, 5] )
| 28 |
import re
from typing import Callable, List, Optional, Union
import tensorflow as tf
try:
from tensorflow.keras.optimizers.legacy import Adam
except ImportError:
from tensorflow.keras.optimizers import Adam
class _UpperCamelCase ( tf.keras.optimizers.schedules.LearningRateSchedule ):
'''simple docstring'''
def __init__( self : Optional[Any] , _lowerCamelCase : float , _lowerCamelCase : Callable , _lowerCamelCase : int , _lowerCamelCase : float = 1.0 , _lowerCamelCase : str = None , ):
'''simple docstring'''
super().__init__()
__lowerCamelCase : Dict = initial_learning_rate
__lowerCamelCase : Any = warmup_steps
__lowerCamelCase : Optional[int] = power
__lowerCamelCase : str = decay_schedule_fn
__lowerCamelCase : Union[str, Any] = name
def __call__( self : List[str] , _lowerCamelCase : int ):
'''simple docstring'''
with tf.name_scope(self.name or """WarmUp""" ) as name:
# Implements polynomial warmup. i.e., if global_step < warmup_steps, the
# learning rate will be `global_step/num_warmup_steps * init_lr`.
__lowerCamelCase : Dict = tf.cast(_lowerCamelCase , tf.floataa )
__lowerCamelCase : Optional[Any] = tf.cast(self.warmup_steps , tf.floataa )
__lowerCamelCase : List[str] = global_step_float / warmup_steps_float
__lowerCamelCase : List[str] = self.initial_learning_rate * tf.math.pow(_lowerCamelCase , self.power )
return tf.cond(
global_step_float < warmup_steps_float , lambda: warmup_learning_rate , lambda: self.decay_schedule_fn(step - self.warmup_steps ) , name=_lowerCamelCase , )
def _snake_case ( self : Any ):
'''simple docstring'''
return {
"initial_learning_rate": self.initial_learning_rate,
"decay_schedule_fn": self.decay_schedule_fn,
"warmup_steps": self.warmup_steps,
"power": self.power,
"name": self.name,
}
def _UpperCAmelCase ( UpperCAmelCase : float , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : float = 0.0 , UpperCAmelCase : float = 0.9 , UpperCAmelCase : float = 0.9_9_9 , UpperCAmelCase : float = 1e-8 , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : Optional[float] = None , UpperCAmelCase : float = 0.0 , UpperCAmelCase : float = 1.0 , UpperCAmelCase : Optional[List[str]] = None , ):
"""simple docstring"""
__lowerCamelCase : str = tf.keras.optimizers.schedules.PolynomialDecay(
initial_learning_rate=UpperCAmelCase , decay_steps=num_train_steps - num_warmup_steps , end_learning_rate=init_lr * min_lr_ratio , power=UpperCAmelCase , )
if num_warmup_steps:
__lowerCamelCase : str = WarmUp(
initial_learning_rate=UpperCAmelCase , decay_schedule_fn=UpperCAmelCase , warmup_steps=UpperCAmelCase , )
if weight_decay_rate > 0.0:
__lowerCamelCase : List[Any] = AdamWeightDecay(
learning_rate=UpperCAmelCase , weight_decay_rate=UpperCAmelCase , beta_a=UpperCAmelCase , beta_a=UpperCAmelCase , epsilon=UpperCAmelCase , clipnorm=UpperCAmelCase , global_clipnorm=UpperCAmelCase , exclude_from_weight_decay=["""LayerNorm""", """layer_norm""", """bias"""] , include_in_weight_decay=UpperCAmelCase , )
else:
__lowerCamelCase : Optional[int] = tf.keras.optimizers.Adam(
learning_rate=UpperCAmelCase , beta_a=UpperCAmelCase , beta_a=UpperCAmelCase , epsilon=UpperCAmelCase , clipnorm=UpperCAmelCase , global_clipnorm=UpperCAmelCase , )
# We return the optimizer and the LR scheduler in order to better track the
# evolution of the LR independently of the optimizer.
return optimizer, lr_schedule
class _UpperCamelCase ( A ):
'''simple docstring'''
def __init__( self : Tuple , _lowerCamelCase : Union[float, tf.keras.optimizers.schedules.LearningRateSchedule] = 0.001 , _lowerCamelCase : float = 0.9 , _lowerCamelCase : float = 0.999 , _lowerCamelCase : float = 1E-7 , _lowerCamelCase : bool = False , _lowerCamelCase : float = 0.0 , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : Optional[List[str]] = None , _lowerCamelCase : str = "AdamWeightDecay" , **_lowerCamelCase : Union[str, Any] , ):
'''simple docstring'''
super().__init__(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
__lowerCamelCase : Union[str, Any] = weight_decay_rate
__lowerCamelCase : Tuple = include_in_weight_decay
__lowerCamelCase : Optional[Any] = exclude_from_weight_decay
@classmethod
def _snake_case ( cls : Union[str, Any] , _lowerCamelCase : List[Any] ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = {"""WarmUp""": WarmUp}
return super(_lowerCamelCase , cls ).from_config(_lowerCamelCase , custom_objects=_lowerCamelCase )
def _snake_case ( self : str , _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
super(_lowerCamelCase , self )._prepare_local(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
__lowerCamelCase : Optional[Any] = tf.constant(
self.weight_decay_rate , name="""adam_weight_decay_rate""" )
def _snake_case ( self : Union[str, Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple ):
'''simple docstring'''
__lowerCamelCase : Optional[Any] = self._do_use_weight_decay(var.name )
if do_decay:
return var.assign_sub(
learning_rate * var * apply_state[(var.device, var.dtype.base_dtype)]["""weight_decay_rate"""] , use_locking=self._use_locking , )
return tf.no_op()
def _snake_case ( self : Tuple , _lowerCamelCase : Tuple , _lowerCamelCase : str=None , **_lowerCamelCase : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase : Union[str, Any] = list(zip(*_lowerCamelCase ) )
return super(_lowerCamelCase , self ).apply_gradients(zip(_lowerCamelCase , _lowerCamelCase ) , name=_lowerCamelCase , **_lowerCamelCase )
def _snake_case ( self : int , _lowerCamelCase : Optional[int] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] ):
'''simple docstring'''
if apply_state is None:
return self._decayed_lr_t[var_dtype], {}
__lowerCamelCase : Union[str, Any] = apply_state or {}
__lowerCamelCase : Union[str, Any] = apply_state.get((var_device, var_dtype) )
if coefficients is None:
__lowerCamelCase : List[str] = self._fallback_apply_state(_lowerCamelCase , _lowerCamelCase )
__lowerCamelCase : Dict = coefficients
return coefficients["lr_t"], {"apply_state": apply_state}
def _snake_case ( self : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Dict=None ):
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase : Optional[Any] = self._get_lr(var.device , var.dtype.base_dtype , _lowerCamelCase )
__lowerCamelCase : Dict = self._decay_weights_op(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
with tf.control_dependencies([decay] ):
return super(_lowerCamelCase , self )._resource_apply_dense(_lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
def _snake_case ( self : Union[str, Any] , _lowerCamelCase : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : Tuple , _lowerCamelCase : Tuple=None ):
'''simple docstring'''
__lowerCamelCase , __lowerCamelCase : int = self._get_lr(var.device , var.dtype.base_dtype , _lowerCamelCase )
__lowerCamelCase : str = self._decay_weights_op(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
with tf.control_dependencies([decay] ):
return super(_lowerCamelCase , self )._resource_apply_sparse(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , **_lowerCamelCase )
def _snake_case ( self : int ):
'''simple docstring'''
__lowerCamelCase : int = super().get_config()
config.update({"""weight_decay_rate""": self.weight_decay_rate} )
return config
def _snake_case ( self : Dict , _lowerCamelCase : List[str] ):
'''simple docstring'''
if self.weight_decay_rate == 0:
return False
if self._include_in_weight_decay:
for r in self._include_in_weight_decay:
if re.search(_lowerCamelCase , _lowerCamelCase ) is not None:
return True
if self._exclude_from_weight_decay:
for r in self._exclude_from_weight_decay:
if re.search(_lowerCamelCase , _lowerCamelCase ) is not None:
return False
return True
class _UpperCamelCase ( A ):
'''simple docstring'''
def __init__( self : Union[str, Any] ):
'''simple docstring'''
__lowerCamelCase : Optional[int] = []
__lowerCamelCase : int = None
@property
def _snake_case ( self : Tuple ):
'''simple docstring'''
if self._accum_steps is None:
__lowerCamelCase : Any = tf.Variable(
tf.constant(0 , dtype=tf.intaa ) , trainable=_lowerCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
return self._accum_steps.value()
@property
def _snake_case ( self : Any ):
'''simple docstring'''
if not self._gradients:
raise ValueError("""The accumulator should be called first to initialize the gradients""" )
return [gradient.value() if gradient is not None else gradient for gradient in self._gradients]
def __call__( self : List[str] , _lowerCamelCase : List[str] ):
'''simple docstring'''
if not self._gradients:
__lowerCamelCase : List[str] = self.step # Create the step variable.
self._gradients.extend(
[
tf.Variable(
tf.zeros_like(_lowerCamelCase ) , trainable=_lowerCamelCase , synchronization=tf.VariableSynchronization.ON_READ , aggregation=tf.VariableAggregation.ONLY_FIRST_REPLICA , )
if gradient is not None
else gradient
for gradient in gradients
] )
if len(_lowerCamelCase ) != len(self._gradients ):
raise ValueError(F"""Expected {len(self._gradients )} gradients, but got {len(_lowerCamelCase )}""" )
for accum_gradient, gradient in zip(self._gradients , _lowerCamelCase ):
if accum_gradient is not None and gradient is not None:
accum_gradient.assign_add(_lowerCamelCase )
self._accum_steps.assign_add(1 )
def _snake_case ( self : Any ):
'''simple docstring'''
if not self._gradients:
return
self._accum_steps.assign(0 )
for gradient in self._gradients:
if gradient is not None:
gradient.assign(tf.zeros_like(_lowerCamelCase ) )
| 519 | 0 |
'''simple docstring'''
def lowerCAmelCase ( UpperCamelCase__ : int = 3 , UpperCamelCase__ : int = 7 , UpperCamelCase__ : int = 1_0_0_0_0_0_0 ):
"""simple docstring"""
__UpperCAmelCase = 0
__UpperCAmelCase = 1
for current_denominator in range(1 , limit + 1 ):
__UpperCAmelCase = current_denominator * numerator // denominator
if current_denominator % denominator == 0:
current_numerator -= 1
if current_numerator * max_denominator > current_denominator * max_numerator:
__UpperCAmelCase = current_numerator
__UpperCAmelCase = current_denominator
return max_numerator
if __name__ == "__main__":
print(solution(numerator=3, denominator=7, limit=1_000_000))
| 654 | '''simple docstring'''
import heapq
import sys
import numpy as np
__lowerCAmelCase : Any = tuple[int, int]
class A :
def __init__( self : Optional[int] ) -> int:
__UpperCAmelCase = []
__UpperCAmelCase = set()
def snake_case__ ( self : Optional[Any] ) -> List[Any]:
if not self.empty():
return self.elements[0][0]
else:
return float('''inf''' )
def snake_case__ ( self : Dict ) -> Optional[int]:
return len(self.elements ) == 0
def snake_case__ ( self : Optional[int] , __a : Optional[Any] , __a : Dict ) -> Optional[Any]:
if item not in self.set:
heapq.heappush(self.elements , (priority, item) )
self.set.add(__a )
else:
# update
# print("update", item)
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pri, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
temp.append((priority, item) )
for pro, xxx in temp:
heapq.heappush(self.elements , (pro, xxx) )
def snake_case__ ( self : int , __a : Any ) -> int:
if item in self.set:
self.set.remove(__a )
__UpperCAmelCase = []
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
while x != item:
temp.append((pro, x) )
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
for prito, yyy in temp:
heapq.heappush(self.elements , (prito, yyy) )
def snake_case__ ( self : List[str] ) -> Dict:
return self.elements[0][1]
def snake_case__ ( self : Any ) -> List[str]:
((__UpperCAmelCase) , (__UpperCAmelCase)) = heapq.heappop(self.elements )
self.set.remove(__a )
return (priority, item)
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# euclidean distance
__UpperCAmelCase = np.array(UpperCamelCase__ )
__UpperCAmelCase = np.array(UpperCamelCase__ )
return np.linalg.norm(a - b )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# integer division by time variable
return consistent_heuristic(UpperCamelCase__ , UpperCamelCase__ ) // t
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos ):
"""simple docstring"""
# manhattan distance
return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] )
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : int , UpperCamelCase__ : TPos , UpperCamelCase__ : dict[TPos, float] ):
"""simple docstring"""
__UpperCAmelCase = g_function[start] + Wa * heuristics[i](UpperCamelCase__ , UpperCamelCase__ )
return ans
def lowerCAmelCase ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : int , UpperCamelCase__ : Optional[int] ):
"""simple docstring"""
__UpperCAmelCase = np.chararray((n, n) )
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
__UpperCAmelCase = '''*'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (j, (n - 1) - i) in blocks:
__UpperCAmelCase = '''#'''
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[goal]
while x != start:
((__UpperCAmelCase) , (__UpperCAmelCase)) = x
# print(x)
__UpperCAmelCase = '''-'''
__UpperCAmelCase = back_pointer[x]
__UpperCAmelCase = '''-'''
for i in range(UpperCamelCase__ ):
for j in range(UpperCamelCase__ ):
if (i, j) == (0, n - 1):
print(grid[i][j] , end=''' ''' )
print('''<-- End position''' , end=''' ''' )
else:
print(grid[i][j] , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
print('''PATH TAKEN BY THE ALGORITHM IS:-''' )
__UpperCAmelCase = back_pointer[goal]
while x != start:
print(UpperCamelCase__ , end=''' ''' )
__UpperCAmelCase = back_pointer[x]
print(UpperCamelCase__ )
sys.exit()
def lowerCAmelCase ( UpperCamelCase__ : TPos ):
"""simple docstring"""
if p[0] < 0 or p[0] > n - 1:
return False
if p[1] < 0 or p[1] > n - 1:
return False
return True
def lowerCAmelCase ( UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : int , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , ):
"""simple docstring"""
for itera in range(UpperCamelCase__ ):
open_list[itera].remove_element(UpperCamelCase__ )
# print("s", s)
# print("j", j)
((__UpperCAmelCase) , (__UpperCAmelCase)) = s
__UpperCAmelCase = (x - 1, y)
__UpperCAmelCase = (x + 1, y)
__UpperCAmelCase = (x, y + 1)
__UpperCAmelCase = (x, y - 1)
for neighbours in [left, right, up, down]:
if neighbours not in blocks:
if valid(UpperCamelCase__ ) and neighbours not in visited:
# print("neighbour", neighbours)
visited.add(UpperCamelCase__ )
__UpperCAmelCase = -1
__UpperCAmelCase = float('''inf''' )
if valid(UpperCamelCase__ ) and g_function[neighbours] > g_function[s] + 1:
__UpperCAmelCase = g_function[s] + 1
__UpperCAmelCase = s
if neighbours not in close_list_anchor:
open_list[0].put(UpperCamelCase__ , key(UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ) )
if neighbours not in close_list_inad:
for var in range(1 , UpperCamelCase__ ):
if key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) <= Wa * key(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ ):
open_list[j].put(
UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
def lowerCAmelCase ( ):
"""simple docstring"""
__UpperCAmelCase = []
for x in range(1 , 5 ):
for y in range(1 , 6 ):
some_list.append((x, y) )
for x in range(1_5 , 2_0 ):
some_list.append((x, 1_7) )
for x in range(1_0 , 1_9 ):
for y in range(1 , 1_5 ):
some_list.append((x, y) )
# L block
for x in range(1 , 4 ):
for y in range(1_2 , 1_9 ):
some_list.append((x, y) )
for x in range(3 , 1_3 ):
for y in range(1_6 , 1_9 ):
some_list.append((x, y) )
return some_list
__lowerCAmelCase : Optional[Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a}
__lowerCAmelCase : List[Any] = [
(0, 1),
(1, 1),
(2, 1),
(3, 1),
(4, 1),
(5, 1),
(6, 1),
(7, 1),
(8, 1),
(9, 1),
(10, 1),
(11, 1),
(12, 1),
(13, 1),
(14, 1),
(15, 1),
(16, 1),
(17, 1),
(18, 1),
(19, 1),
]
__lowerCAmelCase : Dict = make_common_ground()
__lowerCAmelCase : int = blocks_blk
# hyper parameters
__lowerCAmelCase : Dict = 1
__lowerCAmelCase : List[str] = 1
__lowerCAmelCase : Union[str, Any] = 20
__lowerCAmelCase : Any = 3 # one consistent and two other inconsistent
# start and end destination
__lowerCAmelCase : Optional[Any] = (0, 0)
__lowerCAmelCase : Any = (n - 1, n - 1)
__lowerCAmelCase : Optional[int] = 1
def lowerCAmelCase ( UpperCamelCase__ : TPos , UpperCamelCase__ : TPos , UpperCamelCase__ : int ):
"""simple docstring"""
__UpperCAmelCase = {start: 0, goal: float('''inf''' )}
__UpperCAmelCase = {start: -1, goal: -1}
__UpperCAmelCase = []
__UpperCAmelCase = set()
for i in range(UpperCamelCase__ ):
open_list.append(PriorityQueue() )
open_list[i].put(UpperCamelCase__ , key(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) )
__UpperCAmelCase = []
__UpperCAmelCase = []
while open_list[0].minkey() < float('''inf''' ):
for i in range(1 , UpperCamelCase__ ):
# print(open_list[0].minkey(), open_list[i].minkey())
if open_list[i].minkey() <= Wa * open_list[0].minkey():
global t
t += 1
if g_function[goal] <= open_list[i].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase , __UpperCAmelCase = open_list[i].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_inad.append(UpperCamelCase__ )
else:
if g_function[goal] <= open_list[0].minkey():
if g_function[goal] < float('''inf''' ):
do_something(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ )
else:
__UpperCAmelCase = open_list[0].top_show()
visited.add(UpperCamelCase__ )
expand_state(
UpperCamelCase__ , 0 , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , )
close_list_anchor.append(UpperCamelCase__ )
print('''No path found to goal''' )
print()
for i in range(n - 1 , -1 , -1 ):
for j in range(UpperCamelCase__ ):
if (j, i) in blocks:
print('''#''' , end=''' ''' )
elif (j, i) in back_pointer:
if (j, i) == (n - 1, n - 1):
print('''*''' , end=''' ''' )
else:
print('''-''' , end=''' ''' )
else:
print('''*''' , end=''' ''' )
if (j, i) == (n - 1, n - 1):
print('''<-- End position''' , end=''' ''' )
print()
print('''^''' )
print('''Start position''' )
print()
print('''# is an obstacle''' )
print('''- is the path taken by algorithm''' )
if __name__ == "__main__":
multi_a_star(start, goal, n_heuristic)
| 654 | 1 |
"""simple docstring"""
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
from ...utils.dataclasses import (
ComputeEnvironment,
DistributedType,
DynamoBackend,
PrecisionType,
SageMakerDistributedType,
)
from ..menu import BulletMenu
a = [
'''EAGER''',
'''AOT_EAGER''',
'''INDUCTOR''',
'''NVFUSER''',
'''AOT_NVFUSER''',
'''AOT_CUDAGRAPHS''',
'''OFI''',
'''FX2TRT''',
'''ONNXRT''',
'''IPEX''',
]
def _snake_case ( _snake_case : Union[str, Any] , _snake_case : Any=None , _snake_case : Any=None , _snake_case : List[str]=None ) -> Optional[int]:
'''simple docstring'''
_A = True
while ask_again:
_A = input(_snake_case )
try:
if default is not None and len(_snake_case ) == 0:
return default
return convert_value(_snake_case ) if convert_value is not None else result
except Exception:
if error_message is not None:
print(_snake_case )
def _snake_case ( _snake_case : List[str] , _snake_case : Optional[Any]=[] , _snake_case : str=None , _snake_case : Tuple=0 ) -> Union[str, Any]:
'''simple docstring'''
_A = BulletMenu(_snake_case , _snake_case )
_A = menu.run(default_choice=_snake_case )
return convert_value(_snake_case ) if convert_value is not None else result
def _snake_case ( _snake_case : str ) -> Optional[Any]:
'''simple docstring'''
_A = int(_snake_case )
return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] )
def _snake_case ( _snake_case : Any ) -> Tuple:
'''simple docstring'''
_A = int(_snake_case )
return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] )
def _snake_case ( _snake_case : List[Any] ) -> Optional[int]:
'''simple docstring'''
_A = int(_snake_case )
return DynamoBackend(DYNAMO_BACKENDS[value] ).value
def _snake_case ( _snake_case : Tuple ) -> Union[str, Any]:
'''simple docstring'''
_A = int(_snake_case )
return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] )
def _snake_case ( _snake_case : Optional[int] ) -> List[str]:
'''simple docstring'''
_A = int(_snake_case )
return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] )
def _snake_case ( _snake_case : int ) -> List[Any]:
'''simple docstring'''
return {"yes": True, "no": False}[value.lower()]
class lowercase_ ( argparse.RawDescriptionHelpFormatter ):
'''simple docstring'''
def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : str ):
_A = super()._format_usage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase )
_A = usage.replace('<command> [<args>] ' , '' )
return usage
| 7 |
def A ( _lowerCamelCase ):
'''simple docstring'''
if not isinstance(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : Union[str, Any] = F"Input value of [number={number}] must be an integer"
raise TypeError(_lowerCamelCase )
if number < 1:
_lowerCAmelCase : Tuple = F"Input value of [number={number}] must be > 0"
raise ValueError(_lowerCamelCase )
_lowerCAmelCase : Dict = 1
for i in range(1 , _lowerCamelCase ):
current_number *= 4 * i - 2
current_number //= i + 1
return current_number
if __name__ == "__main__":
import doctest
doctest.testmod()
| 500 | 0 |
def __lowerCAmelCase ( __magic_name__ = 1_0_0_0_0_0_0 ):
'''simple docstring'''
_lowercase: Optional[int] = set(range(3 , snake_case__ , 2 ) )
primes.add(2 )
for p in range(3 , snake_case__ , 2 ):
if p not in primes:
continue
primes.difference_update(set(range(p * p , snake_case__ , snake_case__ ) ) )
_lowercase: Tuple = [float(snake_case__ ) for n in range(limit + 1 )]
for p in primes:
for n in range(snake_case__ , limit + 1 , snake_case__ ):
phi[n] *= 1 - 1 / p
return int(sum(phi[2:] ) )
if __name__ == "__main__":
print(f'''{solution() = }''')
| 717 |
def __lowerCAmelCase ( __magic_name__ , __magic_name__ ):
_lowercase: List[Any] = [0 for i in range(r + 1 )]
# nc0 = 1
_lowercase: Dict = 1
for i in range(1 , n + 1 ):
# to compute current row from previous row.
_lowercase: str = min(__magic_name__ , __magic_name__ )
while j > 0:
c[j] += c[j - 1]
j -= 1
return c[r]
print(binomial_coefficient(n=10, r=5))
| 206 | 0 |
import torch
from diffusers import DDIMParallelScheduler
from .test_schedulers import SchedulerCommonTest
class _lowerCAmelCase ( UpperCamelCase__ ):
lowerCamelCase__ = (DDIMParallelScheduler,)
lowerCamelCase__ = (('eta', 0.0), ('num_inference_steps', 50))
def __a ( self , **snake_case_ ) -> Any:
SCREAMING_SNAKE_CASE : Union[str, Any] ={
'''num_train_timesteps''': 1_000,
'''beta_start''': 0.0001,
'''beta_end''': 0.02,
'''beta_schedule''': '''linear''',
'''clip_sample''': True,
}
config.update(**snake_case_ )
return config
def __a ( self , **snake_case_ ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE : Optional[Any] =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Tuple =self.get_scheduler_config(**snake_case_ )
SCREAMING_SNAKE_CASE : Union[str, Any] =scheduler_class(**snake_case_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] =10, 0.0
SCREAMING_SNAKE_CASE : int =self.dummy_model()
SCREAMING_SNAKE_CASE : Tuple =self.dummy_sample_deter
scheduler.set_timesteps(snake_case_ )
for t in scheduler.timesteps:
SCREAMING_SNAKE_CASE : List[str] =model(snake_case_ , snake_case_ )
SCREAMING_SNAKE_CASE : str =scheduler.step(snake_case_ , snake_case_ , snake_case_ , snake_case_ ).prev_sample
return sample
def __a ( self ) -> Any:
for timesteps in [100, 500, 1_000]:
self.check_over_configs(num_train_timesteps=snake_case_ )
def __a ( self ) -> str:
for steps_offset in [0, 1]:
self.check_over_configs(steps_offset=snake_case_ )
SCREAMING_SNAKE_CASE : Union[str, Any] =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Union[str, Any] =self.get_scheduler_config(steps_offset=1 )
SCREAMING_SNAKE_CASE : Any =scheduler_class(**snake_case_ )
scheduler.set_timesteps(5 )
assert torch.equal(scheduler.timesteps , torch.LongTensor([801, 601, 401, 201, 1] ) )
def __a ( self ) -> Optional[int]:
for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ):
self.check_over_configs(beta_start=snake_case_ , beta_end=snake_case_ )
def __a ( self ) -> List[str]:
for schedule in ["linear", "squaredcos_cap_v2"]:
self.check_over_configs(beta_schedule=snake_case_ )
def __a ( self ) -> str:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(prediction_type=snake_case_ )
def __a ( self ) -> Tuple:
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=snake_case_ )
def __a ( self ) -> Tuple:
for timestep_spacing in ["trailing", "leading"]:
self.check_over_configs(timestep_spacing=snake_case_ )
def __a ( self ) -> int:
for rescale_betas_zero_snr in [True, False]:
self.check_over_configs(rescale_betas_zero_snr=snake_case_ )
def __a ( self ) -> Union[str, Any]:
self.check_over_configs(thresholding=snake_case_ )
for threshold in [0.5, 1.0, 2.0]:
for prediction_type in ["epsilon", "v_prediction"]:
self.check_over_configs(
thresholding=snake_case_ , prediction_type=snake_case_ , sample_max_value=snake_case_ , )
def __a ( self ) -> str:
for t in [1, 10, 49]:
self.check_over_forward(time_step=snake_case_ )
def __a ( self ) -> Any:
for t, num_inference_steps in zip([1, 10, 50] , [10, 50, 500] ):
self.check_over_forward(time_step=snake_case_ , num_inference_steps=snake_case_ )
def __a ( self ) -> Optional[int]:
for t, eta in zip([1, 10, 49] , [0.0, 0.5, 1.0] ):
self.check_over_forward(time_step=snake_case_ , eta=snake_case_ )
def __a ( self ) -> Optional[Any]:
SCREAMING_SNAKE_CASE : Any =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : Optional[int] =self.get_scheduler_config()
SCREAMING_SNAKE_CASE : List[Any] =scheduler_class(**snake_case_ )
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(420 , 400 ) - 0.1_4771 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(980 , 960 ) - 0.3_2460 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(0 , 0 ) - 0.0 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(487 , 486 ) - 0.0_0979 ) ) < 1E-5
assert torch.sum(torch.abs(scheduler._get_variance(999 , 998 ) - 0.02 ) ) < 1E-5
def __a ( self ) -> List[str]:
SCREAMING_SNAKE_CASE : Union[str, Any] =self.scheduler_classes[0]
SCREAMING_SNAKE_CASE : List[Any] =self.get_scheduler_config()
SCREAMING_SNAKE_CASE : int =scheduler_class(**snake_case_ )
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any =10, 0.0
scheduler.set_timesteps(snake_case_ )
SCREAMING_SNAKE_CASE : Dict =self.dummy_model()
SCREAMING_SNAKE_CASE : Union[str, Any] =self.dummy_sample_deter
SCREAMING_SNAKE_CASE : Dict =self.dummy_sample_deter + 0.1
SCREAMING_SNAKE_CASE : Dict =self.dummy_sample_deter - 0.1
SCREAMING_SNAKE_CASE : Tuple =samplea.shape[0]
SCREAMING_SNAKE_CASE : Any =torch.stack([samplea, samplea, samplea] , dim=0 )
SCREAMING_SNAKE_CASE : Union[str, Any] =torch.arange(snake_case_ )[0:3, None].repeat(1 , snake_case_ )
SCREAMING_SNAKE_CASE : Dict =model(samples.flatten(0 , 1 ) , timesteps.flatten(0 , 1 ) )
SCREAMING_SNAKE_CASE : Optional[Any] =scheduler.batch_step_no_noise(snake_case_ , timesteps.flatten(0 , 1 ) , samples.flatten(0 , 1 ) , snake_case_ )
SCREAMING_SNAKE_CASE : Optional[Any] =torch.sum(torch.abs(snake_case_ ) )
SCREAMING_SNAKE_CASE : Union[str, Any] =torch.mean(torch.abs(snake_case_ ) )
assert abs(result_sum.item() - 1147.7904 ) < 1E-2
assert abs(result_mean.item() - 0.4982 ) < 1E-3
def __a ( self ) -> str:
SCREAMING_SNAKE_CASE : Dict =self.full_loop()
SCREAMING_SNAKE_CASE : Any =torch.sum(torch.abs(snake_case_ ) )
SCREAMING_SNAKE_CASE : Dict =torch.mean(torch.abs(snake_case_ ) )
assert abs(result_sum.item() - 172.0067 ) < 1E-2
assert abs(result_mean.item() - 0.22_3967 ) < 1E-3
def __a ( self ) -> Any:
SCREAMING_SNAKE_CASE : Dict =self.full_loop(prediction_type='''v_prediction''' )
SCREAMING_SNAKE_CASE : List[Any] =torch.sum(torch.abs(snake_case_ ) )
SCREAMING_SNAKE_CASE : List[Any] =torch.mean(torch.abs(snake_case_ ) )
assert abs(result_sum.item() - 52.5302 ) < 1E-2
assert abs(result_mean.item() - 0.0684 ) < 1E-3
def __a ( self ) -> Tuple:
# We specify different beta, so that the first alpha is 0.99
SCREAMING_SNAKE_CASE : List[str] =self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 )
SCREAMING_SNAKE_CASE : List[Any] =torch.sum(torch.abs(snake_case_ ) )
SCREAMING_SNAKE_CASE : int =torch.mean(torch.abs(snake_case_ ) )
assert abs(result_sum.item() - 149.8295 ) < 1E-2
assert abs(result_mean.item() - 0.1951 ) < 1E-3
def __a ( self ) -> Optional[int]:
# We specify different beta, so that the first alpha is 0.99
SCREAMING_SNAKE_CASE : Any =self.full_loop(set_alpha_to_one=snake_case_ , beta_start=0.01 )
SCREAMING_SNAKE_CASE : List[str] =torch.sum(torch.abs(snake_case_ ) )
SCREAMING_SNAKE_CASE : Union[str, Any] =torch.mean(torch.abs(snake_case_ ) )
assert abs(result_sum.item() - 149.0784 ) < 1E-2
assert abs(result_mean.item() - 0.1941 ) < 1E-3
| 258 |
import argparse
import os
import shutil
from pathlib import Path
import onnx
import torch
from packaging import version
from torch.onnx import export
from diffusers import OnnxRuntimeModel, OnnxStableDiffusionPipeline, StableDiffusionPipeline
_A = version.parse(version.parse(torch.__version__).base_version) < version.parse("""1.11""")
def lowerCAmelCase_ ( __a , __a , __a , __a , __a , __a , __a , __a=False , ) -> Optional[Any]:
"""simple docstring"""
output_path.parent.mkdir(parents=__a , exist_ok=__a )
# PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
# so we check the torch version for backwards compatibility
if is_torch_less_than_1_11:
export(
__a , __a , f=output_path.as_posix() , input_names=__a , output_names=__a , dynamic_axes=__a , do_constant_folding=__a , use_external_data_format=__a , enable_onnx_checker=__a , opset_version=__a , )
else:
export(
__a , __a , f=output_path.as_posix() , input_names=__a , output_names=__a , dynamic_axes=__a , do_constant_folding=__a , opset_version=__a , )
@torch.no_grad()
def lowerCAmelCase_ ( __a , __a , __a , __a = False ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE : List[str] =torch.floataa if fpaa else torch.floataa
if fpaa and torch.cuda.is_available():
SCREAMING_SNAKE_CASE : Dict ='''cuda'''
elif fpaa and not torch.cuda.is_available():
raise ValueError('''`float16` model export is only supported on GPUs with CUDA''' )
else:
SCREAMING_SNAKE_CASE : int ='''cpu'''
SCREAMING_SNAKE_CASE : Union[str, Any] =StableDiffusionPipeline.from_pretrained(__a , torch_dtype=__a ).to(__a )
SCREAMING_SNAKE_CASE : Optional[Any] =Path(__a )
# TEXT ENCODER
SCREAMING_SNAKE_CASE : List[Any] =pipeline.text_encoder.config.max_position_embeddings
SCREAMING_SNAKE_CASE : Tuple =pipeline.text_encoder.config.hidden_size
SCREAMING_SNAKE_CASE : Optional[int] =pipeline.tokenizer(
'''A sample prompt''' , padding='''max_length''' , max_length=pipeline.tokenizer.model_max_length , truncation=__a , return_tensors='''pt''' , )
onnx_export(
pipeline.text_encoder , model_args=(text_input.input_ids.to(device=__a , dtype=torch.intaa )) , output_path=output_path / '''text_encoder''' / '''model.onnx''' , ordered_input_names=['''input_ids'''] , output_names=['''last_hidden_state''', '''pooler_output'''] , dynamic_axes={
'''input_ids''': {0: '''batch''', 1: '''sequence'''},
} , opset=__a , )
del pipeline.text_encoder
# UNET
SCREAMING_SNAKE_CASE : Optional[int] =pipeline.unet.config.in_channels
SCREAMING_SNAKE_CASE : List[Any] =pipeline.unet.config.sample_size
SCREAMING_SNAKE_CASE : str =output_path / '''unet''' / '''model.onnx'''
onnx_export(
pipeline.unet , model_args=(
torch.randn(2 , __a , __a , __a ).to(device=__a , dtype=__a ),
torch.randn(2 ).to(device=__a , dtype=__a ),
torch.randn(2 , __a , __a ).to(device=__a , dtype=__a ),
False,
) , output_path=__a , ordered_input_names=['''sample''', '''timestep''', '''encoder_hidden_states''', '''return_dict'''] , output_names=['''out_sample'''] , dynamic_axes={
'''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''},
'''timestep''': {0: '''batch'''},
'''encoder_hidden_states''': {0: '''batch''', 1: '''sequence'''},
} , opset=__a , use_external_data_format=__a , )
SCREAMING_SNAKE_CASE : Optional[int] =str(unet_path.absolute().as_posix() )
SCREAMING_SNAKE_CASE : List[str] =os.path.dirname(__a )
SCREAMING_SNAKE_CASE : Optional[int] =onnx.load(__a )
# clean up existing tensor files
shutil.rmtree(__a )
os.mkdir(__a )
# collate external tensor files into one
onnx.save_model(
__a , __a , save_as_external_data=__a , all_tensors_to_one_file=__a , location='''weights.pb''' , convert_attribute=__a , )
del pipeline.unet
# VAE ENCODER
SCREAMING_SNAKE_CASE : str =pipeline.vae
SCREAMING_SNAKE_CASE : Any =vae_encoder.config.in_channels
SCREAMING_SNAKE_CASE : List[str] =vae_encoder.config.sample_size
# need to get the raw tensor output (sample) from the encoder
SCREAMING_SNAKE_CASE : Union[str, Any] =lambda __a , __a : vae_encoder.encode(__a , __a )[0].sample()
onnx_export(
__a , model_args=(
torch.randn(1 , __a , __a , __a ).to(device=__a , dtype=__a ),
False,
) , output_path=output_path / '''vae_encoder''' / '''model.onnx''' , ordered_input_names=['''sample''', '''return_dict'''] , output_names=['''latent_sample'''] , dynamic_axes={
'''sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''},
} , opset=__a , )
# VAE DECODER
SCREAMING_SNAKE_CASE : str =pipeline.vae
SCREAMING_SNAKE_CASE : Optional[int] =vae_decoder.config.latent_channels
SCREAMING_SNAKE_CASE : int =vae_decoder.config.out_channels
# forward only through the decoder part
SCREAMING_SNAKE_CASE : Dict =vae_encoder.decode
onnx_export(
__a , model_args=(
torch.randn(1 , __a , __a , __a ).to(device=__a , dtype=__a ),
False,
) , output_path=output_path / '''vae_decoder''' / '''model.onnx''' , ordered_input_names=['''latent_sample''', '''return_dict'''] , output_names=['''sample'''] , dynamic_axes={
'''latent_sample''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''},
} , opset=__a , )
del pipeline.vae
# SAFETY CHECKER
if pipeline.safety_checker is not None:
SCREAMING_SNAKE_CASE : Any =pipeline.safety_checker
SCREAMING_SNAKE_CASE : Dict =safety_checker.config.vision_config.num_channels
SCREAMING_SNAKE_CASE : Optional[Any] =safety_checker.config.vision_config.image_size
SCREAMING_SNAKE_CASE : List[str] =safety_checker.forward_onnx
onnx_export(
pipeline.safety_checker , model_args=(
torch.randn(
1 , __a , __a , __a , ).to(device=__a , dtype=__a ),
torch.randn(1 , __a , __a , __a ).to(device=__a , dtype=__a ),
) , output_path=output_path / '''safety_checker''' / '''model.onnx''' , ordered_input_names=['''clip_input''', '''images'''] , output_names=['''out_images''', '''has_nsfw_concepts'''] , dynamic_axes={
'''clip_input''': {0: '''batch''', 1: '''channels''', 2: '''height''', 3: '''width'''},
'''images''': {0: '''batch''', 1: '''height''', 2: '''width''', 3: '''channels'''},
} , opset=__a , )
del pipeline.safety_checker
SCREAMING_SNAKE_CASE : int =OnnxRuntimeModel.from_pretrained(output_path / '''safety_checker''' )
SCREAMING_SNAKE_CASE : Dict =pipeline.feature_extractor
else:
SCREAMING_SNAKE_CASE : Optional[Any] =None
SCREAMING_SNAKE_CASE : Optional[Any] =None
SCREAMING_SNAKE_CASE : Union[str, Any] =OnnxStableDiffusionPipeline(
vae_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_encoder''' ) , vae_decoder=OnnxRuntimeModel.from_pretrained(output_path / '''vae_decoder''' ) , text_encoder=OnnxRuntimeModel.from_pretrained(output_path / '''text_encoder''' ) , tokenizer=pipeline.tokenizer , unet=OnnxRuntimeModel.from_pretrained(output_path / '''unet''' ) , scheduler=pipeline.scheduler , safety_checker=__a , feature_extractor=__a , requires_safety_checker=safety_checker is not None , )
onnx_pipeline.save_pretrained(__a )
print('''ONNX pipeline saved to''' , __a )
del pipeline
del onnx_pipeline
SCREAMING_SNAKE_CASE : str =OnnxStableDiffusionPipeline.from_pretrained(__a , provider='''CPUExecutionProvider''' )
print('''ONNX pipeline is loadable''' )
if __name__ == "__main__":
_A = argparse.ArgumentParser()
parser.add_argument(
"""--model_path""",
type=str,
required=True,
help="""Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).""",
)
parser.add_argument("""--output_path""", type=str, required=True, help="""Path to the output model.""")
parser.add_argument(
"""--opset""",
default=14,
type=int,
help="""The version of the ONNX operator set to use.""",
)
parser.add_argument("""--fp16""", action="""store_true""", default=False, help="""Export the models in `float16` mode""")
_A = parser.parse_args()
convert_models(args.model_path, args.output_path, args.opset, args.fpaa)
| 258 | 1 |
import unittest
import numpy as np
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import VivitImageProcessor
class __lowercase ( unittest.TestCase ):
def __init__( self : Union[str, Any] , __lowerCamelCase : int , __lowerCamelCase : Tuple=7 , __lowerCamelCase : int=3 , __lowerCamelCase : List[str]=1_0 , __lowerCamelCase : Any=1_8 , __lowerCamelCase : str=3_0 , __lowerCamelCase : Dict=4_0_0 , __lowerCamelCase : Optional[Any]=True , __lowerCamelCase : Any=None , __lowerCamelCase : str=True , __lowerCamelCase : List[str]=[0.5, 0.5, 0.5] , __lowerCamelCase : Any=[0.5, 0.5, 0.5] , __lowerCamelCase : str=None , ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = size if size is not None else {"""shortest_edge""": 1_8}
UpperCAmelCase = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8}
UpperCAmelCase = parent
UpperCAmelCase = batch_size
UpperCAmelCase = num_channels
UpperCAmelCase = num_frames
UpperCAmelCase = image_size
UpperCAmelCase = min_resolution
UpperCAmelCase = max_resolution
UpperCAmelCase = do_resize
UpperCAmelCase = size
UpperCAmelCase = do_normalize
UpperCAmelCase = image_mean
UpperCAmelCase = image_std
UpperCAmelCase = crop_size
def _lowercase ( self : Dict ) -> List[Any]:
"""simple docstring"""
return {
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_normalize": self.do_normalize,
"do_resize": self.do_resize,
"size": self.size,
"crop_size": self.crop_size,
}
@require_torch
@require_vision
class __lowercase ( __snake_case , unittest.TestCase ):
UpperCamelCase = VivitImageProcessor if is_vision_available() else None
def _lowercase ( self : Dict ) -> Dict:
"""simple docstring"""
UpperCAmelCase = VivitImageProcessingTester(self )
@property
def _lowercase ( self : Optional[int] ) -> Any:
"""simple docstring"""
return self.image_processor_tester.prepare_image_processor_dict()
def _lowercase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__lowerCamelCase , """image_mean""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """image_std""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_normalize""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_resize""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """do_center_crop""" ) )
self.assertTrue(hasattr(__lowerCamelCase , """size""" ) )
def _lowercase ( self : str ) -> Tuple:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"""shortest_edge""": 1_8} )
self.assertEqual(image_processor.crop_size , {"""height""": 1_8, """width""": 1_8} )
UpperCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 , crop_size=8_4 )
self.assertEqual(image_processor.size , {"""shortest_edge""": 4_2} )
self.assertEqual(image_processor.crop_size , {"""height""": 8_4, """width""": 8_4} )
def _lowercase ( self : str ) -> str:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL videos
UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase )
for video in video_inputs:
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertIsInstance(video[0] , Image.Image )
# Test not batched input
UpperCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCAmelCase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self : List[str] ) -> List[Any]:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , numpify=__lowerCamelCase )
for video in video_inputs:
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertIsInstance(video[0] , np.ndarray )
# Test not batched input
UpperCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCAmelCase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
def _lowercase ( self : List[Any] ) -> Any:
"""simple docstring"""
UpperCAmelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=__lowerCamelCase , torchify=__lowerCamelCase )
for video in video_inputs:
self.assertIsInstance(__lowerCamelCase , __lowerCamelCase )
self.assertIsInstance(video[0] , torch.Tensor )
# Test not batched input
UpperCAmelCase = image_processing(video_inputs[0] , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
1,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
# Test batched
UpperCAmelCase = image_processing(__lowerCamelCase , return_tensors="""pt""" ).pixel_values
self.assertEqual(
encoded_videos.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_frames,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["""height"""],
self.image_processor_tester.crop_size["""width"""],
) , )
| 720 |
__a = [
(1000, """M"""),
(900, """CM"""),
(500, """D"""),
(400, """CD"""),
(100, """C"""),
(90, """XC"""),
(50, """L"""),
(40, """XL"""),
(10, """X"""),
(9, """IX"""),
(5, """V"""),
(4, """IV"""),
(1, """I"""),
]
def _UpperCamelCase ( lowerCAmelCase_ ) ->int:
UpperCAmelCase = {"""I""": 1, """V""": 5, """X""": 1_0, """L""": 5_0, """C""": 1_0_0, """D""": 5_0_0, """M""": 1_0_0_0}
UpperCAmelCase = 0
UpperCAmelCase = 0
while place < len(lowerCAmelCase_ ):
if (place + 1 < len(lowerCAmelCase_ )) and (vals[roman[place]] < vals[roman[place + 1]]):
total += vals[roman[place + 1]] - vals[roman[place]]
place += 2
else:
total += vals[roman[place]]
place += 1
return total
def _UpperCamelCase ( lowerCAmelCase_ ) ->str:
UpperCAmelCase = []
for arabic, roman in ROMAN:
((UpperCAmelCase) , (UpperCAmelCase)) = divmod(lowerCAmelCase_ , lowerCAmelCase_ )
result.append(roman * factor )
if number == 0:
break
return "".join(lowerCAmelCase_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 627 | 0 |
from typing import TYPE_CHECKING
from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_speech_available, is_torch_available
lowercase : List[str] = {
"configuration_audio_spectrogram_transformer": [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP",
"ASTConfig",
]
}
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : str = [
"AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST",
"ASTForAudioClassification",
"ASTModel",
"ASTPreTrainedModel",
]
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
lowercase : int = ["ASTFeatureExtractor"]
if TYPE_CHECKING:
from .configuration_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP,
ASTConfig,
)
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_audio_spectrogram_transformer import (
AUDIO_SPECTROGRAM_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST,
ASTForAudioClassification,
ASTModel,
ASTPreTrainedModel,
)
try:
if not is_speech_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .feature_extraction_audio_spectrogram_transformer import ASTFeatureExtractor
else:
import sys
lowercase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
| 542 |
'''simple docstring'''
import re
import jax.numpy as jnp
from flax.traverse_util import flatten_dict, unflatten_dict
from jax.random import PRNGKey
from ..utils import logging
a : Optional[int] = logging.get_logger(__name__)
def lowercase ( __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = R"\w+[.]\d+"
UpperCAmelCase : Dict = re.findall(__magic_name__ , __magic_name__ )
for pat in pats:
UpperCAmelCase : Tuple = key.replace(__magic_name__ , "_".join(pat.split("." ) ) )
return key
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__ ):
'''simple docstring'''
UpperCAmelCase : List[str] = pt_tuple_key[:-1] + ("scale",)
if (
any("norm" in str_ for str_ in pt_tuple_key )
and (pt_tuple_key[-1] == "bias")
and (pt_tuple_key[:-1] + ("bias",) not in random_flax_state_dict)
and (pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict)
):
UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
elif pt_tuple_key[-1] in ["weight", "gamma"] and pt_tuple_key[:-1] + ("scale",) in random_flax_state_dict:
UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("scale",)
return renamed_pt_tuple_key, pt_tensor
# embedding
if pt_tuple_key[-1] == "weight" and pt_tuple_key[:-1] + ("embedding",) in random_flax_state_dict:
UpperCAmelCase : Dict = pt_tuple_key[:-1] + ("embedding",)
return renamed_pt_tuple_key, pt_tensor
# conv layer
UpperCAmelCase : Tuple = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight" and pt_tensor.ndim == 4:
UpperCAmelCase : Dict = pt_tensor.transpose(2 , 3 , 1 , 0 )
return renamed_pt_tuple_key, pt_tensor
# linear layer
UpperCAmelCase : int = pt_tuple_key[:-1] + ("kernel",)
if pt_tuple_key[-1] == "weight":
UpperCAmelCase : Union[str, Any] = pt_tensor.T
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm weight
UpperCAmelCase : Union[str, Any] = pt_tuple_key[:-1] + ("weight",)
if pt_tuple_key[-1] == "gamma":
return renamed_pt_tuple_key, pt_tensor
# old PyTorch layer norm bias
UpperCAmelCase : Optional[int] = pt_tuple_key[:-1] + ("bias",)
if pt_tuple_key[-1] == "beta":
return renamed_pt_tuple_key, pt_tensor
return pt_tuple_key, pt_tensor
def lowercase ( __magic_name__ , __magic_name__ , __magic_name__=42 ):
'''simple docstring'''
UpperCAmelCase : Dict = {k: v.numpy() for k, v in pt_state_dict.items()}
# Step 2: Since the model is stateless, get random Flax params
UpperCAmelCase : Tuple = flax_model.init_weights(PRNGKey(__magic_name__ ) )
UpperCAmelCase : Optional[Any] = flatten_dict(__magic_name__ )
UpperCAmelCase : List[str] = {}
# Need to change some parameters name to match Flax names
for pt_key, pt_tensor in pt_state_dict.items():
UpperCAmelCase : Tuple = rename_key(__magic_name__ )
UpperCAmelCase : List[str] = tuple(renamed_pt_key.split("." ) )
# Correctly rename weight parameters
UpperCAmelCase , UpperCAmelCase : Optional[int] = rename_key_and_reshape_tensor(__magic_name__ , __magic_name__ , __magic_name__ )
if flax_key in random_flax_state_dict:
if flax_tensor.shape != random_flax_state_dict[flax_key].shape:
raise ValueError(
F"PyTorch checkpoint seems to be incorrect. Weight {pt_key} was expected to be of shape "
F"{random_flax_state_dict[flax_key].shape}, but is {flax_tensor.shape}." )
# also add unexpected weight so that warning is thrown
UpperCAmelCase : Optional[int] = jnp.asarray(__magic_name__ )
return unflatten_dict(__magic_name__ )
| 679 | 0 |
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
snake_case : str = logging.get_logger(__name__)
snake_case : Union[str, Any] = {
'''microsoft/wavlm-base''': '''https://huggingface.co/microsoft/wavlm-base/resolve/main/config.json''',
# See all WavLM models at https://huggingface.co/models?filter=wavlm
}
class lowerCAmelCase__ ( UpperCAmelCase__ ):
__A : str = 'wavlm'
def __init__( self : Tuple , _A : Optional[int]=32 , _A : Dict=768 , _A : int=12 , _A : Optional[Any]=12 , _A : List[str]=3072 , _A : Tuple="gelu" , _A : str=0.1 , _A : List[Any]=0.1 , _A : str=0.1 , _A : int=0.0 , _A : Any=0.1 , _A : Optional[Any]=0.1 , _A : Dict=0.02 , _A : Tuple=1e-5 , _A : Optional[int]="group" , _A : List[Any]="gelu" , _A : List[Any]=(512, 512, 512, 512, 512, 512, 512) , _A : List[Any]=(5, 2, 2, 2, 2, 2, 2) , _A : Dict=(10, 3, 3, 3, 3, 2, 2) , _A : Union[str, Any]=False , _A : int=128 , _A : Tuple=16 , _A : str=320 , _A : List[str]=800 , _A : Dict=False , _A : int=True , _A : Union[str, Any]=0.05 , _A : int=10 , _A : Optional[Any]=2 , _A : Union[str, Any]=0.0 , _A : Optional[int]=10 , _A : Dict=320 , _A : Dict=2 , _A : Any=0.1 , _A : Union[str, Any]=100 , _A : str=256 , _A : int=256 , _A : Optional[Any]=0.1 , _A : Tuple="mean" , _A : Dict=False , _A : str=False , _A : Union[str, Any]=256 , _A : Tuple=(512, 512, 512, 512, 1500) , _A : List[str]=(5, 3, 3, 1, 1) , _A : Tuple=(1, 2, 3, 1, 1) , _A : Optional[int]=512 , _A : Any=80 , _A : int=0 , _A : Dict=1 , _A : List[str]=2 , _A : Tuple=False , _A : List[Any]=3 , _A : Optional[int]=2 , _A : Optional[Any]=3 , _A : Optional[Any]=None , **_A : List[str] , ):
super().__init__(**__lowerCAmelCase , pad_token_id=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase)
A__ : Union[str, Any] = hidden_size
A__ : int = feat_extract_norm
A__ : Any = feat_extract_activation
A__ : Optional[int] = list(__lowerCAmelCase)
A__ : Union[str, Any] = list(__lowerCAmelCase)
A__ : Tuple = list(__lowerCAmelCase)
A__ : Any = conv_bias
A__ : Optional[int] = num_buckets
A__ : Union[str, Any] = max_bucket_distance
A__ : Any = num_conv_pos_embeddings
A__ : Any = num_conv_pos_embedding_groups
A__ : str = len(self.conv_dim)
A__ : Tuple = num_hidden_layers
A__ : Union[str, Any] = intermediate_size
A__ : Union[str, Any] = hidden_act
A__ : Union[str, Any] = num_attention_heads
A__ : int = hidden_dropout
A__ : Union[str, Any] = attention_dropout
A__ : Optional[int] = activation_dropout
A__ : Dict = feat_proj_dropout
A__ : Dict = final_dropout
A__ : Dict = layerdrop
A__ : Dict = layer_norm_eps
A__ : Union[str, Any] = initializer_range
A__ : Optional[Any] = num_ctc_classes
A__ : Tuple = vocab_size
A__ : Union[str, Any] = do_stable_layer_norm
A__ : Optional[int] = use_weighted_layer_sum
A__ : List[Any] = classifier_proj_size
if (
(len(self.conv_stride) != self.num_feat_extract_layers)
or (len(self.conv_kernel) != self.num_feat_extract_layers)
or (len(self.conv_dim) != self.num_feat_extract_layers)
):
raise ValueError(
"Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` =="
" `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) ="
F' {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,'
F' `len(config.conv_kernel) = {len(self.conv_kernel)}`.')
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
A__ : Tuple = apply_spec_augment
A__ : Tuple = mask_time_prob
A__ : Any = mask_time_length
A__ : Dict = mask_time_min_masks
A__ : Optional[Any] = mask_feature_prob
A__ : str = mask_feature_length
# parameters for pretraining with codevector quantized representations
A__ : str = num_codevectors_per_group
A__ : Optional[Any] = num_codevector_groups
A__ : str = contrastive_logits_temperature
A__ : Tuple = num_negatives
A__ : List[str] = codevector_dim
A__ : Tuple = proj_codevector_dim
A__ : Optional[Any] = diversity_loss_weight
# ctc loss
A__ : List[str] = ctc_loss_reduction
A__ : Optional[int] = ctc_zero_infinity
# adapter
A__ : List[Any] = add_adapter
A__ : int = adapter_kernel_size
A__ : Optional[Any] = adapter_stride
A__ : str = num_adapter_layers
A__ : int = output_hidden_size or hidden_size
# SequenceClassification-specific parameter. Feel free to ignore for other classes.
A__ : int = classifier_proj_size
# XVector-specific parameters. Feel free to ignore for other classes.
A__ : Union[str, Any] = list(__lowerCAmelCase)
A__ : List[Any] = list(__lowerCAmelCase)
A__ : Union[str, Any] = list(__lowerCAmelCase)
A__ : Optional[Any] = xvector_output_dim
@property
def _lowercase ( self : Any):
return functools.reduce(operator.mul , self.conv_stride , 1) | 710 |
import os
import sys
from contextlib import contextmanager
# Windows only
if os.name == "nt":
import ctypes
import msvcrt # noqa
class lowerCAmelCase__ ( ctypes.Structure ):
# _fields is a specific attr expected by ctypes
__A : Optional[Any] = [('size', ctypes.c_int), ('visible', ctypes.c_byte)]
def snake_case__ ( ) -> List[Any]:
"""simple docstring"""
if os.name == "nt":
A__ : Optional[Any] = CursorInfo()
A__ : Tuple = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) )
A__ : Any = False
ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) )
elif os.name == "posix":
sys.stdout.write("\033[?25l" )
sys.stdout.flush()
def snake_case__ ( ) -> Dict:
"""simple docstring"""
if os.name == "nt":
A__ : List[str] = CursorInfo()
A__ : Optional[int] = ctypes.windll.kernelaa.GetStdHandle(-1_1 )
ctypes.windll.kernelaa.GetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) )
A__ : int = True
ctypes.windll.kernelaa.SetConsoleCursorInfo(__lowercase , ctypes.byref(__lowercase ) )
elif os.name == "posix":
sys.stdout.write("\033[?25h" )
sys.stdout.flush()
@contextmanager
def snake_case__ ( ) -> Optional[int]:
"""simple docstring"""
try:
hide_cursor()
yield
finally:
show_cursor() | 182 | 0 |
def UpperCAmelCase_ ( _A ):
'''simple docstring'''
if not isinstance(_A , _A ) or number < 0:
raise ValueError('''Input must be a non-negative integer''' )
SCREAMING_SNAKE_CASE__ = 0
while number:
# This way we arrive at next set bit (next 1) instead of looping
# through each bit and checking for 1s hence the
# loop won't run 32 times it will only run the number of `1` times
number &= number - 1
count += 1
return count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 493 |
"""simple docstring"""
import argparse
import requests
import torch
from PIL import Image
from torchvision.transforms import Compose, Normalize, Resize, ToTensor
from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor
def _UpperCamelCase ( _A ) -> str:
"""simple docstring"""
_UpperCAmelCase = SwinaSRConfig()
if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_UpperCAmelCase = 4
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
_UpperCAmelCase = 4
_UpperCAmelCase = 4_8
_UpperCAmelCase = """pixelshuffle_aux"""
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_UpperCAmelCase = [6, 6, 6, 6]
_UpperCAmelCase = 6_0
_UpperCAmelCase = [6, 6, 6, 6]
_UpperCAmelCase = """pixelshuffledirect"""
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_UpperCAmelCase = 4
_UpperCAmelCase = """nearest+conv"""
elif "Swin2SR_Jpeg_dynamic" in checkpoint_url:
_UpperCAmelCase = 1
_UpperCAmelCase = 1
_UpperCAmelCase = 1_2_6
_UpperCAmelCase = 7
_UpperCAmelCase = 255.0
_UpperCAmelCase = """"""
return config
def _UpperCamelCase ( _A , _A ) -> Tuple:
"""simple docstring"""
if "patch_embed.proj" in name and "layers" not in name:
_UpperCAmelCase = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" )
if "patch_embed.norm" in name:
_UpperCAmelCase = name.replace("""patch_embed.norm""" , """embeddings.patch_embeddings.layernorm""" )
if "layers" in name:
_UpperCAmelCase = name.replace("""layers""" , """encoder.stages""" )
if "residual_group.blocks" in name:
_UpperCAmelCase = name.replace("""residual_group.blocks""" , """layers""" )
if "attn.proj" in name:
_UpperCAmelCase = name.replace("""attn.proj""" , """attention.output.dense""" )
if "attn" in name:
_UpperCAmelCase = name.replace("""attn""" , """attention.self""" )
if "norm1" in name:
_UpperCAmelCase = name.replace("""norm1""" , """layernorm_before""" )
if "norm2" in name:
_UpperCAmelCase = name.replace("""norm2""" , """layernorm_after""" )
if "mlp.fc1" in name:
_UpperCAmelCase = name.replace("""mlp.fc1""" , """intermediate.dense""" )
if "mlp.fc2" in name:
_UpperCAmelCase = name.replace("""mlp.fc2""" , """output.dense""" )
if "q_bias" in name:
_UpperCAmelCase = name.replace("""q_bias""" , """query.bias""" )
if "k_bias" in name:
_UpperCAmelCase = name.replace("""k_bias""" , """key.bias""" )
if "v_bias" in name:
_UpperCAmelCase = name.replace("""v_bias""" , """value.bias""" )
if "cpb_mlp" in name:
_UpperCAmelCase = name.replace("""cpb_mlp""" , """continuous_position_bias_mlp""" )
if "patch_embed.proj" in name:
_UpperCAmelCase = name.replace("""patch_embed.proj""" , """patch_embed.projection""" )
if name == "norm.weight":
_UpperCAmelCase = """layernorm.weight"""
if name == "norm.bias":
_UpperCAmelCase = """layernorm.bias"""
if "conv_first" in name:
_UpperCAmelCase = name.replace("""conv_first""" , """first_convolution""" )
if (
"upsample" in name
or "conv_before_upsample" in name
or "conv_bicubic" in name
or "conv_up" in name
or "conv_hr" in name
or "conv_last" in name
or "aux" in name
):
# heads
if "conv_last" in name:
_UpperCAmelCase = name.replace("""conv_last""" , """final_convolution""" )
if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]:
if "conv_before_upsample.0" in name:
_UpperCAmelCase = name.replace("""conv_before_upsample.0""" , """conv_before_upsample""" )
if "upsample.0" in name:
_UpperCAmelCase = name.replace("""upsample.0""" , """upsample.convolution_0""" )
if "upsample.2" in name:
_UpperCAmelCase = name.replace("""upsample.2""" , """upsample.convolution_1""" )
_UpperCAmelCase = """upsample.""" + name
elif config.upsampler == "pixelshuffledirect":
_UpperCAmelCase = name.replace("""upsample.0.weight""" , """upsample.conv.weight""" )
_UpperCAmelCase = name.replace("""upsample.0.bias""" , """upsample.conv.bias""" )
else:
pass
else:
_UpperCAmelCase = """swin2sr.""" + name
return name
def _UpperCamelCase ( _A , _A ) -> int:
"""simple docstring"""
for key in orig_state_dict.copy().keys():
_UpperCAmelCase = orig_state_dict.pop(_A )
if "qkv" in key:
_UpperCAmelCase = key.split(""".""" )
_UpperCAmelCase = int(key_split[1] )
_UpperCAmelCase = int(key_split[4] )
_UpperCAmelCase = config.embed_dim
if "weight" in key:
_UpperCAmelCase = val[:dim, :]
_UpperCAmelCase = val[dim : dim * 2, :]
_UpperCAmelCase = val[-dim:, :]
else:
_UpperCAmelCase = val[:dim]
_UpperCAmelCase = val[dim : dim * 2]
_UpperCAmelCase = val[-dim:]
pass
else:
_UpperCAmelCase = val
return orig_state_dict
def _UpperCamelCase ( _A , _A , _A ) -> List[Any]:
"""simple docstring"""
_UpperCAmelCase = get_config(_A )
_UpperCAmelCase = SwinaSRForImageSuperResolution(_A )
model.eval()
_UpperCAmelCase = torch.hub.load_state_dict_from_url(_A , map_location="""cpu""" )
_UpperCAmelCase = convert_state_dict(_A , _A )
_UpperCAmelCase ,_UpperCAmelCase = model.load_state_dict(_A , strict=_A )
if len(_A ) > 0:
raise ValueError("""Missing keys when converting: {}""".format(_A ) )
for key in unexpected_keys:
if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key):
raise ValueError(F"""Unexpected key {key} in state_dict""" )
# verify values
_UpperCAmelCase = """https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true"""
_UpperCAmelCase = Image.open(requests.get(_A , stream=_A ).raw ).convert("""RGB""" )
_UpperCAmelCase = SwinaSRImageProcessor()
# pixel_values = processor(image, return_tensors="pt").pixel_values
_UpperCAmelCase = 1_2_6 if """Jpeg""" in checkpoint_url else 2_5_6
_UpperCAmelCase = Compose(
[
Resize((image_size, image_size) ),
ToTensor(),
Normalize(mean=[0.485, 0.456, 0.406] , std=[0.229, 0.224, 0.225] ),
] )
_UpperCAmelCase = transforms(_A ).unsqueeze(0 )
if config.num_channels == 1:
_UpperCAmelCase = pixel_values[:, 0, :, :].unsqueeze(1 )
_UpperCAmelCase = model(_A )
# assert values
if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url:
_UpperCAmelCase = torch.Size([1, 3, 5_1_2, 5_1_2] )
_UpperCAmelCase = torch.tensor(
[[-0.7_087, -0.7_138, -0.6_721], [-0.8_340, -0.8_095, -0.7_298], [-0.9_149, -0.8_414, -0.7_940]] )
elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url:
_UpperCAmelCase = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] )
_UpperCAmelCase = torch.tensor(
[[-0.7_775, -0.8_105, -0.8_933], [-0.7_764, -0.8_356, -0.9_225], [-0.7_976, -0.8_686, -0.9_579]] )
elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url:
# TODO values didn't match exactly here
_UpperCAmelCase = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] )
_UpperCAmelCase = torch.tensor(
[[-0.8_035, -0.7_504, -0.7_491], [-0.8_538, -0.8_124, -0.7_782], [-0.8_804, -0.8_651, -0.8_493]] )
elif "Swin2SR_Lightweight_X2_64" in checkpoint_url:
_UpperCAmelCase = torch.Size([1, 3, 5_1_2, 5_1_2] )
_UpperCAmelCase = torch.tensor(
[[-0.7_669, -0.8_662, -0.8_767], [-0.8_810, -0.9_962, -0.9_820], [-0.9_340, -1.0_322, -1.1_149]] )
elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url:
_UpperCAmelCase = torch.Size([1, 3, 1_0_2_4, 1_0_2_4] )
_UpperCAmelCase = torch.tensor(
[[-0.5_238, -0.5_557, -0.6_321], [-0.6_016, -0.5_903, -0.6_391], [-0.6_244, -0.6_334, -0.6_889]] )
assert (
outputs.reconstruction.shape == expected_shape
), F"""Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}"""
assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , _A , atol=1e-3 )
print("""Looks ok!""" )
_UpperCAmelCase = {
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""": (
"""swin2SR-classical-sr-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth""": (
"""swin2SR-classical-sr-x4-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth""": (
"""swin2SR-compressed-sr-x4-48"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth""": (
"""swin2SR-lightweight-x2-64"""
),
"""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth""": (
"""swin2SR-realworld-sr-x4-64-bsrgan-psnr"""
),
}
_UpperCAmelCase = url_to_name[checkpoint_url]
if pytorch_dump_folder_path is not None:
print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" )
model.save_pretrained(_A )
print(F"""Saving image processor to {pytorch_dump_folder_path}""" )
processor.save_pretrained(_A )
if push_to_hub:
model.push_to_hub(F"""caidas/{model_name}""" )
processor.push_to_hub(F"""caidas/{model_name}""" )
if __name__ == "__main__":
a : Optional[int] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--checkpoint_url''',
default='''https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth''',
type=str,
help='''URL of the original Swin2SR checkpoint you\'d like to convert.''',
)
parser.add_argument(
'''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.'''
)
parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the converted model to the hub.''')
a : str = parser.parse_args()
convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub) | 555 | 0 |
"""simple docstring"""
from __future__ import annotations
_lowerCAmelCase = 1.6_021E-19 # units = C
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , ):
'''simple docstring'''
if (conductivity, electron_conc, mobility).count(0 ) != 1:
raise ValueError('You cannot supply more or less than 2 values' )
elif conductivity < 0:
raise ValueError('Conductivity cannot be negative' )
elif electron_conc < 0:
raise ValueError('Electron concentration cannot be negative' )
elif mobility < 0:
raise ValueError('mobility cannot be negative' )
elif conductivity == 0:
return (
"conductivity",
mobility * electron_conc * ELECTRON_CHARGE,
)
elif electron_conc == 0:
return (
"electron_conc",
conductivity / (mobility * ELECTRON_CHARGE),
)
else:
return (
"mobility",
conductivity / (electron_conc * ELECTRON_CHARGE),
)
if __name__ == "__main__":
import doctest
doctest.testmod()
| 16 |
"""simple docstring"""
import argparse
import json
from typing import List
from ltp import LTP
from transformers import BertTokenizer
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
if (
(cp >= 0X4E00 and cp <= 0X9FFF)
or (cp >= 0X3400 and cp <= 0X4DBF) #
or (cp >= 0X20000 and cp <= 0X2A6DF) #
or (cp >= 0X2A700 and cp <= 0X2B73F) #
or (cp >= 0X2B740 and cp <= 0X2B81F) #
or (cp >= 0X2B820 and cp <= 0X2CEAF) #
or (cp >= 0XF900 and cp <= 0XFAFF)
or (cp >= 0X2F800 and cp <= 0X2FA1F) #
): #
return True
return False
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
for char in word:
_lowerCAmelCase : Dict = ord(_lowerCamelCase )
if not _is_chinese_char(_lowerCamelCase ):
return 0
return 1
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Tuple = set()
for token in tokens:
_lowerCAmelCase : Optional[int] = len(_lowerCamelCase ) > 1 and is_chinese(_lowerCamelCase )
if chinese_word:
word_set.add(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = list(_lowerCamelCase )
return word_list
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
if not chinese_word_set:
return bert_tokens
_lowerCAmelCase : Optional[Any] = max([len(_lowerCamelCase ) for w in chinese_word_set] )
_lowerCAmelCase : str = bert_tokens
_lowerCAmelCase, _lowerCAmelCase : Optional[Any] = 0, len(_lowerCamelCase )
while start < end:
_lowerCAmelCase : Dict = True
if is_chinese(bert_word[start] ):
_lowerCAmelCase : str = min(end - start , _lowerCamelCase )
for i in range(_lowerCamelCase , 1 , -1 ):
_lowerCAmelCase : List[Any] = ''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
_lowerCAmelCase : Tuple = '##' + bert_word[j]
_lowerCAmelCase : Optional[int] = start + i
_lowerCAmelCase : Any = False
break
if single_word:
start += 1
return bert_word
def lowerCamelCase__ ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ):
'''simple docstring'''
_lowerCAmelCase : Dict = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Tuple = ltp_tokenizer.seg(lines[i : i + 100] )[0]
_lowerCAmelCase : List[Any] = [get_chinese_word(_lowerCamelCase ) for r in res]
ltp_res.extend(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : int = []
for i in range(0 , len(_lowerCamelCase ) , 100 ):
_lowerCAmelCase : Dict = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_lowerCamelCase , truncation=_lowerCamelCase , max_length=512 )
bert_res.extend(res['input_ids'] )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
_lowerCAmelCase : Union[str, Any] = []
for input_ids, chinese_word in zip(_lowerCamelCase , _lowerCamelCase ):
_lowerCAmelCase : Optional[int] = []
for id in input_ids:
_lowerCAmelCase : List[Any] = bert_tokenizer._convert_id_to_token(_lowerCamelCase )
input_tokens.append(_lowerCamelCase )
_lowerCAmelCase : Any = add_sub_symbol(_lowerCamelCase , _lowerCamelCase )
_lowerCAmelCase : List[str] = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(_lowerCamelCase ):
if token[:2] == "##":
_lowerCAmelCase : List[Any] = token[2:]
# save chinese tokens' pos
if len(_lowerCamelCase ) == 1 and _is_chinese_char(ord(_lowerCamelCase ) ):
ref_id.append(_lowerCamelCase )
ref_ids.append(_lowerCamelCase )
assert len(_lowerCamelCase ) == len(_lowerCamelCase )
return ref_ids
def lowerCamelCase__ ( _lowerCamelCase ):
'''simple docstring'''
with open(args.file_name , 'r' , encoding='utf-8' ) as f:
_lowerCAmelCase : int = f.readlines()
_lowerCAmelCase : int = [line.strip() for line in data if len(_lowerCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
_lowerCAmelCase : Dict = LTP(args.ltp ) # faster in GPU device
_lowerCAmelCase : Optional[int] = BertTokenizer.from_pretrained(args.bert )
_lowerCAmelCase : Optional[Any] = prepare_ref(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
with open(args.save_path , 'w' , encoding='utf-8' ) as f:
_lowerCAmelCase : Any = [json.dumps(_lowerCamelCase ) + '\n' for ref in ref_ids]
f.writelines(_lowerCamelCase )
if __name__ == "__main__":
_lowerCAmelCase = argparse.ArgumentParser(description="""prepare_chinese_ref""")
parser.add_argument(
"""--file_name""",
type=str,
default="""./resources/chinese-demo.txt""",
help="""file need process, same as training data in lm""",
)
parser.add_argument(
"""--ltp""", type=str, default="""./resources/ltp""", help="""resources for LTP tokenizer, usually a path"""
)
parser.add_argument("""--bert""", type=str, default="""./resources/robert""", help="""resources for Bert tokenizer""")
parser.add_argument("""--save_path""", type=str, default="""./resources/ref.txt""", help="""path to save res""")
_lowerCAmelCase = parser.parse_args()
main(args)
| 16 | 1 |
'''simple docstring'''
# limitations under the License.
# NOTE: This file is deprecated and will be removed in a future version.
# It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works
from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401
from .utils import deprecate
deprecate(
'pipelines_utils',
'0.22.0',
'Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.',
standard_warn=False,
stacklevel=3,
)
| 541 |
'''simple docstring'''
import argparse
import json
from typing import List
from ltp import LTP
from transformers.models.bert.tokenization_bert import BertTokenizer
def __UpperCAmelCase ( A : Optional[int] ) -> List[Any]:
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if (
(cp >= 0X4E_00 and cp <= 0X9F_FF)
or (cp >= 0X34_00 and cp <= 0X4D_BF) #
or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) #
or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) #
or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) #
or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) #
or (cp >= 0XF9_00 and cp <= 0XFA_FF)
or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) #
): #
return True
return False
def __UpperCAmelCase ( A : str ) -> Optional[Any]:
# word like '180' or '身高' or '神'
for char in word:
UpperCAmelCase_ : str = ord(A )
if not _is_chinese_char(A ):
return 0
return 1
def __UpperCAmelCase ( A : List[str] ) -> Dict:
UpperCAmelCase_ : Optional[Any] = set()
for token in tokens:
UpperCAmelCase_ : str = len(A ) > 1 and is_chinese(A )
if chinese_word:
word_set.add(A )
UpperCAmelCase_ : Optional[int] = list(A )
return word_list
def __UpperCAmelCase ( A : List[str] , A : set() ) -> Optional[Any]:
if not chinese_word_set:
return bert_tokens
UpperCAmelCase_ : Dict = max([len(A ) for w in chinese_word_set] )
UpperCAmelCase_ : List[str] = bert_tokens
UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = 0, len(A )
while start < end:
UpperCAmelCase_ : str = True
if is_chinese(bert_word[start] ):
UpperCAmelCase_ : str = min(end - start , A )
for i in range(A , 1 , -1 ):
UpperCAmelCase_ : Tuple = ''''''.join(bert_word[start : start + i] )
if whole_word in chinese_word_set:
for j in range(start + 1 , start + i ):
UpperCAmelCase_ : Union[str, Any] = '''##''' + bert_word[j]
UpperCAmelCase_ : Any = start + i
UpperCAmelCase_ : Optional[int] = False
break
if single_word:
start += 1
return bert_word
def __UpperCAmelCase ( A : List[str] , A : LTP , A : BertTokenizer ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[int] = []
for i in range(0 , len(A ) , 1_0_0 ):
UpperCAmelCase_ : int = ltp_tokenizer.pipeline(lines[i : i + 1_0_0] , tasks=['''cws'''] ).cws
UpperCAmelCase_ : Any = [get_chinese_word(A ) for r in res]
ltp_res.extend(A )
assert len(A ) == len(A )
UpperCAmelCase_ : Tuple = []
for i in range(0 , len(A ) , 1_0_0 ):
UpperCAmelCase_ : Optional[int] = bert_tokenizer(lines[i : i + 1_0_0] , add_special_tokens=A , truncation=A , max_length=5_1_2 )
bert_res.extend(res['''input_ids'''] )
assert len(A ) == len(A )
UpperCAmelCase_ : Any = []
for input_ids, chinese_word in zip(A , A ):
UpperCAmelCase_ : Union[str, Any] = []
for id in input_ids:
UpperCAmelCase_ : Union[str, Any] = bert_tokenizer._convert_id_to_token(A )
input_tokens.append(A )
UpperCAmelCase_ : List[str] = add_sub_symbol(A , A )
UpperCAmelCase_ : Any = []
# We only save pos of chinese subwords start with ##, which mean is part of a whole word.
for i, token in enumerate(A ):
if token[:2] == "##":
UpperCAmelCase_ : int = token[2:]
# save chinese tokens' pos
if len(A ) == 1 and _is_chinese_char(ord(A ) ):
ref_id.append(A )
ref_ids.append(A )
assert len(A ) == len(A )
return ref_ids
def __UpperCAmelCase ( A : List[Any] ) -> Tuple:
# For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm)
# If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp)
with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f:
UpperCAmelCase_ : Optional[Any] = f.readlines()
UpperCAmelCase_ : List[str] = [line.strip() for line in data if len(A ) > 0 and not line.isspace()] # avoid delimiter like '\u2029'
UpperCAmelCase_ : Tuple = LTP(args.ltp ) # faster in GPU device
UpperCAmelCase_ : Union[str, Any] = BertTokenizer.from_pretrained(args.bert )
UpperCAmelCase_ : Optional[int] = prepare_ref(A , A , A )
with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f:
UpperCAmelCase_ : str = [json.dumps(A ) + '''\n''' for ref in ref_ids]
f.writelines(A )
if __name__ == "__main__":
_UpperCamelCase : Optional[Any] = argparse.ArgumentParser(description='prepare_chinese_ref')
parser.add_argument(
'--file_name',
required=False,
type=str,
default='./resources/chinese-demo.txt',
help='file need process, same as training data in lm',
)
parser.add_argument(
'--ltp',
required=False,
type=str,
default='./resources/ltp',
help='resources for LTP tokenizer, usually a path',
)
parser.add_argument(
'--bert',
required=False,
type=str,
default='./resources/robert',
help='resources for Bert tokenizer',
)
parser.add_argument(
'--save_path',
required=False,
type=str,
default='./resources/ref.txt',
help='path to save res',
)
_UpperCamelCase : Any = parser.parse_args()
main(args)
| 541 | 1 |
import os
def UpperCAmelCase_ ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = os.path.dirname(os.path.realpath(_A ) )
SCREAMING_SNAKE_CASE__ = os.path.join(_A , '''triangle.txt''' )
with open(_A ) as f:
SCREAMING_SNAKE_CASE__ = f.readlines()
SCREAMING_SNAKE_CASE__ = []
for line in triangle:
SCREAMING_SNAKE_CASE__ = []
for number in line.strip().split(''' ''' ):
numbers_from_line.append(int(_A ) )
a.append(_A )
for i in range(1 , len(_A ) ):
for j in range(len(a[i] ) ):
SCREAMING_SNAKE_CASE__ = a[i - 1][j] if j != len(a[i - 1] ) else 0
SCREAMING_SNAKE_CASE__ = a[i - 1][j - 1] if j > 0 else 0
a[i][j] += max(_A , _A )
return max(a[-1] )
if __name__ == "__main__":
print(solution())
| 702 |
import inspect
import unittest
from transformers import BitConfig
from transformers.testing_utils import require_torch, require_vision, slow, torch_device
from transformers.utils import cached_property, is_torch_available, is_vision_available
from ...test_backbone_common import BackboneTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from torch import nn
from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel
from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST
if is_vision_available():
from PIL import Image
class UpperCAmelCase__ :
"""simple docstring"""
def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Union[str, Any]=3 , __lowerCamelCase : int=32 , __lowerCamelCase : Tuple=3 , __lowerCamelCase : Optional[int]=10 , __lowerCamelCase : List[Any]=[8, 16, 32, 64] , __lowerCamelCase : Dict=[1, 1, 2, 1] , __lowerCamelCase : int=True , __lowerCamelCase : Dict=True , __lowerCamelCase : Optional[int]="relu" , __lowerCamelCase : Optional[Any]=3 , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[int]=["stage2", "stage3", "stage4"] , __lowerCamelCase : Tuple=[2, 3, 4] , __lowerCamelCase : List[Any]=1 , ) -> List[str]:
SCREAMING_SNAKE_CASE__ = parent
SCREAMING_SNAKE_CASE__ = batch_size
SCREAMING_SNAKE_CASE__ = image_size
SCREAMING_SNAKE_CASE__ = num_channels
SCREAMING_SNAKE_CASE__ = embeddings_size
SCREAMING_SNAKE_CASE__ = hidden_sizes
SCREAMING_SNAKE_CASE__ = depths
SCREAMING_SNAKE_CASE__ = is_training
SCREAMING_SNAKE_CASE__ = use_labels
SCREAMING_SNAKE_CASE__ = hidden_act
SCREAMING_SNAKE_CASE__ = num_labels
SCREAMING_SNAKE_CASE__ = scope
SCREAMING_SNAKE_CASE__ = len(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = out_features
SCREAMING_SNAKE_CASE__ = out_indices
SCREAMING_SNAKE_CASE__ = num_groups
def lowercase_ ( self : Optional[Any] ) -> str:
SCREAMING_SNAKE_CASE__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] )
SCREAMING_SNAKE_CASE__ = None
if self.use_labels:
SCREAMING_SNAKE_CASE__ = ids_tensor([self.batch_size] , self.num_labels )
SCREAMING_SNAKE_CASE__ = self.get_config()
return config, pixel_values, labels
def lowercase_ ( self : List[str] ) -> Dict:
return BitConfig(
num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , )
def lowercase_ ( self : Optional[Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ) -> int:
SCREAMING_SNAKE_CASE__ = BitModel(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )
self.parent.assertEqual(
result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , )
def lowercase_ ( self : str , __lowerCamelCase : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int] ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ = self.num_labels
SCREAMING_SNAKE_CASE__ = BitForImageClassification(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase , labels=__lowerCamelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def lowercase_ ( self : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Union[str, Any] ) -> Tuple:
SCREAMING_SNAKE_CASE__ = BitBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] )
# verify channels
self.parent.assertEqual(len(model.channels ) , len(config.out_features ) )
self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] )
# verify backbone works with out_features=None
SCREAMING_SNAKE_CASE__ = None
SCREAMING_SNAKE_CASE__ = BitBackbone(config=__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
SCREAMING_SNAKE_CASE__ = model(__lowerCamelCase )
# verify feature maps
self.parent.assertEqual(len(result.feature_maps ) , 1 )
self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] )
# verify channels
self.parent.assertEqual(len(model.channels ) , 1 )
self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] )
def lowercase_ ( self : Tuple ) -> int:
SCREAMING_SNAKE_CASE__ = self.prepare_config_and_inputs()
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = config_and_inputs
SCREAMING_SNAKE_CASE__ = {'''pixel_values''': pixel_values}
return config, inputs_dict
@require_torch
class UpperCAmelCase__ ( A__ , A__ , unittest.TestCase ):
"""simple docstring"""
a = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else ()
a = (
{"feature-extraction": BitModel, "image-classification": BitForImageClassification}
if is_torch_available()
else {}
)
a = False
a = False
a = False
a = False
a = False
def lowercase_ ( self : Optional[Any] ) -> List[Any]:
SCREAMING_SNAKE_CASE__ = BitModelTester(self )
SCREAMING_SNAKE_CASE__ = ConfigTester(self , config_class=__lowerCamelCase , has_text_modality=__lowerCamelCase )
def lowercase_ ( self : Union[str, Any] ) -> str:
self.create_and_test_config_common_properties()
self.config_tester.create_and_test_config_to_json_string()
self.config_tester.create_and_test_config_to_json_file()
self.config_tester.create_and_test_config_from_and_save_pretrained()
self.config_tester.create_and_test_config_with_num_labels()
self.config_tester.check_config_can_be_init_without_params()
self.config_tester.check_config_arguments_init()
def lowercase_ ( self : str ) -> Dict:
return
@unittest.skip(reason='''Bit does not output attentions''' )
def lowercase_ ( self : Any ) -> Dict:
pass
@unittest.skip(reason='''Bit does not use inputs_embeds''' )
def lowercase_ ( self : Tuple ) -> Optional[int]:
pass
@unittest.skip(reason='''Bit does not support input and output embeddings''' )
def lowercase_ ( self : Optional[int] ) -> str:
pass
def lowercase_ ( self : str ) -> str:
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = inspect.signature(model.forward )
# signature.parameters is an OrderedDict => so arg_names order is deterministic
SCREAMING_SNAKE_CASE__ = [*signature.parameters.keys()]
SCREAMING_SNAKE_CASE__ = ['''pixel_values''']
self.assertListEqual(arg_names[:1] , __lowerCamelCase )
def lowercase_ ( self : Dict ) -> Tuple:
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__lowerCamelCase )
def lowercase_ ( self : Any ) -> Optional[int]:
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_backbone(*__lowerCamelCase )
def lowercase_ ( self : Any ) -> str:
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
SCREAMING_SNAKE_CASE__ = model_class(config=__lowerCamelCase )
for name, module in model.named_modules():
if isinstance(__lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ):
self.assertTrue(
torch.all(module.weight == 1 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
self.assertTrue(
torch.all(module.bias == 0 ) , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , )
def lowercase_ ( self : str ) -> Optional[Any]:
def check_hidden_states_output(__lowerCamelCase : List[Any] , __lowerCamelCase : Dict , __lowerCamelCase : Optional[Any] ):
SCREAMING_SNAKE_CASE__ = model_class(__lowerCamelCase )
model.to(__lowerCamelCase )
model.eval()
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(**self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) )
SCREAMING_SNAKE_CASE__ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states
SCREAMING_SNAKE_CASE__ = self.model_tester.num_stages
self.assertEqual(len(__lowerCamelCase ) , expected_num_stages + 1 )
# Bit's feature maps are of shape (batch_size, num_channels, height, width)
self.assertListEqual(
list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , )
SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs_for_common()
SCREAMING_SNAKE_CASE__ = ['''preactivation''', '''bottleneck''']
for model_class in self.all_model_classes:
for layer_type in layers_type:
SCREAMING_SNAKE_CASE__ = layer_type
SCREAMING_SNAKE_CASE__ = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
# check that output_hidden_states also work using config
del inputs_dict["output_hidden_states"]
SCREAMING_SNAKE_CASE__ = True
check_hidden_states_output(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase )
@unittest.skip(reason='''Bit does not use feedforward chunking''' )
def lowercase_ ( self : List[str] ) -> Dict:
pass
def lowercase_ ( self : List[Any] ) -> List[Any]:
SCREAMING_SNAKE_CASE__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_image_classification(*__lowerCamelCase )
@slow
def lowercase_ ( self : Optional[Any] ) -> Dict:
for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
SCREAMING_SNAKE_CASE__ = BitModel.from_pretrained(__lowerCamelCase )
self.assertIsNotNone(__lowerCamelCase )
def UpperCAmelCase_ ( ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' )
return image
@require_torch
@require_vision
class UpperCAmelCase__ ( unittest.TestCase ):
"""simple docstring"""
@cached_property
def lowercase_ ( self : List[Any] ) -> List[Any]:
return (
BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None
)
@slow
def lowercase_ ( self : str ) -> List[Any]:
SCREAMING_SNAKE_CASE__ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowerCamelCase )
SCREAMING_SNAKE_CASE__ = self.default_image_processor
SCREAMING_SNAKE_CASE__ = prepare_img()
SCREAMING_SNAKE_CASE__ = image_processor(images=__lowerCamelCase , return_tensors='''pt''' ).to(__lowerCamelCase )
# forward pass
with torch.no_grad():
SCREAMING_SNAKE_CASE__ = model(**__lowerCamelCase )
# verify the logits
SCREAMING_SNAKE_CASE__ = torch.Size((1, 1000) )
self.assertEqual(outputs.logits.shape , __lowerCamelCase )
SCREAMING_SNAKE_CASE__ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowerCamelCase )
self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1e-4 ) )
@require_torch
class UpperCAmelCase__ ( A__ , unittest.TestCase ):
"""simple docstring"""
a = (BitBackbone,) if is_torch_available() else ()
a = BitConfig
a = False
def lowercase_ ( self : Optional[Any] ) -> Dict:
SCREAMING_SNAKE_CASE__ = BitModelTester(self )
| 472 | 0 |
'''simple docstring'''
import copy
from ...configuration_utils import PretrainedConfig
from ...utils import logging
from ..auto import CONFIG_MAPPING
A_ : Tuple =logging.get_logger(__name__)
A_ : Dict ={
'''SenseTime/deformable-detr''': '''https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json''',
# See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr
}
class __UpperCAmelCase ( __a ):
__A : List[Any] = 'deformable_detr'
__A : Union[str, Any] = {
'hidden_size': 'd_model',
'num_attention_heads': 'encoder_attention_heads',
}
def __init__( self , _lowerCamelCase=True , _lowerCamelCase=None , _lowerCamelCase=3 , _lowerCamelCase=300 , _lowerCamelCase=1024 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=6 , _lowerCamelCase=1024 , _lowerCamelCase=8 , _lowerCamelCase=0.0 , _lowerCamelCase=True , _lowerCamelCase="relu" , _lowerCamelCase=256 , _lowerCamelCase=0.1 , _lowerCamelCase=0.0 , _lowerCamelCase=0.0 , _lowerCamelCase=0.02 , _lowerCamelCase=1.0 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase="sine" , _lowerCamelCase="resnet50" , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=4 , _lowerCamelCase=False , _lowerCamelCase=300 , _lowerCamelCase=False , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=1 , _lowerCamelCase=5 , _lowerCamelCase=2 , _lowerCamelCase=0.1 , _lowerCamelCase=0.25 , _lowerCamelCase=False , **_lowerCamelCase , ):
if backbone_config is not None and use_timm_backbone:
raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' )
if not use_timm_backbone:
if backbone_config is None:
logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' )
lowerCAmelCase_ = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] )
elif isinstance(_lowerCamelCase , _lowerCamelCase ):
lowerCAmelCase_ = backbone_config.get('''model_type''' )
lowerCAmelCase_ = CONFIG_MAPPING[backbone_model_type]
lowerCAmelCase_ = config_class.from_dict(_lowerCamelCase )
lowerCAmelCase_ = use_timm_backbone
lowerCAmelCase_ = backbone_config
lowerCAmelCase_ = num_channels
lowerCAmelCase_ = num_queries
lowerCAmelCase_ = max_position_embeddings
lowerCAmelCase_ = d_model
lowerCAmelCase_ = encoder_ffn_dim
lowerCAmelCase_ = encoder_layers
lowerCAmelCase_ = encoder_attention_heads
lowerCAmelCase_ = decoder_ffn_dim
lowerCAmelCase_ = decoder_layers
lowerCAmelCase_ = decoder_attention_heads
lowerCAmelCase_ = dropout
lowerCAmelCase_ = attention_dropout
lowerCAmelCase_ = activation_dropout
lowerCAmelCase_ = activation_function
lowerCAmelCase_ = init_std
lowerCAmelCase_ = init_xavier_std
lowerCAmelCase_ = encoder_layerdrop
lowerCAmelCase_ = auxiliary_loss
lowerCAmelCase_ = position_embedding_type
lowerCAmelCase_ = backbone
lowerCAmelCase_ = use_pretrained_backbone
lowerCAmelCase_ = dilation
# deformable attributes
lowerCAmelCase_ = num_feature_levels
lowerCAmelCase_ = encoder_n_points
lowerCAmelCase_ = decoder_n_points
lowerCAmelCase_ = two_stage
lowerCAmelCase_ = two_stage_num_proposals
lowerCAmelCase_ = with_box_refine
if two_stage is True and with_box_refine is False:
raise ValueError('''If two_stage is True, with_box_refine must be True.''' )
# Hungarian matcher
lowerCAmelCase_ = class_cost
lowerCAmelCase_ = bbox_cost
lowerCAmelCase_ = giou_cost
# Loss coefficients
lowerCAmelCase_ = mask_loss_coefficient
lowerCAmelCase_ = dice_loss_coefficient
lowerCAmelCase_ = bbox_loss_coefficient
lowerCAmelCase_ = giou_loss_coefficient
lowerCAmelCase_ = eos_coefficient
lowerCAmelCase_ = focal_alpha
lowerCAmelCase_ = disable_custom_kernels
super().__init__(is_encoder_decoder=_lowerCamelCase , **_lowerCamelCase )
@property
def UpperCAmelCase_ ( self ):
return self.encoder_attention_heads
@property
def UpperCAmelCase_ ( self ):
return self.d_model
def UpperCAmelCase_ ( self ):
lowerCAmelCase_ = copy.deepcopy(self.__dict__ )
if self.backbone_config is not None:
lowerCAmelCase_ = self.backbone_config.to_dict()
lowerCAmelCase_ = self.__class__.model_type
return output
| 274 | '''simple docstring'''
import csv
from collections import defaultdict
from dataclasses import dataclass, field
from typing import List, Optional
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import ScalarFormatter
from transformers import HfArgumentParser
def snake_case_ ( __snake_case : Tuple=None , __snake_case : int=None) -> int:
return field(default_factory=lambda: default , metadata=__snake_case)
@dataclass
class __UpperCAmelCase :
__A : str = field(
metadata={'help': 'The csv file to plot.'} , )
__A : bool = field(
default=__a , metadata={'help': 'Whether to plot along batch size or sequence length. Defaults to sequence length.'} , )
__A : bool = field(
default=__a , metadata={'help': 'Whether the csv file has time results or memory results. Defaults to memory results.'} , )
__A : bool = field(
default=__a , metadata={'help': 'Disable logarithmic scale when plotting'} , )
__A : bool = field(
default=__a , metadata={
'help': 'Whether the csv file has training results or inference results. Defaults to inference results.'
} , )
__A : Optional[str] = field(
default=__a , metadata={'help': 'Filename under which the plot will be saved. If unused no plot is saved.'} , )
__A : Optional[List[str]] = list_field(
default=__a , metadata={'help': 'List of model names that are used instead of the ones in the csv file.'} )
def snake_case_ ( __snake_case : Optional[Any]) -> Dict:
try:
int(__snake_case)
return True
except ValueError:
return False
def snake_case_ ( __snake_case : Dict) -> int:
try:
float(__snake_case)
return True
except ValueError:
return False
class __UpperCAmelCase :
def __init__( self , _lowerCamelCase ):
lowerCAmelCase_ = args
lowerCAmelCase_ = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} )
with open(self.args.csv_file , newline='''''' ) as csv_file:
lowerCAmelCase_ = csv.DictReader(_lowerCamelCase )
for row in reader:
lowerCAmelCase_ = row['''model''']
self.result_dict[model_name]["bsz"].append(int(row['''batch_size'''] ) )
self.result_dict[model_name]["seq_len"].append(int(row['''sequence_length'''] ) )
if can_convert_to_int(row['''result'''] ):
# value is not None
lowerCAmelCase_ = int(row['''result'''] )
elif can_convert_to_float(row['''result'''] ):
# value is not None
lowerCAmelCase_ = float(row['''result'''] )
def UpperCAmelCase_ ( self ):
lowerCAmelCase_ ,lowerCAmelCase_ = plt.subplots()
lowerCAmelCase_ = '''Time usage''' if self.args.is_time else '''Memory usage'''
lowerCAmelCase_ = title_str + ''' for training''' if self.args.is_train else title_str + ''' for inference'''
if not self.args.no_log_scale:
# set logarithm scales
ax.set_xscale('''log''' )
ax.set_yscale('''log''' )
for axis in [ax.xaxis, ax.yaxis]:
axis.set_major_formatter(ScalarFormatter() )
for model_name_idx, model_name in enumerate(self.result_dict.keys() ):
lowerCAmelCase_ = sorted(set(self.result_dict[model_name]['''bsz'''] ) )
lowerCAmelCase_ = sorted(set(self.result_dict[model_name]['''seq_len'''] ) )
lowerCAmelCase_ = self.result_dict[model_name]['''result''']
((lowerCAmelCase_) ,(lowerCAmelCase_)) = (
(batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes)
)
lowerCAmelCase_ = (
model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx]
)
for inner_loop_value in inner_loop_array:
if self.args.plot_along_batch:
lowerCAmelCase_ = np.asarray(
[results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=_lowerCamelCase , )
else:
lowerCAmelCase_ = np.asarray(
[results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , )
((lowerCAmelCase_) ,(lowerCAmelCase_)) = (
('''batch_size''', '''len''') if self.args.plot_along_batch else ('''in #tokens''', '''bsz''')
)
lowerCAmelCase_ = np.asarray(_lowerCamelCase , _lowerCamelCase )[: len(_lowerCamelCase )]
plt.scatter(
_lowerCamelCase , _lowerCamelCase , label=F'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' )
plt.plot(_lowerCamelCase , _lowerCamelCase , '''--''' )
title_str += F''' {label_model_name} vs.'''
lowerCAmelCase_ = title_str[:-4]
lowerCAmelCase_ = '''Time in s''' if self.args.is_time else '''Memory in MB'''
# plot
plt.title(_lowerCamelCase )
plt.xlabel(_lowerCamelCase )
plt.ylabel(_lowerCamelCase )
plt.legend()
if self.args.figure_png_file is not None:
plt.savefig(self.args.figure_png_file )
else:
plt.show()
def snake_case_ ( ) -> Tuple:
lowerCAmelCase_ = HfArgumentParser(__snake_case)
lowerCAmelCase_ = parser.parse_args_into_dataclasses()[0]
lowerCAmelCase_ = Plot(args=__snake_case)
plot.plot()
if __name__ == "__main__":
main()
| 274 | 1 |
import hashlib
import unittest
from typing import Dict
import numpy as np
from transformers import (
MODEL_FOR_MASK_GENERATION_MAPPING,
TF_MODEL_FOR_MASK_GENERATION_MAPPING,
is_vision_available,
pipeline,
)
from transformers.pipelines import MaskGenerationPipeline
from transformers.testing_utils import (
is_pipeline_test,
nested_simplify,
require_tf,
require_torch,
require_vision,
slow,
)
if is_vision_available():
from PIL import Image
else:
class _UpperCAmelCase :
@staticmethod
def snake_case_ ( *a__ , **a__):
pass
def lowerCAmelCase__ ( UpperCamelCase_ : Union[str, Any] )-> List[Any]:
A__ = hashlib.mda(image.tobytes() )
return m.hexdigest()[:1_0]
def lowerCAmelCase__ ( UpperCamelCase_ : int )-> List[Any]:
A__ = np.array(snake_case_ )
A__ = npimg.shape
return {"hash": hashimage(snake_case_ ), "shape": shape}
@is_pipeline_test
@require_vision
@require_torch
class _UpperCAmelCase ( unittest.TestCase ):
UpperCamelCase__ = dict(
(list(MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if MODEL_FOR_MASK_GENERATION_MAPPING else []) )
UpperCamelCase__ = dict(
(list(TF_MODEL_FOR_MASK_GENERATION_MAPPING.items() ) if TF_MODEL_FOR_MASK_GENERATION_MAPPING else []) )
def snake_case_ ( self , a__ , a__ , a__):
A__ = MaskGenerationPipeline(model=_a , image_processor=_a)
return image_segmenter, [
"./tests/fixtures/tests_samples/COCO/000000039769.png",
"./tests/fixtures/tests_samples/COCO/000000039769.png",
]
def snake_case_ ( self , a__ , a__):
pass
@require_tf
@unittest.skip('''Image segmentation not implemented in TF''')
def snake_case_ ( self):
pass
@slow
@require_torch
def snake_case_ ( self):
A__ = pipeline('''mask-generation''' , model='''facebook/sam-vit-huge''')
A__ = image_segmenter('''http://images.cocodataset.org/val2017/000000039769.jpg''' , points_per_batch=2_5_6)
# Shortening by hashing
A__ = []
for i, o in enumerate(outputs['''masks''']):
new_outupt += [{"mask": mask_to_test_readable(_a), "scores": outputs["scores"][i]}]
# fmt: off
self.assertEqual(
nested_simplify(_a , decimals=4) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_4_4_4},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_2_1},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_6_7},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_3_2},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_0_5_3},
{'''mask''': {'''hash''': '''e2d0b7a0b7''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_6_7},
{'''mask''': {'''hash''': '''453c7844bd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_3},
{'''mask''': {'''hash''': '''3d44f2926d''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_9_0_9},
{'''mask''': {'''hash''': '''64033ddc3f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_8_7_9},
{'''mask''': {'''hash''': '''801064ff79''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_8_3_4},
{'''mask''': {'''hash''': '''6172f276ef''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_7_1_6},
{'''mask''': {'''hash''': '''b49e60e084''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_6_1_2},
{'''mask''': {'''hash''': '''a811e775fd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_9_9},
{'''mask''': {'''hash''': '''a6a8ebcf4b''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_5_2},
{'''mask''': {'''hash''': '''9d8257e080''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_3_2},
{'''mask''': {'''hash''': '''32de6454a8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_5_1_6},
{'''mask''': {'''hash''': '''af3d4af2c8''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_9_9},
{'''mask''': {'''hash''': '''3c6db475fb''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_8_3},
{'''mask''': {'''hash''': '''c290813fb9''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_6_4},
{'''mask''': {'''hash''': '''b6f0b8f606''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_3},
{'''mask''': {'''hash''': '''92ce16bfdf''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_3},
{'''mask''': {'''hash''': '''c749b25868''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_4_0_8},
{'''mask''': {'''hash''': '''efb6cab859''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_3_3_5},
{'''mask''': {'''hash''': '''1ff2eafb30''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_3_2_6},
{'''mask''': {'''hash''': '''788b798e24''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.9_2_6_2},
{'''mask''': {'''hash''': '''abea804f0e''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_9_9},
{'''mask''': {'''hash''': '''7b9e8ddb73''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_8_6},
{'''mask''': {'''hash''': '''cd24047c8a''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_9_8_4},
{'''mask''': {'''hash''': '''6943e6bcbd''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_8_7_3},
{'''mask''': {'''hash''': '''b5f47c9191''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 0.8_8_7_1}
] , )
# fmt: on
@require_torch
@slow
def snake_case_ ( self):
A__ = """facebook/sam-vit-huge"""
A__ = pipeline('''mask-generation''' , model=_a)
A__ = image_segmenter(
'''http://images.cocodataset.org/val2017/000000039769.jpg''' , pred_iou_thresh=1 , points_per_batch=2_5_6)
# Shortening by hashing
A__ = []
for i, o in enumerate(outputs['''masks''']):
new_outupt += [{"mask": mask_to_test_readable(_a), "scores": outputs["scores"][i]}]
self.assertEqual(
nested_simplify(_a , decimals=4) , [
{'''mask''': {'''hash''': '''115ad19f5f''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_4_4_4},
{'''mask''': {'''hash''': '''6affa964c6''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_2_1_0},
{'''mask''': {'''hash''': '''dfe28a0388''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_6_7},
{'''mask''': {'''hash''': '''c0a5f4a318''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_1_3_2},
{'''mask''': {'''hash''': '''fe8065c197''', '''shape''': (4_8_0, 6_4_0)}, '''scores''': 1.0_0_5_3},
] , )
| 710 |
def lowerCAmelCase__ ( UpperCamelCase_ : str , UpperCamelCase_ : str )-> float:
def get_matched_characters(UpperCamelCase_ : str , UpperCamelCase_ : str ) -> str:
A__ = []
A__ = min(len(_stra ) , len(_stra ) ) // 2
for i, l in enumerate(_stra ):
A__ = int(max(0 , i - limit ) )
A__ = int(min(i + limit + 1 , len(_stra ) ) )
if l in _stra[left:right]:
matched.append(UpperCamelCase_ )
A__ = f"{_stra[0:_stra.index(UpperCamelCase_ )]} {_stra[_stra.index(UpperCamelCase_ ) + 1:]}"
return "".join(UpperCamelCase_ )
# matching characters
A__ = get_matched_characters(UpperCamelCase_ , UpperCamelCase_ )
A__ = get_matched_characters(UpperCamelCase_ , UpperCamelCase_ )
A__ = len(UpperCamelCase_ )
# transposition
A__ = (
len([(ca, ca) for ca, ca in zip(UpperCamelCase_ , UpperCamelCase_ ) if ca != ca] ) // 2
)
if not match_count:
A__ = 0.0
else:
A__ = (
1
/ 3
* (
match_count / len(UpperCamelCase_ )
+ match_count / len(UpperCamelCase_ )
+ (match_count - transpositions) / match_count
)
)
# common prefix up to 4 characters
A__ = 0
for ca, ca in zip(stra[:4] , stra[:4] ):
if ca == ca:
prefix_len += 1
else:
break
return jaro + 0.1 * prefix_len * (1 - jaro)
if __name__ == "__main__":
import doctest
doctest.testmod()
print(jaro_winkler("hello", "world"))
| 526 | 0 |
from __future__ import annotations
def lowerCamelCase__ ( __lowerCAmelCase : Optional[int] ):
"""simple docstring"""
lowerCAmelCase_ = len(UpperCamelCase__ )
# We need to create solution object to save path.
lowerCAmelCase_ = [[0 for _ in range(UpperCamelCase__ )] for _ in range(UpperCamelCase__ )]
lowerCAmelCase_ = run_maze(UpperCamelCase__ , 0 , 0 , UpperCamelCase__ )
if solved:
print("\n".join(str(UpperCamelCase__ ) for row in solutions ) )
else:
print("No solution exists!" )
return solved
def lowerCamelCase__ ( __lowerCAmelCase : List[str] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ):
"""simple docstring"""
lowerCAmelCase_ = len(UpperCamelCase__ )
# Final check point.
if i == j == (size - 1):
lowerCAmelCase_ = 1
return True
lowerCAmelCase_ = (not i < 0) and (not j < 0) # Check lower bounds
lowerCAmelCase_ = (i < size) and (j < size) # Check upper bounds
if lower_flag and upper_flag:
# check for already visited and block points.
lowerCAmelCase_ = (not solutions[i][j]) and (not maze[i][j])
if block_flag:
# check visited
lowerCAmelCase_ = 1
# check for directions
if (
run_maze(UpperCamelCase__ , i + 1 , UpperCamelCase__ , UpperCamelCase__ )
or run_maze(UpperCamelCase__ , UpperCamelCase__ , j + 1 , UpperCamelCase__ )
or run_maze(UpperCamelCase__ , i - 1 , UpperCamelCase__ , UpperCamelCase__ )
or run_maze(UpperCamelCase__ , UpperCamelCase__ , j - 1 , UpperCamelCase__ )
):
return True
lowerCAmelCase_ = 0
return False
return False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 290 |
'''simple docstring'''
def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ):
if exponent == 1:
return base
if exponent % 2 == 0:
UpperCAmelCase__ : List[str] = _modexpt(UpperCamelCase__ , exponent // 2 , UpperCamelCase__ ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(UpperCamelCase__ , exponent - 1 , UpperCamelCase__ )) % modulo_value
def _UpperCamelCase ( UpperCamelCase__ = 1_7_7_7 , UpperCamelCase__ = 1_8_5_5 , UpperCamelCase__ = 8 ):
UpperCAmelCase__ : List[str] = base
for _ in range(1 , UpperCamelCase__ ):
UpperCAmelCase__ : Dict = _modexpt(UpperCamelCase__ , UpperCamelCase__ , 1_0**digits )
return result
if __name__ == "__main__":
print(f"""{solution() = }""") | 407 | 0 |
import argparse
from typing import Dict
import tensorflow as tf
import torch
from tqdm import tqdm
from transformers import BigBirdPegasusConfig, BigBirdPegasusForConditionalGeneration
A = [
# tf -> hf
('/', '.'),
('layer_', 'layers.'),
('kernel', 'weight'),
('beta', 'bias'),
('gamma', 'weight'),
('pegasus', 'model'),
]
A = [
('.output.dense', '.fc2'),
('intermediate.LayerNorm', 'final_layer_norm'),
('intermediate.dense', 'fc1'),
]
A = (
INIT_COMMON
+ [
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.out_proj'),
('attention.self', 'self_attn'),
('attention.encdec.LayerNorm', 'encoder_attn_layer_norm'),
('attention.encdec_output.dense', 'encoder_attn.out_proj'),
('attention.encdec', 'encoder_attn'),
('key', 'k_proj'),
('value', 'v_proj'),
('query', 'q_proj'),
('decoder.LayerNorm', 'decoder.layernorm_embedding'),
]
+ END_COMMON
)
A = (
INIT_COMMON
+ [
('embeddings.word_embeddings', 'shared.weight'),
('embeddings.position_embeddings', 'embed_positions.weight'),
('attention.self.LayerNorm', 'self_attn_layer_norm'),
('attention.output.dense', 'self_attn.output'),
('attention.self', 'self_attn.self'),
('encoder.LayerNorm', 'encoder.layernorm_embedding'),
]
+ END_COMMON
)
A = [
'encdec/key/bias',
'encdec/query/bias',
'encdec/value/bias',
'self/key/bias',
'self/query/bias',
'self/value/bias',
'encdec_output/dense/bias',
'attention/output/dense/bias',
]
def a(lowercase__ , lowercase__ ):
'''simple docstring'''
for tf_name, hf_name in patterns:
snake_case_ = k.replace(lowercase__ , lowercase__ )
return k
def a(lowercase__ , lowercase__ ):
'''simple docstring'''
snake_case_ = BigBirdPegasusConfig(**lowercase__ )
snake_case_ = BigBirdPegasusForConditionalGeneration(lowercase__ )
snake_case_ = torch_model.state_dict()
snake_case_ = {}
# separating decoder weights
snake_case_ = {k: tf_weights[k] for k in tf_weights if k.startswith('pegasus/decoder' )}
snake_case_ = {k: tf_weights[k] for k in tf_weights if not k.startswith('pegasus/decoder' )}
for k, v in tqdm(decoder_weights.items() , 'tf -> hf conversion' ):
snake_case_ = [k.endswith(lowercase__ ) for ending in KEYS_TO_IGNORE]
if any(lowercase__ ):
continue
snake_case_ = DECODER_PATTERNS
snake_case_ = rename_state_dict_key(lowercase__ , lowercase__ )
if new_k not in state_dict:
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ):
snake_case_ = v.T
snake_case_ = torch.from_numpy(lowercase__ )
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
for k, v in tqdm(remaining_weights.items() , 'tf -> hf conversion' ):
snake_case_ = [k.endswith(lowercase__ ) for ending in KEYS_TO_IGNORE]
if any(lowercase__ ):
continue
snake_case_ = REMAINING_PATTERNS
snake_case_ = rename_state_dict_key(lowercase__ , lowercase__ )
if new_k not in state_dict and k != "pegasus/embeddings/position_embeddings":
raise ValueError(f"""could not find new key {new_k} in state dict. (converted from {k})""" )
if any(True if i in k else False for i in ['dense', 'query', 'key', 'value'] ):
snake_case_ = v.T
snake_case_ = torch.from_numpy(lowercase__ )
if k != "pegasus/embeddings/position_embeddings":
assert v.shape == state_dict[new_k].shape, f"""{new_k}, {k}, {v.shape}, {state_dict[new_k].shape}"""
snake_case_ = mapping['model.embed_positions.weight']
snake_case_ = mapping.pop('model.embed_positions.weight' )
snake_case_ , snake_case_ = torch_model.load_state_dict(lowercase__ , strict=lowercase__ )
snake_case_ = [
k
for k in missing
if k
not in [
'final_logits_bias',
'model.encoder.embed_tokens.weight',
'model.decoder.embed_tokens.weight',
'lm_head.weight',
]
]
assert unexpected_missing == [], f"""no matches found for the following torch keys {unexpected_missing}"""
assert extra == [], f"""no matches found for the following tf keys {extra}"""
return torch_model
def a(lowercase__ ):
'''simple docstring'''
snake_case_ = tf.train.list_variables(lowercase__ )
snake_case_ = {}
snake_case_ = ['global_step']
for name, shape in tqdm(lowercase__ , desc='converting tf checkpoint to dict' ):
snake_case_ = any(pat in name for pat in ignore_name )
if skip_key:
continue
snake_case_ = tf.train.load_variable(lowercase__ , lowercase__ )
snake_case_ = array
return tf_weights
def a(lowercase__ , lowercase__ , lowercase__ ):
'''simple docstring'''
snake_case_ = get_tf_weights_as_numpy(lowercase__ )
snake_case_ = convert_bigbird_pegasus(lowercase__ , lowercase__ )
torch_model.save_pretrained(lowercase__ )
if __name__ == "__main__":
A = argparse.ArgumentParser()
parser.add_argument('--tf_ckpt_path', type=str, help='passed to tf.train.list_variables')
parser.add_argument('--save_dir', default=None, type=str, help='Path to the output PyTorch model.')
A = parser.parse_args()
A = {}
convert_bigbird_pegasus_ckpt_to_pytorch(args.tf_ckpt_path, args.save_dir, config_update=config_update)
| 46 |
def a(lowercase__ , lowercase__ ):
'''simple docstring'''
if not isinstance(lowercase__ , lowercase__ ):
raise ValueError('iterations must be defined as integers' )
if not isinstance(lowercase__ , lowercase__ ) or not number >= 1:
raise ValueError(
'starting number must be\n and integer and be more than 0' )
if not iterations >= 1:
raise ValueError('Iterations must be done more than 0 times to play FizzBuzz' )
snake_case_ = ''
while number <= iterations:
if number % 3 == 0:
out += "Fizz"
if number % 5 == 0:
out += "Buzz"
if 0 not in (number % 3, number % 5):
out += str(lowercase__ )
# print(out)
number += 1
out += " "
return out
if __name__ == "__main__":
import doctest
doctest.testmod()
| 46 | 1 |
import argparse
import json
from collections import OrderedDict
from functools import partial
from pathlib import Path
import timm
import torch
from huggingface_hub import hf_hub_download
from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor
from transformers.utils import logging
logging.set_verbosity_info()
_snake_case : Dict = logging.get_logger()
def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : str, lowerCAmelCase_ : LevitConfig, lowerCAmelCase_ : Path, lowerCAmelCase_ : bool = True ):
print(F"""Converting {name}...""" )
with torch.no_grad():
if hidden_sizes == 128:
if name[-1] == "S":
__lowerCAmelCase = timm.create_model('levit_128s', pretrained=lowerCAmelCase_ )
else:
__lowerCAmelCase = timm.create_model('levit_128', pretrained=lowerCAmelCase_ )
if hidden_sizes == 192:
__lowerCAmelCase = timm.create_model('levit_192', pretrained=lowerCAmelCase_ )
if hidden_sizes == 256:
__lowerCAmelCase = timm.create_model('levit_256', pretrained=lowerCAmelCase_ )
if hidden_sizes == 384:
__lowerCAmelCase = timm.create_model('levit_384', pretrained=lowerCAmelCase_ )
from_model.eval()
__lowerCAmelCase = LevitForImageClassificationWithTeacher(lowerCAmelCase_ ).eval()
__lowerCAmelCase = OrderedDict()
__lowerCAmelCase = from_model.state_dict()
__lowerCAmelCase = list(from_model.state_dict().keys() )
__lowerCAmelCase = list(our_model.state_dict().keys() )
print(len(lowerCAmelCase_ ), len(lowerCAmelCase_ ) )
for i in range(len(lowerCAmelCase_ ) ):
__lowerCAmelCase = weights[og_keys[i]]
our_model.load_state_dict(lowerCAmelCase_ )
__lowerCAmelCase = torch.randn((2, 3, 224, 224) )
__lowerCAmelCase = from_model(lowerCAmelCase_ )
__lowerCAmelCase = our_model(lowerCAmelCase_ ).logits
assert torch.allclose(lowerCAmelCase_, lowerCAmelCase_ ), "The model logits don't match the original one."
__lowerCAmelCase = name
print(lowerCAmelCase_ )
if push_to_hub:
our_model.save_pretrained(save_directory / checkpoint_name )
__lowerCAmelCase = LevitImageProcessor()
image_processor.save_pretrained(save_directory / checkpoint_name )
print(F"""Pushed {checkpoint_name}""" )
def a_ ( lowerCAmelCase_ : Path, lowerCAmelCase_ : str = None, lowerCAmelCase_ : bool = True ):
__lowerCAmelCase = 'imagenet-1k-id2label.json'
__lowerCAmelCase = 1000
__lowerCAmelCase = (1, num_labels)
__lowerCAmelCase = 'huggingface/label-files'
__lowerCAmelCase = num_labels
__lowerCAmelCase = json.load(open(hf_hub_download(lowerCAmelCase_, lowerCAmelCase_, repo_type='dataset' ), 'r' ) )
__lowerCAmelCase = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()}
__lowerCAmelCase = idalabel
__lowerCAmelCase = {v: k for k, v in idalabel.items()}
__lowerCAmelCase = partial(lowerCAmelCase_, num_labels=lowerCAmelCase_, idalabel=lowerCAmelCase_, labelaid=lowerCAmelCase_ )
__lowerCAmelCase = {
'levit-128S': 128,
'levit-128': 128,
'levit-192': 192,
'levit-256': 256,
'levit-384': 384,
}
__lowerCAmelCase = {
'levit-128S': ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384], num_attention_heads=[4, 6, 8], depths=[2, 3, 4], key_dim=[16, 16, 16], drop_path_rate=0, ),
'levit-128': ImageNetPreTrainedConfig(
hidden_sizes=[128, 256, 384], num_attention_heads=[4, 8, 12], depths=[4, 4, 4], key_dim=[16, 16, 16], drop_path_rate=0, ),
'levit-192': ImageNetPreTrainedConfig(
hidden_sizes=[192, 288, 384], num_attention_heads=[3, 5, 6], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ),
'levit-256': ImageNetPreTrainedConfig(
hidden_sizes=[256, 384, 512], num_attention_heads=[4, 6, 8], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0, ),
'levit-384': ImageNetPreTrainedConfig(
hidden_sizes=[384, 512, 768], num_attention_heads=[6, 9, 12], depths=[4, 4, 4], key_dim=[32, 32, 32], drop_path_rate=0.1, ),
}
if model_name:
convert_weight_and_push(
names_to_hidden_sizes[model_name], lowerCAmelCase_, names_to_config[model_name], lowerCAmelCase_, lowerCAmelCase_ )
else:
for model_name, config in names_to_config.items():
convert_weight_and_push(names_to_hidden_sizes[model_name], lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ )
return config, expected_shape
if __name__ == "__main__":
_snake_case : List[str] = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'--model_name',
default=None,
type=str,
help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,',
)
parser.add_argument(
'--pytorch_dump_folder_path',
default='levit-dump-folder/',
type=Path,
required=False,
help='Path to the output PyTorch model directory.',
)
parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub')
parser.add_argument(
'--no-push_to_hub',
dest='push_to_hub',
action='store_false',
help='Do not push model and image processor to the hub',
)
_snake_case : List[Any] = parser.parse_args()
_snake_case : Path = args.pytorch_dump_folder_path
pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True)
convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
| 53 | """simple docstring"""
from collections import defaultdict
class __UpperCAmelCase :
'''simple docstring'''
def __init__( self , snake_case_ , snake_case_ ):
'''simple docstring'''
A__ : Tuple = total # total no of tasks (N)
# DP table will have a dimension of (2^M)*N
# initially all values are set to -1
A__ : Optional[int] = [
[-1 for i in range(total + 1 )] for j in range(2 ** len(snake_case_ ) )
]
A__ : Optional[int] = defaultdict(snake_case_ ) # stores the list of persons for each task
# final_mask is used to check if all persons are included by setting all bits
# to 1
A__ : Optional[int] = (1 << len(snake_case_ )) - 1
def lowerCamelCase ( self , snake_case_ , snake_case_ ):
'''simple docstring'''
if mask == self.final_mask:
return 1
# if not everyone gets the task and no more tasks are available, return 0
if task_no > self.total_tasks:
return 0
# if case already considered
if self.dp[mask][task_no] != -1:
return self.dp[mask][task_no]
# Number of ways when we don't this task in the arrangement
A__ : Optional[int] = self.count_ways_until(snake_case_ , task_no + 1 )
# now assign the tasks one by one to all possible persons and recursively
# assign for the remaining tasks.
if task_no in self.task:
for p in self.task[task_no]:
# if p is already given a task
if mask & (1 << p):
continue
# assign this task to p and change the mask value. And recursively
# assign tasks with the new mask value.
total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 )
# save the value.
A__ : List[str] = total_ways_util
return self.dp[mask][task_no]
def lowerCamelCase ( self , snake_case_ ):
'''simple docstring'''
for i in range(len(snake_case_ ) ):
for j in task_performed[i]:
self.task[j].append(snake_case_ )
# call the function to fill the DP table, final answer is stored in dp[0][1]
return self.count_ways_until(0 , 1 )
if __name__ == "__main__":
_UpperCamelCase = 5 # total no of tasks (the value of N)
# the list of tasks that can be done by M persons.
_UpperCamelCase = [[1, 3, 4], [1, 2, 5], [3, 4]]
print(
AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways(
task_performed
)
)
| 363 | 0 |
'''simple docstring'''
import unittest
from datasets import load_dataset
from transformers import BloomTokenizerFast
from transformers.testing_utils import require_tokenizers
from ...test_tokenization_common import TokenizerTesterMixin
@require_tokenizers
class _lowercase ( A__ , unittest.TestCase ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : str = None
SCREAMING_SNAKE_CASE__ : Optional[int] = BloomTokenizerFast
SCREAMING_SNAKE_CASE__ : Dict = BloomTokenizerFast
SCREAMING_SNAKE_CASE__ : Dict = True
SCREAMING_SNAKE_CASE__ : Tuple = False
SCREAMING_SNAKE_CASE__ : List[str] = '''tokenizer_file'''
SCREAMING_SNAKE_CASE__ : List[Any] = {'''bos_token''': '''<s>''', '''eos_token''': '''</s>''', '''unk_token''': '''<unk>''', '''pad_token''': '''<pad>'''}
def __magic_name__( self :int ) -> Dict:
super().setUp()
__SCREAMING_SNAKE_CASE : Any = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' )
tokenizer.save_pretrained(self.tmpdirname )
def __magic_name__( self :Union[str, Any] , **lowerCAmelCase__ :List[str] ) -> str:
kwargs.update(self.special_tokens_map )
return BloomTokenizerFast.from_pretrained(self.tmpdirname , **lowerCAmelCase__ )
def __magic_name__( self :Union[str, Any] ) -> List[Any]:
__SCREAMING_SNAKE_CASE : Tuple = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE : List[Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>''']
__SCREAMING_SNAKE_CASE : Tuple = [[2_175, 23_714, 73_173, 144_252, 2], [77, 132_619, 3_478, 368, 109_586, 35_433, 2]]
__SCREAMING_SNAKE_CASE : Optional[Any] = tokenizer.batch_encode_plus(lowerCAmelCase__ )['''input_ids''']
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(lowerCAmelCase__ )
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__( self :List[str] , lowerCAmelCase__ :List[str]=6 ) -> Union[str, Any]:
for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ):
__SCREAMING_SNAKE_CASE : List[str] = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ )
# tokenizer_r.pad_token = None # Hotfixing padding = None
# Simple input
__SCREAMING_SNAKE_CASE : List[Any] = '''This is a simple input'''
__SCREAMING_SNAKE_CASE : str = ['''This is a simple input 1''', '''This is a simple input 2''']
__SCREAMING_SNAKE_CASE : Optional[Any] = ('''This is a simple input''', '''This is a pair''')
__SCREAMING_SNAKE_CASE : Union[str, Any] = [
('''This is a simple input 1''', '''This is a simple input 2'''),
('''This is a simple pair 1''', '''This is a simple pair 2'''),
]
# Simple input tests
try:
tokenizer_r.encode(lowerCAmelCase__ , max_length=lowerCAmelCase__ )
tokenizer_r.encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ )
tokenizer_r.batch_encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ )
tokenizer_r.encode(lowerCAmelCase__ , max_length=lowerCAmelCase__ )
tokenizer_r.batch_encode_plus(lowerCAmelCase__ , max_length=lowerCAmelCase__ )
except ValueError:
self.fail('''Bloom Tokenizer should be able to deal with padding''' )
__SCREAMING_SNAKE_CASE : Dict = None # Hotfixing padding = None
self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' )
# Simple input
self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' )
# Simple input
self.assertRaises(
lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' , )
# Pair input
self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' )
# Pair input
self.assertRaises(lowerCAmelCase__ , tokenizer_r.encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' )
# Pair input
self.assertRaises(
lowerCAmelCase__ , tokenizer_r.batch_encode_plus , lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding='''max_length''' , )
def __magic_name__( self :List[str] ) -> Dict:
__SCREAMING_SNAKE_CASE : Tuple = self.get_rust_tokenizer()
__SCREAMING_SNAKE_CASE : Any = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : List[Any] = next(iter(lowerCAmelCase__ ) )['''premise'''] # pick up one data
__SCREAMING_SNAKE_CASE : Tuple = list(sample_data.values() )
__SCREAMING_SNAKE_CASE : Optional[int] = list(map(tokenizer.encode , lowerCAmelCase__ ) )
__SCREAMING_SNAKE_CASE : Any = [tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__ ) for x in output_tokens]
self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ )
def __magic_name__( self :List[Any] ) -> List[Any]:
# The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have
# any sequence length constraints. This test of the parent class will fail since it relies on the
# maximum sequence length of the positoonal embeddings.
self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 )
self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
| 713 |
import json
import os
from functools import lru_cache
from typing import Dict, List, Optional, Tuple, Union
import regex as re
from ...tokenization_utils import AddedToken, PreTrainedTokenizer
from ...tokenization_utils_base import BatchEncoding, EncodedInput
from ...utils import PaddingStrategy, logging
__lowerCAmelCase : Optional[int] =logging.get_logger(__name__)
__lowerCAmelCase : Union[str, Any] ={'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'}
# See all LED models at https://huggingface.co/models?filter=LED
__lowerCAmelCase : str ={
'vocab_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json',
},
'merges_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt',
},
'tokenizer_file': {
'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json',
},
}
__lowerCAmelCase : Optional[int] ={
'allenai/led-base-16384': 1_6_3_8_4,
}
@lru_cache()
# Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode
def _UpperCamelCase ( ):
__SCREAMING_SNAKE_CASE : Any = (
list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) )
)
__SCREAMING_SNAKE_CASE : Any = bs[:]
__SCREAMING_SNAKE_CASE : List[str] = 0
for b in range(2**8 ):
if b not in bs:
bs.append(lowercase__ )
cs.append(2**8 + n )
n += 1
__SCREAMING_SNAKE_CASE : List[str] = [chr(lowercase__ ) for n in cs]
return dict(zip(lowercase__ , lowercase__ ) )
def _UpperCamelCase ( lowercase__ ):
__SCREAMING_SNAKE_CASE : int = set()
__SCREAMING_SNAKE_CASE : Any = word[0]
for char in word[1:]:
pairs.add((prev_char, char) )
__SCREAMING_SNAKE_CASE : Union[str, Any] = char
return pairs
class _lowercase ( A__ ):
'''simple docstring'''
SCREAMING_SNAKE_CASE__ : Optional[int] = VOCAB_FILES_NAMES
SCREAMING_SNAKE_CASE__ : Any = PRETRAINED_VOCAB_FILES_MAP
SCREAMING_SNAKE_CASE__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
SCREAMING_SNAKE_CASE__ : Optional[int] = ['''input_ids''', '''attention_mask''']
def __init__( self :int , lowerCAmelCase__ :Tuple , lowerCAmelCase__ :List[str] , lowerCAmelCase__ :Tuple="replace" , lowerCAmelCase__ :List[str]="<s>" , lowerCAmelCase__ :List[str]="</s>" , lowerCAmelCase__ :Any="</s>" , lowerCAmelCase__ :int="<s>" , lowerCAmelCase__ :List[str]="<unk>" , lowerCAmelCase__ :List[str]="<pad>" , lowerCAmelCase__ :Dict="<mask>" , lowerCAmelCase__ :Union[str, Any]=False , **lowerCAmelCase__ :int , ) -> str:
__SCREAMING_SNAKE_CASE : List[str] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else bos_token
__SCREAMING_SNAKE_CASE : Tuple = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else eos_token
__SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else sep_token
__SCREAMING_SNAKE_CASE : Dict = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else cls_token
__SCREAMING_SNAKE_CASE : Optional[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else unk_token
__SCREAMING_SNAKE_CASE : List[Any] = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else pad_token
# Mask token behave like a normal word, i.e. include the space before it
__SCREAMING_SNAKE_CASE : int = AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ ) if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) else mask_token
super().__init__(
errors=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , **lowerCAmelCase__ , )
with open(lowerCAmelCase__ , encoding='''utf-8''' ) as vocab_handle:
__SCREAMING_SNAKE_CASE : List[Any] = json.load(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Union[str, Any] = {v: k for k, v in self.encoder.items()}
__SCREAMING_SNAKE_CASE : int = errors # how to handle errors in decoding
__SCREAMING_SNAKE_CASE : List[Any] = bytes_to_unicode()
__SCREAMING_SNAKE_CASE : Dict = {v: k for k, v in self.byte_encoder.items()}
with open(lowerCAmelCase__ , encoding='''utf-8''' ) as merges_handle:
__SCREAMING_SNAKE_CASE : Union[str, Any] = merges_handle.read().split('''\n''' )[1:-1]
__SCREAMING_SNAKE_CASE : Optional[Any] = [tuple(merge.split() ) for merge in bpe_merges]
__SCREAMING_SNAKE_CASE : Tuple = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) )
__SCREAMING_SNAKE_CASE : Optional[int] = {}
__SCREAMING_SNAKE_CASE : List[Any] = add_prefix_space
# Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions
__SCREAMING_SNAKE_CASE : Union[str, Any] = re.compile(r'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' )
@property
# Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size
def __magic_name__( self :Optional[Any] ) -> Dict:
return len(self.encoder )
def __magic_name__( self :Union[str, Any] ) -> Any:
return dict(self.encoder , **self.added_tokens_encoder )
def __magic_name__( self :Dict , lowerCAmelCase__ :Any ) -> Tuple:
if token in self.cache:
return self.cache[token]
__SCREAMING_SNAKE_CASE : List[Any] = tuple(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : str = get_pairs(lowerCAmelCase__ )
if not pairs:
return token
while True:
__SCREAMING_SNAKE_CASE : Union[str, Any] = min(lowerCAmelCase__ , key=lambda lowerCAmelCase__ : self.bpe_ranks.get(lowerCAmelCase__ , float('''inf''' ) ) )
if bigram not in self.bpe_ranks:
break
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = bigram
__SCREAMING_SNAKE_CASE : Tuple = []
__SCREAMING_SNAKE_CASE : Optional[Any] = 0
while i < len(lowerCAmelCase__ ):
try:
__SCREAMING_SNAKE_CASE : int = word.index(lowerCAmelCase__ , lowerCAmelCase__ )
except ValueError:
new_word.extend(word[i:] )
break
else:
new_word.extend(word[i:j] )
__SCREAMING_SNAKE_CASE : Optional[Any] = j
if word[i] == first and i < len(lowerCAmelCase__ ) - 1 and word[i + 1] == second:
new_word.append(first + second )
i += 2
else:
new_word.append(word[i] )
i += 1
__SCREAMING_SNAKE_CASE : List[str] = tuple(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Any = new_word
if len(lowerCAmelCase__ ) == 1:
break
else:
__SCREAMING_SNAKE_CASE : Union[str, Any] = get_pairs(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Tuple = ''' '''.join(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Optional[Any] = word
return word
def __magic_name__( self :str , lowerCAmelCase__ :Dict ) -> List[str]:
__SCREAMING_SNAKE_CASE : List[Any] = []
for token in re.findall(self.pat , lowerCAmelCase__ ):
__SCREAMING_SNAKE_CASE : Tuple = ''''''.join(
self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case)
bpe_tokens.extend(bpe_token for bpe_token in self.bpe(lowerCAmelCase__ ).split(''' ''' ) )
return bpe_tokens
def __magic_name__( self :List[str] , lowerCAmelCase__ :Union[str, Any] ) -> List[Any]:
return self.encoder.get(lowerCAmelCase__ , self.encoder.get(self.unk_token ) )
def __magic_name__( self :Dict , lowerCAmelCase__ :int ) -> Union[str, Any]:
return self.decoder.get(lowerCAmelCase__ )
def __magic_name__( self :Optional[Any] , lowerCAmelCase__ :Optional[int] ) -> List[Any]:
__SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(lowerCAmelCase__ )
__SCREAMING_SNAKE_CASE : Any = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors )
return text
def __magic_name__( self :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Optional[str] = None ) -> Tuple[str]:
if not os.path.isdir(lowerCAmelCase__ ):
logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' )
return
__SCREAMING_SNAKE_CASE : Any = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] )
__SCREAMING_SNAKE_CASE : Optional[int] = os.path.join(
lowerCAmelCase__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] )
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as f:
f.write(json.dumps(self.encoder , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '''\n''' )
__SCREAMING_SNAKE_CASE : Union[str, Any] = 0
with open(lowerCAmelCase__ , '''w''' , encoding='''utf-8''' ) as writer:
writer.write('''#version: 0.2\n''' )
for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda lowerCAmelCase__ : kv[1] ):
if index != token_index:
logger.warning(
f'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.'''
''' Please check that the tokenizer is not corrupted!''' )
__SCREAMING_SNAKE_CASE : str = token_index
writer.write(''' '''.join(lowerCAmelCase__ ) + '''\n''' )
index += 1
return vocab_file, merge_file
def __magic_name__( self :Optional[int] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]:
if token_ids_a is None:
return [self.cls_token_id] + token_ids_a + [self.sep_token_id]
__SCREAMING_SNAKE_CASE : Any = [self.cls_token_id]
__SCREAMING_SNAKE_CASE : Dict = [self.sep_token_id]
return cls + token_ids_a + sep + sep + token_ids_a + sep
def __magic_name__( self :Any , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None , lowerCAmelCase__ :bool = False ) -> List[int]:
if already_has_special_tokens:
return super().get_special_tokens_mask(
token_ids_a=lowerCAmelCase__ , token_ids_a=lowerCAmelCase__ , already_has_special_tokens=lowerCAmelCase__ )
if token_ids_a is None:
return [1] + ([0] * len(lowerCAmelCase__ )) + [1]
return [1] + ([0] * len(lowerCAmelCase__ )) + [1, 1] + ([0] * len(lowerCAmelCase__ )) + [1]
def __magic_name__( self :List[Any] , lowerCAmelCase__ :List[int] , lowerCAmelCase__ :Optional[List[int]] = None ) -> List[int]:
__SCREAMING_SNAKE_CASE : List[str] = [self.sep_token_id]
__SCREAMING_SNAKE_CASE : Union[str, Any] = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
def __magic_name__( self :Any , lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict=False , **lowerCAmelCase__ :Union[str, Any] ) -> int:
__SCREAMING_SNAKE_CASE : Dict = kwargs.pop('''add_prefix_space''' , self.add_prefix_space )
if (is_split_into_words or add_prefix_space) and (len(lowerCAmelCase__ ) > 0 and not text[0].isspace()):
__SCREAMING_SNAKE_CASE : str = ''' ''' + text
return (text, kwargs)
def __magic_name__( self :List[Any] , lowerCAmelCase__ :Union[Dict[str, EncodedInput], BatchEncoding] , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :PaddingStrategy = PaddingStrategy.DO_NOT_PAD , lowerCAmelCase__ :Optional[int] = None , lowerCAmelCase__ :Optional[bool] = None , ) -> dict:
__SCREAMING_SNAKE_CASE : Tuple = super()._pad(
encoded_inputs=lowerCAmelCase__ , max_length=lowerCAmelCase__ , padding_strategy=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_attention_mask=lowerCAmelCase__ , )
# Load from model defaults
if return_attention_mask is None:
__SCREAMING_SNAKE_CASE : Union[str, Any] = '''attention_mask''' in self.model_input_names
if return_attention_mask and "global_attention_mask" in encoded_inputs:
__SCREAMING_SNAKE_CASE : Dict = encoded_inputs[self.model_input_names[0]]
# `global_attention_mask` need to have the same length as other (sequential) inputs.
__SCREAMING_SNAKE_CASE : Dict = len(encoded_inputs['''global_attention_mask'''] ) != len(lowerCAmelCase__ )
if needs_to_be_padded:
__SCREAMING_SNAKE_CASE : List[Any] = len(lowerCAmelCase__ ) - len(encoded_inputs['''global_attention_mask'''] )
if self.padding_side == "right":
# Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend`
__SCREAMING_SNAKE_CASE : int = (
encoded_inputs['''global_attention_mask'''] + [-1] * difference
)
elif self.padding_side == "left":
__SCREAMING_SNAKE_CASE : Tuple = [-1] * difference + encoded_inputs[
'''global_attention_mask'''
]
else:
raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) )
return encoded_inputs
| 260 | 0 |
from typing import List, Optional, Union
import numpy as np
import PIL
import torch
from PIL import Image
from ...models import UNetaDConditionModel, VQModel
from ...pipelines import DiffusionPipeline
from ...pipelines.pipeline_utils import ImagePipelineOutput
from ...schedulers import DDPMScheduler
from ...utils import (
is_accelerate_available,
is_accelerate_version,
logging,
randn_tensor,
replace_example_docstring,
)
_lowercase : List[str] =logging.get_logger(__name__) # pylint: disable=invalid-name
_lowercase : Tuple ='\n Examples:\n ```py\n >>> from diffusers import KandinskyV22Img2ImgPipeline, KandinskyV22PriorPipeline\n >>> from diffusers.utils import load_image\n >>> import torch\n\n >>> pipe_prior = KandinskyV22PriorPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-prior", torch_dtype=torch.float16\n ... )\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "A red cartoon frog, 4k"\n >>> image_emb, zero_image_emb = pipe_prior(prompt, return_dict=False)\n\n >>> pipe = KandinskyV22Img2ImgPipeline.from_pretrained(\n ... "kandinsky-community/kandinsky-2-2-decoder", torch_dtype=torch.float16\n ... )\n >>> pipe.to("cuda")\n\n >>> init_image = load_image(\n ... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"\n ... "/kandinsky/frog.png"\n ... )\n\n >>> image = pipe(\n ... image=init_image,\n ... image_embeds=image_emb,\n ... negative_image_embeds=zero_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... strength=0.2,\n ... ).images\n\n >>> image[0].save("red_frog.png")\n ```\n'
def lowerCAmelCase_ ( _lowercase : Any , _lowercase : Dict , _lowercase : Any=8) -> List[str]:
"""simple docstring"""
a__ : Tuple = height // scale_factor**2
if height % scale_factor**2 != 0:
new_height += 1
a__ : Dict = width // scale_factor**2
if width % scale_factor**2 != 0:
new_width += 1
return new_height * scale_factor, new_width * scale_factor
def lowerCAmelCase_ ( _lowercase : Dict , _lowercase : Tuple=512 , _lowercase : str=512) -> Tuple:
"""simple docstring"""
a__ : Tuple = pil_image.resize((w, h) , resample=Image.BICUBIC , reducing_gap=1)
a__ : List[str] = np.array(pil_image.convert("""RGB"""))
a__ : List[Any] = arr.astype(np.floataa) / 127.5 - 1
a__ : Union[str, Any] = np.transpose(_lowercase , [2, 0, 1])
a__ : Optional[int] = torch.from_numpy(_lowercase).unsqueeze(0)
return image
class snake_case__ (_a ):
"""simple docstring"""
def __init__( self , __lowercase , __lowercase , __lowercase , ) -> List[str]:
"""simple docstring"""
super().__init__()
self.register_modules(
unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , )
a__ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1)
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase ) -> Optional[Any]:
"""simple docstring"""
a__ : Optional[int] = min(int(num_inference_steps * strength ) , lowercase__ )
a__ : Any = max(num_inference_steps - init_timestep , 0 )
a__ : Dict = self.scheduler.timesteps[t_start:]
return timesteps, num_inference_steps - t_start
def SCREAMING_SNAKE_CASE__( self , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ) -> Optional[Any]:
"""simple docstring"""
if not isinstance(lowercase__ , (torch.Tensor, PIL.Image.Image, list) ):
raise ValueError(
F'''`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(lowercase__ )}''' )
a__ : Dict = image.to(device=lowercase__ , dtype=lowercase__ )
a__ : Union[str, Any] = batch_size * num_images_per_prompt
if image.shape[1] == 4:
a__ : Any = image
else:
if isinstance(lowercase__ , lowercase__ ) and len(lowercase__ ) != batch_size:
raise ValueError(
F'''You have passed a list of generators of length {len(lowercase__ )}, but requested an effective batch'''
F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' )
elif isinstance(lowercase__ , lowercase__ ):
a__ : Any = [
self.movq.encode(image[i : i + 1] ).latent_dist.sample(generator[i] ) for i in range(lowercase__ )
]
a__ : List[str] = torch.cat(lowercase__ , dim=0 )
else:
a__ : Tuple = self.movq.encode(lowercase__ ).latent_dist.sample(lowercase__ )
a__ : Optional[int] = self.movq.config.scaling_factor * init_latents
a__ : Any = torch.cat([init_latents] , dim=0 )
a__ : List[str] = init_latents.shape
a__ : Optional[Any] = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ )
# get latents
a__ : Any = self.scheduler.add_noise(lowercase__ , lowercase__ , lowercase__ )
a__ : Tuple = init_latents
return latents
def SCREAMING_SNAKE_CASE__( self , __lowercase=0 ) -> str:
"""simple docstring"""
if is_accelerate_available():
from accelerate import cpu_offload
else:
raise ImportError("""Please install accelerate via `pip install accelerate`""" )
a__ : Dict = torch.device(F'''cuda:{gpu_id}''' )
a__ : List[Any] = [
self.unet,
self.movq,
]
for cpu_offloaded_model in models:
if cpu_offloaded_model is not None:
cpu_offload(lowercase__ , lowercase__ )
def SCREAMING_SNAKE_CASE__( self , __lowercase=0 ) -> List[str]:
"""simple docstring"""
if is_accelerate_available() and is_accelerate_version(""">=""" , """0.17.0.dev0""" ):
from accelerate import cpu_offload_with_hook
else:
raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" )
a__ : Optional[Any] = torch.device(F'''cuda:{gpu_id}''' )
if self.device.type != "cpu":
self.to("""cpu""" , silence_dtype_warnings=lowercase__ )
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
a__ : Optional[int] = None
for cpu_offloaded_model in [self.unet, self.movq]:
a__ , a__ : Tuple = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__ )
# We'll offload the last model manually.
a__ : Tuple = hook
@property
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
def SCREAMING_SNAKE_CASE__( self ) -> Union[str, Any]:
"""simple docstring"""
if not hasattr(self.unet , """_hf_hook""" ):
return self.device
for module in self.unet.modules():
if (
hasattr(lowercase__ , """_hf_hook""" )
and hasattr(module._hf_hook , """execution_device""" )
and module._hf_hook.execution_device is not None
):
return torch.device(module._hf_hook.execution_device )
return self.device
@torch.no_grad()
@replace_example_docstring(lowercase__ )
def __call__( self , __lowercase , __lowercase , __lowercase , __lowercase = 5_1_2 , __lowercase = 5_1_2 , __lowercase = 1_0_0 , __lowercase = 4.0 , __lowercase = 0.3 , __lowercase = 1 , __lowercase = None , __lowercase = "pil" , __lowercase = True , ) -> str:
"""simple docstring"""
a__ : Any = self._execution_device
a__ : Tuple = guidance_scale > 1.0
if isinstance(lowercase__ , lowercase__ ):
a__ : List[str] = torch.cat(lowercase__ , dim=0 )
a__ : List[Any] = image_embeds.shape[0]
if isinstance(lowercase__ , lowercase__ ):
a__ : Optional[int] = torch.cat(lowercase__ , dim=0 )
if do_classifier_free_guidance:
a__ : Dict = image_embeds.repeat_interleave(lowercase__ , dim=0 )
a__ : List[Any] = negative_image_embeds.repeat_interleave(lowercase__ , dim=0 )
a__ : Any = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to(dtype=self.unet.dtype , device=lowercase__ )
if not isinstance(lowercase__ , lowercase__ ):
a__ : Any = [image]
if not all(isinstance(lowercase__ , (PIL.Image.Image, torch.Tensor) ) for i in image ):
raise ValueError(
F'''Input is in incorrect format: {[type(lowercase__ ) for i in image]}. Currently, we only support PIL image and pytorch tensor''' )
a__ : List[Any] = torch.cat([prepare_image(lowercase__ , lowercase__ , lowercase__ ) for i in image] , dim=0 )
a__ : Optional[Any] = image.to(dtype=image_embeds.dtype , device=lowercase__ )
a__ : Dict = self.movq.encode(lowercase__ )["""latents"""]
a__ : Any = latents.repeat_interleave(lowercase__ , dim=0 )
self.scheduler.set_timesteps(lowercase__ , device=lowercase__ )
a__ , a__ : Dict = self.get_timesteps(lowercase__ , lowercase__ , lowercase__ )
a__ : List[Any] = timesteps[:1].repeat(batch_size * num_images_per_prompt )
a__ , a__ : Any = downscale_height_and_width(lowercase__ , lowercase__ , self.movq_scale_factor )
a__ : Dict = self.prepare_latents(
lowercase__ , lowercase__ , lowercase__ , lowercase__ , image_embeds.dtype , lowercase__ , lowercase__ )
for i, t in enumerate(self.progress_bar(lowercase__ ) ):
# expand the latents if we are doing classifier free guidance
a__ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents
a__ : Any = {"""image_embeds""": image_embeds}
a__ : Optional[int] = self.unet(
sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0]
if do_classifier_free_guidance:
a__ , a__ : Any = noise_pred.split(latents.shape[1] , dim=1 )
a__ , a__ : List[Any] = noise_pred.chunk(2 )
a__ , a__ : List[str] = variance_pred.chunk(2 )
a__ : Dict = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
a__ : List[Any] = torch.cat([noise_pred, variance_pred_text] , dim=1 )
if not (
hasattr(self.scheduler.config , """variance_type""" )
and self.scheduler.config.variance_type in ["learned", "learned_range"]
):
a__ , a__ : Any = noise_pred.split(latents.shape[1] , dim=1 )
# compute the previous noisy sample x_t -> x_t-1
a__ : List[Any] = self.scheduler.step(
lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , )[0]
# post-processing
a__ : str = self.movq.decode(lowercase__ , force_not_quantize=lowercase__ )["""sample"""]
if output_type not in ["pt", "np", "pil"]:
raise ValueError(F'''Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}''' )
if output_type in ["np", "pil"]:
a__ : List[str] = image * 0.5 + 0.5
a__ : Any = image.clamp(0 , 1 )
a__ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy()
if output_type == "pil":
a__ : Tuple = self.numpy_to_pil(lowercase__ )
if not return_dict:
return (image,)
return ImagePipelineOutput(images=lowercase__ )
| 136 |
from __future__ import annotations
def __a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[str]:
'''simple docstring'''
if nth_term == "":
return [""]
__UpperCAmelCase = int(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = int(SCREAMING_SNAKE_CASE )
__UpperCAmelCase = []
for temp in range(int(SCREAMING_SNAKE_CASE ) ):
series.append(f'''1 / {pow(temp + 1 , int(SCREAMING_SNAKE_CASE ) )}''' if series else '''1''' )
return series
if __name__ == "__main__":
import doctest
doctest.testmod()
A_ : Any = int(input('Enter the last number (nth term) of the P-Series'))
A_ : List[str] = int(input('Enter the power for P-Series'))
print('Formula of P-Series => 1+1/2^p+1/3^p ..... 1/n^p')
print(p_series(nth_term, power))
| 303 | 0 |
from __future__ import annotations
from collections import deque
class _a :
'''simple docstring'''
def __init__( self , __UpperCAmelCase ):
__A : list[dict] = []
self.adlist.append(
{"value": "", "next_states": [], "fail_state": 0, "output": []} )
for keyword in keywords:
self.add_keyword(__UpperCAmelCase )
self.set_fail_transitions()
def __UpperCAmelCase( self , __UpperCAmelCase , __UpperCAmelCase ):
for state in self.adlist[current_state]["next_states"]:
if char == self.adlist[state]["value"]:
return state
return None
def __UpperCAmelCase( self , __UpperCAmelCase ):
__A : int = 0
for character in keyword:
__A : Tuple = self.find_next_state(__UpperCAmelCase , __UpperCAmelCase )
if next_state is None:
self.adlist.append(
{
"value": character,
"next_states": [],
"fail_state": 0,
"output": [],
} )
self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 )
__A : Optional[Any] = len(self.adlist ) - 1
else:
__A : Dict = next_state
self.adlist[current_state]["output"].append(__UpperCAmelCase )
def __UpperCAmelCase( self ):
__A : deque = deque()
for node in self.adlist[0]["next_states"]:
q.append(__UpperCAmelCase )
__A : List[str] = 0
while q:
__A : Optional[int] = q.popleft()
for child in self.adlist[r]["next_states"]:
q.append(__UpperCAmelCase )
__A : Union[str, Any] = self.adlist[r]["fail_state"]
while (
self.find_next_state(__UpperCAmelCase , self.adlist[child]["value"] ) is None
and state != 0
):
__A : Optional[Any] = self.adlist[state]["fail_state"]
__A : Union[str, Any] = self.find_next_state(
__UpperCAmelCase , self.adlist[child]["value"] )
if self.adlist[child]["fail_state"] is None:
__A : List[str] = 0
__A : Optional[int] = (
self.adlist[child]["output"]
+ self.adlist[self.adlist[child]["fail_state"]]["output"]
)
def __UpperCAmelCase( self , __UpperCAmelCase ):
__A : dict = {} # returns a dict with keywords and list of its occurrences
__A : Any = 0
for i in range(len(__UpperCAmelCase ) ):
while (
self.find_next_state(__UpperCAmelCase , string[i] ) is None
and current_state != 0
):
__A : str = self.adlist[current_state]["fail_state"]
__A : Tuple = self.find_next_state(__UpperCAmelCase , string[i] )
if next_state is None:
__A : Optional[Any] = 0
else:
__A : Dict = next_state
for key in self.adlist[current_state]["output"]:
if key not in result:
__A : List[Any] = []
result[key].append(i - len(__UpperCAmelCase ) + 1 )
return result
if __name__ == "__main__":
import doctest
doctest.testmod()
| 702 | import unittest
import numpy as np
from datasets import load_dataset
from transformers.testing_utils import require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import BeitImageProcessor
class _a ( unittest.TestCase ):
'''simple docstring'''
def __init__( self , __UpperCAmelCase , __UpperCAmelCase=7 , __UpperCAmelCase=3 , __UpperCAmelCase=18 , __UpperCAmelCase=30 , __UpperCAmelCase=400 , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=None , __UpperCAmelCase=True , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=[0.5, 0.5, 0.5] , __UpperCAmelCase=False , ):
__A : Tuple = size if size is not None else {"height": 20, "width": 20}
__A : Tuple = crop_size if crop_size is not None else {"height": 18, "width": 18}
__A : int = parent
__A : List[Any] = batch_size
__A : Tuple = num_channels
__A : Any = image_size
__A : Optional[int] = min_resolution
__A : Any = max_resolution
__A : str = do_resize
__A : Tuple = size
__A : Tuple = do_center_crop
__A : Union[str, Any] = crop_size
__A : Tuple = do_normalize
__A : Union[str, Any] = image_mean
__A : Dict = image_std
__A : Optional[Any] = do_reduce_labels
def __UpperCAmelCase( self ):
return {
"do_resize": self.do_resize,
"size": self.size,
"do_center_crop": self.do_center_crop,
"crop_size": self.crop_size,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
"do_reduce_labels": self.do_reduce_labels,
}
def lowerCamelCase_ ( ) -> str:
__A : List[str] = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A : Optional[Any] = Image.open(dataset[0]["file"] )
__A : Union[str, Any] = Image.open(dataset[1]["file"] )
return image, map
def lowerCamelCase_ ( ) -> Dict:
__A : str = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" )
__A : List[Any] = Image.open(ds[0]["file"] )
__A : Union[str, Any] = Image.open(ds[1]["file"] )
__A : Optional[Any] = Image.open(ds[2]["file"] )
__A : str = Image.open(ds[3]["file"] )
return [imagea, imagea], [mapa, mapa]
@require_torch
@require_vision
class _a ( lowerCAmelCase__ , unittest.TestCase ):
'''simple docstring'''
lowerCamelCase_ : Tuple = BeitImageProcessor if is_vision_available() else None
def __UpperCAmelCase( self ):
__A : Tuple = BeitImageProcessingTester(self )
@property
def __UpperCAmelCase( self ):
return self.image_processor_tester.prepare_image_processor_dict()
def __UpperCAmelCase( self ):
__A : List[Any] = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(__UpperCAmelCase , "do_resize" ) )
self.assertTrue(hasattr(__UpperCAmelCase , "size" ) )
self.assertTrue(hasattr(__UpperCAmelCase , "do_center_crop" ) )
self.assertTrue(hasattr(__UpperCAmelCase , "center_crop" ) )
self.assertTrue(hasattr(__UpperCAmelCase , "do_normalize" ) )
self.assertTrue(hasattr(__UpperCAmelCase , "image_mean" ) )
self.assertTrue(hasattr(__UpperCAmelCase , "image_std" ) )
def __UpperCAmelCase( self ):
__A : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {"height": 20, "width": 20} )
self.assertEqual(image_processor.crop_size , {"height": 18, "width": 18} )
self.assertEqual(image_processor.do_reduce_labels , __UpperCAmelCase )
__A : str = self.image_processing_class.from_dict(
self.image_processor_dict , size=42 , crop_size=84 , reduce_labels=__UpperCAmelCase )
self.assertEqual(image_processor.size , {"height": 42, "width": 42} )
self.assertEqual(image_processor.crop_size , {"height": 84, "width": 84} )
self.assertEqual(image_processor.do_reduce_labels , __UpperCAmelCase )
def __UpperCAmelCase( self ):
pass
def __UpperCAmelCase( self ):
# Initialize image_processing
__A : Optional[Any] = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
__A : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , Image.Image )
# Test not batched input
__A : Optional[int] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__A : List[Any] = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __UpperCAmelCase( self ):
# Initialize image_processing
__A : List[str] = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
__A : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , numpify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , np.ndarray )
# Test not batched input
__A : Tuple = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__A : List[Any] = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __UpperCAmelCase( self ):
# Initialize image_processing
__A : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
# Test not batched input
__A : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
# Test batched
__A : Union[str, Any] = image_processing(__UpperCAmelCase , return_tensors="pt" ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
def __UpperCAmelCase( self ):
# Initialize image_processing
__A : Tuple = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
__A : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=__UpperCAmelCase , torchify=__UpperCAmelCase )
__A : Tuple = []
for image in image_inputs:
self.assertIsInstance(__UpperCAmelCase , torch.Tensor )
maps.append(torch.zeros(image.shape[-2:] ).long() )
# Test not batched input
__A : str = image_processing(image_inputs[0] , maps[0] , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test batched
__A : Any = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test not batched input (PIL images)
__A , __A : Optional[Any] = prepare_semantic_single_inputs()
__A : Dict = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
1,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
# Test batched input (PIL images)
__A , __A : List[Any] = prepare_semantic_batch_inputs()
__A : Tuple = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" )
self.assertEqual(
encoding["pixel_values"].shape , (
2,
self.image_processor_tester.num_channels,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(
encoding["labels"].shape , (
2,
self.image_processor_tester.crop_size["height"],
self.image_processor_tester.crop_size["width"],
) , )
self.assertEqual(encoding["labels"].dtype , torch.long )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
def __UpperCAmelCase( self ):
# Initialize image_processing
__A : Tuple = self.image_processing_class(**self.image_processor_dict )
# ADE20k has 150 classes, and the background is included, so labels should be between 0 and 150
__A , __A : List[Any] = prepare_semantic_single_inputs()
__A : Optional[int] = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 150 )
__A : Optional[Any] = True
__A : int = image_processing(__UpperCAmelCase , __UpperCAmelCase , return_tensors="pt" )
self.assertTrue(encoding["labels"].min().item() >= 0 )
self.assertTrue(encoding["labels"].max().item() <= 255 )
| 387 | 0 |
'''simple docstring'''
import json
from typing import List, Optional, Tuple
from tokenizers import normalizers
from ...tokenization_utils_fast import PreTrainedTokenizerFast
from ...utils import logging
from .tokenization_convbert import ConvBertTokenizer
__magic_name__ = logging.get_logger(__name__)
__magic_name__ = {'vocab_file': 'vocab.txt'}
__magic_name__ = {
'vocab_file': {
'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt',
'YituTech/conv-bert-medium-small': (
'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt'
),
'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt',
}
}
__magic_name__ = {
'YituTech/conv-bert-base': 512,
'YituTech/conv-bert-medium-small': 512,
'YituTech/conv-bert-small': 512,
}
__magic_name__ = {
'YituTech/conv-bert-base': {'do_lower_case': True},
'YituTech/conv-bert-medium-small': {'do_lower_case': True},
'YituTech/conv-bert-small': {'do_lower_case': True},
}
class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ):
'''simple docstring'''
a_ = VOCAB_FILES_NAMES
a_ = PRETRAINED_VOCAB_FILES_MAP
a_ = PRETRAINED_INIT_CONFIGURATION
a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
a_ = ConvBertTokenizer
def __init__( self : str ,_a : Dict=None ,_a : List[Any]=None ,_a : Dict=True ,_a : List[str]="[UNK]" ,_a : Any="[SEP]" ,_a : str="[PAD]" ,_a : List[Any]="[CLS]" ,_a : List[str]="[MASK]" ,_a : Union[str, Any]=True ,_a : Any=None ,**_a : Optional[int] ,):
'''simple docstring'''
super().__init__(
_a ,tokenizer_file=_a ,do_lower_case=_a ,unk_token=_a ,sep_token=_a ,pad_token=_a ,cls_token=_a ,mask_token=_a ,tokenize_chinese_chars=_a ,strip_accents=_a ,**_a ,)
A_ : Optional[Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() )
if (
normalizer_state.get("""lowercase""" ,_a ) != do_lower_case
or normalizer_state.get("""strip_accents""" ,_a ) != strip_accents
or normalizer_state.get("""handle_chinese_chars""" ,_a ) != tokenize_chinese_chars
):
A_ : Dict = getattr(_a ,normalizer_state.pop("""type""" ) )
A_ : str = do_lower_case
A_ : Any = strip_accents
A_ : int = tokenize_chinese_chars
A_ : Tuple = normalizer_class(**_a )
A_ : Any = do_lower_case
def _a ( self : List[Any] ,_a : List[Any] ,_a : Any=None ):
'''simple docstring'''
A_ : str = [self.cls_token_id] + token_ids_a + [self.sep_token_id]
if token_ids_a:
output += token_ids_a + [self.sep_token_id]
return output
def _a ( self : Dict ,_a : List[int] ,_a : Optional[List[int]] = None ):
'''simple docstring'''
A_ : int = [self.sep_token_id]
A_ : Any = [self.cls_token_id]
if token_ids_a is None:
return len(cls + token_ids_a + sep ) * [0]
return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
def _a ( self : int ,_a : str ,_a : Optional[str] = None ):
'''simple docstring'''
A_ : List[Any] = self._tokenizer.model.save(_a ,name=_a )
return tuple(_a )
| 665 |
'''simple docstring'''
import unittest
from transformers import (
MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING,
TextaTextGenerationPipeline,
pipeline,
)
from transformers.testing_utils import is_pipeline_test, require_tf, require_torch
from transformers.utils import is_torch_available
from .test_pipelines_common import ANY
if is_torch_available():
import torch
@is_pipeline_test
class __lowerCAmelCase ( unittest.TestCase ):
'''simple docstring'''
a_ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
a_ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING
def _a ( self : List[str] ,_a : int ,_a : Any ,_a : int ):
'''simple docstring'''
A_ : Dict = TextaTextGenerationPipeline(model=_a ,tokenizer=_a )
return generator, ["Something to write", "Something else"]
def _a ( self : str ,_a : Union[str, Any] ,_a : int ):
'''simple docstring'''
A_ : Any = generator("""Something there""" )
self.assertEqual(_a ,[{"""generated_text""": ANY(_a )}] )
# These are encoder decoder, they don't just append to incoming string
self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) )
A_ : List[Any] = generator(["""This is great !""", """Something else"""] ,num_return_sequences=2 ,do_sample=_a )
self.assertEqual(
_a ,[
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] ,)
A_ : List[str] = generator(
["""This is great !""", """Something else"""] ,num_return_sequences=2 ,batch_size=2 ,do_sample=_a )
self.assertEqual(
_a ,[
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
[{"""generated_text""": ANY(_a )}, {"""generated_text""": ANY(_a )}],
] ,)
with self.assertRaises(_a ):
generator(4 )
@require_torch
def _a ( self : Union[str, Any] ):
'''simple docstring'''
A_ : int = pipeline("""text2text-generation""" ,model="""patrickvonplaten/t5-tiny-random""" ,framework="""pt""" )
# do_sample=False necessary for reproducibility
A_ : Tuple = generator("""Something there""" ,do_sample=_a )
self.assertEqual(_a ,[{"""generated_text""": """"""}] )
A_ : Optional[int] = 3
A_ : Tuple = generator(
"""Something there""" ,num_return_sequences=_a ,num_beams=_a ,)
A_ : Optional[Any] = [
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""},
{"""generated_text""": """"""},
]
self.assertEqual(_a ,_a )
A_ : Optional[int] = generator("""This is a test""" ,do_sample=_a ,num_return_sequences=2 ,return_tensors=_a )
self.assertEqual(
_a ,[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
] ,)
A_ : Dict = generator.model.config.eos_token_id
A_ : Optional[int] = """<pad>"""
A_ : List[Any] = generator(
["""This is a test""", """This is a second test"""] ,do_sample=_a ,num_return_sequences=2 ,batch_size=2 ,return_tensors=_a ,)
self.assertEqual(
_a ,[
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
[
{"""generated_token_ids""": ANY(torch.Tensor )},
{"""generated_token_ids""": ANY(torch.Tensor )},
],
] ,)
@require_tf
def _a ( self : List[Any] ):
'''simple docstring'''
A_ : Optional[int] = pipeline("""text2text-generation""" ,model="""patrickvonplaten/t5-tiny-random""" ,framework="""tf""" )
# do_sample=False necessary for reproducibility
A_ : Dict = generator("""Something there""" ,do_sample=_a )
self.assertEqual(_a ,[{"""generated_text""": """"""}] )
| 665 | 1 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
UpperCamelCase = logging.get_logger(__name__)
UpperCamelCase = {
'studio-ousia/luke-base': 'https://huggingface.co/studio-ousia/luke-base/resolve/main/config.json',
'studio-ousia/luke-large': 'https://huggingface.co/studio-ousia/luke-large/resolve/main/config.json',
}
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
snake_case__ = "luke"
def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any=50_267 , SCREAMING_SNAKE_CASE__ : Tuple=500_000 , SCREAMING_SNAKE_CASE__ : Tuple=768 , SCREAMING_SNAKE_CASE__ : Dict=256 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=12 , SCREAMING_SNAKE_CASE__ : Tuple=12 , SCREAMING_SNAKE_CASE__ : Any=3_072 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : List[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=512 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Any=1e-1_2 , SCREAMING_SNAKE_CASE__ : Tuple=True , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , SCREAMING_SNAKE_CASE__ : Any=1 , SCREAMING_SNAKE_CASE__ : Optional[int]=0 , SCREAMING_SNAKE_CASE__ : str=2 , **SCREAMING_SNAKE_CASE__ : List[str] , ) -> int:
super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ )
lowerCAmelCase__ = vocab_size
lowerCAmelCase__ = entity_vocab_size
lowerCAmelCase__ = hidden_size
lowerCAmelCase__ = entity_emb_size
lowerCAmelCase__ = num_hidden_layers
lowerCAmelCase__ = num_attention_heads
lowerCAmelCase__ = hidden_act
lowerCAmelCase__ = intermediate_size
lowerCAmelCase__ = hidden_dropout_prob
lowerCAmelCase__ = attention_probs_dropout_prob
lowerCAmelCase__ = max_position_embeddings
lowerCAmelCase__ = type_vocab_size
lowerCAmelCase__ = initializer_range
lowerCAmelCase__ = layer_norm_eps
lowerCAmelCase__ = use_entity_aware_attention
lowerCAmelCase__ = classifier_dropout
| 125 |
import logging
import os
from typing import List, TextIO, Union
from conllu import parse_incr
from utils_ner import InputExample, Split, TokenClassificationTask
UpperCamelCase = logging.getLogger(__name__)
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
def __init__( self : Tuple , SCREAMING_SNAKE_CASE__ : List[Any]=-1 ) -> str:
# in NER datasets, the last column is usually reserved for NER label
lowerCAmelCase__ = label_idx
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = mode.value
lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , f'{mode}.txt' )
lowerCAmelCase__ = 1
lowerCAmelCase__ = []
with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f:
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for line in f:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) )
guid_index += 1
lowerCAmelCase__ = []
lowerCAmelCase__ = []
else:
lowerCAmelCase__ = line.split(" " )
words.append(splits[0] )
if len(SCREAMING_SNAKE_CASE__ ) > 1:
labels.append(splits[self.label_idx].replace("\n" , "" ) )
else:
# Examples could have no label for mode = "test"
labels.append("O" )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) )
return examples
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : List ) -> Dict:
lowerCAmelCase__ = 0
for line in test_input_reader:
if line.startswith("-DOCSTART-" ) or line == "" or line == "\n":
writer.write(SCREAMING_SNAKE_CASE__ )
if not preds_list[example_id]:
example_id += 1
elif preds_list[example_id]:
lowerCAmelCase__ = line.split()[0] + " " + preds_list[example_id].pop(0 ) + "\n"
writer.write(SCREAMING_SNAKE_CASE__ )
else:
logger.warning("Maximum sequence length exceeded: No prediction for '%s'." , line.split()[0] )
def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
if path:
with open(SCREAMING_SNAKE_CASE__ , "r" ) as f:
lowerCAmelCase__ = f.read().splitlines()
if "O" not in labels:
lowerCAmelCase__ = ["O"] + labels
return labels
else:
return ["O", "B-MISC", "I-MISC", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
def __init__( self : Dict ) -> List[str]:
# in CONLL2003 dataset chunk column is second-to-last
super().__init__(label_idx=-2 )
def a ( self : int , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
if path:
with open(SCREAMING_SNAKE_CASE__ , "r" ) as f:
lowerCAmelCase__ = f.read().splitlines()
if "O" not in labels:
lowerCAmelCase__ = ["O"] + labels
return labels
else:
return [
"O",
"B-ADVP",
"B-INTJ",
"B-LST",
"B-PRT",
"B-NP",
"B-SBAR",
"B-VP",
"B-ADJP",
"B-CONJP",
"B-PP",
"I-ADVP",
"I-INTJ",
"I-LST",
"I-PRT",
"I-NP",
"I-SBAR",
"I-VP",
"I-ADJP",
"I-CONJP",
"I-PP",
]
class __lowerCamelCase ( UpperCamelCase__ ):
"""simple docstring"""
def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Union[Split, str] ) -> List[InputExample]:
if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = mode.value
lowerCAmelCase__ = os.path.join(SCREAMING_SNAKE_CASE__ , f'{mode}.txt' )
lowerCAmelCase__ = 1
lowerCAmelCase__ = []
with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as f:
for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = []
lowerCAmelCase__ = []
for token in sentence:
words.append(token["form"] )
labels.append(token["upos"] )
assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ )
if words:
examples.append(InputExample(guid=f'{mode}-{guid_index}' , words=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) )
guid_index += 1
return examples
def a ( self : int , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : TextIO , SCREAMING_SNAKE_CASE__ : List ) -> int:
lowerCAmelCase__ = 0
for sentence in parse_incr(SCREAMING_SNAKE_CASE__ ):
lowerCAmelCase__ = preds_list[example_id]
lowerCAmelCase__ = ""
for token in sentence:
out += f'{token["form"]} ({token["upos"]}|{s_p.pop(0 )}) '
out += "\n"
writer.write(SCREAMING_SNAKE_CASE__ )
example_id += 1
def a ( self : Any , SCREAMING_SNAKE_CASE__ : str ) -> List[str]:
if path:
with open(SCREAMING_SNAKE_CASE__ , "r" ) as f:
return f.read().splitlines()
else:
return [
"ADJ",
"ADP",
"ADV",
"AUX",
"CCONJ",
"DET",
"INTJ",
"NOUN",
"NUM",
"PART",
"PRON",
"PROPN",
"PUNCT",
"SCONJ",
"SYM",
"VERB",
"X",
]
| 125 | 1 |
# Note: if you intend to run this script make sure you look under scripts/fsmt/
# to locate the appropriate script to do the work correctly. There is a set of scripts to:
# - download and prepare data and run the conversion script
# - perform eval to get the best hparam into the config
# - generate model_cards - useful if you have multiple models from the same paper
import argparse
import json
import os
import re
from collections import OrderedDict
from os.path import basename, dirname
import fairseq
import torch
from fairseq import hub_utils
from fairseq.data.dictionary import Dictionary
from transformers import FSMTConfig, FSMTForConditionalGeneration
from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES
from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE
from transformers.utils import WEIGHTS_NAME, logging
logging.set_verbosity_warning()
A = 2
# based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping`
# values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults:
#
# * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users)
# * `early_stopping`: `False` consistently scored better
# * `length_penalty` varied, so will assign the best one depending on the model
A = {
# fairseq:
"wmt19-ru-en": {"length_penalty": 1.1},
"wmt19-en-ru": {"length_penalty": 1.15},
"wmt19-en-de": {"length_penalty": 1.0},
"wmt19-de-en": {"length_penalty": 1.1},
# allenai:
"wmt16-en-de-dist-12-1": {"length_penalty": 0.6},
"wmt16-en-de-dist-6-1": {"length_penalty": 0.6},
"wmt16-en-de-12-1": {"length_penalty": 0.8},
"wmt19-de-en-6-6-base": {"length_penalty": 0.6},
"wmt19-de-en-6-6-big": {"length_penalty": 0.6},
}
# this remaps the different models to their organization names
A = {}
for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]:
A = "facebook"
for m in [
"wmt16-en-de-dist-12-1",
"wmt16-en-de-dist-6-1",
"wmt16-en-de-12-1",
"wmt19-de-en-6-6-base",
"wmt19-de-en-6-6-big",
]:
A = "allenai"
def __UpperCAmelCase ( __A ) -> Optional[int]:
'''simple docstring'''
UpperCAmelCase__ = dict((re.sub(R"@@$" , "" , __A ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , __A ), v) for k, v in d.items() )
UpperCAmelCase__ = "<s> <pad> </s> <unk>".split()
# restore the special tokens
for k in keep_keys:
del da[F"""{k}</w>"""]
UpperCAmelCase__ = d[k] # restore
return da
def __UpperCAmelCase ( __A , __A ) -> Any:
'''simple docstring'''
assert os.path.exists(__A )
os.makedirs(__A , exist_ok=__A )
print(F"""Writing results to {pytorch_dump_folder_path}""" )
# handle various types of models
UpperCAmelCase__ = basename(__A )
UpperCAmelCase__ = dirname(__A )
UpperCAmelCase__ = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel
UpperCAmelCase__ = cls.hub_models()
UpperCAmelCase__ = {"bpe": "fastbpe", "tokenizer": "moses"}
UpperCAmelCase__ = "."
# note: since the model dump is old, fairseq has upgraded its model some
# time later, and it does a whole lot of rewrites and splits on the saved
# weights, therefore we can't use torch.load() directly on the model file.
# see: upgrade_state_dict(state_dict) in fairseq_model.py
print(F"""using checkpoint {checkpoint_file}""" )
UpperCAmelCase__ = hub_utils.from_pretrained(
__A , __A , __A , archive_map=__A , **__A )
UpperCAmelCase__ = vars(chkpt["args"]["model"] )
UpperCAmelCase__ = args["source_lang"]
UpperCAmelCase__ = args["target_lang"]
UpperCAmelCase__ = dirname(__A )
UpperCAmelCase__ = basename(__A )
# dicts
UpperCAmelCase__ = os.path.join(__A , F"""dict.{src_lang}.txt""" )
UpperCAmelCase__ = os.path.join(__A , F"""dict.{tgt_lang}.txt""" )
UpperCAmelCase__ = Dictionary.load(__A )
UpperCAmelCase__ = rewrite_dict_keys(src_dict.indices )
UpperCAmelCase__ = len(__A )
UpperCAmelCase__ = os.path.join(__A , "vocab-src.json" )
print(F"""Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records""" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) )
# detect whether this is a do_lower_case situation, which can be derived by checking whether we
# have at least one uppercase letter in the source vocab
UpperCAmelCase__ = True
for k in src_vocab.keys():
if not k.islower():
UpperCAmelCase__ = False
break
UpperCAmelCase__ = Dictionary.load(__A )
UpperCAmelCase__ = rewrite_dict_keys(tgt_dict.indices )
UpperCAmelCase__ = len(__A )
UpperCAmelCase__ = os.path.join(__A , "vocab-tgt.json" )
print(F"""Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records""" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) )
# merges_file (bpecodes)
UpperCAmelCase__ = os.path.join(__A , VOCAB_FILES_NAMES["merges_file"] )
for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code"
UpperCAmelCase__ = os.path.join(__A , __A )
if os.path.exists(__A ):
break
with open(__A , encoding="utf-8" ) as fin:
UpperCAmelCase__ = fin.read()
UpperCAmelCase__ = re.sub(R" \d+$" , "" , __A , 0 , re.M ) # remove frequency number
print(F"""Generating {merges_file}""" )
with open(__A , "w" , encoding="utf-8" ) as fout:
fout.write(__A )
# model config
UpperCAmelCase__ = os.path.join(__A , "config.json" )
# validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe -
# may have to modify the tokenizer if a different type is used by a future model
assert args["bpe"] == "fastbpe", F"""need to extend tokenizer to support bpe={args["bpe"]}"""
assert args["tokenizer"] == "moses", F"""need to extend tokenizer to support bpe={args["tokenizer"]}"""
UpperCAmelCase__ = {
"architectures": ["FSMTForConditionalGeneration"],
"model_type": "fsmt",
"activation_dropout": args["activation_dropout"],
"activation_function": "relu",
"attention_dropout": args["attention_dropout"],
"d_model": args["decoder_embed_dim"],
"dropout": args["dropout"],
"init_std": 0.02,
"max_position_embeddings": args["max_source_positions"],
"num_hidden_layers": args["encoder_layers"],
"src_vocab_size": src_vocab_size,
"tgt_vocab_size": tgt_vocab_size,
"langs": [src_lang, tgt_lang],
"encoder_attention_heads": args["encoder_attention_heads"],
"encoder_ffn_dim": args["encoder_ffn_embed_dim"],
"encoder_layerdrop": args["encoder_layerdrop"],
"encoder_layers": args["encoder_layers"],
"decoder_attention_heads": args["decoder_attention_heads"],
"decoder_ffn_dim": args["decoder_ffn_embed_dim"],
"decoder_layerdrop": args["decoder_layerdrop"],
"decoder_layers": args["decoder_layers"],
"bos_token_id": 0,
"pad_token_id": 1,
"eos_token_id": 2,
"is_encoder_decoder": True,
"scale_embedding": not args["no_scale_embedding"],
"tie_word_embeddings": args["share_all_embeddings"],
}
# good hparam defaults to start with
UpperCAmelCase__ = 5
UpperCAmelCase__ = False
if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]:
UpperCAmelCase__ = best_score_hparams[model_dir]["length_penalty"]
else:
UpperCAmelCase__ = 1.0
print(F"""Generating {fsmt_model_config_file}""" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) )
# tokenizer config
UpperCAmelCase__ = os.path.join(__A , __A )
UpperCAmelCase__ = {
"langs": [src_lang, tgt_lang],
"model_max_length": 1_0_2_4,
"do_lower_case": do_lower_case,
}
print(F"""Generating {fsmt_tokenizer_config_file}""" )
with open(__A , "w" , encoding="utf-8" ) as f:
f.write(json.dumps(__A , ensure_ascii=__A , indent=__A ) )
# model
UpperCAmelCase__ = chkpt["models"][0]
UpperCAmelCase__ = model.state_dict()
# rename keys to start with 'model.'
UpperCAmelCase__ = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() )
# remove unneeded keys
UpperCAmelCase__ = [
"model.model",
"model.encoder.version",
"model.decoder.version",
"model.encoder_embed_tokens.weight",
"model.decoder_embed_tokens.weight",
"model.encoder.embed_positions._float_tensor",
"model.decoder.embed_positions._float_tensor",
]
for k in ignore_keys:
model_state_dict.pop(__A , __A )
UpperCAmelCase__ = FSMTConfig.from_pretrained(__A )
UpperCAmelCase__ = FSMTForConditionalGeneration(__A )
# check that it loads ok
model_new.load_state_dict(__A , strict=__A )
# save
UpperCAmelCase__ = os.path.join(__A , __A )
print(F"""Generating {pytorch_weights_dump_path}""" )
torch.save(__A , __A )
print("Conversion is done!" )
print("\nLast step is to upload the files to s3" )
print(F"""cd {data_root}""" )
print(F"""transformers-cli upload {model_dir}""" )
if __name__ == "__main__":
A = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
"--fsmt_checkpoint_path",
default=None,
type=str,
required=True,
help=(
"Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,"
" bpecodes, etc."
),
)
parser.add_argument(
"--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model."
)
A = parser.parse_args()
convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
| 475 |
import shutil
import tempfile
import unittest
import numpy as np
from transformers.testing_utils import (
is_pt_tf_cross_test,
require_tf,
require_torch,
require_torchvision,
require_vision,
)
from transformers.utils import is_tf_available, is_torch_available, is_vision_available
if is_vision_available():
from PIL import Image
from transformers import AutoProcessor, SamImageProcessor, SamProcessor
if is_torch_available():
import torch
if is_tf_available():
import tensorflow as tf
@require_vision
@require_torchvision
class lowercase__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = tempfile.mkdtemp()
UpperCAmelCase__ = SamImageProcessor()
UpperCAmelCase__ = SamProcessor(_lowercase )
processor.save_pretrained(self.tmpdirname )
def _UpperCAmelCase ( self : Optional[int] , **_lowercase : str ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor
def _UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self : Dict ):
"""simple docstring"""
UpperCAmelCase__ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase__ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 )
UpperCAmelCase__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowercase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowercase )
def _UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = SamProcessor(image_processor=_lowercase )
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = image_processor(_lowercase , return_tensors="np" )
UpperCAmelCase__ = processor(images=_lowercase , return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop original_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_torch
def _UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = SamProcessor(image_processor=_lowercase )
UpperCAmelCase__ = [torch.ones((1, 3, 5, 5) )]
UpperCAmelCase__ = [[17_64, 26_46]]
UpperCAmelCase__ = [[6_83, 10_24]]
UpperCAmelCase__ = processor.post_process_masks(_lowercase , _lowercase , _lowercase )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
UpperCAmelCase__ = processor.post_process_masks(
_lowercase , torch.tensor(_lowercase ) , torch.tensor(_lowercase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
UpperCAmelCase__ = [np.ones((1, 3, 5, 5) )]
UpperCAmelCase__ = processor.post_process_masks(_lowercase , np.array(_lowercase ) , np.array(_lowercase ) )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
UpperCAmelCase__ = [[1, 0], [0, 1]]
with self.assertRaises(_lowercase ):
UpperCAmelCase__ = processor.post_process_masks(_lowercase , np.array(_lowercase ) , np.array(_lowercase ) )
@require_vision
@require_tf
class lowercase__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = tempfile.mkdtemp()
UpperCAmelCase__ = SamImageProcessor()
UpperCAmelCase__ = SamProcessor(_lowercase )
processor.save_pretrained(self.tmpdirname )
def _UpperCAmelCase ( self : Union[str, Any] , **_lowercase : int ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor
def _UpperCAmelCase ( self : Dict ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
def _UpperCAmelCase ( self : Optional[Any] ):
"""simple docstring"""
UpperCAmelCase__ = SamProcessor(image_processor=self.get_image_processor() )
processor.save_pretrained(self.tmpdirname )
UpperCAmelCase__ = self.get_image_processor(do_normalize=_lowercase , padding_value=1.0 )
UpperCAmelCase__ = SamProcessor.from_pretrained(self.tmpdirname , do_normalize=_lowercase , padding_value=1.0 )
self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() )
self.assertIsInstance(processor.image_processor , _lowercase )
def _UpperCAmelCase ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = SamProcessor(image_processor=_lowercase )
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = image_processor(_lowercase , return_tensors="np" )
UpperCAmelCase__ = processor(images=_lowercase , return_tensors="np" )
input_feat_extract.pop("original_sizes" ) # pop original_sizes as it is popped in the processor
input_feat_extract.pop("reshaped_input_sizes" ) # pop reshaped_input_sizes as it is popped in the processor
for key in input_feat_extract.keys():
self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 )
@require_tf
def _UpperCAmelCase ( self : Any ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = SamProcessor(image_processor=_lowercase )
UpperCAmelCase__ = [tf.ones((1, 3, 5, 5) )]
UpperCAmelCase__ = [[17_64, 26_46]]
UpperCAmelCase__ = [[6_83, 10_24]]
UpperCAmelCase__ = processor.post_process_masks(_lowercase , _lowercase , _lowercase , return_tensors="tf" )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
UpperCAmelCase__ = processor.post_process_masks(
_lowercase , tf.convert_to_tensor(_lowercase ) , tf.convert_to_tensor(_lowercase ) , return_tensors="tf" , )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
# should also work with np
UpperCAmelCase__ = [np.ones((1, 3, 5, 5) )]
UpperCAmelCase__ = processor.post_process_masks(
_lowercase , np.array(_lowercase ) , np.array(_lowercase ) , return_tensors="tf" )
self.assertEqual(masks[0].shape , (1, 3, 17_64, 26_46) )
UpperCAmelCase__ = [[1, 0], [0, 1]]
with self.assertRaises(tf.errors.InvalidArgumentError ):
UpperCAmelCase__ = processor.post_process_masks(
_lowercase , np.array(_lowercase ) , np.array(_lowercase ) , return_tensors="tf" )
@require_vision
@require_torchvision
class lowercase__ ( unittest.TestCase ):
def _UpperCAmelCase ( self : Union[str, Any] ):
"""simple docstring"""
UpperCAmelCase__ = tempfile.mkdtemp()
UpperCAmelCase__ = SamImageProcessor()
UpperCAmelCase__ = SamProcessor(_lowercase )
processor.save_pretrained(self.tmpdirname )
def _UpperCAmelCase ( self : str , **_lowercase : Optional[int] ):
"""simple docstring"""
return AutoProcessor.from_pretrained(self.tmpdirname , **_lowercase ).image_processor
def _UpperCAmelCase ( self : str ):
"""simple docstring"""
shutil.rmtree(self.tmpdirname )
def _UpperCAmelCase ( self : str ):
"""simple docstring"""
UpperCAmelCase__ = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )]
UpperCAmelCase__ = [Image.fromarray(np.moveaxis(_lowercase , 0 , -1 ) ) for x in image_inputs]
return image_inputs
@is_pt_tf_cross_test
def _UpperCAmelCase ( self : List[str] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = SamProcessor(image_processor=_lowercase )
UpperCAmelCase__ = np.random.randint(0 , 2 , size=(1, 3, 5, 5) ).astype(np.floataa )
UpperCAmelCase__ = [tf.convert_to_tensor(_lowercase )]
UpperCAmelCase__ = [torch.tensor(_lowercase )]
UpperCAmelCase__ = [[17_64, 26_46]]
UpperCAmelCase__ = [[6_83, 10_24]]
UpperCAmelCase__ = processor.post_process_masks(
_lowercase , _lowercase , _lowercase , return_tensors="tf" )
UpperCAmelCase__ = processor.post_process_masks(
_lowercase , _lowercase , _lowercase , return_tensors="pt" )
self.assertTrue(np.all(tf_masks[0].numpy() == pt_masks[0].numpy() ) )
@is_pt_tf_cross_test
def _UpperCAmelCase ( self : Optional[int] ):
"""simple docstring"""
UpperCAmelCase__ = self.get_image_processor()
UpperCAmelCase__ = SamProcessor(image_processor=_lowercase )
UpperCAmelCase__ = self.prepare_image_inputs()
UpperCAmelCase__ = image_processor(_lowercase , return_tensors="pt" )["pixel_values"].numpy()
UpperCAmelCase__ = processor(images=_lowercase , return_tensors="pt" )["pixel_values"].numpy()
UpperCAmelCase__ = image_processor(_lowercase , return_tensors="tf" )["pixel_values"].numpy()
UpperCAmelCase__ = processor(images=_lowercase , return_tensors="tf" )["pixel_values"].numpy()
self.assertTrue(np.allclose(_lowercase , _lowercase ) )
self.assertTrue(np.allclose(_lowercase , _lowercase ) )
self.assertTrue(np.allclose(_lowercase , _lowercase ) )
| 475 | 1 |
"""simple docstring"""
from typing import List, Optional, TypeVar
from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets
from .dataset_dict import DatasetDict, IterableDatasetDict
from .info import DatasetInfo
from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets
from .splits import NamedSplit
from .utils import logging
from .utils.py_utils import Literal
lowerCamelCase_ = logging.get_logger(__name__)
lowerCamelCase_ = TypeVar('''DatasetType''', Dataset, IterableDataset)
def snake_case ( A__ ,A__ = None ,A__ = None ,A__ = None ,A__ = None ,A__ = "first_exhausted" ,):
from .arrow_dataset import Dataset
from .iterable_dataset import IterableDataset
if not datasets:
raise ValueError("Unable to interleave an empty list of datasets." )
for i, dataset in enumerate(A__ ):
if not isinstance(A__ ,(Dataset, IterableDataset) ):
if isinstance(A__ ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
"is an empty dataset dictionary." )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(A__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(A__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A__ ).__name__}.""" )
if i == 0:
UpperCAmelCase_ , UpperCAmelCase_ : Tuple = (
(Dataset, IterableDataset) if isinstance(A__ ,A__ ) else (IterableDataset, Dataset)
)
elif not isinstance(A__ ,A__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if stopping_strategy not in ["first_exhausted", "all_exhausted"]:
raise ValueError(F"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" )
if dataset_type is Dataset:
return _interleave_map_style_datasets(
A__ ,A__ ,A__ ,info=A__ ,split=A__ ,stopping_strategy=A__ )
else:
return _interleave_iterable_datasets(
A__ ,A__ ,A__ ,info=A__ ,split=A__ ,stopping_strategy=A__ )
def snake_case ( A__ ,A__ = None ,A__ = None ,A__ = 0 ,):
if not dsets:
raise ValueError("Unable to concatenate an empty list of datasets." )
for i, dataset in enumerate(A__ ):
if not isinstance(A__ ,(Dataset, IterableDataset) ):
if isinstance(A__ ,(DatasetDict, IterableDatasetDict) ):
if not dataset:
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """
"is an empty dataset dictionary." )
raise ValueError(
F"""Dataset at position {i} has at least one split: {list(A__ )}\n"""
F"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(A__ ) )}']""" )
raise ValueError(
F"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(A__ ).__name__}.""" )
if i == 0:
UpperCAmelCase_ , UpperCAmelCase_ : str = (
(Dataset, IterableDataset) if isinstance(A__ ,A__ ) else (IterableDataset, Dataset)
)
elif not isinstance(A__ ,A__ ):
raise ValueError(
F"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" )
if dataset_type is Dataset:
return _concatenate_map_style_datasets(A__ ,info=A__ ,split=A__ ,axis=A__ )
else:
return _concatenate_iterable_datasets(A__ ,info=A__ ,split=A__ ,axis=A__ )
| 463 |
"""simple docstring"""
import copy
import json
import os
import tempfile
from transformers import is_torch_available
from .test_configuration_utils import config_common_kwargs
class UpperCamelCase_ (__A ):
def __init__( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any]=None , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[Any]=None , **lowerCAmelCase_ : Tuple ) -> Dict:
UpperCAmelCase_ : Tuple = parent
UpperCAmelCase_ : Optional[int] = config_class
UpperCAmelCase_ : List[str] = has_text_modality
UpperCAmelCase_ : Tuple = kwargs
UpperCAmelCase_ : int = common_properties
def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]:
UpperCAmelCase_ : Optional[int] = self.config_class(**self.inputs_dict )
UpperCAmelCase_ : int = (
["hidden_size", "num_attention_heads", "num_hidden_layers"]
if self.common_properties is None
else self.common_properties
)
# Add common fields for text models
if self.has_text_modality:
common_properties.extend(["vocab_size"] )
# Test that config has the common properties as getters
for prop in common_properties:
self.parent.assertTrue(hasattr(lowerCAmelCase_ , lowerCAmelCase_ ) , msg=f"""`{prop}` does not exist""" )
# Test that config has the common properties as setter
for idx, name in enumerate(lowerCAmelCase_ ):
try:
setattr(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ )
self.parent.assertEqual(
getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , msg=f"""`{name} value {idx} expected, but was {getattr(lowerCAmelCase_ , lowerCAmelCase_ )}""" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
# Test if config class can be called with Config(prop_name=..)
for idx, name in enumerate(lowerCAmelCase_ ):
try:
UpperCAmelCase_ : Optional[Any] = self.config_class(**{name: idx} )
self.parent.assertEqual(
getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ , msg=f"""`{name} value {idx} expected, but was {getattr(lowerCAmelCase_ , lowerCAmelCase_ )}""" )
except NotImplementedError:
# Some models might not be able to implement setters for common_properties
# In that case, a NotImplementedError is raised
pass
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple:
UpperCAmelCase_ : str = self.config_class(**self.inputs_dict )
UpperCAmelCase_ : List[str] = json.loads(config.to_json_string() )
for key, value in self.inputs_dict.items():
self.parent.assertEqual(obj[key] , lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Any:
UpperCAmelCase_ : Optional[Any] = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase_ : List[str] = os.path.join(lowerCAmelCase_ , "config.json" )
config_first.to_json_file(lowerCAmelCase_ )
UpperCAmelCase_ : Dict = self.config_class.from_json_file(lowerCAmelCase_ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Dict:
UpperCAmelCase_ : Any = self.config_class(**self.inputs_dict )
with tempfile.TemporaryDirectory() as tmpdirname:
config_first.save_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : Tuple = self.config_class.from_pretrained(lowerCAmelCase_ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _SCREAMING_SNAKE_CASE ( self : int ) -> Optional[Any]:
UpperCAmelCase_ : Any = self.config_class(**self.inputs_dict )
UpperCAmelCase_ : int = "test"
with tempfile.TemporaryDirectory() as tmpdirname:
UpperCAmelCase_ : Optional[int] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ )
config_first.save_pretrained(lowerCAmelCase_ )
UpperCAmelCase_ : Union[str, Any] = self.config_class.from_pretrained(lowerCAmelCase_ , subfolder=lowerCAmelCase_ )
self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() )
def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Tuple:
UpperCAmelCase_ : List[str] = self.config_class(**self.inputs_dict , num_labels=5 )
self.parent.assertEqual(len(config.idalabel ) , 5 )
self.parent.assertEqual(len(config.labelaid ) , 5 )
UpperCAmelCase_ : List[Any] = 3
self.parent.assertEqual(len(config.idalabel ) , 3 )
self.parent.assertEqual(len(config.labelaid ) , 3 )
def _SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]:
if self.config_class.is_composition:
return
UpperCAmelCase_ : str = self.config_class()
self.parent.assertIsNotNone(lowerCAmelCase_ )
def _SCREAMING_SNAKE_CASE ( self : Dict ) -> List[str]:
UpperCAmelCase_ : Optional[int] = copy.deepcopy(lowerCAmelCase_ )
UpperCAmelCase_ : Optional[int] = self.config_class(**lowerCAmelCase_ )
UpperCAmelCase_ : Optional[Any] = []
for key, value in config_common_kwargs.items():
if key == "torch_dtype":
if not is_torch_available():
continue
else:
import torch
if config.torch_dtype != torch.floataa:
wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) )
elif getattr(lowerCAmelCase_ , lowerCAmelCase_ ) != value:
wrong_values.append((key, getattr(lowerCAmelCase_ , lowerCAmelCase_ ), value) )
if len(lowerCAmelCase_ ) > 0:
UpperCAmelCase_ : Any = "\n".join([f"""- {v[0]}: got {v[1]} instead of {v[2]}""" for v in wrong_values] )
raise ValueError(f"""The following keys were not properly set in the config:\n{errors}""" )
def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> str:
self.create_and_test_config_common_properties()
self.create_and_test_config_to_json_string()
self.create_and_test_config_to_json_file()
self.create_and_test_config_from_and_save_pretrained()
self.create_and_test_config_from_and_save_pretrained_subfolder()
self.create_and_test_config_with_num_labels()
self.check_config_can_be_init_without_params()
self.check_config_arguments_init()
| 463 | 1 |
"""simple docstring"""
import argparse
import math
import traceback
import dateutil.parser as date_parser
import requests
def A_ ( snake_case__ ) -> Optional[Any]:
_UpperCamelCase :Optional[int] = {}
_UpperCamelCase :str = job["""started_at"""]
_UpperCamelCase :str = job["""completed_at"""]
_UpperCamelCase :str = date_parser.parse(snake_case_ )
_UpperCamelCase :int = date_parser.parse(snake_case_ )
_UpperCamelCase :Optional[Any] = round((end_datetime - start_datetime).total_seconds() / 60.0 )
_UpperCamelCase :Optional[int] = start
_UpperCamelCase :List[str] = end
_UpperCamelCase :str = duration_in_min
return job_info
def A_ ( snake_case__ , snake_case__=None ) -> Tuple:
_UpperCamelCase :Optional[int] = None
if token is not None:
_UpperCamelCase :Tuple = {"""Accept""": """application/vnd.github+json""", """Authorization""": f"Bearer {token}"}
_UpperCamelCase :Union[str, Any] = f"https://api.github.com/repos/huggingface/transformers/actions/runs/{workflow_run_id}/jobs?per_page=100"
_UpperCamelCase :Optional[int] = requests.get(snake_case_ , headers=snake_case_ ).json()
_UpperCamelCase :Optional[int] = {}
try:
job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} )
_UpperCamelCase :int = math.ceil((result['''total_count'''] - 1_00) / 1_00 )
for i in range(snake_case_ ):
_UpperCamelCase :Tuple = requests.get(url + f"&page={i + 2}" , headers=snake_case_ ).json()
job_time.update({job['''name''']: extract_time_from_single_job(snake_case_ ) for job in result['''jobs''']} )
return job_time
except Exception:
print(f"Unknown error, could not fetch links:\n{traceback.format_exc()}" )
return {}
if __name__ == "__main__":
UpperCamelCase__ :str = argparse.ArgumentParser()
# Required parameters
parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""")
UpperCamelCase__ :List[Any] = parser.parse_args()
UpperCamelCase__ :Union[str, Any] = get_job_time(args.workflow_run_id)
UpperCamelCase__ :Union[str, Any] = dict(sorted(job_time.items(), key=lambda item: item[1]["duration"], reverse=True))
for k, v in job_time.items():
print(F"""{k}: {v["duration"]}""")
| 355 |
"""simple docstring"""
import math
def A_ ( snake_case_ : list ,snake_case_ : int = 0 ,snake_case_ : int = 0 ):
'''simple docstring'''
UpperCamelCase : Optional[Any] = end or len(snake_case_ )
for i in range(snake_case_ ,snake_case_ ):
UpperCamelCase : List[str] = i
UpperCamelCase : List[str] = array[i]
while temp_index != start and temp_index_value < array[temp_index - 1]:
UpperCamelCase : Dict = array[temp_index - 1]
temp_index -= 1
UpperCamelCase : Dict = temp_index_value
return array
def A_ ( snake_case_ : list ,snake_case_ : int ,snake_case_ : int ): # Max Heap
'''simple docstring'''
UpperCamelCase : Optional[Any] = index
UpperCamelCase : Union[str, Any] = 2 * index + 1 # Left Node
UpperCamelCase : Tuple = 2 * index + 2 # Right Node
if left_index < heap_size and array[largest] < array[left_index]:
UpperCamelCase : Union[str, Any] = left_index
if right_index < heap_size and array[largest] < array[right_index]:
UpperCamelCase : List[str] = right_index
if largest != index:
UpperCamelCase , UpperCamelCase : Any = array[largest], array[index]
heapify(snake_case_ ,snake_case_ ,snake_case_ )
def A_ ( snake_case_ : list ):
'''simple docstring'''
UpperCamelCase : Any = len(snake_case_ )
for i in range(n // 2 ,-1 ,-1 ):
heapify(snake_case_ ,snake_case_ ,snake_case_ )
for i in range(n - 1 ,0 ,-1 ):
UpperCamelCase , UpperCamelCase : str = array[0], array[i]
heapify(snake_case_ ,0 ,snake_case_ )
return array
def A_ ( snake_case_ : list ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
if (array[first_index] > array[middle_index]) != (
array[first_index] > array[last_index]
):
return array[first_index]
elif (array[middle_index] > array[first_index]) != (
array[middle_index] > array[last_index]
):
return array[middle_index]
else:
return array[last_index]
def A_ ( snake_case_ : list ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
UpperCamelCase : Any = low
UpperCamelCase : Optional[Any] = high
while True:
while array[i] < pivot:
i += 1
j -= 1
while pivot < array[j]:
j -= 1
if i >= j:
return i
UpperCamelCase , UpperCamelCase : Union[str, Any] = array[j], array[i]
i += 1
def A_ ( snake_case_ : list ):
'''simple docstring'''
if len(snake_case_ ) == 0:
return array
UpperCamelCase : Union[str, Any] = 2 * math.ceil(math.loga(len(snake_case_ ) ) )
UpperCamelCase : int = 1_6
return intro_sort(snake_case_ ,0 ,len(snake_case_ ) ,snake_case_ ,snake_case_ )
def A_ ( snake_case_ : list ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ,snake_case_ : int ):
'''simple docstring'''
while end - start > size_threshold:
if max_depth == 0:
return heap_sort(snake_case_ )
max_depth -= 1
UpperCamelCase : Dict = median_of_a(snake_case_ ,snake_case_ ,start + ((end - start) // 2) + 1 ,end - 1 )
UpperCamelCase : str = partition(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
intro_sort(snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ ,snake_case_ )
UpperCamelCase : List[str] = p
return insertion_sort(snake_case_ ,snake_case_ ,snake_case_ )
if __name__ == "__main__":
import doctest
doctest.testmod()
__A : Optional[int] = input('''Enter numbers separated by a comma : ''').strip()
__A : List[Any] = [float(item) for item in user_input.split(''',''')]
print(sort(unsorted))
| 499 | 0 |
'''simple docstring'''
class SCREAMING_SNAKE_CASE__ :
def __init__( self : Any , a_ : int ):
"""simple docstring"""
__snake_case = n
__snake_case = [None] * self.n
__snake_case = 0 # index of the first element
__snake_case = 0
__snake_case = 0
def __len__( self : Optional[Any] ):
"""simple docstring"""
return self.size
def A ( self : Optional[int] ):
"""simple docstring"""
return self.size == 0
def A ( self : int ):
"""simple docstring"""
return False if self.is_empty() else self.array[self.front]
def A ( self : Any , a_ : List[str] ):
"""simple docstring"""
if self.size >= self.n:
raise Exception("QUEUE IS FULL" )
__snake_case = data
__snake_case = (self.rear + 1) % self.n
self.size += 1
return self
def A ( self : Dict ):
"""simple docstring"""
if self.size == 0:
raise Exception("UNDERFLOW" )
__snake_case = self.array[self.front]
__snake_case = None
__snake_case = (self.front + 1) % self.n
self.size -= 1
return temp
| 710 |
'''simple docstring'''
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
a : Any = 6_378_137.0
a : List[Any] = 6_356_752.314_245
a : Dict = 6_378_137
def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float:
__snake_case = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
__snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) )
__snake_case = atan((1 - flattening) * tan(radians(_UpperCAmelCase ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
__snake_case = haversine_distance(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
__snake_case = (b_lata + b_lata) / 2
__snake_case = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
__snake_case = (sin(_UpperCAmelCase ) ** 2) * (cos(_UpperCAmelCase ) ** 2)
__snake_case = cos(sigma / 2 ) ** 2
__snake_case = (sigma - sin(_UpperCAmelCase )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
__snake_case = (cos(_UpperCAmelCase ) ** 2) * (sin(_UpperCAmelCase ) ** 2)
__snake_case = sin(sigma / 2 ) ** 2
__snake_case = (sigma + sin(_UpperCAmelCase )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 680 | 0 |
'''simple docstring'''
import unittest
import numpy as np
from transformers.testing_utils import is_flaky, require_torch, require_vision
from transformers.utils import is_torch_available, is_vision_available
from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs
if is_torch_available():
import torch
if is_vision_available():
from PIL import Image
from transformers import DonutImageProcessor
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase):
def __init__( self , A_ , A_=7 , A_=3 , A_=18 , A_=30 , A_=400 , A_=True , A_=None , A_=True , A_=False , A_=True , A_=True , A_=[0.5, 0.5, 0.5] , A_=[0.5, 0.5, 0.5] , )-> Dict:
'''simple docstring'''
UpperCamelCase = parent
UpperCamelCase = batch_size
UpperCamelCase = num_channels
UpperCamelCase = image_size
UpperCamelCase = min_resolution
UpperCamelCase = max_resolution
UpperCamelCase = do_resize
UpperCamelCase = size if size is not None else {'height': 18, 'width': 20}
UpperCamelCase = do_thumbnail
UpperCamelCase = do_align_axis
UpperCamelCase = do_pad
UpperCamelCase = do_normalize
UpperCamelCase = image_mean
UpperCamelCase = image_std
def UpperCAmelCase_ ( self )-> List[Any]:
'''simple docstring'''
return {
"do_resize": self.do_resize,
"size": self.size,
"do_thumbnail": self.do_thumbnail,
"do_align_long_axis": self.do_align_axis,
"do_pad": self.do_pad,
"do_normalize": self.do_normalize,
"image_mean": self.image_mean,
"image_std": self.image_std,
}
@require_torch
@require_vision
class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase):
lowerCAmelCase_ = DonutImageProcessor if is_vision_available() else None
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
UpperCamelCase = DonutImageProcessingTester(self )
@property
def UpperCAmelCase_ ( self )-> str:
'''simple docstring'''
return self.image_processor_tester.prepare_image_processor_dict()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
self.assertTrue(hasattr(A_ , 'do_resize' ) )
self.assertTrue(hasattr(A_ , 'size' ) )
self.assertTrue(hasattr(A_ , 'do_thumbnail' ) )
self.assertTrue(hasattr(A_ , 'do_align_long_axis' ) )
self.assertTrue(hasattr(A_ , 'do_pad' ) )
self.assertTrue(hasattr(A_ , 'do_normalize' ) )
self.assertTrue(hasattr(A_ , 'image_mean' ) )
self.assertTrue(hasattr(A_ , 'image_std' ) )
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict )
self.assertEqual(image_processor.size , {'height': 18, 'width': 20} )
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 )
self.assertEqual(image_processor.size , {'height': 42, 'width': 42} )
# Previous config had dimensions in (width, height) order
UpperCamelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) )
self.assertEqual(image_processor.size , {'height': 84, 'width': 42} )
def UpperCAmelCase_ ( self )-> Tuple:
'''simple docstring'''
pass
@is_flaky()
def UpperCAmelCase_ ( self )-> Any:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PIL images
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , Image.Image )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Optional[int]:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random numpy tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , numpify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , np.ndarray )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
@is_flaky()
def UpperCAmelCase_ ( self )-> Dict:
'''simple docstring'''
UpperCamelCase = self.image_processing_class(**self.image_processor_dict )
# create random PyTorch tensors
UpperCamelCase = prepare_image_inputs(self.image_processor_tester , equal_resolution=A_ , torchify=A_ )
for image in image_inputs:
self.assertIsInstance(A_ , torch.Tensor )
# Test not batched input
UpperCamelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
1,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
# Test batched
UpperCamelCase = image_processing(A_ , return_tensors='pt' ).pixel_values
self.assertEqual(
encoded_images.shape , (
self.image_processor_tester.batch_size,
self.image_processor_tester.num_channels,
self.image_processor_tester.size['height'],
self.image_processor_tester.size['width'],
) , )
| 3 |
"""simple docstring"""
from typing import TYPE_CHECKING
from ...utils import (
OptionalDependencyNotAvailable,
_LazyModule,
is_sentencepiece_available,
is_tf_available,
is_tokenizers_available,
is_torch_available,
)
A_ : Union[str, Any] ={"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]}
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Union[str, Any] =["""XLNetTokenizer"""]
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : str =["""XLNetTokenizerFast"""]
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Any =[
"""XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""XLNetForMultipleChoice""",
"""XLNetForQuestionAnswering""",
"""XLNetForQuestionAnsweringSimple""",
"""XLNetForSequenceClassification""",
"""XLNetForTokenClassification""",
"""XLNetLMHeadModel""",
"""XLNetModel""",
"""XLNetPreTrainedModel""",
"""load_tf_weights_in_xlnet""",
]
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
A_ : Tuple =[
"""TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""",
"""TFXLNetForMultipleChoice""",
"""TFXLNetForQuestionAnsweringSimple""",
"""TFXLNetForSequenceClassification""",
"""TFXLNetForTokenClassification""",
"""TFXLNetLMHeadModel""",
"""TFXLNetMainLayer""",
"""TFXLNetModel""",
"""TFXLNetPreTrainedModel""",
]
if TYPE_CHECKING:
from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig
try:
if not is_sentencepiece_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet import XLNetTokenizer
try:
if not is_tokenizers_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .tokenization_xlnet_fast import XLNetTokenizerFast
try:
if not is_torch_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_xlnet import (
XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
XLNetForMultipleChoice,
XLNetForQuestionAnswering,
XLNetForQuestionAnsweringSimple,
XLNetForSequenceClassification,
XLNetForTokenClassification,
XLNetLMHeadModel,
XLNetModel,
XLNetPreTrainedModel,
load_tf_weights_in_xlnet,
)
try:
if not is_tf_available():
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
pass
else:
from .modeling_tf_xlnet import (
TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXLNetForMultipleChoice,
TFXLNetForQuestionAnsweringSimple,
TFXLNetForSequenceClassification,
TFXLNetForTokenClassification,
TFXLNetLMHeadModel,
TFXLNetMainLayer,
TFXLNetModel,
TFXLNetPreTrainedModel,
)
else:
import sys
A_ : Dict =_LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
| 650 | 0 |
import argparse
import os
import evaluate
import torch
from datasets import load_dataset
from torch.optim import AdamW
from torch.utils.data import DataLoader
from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed
from accelerate import Accelerator, DistributedType
########################################################################
# This is a fully working simple example to use Accelerate,
# specifically showcasing the experiment tracking capability,
# and builds off the `nlp_example.py` script.
#
# This example trains a Bert base model on GLUE MRPC
# in any of the following settings (with the same script):
# - single CPU or single GPU
# - multi GPUS (using PyTorch distributed mode)
# - (multi) TPUs
# - fp16 (mixed-precision) or fp32 (normal precision)
#
# To help focus on the differences in the code, building `DataLoaders`
# was refactored into its own function.
# New additions from the base script can be found quickly by
# looking for the # New Code # tags
#
# To run it in each of these various modes, follow the instructions
# in the readme for examples:
# https://github.com/huggingface/accelerate/tree/main/examples
#
########################################################################
lowerCAmelCase_ = 16
lowerCAmelCase_ = 32
def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase = 16 ) -> Optional[Any]:
lowerCAmelCase__ : Tuple = AutoTokenizer.from_pretrained('''bert-base-cased''' )
lowerCAmelCase__ : Dict = load_dataset('''glue''' , '''mrpc''' )
def tokenize_function(UpperCamelCase ):
# max_length=None => use the model max length (it's actually the default)
lowerCAmelCase__ : List[str] = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=UpperCamelCase , max_length=UpperCamelCase )
return outputs
# Apply the method we just defined to all the examples in all the splits of the dataset
# starting with the main process first:
with accelerator.main_process_first():
lowerCAmelCase__ : Any = datasets.map(
UpperCamelCase , batched=UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , )
# We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the
# transformers library
lowerCAmelCase__ : int = tokenized_datasets.rename_column('''label''' , '''labels''' )
def collate_fn(UpperCamelCase ):
# On TPU it's best to pad everything to the same length or training will be very slow.
lowerCAmelCase__ : Optional[int] = 128 if accelerator.distributed_type == DistributedType.TPU else None
# When using mixed precision we want round multiples of 8/16
if accelerator.mixed_precision == "fp8":
lowerCAmelCase__ : Optional[Any] = 16
elif accelerator.mixed_precision != "no":
lowerCAmelCase__ : str = 8
else:
lowerCAmelCase__ : Union[str, Any] = None
return tokenizer.pad(
UpperCamelCase , padding='''longest''' , max_length=UpperCamelCase , pad_to_multiple_of=UpperCamelCase , return_tensors='''pt''' , )
# Instantiate dataloaders.
lowerCAmelCase__ : int = DataLoader(
tokenized_datasets['''train'''] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase )
lowerCAmelCase__ : Tuple = DataLoader(
tokenized_datasets['''validation'''] , shuffle=UpperCamelCase , collate_fn=UpperCamelCase , batch_size=UpperCamelCase )
return train_dataloader, eval_dataloader
# For testing only
if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1":
from accelerate.test_utils.training import mocked_dataloaders
lowerCAmelCase_ = mocked_dataloaders # noqa: F811
def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> Any:
# For testing only
if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , UpperCamelCase ) == "1":
lowerCAmelCase__ : Union[str, Any] = 2
# Initialize Accelerator
# New Code #
# We pass in "all" to `log_with` to grab all available trackers in the environment
# Note: If using a custom `Tracker` class, should be passed in here such as:
# >>> log_with = ["all", MyCustomTrackerClassInstance()]
if args.with_tracking:
lowerCAmelCase__ : Optional[int] = Accelerator(
cpu=args.cpu , mixed_precision=args.mixed_precision , log_with='''all''' , project_dir=args.project_dir )
else:
lowerCAmelCase__ : Tuple = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision )
# Sample hyper-parameters for learning rate, batch size, seed and a few other HPs
lowerCAmelCase__ : Optional[Any] = config['''lr''']
lowerCAmelCase__ : List[Any] = int(config['''num_epochs'''] )
lowerCAmelCase__ : Optional[Any] = int(config['''seed'''] )
lowerCAmelCase__ : Dict = int(config['''batch_size'''] )
set_seed(UpperCamelCase )
lowerCAmelCase__ , lowerCAmelCase__ : Optional[Any] = get_dataloaders(UpperCamelCase , UpperCamelCase )
lowerCAmelCase__ : Optional[int] = evaluate.load('''glue''' , '''mrpc''' )
# If the batch size is too big we use gradient accumulation
lowerCAmelCase__ : Union[str, Any] = 1
if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU:
lowerCAmelCase__ : int = batch_size // MAX_GPU_BATCH_SIZE
lowerCAmelCase__ : Dict = MAX_GPU_BATCH_SIZE
# Instantiate the model (we build the model here so that the seed also control new weights initialization)
lowerCAmelCase__ : Union[str, Any] = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=UpperCamelCase )
# We could avoid this line since the accelerator is set with `device_placement=True` (default value).
# Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer
# creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that).
lowerCAmelCase__ : Dict = model.to(accelerator.device )
# Instantiate optimizer
lowerCAmelCase__ : Optional[int] = AdamW(params=model.parameters() , lr=UpperCamelCase )
# Instantiate scheduler
lowerCAmelCase__ : List[Any] = get_linear_schedule_with_warmup(
optimizer=UpperCamelCase , num_warmup_steps=100 , num_training_steps=(len(UpperCamelCase ) * num_epochs) // gradient_accumulation_steps , )
# Prepare everything
# There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the
# prepare method.
lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = accelerator.prepare(
UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase )
# New Code #
# We need to initialize the trackers we use. Overall configurations can also be stored
if args.with_tracking:
lowerCAmelCase__ : str = os.path.split(UpperCamelCase )[-1].split('''.''' )[0]
accelerator.init_trackers(UpperCamelCase , UpperCamelCase )
# Now we train the model
for epoch in range(UpperCamelCase ):
model.train()
# New Code #
# For our tracking example, we will log the total loss of each epoch
if args.with_tracking:
lowerCAmelCase__ : str = 0
for step, batch in enumerate(UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True`.
batch.to(accelerator.device )
lowerCAmelCase__ : List[str] = model(**UpperCamelCase )
lowerCAmelCase__ : List[Any] = outputs.loss
# New Code #
if args.with_tracking:
total_loss += loss.detach().float()
lowerCAmelCase__ : List[str] = loss / gradient_accumulation_steps
accelerator.backward(UpperCamelCase )
if step % gradient_accumulation_steps == 0:
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
model.eval()
for step, batch in enumerate(UpperCamelCase ):
# We could avoid this line since we set the accelerator with `device_placement=True` (the default).
batch.to(accelerator.device )
with torch.no_grad():
lowerCAmelCase__ : Union[str, Any] = model(**UpperCamelCase )
lowerCAmelCase__ : Optional[Any] = outputs.logits.argmax(dim=-1 )
lowerCAmelCase__ , lowerCAmelCase__ : Any = accelerator.gather_for_metrics((predictions, batch['''labels''']) )
metric.add_batch(
predictions=UpperCamelCase , references=UpperCamelCase , )
lowerCAmelCase__ : List[str] = metric.compute()
# Use accelerator.print to print only on the main process.
accelerator.print(F"""epoch {epoch}:""" , UpperCamelCase )
# New Code #
# To actually log, we call `Accelerator.log`
# The values passed can be of `str`, `int`, `float` or `dict` of `str` to `float`/`int`
if args.with_tracking:
accelerator.log(
{
'''accuracy''': eval_metric['''accuracy'''],
'''f1''': eval_metric['''f1'''],
'''train_loss''': total_loss.item() / len(UpperCamelCase ),
'''epoch''': epoch,
} , step=UpperCamelCase , )
# New Code #
# When a run is finished, you should call `accelerator.end_training()`
# to close all of the open trackers
if args.with_tracking:
accelerator.end_training()
def __lowerCAmelCase ( ) -> Any:
lowerCAmelCase__ : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' )
parser.add_argument(
'''--mixed_precision''' , type=UpperCamelCase , default=UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose'''
'''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.'''
'''and an Nvidia Ampere GPU.''' , )
parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' )
parser.add_argument(
'''--with_tracking''' , action='''store_true''' , help='''Whether to load in all available experiment trackers from the environment and use them for logging.''' , )
parser.add_argument(
'''--project_dir''' , type=UpperCamelCase , default='''logs''' , help='''Location on where to store experiment tracking logs` and relevent project information''' , )
lowerCAmelCase__ : int = parser.parse_args()
lowerCAmelCase__ : Dict = {'''lr''': 2E-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16}
training_function(UpperCamelCase , UpperCamelCase )
if __name__ == "__main__":
main()
| 470 |
import warnings
from diffusers import StableDiffusionInpaintPipeline as StableDiffusionInpaintPipeline # noqa F401
warnings.warn(
"""The `inpainting.py` script is outdated. Please use directly `from diffusers import"""
""" StableDiffusionInpaintPipeline` instead."""
)
| 470 | 1 |
from typing import Any, Dict, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ..utils import maybe_allow_in_graph
from .activations import get_activation
from .attention_processor import Attention
from .embeddings import CombinedTimestepLabelEmbeddings
@maybe_allow_in_graph
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = False , __SCREAMING_SNAKE_CASE = True , __SCREAMING_SNAKE_CASE = "layer_norm" , __SCREAMING_SNAKE_CASE = False , ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
UpperCamelCase__ : str = only_cross_attention
UpperCamelCase__ : Tuple = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero'''
UpperCamelCase__ : Dict = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm'''
if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None:
raise ValueError(
F'''`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to'''
F''' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.''' )
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
if self.use_ada_layer_norm:
UpperCamelCase__ : Union[str, Any] = AdaLayerNorm(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif self.use_ada_layer_norm_zero:
UpperCamelCase__ : int = AdaLayerNormZero(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
else:
UpperCamelCase__ : Optional[int] = nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[Any] = Attention(
query_dim=__SCREAMING_SNAKE_CASE , heads=__SCREAMING_SNAKE_CASE , dim_head=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__SCREAMING_SNAKE_CASE , )
# 2. Cross-Attn
if cross_attention_dim is not None or double_self_attention:
# We currently only use AdaLayerNormZero for self attention where there will only be one attention block.
# I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during
# the second cross attention block.
UpperCamelCase__ : Any = (
AdaLayerNorm(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if self.use_ada_layer_norm
else nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE )
)
UpperCamelCase__ : List[Any] = Attention(
query_dim=__SCREAMING_SNAKE_CASE , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__SCREAMING_SNAKE_CASE , dim_head=__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , bias=__SCREAMING_SNAKE_CASE , upcast_attention=__SCREAMING_SNAKE_CASE , ) # is self-attn if encoder_hidden_states is none
else:
UpperCamelCase__ : List[str] = None
UpperCamelCase__ : str = None
# 3. Feed-forward
UpperCamelCase__ : Union[str, Any] = nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Union[str, Any] = FeedForward(__SCREAMING_SNAKE_CASE , dropout=__SCREAMING_SNAKE_CASE , activation_fn=__SCREAMING_SNAKE_CASE , final_dropout=__SCREAMING_SNAKE_CASE )
# let chunk size default to None
UpperCamelCase__ : Optional[int] = None
UpperCamelCase__ : Dict = 0
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] = chunk_size
UpperCamelCase__ : Optional[int] = dim
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , ) -> int:
"""simple docstring"""
if self.use_ada_layer_norm:
UpperCamelCase__ : List[str] = self.norma(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif self.use_ada_layer_norm_zero:
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Optional[Any] = self.norma(
__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hidden_dtype=hidden_states.dtype )
else:
UpperCamelCase__ : Optional[int] = self.norma(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : int = cross_attention_kwargs if cross_attention_kwargs is not None else {}
UpperCamelCase__ : Union[str, Any] = self.attna(
__SCREAMING_SNAKE_CASE , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
if self.use_ada_layer_norm_zero:
UpperCamelCase__ : int = gate_msa.unsqueeze(1 ) * attn_output
UpperCamelCase__ : Optional[int] = attn_output + hidden_states
# 2. Cross-Attention
if self.attna is not None:
UpperCamelCase__ : Any = (
self.norma(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) if self.use_ada_layer_norm else self.norma(__SCREAMING_SNAKE_CASE )
)
UpperCamelCase__ : str = self.attna(
__SCREAMING_SNAKE_CASE , encoder_hidden_states=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , )
UpperCamelCase__ : Dict = attn_output + hidden_states
# 3. Feed-forward
UpperCamelCase__ : List[str] = self.norma(__SCREAMING_SNAKE_CASE )
if self.use_ada_layer_norm_zero:
UpperCamelCase__ : Optional[Any] = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0:
raise ValueError(
F'''`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.''' )
UpperCamelCase__ : Optional[Any] = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size
UpperCamelCase__ : Tuple = torch.cat(
[self.ff(__SCREAMING_SNAKE_CASE ) for hid_slice in norm_hidden_states.chunk(__SCREAMING_SNAKE_CASE , dim=self._chunk_dim )] , dim=self._chunk_dim , )
else:
UpperCamelCase__ : Tuple = self.ff(__SCREAMING_SNAKE_CASE )
if self.use_ada_layer_norm_zero:
UpperCamelCase__ : List[str] = gate_mlp.unsqueeze(1 ) * ff_output
UpperCamelCase__ : str = ff_output + hidden_states
return hidden_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 4 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = "geglu" , __SCREAMING_SNAKE_CASE = False , ) -> Dict:
"""simple docstring"""
super().__init__()
UpperCamelCase__ : int = int(dim * mult )
UpperCamelCase__ : int = dim_out if dim_out is not None else dim
if activation_fn == "gelu":
UpperCamelCase__ : Tuple = GELU(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
if activation_fn == "gelu-approximate":
UpperCamelCase__ : Optional[Any] = GELU(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , approximate='''tanh''' )
elif activation_fn == "geglu":
UpperCamelCase__ : Any = GEGLU(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
elif activation_fn == "geglu-approximate":
UpperCamelCase__ : List[str] = ApproximateGELU(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = nn.ModuleList([] )
# project in
self.net.append(__SCREAMING_SNAKE_CASE )
# project dropout
self.net.append(nn.Dropout(__SCREAMING_SNAKE_CASE ) )
# project out
self.net.append(nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) )
# FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout
if final_dropout:
self.net.append(nn.Dropout(__SCREAMING_SNAKE_CASE ) )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
for module in self.net:
UpperCamelCase__ : str = module(__SCREAMING_SNAKE_CASE )
return hidden_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "none" ) -> Union[str, Any]:
"""simple docstring"""
super().__init__()
UpperCamelCase__ : Any = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Any = approximate
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
if gate.device.type != "mps":
return F.gelu(__SCREAMING_SNAKE_CASE , approximate=self.approximate )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ : Optional[int] = self.proj(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : str = self.gelu(__SCREAMING_SNAKE_CASE )
return hidden_states
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
super().__init__()
UpperCamelCase__ : Dict = nn.Linear(__SCREAMING_SNAKE_CASE , dim_out * 2 )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
if gate.device.type != "mps":
return F.gelu(__SCREAMING_SNAKE_CASE )
# mps: gelu is not implemented for float16
return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Any:
"""simple docstring"""
UpperCamelCase__ ,UpperCamelCase__ : int = self.proj(__SCREAMING_SNAKE_CASE ).chunk(2 , dim=-1 )
return hidden_states * self.gelu(__SCREAMING_SNAKE_CASE )
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> int:
"""simple docstring"""
super().__init__()
UpperCamelCase__ : List[str] = nn.Linear(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ : Any = self.proj(__SCREAMING_SNAKE_CASE )
return x * torch.sigmoid(1.702 * x )
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> List[str]:
"""simple docstring"""
super().__init__()
UpperCamelCase__ : Tuple = nn.Embedding(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Tuple = nn.SiLU()
UpperCamelCase__ : str = nn.Linear(__SCREAMING_SNAKE_CASE , embedding_dim * 2 )
UpperCamelCase__ : Optional[Any] = nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] = self.linear(self.silu(self.emb(__SCREAMING_SNAKE_CASE ) ) )
UpperCamelCase__ ,UpperCamelCase__ : Dict = torch.chunk(__SCREAMING_SNAKE_CASE , 2 )
UpperCamelCase__ : Optional[Any] = self.norm(__SCREAMING_SNAKE_CASE ) * (1 + scale) + shift
return x
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
super().__init__()
UpperCamelCase__ : Optional[int] = CombinedTimestepLabelEmbeddings(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[str] = nn.SiLU()
UpperCamelCase__ : Optional[Any] = nn.Linear(__SCREAMING_SNAKE_CASE , 6 * embedding_dim , bias=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = nn.LayerNorm(__SCREAMING_SNAKE_CASE , elementwise_affine=__SCREAMING_SNAKE_CASE , eps=1e-6 )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None ) -> Dict:
"""simple docstring"""
UpperCamelCase__ : Tuple = self.linear(self.silu(self.emb(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , hidden_dtype=__SCREAMING_SNAKE_CASE ) ) )
UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ ,UpperCamelCase__ : Tuple = emb.chunk(6 , dim=1 )
UpperCamelCase__ : Tuple = self.norm(__SCREAMING_SNAKE_CASE ) * (1 + scale_msa[:, None]) + shift_msa[:, None]
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
class _lowerCamelCase ( nn.Module ):
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = 1e-5 ) -> Any:
"""simple docstring"""
super().__init__()
UpperCamelCase__ : Tuple = num_groups
UpperCamelCase__ : int = eps
if act_fn is None:
UpperCamelCase__ : Any = None
else:
UpperCamelCase__ : int = get_activation(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : int = nn.Linear(__SCREAMING_SNAKE_CASE , out_dim * 2 )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str:
"""simple docstring"""
if self.act:
UpperCamelCase__ : List[str] = self.act(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Tuple = self.linear(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[Any] = emb[:, :, None, None]
UpperCamelCase__ ,UpperCamelCase__ : str = emb.chunk(2 , dim=1 )
UpperCamelCase__ : Optional[Any] = F.group_norm(__SCREAMING_SNAKE_CASE , self.num_groups , eps=self.eps )
UpperCamelCase__ : int = x * (1 + scale) + shift
return x
| 285 |
import math
import unittest
from transformers import BioGptConfig, is_torch_available
from transformers.testing_utils import require_torch, slow, torch_device
from ...generation.test_utils import GenerationTesterMixin
from ...test_configuration_common import ConfigTester
from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_torch_available():
import torch
from transformers import (
BioGptForCausalLM,
BioGptForSequenceClassification,
BioGptForTokenClassification,
BioGptModel,
BioGptTokenizer,
)
from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST
class _lowerCamelCase :
"""simple docstring"""
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=1_3 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=9_9 , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=5 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=3_7 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=5_1_2 , __SCREAMING_SNAKE_CASE=1_6 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=None , ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ : Any = parent
UpperCamelCase__ : str = batch_size
UpperCamelCase__ : List[Any] = seq_length
UpperCamelCase__ : List[Any] = is_training
UpperCamelCase__ : Any = use_input_mask
UpperCamelCase__ : Dict = use_token_type_ids
UpperCamelCase__ : List[str] = use_labels
UpperCamelCase__ : Optional[int] = vocab_size
UpperCamelCase__ : Union[str, Any] = hidden_size
UpperCamelCase__ : int = num_hidden_layers
UpperCamelCase__ : Union[str, Any] = num_attention_heads
UpperCamelCase__ : Union[str, Any] = intermediate_size
UpperCamelCase__ : Optional[int] = hidden_act
UpperCamelCase__ : Optional[Any] = hidden_dropout_prob
UpperCamelCase__ : Optional[Any] = attention_probs_dropout_prob
UpperCamelCase__ : Union[str, Any] = max_position_embeddings
UpperCamelCase__ : Optional[Any] = type_vocab_size
UpperCamelCase__ : int = type_sequence_label_size
UpperCamelCase__ : Tuple = initializer_range
UpperCamelCase__ : Optional[Any] = num_labels
UpperCamelCase__ : List[str] = num_choices
UpperCamelCase__ : Union[str, Any] = scope
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ : Tuple = None
if self.use_input_mask:
UpperCamelCase__ : List[str] = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase__ : int = None
if self.use_token_type_ids:
UpperCamelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size )
UpperCamelCase__ : Union[str, Any] = None
UpperCamelCase__ : int = None
UpperCamelCase__ : Tuple = None
if self.use_labels:
UpperCamelCase__ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size )
UpperCamelCase__ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
UpperCamelCase__ : int = ids_tensor([self.batch_size] , self.num_choices )
UpperCamelCase__ : Dict = self.get_config()
return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
"""simple docstring"""
return BioGptConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ : List[Any] = BioGptModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ : Any = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> Any:
"""simple docstring"""
UpperCamelCase__ : Dict = BioGptForCausalLM(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ : Union[str, Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ : str = BioGptModel(config=__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
# create attention mask
UpperCamelCase__ : Optional[int] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[int] = self.seq_length // 2
UpperCamelCase__ : List[str] = 0
# first forward pass
UpperCamelCase__ ,UpperCamelCase__ : Optional[int] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE ).to_tuple()
# create hypothetical next token and extent to next_input_ids
UpperCamelCase__ : Any = ids_tensor((self.batch_size, 1) , config.vocab_size )
# change a random masked slice from input_ids
UpperCamelCase__ : Tuple = ids_tensor((1,) , __SCREAMING_SNAKE_CASE ).item() + 1
UpperCamelCase__ : List[str] = ids_tensor((self.batch_size, 1) , config.vocab_size ).squeeze(-1 )
UpperCamelCase__ : int = random_other_next_tokens
# append to next input_ids and attn_mask
UpperCamelCase__ : Any = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase__ : List[Any] = torch.cat(
[attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )] , dim=1 , )
# get two different outputs
UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state''']
UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state''']
# select random slice
UpperCamelCase__ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase__ : Tuple = output_from_no_past[:, -1, random_slice_idx].detach()
UpperCamelCase__ : str = output_from_past[:, 0, random_slice_idx].detach()
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Optional[int]:
"""simple docstring"""
UpperCamelCase__ : List[str] = BioGptModel(config=__SCREAMING_SNAKE_CASE ).to(__SCREAMING_SNAKE_CASE ).eval()
UpperCamelCase__ : Union[str, Any] = torch.ones(input_ids.shape , dtype=torch.long , device=__SCREAMING_SNAKE_CASE )
# first forward pass
UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , use_cache=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ ,UpperCamelCase__ : List[Any] = outputs.to_tuple()
# create hypothetical multiple next token and extent to next_input_ids
UpperCamelCase__ : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size )
UpperCamelCase__ : Any = ids_tensor((self.batch_size, 3) , 2 )
# append to next input_ids and
UpperCamelCase__ : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1 )
UpperCamelCase__ : Tuple = torch.cat([attention_mask, next_attn_mask] , dim=-1 )
UpperCamelCase__ : str = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE )['''last_hidden_state''']
UpperCamelCase__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , past_key_values=__SCREAMING_SNAKE_CASE )[
'''last_hidden_state'''
]
# select random slice
UpperCamelCase__ : Union[str, Any] = ids_tensor((1,) , output_from_past.shape[-1] ).item()
UpperCamelCase__ : Union[str, Any] = output_from_no_past[:, -3:, random_slice_idx].detach()
UpperCamelCase__ : Any = output_from_past[:, :, random_slice_idx].detach()
self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] )
# test that outputs are equal for slice
self.parent.assertTrue(torch.allclose(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , atol=1e-3 ) )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=False ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ : Optional[Any] = BioGptForCausalLM(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
if gradient_checkpointing:
model.gradient_checkpointing_enable()
UpperCamelCase__ : Tuple = model(__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.loss.shape , () )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
result.loss.backward()
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Tuple:
"""simple docstring"""
UpperCamelCase__ : str = BioGptModel(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Dict = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers )
for key in model.state_dict().keys():
if "c_proj" in key and "weight" in key:
self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key] ) - model_std ) , 0.001 )
self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key] ) - 0.0 ) , 0.01 )
def __SCREAMING_SNAKE_CASE ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE ) -> Dict:
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] = self.num_labels
UpperCamelCase__ : Any = BioGptForTokenClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , token_type_ids=__SCREAMING_SNAKE_CASE )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ : int = self.prepare_config_and_inputs()
(
(
UpperCamelCase__
) ,(
UpperCamelCase__
) ,(
UpperCamelCase__
) ,(
UpperCamelCase__
) ,(
UpperCamelCase__
) ,(
UpperCamelCase__
) ,(
UpperCamelCase__
) ,
) : List[str] = config_and_inputs
UpperCamelCase__ : Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask}
return config, inputs_dict
@require_torch
class _lowerCamelCase ( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , unittest.TestCase ):
"""simple docstring"""
SCREAMING_SNAKE_CASE_ = (
(BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification)
if is_torch_available()
else ()
)
SCREAMING_SNAKE_CASE_ = (BioGptForCausalLM,) if is_torch_available() else ()
SCREAMING_SNAKE_CASE_ = (
{
'''feature-extraction''': BioGptModel,
'''text-classification''': BioGptForSequenceClassification,
'''text-generation''': BioGptForCausalLM,
'''token-classification''': BioGptForTokenClassification,
'''zero-shot''': BioGptForSequenceClassification,
}
if is_torch_available()
else {}
)
SCREAMING_SNAKE_CASE_ = False
def __SCREAMING_SNAKE_CASE ( self ) -> str:
"""simple docstring"""
UpperCamelCase__ : Dict = BioGptModelTester(self )
UpperCamelCase__ : Dict = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , hidden_size=3_7 )
def __SCREAMING_SNAKE_CASE ( self ) -> Tuple:
"""simple docstring"""
self.config_tester.run_common_tests()
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ : Optional[int] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()
for type in ["absolute", "relative_key", "relative_key_query"]:
UpperCamelCase__ : Optional[Any] = type
self.model_tester.create_and_check_model(*__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> Any:
"""simple docstring"""
UpperCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_attention_mask_past(*__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ : Any = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_forward_and_backwards(*__SCREAMING_SNAKE_CASE , gradient_checkpointing=__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_model_past_large_inputs(*__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]:
"""simple docstring"""
UpperCamelCase__ : str = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_weight_initialization(*__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ : int = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_biogpt_for_token_classification(*__SCREAMING_SNAKE_CASE )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> Dict:
"""simple docstring"""
UpperCamelCase__ : Dict = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[str] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCamelCase__ : Optional[Any] = '''left'''
# Define PAD Token = EOS Token = 50256
UpperCamelCase__ : Optional[int] = tokenizer.eos_token
UpperCamelCase__ : List[str] = model.config.eos_token_id
# use different length sentences to test batching
UpperCamelCase__ : Optional[int] = [
'''Hello, my dog is a little''',
'''Today, I''',
]
UpperCamelCase__ : Dict = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''pt''' , padding=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : int = inputs['''input_ids'''].to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : int = model.generate(
input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''].to(__SCREAMING_SNAKE_CASE ) , )
UpperCamelCase__ : int = tokenizer(sentences[0] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : str = model.generate(input_ids=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Tuple = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item()
UpperCamelCase__ : List[Any] = tokenizer(sentences[1] , return_tensors='''pt''' ).input_ids.to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Dict = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_length=model.config.max_length - num_paddings )
UpperCamelCase__ : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Union[str, Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : int = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Any = [
'''Hello, my dog is a little bit bigger than a little bit.''',
'''Today, I have a good idea of how to use the information''',
]
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]:
"""simple docstring"""
for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ : Optional[int] = BioGptModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
def __SCREAMING_SNAKE_CASE ( self ) -> Any:
"""simple docstring"""
UpperCamelCase__ ,UpperCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ : int = 3
UpperCamelCase__ : Tuple = input_dict['''input_ids''']
UpperCamelCase__ : List[Any] = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Any = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size )
UpperCamelCase__ : Optional[int] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ : int = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]:
"""simple docstring"""
UpperCamelCase__ ,UpperCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ : List[str] = 3
UpperCamelCase__ : List[Any] = '''multi_label_classification'''
UpperCamelCase__ : List[str] = input_dict['''input_ids''']
UpperCamelCase__ : Tuple = input_ids.ne(1 ).to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[int] = ids_tensor(
[self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float )
UpperCamelCase__ : List[str] = BioGptForSequenceClassification(__SCREAMING_SNAKE_CASE )
model.to(__SCREAMING_SNAKE_CASE )
model.eval()
UpperCamelCase__ : List[Any] = model(__SCREAMING_SNAKE_CASE , attention_mask=__SCREAMING_SNAKE_CASE , labels=__SCREAMING_SNAKE_CASE )
self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) )
@require_torch
class _lowerCamelCase ( unittest.TestCase ):
"""simple docstring"""
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]:
"""simple docstring"""
UpperCamelCase__ : Tuple = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
UpperCamelCase__ : Union[str, Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]] )
UpperCamelCase__ : Tuple = model(__SCREAMING_SNAKE_CASE )[0]
UpperCamelCase__ : Optional[Any] = 4_2_3_8_4
UpperCamelCase__ : List[Any] = torch.Size((1, 5, vocab_size) )
self.assertEqual(output.shape , __SCREAMING_SNAKE_CASE )
UpperCamelCase__ : List[Any] = torch.tensor(
[[[-9.5236, -9.8918, 10.4557], [-11.0469, -9.6423, 8.1022], [-8.8664, -7.8826, 5.5325]]] )
self.assertTrue(torch.allclose(output[:, :3, :3] , __SCREAMING_SNAKE_CASE , atol=1e-4 ) )
@slow
def __SCREAMING_SNAKE_CASE ( self ) -> List[str]:
"""simple docstring"""
UpperCamelCase__ : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' )
UpperCamelCase__ : List[Any] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''' )
model.to(__SCREAMING_SNAKE_CASE )
torch.manual_seed(0 )
UpperCamelCase__ : Dict = tokenizer('''COVID-19 is''' , return_tensors='''pt''' ).to(__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Optional[int] = model.generate(
**__SCREAMING_SNAKE_CASE , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=__SCREAMING_SNAKE_CASE , )
UpperCamelCase__ : int = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase__ : Union[str, Any] = (
'''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the'''
''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and'''
''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),'''
''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and'''
''' more than 800,000 deaths.'''
)
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
| 285 | 1 |
from __future__ import annotations
def UpperCamelCase__( UpperCamelCase__ : list[int | str] )->None:
create_state_space_tree(UpperCamelCase__ , [] , 0 , [0 for i in range(len(UpperCamelCase__ ) )] )
def UpperCamelCase__( UpperCamelCase__ : list[int | str] , UpperCamelCase__ : list[int | str] , UpperCamelCase__ : int , UpperCamelCase__ : list[int] , )->None:
if index == len(UpperCamelCase__ ):
print(UpperCamelCase__ )
return
for i in range(len(UpperCamelCase__ ) ):
if not index_used[i]:
current_sequence.append(sequence[i] )
A__ = True
create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 , UpperCamelCase__ )
current_sequence.pop()
A__ = False
a__: list[int | str] = [3, 1, 2, 4]
generate_all_permutations(sequence)
a__: list[int | str] = ["A", "B", "C"]
generate_all_permutations(sequence_a)
| 212 |
def UpperCamelCase__( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[Any] )->List[str]:
A__ = [1]
for i in range(2 , UpperCamelCase__ ):
factorials.append(factorials[-1] * i )
assert 0 <= k < factorials[-1] * n, "k out of bounds"
A__ = []
A__ = list(range(UpperCamelCase__ ) )
# Find permutation
while factorials:
A__ = factorials.pop()
A__ , A__ = divmod(UpperCamelCase__ , UpperCamelCase__ )
permutation.append(elements[number] )
elements.remove(elements[number] )
permutation.append(elements[0] )
return permutation
if __name__ == "__main__":
import doctest
doctest.testmod()
| 212 | 1 |
import functools
import logging
import os
import sys
import threading
from logging import (
CRITICAL, # NOQA
DEBUG, # NOQA
ERROR, # NOQA
FATAL, # NOQA
INFO, # NOQA
NOTSET, # NOQA
WARN, # NOQA
WARNING, # NOQA
)
from typing import Optional
import huggingface_hub.utils as hf_hub_utils
from tqdm import auto as tqdm_lib
_SCREAMING_SNAKE_CASE : Dict = threading.Lock()
_SCREAMING_SNAKE_CASE : Optional[logging.Handler] = None
_SCREAMING_SNAKE_CASE : List[Any] = {
"debug": logging.DEBUG,
"info": logging.INFO,
"warning": logging.WARNING,
"error": logging.ERROR,
"critical": logging.CRITICAL,
}
_SCREAMING_SNAKE_CASE : List[str] = logging.WARNING
_SCREAMING_SNAKE_CASE : Optional[int] = True
def UpperCAmelCase__ ():
"""simple docstring"""
snake_case = os.getenv('''TRANSFORMERS_VERBOSITY''' ,UpperCamelCase_ )
if env_level_str:
if env_level_str in log_levels:
return log_levels[env_level_str]
else:
logging.getLogger().warning(
F'''Unknown option TRANSFORMERS_VERBOSITY={env_level_str}, '''
F'''has to be one of: { ", ".join(log_levels.keys() ) }''' )
return _default_log_level
def UpperCAmelCase__ ():
"""simple docstring"""
return __name__.split('''.''' )[0]
def UpperCAmelCase__ ():
"""simple docstring"""
return logging.getLogger(_get_library_name() )
def UpperCAmelCase__ ():
"""simple docstring"""
global _default_handler
with _lock:
if _default_handler:
# This library has already configured the library root logger.
return
snake_case = logging.StreamHandler() # Set sys.stderr as stream.
snake_case = sys.stderr.flush
# Apply our default configuration to the library root logger.
snake_case = _get_library_root_logger()
library_root_logger.addHandler(_default_handler )
library_root_logger.setLevel(_get_default_logging_level() )
snake_case = False
def UpperCAmelCase__ ():
"""simple docstring"""
global _default_handler
with _lock:
if not _default_handler:
return
snake_case = _get_library_root_logger()
library_root_logger.removeHandler(_default_handler )
library_root_logger.setLevel(logging.NOTSET )
snake_case = None
def UpperCAmelCase__ ():
"""simple docstring"""
return log_levels
def UpperCAmelCase__ (UpperCamelCase_ = None ):
"""simple docstring"""
if name is None:
snake_case = _get_library_name()
_configure_library_root_logger()
return logging.getLogger(UpperCamelCase_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_configure_library_root_logger()
return _get_library_root_logger().getEffectiveLevel()
def UpperCAmelCase__ (UpperCamelCase_ ):
"""simple docstring"""
_configure_library_root_logger()
_get_library_root_logger().setLevel(UpperCamelCase_ )
def UpperCAmelCase__ ():
"""simple docstring"""
return set_verbosity(UpperCamelCase_ )
def UpperCAmelCase__ ():
"""simple docstring"""
return set_verbosity(UpperCamelCase_ )
def UpperCAmelCase__ ():
"""simple docstring"""
return set_verbosity(UpperCamelCase_ )
def UpperCAmelCase__ ():
"""simple docstring"""
return set_verbosity(UpperCamelCase_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().removeHandler(_default_handler )
def UpperCAmelCase__ ():
"""simple docstring"""
_configure_library_root_logger()
assert _default_handler is not None
_get_library_root_logger().addHandler(_default_handler )
def UpperCAmelCase__ (UpperCamelCase_ ):
"""simple docstring"""
_configure_library_root_logger()
assert handler is not None
_get_library_root_logger().addHandler(UpperCamelCase_ )
def UpperCAmelCase__ (UpperCamelCase_ ):
"""simple docstring"""
_configure_library_root_logger()
assert handler is not None and handler not in _get_library_root_logger().handlers
_get_library_root_logger().removeHandler(UpperCamelCase_ )
def UpperCAmelCase__ ():
"""simple docstring"""
_configure_library_root_logger()
snake_case = False
def UpperCAmelCase__ ():
"""simple docstring"""
_configure_library_root_logger()
snake_case = True
def UpperCAmelCase__ ():
"""simple docstring"""
snake_case = _get_library_root_logger().handlers
for handler in handlers:
snake_case = logging.Formatter('''[%(levelname)s|%(filename)s:%(lineno)s] %(asctime)s >> %(message)s''' )
handler.setFormatter(UpperCamelCase_ )
def UpperCAmelCase__ ():
"""simple docstring"""
snake_case = _get_library_root_logger().handlers
for handler in handlers:
handler.setFormatter(UpperCamelCase_ )
def UpperCAmelCase__ (self ,*UpperCamelCase_ ,**UpperCamelCase_ ):
"""simple docstring"""
snake_case = os.getenv('''TRANSFORMERS_NO_ADVISORY_WARNINGS''' ,UpperCamelCase_ )
if no_advisory_warnings:
return
self.warning(*UpperCamelCase_ ,**UpperCamelCase_ )
_SCREAMING_SNAKE_CASE : int = warning_advice
@functools.lru_cache(UpperCamelCase_ )
def UpperCAmelCase__ (self ,*UpperCamelCase_ ,**UpperCamelCase_ ):
"""simple docstring"""
self.warning(*UpperCamelCase_ ,**UpperCamelCase_ )
_SCREAMING_SNAKE_CASE : Tuple = warning_once
class A__ :
"""simple docstring"""
def __init__( self , *__snake_case , **__snake_case ): # pylint: disable=unused-argument
snake_case = args[0] if args else None
def __iter__( self ):
return iter(self._iterator )
def __getattr__( self , __snake_case ):
def empty_fn(*__snake_case , **__snake_case ): # pylint: disable=unused-argument
return
return empty_fn
def __enter__( self ):
return self
def __exit__( self , __snake_case , __snake_case , __snake_case ):
return
class A__ :
"""simple docstring"""
def __call__( self , *__snake_case , **__snake_case ):
if _tqdm_active:
return tqdm_lib.tqdm(*__snake_case , **__snake_case )
else:
return EmptyTqdm(*__snake_case , **__snake_case )
def a_ ( self , *__snake_case , **__snake_case ):
snake_case = None
if _tqdm_active:
return tqdm_lib.tqdm.set_lock(*__snake_case , **__snake_case )
def a_ ( self ):
if _tqdm_active:
return tqdm_lib.tqdm.get_lock()
_SCREAMING_SNAKE_CASE : int = _tqdm_cls()
def UpperCAmelCase__ ():
"""simple docstring"""
global _tqdm_active
return bool(_tqdm_active )
def UpperCAmelCase__ ():
"""simple docstring"""
global _tqdm_active
snake_case = True
hf_hub_utils.enable_progress_bars()
def UpperCAmelCase__ ():
"""simple docstring"""
global _tqdm_active
snake_case = False
hf_hub_utils.disable_progress_bars()
| 550 |
from __future__ import annotations
from math import pow, sqrt
def UpperCAmelCase__ (UpperCamelCase_ ,UpperCamelCase_ ,UpperCamelCase_ ):
"""simple docstring"""
if (resistance, reactance, impedance).count(0 ) != 1:
raise ValueError('''One and only one argument must be 0''' )
if resistance == 0:
return {"resistance": sqrt(pow(UpperCamelCase_ ,2 ) - pow(UpperCamelCase_ ,2 ) )}
elif reactance == 0:
return {"reactance": sqrt(pow(UpperCamelCase_ ,2 ) - pow(UpperCamelCase_ ,2 ) )}
elif impedance == 0:
return {"impedance": sqrt(pow(UpperCamelCase_ ,2 ) + pow(UpperCamelCase_ ,2 ) )}
else:
raise ValueError('''Exactly one argument must be 0''' )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 550 | 1 |
import gc
import random
import unittest
import numpy as np
import torch
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer
from diffusers import (
AutoencoderKL,
DiffusionPipeline,
EulerDiscreteScheduler,
StableDiffusionXLImgaImgPipeline,
UNetaDConditionModel,
)
from diffusers.utils import floats_tensor, slow, torch_device
from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu
from ..pipeline_params import (
IMAGE_TO_IMAGE_IMAGE_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS,
TEXT_GUIDED_IMAGE_VARIATION_PARAMS,
)
from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin
enable_full_determinism()
class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ):
"""simple docstring"""
_snake_case = StableDiffusionXLImgaImgPipeline
_snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'height', 'width'}
_snake_case = PipelineTesterMixin.required_optional_params - {'latents'}
_snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS
_snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS
_snake_case = IMAGE_TO_IMAGE_IMAGE_PARAMS
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
torch.manual_seed(0 )
__UpperCamelCase = UNetaDConditionModel(
block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , attention_head_dim=(2, 4) , use_linear_projection=SCREAMING_SNAKE_CASE_ , addition_embed_type='''text_time''' , addition_time_embed_dim=8 , transformer_layers_per_block=(1, 2) , projection_class_embeddings_input_dim=80 , cross_attention_dim=64 , )
__UpperCamelCase = EulerDiscreteScheduler(
beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , steps_offset=1 , beta_schedule='''scaled_linear''' , timestep_spacing='''leading''' , )
torch.manual_seed(0 )
__UpperCamelCase = AutoencoderKL(
block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=128 , )
torch.manual_seed(0 )
__UpperCamelCase = CLIPTextConfig(
bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''gelu''' , projection_dim=32 , )
__UpperCamelCase = CLIPTextModel(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = CLIPTextModelWithProjection(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' , local_files_only=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = {
'''unet''': unet,
'''scheduler''': scheduler,
'''vae''': vae,
'''text_encoder''': text_encoder,
'''tokenizer''': tokenizer,
'''text_encoder_2''': text_encoder_a,
'''tokenizer_2''': tokenizer_a,
# "safety_checker": None,
# "feature_extractor": None,
}
return components
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=0 )-> Dict:
'''simple docstring'''
__UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE_ ) ).to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = image / 2 + 0.5
if str(SCREAMING_SNAKE_CASE_ ).startswith('''mps''' ):
__UpperCamelCase = torch.manual_seed(SCREAMING_SNAKE_CASE_ )
else:
__UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = {
'''prompt''': '''A painting of a squirrel eating a burger''',
'''image''': image,
'''generator''': generator,
'''num_inference_steps''': 2,
'''guidance_scale''': 5.0,
'''output_type''': '''numpy''',
'''strength''': 0.7_5,
}
return inputs
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe(**SCREAMING_SNAKE_CASE_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1]
assert image.shape == (1, 32, 32, 3)
__UpperCamelCase = np.array([0.4_6_5_6, 0.4_8_4_0, 0.4_4_3_9, 0.6_6_9_8, 0.5_5_7_4, 0.4_5_2_4, 0.5_7_9_9, 0.5_9_4_3, 0.5_1_6_5] )
assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 )
def A__ ( self )-> str:
'''simple docstring'''
super().test_inference_batch_single_identical(expected_max_diff=3E-3 )
def A__ ( self )-> List[Any]:
'''simple docstring'''
pass
def A__ ( self )-> Tuple:
'''simple docstring'''
__UpperCamelCase = self.get_dummy_components()
__UpperCamelCase = StableDiffusionXLImgaImgPipeline(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe.to(SCREAMING_SNAKE_CASE_ )
sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
# forward without prompt embeds
__UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = 3 * ['''this is a negative prompt''']
__UpperCamelCase = negative_prompt
__UpperCamelCase = 3 * [inputs['''prompt''']]
__UpperCamelCase = sd_pipe(**SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = output.images[0, -3:, -3:, -1]
# forward with prompt embeds
__UpperCamelCase = self.get_dummy_inputs(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = 3 * ['''this is a negative prompt''']
__UpperCamelCase = 3 * [inputs.pop('''prompt''' )]
(
(
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) , (
__UpperCamelCase
) ,
) = sd_pipe.encode_prompt(SCREAMING_SNAKE_CASE_ , negative_prompt=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = sd_pipe(
**SCREAMING_SNAKE_CASE_ , prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_prompt_embeds=SCREAMING_SNAKE_CASE_ , pooled_prompt_embeds=SCREAMING_SNAKE_CASE_ , negative_pooled_prompt_embeds=SCREAMING_SNAKE_CASE_ , )
__UpperCamelCase = output.images[0, -3:, -3:, -1]
# make sure that it's equal
assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4
@slow
@require_torch_gpu
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Optional[int]:
'''simple docstring'''
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_="cpu" , SCREAMING_SNAKE_CASE_=torch.floataa , SCREAMING_SNAKE_CASE_=0 )-> Any:
'''simple docstring'''
__UpperCamelCase = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = np.random.RandomState(SCREAMING_SNAKE_CASE_ ).standard_normal((1, 4, 64, 64) )
__UpperCamelCase = torch.from_numpy(SCREAMING_SNAKE_CASE_ ).to(device=SCREAMING_SNAKE_CASE_ , dtype=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = {
'''prompt''': '''a photograph of an astronaut riding a horse''',
'''latents''': latents,
'''generator''': generator,
'''num_inference_steps''': 3,
'''guidance_scale''': 7.5,
'''output_type''': '''numpy''',
}
return inputs
def A__ ( self )-> Union[str, Any]:
'''simple docstring'''
__UpperCamelCase = DiffusionPipeline.from_pretrained('''stabilityai/stable-diffusion-2-base''' )
pipe.to(SCREAMING_SNAKE_CASE_ )
pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = self.get_inputs(SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = pipe(**SCREAMING_SNAKE_CASE_ ).images
__UpperCamelCase = image[0, -3:, -3:, -1].flatten()
assert image.shape == (1, 512, 512, 3)
__UpperCamelCase = np.array([0.4_9_4_9_3, 0.4_7_8_9_6, 0.4_0_7_9_8, 0.5_4_2_1_4, 0.5_3_2_1_2, 0.4_8_2_0_2, 0.4_7_6_5_6, 0.4_6_3_2_9, 0.4_8_5_0_6] )
assert np.abs(image_slice - expected_slice ).max() < 7E-3
| 451 |
import os
import re
import shutil
import sys
import tempfile
import unittest
import black
lowercase__ : Optional[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__))))
sys.path.append(os.path.join(git_repo_path, "utils"))
import check_copies # noqa: E402
# This is the reference code that will be used in the tests.
# If DDPMSchedulerOutput is changed in scheduling_ddpm.py, this code needs to be manually updated.
lowercase__ : Dict = " \"\"\"\n Output class for the scheduler's step function output.\n\n Args:\n prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n Computed sample (x_{t-1}) of previous timestep. `prev_sample` should be used as next model input in the\n denoising loop.\n pred_original_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):\n The predicted denoised sample (x_{0}) based on the model output from the current timestep.\n `pred_original_sample` can be used to preview progress or for guidance.\n \"\"\"\n\n prev_sample: torch.FloatTensor\n pred_original_sample: Optional[torch.FloatTensor] = None\n"
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
"""simple docstring"""
def A__ ( self )-> Dict:
'''simple docstring'''
__UpperCamelCase = tempfile.mkdtemp()
os.makedirs(os.path.join(self.diffusers_dir , '''schedulers/''' ) )
__UpperCamelCase = self.diffusers_dir
shutil.copy(
os.path.join(SCREAMING_SNAKE_CASE_ , '''src/diffusers/schedulers/scheduling_ddpm.py''' ) , os.path.join(self.diffusers_dir , '''schedulers/scheduling_ddpm.py''' ) , )
def A__ ( self )-> Optional[int]:
'''simple docstring'''
__UpperCamelCase = '''src/diffusers'''
shutil.rmtree(self.diffusers_dir )
def A__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=None )-> Optional[Any]:
'''simple docstring'''
__UpperCamelCase = comment + F"\nclass {class_name}(nn.Module):\n" + class_code
if overwrite_result is not None:
__UpperCamelCase = comment + F"\nclass {class_name}(nn.Module):\n" + overwrite_result
__UpperCamelCase = black.Mode(target_versions={black.TargetVersion.PYaa} , line_length=119 )
__UpperCamelCase = black.format_str(SCREAMING_SNAKE_CASE_ , mode=SCREAMING_SNAKE_CASE_ )
__UpperCamelCase = os.path.join(self.diffusers_dir , '''new_code.py''' )
with open(SCREAMING_SNAKE_CASE_ , '''w''' , newline='''\n''' ) as f:
f.write(SCREAMING_SNAKE_CASE_ )
if overwrite_result is None:
self.assertTrue(len(check_copies.is_copy_consistent(SCREAMING_SNAKE_CASE_ ) ) == 0 )
else:
check_copies.is_copy_consistent(f.name , overwrite=SCREAMING_SNAKE_CASE_ )
with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f:
self.assertTrue(f.read() , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[Any]:
'''simple docstring'''
__UpperCamelCase = check_copies.find_code_in_diffusers('''schedulers.scheduling_ddpm.DDPMSchedulerOutput''' )
self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )
def A__ ( self )-> List[str]:
'''simple docstring'''
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , REFERENCE_CODE + '''\n''' , )
# With no empty line at the end
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput''' , '''DDPMSchedulerOutput''' , SCREAMING_SNAKE_CASE_ , )
# Copy consistency with rename
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE_ ) , )
# Copy consistency with a really long name
__UpperCamelCase = '''TestClassWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason'''
self.check_copy_consistency(
F"# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->{long_class_name}" , F"{long_class_name}SchedulerOutput" , re.sub('''Bert''' , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) , )
# Copy consistency with overwrite
self.check_copy_consistency(
'''# Copied from diffusers.schedulers.scheduling_ddpm.DDPMSchedulerOutput with DDPM->Test''' , '''TestSchedulerOutput''' , SCREAMING_SNAKE_CASE_ , overwrite_result=re.sub('''DDPM''' , '''Test''' , SCREAMING_SNAKE_CASE_ ) , )
| 451 | 1 |
from decimal import Decimal, getcontext
from math import ceil, factorial
def UpperCamelCase ( _A : List[Any] )-> str:
"""simple docstring"""
if not isinstance(_UpperCAmelCase , _UpperCAmelCase ):
raise TypeError("Undefined for non-integers" )
elif precision < 1:
raise ValueError("Undefined for non-natural numbers" )
A__ = precision
A__ = ceil(precision / 14 )
A__ = 426880 * Decimal(10005 ).sqrt()
A__ = 1
A__ = 13591409
A__ = Decimal(_UpperCAmelCase )
for k in range(1 , _UpperCAmelCase ):
A__ = factorial(6 * k ) // (factorial(3 * k ) * factorial(_UpperCAmelCase ) ** 3)
linear_term += 545140134
exponential_term *= -262537412640768000
partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term
return str(constant_term / partial_sum )[:-1]
if __name__ == "__main__":
UpperCAmelCase_ : Any = 50
print(F'''The first {n} digits of pi is: {pi(n)}''')
| 491 |
from ... import PretrainedConfig
__A : int = {
'''sijunhe/nezha-cn-base''': '''https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json''',
}
class __A ( lowerCAmelCase ):
lowerCAmelCase_ : List[Any] = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP
lowerCAmelCase_ : str = "nezha"
def __init__( self : Optional[int] , UpperCAmelCase_ : Optional[int]=21128 , UpperCAmelCase_ : Any=768 , UpperCAmelCase_ : Tuple=12 , UpperCAmelCase_ : Union[str, Any]=12 , UpperCAmelCase_ : int=3072 , UpperCAmelCase_ : Optional[int]="gelu" , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : List[Any]=0.1 , UpperCAmelCase_ : Optional[int]=512 , UpperCAmelCase_ : Tuple=64 , UpperCAmelCase_ : int=2 , UpperCAmelCase_ : Union[str, Any]=0.02 , UpperCAmelCase_ : Dict=1E-12 , UpperCAmelCase_ : Dict=0.1 , UpperCAmelCase_ : List[Any]=0 , UpperCAmelCase_ : str=2 , UpperCAmelCase_ : Optional[int]=3 , UpperCAmelCase_ : Optional[Any]=True , **UpperCAmelCase_ : Any , ):
super().__init__(pad_token_id=UpperCAmelCase_ , bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ )
lowerCAmelCase : Dict = vocab_size
lowerCAmelCase : Union[str, Any] = hidden_size
lowerCAmelCase : Tuple = num_hidden_layers
lowerCAmelCase : Tuple = num_attention_heads
lowerCAmelCase : List[str] = hidden_act
lowerCAmelCase : Tuple = intermediate_size
lowerCAmelCase : Any = hidden_dropout_prob
lowerCAmelCase : Any = attention_probs_dropout_prob
lowerCAmelCase : List[Any] = max_position_embeddings
lowerCAmelCase : Tuple = max_relative_position
lowerCAmelCase : Tuple = type_vocab_size
lowerCAmelCase : int = initializer_range
lowerCAmelCase : int = layer_norm_eps
lowerCAmelCase : List[str] = classifier_dropout
lowerCAmelCase : Optional[Any] = use_cache
| 343 | 0 |
from __future__ import annotations
from collections.abc import MutableSequence
class UpperCAmelCase_ :
'''simple docstring'''
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if len(__SCREAMING_SNAKE_CASE ) != degree + 1:
raise ValueError(
'''The number of coefficients should be equal to the degree + 1.''' )
UpperCamelCase : list[float] = list(__SCREAMING_SNAKE_CASE )
UpperCamelCase : int = degree
def __add__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if self.degree > polynomial_a.degree:
UpperCamelCase : int = self.coefficients[:]
for i in range(polynomial_a.degree + 1 ):
coefficients[i] += polynomial_a.coefficients[i]
return Polynomial(self.degree , __SCREAMING_SNAKE_CASE )
else:
UpperCamelCase : int = polynomial_a.coefficients[:]
for i in range(self.degree + 1 ):
coefficients[i] += self.coefficients[i]
return Polynomial(polynomial_a.degree , __SCREAMING_SNAKE_CASE )
def __sub__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return self + polynomial_a * Polynomial(0 , [-1] )
def __neg__( self ):
"""simple docstring"""
return Polynomial(self.degree , [-c for c in self.coefficients] )
def __mul__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : list[float] = [0] * (self.degree + polynomial_a.degree + 1)
for i in range(self.degree + 1 ):
for j in range(polynomial_a.degree + 1 ):
coefficients[i + j] += (
self.coefficients[i] * polynomial_a.coefficients[j]
)
return Polynomial(self.degree + polynomial_a.degree , __SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
UpperCamelCase : int | float = 0
for i in range(self.degree + 1 ):
result += self.coefficients[i] * (substitution**i)
return result
def __str__( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = ''''''
for i in range(self.degree , -1 , -1 ):
if self.coefficients[i] == 0:
continue
elif self.coefficients[i] > 0:
if polynomial:
polynomial += " + "
else:
polynomial += " - "
if i == 0:
polynomial += str(abs(self.coefficients[i] ) )
elif i == 1:
polynomial += str(abs(self.coefficients[i] ) ) + "x"
else:
polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(__SCREAMING_SNAKE_CASE )
return polynomial
def __repr__( self ):
"""simple docstring"""
return self.__str__()
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : list[float] = [0] * self.degree
for i in range(self.degree ):
UpperCamelCase : int = self.coefficients[i + 1] * (i + 1)
return Polynomial(self.degree - 1 , __SCREAMING_SNAKE_CASE )
def _lowercase ( self , __SCREAMING_SNAKE_CASE = 0 ):
"""simple docstring"""
UpperCamelCase : list[float] = [0] * (self.degree + 2)
UpperCamelCase : Optional[Any] = constant
for i in range(self.degree + 1 ):
UpperCamelCase : Optional[Any] = self.coefficients[i] / (i + 1)
return Polynomial(self.degree + 1 , __SCREAMING_SNAKE_CASE )
def __eq__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ):
return False
if self.degree != polynomial_a.degree:
return False
for i in range(self.degree + 1 ):
if self.coefficients[i] != polynomial_a.coefficients[i]:
return False
return True
def __ne__( self , __SCREAMING_SNAKE_CASE ):
"""simple docstring"""
return not self.__eq__(__SCREAMING_SNAKE_CASE )
| 643 |
from __future__ import annotations
import unittest
from transformers import XGLMConfig, XGLMTokenizer, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers.models.xglm.modeling_tf_xglm import (
TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFXGLMForCausalLM,
TFXGLMModel,
)
@require_tf
class UpperCAmelCase_ :
'''simple docstring'''
__UpperCamelCase : Any = XGLMConfig
__UpperCamelCase : Dict = {}
__UpperCamelCase : List[str] = "gelu"
def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=14 , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=99 , __SCREAMING_SNAKE_CASE=32 , __SCREAMING_SNAKE_CASE=2 , __SCREAMING_SNAKE_CASE=4 , __SCREAMING_SNAKE_CASE=37 , __SCREAMING_SNAKE_CASE="gelu" , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=0.1 , __SCREAMING_SNAKE_CASE=512 , __SCREAMING_SNAKE_CASE=0.02 , ):
"""simple docstring"""
UpperCamelCase : Any = parent
UpperCamelCase : Optional[int] = batch_size
UpperCamelCase : str = seq_length
UpperCamelCase : List[str] = is_training
UpperCamelCase : Tuple = use_input_mask
UpperCamelCase : Union[str, Any] = use_labels
UpperCamelCase : int = vocab_size
UpperCamelCase : Optional[int] = d_model
UpperCamelCase : Any = num_hidden_layers
UpperCamelCase : List[str] = num_attention_heads
UpperCamelCase : Optional[Any] = ffn_dim
UpperCamelCase : Optional[int] = activation_function
UpperCamelCase : List[str] = activation_dropout
UpperCamelCase : Any = attention_dropout
UpperCamelCase : str = max_position_embeddings
UpperCamelCase : Union[str, Any] = initializer_range
UpperCamelCase : int = None
UpperCamelCase : Dict = 0
UpperCamelCase : int = 2
UpperCamelCase : Any = 1
def _lowercase ( self ):
"""simple docstring"""
return XGLMConfig.from_pretrained('''facebook/xglm-564M''' )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Optional[int] = tf.clip_by_value(
ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) , clip_value_min=0 , clip_value_max=3 )
UpperCamelCase : int = None
if self.use_input_mask:
UpperCamelCase : Any = random_attention_mask([self.batch_size, self.seq_length] )
UpperCamelCase : Tuple = self.get_config()
UpperCamelCase : str = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 )
return (
config,
input_ids,
input_mask,
head_mask,
)
def _lowercase ( self ):
"""simple docstring"""
return XGLMConfig(
vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=__SCREAMING_SNAKE_CASE , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=__SCREAMING_SNAKE_CASE , )
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[str] = self.prepare_config_and_inputs()
(
(
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) , (
UpperCamelCase
) ,
) : Dict = config_and_inputs
UpperCamelCase : List[str] = {
'''input_ids''': input_ids,
'''head_mask''': head_mask,
}
return config, inputs_dict
@require_tf
class UpperCAmelCase_ ( _a, _a, unittest.TestCase):
'''simple docstring'''
__UpperCamelCase : Optional[Any] = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else ()
__UpperCamelCase : Union[str, Any] = (TFXGLMForCausalLM,) if is_tf_available() else ()
__UpperCamelCase : Any = (
{"feature-extraction": TFXGLMModel, "text-generation": TFXGLMForCausalLM} if is_tf_available() else {}
)
__UpperCamelCase : Optional[int] = False
__UpperCamelCase : List[Any] = False
__UpperCamelCase : List[Any] = False
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : List[Any] = TFXGLMModelTester(self )
UpperCamelCase : Any = ConfigTester(self , config_class=__SCREAMING_SNAKE_CASE , n_embd=37 )
def _lowercase ( self ):
"""simple docstring"""
self.config_tester.run_common_tests()
@slow
def _lowercase ( self ):
"""simple docstring"""
for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase : List[Any] = TFXGLMModel.from_pretrained(__SCREAMING_SNAKE_CASE )
self.assertIsNotNone(__SCREAMING_SNAKE_CASE )
@unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''' )
def _lowercase ( self ):
"""simple docstring"""
super().test_resize_token_embeddings()
@require_tf
class UpperCAmelCase_ ( unittest.TestCase):
'''simple docstring'''
@slow
def _lowercase ( self , __SCREAMING_SNAKE_CASE=True ):
"""simple docstring"""
UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : List[Any] = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa ) # The dog
# </s> The dog is a very friendly dog. He is very affectionate and loves to play with other
# fmt: off
UpperCamelCase : str = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581]
# fmt: on
UpperCamelCase : Union[str, Any] = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , num_beams=1 )
if verify_outputs:
self.assertListEqual(output_ids[0].numpy().tolist() , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : str = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : List[str] = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
tf.random.set_seed(0 )
UpperCamelCase : Tuple = tokenizer('''Today is a nice day and''' , return_tensors='''tf''' )
UpperCamelCase : int = tokenized.input_ids
# forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices)
with tf.device(''':/CPU:0''' ):
UpperCamelCase : str = model.generate(__SCREAMING_SNAKE_CASE , do_sample=__SCREAMING_SNAKE_CASE , seed=[7, 0] )
UpperCamelCase : Dict = tokenizer.decode(output_ids[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = (
'''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due'''
)
self.assertEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
@slow
def _lowercase ( self ):
"""simple docstring"""
UpperCamelCase : Dict = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : Tuple = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''' )
UpperCamelCase : Tuple = '''left'''
# use different length sentences to test batching
UpperCamelCase : Any = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When''',
'''Hello, my dog is a little''',
]
UpperCamelCase : List[Any] = tokenizer(__SCREAMING_SNAKE_CASE , return_tensors='''tf''' , padding=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = inputs['''input_ids''']
UpperCamelCase : Optional[int] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12 )
UpperCamelCase : Optional[int] = tokenizer(sentences[0] , return_tensors='''tf''' ).input_ids
UpperCamelCase : Optional[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 )
UpperCamelCase : str = tokenizer(sentences[1] , return_tensors='''tf''' ).input_ids
UpperCamelCase : List[Any] = model.generate(input_ids=__SCREAMING_SNAKE_CASE , max_new_tokens=12 )
UpperCamelCase : Any = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : List[str] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=__SCREAMING_SNAKE_CASE )
UpperCamelCase : Optional[int] = [
'''This is an extremelly long sentence that only exists to test the ability of the model to cope with '''
'''left-padding, such as in batched generation. The output for the sequence below should be the same '''
'''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be '''
'''a single''',
'''Hello, my dog is a little bit of a shy one, but he is very friendly''',
]
self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE )
self.assertListEqual(__SCREAMING_SNAKE_CASE , [non_padded_sentence, padded_sentence] )
| 643 | 1 |
'''simple docstring'''
import os
import sys
import tempfile
import unittest
import unittest.mock as mock
from pathlib import Path
from huggingface_hub import HfFolder, delete_repo
from huggingface_hub.file_download import http_get
from requests.exceptions import HTTPError
from transformers import (
AlbertTokenizer,
AutoTokenizer,
BertTokenizer,
BertTokenizerFast,
GPTaTokenizerFast,
is_tokenizers_available,
)
from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers
from transformers.tokenization_utils import Trie
sys.path.append(str(Path(__file__).parent.parent / '''utils'''))
from test_module.custom_tokenization import CustomTokenizer # noqa E402
if is_tokenizers_available():
from test_module.custom_tokenization_fast import CustomTokenizerFast
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = mock.Mock()
__snake_case = 500
__snake_case = {}
__snake_case = HTTPError
__snake_case = {}
# Download this model to make sure it's in the cache.
__snake_case = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head:
__snake_case = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" )
# This check we did call the fake head request
mock_head.assert_called()
@require_tokenizers
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = mock.Mock()
__snake_case = 500
__snake_case = {}
__snake_case = HTTPError
__snake_case = {}
# Download this model to make sure it's in the cache.
__snake_case = GPTaTokenizerFast.from_pretrained("gpt2" )
# Under the mock environment we get a 500 error when trying to reach the tokenizer.
with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head:
__snake_case = GPTaTokenizerFast.from_pretrained("gpt2" )
# This check we did call the fake head request
mock_head.assert_called()
def A ( self : Optional[Any] ):
"""simple docstring"""
try:
__snake_case = tempfile.mktemp()
with open(a_ , "wb" ) as f:
http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , a_ )
__snake_case = AlbertTokenizer.from_pretrained(a_ )
finally:
os.remove(a_ )
# Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in
# the current folder and have the right name.
if os.path.isfile("tokenizer.json" ):
# We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it.
return
try:
with open("tokenizer.json" , "wb" ) as f:
http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , a_ )
__snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" )
# The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000
self.assertEqual(tokenizer.vocab_size , 1_000 )
# Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file.
finally:
os.remove("tokenizer.json" )
def A ( self : str ):
"""simple docstring"""
__snake_case = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" )
@is_staging_test
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
__SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""]
@classmethod
def A ( cls : List[Any] ):
"""simple docstring"""
__snake_case = TOKEN
HfFolder.save_token(a_ )
@classmethod
def A ( cls : List[Any] ):
"""simple docstring"""
try:
delete_repo(token=cls._token , repo_id="test-tokenizer" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" )
except HTTPError:
pass
try:
delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" )
except HTTPError:
pass
def A ( self : int ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case = os.path.join(a_ , "vocab.txt" )
with open(a_ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
__snake_case = BertTokenizer(a_ )
tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token )
__snake_case = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="test-tokenizer" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(a_ , repo_id="test-tokenizer" , push_to_hub=a_ , use_auth_token=self._token )
__snake_case = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
def A ( self : int ):
"""simple docstring"""
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case = os.path.join(a_ , "vocab.txt" )
with open(a_ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
__snake_case = BertTokenizer(a_ )
tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token )
__snake_case = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
# Reset repo
delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" )
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
tokenizer.save_pretrained(
a_ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=a_ , use_auth_token=self._token )
__snake_case = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" )
self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab )
@require_tokenizers
def A ( self : List[str] ):
"""simple docstring"""
CustomTokenizer.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case = os.path.join(a_ , "vocab.txt" )
with open(a_ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
__snake_case = CustomTokenizer(a_ )
# No fast custom tokenizer
tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token )
__snake_case = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ )
# Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" )
# Fast and slow custom tokenizer
CustomTokenizerFast.register_for_auto_class()
with tempfile.TemporaryDirectory() as tmp_dir:
__snake_case = os.path.join(a_ , "vocab.txt" )
with open(a_ , "w" , encoding="utf-8" ) as vocab_writer:
vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) )
__snake_case = BertTokenizerFast.from_pretrained(a_ )
bert_tokenizer.save_pretrained(a_ )
__snake_case = CustomTokenizerFast.from_pretrained(a_ )
tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token )
__snake_case = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" )
__snake_case = AutoTokenizer.from_pretrained(
f'''{USER}/test-dynamic-tokenizer''' , use_fast=a_ , trust_remote_code=a_ )
# Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module
self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" )
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
def A ( self : Optional[int] ):
"""simple docstring"""
__snake_case = Trie()
trie.add("Hello 友達" )
self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} )
trie.add("Hello" )
trie.data
self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} )
def A ( self : str ):
"""simple docstring"""
__snake_case = Trie()
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] )
trie.add("[CLS]" )
trie.add("extra_id_1" )
trie.add("extra_id_100" )
self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] )
def A ( self : Optional[Any] ):
"""simple docstring"""
__snake_case = Trie()
trie.add("A" )
self.assertEqual(trie.split("ABC" ) , ["A", "BC"] )
self.assertEqual(trie.split("BCA" ) , ["BC", "A"] )
def A ( self : List[Any] ):
"""simple docstring"""
__snake_case = Trie()
trie.add("TOKEN]" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] )
def A ( self : str ):
"""simple docstring"""
__snake_case = Trie()
trie.add("A" )
trie.add("P" )
trie.add("[SPECIAL_TOKEN]" )
self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] )
def A ( self : Optional[int] ):
"""simple docstring"""
__snake_case = Trie()
trie.add("AB" )
trie.add("B" )
trie.add("C" )
self.assertEqual(trie.split("ABC" ) , ["AB", "C"] )
def A ( self : Tuple ):
"""simple docstring"""
__snake_case = Trie()
trie.add("ABC" )
trie.add("B" )
trie.add("CD" )
self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] )
def A ( self : Any ):
"""simple docstring"""
__snake_case = Trie()
__snake_case = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] )
self.assertEqual(a_ , ["AB", "C"] )
| 69 |
"""simple docstring"""
from math import atan, cos, radians, sin, tan
from .haversine_distance import haversine_distance
a :str = 637_8137.0
a :Optional[Any] = 635_6752.31_4245
a :List[Any] = 6_378_137
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> float:
SCREAMING_SNAKE_CASE__ : Dict = (AXIS_A - AXIS_B) / AXIS_A
# Parametric latitudes
# https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude
SCREAMING_SNAKE_CASE__ : Dict = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) )
SCREAMING_SNAKE_CASE__ : Dict = atan((1 - flattening) * tan(radians(__lowerCAmelCase ) ) )
# Compute central angle between two points
# using haversine theta. sigma = haversine_distance / equatorial radius
SCREAMING_SNAKE_CASE__ : Tuple = haversine_distance(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) / EQUATORIAL_RADIUS
# Intermediate P and Q values
SCREAMING_SNAKE_CASE__ : List[str] = (b_lata + b_lata) / 2
SCREAMING_SNAKE_CASE__ : Dict = (b_lata - b_lata) / 2
# Intermediate X value
# X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2)
SCREAMING_SNAKE_CASE__ : Tuple = (sin(__lowerCAmelCase ) ** 2) * (cos(__lowerCAmelCase ) ** 2)
SCREAMING_SNAKE_CASE__ : str = cos(sigma / 2 ) ** 2
SCREAMING_SNAKE_CASE__ : List[str] = (sigma - sin(__lowerCAmelCase )) * (x_numerator / x_demonimator)
# Intermediate Y value
# Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2)
SCREAMING_SNAKE_CASE__ : int = (cos(__lowerCAmelCase ) ** 2) * (sin(__lowerCAmelCase ) ** 2)
SCREAMING_SNAKE_CASE__ : int = sin(sigma / 2 ) ** 2
SCREAMING_SNAKE_CASE__ : Optional[Any] = (sigma + sin(__lowerCAmelCase )) * (y_numerator / y_denominator)
return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value)))
if __name__ == "__main__":
import doctest
doctest.testmod()
| 680 | 0 |
from ...configuration_utils import PretrainedConfig
from ...utils import logging
SCREAMING_SNAKE_CASE_: str =logging.get_logger(__name__)
SCREAMING_SNAKE_CASE_: str ={
'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json',
# See all PEGASUS models at https://huggingface.co/models?filter=pegasus
}
class __A ( UpperCamelCase__ ):
a__ : Optional[Any] = """pegasus"""
a__ : List[Any] = ["""past_key_values"""]
a__ : Any = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""}
def __init__(self : str , __a : Union[str, Any]=50265 , __a : str=1024 , __a : Optional[int]=12 , __a : List[str]=4096 , __a : List[Any]=16 , __a : Union[str, Any]=12 , __a : Dict=4096 , __a : Dict=16 , __a : Tuple=0.0 , __a : int=0.0 , __a : str=True , __a : Optional[int]=True , __a : Optional[Any]="gelu" , __a : Dict=1024 , __a : List[Any]=0.1 , __a : List[Any]=0.0 , __a : Union[str, Any]=0.0 , __a : Union[str, Any]=0.02 , __a : List[Any]=0 , __a : Tuple=False , __a : int=0 , __a : Tuple=1 , __a : List[str]=1 , **__a : int , ):
UpperCAmelCase_ = vocab_size
UpperCAmelCase_ = max_position_embeddings
UpperCAmelCase_ = d_model
UpperCAmelCase_ = encoder_ffn_dim
UpperCAmelCase_ = encoder_layers
UpperCAmelCase_ = encoder_attention_heads
UpperCAmelCase_ = decoder_ffn_dim
UpperCAmelCase_ = decoder_layers
UpperCAmelCase_ = decoder_attention_heads
UpperCAmelCase_ = dropout
UpperCAmelCase_ = attention_dropout
UpperCAmelCase_ = activation_dropout
UpperCAmelCase_ = activation_function
UpperCAmelCase_ = init_std
UpperCAmelCase_ = encoder_layerdrop
UpperCAmelCase_ = decoder_layerdrop
UpperCAmelCase_ = use_cache
UpperCAmelCase_ = encoder_layers
UpperCAmelCase_ = scale_embedding # scale factor will be sqrt(d_model) if True
super().__init__(
pad_token_id=__a , eos_token_id=__a , is_encoder_decoder=__a , decoder_start_token_id=__a , forced_eos_token_id=__a , **__a , )
@property
def _lowercase (self : str ):
return self.encoder_attention_heads
@property
def _lowercase (self : Union[str, Any] ):
return self.d_model
| 716 | '''simple docstring'''
from __future__ import annotations
from collections.abc import Iterator
from typing import Any
class __A :
def __init__(self : Dict , __a : Any ):
UpperCAmelCase_ = data
UpperCAmelCase_ = None
class __A :
def __init__(self : Dict ):
UpperCAmelCase_ = None
UpperCAmelCase_ = None
def __iter__(self : Any ):
UpperCAmelCase_ = self.head
while self.head:
yield node.data
UpperCAmelCase_ = node.next
if node == self.head:
break
def __len__(self : str ):
return sum(1 for _ in self )
def __repr__(self : str ):
return "->".join(str(__a ) for item in iter(self ) )
def _lowercase (self : Tuple , __a : Any ):
self.insert_nth(len(self ) , __a )
def _lowercase (self : Optional[int] , __a : Any ):
self.insert_nth(0 , __a )
def _lowercase (self : Union[str, Any] , __a : int , __a : Any ):
if index < 0 or index > len(self ):
raise IndexError("list index out of range." )
UpperCAmelCase_ = Node(__a )
if self.head is None:
UpperCAmelCase_ = new_node # first node points itself
UpperCAmelCase_ = UpperCAmelCase_ = new_node
elif index == 0: # insert at head
UpperCAmelCase_ = self.head
UpperCAmelCase_ = UpperCAmelCase_ = new_node
else:
UpperCAmelCase_ = self.head
for _ in range(index - 1 ):
UpperCAmelCase_ = temp.next
UpperCAmelCase_ = temp.next
UpperCAmelCase_ = new_node
if index == len(self ) - 1: # insert at tail
UpperCAmelCase_ = new_node
def _lowercase (self : int ):
return self.delete_nth(0 )
def _lowercase (self : List[Any] ):
return self.delete_nth(len(self ) - 1 )
def _lowercase (self : int , __a : int = 0 ):
if not 0 <= index < len(self ):
raise IndexError("list index out of range." )
UpperCAmelCase_ = self.head
if self.head == self.tail: # just one node
UpperCAmelCase_ = UpperCAmelCase_ = None
elif index == 0: # delete head node
UpperCAmelCase_ = self.tail.next.next
UpperCAmelCase_ = self.head.next
else:
UpperCAmelCase_ = self.head
for _ in range(index - 1 ):
UpperCAmelCase_ = temp.next
UpperCAmelCase_ = temp.next
UpperCAmelCase_ = temp.next.next
if index == len(self ) - 1: # delete at tail
UpperCAmelCase_ = temp
return delete_node.data
def _lowercase (self : Optional[int] ):
return len(self ) == 0
def lowerCAmelCase_ ( ) -> None:
'''simple docstring'''
UpperCAmelCase_ = CircularLinkedList()
assert len(snake_case_ ) == 0
assert circular_linked_list.is_empty() is True
assert str(snake_case_ ) == ""
try:
circular_linked_list.delete_front()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1 )
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0 )
raise AssertionError
except IndexError:
assert True
assert circular_linked_list.is_empty() is True
for i in range(5 ):
assert len(snake_case_ ) == i
circular_linked_list.insert_nth(snake_case_ , i + 1 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) )
circular_linked_list.insert_tail(6 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 7 ) )
circular_linked_list.insert_head(0 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(0 , 7 ) )
assert circular_linked_list.delete_front() == 0
assert circular_linked_list.delete_tail() == 6
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) )
assert circular_linked_list.delete_nth(2 ) == 3
circular_linked_list.insert_nth(2 , 3 )
assert str(snake_case_ ) == "->".join(str(snake_case_ ) for i in range(1 , 6 ) )
assert circular_linked_list.is_empty() is False
if __name__ == "__main__":
import doctest
doctest.testmod()
| 415 | 0 |
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
UpperCAmelCase_ : List[str] = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
UpperCAmelCase_ : Union[str, Any] = dataset.iloc[:, 1:2].values
UpperCAmelCase_ : Dict = dataset.iloc[:, 2].values
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ : Dict = train_test_split(X, y, test_size=0.2, random_state=0)
UpperCAmelCase_ : Union[str, Any] = PolynomialFeatures(degree=4)
UpperCAmelCase_ : Any = poly_reg.fit_transform(X)
UpperCAmelCase_ : Optional[Any] = LinearRegression()
pol_reg.fit(X_poly, y)
def lowerCAmelCase_ ( ):
plt.scatter(lowerCamelCase , lowerCamelCase , color="""red""" )
plt.plot(lowerCamelCase , pol_reg.predict(poly_reg.fit_transform(lowerCamelCase ) ) , color="""blue""" )
plt.title("""Truth or Bluff (Linear Regression)""" )
plt.xlabel("""Position level""" )
plt.ylabel("""Salary""" )
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003
| 21 |
import logging
import os
import random
import sys
from dataclasses import dataclass, field
from typing import Optional
import datasets
import evaluate
import numpy as np
from datasets import load_dataset
import transformers
from transformers import (
AutoConfig,
AutoModelForSequenceClassification,
AutoTokenizer,
DataCollatorWithPadding,
EvalPrediction,
HfArgumentParser,
Trainer,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version, send_example_telemetry
from transformers.utils.versions import require_version
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("""4.31.0""")
require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""")
lowerCamelCase = logging.getLogger(__name__)
@dataclass
class _a :
'''simple docstring'''
A :Optional[int] = field(
default=1_28 , metadata={
"help": (
"The maximum total input sequence length after tokenization. Sequences longer "
"than this will be truncated, sequences shorter will be padded."
)
} , )
A :bool = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Overwrite the cached preprocessed datasets or not."} )
A :bool = field(
default=SCREAMING_SNAKE_CASE , metadata={
"help": (
"Whether to pad all samples to `max_seq_length`. "
"If False, will pad the samples dynamically when batching to the maximum length in the batch."
)
} , )
A :Optional[int] = field(
default=SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of training examples to this "
"value if set."
)
} , )
A :Optional[int] = field(
default=SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of evaluation examples to this "
"value if set."
)
} , )
A :Optional[int] = field(
default=SCREAMING_SNAKE_CASE , metadata={
"help": (
"For debugging purposes or quicker training, truncate the number of prediction examples to this "
"value if set."
)
} , )
@dataclass
class _a :
'''simple docstring'''
A :str = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} )
A :str = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} )
A :Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Train language if it is different from the evaluation language."} )
A :Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained config name or path if not the same as model_name"} )
A :Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} )
A :Optional[str] = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , )
A :Optional[bool] = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , )
A :bool = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , )
A :str = field(
default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , )
A :bool = field(
default=SCREAMING_SNAKE_CASE , metadata={
"help": (
"Will use the token generated when running `huggingface-cli login` (necessary to use this script "
"with private models)."
)
} , )
A :bool = field(
default=SCREAMING_SNAKE_CASE , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , )
def SCREAMING_SNAKE_CASE( ) -> int:
# See all possible arguments in src/transformers/training_args.py
# or by passing the --help flag to this script.
# We now keep distinct sets of args, for a cleaner separation of concerns.
a__ : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) )
a__ , a__ , a__ : Optional[int] = parser.parse_args_into_dataclasses()
# Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The
# information sent is the one passed as arguments along with your Python/PyTorch versions.
send_example_telemetry("run_xnli" , __UpperCamelCase )
# Setup logging
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , )
if training_args.should_log:
# The default of training_args.log_level is passive, so we set log level at info here to have that default.
transformers.utils.logging.set_verbosity_info()
a__ : int = training_args.get_process_log_level()
logger.setLevel(__UpperCamelCase )
datasets.utils.logging.set_verbosity(__UpperCamelCase )
transformers.utils.logging.set_verbosity(__UpperCamelCase )
transformers.utils.logging.enable_default_handler()
transformers.utils.logging.enable_explicit_format()
# Log on each process the small summary:
logger.warning(
F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}'
+ F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' )
logger.info(F'Training/evaluation parameters {training_args}' )
# Detecting last checkpoint.
a__ : Union[str, Any] = None
if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir:
a__ : Dict = get_last_checkpoint(training_args.output_dir )
if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0:
raise ValueError(
F'Output directory ({training_args.output_dir}) already exists and is not empty. '
"Use --overwrite_output_dir to overcome." )
elif last_checkpoint is not None:
logger.info(
F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change '
"the `--output_dir` or add `--overwrite_output_dir` to train from scratch." )
# Set seed before initializing model.
set_seed(training_args.seed )
# In distributed training, the load_dataset function guarantees that only one local process can concurrently
# download the dataset.
# Downloading and loading xnli dataset from the hub.
if training_args.do_train:
if model_args.train_language is None:
a__ : Any = load_dataset(
"xnli" , model_args.language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
else:
a__ : List[str] = load_dataset(
"xnli" , model_args.train_language , split="train" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
a__ : List[Any] = train_dataset.features["label"].names
if training_args.do_eval:
a__ : Tuple = load_dataset(
"xnli" , model_args.language , split="validation" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
a__ : int = eval_dataset.features["label"].names
if training_args.do_predict:
a__ : Dict = load_dataset(
"xnli" , model_args.language , split="test" , cache_dir=model_args.cache_dir , use_auth_token=True if model_args.use_auth_token else None , )
a__ : Optional[Any] = predict_dataset.features["label"].names
# Labels
a__ : List[Any] = len(__UpperCamelCase )
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
a__ : List[Any] = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , idalabel={str(__UpperCamelCase ): label for i, label in enumerate(__UpperCamelCase )} , labelaid={label: i for i, label in enumerate(__UpperCamelCase )} , finetuning_task="xnli" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
a__ : Union[str, Any] = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , do_lower_case=model_args.do_lower_case , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , )
a__ : Optional[int] = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , )
# Preprocessing the datasets
# Padding strategy
if data_args.pad_to_max_length:
a__ : Dict = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
a__ : Optional[Any] = False
def preprocess_function(__UpperCamelCase ):
# Tokenize the texts
return tokenizer(
examples["premise"] , examples["hypothesis"] , padding=__UpperCamelCase , max_length=data_args.max_seq_length , truncation=__UpperCamelCase , )
if training_args.do_train:
if data_args.max_train_samples is not None:
a__ : int = min(len(__UpperCamelCase ) , data_args.max_train_samples )
a__ : Tuple = train_dataset.select(range(__UpperCamelCase ) )
with training_args.main_process_first(desc="train dataset map pre-processing" ):
a__ : Optional[int] = train_dataset.map(
__UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on train dataset" , )
# Log a few random samples from the training set:
for index in random.sample(range(len(__UpperCamelCase ) ) , 3 ):
logger.info(F'Sample {index} of the training set: {train_dataset[index]}.' )
if training_args.do_eval:
if data_args.max_eval_samples is not None:
a__ : Optional[int] = min(len(__UpperCamelCase ) , data_args.max_eval_samples )
a__ : Optional[Any] = eval_dataset.select(range(__UpperCamelCase ) )
with training_args.main_process_first(desc="validation dataset map pre-processing" ):
a__ : List[Any] = eval_dataset.map(
__UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on validation dataset" , )
if training_args.do_predict:
if data_args.max_predict_samples is not None:
a__ : int = min(len(__UpperCamelCase ) , data_args.max_predict_samples )
a__ : List[str] = predict_dataset.select(range(__UpperCamelCase ) )
with training_args.main_process_first(desc="prediction dataset map pre-processing" ):
a__ : Union[str, Any] = predict_dataset.map(
__UpperCamelCase , batched=__UpperCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on prediction dataset" , )
# Get the metric function
a__ : List[Any] = evaluate.load("xnli" )
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(__UpperCamelCase ):
a__ : Dict = p.predictions[0] if isinstance(p.predictions , __UpperCamelCase ) else p.predictions
a__ : Any = np.argmax(__UpperCamelCase , axis=1 )
return metric.compute(predictions=__UpperCamelCase , references=p.label_ids )
# Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
if data_args.pad_to_max_length:
a__ : List[Any] = default_data_collator
elif training_args.fpaa:
a__ : List[Any] = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 )
else:
a__ : Tuple = None
# Initialize our Trainer
a__ : List[str] = Trainer(
model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=__UpperCamelCase , tokenizer=__UpperCamelCase , data_collator=__UpperCamelCase , )
# Training
if training_args.do_train:
a__ : str = None
if training_args.resume_from_checkpoint is not None:
a__ : int = training_args.resume_from_checkpoint
elif last_checkpoint is not None:
a__ : Optional[int] = last_checkpoint
a__ : Any = trainer.train(resume_from_checkpoint=__UpperCamelCase )
a__ : Tuple = train_result.metrics
a__ : Union[str, Any] = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(__UpperCamelCase )
)
a__ : Optional[int] = min(__UpperCamelCase , len(__UpperCamelCase ) )
trainer.save_model() # Saves the tokenizer too for easy upload
trainer.log_metrics("train" , __UpperCamelCase )
trainer.save_metrics("train" , __UpperCamelCase )
trainer.save_state()
# Evaluation
if training_args.do_eval:
logger.info("*** Evaluate ***" )
a__ : Optional[int] = trainer.evaluate(eval_dataset=__UpperCamelCase )
a__ : Tuple = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(__UpperCamelCase )
a__ : List[Any] = min(__UpperCamelCase , len(__UpperCamelCase ) )
trainer.log_metrics("eval" , __UpperCamelCase )
trainer.save_metrics("eval" , __UpperCamelCase )
# Prediction
if training_args.do_predict:
logger.info("*** Predict ***" )
a__ , a__ , a__ : int = trainer.predict(__UpperCamelCase , metric_key_prefix="predict" )
a__ : int = (
data_args.max_predict_samples if data_args.max_predict_samples is not None else len(__UpperCamelCase )
)
a__ : Union[str, Any] = min(__UpperCamelCase , len(__UpperCamelCase ) )
trainer.log_metrics("predict" , __UpperCamelCase )
trainer.save_metrics("predict" , __UpperCamelCase )
a__ : Dict = np.argmax(__UpperCamelCase , axis=1 )
a__ : str = os.path.join(training_args.output_dir , "predictions.txt" )
if trainer.is_world_process_zero():
with open(__UpperCamelCase , "w" ) as writer:
writer.write("index\tprediction\n" )
for index, item in enumerate(__UpperCamelCase ):
a__ : int = label_list[item]
writer.write(F'{index}\t{item}\n' )
if __name__ == "__main__":
main()
| 191 | 0 |
import unittest
from datasets import load_dataset
from transformers.pipelines import pipeline
from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow
@is_pipeline_test
@require_torch
class UpperCamelCase_ ( unittest.TestCase ):
@require_torch
def _snake_case ( self :Dict ) -> Optional[Any]:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = pipeline(
task="""zero-shot-audio-classification""" , model="""hf-internal-testing/tiny-clap-htsat-unfused""" )
SCREAMING_SNAKE_CASE__ = load_dataset("""ashraq/esc50""" )
SCREAMING_SNAKE_CASE__ = dataset["""train"""]["""audio"""][-1]["""array"""]
SCREAMING_SNAKE_CASE__ = audio_classifier(__A , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__A ) , [{"""score""": 0.5_0_1, """label""": """Sound of a dog"""}, {"""score""": 0.4_9_9, """label""": """Sound of vaccum cleaner"""}] , )
@unittest.skip("""No models are available in TF""" )
def _snake_case ( self :Dict ) -> List[str]:
"""simple docstring"""
pass
@slow
@require_torch
def _snake_case ( self :Any ) -> int:
"""simple docstring"""
SCREAMING_SNAKE_CASE__ = pipeline(
task="""zero-shot-audio-classification""" , model="""laion/clap-htsat-unfused""" , )
# This is an audio of a dog
SCREAMING_SNAKE_CASE__ = load_dataset("""ashraq/esc50""" )
SCREAMING_SNAKE_CASE__ = dataset["""train"""]["""audio"""][-1]["""array"""]
SCREAMING_SNAKE_CASE__ = audio_classifier(__A , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__A ) , [
{"""score""": 0.9_9_9, """label""": """Sound of a dog"""},
{"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""},
] , )
SCREAMING_SNAKE_CASE__ = audio_classifier([audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] )
self.assertEqual(
nested_simplify(__A ) , [
[
{"""score""": 0.9_9_9, """label""": """Sound of a dog"""},
{"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""},
],
]
* 5 , )
SCREAMING_SNAKE_CASE__ = audio_classifier(
[audio] * 5 , candidate_labels=["""Sound of a dog""", """Sound of vaccum cleaner"""] , batch_size=5 )
self.assertEqual(
nested_simplify(__A ) , [
[
{"""score""": 0.9_9_9, """label""": """Sound of a dog"""},
{"""score""": 0.0_0_1, """label""": """Sound of vaccum cleaner"""},
],
]
* 5 , )
@unittest.skip("""No models are available in TF""" )
def _snake_case ( self :str ) -> Optional[int]:
"""simple docstring"""
pass | 702 |
from argparse import ArgumentParser
from datasets.commands.convert import ConvertCommand
from datasets.commands.dummy_data import DummyDataCommand
from datasets.commands.env import EnvironmentCommand
from datasets.commands.run_beam import RunBeamCommand
from datasets.commands.test import TestCommand
from datasets.utils.logging import set_verbosity_info
def SCREAMING_SNAKE_CASE__ ( UpperCamelCase__: Any ):
return {key.lstrip("""-""" ): value for key, value in zip(unknown_args[::2] , unknown_args[1::2] )}
def SCREAMING_SNAKE_CASE__ ( ):
SCREAMING_SNAKE_CASE__ = ArgumentParser(
"""HuggingFace Datasets CLI tool""" , usage="""datasets-cli <command> [<args>]""" , allow_abbrev=UpperCamelCase__ )
SCREAMING_SNAKE_CASE__ = parser.add_subparsers(help="""datasets-cli command helpers""" )
set_verbosity_info()
# Register commands
ConvertCommand.register_subcommand(UpperCamelCase__ )
EnvironmentCommand.register_subcommand(UpperCamelCase__ )
TestCommand.register_subcommand(UpperCamelCase__ )
RunBeamCommand.register_subcommand(UpperCamelCase__ )
DummyDataCommand.register_subcommand(UpperCamelCase__ )
# Parse args
SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = parser.parse_known_args()
if not hasattr(UpperCamelCase__ , """func""" ):
parser.print_help()
exit(1 )
SCREAMING_SNAKE_CASE__ = parse_unknown_args(UpperCamelCase__ )
# Run
SCREAMING_SNAKE_CASE__ = args.func(UpperCamelCase__ , **UpperCamelCase__ )
service.run()
if __name__ == "__main__":
main() | 59 | 0 |
"""simple docstring"""
import argparse
import collections
import json
import os
import re
import string
import sys
import numpy as np
a :Union[str, Any] = re.compile(r"\b(a|an|the)\b", re.UNICODE)
a :List[str] = None
def _lowercase ( ) -> List[str]:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = argparse.ArgumentParser("""Official evaluation script for SQuAD version 2.0.""" )
parser.add_argument("""data_file""" , metavar="""data.json""" , help="""Input data JSON file.""" )
parser.add_argument("""pred_file""" , metavar="""pred.json""" , help="""Model predictions.""" )
parser.add_argument(
"""--out-file""" , """-o""" , metavar="""eval.json""" , help="""Write accuracy metrics to file (default is stdout).""" )
parser.add_argument(
"""--na-prob-file""" , """-n""" , metavar="""na_prob.json""" , help="""Model estimates of probability of no answer.""" )
parser.add_argument(
"""--na-prob-thresh""" , """-t""" , type=UpperCAmelCase_ , default=1.0 , help="""Predict \"\" if no-answer probability exceeds this (default = 1.0).""" , )
parser.add_argument(
"""--out-image-dir""" , """-p""" , metavar="""out_images""" , default=UpperCAmelCase_ , help="""Save precision-recall curves to directory.""" )
parser.add_argument("""--verbose""" , """-v""" , action="""store_true""" )
if len(sys.argv ) == 1:
parser.print_help()
sys.exit(1 )
return parser.parse_args()
def _lowercase ( __lowerCAmelCase ) -> Union[str, Any]:
SCREAMING_SNAKE_CASE__ : int = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
SCREAMING_SNAKE_CASE__ : Optional[int] = bool(qa["""answers"""]["""text"""] )
return qid_to_has_ans
def _lowercase ( __lowerCAmelCase ) -> Optional[Any]:
def remove_articles(__lowerCAmelCase ):
return ARTICLES_REGEX.sub(""" """ , UpperCAmelCase_ )
def white_space_fix(__lowerCAmelCase ):
return " ".join(text.split() )
def remove_punc(__lowerCAmelCase ):
SCREAMING_SNAKE_CASE__ : Any = set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(__lowerCAmelCase ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(UpperCAmelCase_ ) ) ) )
def _lowercase ( __lowerCAmelCase ) -> Tuple:
if not s:
return []
return normalize_answer(UpperCAmelCase_ ).split()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> List[str]:
return int(normalize_answer(UpperCAmelCase_ ) == normalize_answer(UpperCAmelCase_ ) )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Tuple:
SCREAMING_SNAKE_CASE__ : List[Any] = get_tokens(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : int = get_tokens(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : List[str] = collections.Counter(UpperCAmelCase_ ) & collections.Counter(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = sum(common.values() )
if len(UpperCAmelCase_ ) == 0 or len(UpperCAmelCase_ ) == 0:
# If either is no-answer, then F1 is 1 if they agree, 0 otherwise
return int(gold_toks == pred_toks )
if num_same == 0:
return 0
SCREAMING_SNAKE_CASE__ : Tuple = 1.0 * num_same / len(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : List[Any] = 1.0 * num_same / len(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = (2 * precision * recall) / (precision + recall)
return fa
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : int = {}
SCREAMING_SNAKE_CASE__ : Optional[int] = {}
for article in dataset:
for p in article["paragraphs"]:
for qa in p["qas"]:
SCREAMING_SNAKE_CASE__ : Any = qa['''id''']
SCREAMING_SNAKE_CASE__ : Tuple = [t for t in qa['''answers''']['''text'''] if normalize_answer(UpperCAmelCase_ )]
if not gold_answers:
# For unanswerable questions, only correct answer is empty string
SCREAMING_SNAKE_CASE__ : Any = ['''''']
if qid not in preds:
print(F'''Missing prediction for {qid}''' )
continue
SCREAMING_SNAKE_CASE__ : Tuple = preds[qid]
# Take max over all gold answers
SCREAMING_SNAKE_CASE__ : List[Any] = max(compute_exact(UpperCAmelCase_ , UpperCAmelCase_ ) for a in gold_answers )
SCREAMING_SNAKE_CASE__ : Optional[Any] = max(compute_fa(UpperCAmelCase_ , UpperCAmelCase_ ) for a in gold_answers )
return exact_scores, fa_scores
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Dict:
SCREAMING_SNAKE_CASE__ : int = {}
for qid, s in scores.items():
SCREAMING_SNAKE_CASE__ : Optional[int] = na_probs[qid] > na_prob_thresh
if pred_na:
SCREAMING_SNAKE_CASE__ : Tuple = float(not qid_to_has_ans[qid] )
else:
SCREAMING_SNAKE_CASE__ : int = s
return new_scores
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ) -> int:
if not qid_list:
SCREAMING_SNAKE_CASE__ : int = len(UpperCAmelCase_ )
return collections.OrderedDict(
[
("""exact""", 100.0 * sum(exact_scores.values() ) / total),
("""f1""", 100.0 * sum(fa_scores.values() ) / total),
("""total""", total),
] )
else:
SCREAMING_SNAKE_CASE__ : Any = len(UpperCAmelCase_ )
return collections.OrderedDict(
[
("""exact""", 100.0 * sum(exact_scores[k] for k in qid_list ) / total),
("""f1""", 100.0 * sum(fa_scores[k] for k in qid_list ) / total),
("""total""", total),
] )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
for k in new_eval:
SCREAMING_SNAKE_CASE__ : Tuple = new_eval[k]
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
plt.step(UpperCAmelCase_ , UpperCAmelCase_ , color="""b""" , alpha=0.2 , where="""post""" )
plt.fill_between(UpperCAmelCase_ , UpperCAmelCase_ , step="""post""" , alpha=0.2 , color="""b""" )
plt.xlabel("""Recall""" )
plt.ylabel("""Precision""" )
plt.xlim([0.0, 1.05] )
plt.ylim([0.0, 1.05] )
plt.title(UpperCAmelCase_ )
plt.savefig(UpperCAmelCase_ )
plt.clf()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ) -> int:
SCREAMING_SNAKE_CASE__ : List[Any] = sorted(UpperCAmelCase_ , key=lambda __lowerCAmelCase : na_probs[k] )
SCREAMING_SNAKE_CASE__ : Dict = 0.0
SCREAMING_SNAKE_CASE__ : Optional[Any] = 1.0
SCREAMING_SNAKE_CASE__ : List[Any] = 0.0
SCREAMING_SNAKE_CASE__ : Tuple = [1.0]
SCREAMING_SNAKE_CASE__ : List[str] = [0.0]
SCREAMING_SNAKE_CASE__ : Optional[int] = 0.0
for i, qid in enumerate(UpperCAmelCase_ ):
if qid_to_has_ans[qid]:
true_pos += scores[qid]
SCREAMING_SNAKE_CASE__ : List[str] = true_pos / float(i + 1 )
SCREAMING_SNAKE_CASE__ : Tuple = true_pos / float(UpperCAmelCase_ )
if i == len(UpperCAmelCase_ ) - 1 or na_probs[qid] != na_probs[qid_list[i + 1]]:
# i.e., if we can put a threshold after this point
avg_prec += cur_p * (cur_r - recalls[-1])
precisions.append(UpperCAmelCase_ )
recalls.append(UpperCAmelCase_ )
if out_image:
plot_pr_curve(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
return {"ap": 100.0 * avg_prec}
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
if out_image_dir and not os.path.exists(UpperCAmelCase_ ):
os.makedirs(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : List[str] = sum(1 for v in qid_to_has_ans.values() if v )
if num_true_pos == 0:
return
SCREAMING_SNAKE_CASE__ : str = make_precision_recall_eval(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , """pr_exact.png""" ) , title="""Precision-Recall curve for Exact Match score""" , )
SCREAMING_SNAKE_CASE__ : List[str] = make_precision_recall_eval(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , """pr_f1.png""" ) , title="""Precision-Recall curve for F1 score""" , )
SCREAMING_SNAKE_CASE__ : Union[str, Any] = {k: float(UpperCAmelCase_ ) for k, v in qid_to_has_ans.items()}
SCREAMING_SNAKE_CASE__ : Optional[int] = make_precision_recall_eval(
UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , out_image=os.path.join(UpperCAmelCase_ , """pr_oracle.png""" ) , title="""Oracle Precision-Recall curve (binary task of HasAns vs. NoAns)""" , )
merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , """pr_exact""" )
merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , """pr_f1""" )
merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , """pr_oracle""" )
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> str:
if not qid_list:
return
SCREAMING_SNAKE_CASE__ : Tuple = [na_probs[k] for k in qid_list]
SCREAMING_SNAKE_CASE__ : str = np.ones_like(UpperCAmelCase_ ) / float(len(UpperCAmelCase_ ) )
plt.hist(UpperCAmelCase_ , weights=UpperCAmelCase_ , bins=20 , range=(0.0, 1.0) )
plt.xlabel("""Model probability of no-answer""" )
plt.ylabel("""Proportion of dataset""" )
plt.title(F'''Histogram of no-answer probability: {name}''' )
plt.savefig(os.path.join(UpperCAmelCase_ , F'''na_prob_hist_{name}.png''' ) )
plt.clf()
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Any:
SCREAMING_SNAKE_CASE__ : Optional[int] = sum(1 for k in qid_to_has_ans if not qid_to_has_ans[k] )
SCREAMING_SNAKE_CASE__ : Optional[int] = num_no_ans
SCREAMING_SNAKE_CASE__ : List[Any] = cur_score
SCREAMING_SNAKE_CASE__ : Any = 0.0
SCREAMING_SNAKE_CASE__ : int = sorted(UpperCAmelCase_ , key=lambda __lowerCAmelCase : na_probs[k] )
for i, qid in enumerate(UpperCAmelCase_ ):
if qid not in scores:
continue
if qid_to_has_ans[qid]:
SCREAMING_SNAKE_CASE__ : List[str] = scores[qid]
else:
if preds[qid]:
SCREAMING_SNAKE_CASE__ : Union[str, Any] = -1
else:
SCREAMING_SNAKE_CASE__ : List[Any] = 0
cur_score += diff
if cur_score > best_score:
SCREAMING_SNAKE_CASE__ : Tuple = cur_score
SCREAMING_SNAKE_CASE__ : Tuple = na_probs[qid]
return 100.0 * best_score / len(UpperCAmelCase_ ), best_thresh
def _lowercase ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) -> Optional[Any]:
SCREAMING_SNAKE_CASE__ : Any = find_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : List[Any] = find_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : List[Any] = best_exact
SCREAMING_SNAKE_CASE__ : Optional[Any] = exact_thresh
SCREAMING_SNAKE_CASE__ : Union[str, Any] = best_fa
SCREAMING_SNAKE_CASE__ : Tuple = fa_thresh
def _lowercase ( ) -> Tuple:
with open(OPTS.data_file ) as f:
SCREAMING_SNAKE_CASE__ : Optional[int] = json.load(UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : int = dataset_json['''data''']
with open(OPTS.pred_file ) as f:
SCREAMING_SNAKE_CASE__ : Optional[Any] = json.load(UpperCAmelCase_ )
if OPTS.na_prob_file:
with open(OPTS.na_prob_file ) as f:
SCREAMING_SNAKE_CASE__ : Dict = json.load(UpperCAmelCase_ )
else:
SCREAMING_SNAKE_CASE__ : str = {k: 0.0 for k in preds}
SCREAMING_SNAKE_CASE__ : Optional[int] = make_qid_to_has_ans(UpperCAmelCase_ ) # maps qid to True/False
SCREAMING_SNAKE_CASE__ : int = [k for k, v in qid_to_has_ans.items() if v]
SCREAMING_SNAKE_CASE__ : str = [k for k, v in qid_to_has_ans.items() if not v]
SCREAMING_SNAKE_CASE__ : Any = get_raw_scores(UpperCAmelCase_ , UpperCAmelCase_ )
SCREAMING_SNAKE_CASE__ : List[str] = apply_no_ans_threshold(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.na_prob_thresh )
SCREAMING_SNAKE_CASE__ : int = apply_no_ans_threshold(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.na_prob_thresh )
SCREAMING_SNAKE_CASE__ : int = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ )
if has_ans_qids:
SCREAMING_SNAKE_CASE__ : List[Any] = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ , qid_list=UpperCAmelCase_ )
merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , """HasAns""" )
if no_ans_qids:
SCREAMING_SNAKE_CASE__ : List[str] = make_eval_dict(UpperCAmelCase_ , UpperCAmelCase_ , qid_list=UpperCAmelCase_ )
merge_eval(UpperCAmelCase_ , UpperCAmelCase_ , """NoAns""" )
if OPTS.na_prob_file:
find_all_best_thresh(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )
if OPTS.na_prob_file and OPTS.out_image_dir:
run_precision_recall_analysis(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir )
histogram_na_prob(UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir , """hasAns""" )
histogram_na_prob(UpperCAmelCase_ , UpperCAmelCase_ , OPTS.out_image_dir , """noAns""" )
if OPTS.out_file:
with open(OPTS.out_file , """w""" ) as f:
json.dump(UpperCAmelCase_ , UpperCAmelCase_ )
else:
print(json.dumps(UpperCAmelCase_ , indent=2 ) )
if __name__ == "__main__":
a :List[Any] = parse_args()
if OPTS.out_image_dir:
import matplotlib
matplotlib.use("Agg")
import matplotlib.pyplot as plt
main()
| 680 |
import argparse
import json
from tqdm import tqdm
def UpperCamelCase__ ( ) -> Union[str, Any]:
'''simple docstring'''
_lowercase : int = argparse.ArgumentParser()
# Required parameters
parser.add_argument(
'''--src_path''' , type=UpperCAmelCase_ , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , )
parser.add_argument(
'''--evaluation_set''' , type=UpperCAmelCase_ , help='''where to store parsed evaluation_set file''' , )
parser.add_argument(
'''--gold_data_path''' , type=UpperCAmelCase_ , help='''where to store parsed gold_data_path file''' , )
_lowercase : Dict = parser.parse_args()
with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open(
args.gold_data_path , '''w''' ) as gold_file:
_lowercase : str = json.load(UpperCAmelCase_ )
for dpr_record in tqdm(UpperCAmelCase_ ):
_lowercase : Optional[Any] = dpr_record['''question''']
_lowercase : Union[str, Any] = [context['''title'''] for context in dpr_record['''positive_ctxs''']]
eval_file.write(question + '''\n''' )
gold_file.write('''\t'''.join(UpperCAmelCase_ ) + '''\n''' )
if __name__ == "__main__":
main() | 322 | 0 |
"""simple docstring"""
import warnings
from ...utils import logging
from .image_processing_deformable_detr import DeformableDetrImageProcessor
__lowerCamelCase = logging.get_logger(__name__)
class _lowercase ( __UpperCAmelCase ):
def __init__( self , *UpperCamelCase_ , **UpperCamelCase_ ):
warnings.warn(
'''The class DeformableDetrFeatureExtractor is deprecated and will be removed in version 5 of Transformers.'''
''' Please use DeformableDetrImageProcessor instead.''' , UpperCamelCase_ , )
super().__init__(*UpperCamelCase_ , **UpperCamelCase_ )
| 190 |
"""simple docstring"""
from __future__ import annotations
from random import choice
def lowercase ( __UpperCamelCase ) -> Any:
return choice(__UpperCamelCase )
def lowercase ( __UpperCamelCase , __UpperCamelCase ) -> int:
__magic_name__ = random_pivot(__UpperCamelCase )
# partition based on pivot
# linear time
__magic_name__ = [e for e in lst if e < pivot]
__magic_name__ = [e for e in lst if e > pivot]
# if we get lucky, pivot might be the element we want.
# we can easily see this:
# small (elements smaller than k)
# + pivot (kth element)
# + big (elements larger than k)
if len(__UpperCamelCase ) == k - 1:
return pivot
# pivot is in elements bigger than k
elif len(__UpperCamelCase ) < k - 1:
return kth_number(__UpperCamelCase , k - len(__UpperCamelCase ) - 1 )
# pivot is in elements smaller than k
else:
return kth_number(__UpperCamelCase , __UpperCamelCase )
if __name__ == "__main__":
import doctest
doctest.testmod()
| 190 | 1 |
import builtins
import sys
from ...utils.imports import _is_package_available
from . import cursor, input
from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor
from .keymap import KEYMAP
snake_case__ : Any = False
try:
snake_case__ : Dict = _is_package_available("""google.colab""")
except ModuleNotFoundError:
pass
@input.register
class _A :
'''simple docstring'''
def __init__( self : List[str] , lowerCamelCase : str = None , lowerCamelCase : list = [] ):
'''simple docstring'''
__lowercase = 0
__lowercase = choices
__lowercase = prompt
if sys.platform == "win32":
__lowercase = "*"
else:
__lowercase = "➔ "
def _snake_case ( self : Dict , lowerCamelCase : Union[str, Any] , lowerCamelCase : str = "" ):
'''simple docstring'''
if sys.platform != "win32":
writeColor(self.choices[index] , 32 , lowerCamelCase )
else:
forceWrite(self.choices[index] , lowerCamelCase )
def _snake_case ( self : Any , lowerCamelCase : int ):
'''simple docstring'''
if index == self.position:
forceWrite(f""" {self.arrow_char} """ )
self.write_choice(lowerCamelCase )
else:
forceWrite(f""" {self.choices[index]}""" )
reset_cursor()
def _snake_case ( self : int , lowerCamelCase : Direction , lowerCamelCase : int = 1 ):
'''simple docstring'''
__lowercase = self.position
if direction == Direction.DOWN:
if self.position + 1 >= len(self.choices ):
return
self.position += num_spaces
else:
if self.position - 1 < 0:
return
self.position -= num_spaces
clear_line()
self.print_choice(lowerCamelCase )
move_cursor(lowerCamelCase , direction.name )
self.print_choice(self.position )
@input.mark(KEYMAP["up"] )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
self.move_direction(Direction.UP )
@input.mark(KEYMAP["down"] )
def _snake_case ( self : int ):
'''simple docstring'''
self.move_direction(Direction.DOWN )
@input.mark(KEYMAP["newline"] )
def _snake_case ( self : Optional[int] ):
'''simple docstring'''
move_cursor(len(self.choices ) - self.position , "DOWN" )
return self.position
@input.mark(KEYMAP["interrupt"] )
def _snake_case ( self : Union[str, Any] ):
'''simple docstring'''
move_cursor(len(self.choices ) - self.position , "DOWN" )
raise KeyboardInterrupt
@input.mark_multiple(*[KEYMAP[str(lowerCamelCase )] for number in range(10 )] )
def _snake_case ( self : Optional[Any] ):
'''simple docstring'''
__lowercase = int(chr(self.current_selection ) )
__lowercase = index - self.position
if index == self.position:
return
if index < len(self.choices ):
if self.position > index:
self.move_direction(Direction.UP , -movement )
elif self.position < index:
self.move_direction(Direction.DOWN , lowerCamelCase )
else:
return
else:
return
def _snake_case ( self : str , lowerCamelCase : int = 0 ):
'''simple docstring'''
if self.prompt:
linebreak()
forceWrite(self.prompt , "\n" )
if in_colab:
forceWrite("Please input a choice index (starting from 0), and press enter" , "\n" )
else:
forceWrite("Please select a choice using the arrow or number keys, and selecting with enter" , "\n" )
__lowercase = default_choice
for i in range(len(self.choices ) ):
self.print_choice(lowerCamelCase )
forceWrite("\n" )
move_cursor(len(self.choices ) - self.position , "UP" )
with cursor.hide():
while True:
if in_colab:
try:
__lowercase = int(builtins.input() )
except ValueError:
__lowercase = default_choice
else:
__lowercase = self.handle_input()
if choice is not None:
reset_cursor()
for _ in range(len(self.choices ) + 1 ):
move_cursor(1 , "UP" )
clear_line()
self.write_choice(lowerCamelCase , "\n" )
return choice
| 402 |
from math import sqrt
def snake_case_ ( _SCREAMING_SNAKE_CASE ):
if 1 < number < 4:
# 2 and 3 are primes
return True
elif number < 2 or number % 2 == 0 or number % 3 == 0:
# Negatives, 0, 1, all even numbers, all multiples of 3 are not primes
return False
# All primes number are in format of 6k +/- 1
for i in range(5 , int(sqrt(_SCREAMING_SNAKE_CASE ) + 1 ) , 6 ):
if number % i == 0 or number % (i + 2) == 0:
return False
return True
def snake_case_ ( _SCREAMING_SNAKE_CASE = 1_0_0_0_1 ):
__lowercase = 0
__lowercase = 1
while count != nth and number < 3:
number += 1
if is_prime(_SCREAMING_SNAKE_CASE ):
count += 1
while count != nth:
number += 2
if is_prime(_SCREAMING_SNAKE_CASE ):
count += 1
return number
if __name__ == "__main__":
print(F'''{solution() = }''')
| 402 | 1 |
import argparse
import re
from typing import Dict
import torch
from datasets import Audio, Dataset, load_dataset, load_metric
from transformers import AutoFeatureExtractor, pipeline
def A ( lowercase , lowercase ) -> int:
'''simple docstring'''
UpperCamelCase = args.log_outputs
UpperCamelCase = '_'.join(args.dataset.split('/' ) + [args.config, args.split] )
# load metric
UpperCamelCase = load_metric('wer' )
UpperCamelCase = load_metric('cer' )
# compute metrics
UpperCamelCase = wer.compute(references=result['target'] , predictions=result['prediction'] )
UpperCamelCase = cer.compute(references=result['target'] , predictions=result['prediction'] )
# print & log results
UpperCamelCase = f'''WER: {wer_result}\nCER: {cer_result}'''
print(lowercase )
with open(f'''{dataset_id}_eval_results.txt''' , 'w' ) as f:
f.write(lowercase )
# log all results in text file. Possibly interesting for analysis
if log_outputs is not None:
UpperCamelCase = f'''log_{dataset_id}_predictions.txt'''
UpperCamelCase = f'''log_{dataset_id}_targets.txt'''
with open(lowercase , 'w' ) as p, open(lowercase , 'w' ) as t:
# mapping function to write output
def write_to_file(lowercase , lowercase ):
p.write(f'''{i}''' + '\n' )
p.write(batch['prediction'] + '\n' )
t.write(f'''{i}''' + '\n' )
t.write(batch['target'] + '\n' )
result.map(lowercase , with_indices=lowercase )
def A ( lowercase ) -> str:
'''simple docstring'''
UpperCamelCase = '[,?.!\-\;\:"“%‘”�—’…–]' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training
UpperCamelCase = re.sub(lowercase , '' , text.lower() )
# In addition, we can normalize the target text, e.g. removing new lines characters etc...
# note that order is important here!
UpperCamelCase = ['\n\n', '\n', ' ', ' ']
for t in token_sequences_to_ignore:
UpperCamelCase = ' '.join(text.split(lowercase ) )
return text
def A ( lowercase ) -> Dict:
'''simple docstring'''
UpperCamelCase = load_dataset(args.dataset , args.config , split=args.split , use_auth_token=lowercase )
# for testing: only process the first two examples as a test
# dataset = dataset.select(range(10))
# load processor
UpperCamelCase = AutoFeatureExtractor.from_pretrained(args.model_id )
UpperCamelCase = feature_extractor.sampling_rate
# resample audio
UpperCamelCase = dataset.cast_column('audio' , Audio(sampling_rate=lowercase ) )
# load eval pipeline
if args.device is None:
UpperCamelCase = 0 if torch.cuda.is_available() else -1
UpperCamelCase = pipeline('automatic-speech-recognition' , model=args.model_id , device=args.device )
# map function to decode audio
def map_to_pred(lowercase ):
UpperCamelCase = asr(
batch['audio']['array'] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s )
UpperCamelCase = prediction['text']
UpperCamelCase = normalize_text(batch['sentence'] )
return batch
# run inference on all examples
UpperCamelCase = dataset.map(lowercase , remove_columns=dataset.column_names )
# compute and log_results
# do not change function below
log_results(lowercase , lowercase )
if __name__ == "__main__":
_UpperCAmelCase : Optional[int] = argparse.ArgumentParser()
parser.add_argument(
"--model_id", type=str, required=True, help="Model identifier. Should be loadable with 🤗 Transformers"
)
parser.add_argument(
"--dataset",
type=str,
required=True,
help="Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets",
)
parser.add_argument(
"--config", type=str, required=True, help="Config of the dataset. *E.g.* `'en'` for Common Voice"
)
parser.add_argument("--split", type=str, required=True, help="Split of the dataset. *E.g.* `'test'`")
parser.add_argument(
"--chunk_length_s", type=float, default=None, help="Chunk length in seconds. Defaults to 5 seconds."
)
parser.add_argument(
"--stride_length_s", type=float, default=None, help="Stride of the audio chunks. Defaults to 1 second."
)
parser.add_argument(
"--log_outputs", action="store_true", help="If defined, write outputs to log file for analysis."
)
parser.add_argument(
"--device",
type=int,
default=None,
help="The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.",
)
_UpperCAmelCase : Any = parser.parse_args()
main(args)
| 3 |
from collections import OrderedDict
from typing import Mapping
from ...configuration_utils import PretrainedConfig
from ...onnx import OnnxConfig
from ...utils import logging
_UpperCAmelCase : Tuple = logging.get_logger(__name__)
_UpperCAmelCase : Union[str, Any] = {
"facebook/data2vec-text-base": "https://huggingface.co/data2vec/resolve/main/config.json",
}
class lowercase ( _SCREAMING_SNAKE_CASE ):
__lowercase : Dict = "data2vec-text"
def __init__( self , A_=30_522 , A_=768 , A_=12 , A_=12 , A_=3_072 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=2 , A_=0.02 , A_=1e-12 , A_=1 , A_=0 , A_=2 , A_="absolute" , A_=True , A_=None , **A_ , ) -> Any:
"""simple docstring"""
super().__init__(pad_token_id=A_ , bos_token_id=A_ , eos_token_id=A_ , **A_ )
UpperCamelCase = vocab_size
UpperCamelCase = hidden_size
UpperCamelCase = num_hidden_layers
UpperCamelCase = num_attention_heads
UpperCamelCase = hidden_act
UpperCamelCase = intermediate_size
UpperCamelCase = hidden_dropout_prob
UpperCamelCase = attention_probs_dropout_prob
UpperCamelCase = max_position_embeddings
UpperCamelCase = type_vocab_size
UpperCamelCase = initializer_range
UpperCamelCase = layer_norm_eps
UpperCamelCase = position_embedding_type
UpperCamelCase = use_cache
UpperCamelCase = classifier_dropout
class lowercase ( _SCREAMING_SNAKE_CASE ):
@property
def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]:
"""simple docstring"""
if self.task == "multiple-choice":
UpperCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'}
else:
UpperCamelCase = {0: 'batch', 1: 'sequence'}
return OrderedDict(
[
('input_ids', dynamic_axis),
('attention_mask', dynamic_axis),
] )
| 3 | 1 |
import json
import os
import unittest
from transformers.models.xlm.tokenization_xlm import VOCAB_FILES_NAMES, XLMTokenizer
from transformers.testing_utils import slow
from ...test_tokenization_common import TokenizerTesterMixin
class _lowerCamelCase ( UpperCamelCase_ , unittest.TestCase ):
__a = XLMTokenizer
__a = False
def UpperCamelCase_ ( self ) -> str:
super().setUp()
# Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt
SCREAMING_SNAKE_CASE__: List[Any]= [
'''l''',
'''o''',
'''w''',
'''e''',
'''r''',
'''s''',
'''t''',
'''i''',
'''d''',
'''n''',
'''w</w>''',
'''r</w>''',
'''t</w>''',
'''lo''',
'''low''',
'''er</w>''',
'''low</w>''',
'''lowest</w>''',
'''newer</w>''',
'''wider</w>''',
'''<unk>''',
]
SCREAMING_SNAKE_CASE__: Tuple= dict(zip(lowerCAmelCase , range(len(lowerCAmelCase ) ) ) )
SCREAMING_SNAKE_CASE__: Union[str, Any]= ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', '''''']
SCREAMING_SNAKE_CASE__: List[Any]= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] )
SCREAMING_SNAKE_CASE__: List[Any]= os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] )
with open(self.vocab_file , '''w''' ) as fp:
fp.write(json.dumps(lowerCAmelCase ) )
with open(self.merges_file , '''w''' ) as fp:
fp.write('''\n'''.join(lowerCAmelCase ) )
def UpperCamelCase_ ( self , lowerCAmelCase ) -> Any:
SCREAMING_SNAKE_CASE__: Optional[Any]= '''lower newer'''
SCREAMING_SNAKE_CASE__: Any= '''lower newer'''
return input_text, output_text
def UpperCamelCase_ ( self ) -> Optional[int]:
SCREAMING_SNAKE_CASE__: Optional[int]= XLMTokenizer(self.vocab_file , self.merges_file )
SCREAMING_SNAKE_CASE__: Tuple= '''lower'''
SCREAMING_SNAKE_CASE__: Optional[Any]= ['''low''', '''er</w>''']
SCREAMING_SNAKE_CASE__: Any= tokenizer.tokenize(lowerCAmelCase )
self.assertListEqual(lowerCAmelCase , lowerCAmelCase )
SCREAMING_SNAKE_CASE__: int= tokens + ['''<unk>''']
SCREAMING_SNAKE_CASE__: str= [14, 15, 20]
self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase ) , lowerCAmelCase )
@slow
def UpperCamelCase_ ( self ) -> Optional[int]:
SCREAMING_SNAKE_CASE__: Optional[int]= XLMTokenizer.from_pretrained('''xlm-mlm-en-2048''' )
SCREAMING_SNAKE_CASE__: Tuple= tokenizer.encode('''sequence builders''' , add_special_tokens=lowerCAmelCase )
SCREAMING_SNAKE_CASE__: str= tokenizer.encode('''multi-sequence build''' , add_special_tokens=lowerCAmelCase )
SCREAMING_SNAKE_CASE__: Union[str, Any]= tokenizer.build_inputs_with_special_tokens(lowerCAmelCase )
SCREAMING_SNAKE_CASE__: str= tokenizer.build_inputs_with_special_tokens(lowerCAmelCase , lowerCAmelCase )
assert encoded_sentence == [0] + text + [1]
assert encoded_pair == [0] + text + [1] + text_a + [1]
| 64 |
import re
import string
from collections import Counter
import sacrebleu
import sacremoses
from packaging import version
import datasets
UpperCAmelCase : Optional[Any] = """
@inproceedings{xu-etal-2016-optimizing,
title = {Optimizing Statistical Machine Translation for Text Simplification},
authors={Xu, Wei and Napoles, Courtney and Pavlick, Ellie and Chen, Quanze and Callison-Burch, Chris},
journal = {Transactions of the Association for Computational Linguistics},
volume = {4},
year={2016},
url = {https://www.aclweb.org/anthology/Q16-1029},
pages = {401--415
},
@inproceedings{post-2018-call,
title = \"A Call for Clarity in Reporting {BLEU} Scores\",
author = \"Post, Matt\",
booktitle = \"Proceedings of the Third Conference on Machine Translation: Research Papers\",
month = oct,
year = \"2018\",
address = \"Belgium, Brussels\",
publisher = \"Association for Computational Linguistics\",
url = \"https://www.aclweb.org/anthology/W18-6319\",
pages = \"186--191\",
}
"""
UpperCAmelCase : Any = """\
WIKI_SPLIT is the combination of three metrics SARI, EXACT and SACREBLEU
It can be used to evaluate the quality of machine-generated texts.
"""
UpperCAmelCase : Union[str, Any] = """
Calculates sari score (between 0 and 100) given a list of source and predicted
sentences, and a list of lists of reference sentences. It also computes the BLEU score as well as the exact match score.
Args:
sources: list of source sentences where each sentence should be a string.
predictions: list of predicted sentences where each sentence should be a string.
references: list of lists of reference sentences where each sentence should be a string.
Returns:
sari: sari score
sacrebleu: sacrebleu score
exact: exact score
Examples:
>>> sources=[\"About 95 species are currently accepted .\"]
>>> predictions=[\"About 95 you now get in .\"]
>>> references=[[\"About 95 species are currently known .\"]]
>>> wiki_split = datasets.load_metric(\"wiki_split\")
>>> results = wiki_split.compute(sources=sources, predictions=predictions, references=references)
>>> print(results)
{'sari': 21.805555555555557, 'sacrebleu': 14.535768424205482, 'exact': 0.0}
"""
def _A ( SCREAMING_SNAKE_CASE : str ):
"""simple docstring"""
def remove_articles(SCREAMING_SNAKE_CASE : Optional[Any] ):
a__ : Any =re.compile(r"\b(a|an|the)\b" , re.UNICODE )
return re.sub(SCREAMING_SNAKE_CASE , " " , SCREAMING_SNAKE_CASE )
def white_space_fix(SCREAMING_SNAKE_CASE : Optional[Any] ):
return " ".join(text.split() )
def remove_punc(SCREAMING_SNAKE_CASE : List[Any] ):
a__ : List[Any] =set(string.punctuation )
return "".join(ch for ch in text if ch not in exclude )
def lower(SCREAMING_SNAKE_CASE : Union[str, Any] ):
return text.lower()
return white_space_fix(remove_articles(remove_punc(lower(SCREAMING_SNAKE_CASE ) ) ) )
def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Union[str, Any] ):
"""simple docstring"""
return int(normalize_answer(SCREAMING_SNAKE_CASE ) == normalize_answer(SCREAMING_SNAKE_CASE ) )
def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] ):
"""simple docstring"""
a__ : Any =[any(compute_exact(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for ref in refs ) for pred, refs in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )]
return (sum(SCREAMING_SNAKE_CASE ) / len(SCREAMING_SNAKE_CASE )) * 100
def _A ( SCREAMING_SNAKE_CASE : Dict , SCREAMING_SNAKE_CASE : Optional[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ):
"""simple docstring"""
a__ : str =[rgram for rgrams in rgramslist for rgram in rgrams]
a__ : List[str] =Counter(SCREAMING_SNAKE_CASE )
a__ : List[Any] =Counter(SCREAMING_SNAKE_CASE )
a__ : Any =Counter()
for sgram, scount in sgramcounter.items():
a__ : List[str] =scount * numref
a__ : List[str] =Counter(SCREAMING_SNAKE_CASE )
a__ : Optional[Any] =Counter()
for cgram, ccount in cgramcounter.items():
a__ : int =ccount * numref
# KEEP
a__ : Any =sgramcounter_rep & cgramcounter_rep
a__ : List[str] =keepgramcounter_rep & rgramcounter
a__ : str =sgramcounter_rep & rgramcounter
a__ : Optional[int] =0
a__ : List[Any] =0
for keepgram in keepgramcountergood_rep:
keeptmpscorea += keepgramcountergood_rep[keepgram] / keepgramcounter_rep[keepgram]
# Fix an alleged bug [2] in the keep score computation.
# keeptmpscore2 += keepgramcountergood_rep[keepgram] / keepgramcounterall_rep[keepgram]
keeptmpscorea += keepgramcountergood_rep[keepgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
a__ : Tuple =1
a__ : Dict =1
if len(SCREAMING_SNAKE_CASE ) > 0:
a__ : List[str] =keeptmpscorea / len(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
# Fix an alleged bug [2] in the keep score computation.
# keepscore_recall = keeptmpscore2 / len(keepgramcounterall_rep)
a__ : int =keeptmpscorea / sum(keepgramcounterall_rep.values() )
a__ : Tuple =0
if keepscore_precision > 0 or keepscore_recall > 0:
a__ : Any =2 * keepscore_precision * keepscore_recall / (keepscore_precision + keepscore_recall)
# DELETION
a__ : Optional[Any] =sgramcounter_rep - cgramcounter_rep
a__ : Optional[Any] =delgramcounter_rep - rgramcounter
a__ : Optional[int] =sgramcounter_rep - rgramcounter
a__ : int =0
a__ : Dict =0
for delgram in delgramcountergood_rep:
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounter_rep[delgram]
deltmpscorea += delgramcountergood_rep[delgram] / delgramcounterall_rep[delgram]
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
a__ : Any =1
if len(SCREAMING_SNAKE_CASE ) > 0:
a__ : Optional[Any] =deltmpscorea / len(SCREAMING_SNAKE_CASE )
# ADDITION
a__ : Union[str, Any] =set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE )
a__ : List[Any] =set(SCREAMING_SNAKE_CASE ) & set(SCREAMING_SNAKE_CASE )
a__ : Tuple =set(SCREAMING_SNAKE_CASE ) - set(SCREAMING_SNAKE_CASE )
a__ : Any =0
for addgram in addgramcountergood:
addtmpscore += 1
# Define 0/0=1 instead of 0 to give higher scores for predictions that match
# a target exactly.
a__ : int =1
a__ : Dict =1
if len(SCREAMING_SNAKE_CASE ) > 0:
a__ : Optional[int] =addtmpscore / len(SCREAMING_SNAKE_CASE )
if len(SCREAMING_SNAKE_CASE ) > 0:
a__ : List[str] =addtmpscore / len(SCREAMING_SNAKE_CASE )
a__ : List[str] =0
if addscore_precision > 0 or addscore_recall > 0:
a__ : Optional[Any] =2 * addscore_precision * addscore_recall / (addscore_precision + addscore_recall)
return (keepscore, delscore_precision, addscore)
def _A ( SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple ):
"""simple docstring"""
a__ : int =len(SCREAMING_SNAKE_CASE )
a__ : Tuple =ssent.split(" " )
a__ : str =csent.split(" " )
a__ : List[Any] =[]
a__ : int =[]
a__ : List[Any] =[]
a__ : Any =[]
a__ : List[Any] =[]
a__ : Any =[]
a__ : Union[str, Any] =[]
a__ : Union[str, Any] =[]
a__ : Union[str, Any] =[]
a__ : Tuple =[]
for rsent in rsents:
a__ : Optional[int] =rsent.split(" " )
a__ : Tuple =[]
a__ : Tuple =[]
a__ : int =[]
ragramslist.append(SCREAMING_SNAKE_CASE )
for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(SCREAMING_SNAKE_CASE ) - 1:
a__ : Union[str, Any] =ragrams[i] + " " + ragrams[i + 1]
ragrams.append(SCREAMING_SNAKE_CASE )
if i < len(SCREAMING_SNAKE_CASE ) - 2:
a__ : Optional[int] =ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2]
ragrams.append(SCREAMING_SNAKE_CASE )
if i < len(SCREAMING_SNAKE_CASE ) - 3:
a__ : List[Any] =ragrams[i] + " " + ragrams[i + 1] + " " + ragrams[i + 2] + " " + ragrams[i + 3]
ragrams.append(SCREAMING_SNAKE_CASE )
ragramslist.append(SCREAMING_SNAKE_CASE )
ragramslist.append(SCREAMING_SNAKE_CASE )
ragramslist.append(SCREAMING_SNAKE_CASE )
for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(SCREAMING_SNAKE_CASE ) - 1:
a__ : str =sagrams[i] + " " + sagrams[i + 1]
sagrams.append(SCREAMING_SNAKE_CASE )
if i < len(SCREAMING_SNAKE_CASE ) - 2:
a__ : Dict =sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2]
sagrams.append(SCREAMING_SNAKE_CASE )
if i < len(SCREAMING_SNAKE_CASE ) - 3:
a__ : Any =sagrams[i] + " " + sagrams[i + 1] + " " + sagrams[i + 2] + " " + sagrams[i + 3]
sagrams.append(SCREAMING_SNAKE_CASE )
for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 ):
if i < len(SCREAMING_SNAKE_CASE ) - 1:
a__ : List[Any] =cagrams[i] + " " + cagrams[i + 1]
cagrams.append(SCREAMING_SNAKE_CASE )
if i < len(SCREAMING_SNAKE_CASE ) - 2:
a__ : List[str] =cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2]
cagrams.append(SCREAMING_SNAKE_CASE )
if i < len(SCREAMING_SNAKE_CASE ) - 3:
a__ : Optional[int] =cagrams[i] + " " + cagrams[i + 1] + " " + cagrams[i + 2] + " " + cagrams[i + 3]
cagrams.append(SCREAMING_SNAKE_CASE )
((a__) , (a__) , (a__)) : Optional[Any] =SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
((a__) , (a__) , (a__)) : Dict =SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
((a__) , (a__) , (a__)) : List[str] =SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
((a__) , (a__) , (a__)) : Dict =SARIngram(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )
a__ : Tuple =sum([keepascore, keepascore, keepascore, keepascore] ) / 4
a__ : Tuple =sum([delascore, delascore, delascore, delascore] ) / 4
a__ : int =sum([addascore, addascore, addascore, addascore] ) / 4
a__ : Optional[int] =(avgkeepscore + avgdelscore + avgaddscore) / 3
return finalscore
def _A ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : bool = True , SCREAMING_SNAKE_CASE : str = "13a" , SCREAMING_SNAKE_CASE : bool = True ):
"""simple docstring"""
if lowercase:
a__ : Optional[int] =sentence.lower()
if tokenizer in ["13a", "intl"]:
if version.parse(sacrebleu.__version__ ).major >= 2:
a__ : Any =sacrebleu.metrics.bleu._get_tokenizer(SCREAMING_SNAKE_CASE )()(SCREAMING_SNAKE_CASE )
else:
a__ : Any =sacrebleu.TOKENIZERS[tokenizer]()(SCREAMING_SNAKE_CASE )
elif tokenizer == "moses":
a__ : Dict =sacremoses.MosesTokenizer().tokenize(SCREAMING_SNAKE_CASE , return_str=SCREAMING_SNAKE_CASE , escape=SCREAMING_SNAKE_CASE )
elif tokenizer == "penn":
a__ : Optional[int] =sacremoses.MosesTokenizer().penn_tokenize(SCREAMING_SNAKE_CASE , return_str=SCREAMING_SNAKE_CASE )
else:
a__ : Dict =sentence
if not return_str:
a__ : List[Any] =normalized_sent.split()
return normalized_sent
def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Optional[Any] ):
"""simple docstring"""
if not (len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE )):
raise ValueError("Sources length must match predictions and references lengths." )
a__ : Dict =0
for src, pred, refs in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ):
sari_score += SARIsent(normalize(SCREAMING_SNAKE_CASE ) , normalize(SCREAMING_SNAKE_CASE ) , [normalize(SCREAMING_SNAKE_CASE ) for sent in refs] )
a__ : Tuple =sari_score / len(SCREAMING_SNAKE_CASE )
return 100 * sari_score
def _A ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple="exp" , SCREAMING_SNAKE_CASE : Union[str, Any]=None , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : Tuple=False , ):
"""simple docstring"""
a__ : int =len(references[0] )
if any(len(SCREAMING_SNAKE_CASE ) != references_per_prediction for refs in references ):
raise ValueError("Sacrebleu requires the same number of references for each prediction" )
a__ : List[str] =[[refs[i] for refs in references] for i in range(SCREAMING_SNAKE_CASE )]
a__ : Optional[int] =sacrebleu.corpus_bleu(
SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , smooth_method=SCREAMING_SNAKE_CASE , smooth_value=SCREAMING_SNAKE_CASE , force=SCREAMING_SNAKE_CASE , lowercase=SCREAMING_SNAKE_CASE , use_effective_order=SCREAMING_SNAKE_CASE , )
return output.score
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION)
class __lowerCAmelCase ( datasets.Metric):
def _lowercase ( self ) -> Optional[Any]:
'''simple docstring'''
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"predictions": datasets.Value("string" , id="sequence" ),
"references": datasets.Sequence(datasets.Value("string" , id="sequence" ) , id="references" ),
} ) , codebase_urls=[
"https://github.com/huggingface/transformers/blob/master/src/transformers/data/metrics/squad_metrics.py",
"https://github.com/cocoxu/simplification/blob/master/SARI.py",
"https://github.com/tensorflow/tensor2tensor/blob/master/tensor2tensor/utils/sari_hook.py",
"https://github.com/mjpost/sacreBLEU",
] , reference_urls=[
"https://www.aclweb.org/anthology/Q16-1029.pdf",
"https://github.com/mjpost/sacreBLEU",
"https://en.wikipedia.org/wiki/BLEU",
"https://towardsdatascience.com/evaluating-text-output-in-nlp-bleu-at-your-own-risk-e8609665a213",
] , )
def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> Optional[Any]:
'''simple docstring'''
a__ : List[Any] ={}
result.update({"sari": compute_sari(sources=lowerCAmelCase__ , predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} )
result.update({"sacrebleu": compute_sacrebleu(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} )
result.update({"exact": compute_em(predictions=lowerCAmelCase__ , references=lowerCAmelCase__ )} )
return result
| 563 | 0 |
'''simple docstring'''
from typing import List
import jiwer
import jiwer.transforms as tr
from packaging import version
import datasets
from datasets.config import PY_VERSION
if PY_VERSION < version.parse('''3.8'''):
import importlib_metadata
else:
import importlib.metadata as importlib_metadata
__a: int = ''
if version.parse(importlib_metadata.version('''jiwer''')) < version.parse('''2.3.0'''):
class SCREAMING_SNAKE_CASE__ ( tr.AbstractTransform ):
'''simple docstring'''
def __init__( self : Dict , lowerCamelCase : int = " " ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = sentence_delimiter
def lowerCamelCase ( self : List[Any] , lowerCamelCase : Any ) -> List[Any]:
"""simple docstring"""
return list(lowerCamelCase )
def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Dict ) -> Optional[int]:
"""simple docstring"""
_UpperCAmelCase = []
for sent_idx, sentence in enumerate(lowerCamelCase ):
chars.extend(self.process_string(lowerCamelCase ) )
if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(lowerCamelCase ) - 1:
chars.append(self.sentence_delimiter )
return chars
__a: Optional[int] = tr.Compose(
[tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)]
)
else:
__a: List[Any] = tr.Compose(
[
tr.RemoveMultipleSpaces(),
tr.Strip(),
tr.ReduceToSingleSentence(SENTENCE_DELIMITER),
tr.ReduceToListOfListOfChars(),
]
)
__a: Dict = '\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n'
__a: Optional[Any] = '\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER\'s output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n'
__a: int = '\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = ["this is the prediction", "there is an other sample"]\n >>> references = ["this is the reference", "there is another one"]\n >>> cer = datasets.load_metric("cer")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n'
@datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION )
class SCREAMING_SNAKE_CASE__ ( datasets.Metric ):
'''simple docstring'''
def lowerCamelCase ( self : Dict ) -> int:
"""simple docstring"""
return datasets.MetricInfo(
description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(
{
"""predictions""": datasets.Value("""string""" , id="""sequence""" ),
"""references""": datasets.Value("""string""" , id="""sequence""" ),
} ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[
"""https://en.wikipedia.org/wiki/Word_error_rate""",
"""https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates""",
] , )
def lowerCamelCase ( self : Dict , lowerCamelCase : List[str] , lowerCamelCase : Optional[Any] , lowerCamelCase : Tuple=False ) -> Any:
"""simple docstring"""
if concatenate_texts:
return jiwer.compute_measures(
lowerCamelCase , lowerCamelCase , truth_transform=lowerCamelCase , hypothesis_transform=lowerCamelCase , )["wer"]
_UpperCAmelCase = 0
_UpperCAmelCase = 0
for prediction, reference in zip(lowerCamelCase , lowerCamelCase ):
_UpperCAmelCase = jiwer.compute_measures(
lowerCamelCase , lowerCamelCase , truth_transform=lowerCamelCase , hypothesis_transform=lowerCamelCase , )
incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"]
total += measures["substitutions"] + measures["deletions"] + measures["hits"]
return incorrect / total | 719 |
from __future__ import annotations
import unittest
from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available
from transformers.testing_utils import require_tf, require_tokenizers, slow
from transformers.utils import cached_property
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel
@require_tf
class SCREAMING_SNAKE_CASE__ :
'''simple docstring'''
_lowerCamelCase = BlenderbotSmallConfig
_lowerCamelCase = {}
_lowerCamelCase = '''gelu'''
def __init__( self : int , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=13 , lowerCamelCase : Optional[Any]=7 , lowerCamelCase : Dict=True , lowerCamelCase : List[str]=False , lowerCamelCase : List[Any]=99 , lowerCamelCase : Tuple=32 , lowerCamelCase : List[str]=2 , lowerCamelCase : Tuple=4 , lowerCamelCase : List[Any]=37 , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Optional[Any]=0.1 , lowerCamelCase : Optional[int]=20 , lowerCamelCase : Any=2 , lowerCamelCase : Union[str, Any]=1 , lowerCamelCase : int=0 , ) -> Dict:
"""simple docstring"""
_UpperCAmelCase = parent
_UpperCAmelCase = batch_size
_UpperCAmelCase = seq_length
_UpperCAmelCase = is_training
_UpperCAmelCase = use_labels
_UpperCAmelCase = vocab_size
_UpperCAmelCase = hidden_size
_UpperCAmelCase = num_hidden_layers
_UpperCAmelCase = num_attention_heads
_UpperCAmelCase = intermediate_size
_UpperCAmelCase = hidden_dropout_prob
_UpperCAmelCase = attention_probs_dropout_prob
_UpperCAmelCase = max_position_embeddings
_UpperCAmelCase = eos_token_id
_UpperCAmelCase = pad_token_id
_UpperCAmelCase = bos_token_id
def lowerCamelCase ( self : Any ) -> int:
"""simple docstring"""
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size )
_UpperCAmelCase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 )
_UpperCAmelCase = tf.concat([input_ids, eos_tensor] , axis=1 )
_UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_UpperCAmelCase = self.config_cls(
vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , )
_UpperCAmelCase = prepare_blenderbot_small_inputs_dict(lowerCamelCase , lowerCamelCase , lowerCamelCase )
return config, inputs_dict
def lowerCamelCase ( self : Union[str, Any] , lowerCamelCase : Any , lowerCamelCase : int ) -> int:
"""simple docstring"""
_UpperCAmelCase = TFBlenderbotSmallModel(config=lowerCamelCase ).get_decoder()
_UpperCAmelCase = inputs_dict["""input_ids"""]
_UpperCAmelCase = input_ids[:1, :]
_UpperCAmelCase = inputs_dict["""attention_mask"""][:1, :]
_UpperCAmelCase = inputs_dict["""head_mask"""]
_UpperCAmelCase = 1
# first forward pass
_UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , head_mask=lowerCamelCase , use_cache=lowerCamelCase )
_UpperCAmelCase , _UpperCAmelCase = outputs.to_tuple()
# create hypothetical next token and extent to next_input_ids
_UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size )
_UpperCAmelCase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta )
# append to next input_ids and
_UpperCAmelCase = tf.concat([input_ids, next_tokens] , axis=-1 )
_UpperCAmelCase = tf.concat([attention_mask, next_attn_mask] , axis=-1 )
_UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase )[0]
_UpperCAmelCase = model(lowerCamelCase , attention_mask=lowerCamelCase , past_key_values=lowerCamelCase )[0]
self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] )
# select random slice
_UpperCAmelCase = int(ids_tensor((1,) , output_from_past.shape[-1] ) )
_UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx]
_UpperCAmelCase = output_from_past[:, :, random_slice_idx]
# test that outputs are equal for slice
tf.debugging.assert_near(lowerCamelCase , lowerCamelCase , rtol=1E-3 )
def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case , __snake_case , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , __snake_case=None , ) -> int:
if attention_mask is None:
_UpperCAmelCase = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta )
if decoder_attention_mask is None:
_UpperCAmelCase = tf.concat(
[
tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ),
tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ),
] , axis=-1 , )
if head_mask is None:
_UpperCAmelCase = tf.ones((config.encoder_layers, config.encoder_attention_heads) )
if decoder_head_mask is None:
_UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
if cross_attn_head_mask is None:
_UpperCAmelCase = tf.ones((config.decoder_layers, config.decoder_attention_heads) )
return {
"input_ids": input_ids,
"decoder_input_ids": decoder_input_ids,
"attention_mask": attention_mask,
"decoder_attention_mask": decoder_attention_mask,
"head_mask": head_mask,
"decoder_head_mask": decoder_head_mask,
"cross_attn_head_mask": cross_attn_head_mask,
}
@require_tf
class SCREAMING_SNAKE_CASE__ ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase = (
(TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else ()
)
_lowerCamelCase = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else ()
_lowerCamelCase = (
{
'''conversational''': TFBlenderbotSmallForConditionalGeneration,
'''feature-extraction''': TFBlenderbotSmallModel,
'''summarization''': TFBlenderbotSmallForConditionalGeneration,
'''text2text-generation''': TFBlenderbotSmallForConditionalGeneration,
'''translation''': TFBlenderbotSmallForConditionalGeneration,
}
if is_tf_available()
else {}
)
_lowerCamelCase = True
_lowerCamelCase = False
_lowerCamelCase = False
def lowerCamelCase ( self : Optional[int] ) -> Tuple:
"""simple docstring"""
_UpperCAmelCase = TFBlenderbotSmallModelTester(self )
_UpperCAmelCase = ConfigTester(self , config_class=lowerCamelCase )
def lowerCamelCase ( self : Union[str, Any] ) -> Union[str, Any]:
"""simple docstring"""
self.config_tester.run_common_tests()
def lowerCamelCase ( self : Optional[int] ) -> List[str]:
"""simple docstring"""
_UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common()
self.model_tester.check_decoder_model_past_large_inputs(*lowerCamelCase )
@require_tokenizers
@require_tf
class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ):
'''simple docstring'''
_lowerCamelCase = [
'''Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like '''
''' i\'m going to throw up.\nand why is that?'''
]
_lowerCamelCase = '''facebook/blenderbot_small-90M'''
@cached_property
def lowerCamelCase ( self : Optional[int] ) -> Dict:
"""simple docstring"""
# use "old" tokenizer here because of bug when downloading new tokenizer
return BlenderbotSmallTokenizer.from_pretrained("""facebook/blenderbot-90M""" )
@cached_property
def lowerCamelCase ( self : Dict ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name )
return model
@slow
def lowerCamelCase ( self : List[Any] ) -> Optional[Any]:
"""simple docstring"""
_UpperCAmelCase = self.tokenizer(self.src_text , return_tensors="""tf""" )
_UpperCAmelCase = self.model.generate(
model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=lowerCamelCase , )
_UpperCAmelCase = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=lowerCamelCase )[0]
assert generated_words in (
"i don't know. i just feel like i'm going to throw up. it's not fun.",
"i'm not sure. i just feel like i've been feeling like i have to be in a certain place",
"i'm not sure. i just feel like i've been in a bad situation.",
) | 402 | 0 |
"""simple docstring"""
from ...utils import (
OptionalDependencyNotAvailable,
is_torch_available,
is_transformers_available,
is_transformers_version,
)
try:
if not (is_transformers_available() and is_torch_available()):
raise OptionalDependencyNotAvailable()
except OptionalDependencyNotAvailable:
from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline
else:
from .pipeline_kandinsky import KandinskyPipeline
from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline
from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline
from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput
from .text_encoder import MultilingualCLIP
| 231 |
"""simple docstring"""
from __future__ import annotations
import math
from collections.abc import Callable
def lowercase ( __snake_case : Callable[[int | float], int | float] , __snake_case : int | float , __snake_case : int | float , __snake_case : int = 1_0_0 , ):
lowercase_ : Any = x_start
lowercase_ : Optional[Any] = fnc(__snake_case )
lowercase_ : Any = 0.0
for _ in range(__snake_case ):
# Approximates curve as a sequence of linear lines and sums their length
lowercase_ : str = (x_end - x_start) / steps + xa
lowercase_ : Dict = fnc(__snake_case )
length += math.hypot(xa - xa , fxa - fxa )
# Increment step
lowercase_ : Optional[int] = xa
lowercase_ : Union[str, Any] = fxa
return length
if __name__ == "__main__":
def lowercase ( __snake_case : str ):
return math.sin(1_0 * x )
print('''f(x) = sin(10 * x)''')
print('''The length of the curve from x = -10 to x = 10 is:''')
__A : Optional[Any] = 10
while i <= 100_000:
print(F"""With {i} steps: {line_length(f, -10, 10, i)}""")
i *= 10
| 231 | 1 |
"""simple docstring"""
import functools
import operator
from ...configuration_utils import PretrainedConfig
from ...utils import logging
_UpperCamelCase = logging.get_logger(__name__)
_UpperCamelCase = {
'asapp/sew-tiny-100k': 'https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json',
# See all SEW models at https://huggingface.co/models?filter=sew
}
class SCREAMING_SNAKE_CASE_ ( snake_case__ ):
"""simple docstring"""
__snake_case : str = """sew"""
def __init__( self :Any , __lowercase :int=32 , __lowercase :Union[str, Any]=768 , __lowercase :List[str]=12 , __lowercase :Tuple=12 , __lowercase :List[Any]=3072 , __lowercase :Optional[Any]=2 , __lowercase :Tuple="gelu" , __lowercase :Tuple=0.1 , __lowercase :List[str]=0.1 , __lowercase :int=0.1 , __lowercase :Optional[Any]=0.0 , __lowercase :str=0.1 , __lowercase :Tuple=0.1 , __lowercase :Union[str, Any]=0.02 , __lowercase :Optional[int]=1e-5 , __lowercase :Union[str, Any]="group" , __lowercase :List[Any]="gelu" , __lowercase :int=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , __lowercase :Optional[Any]=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , __lowercase :Any=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , __lowercase :Tuple=False , __lowercase :Optional[Any]=128 , __lowercase :List[str]=16 , __lowercase :Any=True , __lowercase :Tuple=0.05 , __lowercase :Any=10 , __lowercase :Optional[Any]=2 , __lowercase :Optional[Any]=0.0 , __lowercase :Any=10 , __lowercase :Optional[Any]=0 , __lowercase :Any="mean" , __lowercase :List[Any]=False , __lowercase :List[Any]=False , __lowercase :Dict=256 , __lowercase :Optional[int]=0 , __lowercase :Optional[Any]=1 , __lowercase :List[str]=2 , **__lowercase :List[str] , ):
super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase )
__lowerCamelCase : Dict =hidden_size
__lowerCamelCase : Any =feat_extract_norm
__lowerCamelCase : str =feat_extract_activation
__lowerCamelCase : Dict =list(__lowercase )
__lowerCamelCase : Tuple =list(__lowercase )
__lowerCamelCase : int =list(__lowercase )
__lowerCamelCase : Optional[Any] =conv_bias
__lowerCamelCase : Tuple =num_conv_pos_embeddings
__lowerCamelCase : Tuple =num_conv_pos_embedding_groups
__lowerCamelCase : str =len(self.conv_dim )
__lowerCamelCase : str =num_hidden_layers
__lowerCamelCase : Optional[Any] =intermediate_size
__lowerCamelCase : str =squeeze_factor
__lowerCamelCase : Dict =hidden_act
__lowerCamelCase : List[str] =num_attention_heads
__lowerCamelCase : List[Any] =hidden_dropout
__lowerCamelCase : str =attention_dropout
__lowerCamelCase : Tuple =activation_dropout
__lowerCamelCase : int =feat_proj_dropout
__lowerCamelCase : List[str] =final_dropout
__lowerCamelCase : int =layerdrop
__lowerCamelCase : str =layer_norm_eps
__lowerCamelCase : List[Any] =initializer_range
__lowerCamelCase : Dict =vocab_size
if (
(len(self.conv_stride ) != self.num_feat_extract_layers)
or (len(self.conv_kernel ) != self.num_feat_extract_layers)
or (len(self.conv_dim ) != self.num_feat_extract_layers)
):
raise ValueError(
'''Configuration for convolutional layers is incorrect.'''
'''It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`,'''
f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)'
f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' )
# fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779
__lowerCamelCase : List[str] =apply_spec_augment
__lowerCamelCase : str =mask_time_prob
__lowerCamelCase : Optional[Any] =mask_time_length
__lowerCamelCase : List[str] =mask_time_min_masks
__lowerCamelCase : Optional[Any] =mask_feature_prob
__lowerCamelCase : Any =mask_feature_length
__lowerCamelCase : Tuple =mask_feature_min_masks
# ctc loss
__lowerCamelCase : int =ctc_loss_reduction
__lowerCamelCase : Tuple =ctc_zero_infinity
# sequence classification
__lowerCamelCase : Tuple =use_weighted_layer_sum
__lowerCamelCase : Dict =classifier_proj_size
@property
def __lowercase ( self :Dict ):
return functools.reduce(operator.mul , self.conv_stride , 1 )
| 363 |
"""simple docstring"""
import torch
from diffusers import UnCLIPScheduler
from .test_schedulers import SchedulerCommonTest
class SCREAMING_SNAKE_CASE_ ( snake_case__ ):
"""simple docstring"""
__snake_case : Optional[Any] = (UnCLIPScheduler,)
def __lowercase ( self :Any , **__lowercase :str ):
__lowerCamelCase : Optional[int] ={
'''num_train_timesteps''': 1000,
'''variance_type''': '''fixed_small_log''',
'''clip_sample''': True,
'''clip_sample_range''': 1.0,
'''prediction_type''': '''epsilon''',
}
config.update(**__lowercase )
return config
def __lowercase ( self :Tuple ):
for timesteps in [1, 5, 100, 1000]:
self.check_over_configs(num_train_timesteps=__lowercase )
def __lowercase ( self :Tuple ):
for variance in ["fixed_small_log", "learned_range"]:
self.check_over_configs(variance_type=__lowercase )
def __lowercase ( self :List[str] ):
for clip_sample in [True, False]:
self.check_over_configs(clip_sample=__lowercase )
def __lowercase ( self :List[Any] ):
for clip_sample_range in [1, 5, 10, 20]:
self.check_over_configs(clip_sample_range=__lowercase )
def __lowercase ( self :Any ):
for prediction_type in ["epsilon", "sample"]:
self.check_over_configs(prediction_type=__lowercase )
def __lowercase ( self :Union[str, Any] ):
for time_step in [0, 500, 999]:
for prev_timestep in [None, 5, 100, 250, 500, 750]:
if prev_timestep is not None and prev_timestep >= time_step:
continue
self.check_over_forward(time_step=__lowercase , prev_timestep=__lowercase )
def __lowercase ( self :Union[str, Any] ):
__lowerCamelCase : List[Any] =self.scheduler_classes[0]
__lowerCamelCase : str =self.get_scheduler_config(variance_type='''fixed_small_log''' )
__lowerCamelCase : Tuple =scheduler_class(**__lowercase )
assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0e-1_0 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0549625 ) ) < 1e-5
assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9994987 ) ) < 1e-5
def __lowercase ( self :Optional[Any] ):
__lowerCamelCase : Tuple =self.scheduler_classes[0]
__lowerCamelCase : Optional[Any] =self.get_scheduler_config(variance_type='''learned_range''' )
__lowerCamelCase : Optional[Any] =scheduler_class(**__lowercase )
__lowerCamelCase : Optional[int] =0.5
assert scheduler._get_variance(1 , predicted_variance=__lowercase ) - -10.1712790 < 1e-5
assert scheduler._get_variance(487 , predicted_variance=__lowercase ) - -5.7998052 < 1e-5
assert scheduler._get_variance(999 , predicted_variance=__lowercase ) - -0.0010011 < 1e-5
def __lowercase ( self :Optional[Any] ):
__lowerCamelCase : Any =self.scheduler_classes[0]
__lowerCamelCase : Optional[int] =self.get_scheduler_config()
__lowerCamelCase : str =scheduler_class(**__lowercase )
__lowerCamelCase : Tuple =scheduler.timesteps
__lowerCamelCase : Any =self.dummy_model()
__lowerCamelCase : Any =self.dummy_sample_deter
__lowerCamelCase : List[Any] =torch.manual_seed(0 )
for i, t in enumerate(__lowercase ):
# 1. predict noise residual
__lowerCamelCase : Tuple =model(__lowercase , __lowercase )
# 2. predict previous mean of sample x_t-1
__lowerCamelCase : List[Any] =scheduler.step(__lowercase , __lowercase , __lowercase , generator=__lowercase ).prev_sample
__lowerCamelCase : List[Any] =pred_prev_sample
__lowerCamelCase : Optional[Any] =torch.sum(torch.abs(__lowercase ) )
__lowerCamelCase : Optional[int] =torch.mean(torch.abs(__lowercase ) )
assert abs(result_sum.item() - 252.2682495 ) < 1e-2
assert abs(result_mean.item() - 0.3284743 ) < 1e-3
def __lowercase ( self :int ):
__lowerCamelCase : Optional[Any] =self.scheduler_classes[0]
__lowerCamelCase : Any =self.get_scheduler_config()
__lowerCamelCase : Optional[Any] =scheduler_class(**__lowercase )
scheduler.set_timesteps(25 )
__lowerCamelCase : Dict =scheduler.timesteps
__lowerCamelCase : List[str] =self.dummy_model()
__lowerCamelCase : List[str] =self.dummy_sample_deter
__lowerCamelCase : Any =torch.manual_seed(0 )
for i, t in enumerate(__lowercase ):
# 1. predict noise residual
__lowerCamelCase : Optional[Any] =model(__lowercase , __lowercase )
if i + 1 == timesteps.shape[0]:
__lowerCamelCase : Any =None
else:
__lowerCamelCase : Union[str, Any] =timesteps[i + 1]
# 2. predict previous mean of sample x_t-1
__lowerCamelCase : List[str] =scheduler.step(
__lowercase , __lowercase , __lowercase , prev_timestep=__lowercase , generator=__lowercase ).prev_sample
__lowerCamelCase : int =pred_prev_sample
__lowerCamelCase : List[Any] =torch.sum(torch.abs(__lowercase ) )
__lowerCamelCase : List[str] =torch.mean(torch.abs(__lowercase ) )
assert abs(result_sum.item() - 258.2044983 ) < 1e-2
assert abs(result_mean.item() - 0.3362038 ) < 1e-3
def __lowercase ( self :List[str] ):
pass
def __lowercase ( self :Tuple ):
pass
| 363 | 1 |
'''simple docstring'''
from __future__ import annotations
from random import random
class lowerCAmelCase_:
'''simple docstring'''
def __init__( self ,__UpperCAmelCase = None ) -> int:
lowerCAmelCase__ : str = value
lowerCAmelCase__ : str = random()
lowerCAmelCase__ : Node | None = None
lowerCAmelCase__ : Node | None = None
def __repr__( self ) -> str:
from pprint import pformat
if self.left is None and self.right is None:
return F"""'{self.value}: {self.prior:.5}'"""
else:
return pformat(
{F"""{self.value}: {self.prior:.5}""": (self.left, self.right)} ,indent=1 )
def __str__( self ) -> str:
lowerCAmelCase__ : Any = str(self.value ) + """ """
lowerCAmelCase__ : str = str(self.left or """""" )
lowerCAmelCase__ : Any = str(self.right or """""" )
return value + left + right
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
if root is None: # None tree is split into 2 Nones
return None, None
elif root.value is None:
return None, None
else:
if value < root.value:
lowerCAmelCase__ , lowerCAmelCase__ : Dict = split(root.left , UpperCamelCase )
return left, root
else:
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = split(root.right , UpperCamelCase )
return root, right
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
if (not left) or (not right): # If one node is None, return the other
return left or right
elif left.prior < right.prior:
lowerCAmelCase__ : Optional[int] = merge(left.right , UpperCamelCase )
return left
else:
lowerCAmelCase__ : Tuple = merge(UpperCamelCase , right.left )
return right
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ : List[Any] = Node(UpperCamelCase )
lowerCAmelCase__ , lowerCAmelCase__ : Tuple = split(UpperCamelCase , UpperCamelCase )
return merge(merge(UpperCamelCase , UpperCamelCase ) , UpperCamelCase )
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
lowerCAmelCase__ , lowerCAmelCase__ : List[str] = split(UpperCamelCase , value - 1 )
lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = split(UpperCamelCase , UpperCamelCase )
return merge(UpperCamelCase , UpperCamelCase )
def _SCREAMING_SNAKE_CASE ( UpperCamelCase ):
"""simple docstring"""
if not root: # None
return
else:
inorder(root.left )
print(root.value , end=""",""" )
inorder(root.right )
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
for arg in args.split():
if arg[0] == "+":
lowerCAmelCase__ : Dict = insert(UpperCamelCase , int(arg[1:] ) )
elif arg[0] == "-":
lowerCAmelCase__ : Optional[int] = erase(UpperCamelCase , int(arg[1:] ) )
else:
print("""Unknown command""" )
return root
def _SCREAMING_SNAKE_CASE ( ):
"""simple docstring"""
lowerCAmelCase__ : Tuple = None
print(
"""enter numbers to create a tree, + value to add value into treap, """
"""- value to erase all nodes with value. 'q' to quit. """ )
lowerCAmelCase__ : List[str] = input()
while args != "q":
lowerCAmelCase__ : str = interact_treap(UpperCamelCase , UpperCamelCase )
print(UpperCamelCase )
lowerCAmelCase__ : Tuple = input()
print("""good by!""" )
if __name__ == "__main__":
import doctest
doctest.testmod()
main()
| 565 |
'''simple docstring'''
def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ):
"""simple docstring"""
if exponent == 1:
return base
if exponent % 2 == 0:
lowerCAmelCase__ : Any = _modexpt(UpperCamelCase , exponent // 2 , UpperCamelCase ) % modulo_value
return (x * x) % modulo_value
else:
return (base * _modexpt(UpperCamelCase , exponent - 1 , UpperCamelCase )) % modulo_value
def _SCREAMING_SNAKE_CASE ( UpperCamelCase = 1777 , UpperCamelCase = 1855 , UpperCamelCase = 8 ):
"""simple docstring"""
lowerCAmelCase__ : Optional[int] = base
for _ in range(1 , UpperCamelCase ):
lowerCAmelCase__ : Optional[Any] = _modexpt(UpperCamelCase , UpperCamelCase , 10**digits )
return result
if __name__ == "__main__":
print(F"""{solution() = }""")
| 565 | 1 |
from typing import List, Optional, Union
from ...processing_utils import ProcessorMixin
from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
from ...utils import TensorType
class UpperCAmelCase__ ( snake_case ):
"""simple docstring"""
lowerCAmelCase__ : int = ['image_processor', 'tokenizer']
lowerCAmelCase__ : Tuple = 'Pix2StructImageProcessor'
lowerCAmelCase__ : List[str] = ('T5Tokenizer', 'T5TokenizerFast')
def __init__( self: str , __lowerCAmelCase: int , __lowerCAmelCase: Any ) -> Any:
'''simple docstring'''
__UpperCAmelCase = False
super().__init__(__lowerCAmelCase , __lowerCAmelCase )
def __call__( self: int , __lowerCAmelCase: Any=None , __lowerCAmelCase: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , __lowerCAmelCase: bool = True , __lowerCAmelCase: Union[bool, str, PaddingStrategy] = False , __lowerCAmelCase: Union[bool, str, TruncationStrategy] = None , __lowerCAmelCase: Optional[int] = None , __lowerCAmelCase: Optional[int] = 2_048 , __lowerCAmelCase: int = 0 , __lowerCAmelCase: Optional[int] = None , __lowerCAmelCase: Optional[bool] = None , __lowerCAmelCase: bool = False , __lowerCAmelCase: bool = False , __lowerCAmelCase: bool = False , __lowerCAmelCase: bool = False , __lowerCAmelCase: bool = False , __lowerCAmelCase: bool = True , __lowerCAmelCase: Optional[Union[str, TensorType]] = None , **__lowerCAmelCase: Optional[Any] , ) -> BatchEncoding:
'''simple docstring'''
if images is None and text is None:
raise ValueError("You have to specify either images or text." )
# Get only text
if images is None and not self.image_processor.is_vqa:
__UpperCAmelCase = self.tokenizer
__UpperCAmelCase = self.tokenizer(
text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , )
return text_encoding
if not self.image_processor.is_vqa:
# add pixel_values
__UpperCAmelCase = self.image_processor(
__lowerCAmelCase , return_tensors=__lowerCAmelCase , max_patches=__lowerCAmelCase , **__lowerCAmelCase )
else:
# add pixel_values and bbox
__UpperCAmelCase = self.image_processor(
__lowerCAmelCase , return_tensors=__lowerCAmelCase , max_patches=__lowerCAmelCase , header_text=__lowerCAmelCase , **__lowerCAmelCase )
if text is not None and not self.image_processor.is_vqa:
__UpperCAmelCase = self.tokenizer(
text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , )
if "attention_mask" in text_encoding:
__UpperCAmelCase = text_encoding.pop("attention_mask" )
if "input_ids" in text_encoding:
__UpperCAmelCase = text_encoding.pop("input_ids" )
else:
__UpperCAmelCase = None
if text_encoding is not None:
encoding_image_processor.update(__lowerCAmelCase )
return encoding_image_processor
def _UpperCAmelCase ( self: Dict , *__lowerCAmelCase: int , **__lowerCAmelCase: Union[str, Any] ) -> List[str]:
'''simple docstring'''
return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase )
def _UpperCAmelCase ( self: Union[str, Any] , *__lowerCAmelCase: str , **__lowerCAmelCase: int ) -> int:
'''simple docstring'''
return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase )
@property
def _UpperCAmelCase ( self: Optional[int] ) -> Dict:
'''simple docstring'''
__UpperCAmelCase = self.tokenizer.model_input_names
__UpperCAmelCase = self.image_processor.model_input_names
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
| 286 | import argparse
import requests
import torch
# pip3 install salesforce-lavis
# I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch)
# also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml
# same for Vicuna-13b
from lavis.models import load_model_and_preprocess
from PIL import Image
from transformers import (
AutoTokenizer,
BlipImageProcessor,
InstructBlipConfig,
InstructBlipForConditionalGeneration,
InstructBlipProcessor,
InstructBlipQFormerConfig,
InstructBlipVisionConfig,
LlamaConfig,
LlamaTokenizerFast,
TaConfig,
TaTokenizerFast,
)
from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD
def __lowerCAmelCase ( ) -> Optional[Any]:
__UpperCAmelCase = "https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg"
__UpperCAmelCase = Image.open(requests.get(A_ , stream=A_ ).raw ).convert("RGB" )
return image
def __lowerCAmelCase ( A_ : List[Any] ) -> List[str]:
__UpperCAmelCase = []
# fmt: off
# vision encoder
rename_keys.append(("visual_encoder.cls_token", "vision_model.embeddings.class_embedding") )
rename_keys.append(("visual_encoder.pos_embed", "vision_model.embeddings.position_embedding") )
rename_keys.append(("visual_encoder.patch_embed.proj.weight", "vision_model.embeddings.patch_embedding.weight") )
rename_keys.append(("visual_encoder.patch_embed.proj.bias", "vision_model.embeddings.patch_embedding.bias") )
rename_keys.append(("ln_vision.weight", "vision_model.post_layernorm.weight") )
rename_keys.append(("ln_vision.bias", "vision_model.post_layernorm.bias") )
for i in range(config.vision_config.num_hidden_layers ):
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.weight''', F'''vision_model.encoder.layers.{i}.layer_norm1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm1.bias''', F'''vision_model.encoder.layers.{i}.layer_norm1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.weight''', F'''vision_model.encoder.layers.{i}.layer_norm2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.norm2.bias''', F'''vision_model.encoder.layers.{i}.layer_norm2.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.qkv.weight''', F'''vision_model.encoder.layers.{i}.self_attn.qkv.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.weight''', F'''vision_model.encoder.layers.{i}.self_attn.projection.weight''',) )
rename_keys.append((F'''visual_encoder.blocks.{i}.attn.proj.bias''', F'''vision_model.encoder.layers.{i}.self_attn.projection.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc1.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc1.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc1.bias''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.weight''', F'''vision_model.encoder.layers.{i}.mlp.fc2.weight''') )
rename_keys.append((F'''visual_encoder.blocks.{i}.mlp.fc2.bias''', F'''vision_model.encoder.layers.{i}.mlp.fc2.bias''') )
# QFormer
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.weight", "qformer.embeddings.layernorm.weight") )
rename_keys.append(("Qformer.bert.embeddings.LayerNorm.bias", "qformer.embeddings.layernorm.bias") )
# fmt: on
return rename_keys
def __lowerCAmelCase ( A_ : Optional[int] , A_ : int , A_ : str ) -> List[Any]:
__UpperCAmelCase = dct.pop(A_ )
__UpperCAmelCase = val
def __lowerCAmelCase ( A_ : Optional[int] , A_ : Optional[int] ) -> int:
for i in range(config.vision_config.num_hidden_layers ):
# read in original q and v biases
__UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.q_bias''' )
__UpperCAmelCase = state_dict.pop(F'''visual_encoder.blocks.{i}.attn.v_bias''' )
# next, set bias in the state dict
__UpperCAmelCase = torch.cat((q_bias, torch.zeros_like(A_ , requires_grad=A_ ), v_bias) )
__UpperCAmelCase = qkv_bias
def __lowerCAmelCase ( A_ : Any ) -> int:
__UpperCAmelCase = 3_64 if "coco" in model_name else 2_24
__UpperCAmelCase = InstructBlipVisionConfig(image_size=A_ ).to_dict()
# make sure the models have proper bos_token_id and eos_token_id set (important for generation)
# seems like flan-T5 models don't have bos_token_id properly set?
if "t5-xl" in model_name:
__UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "t5-xxl" in model_name:
__UpperCAmelCase = TaConfig.from_pretrained("google/flan-t5-xxl" , dense_act_fn="gelu" , bos_token_id=1 ).to_dict()
elif "vicuna-7b" in model_name:
__UpperCAmelCase = LlamaConfig.from_pretrained("decapoda-research/llama-7b-hf" , vocab_size=3_20_01 ).to_dict()
elif "vicuna-13b" in model_name:
__UpperCAmelCase = LlamaConfig.from_pretrained("decapoda-research/llama-13b-hf" , vocab_size=3_20_01 ).to_dict()
else:
raise ValueError("Model name not supported" )
# the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1
__UpperCAmelCase = InstructBlipQFormerConfig(vocab_size=3_05_23 ).to_dict()
__UpperCAmelCase = InstructBlipConfig(vision_config=A_ , text_config=A_ , qformer_config=A_ )
return config, image_size
@torch.no_grad()
def __lowerCAmelCase ( A_ : int , A_ : Union[str, Any]=None , A_ : Optional[Any]=False ) -> Dict:
__UpperCAmelCase = AutoTokenizer.from_pretrained("bert-base-uncased" , truncation_side="left" )
qformer_tokenizer.add_special_tokens({"bos_token": "[DEC]"} )
if "t5" in model_name:
__UpperCAmelCase = TaTokenizerFast.from_pretrained("google/flan-t5-xl" , truncation_side="left" )
elif "vicuna" in model_name:
# the following was used in the original implementation:
# tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left")
# tokenizer.add_special_tokens({"pad_token": "[PAD]"})
# tokenizer.add_special_tokens({"bos_token": "</s>"})
# tokenizer.add_special_tokens({"eos_token": "</s>"})
# tokenizer.add_special_tokens({"unk_token": "</s>"})
__UpperCAmelCase = LlamaTokenizerFast.from_pretrained(
"huggyllama/llama-7b" , truncation_side="left" , bos_token="</s>" , unk_token="</s>" )
tokenizer.add_special_tokens({"pad_token": "[PAD]"} )
__UpperCAmelCase , __UpperCAmelCase = get_blipa_config(A_ )
__UpperCAmelCase = InstructBlipForConditionalGeneration(A_ ).eval()
__UpperCAmelCase = {
"instructblip-vicuna-7b": ("blip2_vicuna_instruct", "vicuna7b"),
"instructblip-vicuna-13b": ("blip2_vicuna_instruct", "vicuna13b"),
"instructblip-flan-t5-xl": ("blip2_t5_instruct", "flant5xl"),
"instructblip-flan-t5-xxl": ("blip2_t5_instruct", "flant5xxl"),
}
__UpperCAmelCase , __UpperCAmelCase = model_name_to_original[model_name]
# load original model
print("Loading original model..." )
__UpperCAmelCase = "cuda:1" if torch.cuda.is_available() else "cpu"
__UpperCAmelCase = "cuda:2" if torch.cuda.is_available() else "cpu"
__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = load_model_and_preprocess(
name=A_ , model_type=A_ , is_eval=A_ , device=A_ )
original_model.eval()
print("Done!" )
# update state dict keys
__UpperCAmelCase = original_model.state_dict()
__UpperCAmelCase = create_rename_keys(A_ )
for src, dest in rename_keys:
rename_key(A_ , A_ , A_ )
# some keys can be renamed efficiently
for key, val in state_dict.copy().items():
__UpperCAmelCase = state_dict.pop(A_ )
if key.startswith("Qformer.bert" ):
__UpperCAmelCase = key.replace("Qformer.bert" , "qformer" )
if "attention.self" in key:
__UpperCAmelCase = key.replace("self" , "attention" )
if "llm_proj" in key:
__UpperCAmelCase = key.replace("llm_proj" , "language_projection" )
if "t5_proj" in key:
__UpperCAmelCase = key.replace("t5_proj" , "language_projection" )
if key.startswith("llm_model" ):
__UpperCAmelCase = key.replace("llm_model" , "language_model" )
if key.startswith("t5" ):
__UpperCAmelCase = key.replace("t5" , "language" )
__UpperCAmelCase = val
# read in qv biases
read_in_q_v_bias(A_ , A_ )
# note: weights get loaded in torch.float32 by default
hf_model.load_state_dict(A_ , strict=A_ )
__UpperCAmelCase = load_demo_image()
__UpperCAmelCase = "What is unusual about this image?"
# create processor
__UpperCAmelCase = BlipImageProcessor(
size={"height": image_size, "width": image_size} , image_mean=A_ , image_std=A_ )
__UpperCAmelCase = InstructBlipProcessor(
image_processor=A_ , tokenizer=A_ , qformer_tokenizer=A_ , )
__UpperCAmelCase = processor(images=A_ , text=A_ , return_tensors="pt" ).to(A_ )
# make sure processor creates exact same pixel values
__UpperCAmelCase = vis_processors["eval"](A_ ).unsqueeze(0 ).to(A_ )
__UpperCAmelCase = inputs.pixel_values
assert torch.allclose(original_pixel_values.to(pixel_values.device ) , A_ )
original_model.to(A_ )
hf_model.to(A_ )
with torch.no_grad():
if "vicuna" in model_name:
__UpperCAmelCase = original_model({"image": original_pixel_values, "text_input": [prompt]} ).logits
__UpperCAmelCase = hf_model(**A_ ).logits
else:
__UpperCAmelCase = original_model(
{"image": original_pixel_values, "text_input": [prompt], "text_output": ["\n"]} ).logits
__UpperCAmelCase = tokenizer("\n" , return_tensors="pt" ).input_ids.to(A_ )
__UpperCAmelCase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -1_00 )
__UpperCAmelCase = hf_model(**A_ , labels=A_ ).logits
print("First values of original logits:" , original_logits[0, :3, :3] )
print("First values of HF logits:" , logits[0, :3, :3] )
# assert values
assert original_logits.shape == logits.shape
__UpperCAmelCase = 1e-4 if "vicuna" in model_name else 1e-5
assert torch.allclose(original_logits.to(logits.device ) , A_ , atol=A_ )
print("Looks ok!" )
print("Generating with original model..." )
__UpperCAmelCase = original_model.generate({"image": original_pixel_values, "prompt": prompt} , num_beams=5 )
# important: we need to cast the weights of the HF model to the appropriate type
print("Generating with HF model..." )
__UpperCAmelCase = hf_model.generate(
**A_ , do_sample=A_ , num_beams=5 , max_length=2_56 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , )
if "vicuna" in model_name:
# convert output id 0 to 2 (eos_token_id)
# TODO add this in the generate method?
__UpperCAmelCase = 2
print("Original generation:" , A_ )
__UpperCAmelCase = processor.batch_decode(A_ , skip_special_tokens=A_ )
__UpperCAmelCase = [text.strip() for text in output_text]
print("HF generation:" , A_ )
if pytorch_dump_folder_path is not None:
processor.save_pretrained(A_ )
hf_model.save_pretrained(A_ )
if push_to_hub:
processor.push_to_hub(F'''Salesforce/{model_name}''' )
hf_model.push_to_hub(F'''Salesforce/{model_name}''' )
if __name__ == "__main__":
a_ = argparse.ArgumentParser()
a_ = [
"""instructblip-vicuna-7b""",
"""instructblip-vicuna-13b""",
"""instructblip-flan-t5-xl""",
"""instructblip-flan-t5-xxl""",
]
parser.add_argument(
"""--model_name""",
default="""instructblip-flan-t5-xl""",
choices=choices,
type=str,
help="""Path to hf config.json of model to convert""",
)
parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""")
parser.add_argument(
"""--push_to_hub""",
action="""store_true""",
help="""Whether to push the model and processor to the hub after converting""",
)
a_ = parser.parse_args()
convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
| 286 | 1 |
def _a ( __UpperCamelCase : int ):
return sum(i for i in range(1 ,number // 2 + 1 ) if number % i == 0 ) == number
if __name__ == "__main__":
print("""Program to check whether a number is a Perfect number or not...""")
A__ : Union[str, Any] = int(input("""Enter number: """).strip())
print(f"""{number} is {"" if perfect(number) else "not "}a Perfect Number.""")
| 233 |
"""simple docstring"""
import unittest
from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available
from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow
if is_flax_available():
import jax
from transformers.models.auto.modeling_flax_auto import FlaxAutoModel
from transformers.models.bert.modeling_flax_bert import FlaxBertModel
from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel
@require_flax
class lowerCamelCase__ ( unittest.TestCase ):
"""simple docstring"""
@slow
def lowerCamelCase__ ( self : List[Any] ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
with self.subTest(UpperCamelCase ):
__UpperCAmelCase : Optional[Any] = AutoConfig.from_pretrained(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : List[str] = FlaxAutoModel.from_pretrained(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
@slow
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
with self.subTest(UpperCamelCase ):
__UpperCAmelCase : str = AutoConfig.from_pretrained(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
__UpperCAmelCase : Optional[int] = FlaxAutoModel.from_pretrained(UpperCamelCase )
self.assertIsNotNone(UpperCamelCase )
self.assertIsInstance(UpperCamelCase , UpperCamelCase )
@slow
def lowerCamelCase__ ( self : Optional[Any] ):
'''simple docstring'''
for model_name in ["bert-base-cased", "bert-large-uncased"]:
__UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Optional[int] = FlaxBertModel.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Tuple = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**UpperCamelCase : Any ):
return model(**UpperCamelCase )
eval(**UpperCamelCase ).block_until_ready()
@slow
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
for model_name in ["roberta-base", "roberta-large"]:
__UpperCAmelCase : List[Any] = AutoTokenizer.from_pretrained(UpperCamelCase )
__UpperCAmelCase : Any = FlaxRobertaModel.from_pretrained(UpperCamelCase )
__UpperCAmelCase : str = tokenizer("""Do you support jax jitted function?""" , return_tensors=TensorType.JAX )
@jax.jit
def eval(**UpperCamelCase : Tuple ):
return model(**UpperCamelCase )
eval(**UpperCamelCase ).block_until_ready()
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
with self.assertRaisesRegex(
UpperCamelCase , """bert-base is not a local folder and is not a valid model identifier""" ):
__UpperCAmelCase : Tuple = FlaxAutoModel.from_pretrained("""bert-base""" )
def lowerCamelCase__ ( self : Dict ):
'''simple docstring'''
with self.assertRaisesRegex(
UpperCamelCase , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ):
__UpperCAmelCase : str = FlaxAutoModel.from_pretrained(UpperCamelCase , revision="""aaaaaa""" )
def lowerCamelCase__ ( self : Any ):
'''simple docstring'''
with self.assertRaisesRegex(
UpperCamelCase , """hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack""" , ):
__UpperCAmelCase : str = FlaxAutoModel.from_pretrained("""hf-internal-testing/config-no-model""" )
def lowerCamelCase__ ( self : List[str] ):
'''simple docstring'''
with self.assertRaisesRegex(UpperCamelCase , """Use `from_pt=True` to load this model""" ):
__UpperCAmelCase : Optional[Any] = FlaxAutoModel.from_pretrained("""hf-internal-testing/tiny-bert-pt-only""" )
| 139 | 0 |
from __future__ import annotations
import random
import unittest
from transformers import TransfoXLConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import tensorflow as tf
from transformers import (
TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST,
TFTransfoXLForSequenceClassification,
TFTransfoXLLMHeadModel,
TFTransfoXLModel,
)
class __SCREAMING_SNAKE_CASE :
def __init__( self , __lowerCAmelCase , ):
UpperCamelCase__ = parent
UpperCamelCase__ = 13
UpperCamelCase__ = 7
UpperCamelCase__ = 30
UpperCamelCase__ = self.seq_length + self.mem_len
UpperCamelCase__ = 15
UpperCamelCase__ = True
UpperCamelCase__ = True
UpperCamelCase__ = 99
UpperCamelCase__ = [10, 50, 80]
UpperCamelCase__ = 32
UpperCamelCase__ = 32
UpperCamelCase__ = 4
UpperCamelCase__ = 8
UpperCamelCase__ = 128
UpperCamelCase__ = 2
UpperCamelCase__ = 2
UpperCamelCase__ = None
UpperCamelCase__ = 1
UpperCamelCase__ = 0
UpperCamelCase__ = 3
UpperCamelCase__ = self.vocab_size - 1
UpperCamelCase__ = 0.01
def _lowerCamelCase ( self ):
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = None
if self.use_labels:
UpperCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
UpperCamelCase__ = TransfoXLConfig(
vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , )
return (config, input_ids_a, input_ids_a, lm_labels)
def _lowerCamelCase ( self ):
random.seed(self.seed )
tf.random.set_seed(self.seed )
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = TFTransfoXLModel(__lowerCAmelCase )
UpperCamelCase__ , UpperCamelCase__ = model(__lowerCAmelCase ).to_tuple()
UpperCamelCase__ = {"""input_ids""": input_ids_a, """mems""": mems_a}
UpperCamelCase__ , UpperCamelCase__ = model(__lowerCAmelCase ).to_tuple()
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = TFTransfoXLLMHeadModel(__lowerCAmelCase )
UpperCamelCase__ , UpperCamelCase__ = model(__lowerCAmelCase ).to_tuple()
UpperCamelCase__ = {"""input_ids""": input_ids_a, """labels""": lm_labels}
UpperCamelCase__ , UpperCamelCase__ = model(__lowerCAmelCase ).to_tuple()
UpperCamelCase__ , UpperCamelCase__ = model([input_ids_a, mems_a] ).to_tuple()
UpperCamelCase__ = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels}
UpperCamelCase__ , UpperCamelCase__ = model(__lowerCAmelCase ).to_tuple()
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) )
self.parent.assertListEqual(
[mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , )
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
UpperCamelCase__ = TFTransfoXLForSequenceClassification(__lowerCAmelCase )
UpperCamelCase__ = model(__lowerCAmelCase )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) )
def _lowerCamelCase ( self ):
UpperCamelCase__ = self.prepare_config_and_inputs()
((UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__) , (UpperCamelCase__)) = config_and_inputs
UpperCamelCase__ = {"""input_ids""": input_ids_a}
return config, inputs_dict
@require_tf
class __SCREAMING_SNAKE_CASE ( _a , _a , unittest.TestCase ):
snake_case : int = (
(TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else ()
)
snake_case : Tuple = () if is_tf_available() else ()
snake_case : List[str] = (
{
'feature-extraction': TFTransfoXLModel,
'text-classification': TFTransfoXLForSequenceClassification,
'text-generation': TFTransfoXLLMHeadModel,
'zero-shot': TFTransfoXLForSequenceClassification,
}
if is_tf_available()
else {}
)
# TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented
snake_case : Optional[int] = False
snake_case : Union[str, Any] = False
snake_case : Tuple = False
snake_case : Dict = False
def _lowerCamelCase ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ):
if pipeline_test_casse_name == "TextGenerationPipelineTests":
# Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`.
# `TransfoXLConfig` was never used in pipeline tests: cannot create a simple
# tokenizer.
return True
return False
def _lowerCamelCase ( self ):
UpperCamelCase__ = TFTransfoXLModelTester(self )
UpperCamelCase__ = ConfigTester(self , config_class=__lowerCAmelCase , d_embed=37 )
def _lowerCamelCase ( self ):
self.config_tester.run_common_tests()
def _lowerCamelCase ( self ):
self.model_tester.set_seed()
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_model(*__lowerCAmelCase )
def _lowerCamelCase ( self ):
self.model_tester.set_seed()
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_lm_head(*__lowerCAmelCase )
def _lowerCamelCase ( self ):
UpperCamelCase__ = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*__lowerCAmelCase )
def _lowerCamelCase ( self ):
UpperCamelCase__ , UpperCamelCase__ = self.model_tester.prepare_config_and_inputs_for_common()
UpperCamelCase__ = [TFTransfoXLForSequenceClassification]
for model_class in self.all_model_classes:
UpperCamelCase__ = model_class(__lowerCAmelCase )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class in list_other_models_with_output_ebd:
UpperCamelCase__ = model.get_output_embeddings()
assert isinstance(__lowerCAmelCase , tf.keras.layers.Layer )
UpperCamelCase__ = model.get_bias()
assert name is None
else:
UpperCamelCase__ = model.get_output_embeddings()
assert x is None
UpperCamelCase__ = model.get_bias()
assert name is None
def _lowerCamelCase ( self ):
pass
@slow
def _lowerCamelCase ( self ):
for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
UpperCamelCase__ = TFTransfoXLModel.from_pretrained(__lowerCAmelCase )
self.assertIsNotNone(__lowerCAmelCase )
@unittest.skip(reason="""This model doesn\'t play well with fit() due to not returning a single loss.""" )
def _lowerCamelCase ( self ):
pass
@require_tf
class __SCREAMING_SNAKE_CASE ( unittest.TestCase ):
@unittest.skip("""Skip test until #12651 is resolved.""" )
@slow
def _lowerCamelCase ( self ):
UpperCamelCase__ = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" )
# fmt: off
UpperCamelCase__ = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231
# fmt: on
# In 1991 , the remains of Russian Tsar Nicholas II and his family
# ( except for Alexei and Maria ) are discovered .
# The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the
# remainder of the story . 1883 Western Siberia ,
# a young Grigori Rasputin is asked by his father and a group of men to perform magic .
# Rasputin has a vision and denounces one of the men as a horse thief . Although his
# father initially slaps him for making such an accusation , Rasputin watches as the
# man is chased outside and beaten . Twenty years later , Rasputin sees a vision of
# the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous ,
# with people , even a bishop , begging for his blessing . <eod> </s> <eos>
# fmt: off
UpperCamelCase__ = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231
# fmt: on
# In 1991, the remains of Russian Tsar Nicholas II and his family (
# except for Alexei and Maria ) are discovered. The voice of young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.
# 1883 Western Siberia, a young Grigori Rasputin is asked by his father
# and a group of men to perform magic. Rasputin has a vision and
# denounces one of the men as a horse thief. Although his father initially
# slaps him for making such an accusation, Rasputin watches as the man
# is chased outside and beaten. Twenty years later, Rasputin sees a vision
# of the Virgin Mary, prompting him to become a priest.
# Rasputin quickly becomes famous, with people, even a bishop, begging for
# his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar
# Nicholas II and his family were discovered. The voice of <unk> young son,
# Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos>
UpperCamelCase__ = model.generate(__lowerCAmelCase , max_length=200 , do_sample=__lowerCAmelCase )
self.assertListEqual(output_ids[0].numpy().tolist() , __lowerCAmelCase )
| 701 |
import os
import pytest
import yaml
from datasets.features.features import Features, Value
from datasets.info import DatasetInfo, DatasetInfosDict
@pytest.mark.parametrize(
"""files""" , [
["""full:README.md""", """dataset_infos.json"""],
["""empty:README.md""", """dataset_infos.json"""],
["""dataset_infos.json"""],
["""full:README.md"""],
] , )
def _UpperCamelCase (a__ :Any , a__ :Union[str, Any] ):
"""simple docstring"""
UpperCamelCase__ = tmp_path_factory.mktemp("""dset_infos_dir""" )
if "full:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""---\ndataset_info:\n dataset_size: 42\n---""" )
if "empty:README.md" in files:
with open(dataset_infos_dir / """README.md""" , """w""" ) as f:
f.write("""""" )
# we want to support dataset_infos.json for backward compatibility
if "dataset_infos.json" in files:
with open(dataset_infos_dir / """dataset_infos.json""" , """w""" ) as f:
f.write("""{\"default\": {\"dataset_size\": 42}}""" )
UpperCamelCase__ = DatasetInfosDict.from_directory(a__ )
assert dataset_infos
assert dataset_infos["default"].dataset_size == 42
@pytest.mark.parametrize(
"""dataset_info""" , [
DatasetInfo(),
DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , ),
] , )
def _UpperCamelCase (a__ :Optional[int] , a__ :DatasetInfo ):
"""simple docstring"""
UpperCamelCase__ = str(a__ )
dataset_info.write_to_directory(a__ )
UpperCamelCase__ = DatasetInfo.from_directory(a__ )
assert dataset_info == reloaded
assert os.path.exists(os.path.join(a__ , """dataset_info.json""" ) )
def _UpperCamelCase ():
"""simple docstring"""
UpperCamelCase__ = DatasetInfo(
description="""foo""" , citation="""bar""" , homepage="""https://foo.bar""" , license="""CC0""" , features=Features({"""a""": Value("""int32""" )} ) , post_processed={} , supervised_keys=() , task_templates=[] , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train""", """num_examples""": 42}] , download_checksums={} , download_size=1337 , post_processing_size=442 , dataset_size=1234 , size_in_bytes=1337 + 442 + 1234 , )
UpperCamelCase__ = dataset_info._to_yaml_dict()
assert sorted(a__ ) == sorted(DatasetInfo._INCLUDED_INFO_IN_YAML )
for key in DatasetInfo._INCLUDED_INFO_IN_YAML:
assert key in dataset_info_yaml_dict
assert isinstance(dataset_info_yaml_dict[key] , (list, dict, int, str) )
UpperCamelCase__ = yaml.safe_dump(a__ )
UpperCamelCase__ = yaml.safe_load(a__ )
assert dataset_info_yaml_dict == reloaded
def _UpperCamelCase ():
"""simple docstring"""
UpperCamelCase__ = DatasetInfo()
UpperCamelCase__ = dataset_info._to_yaml_dict()
assert dataset_info_yaml_dict == {}
@pytest.mark.parametrize(
"""dataset_infos_dict""" , [
DatasetInfosDict(),
DatasetInfosDict({"""default""": DatasetInfo()} ),
DatasetInfosDict({"""my_config_name""": DatasetInfo()} ),
DatasetInfosDict(
{
"""default""": DatasetInfo(
description="""foo""" , features=Features({"""a""": Value("""int32""" )} ) , builder_name="""builder""" , config_name="""config""" , version="""1.0.0""" , splits=[{"""name""": """train"""}] , download_size=42 , )
} ),
DatasetInfosDict(
{
"""v1""": DatasetInfo(dataset_size=42 ),
"""v2""": DatasetInfo(dataset_size=1337 ),
} ),
] , )
def _UpperCamelCase (a__ :int , a__ :DatasetInfosDict ):
"""simple docstring"""
UpperCamelCase__ = str(a__ )
dataset_infos_dict.write_to_directory(a__ )
UpperCamelCase__ = DatasetInfosDict.from_directory(a__ )
# the config_name of the dataset_infos_dict take over the attribute
for config_name, dataset_info in dataset_infos_dict.items():
UpperCamelCase__ = config_name
# the yaml representation doesn't include fields like description or citation
# so we just test that we can recover what we can from the yaml
UpperCamelCase__ = DatasetInfo._from_yaml_dict(dataset_info._to_yaml_dict() )
assert dataset_infos_dict == reloaded
if dataset_infos_dict:
assert os.path.exists(os.path.join(a__ , """README.md""" ) )
| 548 | 0 |
from __future__ import annotations
def lowerCamelCase__ ( _lowercase ):
'''simple docstring'''
return len(set(_lowercase ) ) == len(_lowercase )
if __name__ == "__main__":
import doctest
doctest.testmod() | 30 |
from __future__ import annotations
import unittest
from transformers import EsmConfig, is_tf_available
from transformers.testing_utils import require_tf, slow
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask
from ...test_pipeline_mixin import PipelineTesterMixin
if is_tf_available():
import numpy
import tensorflow as tf
from transformers.models.esm.modeling_tf_esm import (
TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
TFEsmModel,
)
class lowerCamelCase:
'''simple docstring'''
def __init__( self , snake_case_ , ):
_A = parent
_A = 13
_A = 7
_A = True
_A = True
_A = True
_A = 99
_A = 32
_A = 2
_A = 4
_A = 37
_A = 'gelu'
_A = 0.1
_A = 0.1
_A = 512
_A = 16
_A = 2
_A = 0.02
_A = 3
_A = 4
_A = None
def lowerCAmelCase__ ( self ):
_A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size )
_A = None
if self.use_input_mask:
_A = random_attention_mask([self.batch_size, self.seq_length] )
_A = None
_A = None
_A = None
if self.use_labels:
_A = ids_tensor([self.batch_size] , self.type_sequence_label_size )
_A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels )
_A = ids_tensor([self.batch_size] , self.num_choices )
_A = EsmConfig(
vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , pad_token_id=1 , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , )
return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels
def lowerCAmelCase__ ( self ):
(
(
_A
), (
_A
), (
_A
), (
_A
), (
_A
), (
_A
),
) = self.prepare_config_and_inputs()
_A = True
_A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] )
_A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 )
return (
config,
input_ids,
input_mask,
sequence_labels,
token_labels,
choice_labels,
encoder_hidden_states,
encoder_attention_mask,
)
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = TFEsmModel(config=snake_case_ )
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
_A = model(snake_case_ )
_A = [input_ids, input_mask]
_A = model(snake_case_ )
_A = model(snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , ):
_A = True
_A = TFEsmModel(config=snake_case_ )
_A = {
'input_ids': input_ids,
'attention_mask': input_mask,
'encoder_hidden_states': encoder_hidden_states,
'encoder_attention_mask': encoder_attention_mask,
}
_A = model(snake_case_ )
_A = [input_ids, input_mask]
_A = model(snake_case_ , encoder_hidden_states=snake_case_ )
# Also check the case where encoder outputs are not passed
_A = model(snake_case_ , attention_mask=snake_case_ )
self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = TFEsmForMaskedLM(config=snake_case_ )
_A = model([input_ids, input_mask] )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) )
def lowerCAmelCase__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ):
_A = self.num_labels
_A = TFEsmForTokenClassification(config=snake_case_ )
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
_A = model(snake_case_ )
self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) )
def lowerCAmelCase__ ( self ):
_A = self.prepare_config_and_inputs()
(
(
_A
), (
_A
), (
_A
), (
_A
), (
_A
), (
_A
),
) = config_and_inputs
_A = {'input_ids': input_ids, 'attention_mask': input_mask}
return config, inputs_dict
@require_tf
class lowerCamelCase( __snake_case , __snake_case , unittest.TestCase ):
'''simple docstring'''
__magic_name__ = (
(
TFEsmModel,
TFEsmForMaskedLM,
TFEsmForSequenceClassification,
TFEsmForTokenClassification,
)
if is_tf_available()
else ()
)
__magic_name__ = (
{
'feature-extraction': TFEsmModel,
'fill-mask': TFEsmForMaskedLM,
'text-classification': TFEsmForSequenceClassification,
'token-classification': TFEsmForTokenClassification,
'zero-shot': TFEsmForSequenceClassification,
}
if is_tf_available()
else {}
)
__magic_name__ = False
__magic_name__ = False
def lowerCAmelCase__ ( self ):
_A = TFEsmModelTester(self )
_A = ConfigTester(self , config_class=snake_case_ , hidden_size=37 )
def lowerCAmelCase__ ( self ):
self.config_tester.run_common_tests()
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_model(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs_for_decoder()
self.model_tester.create_and_check_model_as_decoder(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_masked_lm(*snake_case_ )
def lowerCAmelCase__ ( self ):
_A = self.model_tester.prepare_config_and_inputs()
self.model_tester.create_and_check_for_token_classification(*snake_case_ )
@slow
def lowerCAmelCase__ ( self ):
for model_name in TF_ESM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
_A = TFEsmModel.from_pretrained(snake_case_ )
self.assertIsNotNone(snake_case_ )
@unittest.skip('Protein models do not support embedding resizing.' )
def lowerCAmelCase__ ( self ):
pass
@unittest.skip('Protein models do not support embedding resizing.' )
def lowerCAmelCase__ ( self ):
pass
def lowerCAmelCase__ ( self ):
_A, _A = self.model_tester.prepare_config_and_inputs_for_common()
for model_class in self.all_model_classes:
_A = model_class(snake_case_ )
assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer )
if model_class is TFEsmForMaskedLM:
# Output embedding test differs from the main test because they're a matrix, not a layer
_A = model.get_bias()
assert isinstance(snake_case_ , snake_case_ )
for k, v in name.items():
assert isinstance(snake_case_ , tf.Variable )
else:
_A = model.get_output_embeddings()
assert x is None
_A = model.get_bias()
assert name is None
@require_tf
class lowerCamelCase( unittest.TestCase ):
'''simple docstring'''
@slow
def lowerCAmelCase__ ( self ):
_A = TFEsmForMaskedLM.from_pretrained('facebook/esm2_t6_8M_UR50D' )
_A = tf.constant([[0, 1, 2, 3, 4, 5]] )
_A = model(snake_case_ )[0]
_A = [1, 6, 33]
self.assertEqual(list(output.numpy().shape ) , snake_case_ )
# compare the actual values for a slice.
_A = tf.constant(
[
[
[8.92_1518, -10.58_9814, -6.467_1307],
[-6.396_7156, -13.91_1377, -1.121_1915],
[-7.78_1247, -13.95_1557, -3.74_0592],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-2 ) )
@slow
def lowerCAmelCase__ ( self ):
_A = TFEsmModel.from_pretrained('facebook/esm2_t6_8M_UR50D' )
_A = tf.constant([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] )
_A = model(snake_case_ )[0]
# compare the actual values for a slice.
_A = tf.constant(
[
[
[0.1444_3092, 0.5412_5327, 0.324_7739],
[0.3034_0484, 0.0052_6676, 0.3107_7722],
[0.3227_8043, -0.2498_7096, 0.341_4628],
]
] )
self.assertTrue(numpy.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
| 27 | 0 |
import math
def UpperCAmelCase__ ( _A ):
"""simple docstring"""
a_ = []
a_ = 2
a_ = int(math.sqrt(lowerCAmelCase__ ) ) # Size of every segment
a_ = [True] * (end + 1)
a_ = []
while start <= end:
if temp[start] is True:
in_prime.append(lowerCAmelCase__ )
for i in range(start * start , end + 1 , lowerCAmelCase__ ):
a_ = False
start += 1
prime += in_prime
a_ = end + 1
a_ = min(2 * end , lowerCAmelCase__ )
while low <= n:
a_ = [True] * (high - low + 1)
for each in in_prime:
a_ = math.floor(low / each ) * each
if t < low:
t += each
for j in range(lowerCAmelCase__ , high + 1 , lowerCAmelCase__ ):
a_ = False
for j in range(len(lowerCAmelCase__ ) ):
if temp[j] is True:
prime.append(j + low )
a_ = high + 1
a_ = min(high + end , lowerCAmelCase__ )
return prime
print(sieve(10**6))
| 709 |
from math import pow
def UpperCAmelCase__ ( _A , _A , _A , _A , _A , ):
"""simple docstring"""
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
a_ = int(pow(_A , _A ) )
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
a_ , a_ = backtrack(
_A , _A , current_number + 1 , _A , _A )
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
a_ , a_ = backtrack(
_A , _A , current_number + 1 , _A , _A )
return current_sum, solutions_count
def UpperCAmelCase__ ( _A , _A ):
"""simple docstring"""
if not (1 <= needed_sum <= 1_000 and 2 <= power <= 10):
raise ValueError(
'''Invalid input\n'''
'''needed_sum must be between 1 and 1000, power between 2 and 10.''' )
return backtrack(_A , _A , 1 , 0 , 0 )[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()
| 143 | 0 |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.