code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
def UpperCamelCase_( _A :int )-> Union[str, Any]: for i in range(len(_A ) - 1 , 0 , -1 ): UpperCamelCase__ = False for j in range(_A , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: UpperCamelCase__, UpperCamelCase__ = unsorted[j - 1], unsorted[j] UpperCamelCase__ = True for j in range(_A ): if unsorted[j] > unsorted[j + 1]: UpperCamelCase__, UpperCamelCase__ = unsorted[j + 1], unsorted[j] UpperCamelCase__ = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() __UpperCamelCase = [int(item) for item in user_input.split(',')] print(f'''{cocktail_shaker_sort(unsorted) = }''')
551
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging A_ = logging.get_logger(__name__) A_ = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' __lowerCamelCase : Tuple = "bert" def __init__( self: str , UpperCamelCase_: List[Any]=3_0522 , UpperCamelCase_: Optional[Any]=768 , UpperCamelCase_: List[str]=12 , UpperCamelCase_: List[Any]=12 , UpperCamelCase_: Any=3072 , UpperCamelCase_: str="gelu" , UpperCamelCase_: Optional[Any]=0.1 , UpperCamelCase_: Tuple=0.1 , UpperCamelCase_: int=512 , UpperCamelCase_: str=2 , UpperCamelCase_: List[Any]=0.02 , UpperCamelCase_: int=1e-1_2 , UpperCamelCase_: List[Any]=0 , UpperCamelCase_: int="absolute" , UpperCamelCase_: int=True , UpperCamelCase_: str=None , **UpperCamelCase_: List[Any] , ): super().__init__(pad_token_id=UpperCamelCase_ , **UpperCamelCase_ ) UpperCamelCase_ =vocab_size UpperCamelCase_ =hidden_size UpperCamelCase_ =num_hidden_layers UpperCamelCase_ =num_attention_heads UpperCamelCase_ =hidden_act UpperCamelCase_ =intermediate_size UpperCamelCase_ =hidden_dropout_prob UpperCamelCase_ =attention_probs_dropout_prob UpperCamelCase_ =max_position_embeddings UpperCamelCase_ =type_vocab_size UpperCamelCase_ =initializer_range UpperCamelCase_ =layer_norm_eps UpperCamelCase_ =position_embedding_type UpperCamelCase_ =use_cache UpperCamelCase_ =classifier_dropout class __lowerCAmelCase ( UpperCAmelCase ): '''simple docstring''' @property def UpperCamelCase__ ( self: int ): if self.task == "multiple-choice": UpperCamelCase_ ={0: "batch", 1: "choice", 2: "sequence"} else: UpperCamelCase_ ={0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
391
0
import os import sys import unittest _UpperCAmelCase : Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, """utils""")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path _UpperCAmelCase : Optional[Any] = os.path.join(git_repo_path, """src""", """transformers""") _UpperCAmelCase : str = """ {0} = None """ _UpperCAmelCase : int = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) """ _UpperCAmelCase : Any = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ class lowercase ( unittest.TestCase ): def a ( self ): snake_case_ = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(snake_case ) snake_case_ = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(snake_case , 'tokenizers' ) snake_case_ = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(snake_case , 'tensorflow_text' ) snake_case_ = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(snake_case , 'sentencepiece_and_tokenizers' ) snake_case_ = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(snake_case , 'sentencepiece_and_tensorflow_text' ) snake_case_ = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(snake_case , 'sentencepiece_and_tokenizers_and_vision' ) def a ( self ): snake_case_ = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch' , snake_case ) self.assertIn('tensorflow_text' , snake_case ) self.assertIn('sentencepiece_and_tokenizers' , snake_case ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertModel' , objects['tf'] ) self.assertIn('FlaxBertModel' , objects['flax'] ) self.assertIn('BertModel' , objects['torch'] ) self.assertIn('TFBertTokenizer' , objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer' , objects['sentencepiece_and_tokenizers'] ) def a ( self ): snake_case_ = create_dummy_object('CONSTANT' , '\'torch\'' ) self.assertEqual(snake_case , '\nCONSTANT = None\n' ) snake_case_ = create_dummy_object('function' , '\'torch\'' ) self.assertEqual( snake_case , '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) snake_case_ = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' snake_case_ = create_dummy_object('FakeClass' , '\'torch\'' ) self.assertEqual(snake_case , snake_case ) def a ( self ): snake_case_ = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' snake_case_ = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'] , snake_case )
108
def __lowerCamelCase ( UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' snake_case_ = len(UpperCamelCase__ ) snake_case_ = len(UpperCamelCase__ ) snake_case_ = ( first_str_length if first_str_length > second_str_length else second_str_length ) snake_case_ = [] for char_count in range(UpperCamelCase__ ): if char_count < first_str_length: output_list.append(first_str[char_count] ) if char_count < second_str_length: output_list.append(second_str[char_count] ) return "".join(UpperCamelCase__ ) if __name__ == "__main__": print(alternative_string_arrange("""AB""", """XYZ"""), end=""" """)
108
1
import csv import tweepy # Twitter API credentials _snake_case = '''''' _snake_case = '''''' _snake_case = '''''' _snake_case = '''''' def lowercase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCamelCase : int = tweepy.OAuthHandler(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) auth.set_access_token(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) lowerCamelCase : Optional[Any] = tweepy.API(SCREAMING_SNAKE_CASE_ ) # initialize a list to hold all the tweepy Tweets lowerCamelCase : Optional[Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) lowerCamelCase : str = api.user_timeline(screen_name=SCREAMING_SNAKE_CASE_ , count=200 ) # save most recent tweets alltweets.extend(SCREAMING_SNAKE_CASE_ ) # save the id of the oldest tweet less one lowerCamelCase : Optional[Any] = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(SCREAMING_SNAKE_CASE_ ) > 0: print(f"""getting tweets before {oldest}""" ) # all subsequent requests use the max_id param to prevent duplicates lowerCamelCase : Any = api.user_timeline( screen_name=SCREAMING_SNAKE_CASE_ , count=200 , max_id=SCREAMING_SNAKE_CASE_ ) # save most recent tweets alltweets.extend(SCREAMING_SNAKE_CASE_ ) # update the id of the oldest tweet less one lowerCamelCase : int = alltweets[-1].id - 1 print(f"""...{len(SCREAMING_SNAKE_CASE_ )} tweets downloaded so far""" ) # transform the tweepy tweets into a 2D array that will populate the csv lowerCamelCase : List[str] = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(f"""new_{screen_name}_tweets.csv""" , "w" ) as f: lowerCamelCase : int = csv.writer(SCREAMING_SNAKE_CASE_ ) writer.writerow(["id", "created_at", "text"] ) writer.writerows(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('''FirePing32''')
340
import torch from diffusers import DiffusionPipeline class UpperCAmelCase_ ( UpperCamelCase ): '''simple docstring''' def __init__( self , __A , __A ): """simple docstring""" super().__init__() self.register_modules(unet=__A , scheduler=__A ) def __call__( self ): """simple docstring""" lowerCamelCase : List[str] = torch.randn( (1, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , ) lowerCamelCase : Optional[Any] = 1 lowerCamelCase : Optional[int] = self.unet(__A , __A ).sample lowerCamelCase : List[str] = self.scheduler.step(__A , __A , __A ).prev_sample lowerCamelCase : str = scheduler_output - scheduler_output + torch.ones_like(__A ) return result
340
1
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, AutoConfig, AutoFeatureExtractor, WavaVecaConfig, WavaVecaFeatureExtractor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 __lowercase = get_tests_dir('''fixtures''') __lowercase = get_tests_dir('''fixtures/dummy_feature_extractor_config.json''') __lowercase = get_tests_dir('''fixtures/dummy-config.json''') class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> List[str]: __UpperCamelCase :Optional[Any] = 0 def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :List[str] = AutoFeatureExtractor.from_pretrained('''facebook/wav2vec2-base-960h''') self.assertIsInstance(_lowercase , _lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :str = AutoFeatureExtractor.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) def UpperCamelCase__ ( self) -> Dict: with tempfile.TemporaryDirectory() as tmpdirname: __UpperCamelCase :Optional[Any] = WavaVecaConfig() # remove feature_extractor_type to make sure config.json alone is enough to load feature processor locally __UpperCamelCase :Optional[Any] = AutoFeatureExtractor.from_pretrained(_lowercase).to_dict() config_dict.pop('''feature_extractor_type''') __UpperCamelCase :List[Any] = WavaVecaFeatureExtractor(**_lowercase) # save in new folder model_config.save_pretrained(_lowercase) config.save_pretrained(_lowercase) __UpperCamelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained(_lowercase) # make sure private variable is not incorrectly saved __UpperCamelCase :Optional[int] = json.loads(config.to_json_string()) self.assertTrue('''_processor_class''' not in dict_as_saved) self.assertIsInstance(_lowercase , _lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Union[str, Any] = AutoFeatureExtractor.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) def UpperCamelCase__ ( self) -> Union[str, Any]: with self.assertRaisesRegex( _lowercase , '''bert-base is not a local folder and is not a valid model identifier'''): __UpperCamelCase :Tuple = AutoFeatureExtractor.from_pretrained('''bert-base''') def UpperCamelCase__ ( self) -> int: with self.assertRaisesRegex( _lowercase , r'''aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'''): __UpperCamelCase :int = AutoFeatureExtractor.from_pretrained(_lowercase , revision='''aaaaaa''') def UpperCamelCase__ ( self) -> Any: with self.assertRaisesRegex( _lowercase , '''hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.''' , ): __UpperCamelCase :Any = AutoFeatureExtractor.from_pretrained('''hf-internal-testing/config-no-model''') def UpperCamelCase__ ( self) -> List[str]: # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(_lowercase): __UpperCamelCase :Any = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''') # If remote code is disabled, we can't load this config. with self.assertRaises(_lowercase): __UpperCamelCase :List[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_lowercase) __UpperCamelCase :int = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_lowercase) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') # Test feature extractor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase) __UpperCamelCase :Dict = AutoFeatureExtractor.from_pretrained(_lowercase , trust_remote_code=_lowercase) self.assertEqual(reloaded_feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') def UpperCamelCase__ ( self) -> Optional[int]: try: AutoConfig.register('''custom''' , _lowercase) AutoFeatureExtractor.register(_lowercase , _lowercase) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_lowercase): AutoFeatureExtractor.register(_lowercase , _lowercase) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCamelCase :Any = CustomFeatureExtractor.from_pretrained(_lowercase) with tempfile.TemporaryDirectory() as tmp_dir: feature_extractor.save_pretrained(_lowercase) __UpperCamelCase :str = AutoFeatureExtractor.from_pretrained(_lowercase) self.assertIsInstance(_lowercase , _lowercase) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self) -> List[Any]: class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Tuple = True try: AutoConfig.register('''custom''' , _lowercase) AutoFeatureExtractor.register(_lowercase , _lowercase) # If remote code is not set, the default is to use local __UpperCamelCase :List[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''') self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') self.assertTrue(feature_extractor.is_local) # If remote code is disabled, we load the local one. __UpperCamelCase :List[Any] = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_lowercase) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') self.assertTrue(feature_extractor.is_local) # If remote is enabled, we load from the Hub __UpperCamelCase :str = AutoFeatureExtractor.from_pretrained( '''hf-internal-testing/test_dynamic_feature_extractor''' , trust_remote_code=_lowercase) self.assertEqual(feature_extractor.__class__.__name__ , '''NewFeatureExtractor''') self.assertTrue(not hasattr(_lowercase , '''is_local''')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig]
707
from typing import List import datasets from datasets.tasks import AudioClassification from ..folder_based_builder import folder_based_builder __lowercase = datasets.utils.logging.get_logger(__name__) class lowerCamelCase_ ( folder_based_builder.FolderBasedBuilderConfig ): '''simple docstring''' a__ : bool = None a__ : bool = None class lowerCamelCase_ ( folder_based_builder.FolderBasedBuilder ): '''simple docstring''' a__ : List[Any] = datasets.Audio() a__ : int = """audio""" a__ : str = AudioFolderConfig a__ : List[str] # definition at the bottom of the script a__ : int = AudioClassification(audio_column="""audio""" , label_column="""label""" ) __lowercase = [ '''.aiff''', '''.au''', '''.avr''', '''.caf''', '''.flac''', '''.htk''', '''.svx''', '''.mat4''', '''.mat5''', '''.mpc2k''', '''.ogg''', '''.paf''', '''.pvf''', '''.raw''', '''.rf64''', '''.sd2''', '''.sds''', '''.ircam''', '''.voc''', '''.w64''', '''.wav''', '''.nist''', '''.wavex''', '''.wve''', '''.xi''', '''.mp3''', '''.opus''', ] __lowercase = AUDIO_EXTENSIONS
452
0
'''simple docstring''' from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _snake_case (__SCREAMING_SNAKE_CASE): __A : jnp.ndarray __A : jnp.ndarray class _snake_case (nn.Module): __A : int __A : Tuple[int] =(16, 32, 96, 2_56) __A : jnp.dtype =jnp.floataa def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = nn.Conv( self.block_out_channels[0] ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) UpperCAmelCase_ : Any = [] for i in range(len(self.block_out_channels ) - 1 ): UpperCAmelCase_ : str = self.block_out_channels[i] UpperCAmelCase_ : Tuple = self.block_out_channels[i + 1] UpperCAmelCase_ : Any = nn.Conv( _snake_case ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(_snake_case ) UpperCAmelCase_ : Optional[int] = nn.Conv( _snake_case ,kernel_size=(3, 3) ,strides=(2, 2) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) blocks.append(_snake_case ) UpperCAmelCase_ : Tuple = blocks UpperCAmelCase_ : str = nn.Conv( self.conditioning_embedding_channels ,kernel_size=(3, 3) ,padding=((1, 1), (1, 1)) ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,_snake_case ): UpperCAmelCase_ : Dict = self.conv_in(_snake_case ) UpperCAmelCase_ : int = nn.silu(_snake_case ) for block in self.blocks: UpperCAmelCase_ : Union[str, Any] = block(_snake_case ) UpperCAmelCase_ : Tuple = nn.silu(_snake_case ) UpperCAmelCase_ : Union[str, Any] = self.conv_out(_snake_case ) return embedding @flax_register_to_config class _snake_case (nn.Module , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE): __A : int =32 __A : int =4 __A : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __A : Union[bool, Tuple[bool]] =False __A : Tuple[int] =(3_20, 6_40, 12_80, 12_80) __A : int =2 __A : Union[int, Tuple[int]] =8 __A : Optional[Union[int, Tuple[int]]] =None __A : int =12_80 __A : float =0.0 __A : bool =False __A : jnp.dtype =jnp.floataa __A : bool =True __A : int =0 __A : str ="rgb" __A : Tuple[int] =(16, 32, 96, 2_56) def UpperCamelCase__ ( self ,_snake_case ): # init input tensors UpperCAmelCase_ : List[Any] = (1, self.in_channels, self.sample_size, self.sample_size) UpperCAmelCase_ : Any = jnp.zeros(_snake_case ,dtype=jnp.floataa ) UpperCAmelCase_ : Tuple = jnp.ones((1,) ,dtype=jnp.intaa ) UpperCAmelCase_ : List[Any] = jnp.zeros((1, 1, self.cross_attention_dim) ,dtype=jnp.floataa ) UpperCAmelCase_ : Union[str, Any] = (1, 3, self.sample_size * 8, self.sample_size * 8) UpperCAmelCase_ : int = jnp.zeros(_snake_case ,dtype=jnp.floataa ) UpperCAmelCase_ , UpperCAmelCase_ : str = jax.random.split(_snake_case ) UpperCAmelCase_ : Optional[int] = {"params": params_rng, "dropout": dropout_rng} return self.init(_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case )["params"] def UpperCamelCase__ ( self ): UpperCAmelCase_ : Tuple = self.block_out_channels UpperCAmelCase_ : Union[str, Any] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. UpperCAmelCase_ : Dict = self.num_attention_heads or self.attention_head_dim # input UpperCAmelCase_ : str = nn.Conv( block_out_channels[0] ,kernel_size=(3, 3) ,strides=(1, 1) ,padding=((1, 1), (1, 1)) ,dtype=self.dtype ,) # time UpperCAmelCase_ : Dict = FlaxTimesteps( block_out_channels[0] ,flip_sin_to_cos=self.flip_sin_to_cos ,freq_shift=self.config.freq_shift ) UpperCAmelCase_ : List[Any] = FlaxTimestepEmbedding(_snake_case ,dtype=self.dtype ) UpperCAmelCase_ : int = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] ,block_out_channels=self.conditioning_embedding_out_channels ,) UpperCAmelCase_ : Any = self.only_cross_attention if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : Union[str, Any] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ : Tuple = (num_attention_heads,) * len(self.down_block_types ) # down UpperCAmelCase_ : List[str] = [] UpperCAmelCase_ : str = [] UpperCAmelCase_ : List[str] = block_out_channels[0] UpperCAmelCase_ : Union[str, Any] = nn.Conv( _snake_case ,kernel_size=(1, 1) ,padding="VALID" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_snake_case ) for i, down_block_type in enumerate(self.down_block_types ): UpperCAmelCase_ : Tuple = output_channel UpperCAmelCase_ : List[Any] = block_out_channels[i] UpperCAmelCase_ : int = i == len(_snake_case ) - 1 if down_block_type == "CrossAttnDownBlock2D": UpperCAmelCase_ : int = FlaxCrossAttnDownBlockaD( in_channels=_snake_case ,out_channels=_snake_case ,dropout=self.dropout ,num_layers=self.layers_per_block ,num_attention_heads=num_attention_heads[i] ,add_downsample=not is_final_block ,use_linear_projection=self.use_linear_projection ,only_cross_attention=only_cross_attention[i] ,dtype=self.dtype ,) else: UpperCAmelCase_ : List[Any] = FlaxDownBlockaD( in_channels=_snake_case ,out_channels=_snake_case ,dropout=self.dropout ,num_layers=self.layers_per_block ,add_downsample=not is_final_block ,dtype=self.dtype ,) down_blocks.append(_snake_case ) for _ in range(self.layers_per_block ): UpperCAmelCase_ : List[Any] = nn.Conv( _snake_case ,kernel_size=(1, 1) ,padding="VALID" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_snake_case ) if not is_final_block: UpperCAmelCase_ : int = nn.Conv( _snake_case ,kernel_size=(1, 1) ,padding="VALID" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) controlnet_down_blocks.append(_snake_case ) UpperCAmelCase_ : int = down_blocks UpperCAmelCase_ : Union[str, Any] = controlnet_down_blocks # mid UpperCAmelCase_ : int = block_out_channels[-1] UpperCAmelCase_ : Tuple = FlaxUNetMidBlockaDCrossAttn( in_channels=_snake_case ,dropout=self.dropout ,num_attention_heads=num_attention_heads[-1] ,use_linear_projection=self.use_linear_projection ,dtype=self.dtype ,) UpperCAmelCase_ : List[str] = nn.Conv( _snake_case ,kernel_size=(1, 1) ,padding="VALID" ,kernel_init=nn.initializers.zeros_init() ,bias_init=nn.initializers.zeros_init() ,dtype=self.dtype ,) def __call__( self ,_snake_case ,_snake_case ,_snake_case ,_snake_case ,_snake_case = 1.0 ,_snake_case = True ,_snake_case = False ,): UpperCAmelCase_ : int = self.controlnet_conditioning_channel_order if channel_order == "bgr": UpperCAmelCase_ : Union[str, Any] = jnp.flip(_snake_case ,axis=1 ) # 1. time if not isinstance(_snake_case ,jnp.ndarray ): UpperCAmelCase_ : Optional[int] = jnp.array([timesteps] ,dtype=jnp.intaa ) elif isinstance(_snake_case ,jnp.ndarray ) and len(timesteps.shape ) == 0: UpperCAmelCase_ : str = timesteps.astype(dtype=jnp.floataa ) UpperCAmelCase_ : Optional[int] = jnp.expand_dims(_snake_case ,0 ) UpperCAmelCase_ : str = self.time_proj(_snake_case ) UpperCAmelCase_ : Optional[Any] = self.time_embedding(_snake_case ) # 2. pre-process UpperCAmelCase_ : Union[str, Any] = jnp.transpose(_snake_case ,(0, 2, 3, 1) ) UpperCAmelCase_ : List[str] = self.conv_in(_snake_case ) UpperCAmelCase_ : Tuple = jnp.transpose(_snake_case ,(0, 2, 3, 1) ) UpperCAmelCase_ : Optional[int] = self.controlnet_cond_embedding(_snake_case ) sample += controlnet_cond # 3. down UpperCAmelCase_ : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(_snake_case ,_snake_case ): UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = down_block(_snake_case ,_snake_case ,_snake_case ,deterministic=not train ) else: UpperCAmelCase_ , UpperCAmelCase_ : str = down_block(_snake_case ,_snake_case ,deterministic=not train ) down_block_res_samples += res_samples # 4. mid UpperCAmelCase_ : str = self.mid_block(_snake_case ,_snake_case ,_snake_case ,deterministic=not train ) # 5. contronet blocks UpperCAmelCase_ : int = () for down_block_res_sample, controlnet_block in zip(_snake_case ,self.controlnet_down_blocks ): UpperCAmelCase_ : List[str] = controlnet_block(_snake_case ) controlnet_down_block_res_samples += (down_block_res_sample,) UpperCAmelCase_ : str = controlnet_down_block_res_samples UpperCAmelCase_ : List[Any] = self.controlnet_mid_block(_snake_case ) # 6. scaling UpperCAmelCase_ : Any = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=_snake_case ,mid_block_res_sample=_snake_case )
71
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: snake_case : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case : set[int] = set() return any( node not in visited and depth_first_search(lowercase ,lowercase ,lowercase ,lowercase ) for node in graph ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> bool: visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase ,lowercase ,lowercase ,lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
587
0
'''simple docstring''' import argparse import json import os from collections import OrderedDict import torch from transformers import LukeConfig, LukeForMaskedLM, MLukeTokenizer, XLMRobertaTokenizer from transformers.tokenization_utils_base import AddedToken @torch.no_grad() def a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' with open(__lowerCAmelCase ) as metadata_file: A_ : Union[str, Any] = json.load(__lowerCAmelCase ) A_ : Optional[Any] = LukeConfig(use_entity_aware_attention=__lowerCAmelCase , **metadata["""model_config"""] ) # Load in the weights from the checkpoint_path A_ : List[Any] = torch.load(__lowerCAmelCase , map_location="""cpu""" )["""module"""] # Load the entity vocab file A_ : Dict = load_original_entity_vocab(__lowerCAmelCase ) # add an entry for [MASK2] A_ : Union[str, Any] = max(entity_vocab.values() ) + 1 config.entity_vocab_size += 1 A_ : Dict = XLMRobertaTokenizer.from_pretrained(metadata["""model_config"""]["""bert_model_name"""] ) # Add special tokens to the token vocabulary for downstream tasks A_ : List[Any] = AddedToken("""<ent>""" , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) A_ : List[Any] = AddedToken("""<ent2>""" , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) tokenizer.add_special_tokens({"""additional_special_tokens""": [entity_token_a, entity_token_a]} ) config.vocab_size += 2 print(f'Saving tokenizer to {pytorch_dump_folder_path}' ) tokenizer.save_pretrained(__lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , """r""" ) as f: A_ : Union[str, Any] = json.load(__lowerCAmelCase ) A_ : Tuple = """MLukeTokenizer""" with open(os.path.join(__lowerCAmelCase , """tokenizer_config.json""" ) , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) with open(os.path.join(__lowerCAmelCase , MLukeTokenizer.vocab_files_names["""entity_vocab_file"""] ) , """w""" ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase ) A_ : int = MLukeTokenizer.from_pretrained(__lowerCAmelCase ) # Initialize the embeddings of the special tokens A_ : Tuple = tokenizer.convert_tokens_to_ids(["""@"""] )[0] A_ : List[str] = tokenizer.convert_tokens_to_ids(["""#"""] )[0] A_ : Any = state_dict["""embeddings.word_embeddings.weight"""] A_ : int = word_emb[ent_init_index].unsqueeze(0 ) A_ : Any = word_emb[enta_init_index].unsqueeze(0 ) A_ : Dict = torch.cat([word_emb, ent_emb, enta_emb] ) # add special tokens for 'entity_predictions.bias' for bias_name in ["lm_head.decoder.bias", "lm_head.bias"]: A_ : List[str] = state_dict[bias_name] A_ : List[str] = decoder_bias[ent_init_index].unsqueeze(0 ) A_ : List[Any] = decoder_bias[enta_init_index].unsqueeze(0 ) A_ : Optional[int] = torch.cat([decoder_bias, ent_decoder_bias, enta_decoder_bias] ) # Initialize the query layers of the entity-aware self-attention mechanism for layer_index in range(config.num_hidden_layers ): for matrix_name in ["query.weight", "query.bias"]: A_ : Union[str, Any] = f'encoder.layer.{layer_index}.attention.self.' A_ : Union[str, Any] = state_dict[prefix + matrix_name] A_ : Tuple = state_dict[prefix + matrix_name] A_ : List[Any] = state_dict[prefix + matrix_name] # Initialize the embedding of the [MASK2] entity using that of the [MASK] entity for downstream tasks A_ : List[Any] = state_dict["""entity_embeddings.entity_embeddings.weight"""] A_ : Optional[Any] = entity_emb[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ : Optional[int] = torch.cat([entity_emb, entity_mask_emb] ) # add [MASK2] for 'entity_predictions.bias' A_ : Optional[int] = state_dict["""entity_predictions.bias"""] A_ : Optional[int] = entity_prediction_bias[entity_vocab["""[MASK]"""]].unsqueeze(0 ) A_ : Any = torch.cat([entity_prediction_bias, entity_mask_bias] ) A_ : Optional[int] = LukeForMaskedLM(config=__lowerCAmelCase ).eval() state_dict.pop("""entity_predictions.decoder.weight""" ) state_dict.pop("""lm_head.decoder.weight""" ) state_dict.pop("""lm_head.decoder.bias""" ) A_ : str = OrderedDict() for key, value in state_dict.items(): if not (key.startswith("""lm_head""" ) or key.startswith("""entity_predictions""" )): A_ : Optional[Any] = state_dict[key] else: A_ : Dict = state_dict[key] A_ : int = model.load_state_dict(__lowerCAmelCase , strict=__lowerCAmelCase ) if set(__lowerCAmelCase ) != {"luke.embeddings.position_ids"}: raise ValueError(f'Unexpected unexpected_keys: {unexpected_keys}' ) if set(__lowerCAmelCase ) != { "lm_head.decoder.weight", "lm_head.decoder.bias", "entity_predictions.decoder.weight", }: raise ValueError(f'Unexpected missing_keys: {missing_keys}' ) model.tie_weights() assert (model.luke.embeddings.word_embeddings.weight == model.lm_head.decoder.weight).all() assert (model.luke.entity_embeddings.entity_embeddings.weight == model.entity_predictions.decoder.weight).all() # Check outputs A_ : Optional[Any] = MLukeTokenizer.from_pretrained(__lowerCAmelCase , task="""entity_classification""" ) A_ : Tuple = """ISO 639-3 uses the code fas for the dialects spoken across Iran and アフガニスタン (Afghanistan).""" A_ : str = (0, 9) A_ : int = tokenizer(__lowerCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) A_ : Optional[int] = model(**__lowerCAmelCase ) # Verify word hidden states if model_size == "large": raise NotImplementedError else: # base A_ : Tuple = torch.Size((1, 33, 7_68) ) A_ : List[Any] = torch.tensor([[0.0_892, 0.0_596, -0.2_819], [0.0_134, 0.1_199, 0.0_573], [-0.0_169, 0.0_927, 0.0_644]] ) if not (outputs.last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.last_hidden_state.shape is {outputs.last_hidden_state.shape}, Expected shape is {expected_shape}' ) if not torch.allclose(outputs.last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ): raise ValueError # Verify entity hidden states if model_size == "large": raise NotImplementedError else: # base A_ : Optional[Any] = torch.Size((1, 1, 7_68) ) A_ : Any = torch.tensor([[-0.1_482, 0.0_609, 0.0_322]] ) if not (outputs.entity_last_hidden_state.shape == expected_shape): raise ValueError( f'Outputs.entity_last_hidden_state.shape is {outputs.entity_last_hidden_state.shape}, Expected shape is' f' {expected_shape}' ) if not torch.allclose(outputs.entity_last_hidden_state[0, :3, :3] , __lowerCAmelCase , atol=1E-4 ): raise ValueError # Verify masked word/entity prediction A_ : Tuple = MLukeTokenizer.from_pretrained(__lowerCAmelCase ) A_ : Optional[int] = """Tokyo is the capital of <mask>.""" A_ : Union[str, Any] = (24, 30) A_ : Union[str, Any] = tokenizer(__lowerCAmelCase , entity_spans=[span] , return_tensors="""pt""" ) A_ : Union[str, Any] = model(**__lowerCAmelCase ) A_ : Dict = encoding["""input_ids"""][0].tolist() A_ : str = input_ids.index(tokenizer.convert_tokens_to_ids("""<mask>""" ) ) A_ : Dict = outputs.logits[0][mask_position_id].argmax(dim=-1 ) assert "Japan" == tokenizer.decode(__lowerCAmelCase ) A_ : Tuple = outputs.entity_logits[0][0].argmax().item() A_ : List[str] = [ entity for entity, entity_id in tokenizer.entity_vocab.items() if entity_id == predicted_entity_id ] assert [e for e in multilingual_predicted_entities if e.startswith("""en:""" )][0] == "en:Japan" # Finally, save our PyTorch model and tokenizer print("""Saving PyTorch model to {}""".format(__lowerCAmelCase ) ) model.save_pretrained(__lowerCAmelCase ) def a ( lowerCamelCase__ ): '''simple docstring''' A_ : List[Any] = ["""[MASK]""", """[PAD]""", """[UNK]"""] A_ : List[str] = [json.loads(__lowerCAmelCase ) for line in open(__lowerCAmelCase )] A_ : int = {} for entry in data: A_ : List[Any] = entry["""id"""] for entity_name, language in entry["entities"]: if entity_name in SPECIAL_TOKENS: A_ : Optional[Any] = entity_id break A_ : List[Any] = f'{language}:{entity_name}' A_ : Union[str, Any] = entity_id return new_mapping if __name__ == "__main__": lowerCamelCase :str = argparse.ArgumentParser() # Required parameters parser.add_argument('''--checkpoint_path''', type=str, help='''Path to a pytorch_model.bin file.''') parser.add_argument( '''--metadata_path''', default=None, type=str, help='''Path to a metadata.json file, defining the configuration.''' ) parser.add_argument( '''--entity_vocab_path''', default=None, type=str, help='''Path to an entity_vocab.tsv file, containing the entity vocabulary.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to where to dump the output PyTorch model.''' ) parser.add_argument( '''--model_size''', default='''base''', type=str, choices=['''base''', '''large'''], help='''Size of the model to be converted.''' ) lowerCamelCase :int = parser.parse_args() convert_luke_checkpoint( args.checkpoint_path, args.metadata_path, args.entity_vocab_path, args.pytorch_dump_folder_path, args.model_size, )
712
'''simple docstring''' from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase :Any = logging.get_logger(__name__) lowerCamelCase :Any = { '''microsoft/beit-base-patch16-224-pt22k''': ( '''https://huggingface.co/microsoft/beit-base-patch16-224-pt22k/resolve/main/config.json''' ), # See all BEiT models at https://huggingface.co/models?filter=beit } class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = 'beit' def __init__(self , lowercase=8192 , lowercase=768 , lowercase=12 , lowercase=12 , lowercase=3072 , lowercase="gelu" , lowercase=0.0 , lowercase=0.0 , lowercase=0.02 , lowercase=1E-12 , lowercase=224 , lowercase=16 , lowercase=3 , lowercase=False , lowercase=False , lowercase=False , lowercase=False , lowercase=0.1 , lowercase=0.1 , lowercase=True , lowercase=[3, 5, 7, 11] , lowercase=[1, 2, 3, 6] , lowercase=True , lowercase=0.4 , lowercase=256 , lowercase=1 , lowercase=False , lowercase=255 , **lowercase , ): super().__init__(**lowercase ) A_ : Union[str, Any] = vocab_size A_ : List[str] = hidden_size A_ : Optional[int] = num_hidden_layers A_ : Tuple = num_attention_heads A_ : List[Any] = intermediate_size A_ : Optional[int] = hidden_act A_ : str = hidden_dropout_prob A_ : Any = attention_probs_dropout_prob A_ : Dict = initializer_range A_ : str = layer_norm_eps A_ : Any = image_size A_ : int = patch_size A_ : List[str] = num_channels A_ : Any = use_mask_token A_ : Dict = use_absolute_position_embeddings A_ : List[Any] = use_relative_position_bias A_ : Tuple = use_shared_relative_position_bias A_ : Optional[int] = layer_scale_init_value A_ : Tuple = drop_path_rate A_ : Dict = use_mean_pooling # decode head attributes (semantic segmentation) A_ : Tuple = out_indices A_ : Union[str, Any] = pool_scales # auxiliary head attributes (semantic segmentation) A_ : Optional[int] = use_auxiliary_head A_ : Union[str, Any] = auxiliary_loss_weight A_ : Tuple = auxiliary_channels A_ : List[Any] = auxiliary_num_convs A_ : Dict = auxiliary_concat_input A_ : Optional[Any] = semantic_loss_ignore_index class _lowerCAmelCase ( __UpperCAmelCase ): __SCREAMING_SNAKE_CASE : Optional[Any] = version.parse('1.11' ) @property def _a (self ): return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def _a (self ): return 1E-4
686
0
from __future__ import annotations from bisect import bisect_left from functools import total_ordering from heapq import merge @total_ordering class lowerCamelCase_ ( _lowercase ): def __lt__( self : str , __A : Tuple ): return self[-1] < other[-1] def __eq__( self : Union[str, Any] , __A : Tuple ): return self[-1] == other[-1] def __SCREAMING_SNAKE_CASE ( a__ : list ) -> list: __A : list[Stack] = [] # sort into stacks for element in collection: __A : str = Stack([element] ) __A : List[str] = bisect_left(a__ ,a__ ) if i != len(a__ ): stacks[i].append(a__ ) else: stacks.append(a__ ) # use a heap-based merge to merge stack efficiently __A : Optional[Any] = merge(*(reversed(a__ ) for stack in stacks) ) return collection if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() UpperCAmelCase_ : str = [int(item) for item in user_input.split(''',''')] print(patience_sort(unsorted))
17
import fire from utils import calculate_rouge, save_json def __SCREAMING_SNAKE_CASE ( a__ : Any ,a__ : Tuple ,a__ : Any=None ,**a__ : Dict ) -> Optional[Any]: __A : int = [x.strip() for x in open(a__ ).readlines()] __A : List[str] = [x.strip() for x in open(a__ ).readlines()][: len(a__ )] __A : List[Any] = calculate_rouge(a__ ,a__ ,**a__ ) if save_path is not None: save_json(a__ ,a__ ,indent=a__ ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
17
1
'''simple docstring''' import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def _A ( lowerCAmelCase_ : Optional[int] ): """simple docstring""" if is_torch_version("<" , "2.0.0" ) or not hasattr(lowerCamelCase_ , "_dynamo" ): return False return isinstance(lowerCamelCase_ , torch._dynamo.eval_frame.OptimizedModule ) def _A ( lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[Any] = True ): """simple docstring""" lowerCAmelCase__ = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) lowerCAmelCase__ = is_compiled_module(lowerCamelCase_ ) if is_compiled: lowerCAmelCase__ = model lowerCAmelCase__ = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = model.module if not keep_fpaa_wrapper: lowerCAmelCase__ = getattr(lowerCamelCase_ , "forward" ) lowerCAmelCase__ = model.__dict__.pop("_original_forward" , lowerCamelCase_ ) if original_forward is not None: while hasattr(lowerCamelCase_ , "__wrapped__" ): lowerCAmelCase__ = forward.__wrapped__ if forward == original_forward: break lowerCAmelCase__ = forward if getattr(lowerCamelCase_ , "_converted_to_transformer_engine" , lowerCamelCase_ ): convert_model(lowerCamelCase_ , to_transformer_engine=lowerCamelCase_ ) if is_compiled: lowerCAmelCase__ = model lowerCAmelCase__ = compiled_model return model def _A ( ): """simple docstring""" PartialState().wait_for_everyone() def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Tuple ): """simple docstring""" if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCamelCase_ , lowerCamelCase_ ) elif PartialState().local_process_index == 0: torch.save(lowerCamelCase_ , lowerCamelCase_ ) @contextmanager def _A ( **lowerCAmelCase_ : Tuple ): """simple docstring""" for key, value in kwargs.items(): lowerCAmelCase__ = str(lowerCamelCase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def _A ( lowerCAmelCase_ : str ): """simple docstring""" if not hasattr(lowerCamelCase_ , "__qualname__" ) and not hasattr(lowerCamelCase_ , "__name__" ): lowerCAmelCase__ = getattr(lowerCamelCase_ , "__class__" , lowerCamelCase_ ) if hasattr(lowerCamelCase_ , "__qualname__" ): return obj.__qualname__ if hasattr(lowerCamelCase_ , "__name__" ): return obj.__name__ return str(lowerCamelCase_ ) def _A ( lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" for key, value in source.items(): if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowerCAmelCase__ = destination.setdefault(lowerCamelCase_ , {} ) merge_dicts(lowerCamelCase_ , lowerCamelCase_ ) else: lowerCAmelCase__ = value return destination def _A ( lowerCAmelCase_ : Optional[Any] = None ): """simple docstring""" if port is None: lowerCAmelCase__ = 2_9500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(("localhost", port) ) == 0
713
class __lowerCamelCase : """simple docstring""" def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : int ) -> List[str]: lowerCAmelCase__ = n lowerCAmelCase__ = [None] * self.n lowerCAmelCase__ = 0 # index of the first element lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def __len__( self : str ) -> int: return self.size def a ( self : Any ) -> bool: return self.size == 0 def a ( self : Dict ) -> List[str]: return False if self.is_empty() else self.array[self.front] def a ( self : Dict , SCREAMING_SNAKE_CASE__ : Dict ) -> Dict: if self.size >= self.n: raise Exception("QUEUE IS FULL" ) lowerCAmelCase__ = data lowerCAmelCase__ = (self.rear + 1) % self.n self.size += 1 return self def a ( self : int ) -> Tuple: if self.size == 0: raise Exception("UNDERFLOW" ) lowerCAmelCase__ = self.array[self.front] lowerCAmelCase__ = None lowerCAmelCase__ = (self.front + 1) % self.n self.size -= 1 return temp
125
0
"""simple docstring""" import argparse import shutil import time from json import JSONDecodeError from logging import getLogger from pathlib import Path from typing import Dict, List import torch from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoModelForSeqaSeqLM, AutoTokenizer from utils import ( SeqaSeqDataset, calculate_bleu, calculate_rouge, chunks, lmap, load_json, parse_numeric_n_bool_cl_kwargs, save_json, use_task_specific_params, write_txt_file, ) lowerCAmelCase : Optional[Any] = getLogger(__name__) def a__ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = 8 , snake_case__ = 10_24 , snake_case__="val" , snake_case__=None , snake_case__=False , snake_case__="summarization" , snake_case__=None , snake_case__=1 , snake_case__ = None , snake_case__="" , **snake_case__ , ) -> Dict: lowerCamelCase = str(snake_case__ ) assert local_rank is not None torch.distributed.init_process_group(backend="""nccl""" , rank=snake_case__ ) lowerCamelCase = Path(snake_case__ ) lowerCamelCase = save_dir.joinpath(F'rank_{local_rank}_output.json' ) torch.cuda.set_device(snake_case__ ) lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained(snake_case__ ).cuda() if fpaa: lowerCamelCase = model.half() # determine if we need to increase num_beams use_task_specific_params(snake_case__ , snake_case__ ) # update config with task specific params lowerCamelCase = generate_kwargs.pop("""num_beams""" , model.config.num_beams ) # AttributeError risk? if num_return_sequences > num_beams: lowerCamelCase = num_return_sequences lowerCamelCase = AutoTokenizer.from_pretrained(snake_case__ ) logger.info(F'Inferred tokenizer type: {tokenizer.__class__}' ) # if this is wrong, check config.model_type. if max_source_length is None: lowerCamelCase = tokenizer.model_max_length if prefix is None: lowerCamelCase = prefix or getattr(model.config , """prefix""" , """""" ) or """""" lowerCamelCase = SeqaSeqDataset( snake_case__ , snake_case__ , snake_case__ , max_target_length=10_24 , type_path=snake_case__ , n_obs=snake_case__ , prefix=snake_case__ , **snake_case__ , ) # I set shuffle=True for a more accurate progress bar. # If all the longest samples are first, the prog bar estimate is too high at the beginning. lowerCamelCase = ds.make_sortish_sampler(snake_case__ , distributed=snake_case__ , add_extra_examples=snake_case__ , shuffle=snake_case__ ) lowerCamelCase = DataLoader(snake_case__ , sampler=snake_case__ , batch_size=snake_case__ , collate_fn=ds.collate_fn ) lowerCamelCase = [] for batch in tqdm(snake_case__ ): lowerCamelCase = model.generate( input_ids=batch["""input_ids"""].to(model.device ) , attention_mask=batch["""attention_mask"""].to(model.device ) , num_return_sequences=snake_case__ , num_beams=snake_case__ , **snake_case__ , ) lowerCamelCase = tokenizer.batch_decode(snake_case__ , skip_special_tokens=snake_case__ , clean_up_tokenization_spaces=snake_case__ ) lowerCamelCase = batch["""ids"""] if num_return_sequences > 1: lowerCamelCase = chunks(snake_case__ , snake_case__ ) # batch size chunks, each of size num_return_seq for i, pred in enumerate(snake_case__ ): results.append({"""pred""": pred, """id""": ids[i].item()} ) save_json(snake_case__ , snake_case__ ) return results, sampler.num_replicas def a__ ( ) -> Tuple: lowerCamelCase = argparse.ArgumentParser( epilog="""Unspecified args like --num_beams=2 --decoder_start_token_id=4 are passed to model.generate""" ) parser.add_argument("""--data_dir""" , type=snake_case__ , help="""like cnn_dm/test.source""" ) parser.add_argument( """--model_name""" , type=snake_case__ , help="""like facebook/bart-large-cnn,t5-base, etc.""" , default="""sshleifer/distilbart-xsum-12-3""" , ) parser.add_argument("""--save_dir""" , type=snake_case__ , help="""where to save""" , default="""tmp_gen""" ) parser.add_argument("""--max_source_length""" , type=snake_case__ , default=snake_case__ ) parser.add_argument( """--type_path""" , type=snake_case__ , default="""test""" , help="""which subset to evaluate typically train/val/test""" ) parser.add_argument("""--task""" , type=snake_case__ , default="""summarization""" , help="""used for task_specific_params + metrics""" ) parser.add_argument("""--bs""" , type=snake_case__ , default=8 , required=snake_case__ , help="""batch size""" ) parser.add_argument( """--local_rank""" , type=snake_case__ , default=-1 , required=snake_case__ , help="""should be passed by distributed.launch""" ) parser.add_argument( """--n_obs""" , type=snake_case__ , default=snake_case__ , required=snake_case__ , help="""How many observations. Defaults to all.""" ) parser.add_argument( """--num_return_sequences""" , type=snake_case__ , default=1 , required=snake_case__ , help="""How many sequences to return""" ) parser.add_argument( """--sync_timeout""" , type=snake_case__ , default=6_00 , required=snake_case__ , help="""How long should master process wait for other processes to finish.""" , ) parser.add_argument("""--src_lang""" , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument("""--tgt_lang""" , type=snake_case__ , default=snake_case__ , required=snake_case__ ) parser.add_argument( """--prefix""" , type=snake_case__ , required=snake_case__ , default=snake_case__ , help="""will be added to the begininng of src examples""" ) parser.add_argument("""--fp16""" , action="""store_true""" ) parser.add_argument("""--debug""" , action="""store_true""" ) lowerCamelCase = time.time() lowerCamelCase , lowerCamelCase = parser.parse_known_args() lowerCamelCase = parse_numeric_n_bool_cl_kwargs(snake_case__ ) if generate_kwargs and args.local_rank <= 0: print(F'parsed the following generate kwargs: {generate_kwargs}' ) lowerCamelCase = Path(args.save_dir + """_tmp""" ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) # this handles locking. lowerCamelCase = list(json_save_dir.glob("""rank_*.json""" ) ) if intermediate_files: raise ValueError(F'Found files at {json_save_dir} please move or remove them.' ) # In theory, a node could finish and save before another node hits this. If this happens, we can address later. lowerCamelCase = {} if args.src_lang is not None: lowerCamelCase = args.src_lang if args.tgt_lang is not None: lowerCamelCase = args.tgt_lang Path(args.save_dir ).mkdir(exist_ok=snake_case__ ) lowerCamelCase , lowerCamelCase = eval_data_dir( args.data_dir , snake_case__ , args.model_name , type_path=args.type_path , bs=args.bs , fpaa=args.fpaa , task=args.task , local_rank=args.local_rank , n_obs=args.n_obs , max_source_length=args.max_source_length , num_return_sequences=args.num_return_sequences , prefix=args.prefix , dataset_kwargs=snake_case__ , **snake_case__ , ) if args.local_rank <= 0: lowerCamelCase = Path(args.save_dir ) save_dir.mkdir(exist_ok=snake_case__ ) lowerCamelCase = gather_results_from_each_node(snake_case__ , snake_case__ , args.sync_timeout ) lowerCamelCase = combine_partial_results(snake_case__ ) if args.num_return_sequences > 1: lowerCamelCase = save_dir.joinpath("""pseudolabel_results.json""" ) print(F'Saving aggregated results at {save_path}, intermediate in {json_save_dir}/' ) save_json(snake_case__ , snake_case__ ) return lowerCamelCase = Path(args.data_dir ).joinpath(args.type_path + """.target""" ) with open(snake_case__ ) as f: lowerCamelCase = [x.rstrip() for x in f.readlines()][: len(snake_case__ )] # Calculate metrics, save metrics, and save _generations.txt lowerCamelCase = """translation""" in args.task lowerCamelCase = calculate_bleu if calc_bleu else calculate_rouge lowerCamelCase = """bleu""" if calc_bleu else """rouge""" lowerCamelCase = score_fn(snake_case__ , snake_case__ ) lowerCamelCase = len(snake_case__ ) lowerCamelCase = time.time() - start_time lowerCamelCase = round(runtime / metrics["""n_obs"""] , 4 ) lowerCamelCase = num_replicas # TODO(@stas00): add whatever metadata to metrics lowerCamelCase = save_dir.joinpath(F'{args.type_path}_{metric_name}.json' ) save_json(snake_case__ , snake_case__ , indent=snake_case__ ) print(snake_case__ ) write_txt_file(snake_case__ , save_dir.joinpath(F'{args.type_path}_generations.txt' ) ) if args.debug: write_txt_file(snake_case__ , save_dir.joinpath(F'{args.type_path}.target' ) ) else: shutil.rmtree(snake_case__ ) def a__ ( snake_case__ ) -> List: lowerCamelCase = [] for partial_result in partial_results: records.extend(snake_case__ ) lowerCamelCase = sorted(snake_case__ , key=lambda snake_case__ : x["id"] ) lowerCamelCase = [x["""pred"""] for x in records] return preds def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> List[Dict[str, List]]: lowerCamelCase = time.time() logger.info("""waiting for all nodes to finish""" ) lowerCamelCase = None while (time.time() - start_wait) < timeout: lowerCamelCase = list(save_dir.glob("""rank_*.json""" ) ) if len(snake_case__ ) < num_replicas: continue try: # make sure all json files are fully saved lowerCamelCase = lmap(snake_case__ , snake_case__ ) return json_data except JSONDecodeError: continue else: raise TimeoutError("""Rank 0 gave up on waiting for other processes""" ) # Unreachable if __name__ == "__main__": # Usage for MT: run_generate()
543
from __future__ import annotations from math import ceil, floor, sqrt def __a ( SCREAMING_SNAKE_CASE = 2_0_0_0_0_0_0 ) -> int: '''simple docstring''' __UpperCAmelCase = [0] __UpperCAmelCase = 42 for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target __UpperCAmelCase = 0 # the area corresponding to the grid that gives the product closest to target __UpperCAmelCase = 0 # an estimate of b, using the quadratic formula __UpperCAmelCase = 42 # the largest integer less than b_estimate __UpperCAmelCase = 42 # the largest integer less than b_estimate __UpperCAmelCase = 42 # the triangle number corresponding to b_floor __UpperCAmelCase = 42 # the triangle number corresponding to b_ceil __UpperCAmelCase = 42 for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): __UpperCAmelCase = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 __UpperCAmelCase = floor(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = ceil(SCREAMING_SNAKE_CASE ) __UpperCAmelCase = triangle_numbers[b_floor] __UpperCAmelCase = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): __UpperCAmelCase = triangle_b_first_guess * triangle_a __UpperCAmelCase = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): __UpperCAmelCase = triangle_b_second_guess * triangle_a __UpperCAmelCase = idx_a * b_ceil return area if __name__ == "__main__": print(F"""{solution() = }""")
303
0
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class lowerCamelCase ( unittest.TestCase ): @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Dict = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) _snake_case: Optional[Any] = load_dataset('ashraq/esc50' ) _snake_case: int = dataset['train']['audio'][-1]['array'] _snake_case: List[Any] = audio_classifier(__snake_case , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__snake_case ) , [{'score': 0.501, 'label': 'Sound of a dog'}, {'score': 0.499, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' pass @slow @require_torch def SCREAMING_SNAKE_CASE_ ( self : List[str] ): '''simple docstring''' _snake_case: Dict = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog _snake_case: Optional[Any] = load_dataset('ashraq/esc50' ) _snake_case: Tuple = dataset['train']['audio'][-1]['array'] _snake_case: Any = audio_classifier(__snake_case , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__snake_case ) , [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ] , ) _snake_case: List[Any] = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) _snake_case: Tuple = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__snake_case ) , [ [ {'score': 0.999, 'label': 'Sound of a dog'}, {'score': 0.001, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def SCREAMING_SNAKE_CASE_ ( self : Any ): '''simple docstring''' pass
273
'''simple docstring''' A : str = { 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } A : Union[str, Any] = {value: key for key, value in encode_dict.items()} def lowercase_ ( lowercase__ ) ->str: _snake_case: Union[str, Any] = '' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('encode() accepts only letters of the alphabet and spaces' ) return encoded def lowercase_ ( lowercase__ ) ->str: if set(lowercase__ ) - {"A", "B", " "} != set(): raise Exception('decode() accepts only \'A\', \'B\' and spaces' ) _snake_case: List[Any] = '' for word in coded.split(): while len(lowercase__ ) != 0: decoded += decode_dict[word[:5]] _snake_case: Optional[int] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
273
1
import numpy as np _a: Any = [ ["""a""", """b""", """c""", """d""", """e"""], ["""f""", """g""", """h""", """i""", """k"""], ["""l""", """m""", """n""", """o""", """p"""], ["""q""", """r""", """s""", """t""", """u"""], ["""v""", """w""", """x""", """y""", """z"""], ] class __UpperCamelCase : def __init__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = np.array(lowerCAmelCase ) def __A ( self : Any , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ , UpperCAmelCase_ = np.where(letter == self.SQUARE ) UpperCAmelCase_ = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __A ( self : str , lowerCAmelCase : int , lowerCAmelCase : int ): '''simple docstring''' UpperCAmelCase_ = self.SQUARE[indexa - 1, indexa - 1] return letter def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = message.lower() UpperCAmelCase_ = message.replace(" " , "" ) UpperCAmelCase_ = message.replace("j" , "i" ) UpperCAmelCase_ = np.empty((2, len(lowerCAmelCase )) ) for letter_index in range(len(lowerCAmelCase ) ): UpperCAmelCase_ = self.letter_to_numbers(message[letter_index] ) UpperCAmelCase_ = numbers[0] UpperCAmelCase_ = numbers[1] UpperCAmelCase_ = first_step.reshape(2 * len(lowerCAmelCase ) ) UpperCAmelCase_ = "" for numbers_index in range(len(lowerCAmelCase ) ): UpperCAmelCase_ = int(second_step[numbers_index * 2] ) UpperCAmelCase_ = int(second_step[(numbers_index * 2) + 1] ) UpperCAmelCase_ = self.numbers_to_letter(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = encoded_message + letter return encoded_message def __A ( self : Any , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = message.lower() message.replace(" " , "" ) UpperCAmelCase_ = np.empty(2 * len(lowerCAmelCase ) ) for letter_index in range(len(lowerCAmelCase ) ): UpperCAmelCase_ = self.letter_to_numbers(message[letter_index] ) UpperCAmelCase_ = numbers[0] UpperCAmelCase_ = numbers[1] UpperCAmelCase_ = first_step.reshape((2, len(lowerCAmelCase )) ) UpperCAmelCase_ = "" for numbers_index in range(len(lowerCAmelCase ) ): UpperCAmelCase_ = int(second_step[0, numbers_index] ) UpperCAmelCase_ = int(second_step[1, numbers_index] ) UpperCAmelCase_ = self.numbers_to_letter(lowerCAmelCase , lowerCAmelCase ) UpperCAmelCase_ = decoded_message + letter return decoded_message
162
import os def __lowerCAmelCase ( ): UpperCAmelCase_ = os.path.dirname(os.path.realpath(A ) ) UpperCAmelCase_ = os.path.join(A , "triangle.txt" ) with open(A ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [] for line in triangle: UpperCAmelCase_ = [] for number in line.strip().split(" " ): numbers_from_line.append(int(A ) ) a.append(A ) for i in range(1 , len(A ) ): for j in range(len(a[i] ) ): UpperCAmelCase_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCAmelCase_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(A , A ) return max(a[-1] ) if __name__ == "__main__": print(solution())
162
1
'''simple docstring''' import os from math import logaa def __lowerCamelCase ( __snake_case : str = "base_exp.txt" ) -> int: """simple docstring""" A__ : float =0 A__ : List[Any] =0 for i, line in enumerate(open(os.path.join(os.path.dirname(__snake_case ), __snake_case ) ) ): A__ , A__ : str =list(map(__snake_case, line.split(""",""" ) ) ) if x * logaa(__snake_case ) > largest: A__ : Optional[int] =x * logaa(__snake_case ) A__ : Optional[Any] =i + 1 return result if __name__ == "__main__": print(solution())
687
'''simple docstring''' import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __snake_case : int = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __snake_case : List[str] = 5_0003 __snake_case : Dict = 5_0002 @require_sentencepiece @require_tokenizers class lowerCamelCase ( lowercase_ , unittest.TestCase ): '''simple docstring''' __snake_case = PLBartTokenizer __snake_case = None __snake_case = False def lowercase__ ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing A__ : Tuple =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' A__ : Union[str, Any] =PLBartTokenizer(lowerCAmelCase_ , language_codes="""base""" , keep_accents=lowerCAmelCase_ ) A__ : Optional[Any] =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Tuple =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : Any =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : str =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Optional[Any] =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 4 , lowerCAmelCase_ )] self.assertListEqual(lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """<mask>"""] ) A__ : Dict ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : int =PLBartTokenizer(lowerCAmelCase_ , language_codes="""multi""" , keep_accents=lowerCAmelCase_ ) A__ : Dict =tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCAmelCase_ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) A__ : Dict =tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) A__ : str =tokenizer.convert_tokens_to_ids(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) A__ : Dict =tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) self.assertListEqual( lowerCAmelCase_ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) A__ : Tuple =tokenizer.vocab_size A__ : Dict =[tokenizer.convert_ids_to_tokens(lowerCAmelCase_ ) for x in range(end - 7 , lowerCAmelCase_ )] self.assertListEqual( lowerCAmelCase_ , ["""__java__""", """__python__""", """__en_XX__""", """__javascript__""", """__php__""", """__ruby__""", """__go__"""] ) A__ : Any ="""java.lang.Exception, python.lang.Exception, javascript, php, ruby, go""" A__ : int =tokenizer(lowerCAmelCase_ ).input_ids self.assertEqual( tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) , lowerCAmelCase_ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' __snake_case = 'uclanlp/plbart-python-en_XX' __snake_case = [ 'def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])', 'def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])', ] __snake_case = [ 'Returns the maximum value of a b c.', 'Sums the values of a b c.', ] __snake_case = [ 134, 5452, 3_3460, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 988, 20, 3_3456, 19, 3_3456, 771, 39, 4258, 889, 3318, 3_3441, 3_3463, 3_3465, 3_3463, 3_3449, 2471, 2, PYTHON_CODE, ] @classmethod def lowercase__ ( cls : Optional[int] ) -> str: '''simple docstring''' A__ : PLBartTokenizer =PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes="""base""" , src_lang="""python""" , tgt_lang="""en_XX""" ) A__ : Optional[Any] =1 return cls def lowercase__ ( self : str ) -> Optional[Any]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__java__"""] , 5_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__python__"""] , 5_00_02 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids["""__en_XX__"""] , 5_00_03 ) def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) def lowercase__ ( self : int ) -> Optional[int]: '''simple docstring''' self.assertIn(lowerCAmelCase_ , self.tokenizer.all_special_ids ) A__ : Tuple =[EN_CODE, 90_37, 3_34_42, 57, 7_52, 1_53, 14, 56, 18, 9, 2] A__ : Any =self.tokenizer.decode(lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) A__ : Optional[int] =self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertNotIn(self.tokenizer.eos_token , lowerCAmelCase_ ) def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' A__ : Optional[int] =["""def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])""" * 20] self.assertIsInstance(src_text[0] , lowerCAmelCase_ ) A__ : str =10 A__ : Optional[Any] =self.tokenizer(lowerCAmelCase_ , max_length=lowerCAmelCase_ , truncation=lowerCAmelCase_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowerCAmelCase_ ) self.assertEqual(len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(["""<mask>""", """__java__"""] ) , [5_00_04, 5_00_01] ) def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' A__ : Tuple =tempfile.mkdtemp() A__ : Tuple =self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowerCAmelCase_ ) A__ : Optional[Any] =PLBartTokenizer.from_pretrained(lowerCAmelCase_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowerCAmelCase_ ) @require_torch def lowercase__ ( self : Any ) -> Any: '''simple docstring''' A__ : List[str] =self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , return_tensors="""pt""" ) A__ : str =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , lowerCAmelCase_ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def lowercase__ ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' A__ : Union[str, Any] =self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=len(self.expected_src_tokens ) , return_tensors="""pt""" , ) A__ : Any =shift_tokens_right(batch["""labels"""] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) A__ : List[Any] =batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowerCAmelCase_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def lowercase__ ( self : Any ) -> Dict: '''simple docstring''' A__ : Any =self.tokenizer(self.src_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=3 , return_tensors="""pt""" ) A__ : Optional[int] =self.tokenizer( text_target=self.tgt_text , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ , max_length=10 , return_tensors="""pt""" ) A__ : Optional[Any] =targets["""input_ids"""] A__ : List[str] =shift_tokens_right(lowerCAmelCase_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def lowercase__ ( self : Any ) -> str: '''simple docstring''' A__ : Any =self.tokenizer._build_translation_inputs( """A test""" , return_tensors="""pt""" , src_lang="""en_XX""" , tgt_lang="""java""" ) self.assertEqual( nested_simplify(lowerCAmelCase_ ) , { # A, test, EOS, en_XX """input_ids""": [[1_50, 2_42, 2, 5_00_03]], """attention_mask""": [[1, 1, 1, 1]], # java """forced_bos_token_id""": 5_00_01, } , )
687
1
'''simple docstring''' from typing import Any class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self , lowerCamelCase ): _snake_case = data _snake_case = None def __repr__( self ): return F'''Node({self.data})''' class __SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self ): _snake_case = None def __iter__( self ): _snake_case = self.head while node: yield node.data _snake_case = node.next def __len__( self ): return sum(1 for _ in self ) def __repr__( self ): return "->".join([str(UpperCamelCase__ ) for item in self] ) def __getitem__( self , lowerCamelCase ): if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self , lowerCamelCase , lowerCamelCase ): if not 0 <= index < len(self ): raise ValueError("list index out of range." ) _snake_case = self.head for _ in range(UpperCamelCase__ ): _snake_case = current.next _snake_case = data def UpperCamelCase( self , lowerCamelCase ): self.insert_nth(len(self ) , UpperCamelCase__ ) def UpperCamelCase( self , lowerCamelCase ): self.insert_nth(0 , UpperCamelCase__ ) def UpperCamelCase( self , lowerCamelCase , lowerCamelCase ): if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) _snake_case = Node(UpperCamelCase__ ) if self.head is None: _snake_case = new_node elif index == 0: _snake_case = self.head # link new_node to head _snake_case = new_node else: _snake_case = self.head for _ in range(index - 1 ): _snake_case = temp.next _snake_case = temp.next _snake_case = new_node def UpperCamelCase( self ): # print every node data print(self ) def UpperCamelCase( self ): return self.delete_nth(0 ) def UpperCamelCase( self ): # delete from tail return self.delete_nth(len(self ) - 1 ) def UpperCamelCase( self , lowerCamelCase = 0 ): if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) _snake_case = self.head # default first node if index == 0: _snake_case = self.head.next else: _snake_case = self.head for _ in range(index - 1 ): _snake_case = temp.next _snake_case = temp.next _snake_case = temp.next.next return delete_node.data def UpperCamelCase( self ): return self.head is None def UpperCamelCase( self ): _snake_case = None _snake_case = self.head while current: # Store the current node's next node. _snake_case = current.next # Make the current node's next point backwards _snake_case = prev # Make the previous node be the current node _snake_case = current # Make the current node the next node (to progress iteration) _snake_case = next_node # Return prev in order to put the head at the end _snake_case = prev def snake_case_ ( ): '''simple docstring''' _snake_case = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(SCREAMING_SNAKE_CASE__ ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(SCREAMING_SNAKE_CASE__ ) == 9 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): _snake_case = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(-8 , 1 ) ) def snake_case_ ( ): '''simple docstring''' _snake_case = [ -9, 1_00, Node(77_34_51_12 ), '''dlrow olleH''', 7, 55_55, 0, -192.55555, '''Hello, world!''', 77.9, Node(10 ), None, None, 12.20, ] _snake_case = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head _snake_case = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail _snake_case = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list _snake_case = linked_list.delete_nth(10 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def snake_case_ ( ): '''simple docstring''' from doctest import testmod testmod() _snake_case = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(SCREAMING_SNAKE_CASE__ ) print("\nReading/changing Node data using indexing:" ) print(f'''Element at Position 1: {linked_list[1]}''' ) _snake_case = input("Enter New Value: " ).strip() print("New list:" ) print(SCREAMING_SNAKE_CASE__ ) print(f'''length of linked_list is : {len(SCREAMING_SNAKE_CASE__ )}''' ) if __name__ == "__main__": main()
672
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowercase__ = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowercase__ = 1_2_8_0_2_2 lowercase__ = 1_2_8_0_2_8 @require_sentencepiece class snake_case__ ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCamelCase = MaMaaaTokenizer lowerCamelCase = False lowerCamelCase = False lowerCamelCase = True def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" super().setUp() snake_case : int = ['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case : int = dict(zip(UpperCamelCase__ , range(len(UpperCamelCase__ ) ) ) ) snake_case : Optional[int] = Path(self.tmpdirname ) save_json(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''vocab_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(UpperCamelCase__ , save_dir / VOCAB_FILES_NAMES['''spm_file'''] ) snake_case : Optional[int] = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowerCAmelCase ( self : Dict , **UpperCamelCase__ : Optional[int] ) -> Any: """simple docstring""" return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase__ ) def lowerCAmelCase ( self : Tuple , UpperCamelCase__ : Tuple ) -> str: """simple docstring""" return ( "This is a test", "This is a test", ) def lowerCAmelCase ( self : List[str] ) -> Optional[Any]: """simple docstring""" snake_case : Optional[int] = '''</s>''' snake_case : str = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase__ ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" snake_case : Tuple = self.get_tokenizer() snake_case : Dict = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''</s>''' ) self.assertEqual(vocab_keys[1] , '''<unk>''' ) self.assertEqual(vocab_keys[-1] , '''<s>''' ) self.assertEqual(len(UpperCamelCase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip('''Skip this test while all models are still to be uploaded.''' ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" pass def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[Any] = self.get_tokenizer() snake_case : Optional[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [2, 3, 4, 5, 6] , ) snake_case : Any = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) snake_case : Optional[int] = tokenizer.convert_tokens_to_string(UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , '''This is a test''' ) @slow def lowerCAmelCase ( self : Union[str, Any] ) -> List[Any]: """simple docstring""" snake_case : Tuple = {'''input_ids''': [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase__ , model_name='''facebook/m2m100_418M''' , revision='''c168bae485c864188cf9aa0e4108b0b6934dc91e''' , ) @require_torch @require_sentencepiece @require_tokenizers class snake_case__ ( unittest.TestCase ): """simple docstring""" lowerCamelCase = """facebook/m2m100_418M""" lowerCamelCase = [ """In my opinion, there are two levels of response from the French government.""", """NSA Affair Emphasizes Complete Lack of Debate on Intelligence""", ] lowerCamelCase = [ """Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.""", """L'affaire NSA souligne l'absence totale de débat sur le renseignement""", ] # fmt: off lowerCamelCase = [EN_CODE, 593, 1949, 115781, 4, 71586, 4234, 60633, 126233, 432, 123808, 15592, 1197, 117132, 120618, 5, 2] @classmethod def lowerCAmelCase ( cls : List[Any] ) -> int: """simple docstring""" snake_case : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en''' , tgt_lang='''fr''' ) snake_case : List[str] = 1 return cls def lowerCAmelCase ( self : Union[str, Any] ) -> str: """simple docstring""" self.assertEqual(self.tokenizer.get_lang_id('''ar''' ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id('''en''' ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id('''ro''' ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id('''mr''' ) , 12_8063 ) def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" snake_case : List[str] = self.tokenizer.get_vocab() self.assertEqual(len(UpperCamelCase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab['''<unk>'''] , 3 ) self.assertIn(self.tokenizer.get_lang_token('''en''' ) , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" snake_case : Dict = '''en''' snake_case : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) def lowerCAmelCase ( self : List[str] ) -> List[Any]: """simple docstring""" self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids ) # fmt: off snake_case : str = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on snake_case : int = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) snake_case : List[Any] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ ) def lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" snake_case : Union[str, Any] = tempfile.mkdtemp() snake_case : Union[str, Any] = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(UpperCamelCase__ ) snake_case : Optional[int] = MaMaaaTokenizer.from_pretrained(UpperCamelCase__ ) self.assertDictEqual(new_tok.lang_token_to_id , UpperCamelCase__ ) @require_torch def lowerCAmelCase ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" snake_case : Optional[Any] = '''en''' snake_case : int = '''fr''' snake_case : Dict = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , return_tensors='''pt''' ) snake_case : List[str] = shift_tokens_right( batch['''labels'''] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: snake_case : Tuple = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowerCAmelCase ( self : int ) -> Union[str, Any]: """simple docstring""" snake_case : List[str] = '''mr''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) snake_case : Optional[int] = '''zh''' self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowerCAmelCase ( self : Union[str, Any] ) -> Dict: """simple docstring""" snake_case : List[Any] = '''mr''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''mr''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) snake_case : List[str] = '''zh''' self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id('''zh''' )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowerCAmelCase ( self : Tuple ) -> str: """simple docstring""" snake_case : int = self.tokenizer._build_translation_inputs('''A test''' , return_tensors='''pt''' , src_lang='''en''' , tgt_lang='''ar''' ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , { # en_XX, A, test, EOS '''input_ids''': [[12_8022, 58, 4183, 2]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 12_8006, } , )
638
0
import datasets __lowerCamelCase : str = '''\ @InProceedings{conneau2018xnli, author = "Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin", title = "XNLI: Evaluating Cross-lingual Sentence Representations", booktitle = "Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing", year = "2018", publisher = "Association for Computational Linguistics", location = "Brussels, Belgium", } ''' __lowerCamelCase : Optional[Any] = '''\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). ''' __lowerCamelCase : Optional[Any] = ''' Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: \'accuracy\': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric("xnli") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} ''' def lowercase__ ( __A: Optional[Any] ,__A: int ): '''simple docstring''' return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase ( datasets.Metric ): '''simple docstring''' def UpperCAmelCase__ ( self : Optional[int] ) -> Dict: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def UpperCAmelCase__ ( self : int , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple ) -> Optional[Any]: return {"accuracy": simple_accuracy(lowerCamelCase_ , lowerCamelCase_ )}
716
import sys import turtle def lowercase__ ( __A: tuple[float, float] ,__A: tuple[float, float] ): '''simple docstring''' return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def lowercase__ ( __A: tuple[float, float] ,__A: tuple[float, float] ,__A: tuple[float, float] ,__A: int ,): '''simple docstring''' my_pen.up() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.down() my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) my_pen.goto(vertexa[0] ,vertexa[1] ) if depth == 0: return triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) triangle(__A ,get_mid(__A ,__A ) ,get_mid(__A ,__A ) ,depth - 1 ) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( '''Correct format for using this script: ''' '''python fractals.py <int:depth_for_fractal>''' ) __lowerCamelCase : Any = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor('''red''') __lowerCamelCase : Optional[Any] = [(-1_75, -1_25), (0, 1_75), (1_75, -1_25)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
501
0
'''simple docstring''' from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class UpperCAmelCase_ ( __A , __A ): """simple docstring""" @register_to_config def __init__( self : Any , UpperCAmelCase : int = 768 , ) -> Optional[int]: '''simple docstring''' super().__init__() lowercase : Optional[int] =nn.Parameter(torch.zeros(1 , UpperCAmelCase ) ) lowercase : Tuple =nn.Parameter(torch.ones(1 , UpperCAmelCase ) ) def A__ ( self : Union[str, Any] , UpperCAmelCase : Optional[Union[str, torch.device]] = None , UpperCAmelCase : Optional[torch.dtype] = None , ) -> Any: '''simple docstring''' lowercase : Union[str, Any] =nn.Parameter(self.mean.to(UpperCAmelCase ).to(UpperCAmelCase ) ) lowercase : Union[str, Any] =nn.Parameter(self.std.to(UpperCAmelCase ).to(UpperCAmelCase ) ) return self def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Optional[Any]: '''simple docstring''' lowercase : List[Any] =(embeds - self.mean) * 1.0 / self.std return embeds def A__ ( self : int , UpperCAmelCase : List[Any] ) -> Tuple: '''simple docstring''' lowercase : Dict =(embeds * self.std) + self.mean return embeds
94
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = {"""configuration_opt""": ["""OPT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """OPTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """OPT_PRETRAINED_MODEL_ARCHIVE_LIST""", """OPTForCausalLM""", """OPTModel""", """OPTPreTrainedModel""", """OPTForSequenceClassification""", """OPTForQuestionAnswering""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ["""TFOPTForCausalLM""", """TFOPTModel""", """TFOPTPreTrainedModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ """FlaxOPTForCausalLM""", """FlaxOPTModel""", """FlaxOPTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_opt import OPT_PRETRAINED_CONFIG_ARCHIVE_MAP, OPTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_opt import ( OPT_PRETRAINED_MODEL_ARCHIVE_LIST, OPTForCausalLM, OPTForQuestionAnswering, OPTForSequenceClassification, OPTModel, OPTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_opt import TFOPTForCausalLM, TFOPTModel, TFOPTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_opt import FlaxOPTForCausalLM, FlaxOPTModel, FlaxOPTPreTrainedModel else: import sys A__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
166
0
"""simple docstring""" import argparse import os # New Code # import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils import find_executable_batch_size ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to ensure out-of-memory errors never # interrupt training, and builds off the `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## lowercase_ = 1_6 lowercase_ = 3_2 def lowercase ( lowerCAmelCase__ : Accelerator , lowerCAmelCase__ : int = 16 ) -> Dict: __a = AutoTokenizer.from_pretrained('''bert-base-cased''' ) __a = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(lowerCAmelCase__ : Dict ): # max_length=None => use the model max length (it's actually the default) __a = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): __a = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __a = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : int ): # On TPU it's best to pad everything to the same length or training will be very slow. __a = 128 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": __a = 16 elif accelerator.mixed_precision != "no": __a = 8 else: __a = None return tokenizer.pad( lowerCAmelCase__ , padding='''longest''' , max_length=lowerCAmelCase__ , pad_to_multiple_of=lowerCAmelCase__ , return_tensors='''pt''' , ) # Instantiate dataloaders. __a = DataLoader( tokenized_datasets['''train'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __a = DataLoader( tokenized_datasets['''validation'''] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders lowercase_ = mocked_dataloaders # noqa: F811 def lowercase ( lowerCAmelCase__ : int , lowerCAmelCase__ : List[Any] ) -> Optional[int]: # For testing only if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , lowerCAmelCase__ ) == "1": __a = 2 # Initialize accelerator __a = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __a = config['''lr'''] __a = int(config['''num_epochs'''] ) __a = int(config['''seed'''] ) __a = int(config['''batch_size'''] ) __a = evaluate.load('''glue''' , '''mrpc''' ) # New Code # # We now can define an inner training loop function. It should take a batch size as the only parameter, # and build the dataloaders in there. # It also gets our decorator @find_executable_batch_size(starting_batch_size=lowerCAmelCase__ ) def inner_training_loop(lowerCAmelCase__ : List[Any] ): # And now just move everything below under this function # We need to bring in the Accelerator object from earlier nonlocal accelerator # And reset all of its attributes that could hold onto any memory: accelerator.free_memory() # Then we can declare the model, optimizer, and everything else: set_seed(lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __a = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=lowerCAmelCase__ ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). __a = model.to(accelerator.device ) # Instantiate optimizer __a = AdamW(params=model.parameters() , lr=lowerCAmelCase__ ) __a , __a = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate scheduler __a = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=100 , num_training_steps=(len(lowerCAmelCase__ ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __a , __a , __a , __a , __a = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Now we train the model for epoch in range(lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) __a = model(**lowerCAmelCase__ ) __a = outputs.loss accelerator.backward(lowerCAmelCase__ ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __a = model(**lowerCAmelCase__ ) __a = outputs.logits.argmax(dim=-1 ) __a , __a = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __a = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(f'''epoch {epoch}:''' , lowerCAmelCase__ ) # New Code # # And call it at the end with no arguments # Note: You could also refactor this outside of your training loop function inner_training_loop() def lowercase ( ) -> str: __a = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=lowerCAmelCase__ , default=lowerCAmelCase__ , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) __a = parser.parse_args() __a = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
65
"""simple docstring""" from sklearn.metrics import fa_score import datasets lowercase_ = "\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n" lowercase_ = "\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `'binary'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `'binary'`.\n\n - 'binary': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - 'micro': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - 'macro': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - 'weighted': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `'macro'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - 'samples': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {'f1': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results['f1'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric(\"f1\")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results['f1'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"macro\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"micro\")\n >>> print(round(results['f1'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=\"weighted\")\n >>> print(round(results['f1'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {'f1': array([0.8, 0. , 0. ])}\n" lowercase_ = "\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCAmelCase ( datasets.Metric ): '''simple docstring''' def __UpperCAmelCase ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Sequence(datasets.Value('''int32''' ) ), '''references''': datasets.Sequence(datasets.Value('''int32''' ) ), } if self.config_name == '''multilabel''' else { '''predictions''': datasets.Value('''int32''' ), '''references''': datasets.Value('''int32''' ), } ) , reference_urls=['''https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html'''] , ) def __UpperCAmelCase ( self , _a , _a , _a=None , _a=1 , _a="binary" , _a=None ): __a = fa_score( _a , _a , labels=_a , pos_label=_a , average=_a , sample_weight=_a ) return {"f1": float(_a ) if score.size == 1 else score}
65
1
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class A : def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0.2 , SCREAMING_SNAKE_CASE=0.2 ) -> Dict: """simple docstring""" A : Union[str, Any] = bp_numa A : Any = bp_numa A : Tuple = bp_numa A : Optional[int] = conva_get[:2] A : Union[str, Any] = conva_get[2] A : Any = size_pa A : Any = rate_w A : Any = rate_t A : Union[str, Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] A : int = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) A : int = -2 * np.random.rand(self.conva[1] ) + 1 A : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 A : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Dict = { '''num_bp1''': self.num_bpa, '''num_bp2''': self.num_bpa, '''num_bp3''': self.num_bpa, '''conv1''': self.conva, '''step_conv1''': self.step_conva, '''size_pooling1''': self.size_poolinga, '''rate_weight''': self.rate_weight, '''rate_thre''': self.rate_thre, '''w_conv1''': self.w_conva, '''wkj''': self.wkj, '''vji''': self.vji, '''thre_conv1''': self.thre_conva, '''thre_bp2''': self.thre_bpa, '''thre_bp3''': self.thre_bpa, } with open(SCREAMING_SNAKE_CASE , '''wb''' ) as f: pickle.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F'Model saved: {save_path}' ) @classmethod def __lowerCAmelCase ( cls , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" with open(SCREAMING_SNAKE_CASE , '''rb''' ) as f: A : Any = pickle.load(SCREAMING_SNAKE_CASE ) # noqa: S301 A : Dict = model_dic.get('''conv1''' ) conv_get.append(model_dic.get('''step_conv1''' ) ) A : Any = model_dic.get('''size_pooling1''' ) A : List[str] = model_dic.get('''num_bp1''' ) A : Optional[Any] = model_dic.get('''num_bp2''' ) A : List[Any] = model_dic.get('''num_bp3''' ) A : List[str] = model_dic.get('''rate_weight''' ) A : List[str] = model_dic.get('''rate_thre''' ) # create model instance A : Optional[int] = CNN(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # modify model parameter A : Dict = model_dic.get('''w_conv1''' ) A : Optional[int] = model_dic.get('''wkj''' ) A : Dict = model_dic.get('''vji''' ) A : List[str] = model_dic.get('''thre_conv1''' ) A : Optional[int] = model_dic.get('''thre_bp2''' ) A : List[str] = model_dic.get('''thre_bp3''' ) return conv_ins def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return 1 / (1 + np.exp(-1 * x )) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" return round(SCREAMING_SNAKE_CASE , 3 ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : Optional[Any] = convs[0] A : Any = convs[1] A : Optional[Any] = np.shape(SCREAMING_SNAKE_CASE )[0] # get the data slice of original image data, data_focus A : Union[str, Any] = [] for i_focus in range(0 , size_data - size_conv + 1 , SCREAMING_SNAKE_CASE ): for j_focus in range(0 , size_data - size_conv + 1 , SCREAMING_SNAKE_CASE ): A : Any = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(SCREAMING_SNAKE_CASE ) # calculate the feature map of every single kernel, and saved as list of matrix A : str = [] A : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(SCREAMING_SNAKE_CASE ): A : Tuple = [] for i_focus in range(len(SCREAMING_SNAKE_CASE ) ): A : int = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(SCREAMING_SNAKE_CASE ) ) A : Optional[Any] = np.asmatrix(SCREAMING_SNAKE_CASE ).reshape( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) data_featuremap.append(SCREAMING_SNAKE_CASE ) # expanding the data slice to One dimenssion A : int = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(SCREAMING_SNAKE_CASE ) ) A : Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE ) return focus_list, data_featuremap def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE="average_pool" ) -> Dict: """simple docstring""" A : List[Any] = len(featuremaps[0] ) A : Any = int(size_map / size_pooling ) A : int = [] for i_map in range(len(SCREAMING_SNAKE_CASE ) ): A : List[Any] = featuremaps[i_map] A : List[str] = [] for i_focus in range(0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for j_focus in range(0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Any = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(SCREAMING_SNAKE_CASE ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(SCREAMING_SNAKE_CASE ) ) A : List[Any] = np.asmatrix(SCREAMING_SNAKE_CASE ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) featuremap_pooled.append(SCREAMING_SNAKE_CASE ) return featuremap_pooled def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : int = [] for i in range(len(SCREAMING_SNAKE_CASE ) ): A : List[Any] = np.shape(data[i] ) A : List[Any] = data[i].reshape(1 , shapes[0] * shapes[1] ) A : Optional[Any] = data_listed.getA().tolist()[0] data_expanded.extend(SCREAMING_SNAKE_CASE ) A : Tuple = np.asarray(SCREAMING_SNAKE_CASE ) return data_expanded def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[int]: """simple docstring""" A : Optional[Any] = np.asarray(SCREAMING_SNAKE_CASE ) A : Any = np.shape(SCREAMING_SNAKE_CASE ) A : Optional[int] = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" A : int = [] A : str = 0 for i_map in range(SCREAMING_SNAKE_CASE ): A : Optional[int] = np.ones((size_map, size_map) ) for i in range(0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): for j in range(0 , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A : Tuple = pd_pool[ i_pool ] A : str = i_pool + 1 A : Union[str, Any] = np.multiply( SCREAMING_SNAKE_CASE , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(SCREAMING_SNAKE_CASE ) return pd_all def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=bool ) -> List[Any]: """simple docstring""" print('''----------------------Start Training-------------------------''' ) print((''' - - Shape: Train_Data ''', np.shape(SCREAMING_SNAKE_CASE )) ) print((''' - - Shape: Teach_Data ''', np.shape(SCREAMING_SNAKE_CASE )) ) A : int = 0 A : Union[str, Any] = [] A : Dict = 10000 while rp < n_repeat and mse >= error_accuracy: A : Tuple = 0 print(F'-------------Learning Time {rp}--------------' ) for p in range(len(SCREAMING_SNAKE_CASE ) ): # print('------------Learning Image: %d--------------'%p) A : str = np.asmatrix(datas_train[p] ) A : Any = np.asarray(datas_teach[p] ) A, A : Union[str, Any] = self.convolute( SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A : int = self.pooling(SCREAMING_SNAKE_CASE , self.size_poolinga ) A : int = np.shape(SCREAMING_SNAKE_CASE ) A : str = self._expand(SCREAMING_SNAKE_CASE ) A : Dict = data_bp_input A : int = np.dot(SCREAMING_SNAKE_CASE , self.vji.T ) - self.thre_bpa A : Any = self.sig(SCREAMING_SNAKE_CASE ) A : int = np.dot(SCREAMING_SNAKE_CASE , self.wkj.T ) - self.thre_bpa A : List[Any] = self.sig(SCREAMING_SNAKE_CASE ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- A : List[str] = np.multiply( (data_teach - bp_outa) , np.multiply(SCREAMING_SNAKE_CASE , (1 - bp_outa) ) ) A : Optional[int] = np.multiply( np.dot(SCREAMING_SNAKE_CASE , self.wkj ) , np.multiply(SCREAMING_SNAKE_CASE , (1 - bp_outa) ) ) A : Optional[Any] = np.dot(SCREAMING_SNAKE_CASE , self.vji ) A : List[str] = pd_i_all / (self.size_poolinga * self.size_poolinga) A : Optional[Any] = pd_conva_pooled.T.getA().tolist() A : Optional[Any] = self._calculate_gradient_from_pool( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): A : Any = self._expand_mat(pd_conva_all[k_conv] ) A : List[Any] = self.rate_weight * np.dot(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A : Dict = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) A : List[str] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer A : Dict = self.wkj + pd_k_all.T * bp_outa * self.rate_weight A : List[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight A : List[str] = self.thre_bpa - pd_k_all * self.rate_thre A : List[Any] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image A : Optional[int] = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) A : str = rp + 1 A : Union[str, Any] = error_count / patterns all_mse.append(SCREAMING_SNAKE_CASE ) def draw_error(): A : Optional[int] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(SCREAMING_SNAKE_CASE , '''+-''' ) plt.plot(SCREAMING_SNAKE_CASE , '''r--''' ) plt.xlabel('''Learning Times''' ) plt.ylabel('''All_mse''' ) plt.grid(SCREAMING_SNAKE_CASE , alpha=0.5 ) plt.show() print('''------------------Training Complished---------------------''' ) print((''' - - Training epoch: ''', rp, F' - - Mse: {mse:.6f}') ) if draw_e: draw_error() return mse def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" A : Optional[int] = [] print('''-------------------Start Testing-------------------------''' ) print((''' - - Shape: Test_Data ''', np.shape(SCREAMING_SNAKE_CASE )) ) for p in range(len(SCREAMING_SNAKE_CASE ) ): A : Optional[Any] = np.asmatrix(datas_test[p] ) A, A : Tuple = self.convolute( SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A : List[str] = self.pooling(SCREAMING_SNAKE_CASE , self.size_poolinga ) A : str = self._expand(SCREAMING_SNAKE_CASE ) A : Optional[Any] = data_bp_input A : Union[str, Any] = bp_outa * self.vji.T - self.thre_bpa A : Optional[Any] = self.sig(SCREAMING_SNAKE_CASE ) A : Any = bp_outa * self.wkj.T - self.thre_bpa A : Union[str, Any] = self.sig(SCREAMING_SNAKE_CASE ) produce_out.extend(bp_outa.getA().tolist() ) A : Optional[int] = [list(map(self.do_round , SCREAMING_SNAKE_CASE ) ) for each in produce_out] return np.asarray(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Optional[Any]: """simple docstring""" A : List[Any] = np.asmatrix(SCREAMING_SNAKE_CASE ) A, A : Union[str, Any] = self.convolute( SCREAMING_SNAKE_CASE , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) A : Optional[Any] = self.pooling(SCREAMING_SNAKE_CASE , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
634
'''simple docstring''' import random def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' A : Optional[Any] = a[left_index] A : List[str] = left_index + 1 for j in range(left_index + 1 , snake_case__ ): if a[j] < pivot: A, A : Optional[int] = a[i], a[j] i += 1 A, A : str = a[i - 1], a[left_index] return i - 1 def lowerCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ ): '''simple docstring''' if left < right: A : Optional[Any] = random.randint(snake_case__ , right - 1 ) A, A : List[str] = ( a[left], a[pivot], ) # switches the pivot with the left most bound A : Any = partition(snake_case__ , snake_case__ , snake_case__ ) quick_sort_random( snake_case__ , snake_case__ , snake_case__ ) # recursive quicksort to the left of the pivot point quick_sort_random( snake_case__ , pivot_index + 1 , snake_case__ ) # recursive quicksort to the right of the pivot point def lowerCAmelCase_ ( ): '''simple docstring''' A : Any = input('''Enter numbers separated by a comma:\n''' ).strip() A : List[str] = [int(snake_case__ ) for item in user_input.split(''',''' )] quick_sort_random(snake_case__ , 0 , len(snake_case__ ) ) print(snake_case__ ) if __name__ == "__main__": main()
634
1
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __lowerCamelCase ( SCREAMING_SNAKE_CASE = 100 ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = 1 _UpperCAmelCase = 2 for i in range(2,max_n + 1 ): _UpperCAmelCase = pre_numerator _UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 _UpperCAmelCase = cur_numerator _UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(__snake_case ) if __name__ == "__main__": print(F'''{solution() = }''')
705
"""simple docstring""" from datetime import datetime import matplotlib.pyplot as plt import torch def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" for param in module.parameters(): _UpperCAmelCase = False def __lowerCamelCase ( ) -> Dict: """simple docstring""" _UpperCAmelCase = 'cuda' if torch.cuda.is_available() else 'cpu' if torch.backends.mps.is_available() and torch.backends.mps.is_built(): _UpperCAmelCase = 'mps' if device == "mps": print( 'WARNING: MPS currently doesn\'t seem to work, and messes up backpropagation without any visible torch' ' errors. I recommend using CUDA on a colab notebook or CPU instead if you\'re facing inexplicable issues' ' with generations.' ) return device def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = plt.imshow(SCREAMING_SNAKE_CASE ) fig.axes.get_xaxis().set_visible(SCREAMING_SNAKE_CASE ) fig.axes.get_yaxis().set_visible(SCREAMING_SNAKE_CASE ) plt.show() def __lowerCamelCase ( ) -> Dict: """simple docstring""" _UpperCAmelCase = datetime.now() _UpperCAmelCase = current_time.strftime('%H:%M:%S' ) return timestamp
494
0
'''simple docstring''' import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def _UpperCamelCase ( self ) -> str: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('DownBlock2D', 'AttnDownBlock2D') , up_block_types=('AttnUpBlock2D', 'UpBlock2D') , ) return model def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_uncond_unet SCREAMING_SNAKE_CASE : Any = ScoreSdeVeScheduler() SCREAMING_SNAKE_CASE : List[str] = ScoreSdeVePipeline(unet=lowercase__ , scheduler=lowercase__ ) sde_ve.to(lowercase__ ) sde_ve.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[str] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase__ ).images SCREAMING_SNAKE_CASE : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = sde_ve(num_inference_steps=2 , output_type='numpy' , generator=lowercase__ , return_dict=lowercase__ )[ 0 ] SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) SCREAMING_SNAKE_CASE : List[Any] = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE : Union[str, Any] = 'google/ncsnpp-church-256' SCREAMING_SNAKE_CASE : Dict = UNetaDModel.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : str = ScoreSdeVeScheduler.from_pretrained(lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = ScoreSdeVePipeline(unet=lowercase__ , scheduler=lowercase__ ) sde_ve.to(lowercase__ ) sde_ve.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : int = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Any = sde_ve(num_inference_steps=10 , output_type='numpy' , generator=lowercase__ ).images SCREAMING_SNAKE_CASE : Optional[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
251
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _lowerCAmelCase :List[str] = logging.get_logger(__name__) _lowerCAmelCase :List[Any] = { """camembert-base""": """https://huggingface.co/camembert-base/resolve/main/config.json""", """umberto-commoncrawl-cased-v1""": ( """https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json""" ), """umberto-wikipedia-uncased-v1""": ( """https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json""" ), } class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case__ : Dict = "camembert" def __init__( self , lowercase__=30_522 , lowercase__=768 , lowercase__=12 , lowercase__=12 , lowercase__=3_072 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=512 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=1E-12 , lowercase__=1 , lowercase__=0 , lowercase__=2 , lowercase__="absolute" , lowercase__=True , lowercase__=None , **lowercase__ , ) -> str: super().__init__(pad_token_id=lowercase__ , bos_token_id=lowercase__ , eos_token_id=lowercase__ , **lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = vocab_size SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : str = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE : Any = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Optional[int] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : Tuple = type_vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range SCREAMING_SNAKE_CASE : List[str] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Optional[int] = classifier_dropout class UpperCAmelCase ( _SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[int] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
251
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class UpperCAmelCase : def __init__( self: Optional[int] , __UpperCamelCase: str , __UpperCamelCase: Optional[Any]=2 , __UpperCamelCase: Any=32 , __UpperCamelCase: Optional[int]=16 , __UpperCamelCase: Optional[Any]=3 , __UpperCamelCase: List[Any]=True , __UpperCamelCase: int=True , __UpperCamelCase: Union[str, Any]=32 , __UpperCamelCase: Optional[int]=4 , __UpperCamelCase: List[str]=[0, 1, 2, 3] , __UpperCamelCase: Any=4 , __UpperCamelCase: Tuple=37 , __UpperCamelCase: Optional[Any]="gelu" , __UpperCamelCase: Any=0.1 , __UpperCamelCase: str=0.1 , __UpperCamelCase: Optional[Any]=0.0_2 , __UpperCamelCase: int=3 , __UpperCamelCase: List[Any]=[1, 384, 24, 24] , __UpperCamelCase: Optional[int]=True , __UpperCamelCase: Union[str, Any]=None , ): _a = parent _a = batch_size _a = image_size _a = patch_size _a = num_channels _a = is_training _a = use_labels _a = hidden_size _a = num_hidden_layers _a = backbone_out_indices _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = initializer_range _a = num_labels _a = backbone_featmap_shape _a = scope _a = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) _a = (image_size // patch_size) ** 2 _a = num_patches + 1 def _A ( self: Any ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def _A ( self: Optional[int] ): _a = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=__UpperCamelCase , backbone_featmap_shape=self.backbone_featmap_shape , ) def _A ( self: List[Any] , __UpperCamelCase: str , __UpperCamelCase: Any , __UpperCamelCase: List[Any] ): _a = DPTModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self: List[Any] , __UpperCamelCase: Dict , __UpperCamelCase: Union[str, Any] , __UpperCamelCase: Optional[Any] ): _a = self.num_labels _a = DPTForDepthEstimation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _A ( self: Optional[int] , __UpperCamelCase: Dict , __UpperCamelCase: List[Any] , __UpperCamelCase: Dict ): _a = self.num_labels _a = DPTForSemanticSegmentation(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _a = model(__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _A ( self: List[Any] ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( __snake_case , __snake_case , unittest.TestCase ): a: Dict = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () a: Any = ( { "depth-estimation": DPTForDepthEstimation, "feature-extraction": DPTModel, "image-segmentation": DPTForSemanticSegmentation, } if is_torch_available() else {} ) a: Dict = False a: Union[str, Any] = False a: Optional[int] = False def _A ( self: int ): _a = DPTModelTester(self ) _a = ConfigTester(self , config_class=__UpperCamelCase , has_text_modality=__UpperCamelCase , hidden_size=37 ) def _A ( self: Dict ): self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def _A ( self: List[Any] ): pass def _A ( self: Union[str, Any] ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCamelCase , nn.Linear ) ) def _A ( self: Any ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(__UpperCamelCase ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , __UpperCamelCase ) def _A ( self: Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def _A ( self: str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*__UpperCamelCase ) def _A ( self: Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCamelCase ) def _A ( self: Optional[int] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True if model_class in get_values(__UpperCamelCase ): continue _a = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.train() _a = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _a = model(**__UpperCamelCase ).loss loss.backward() def _A ( self: Optional[int] ): for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = False _a = True if model_class in get_values(__UpperCamelCase ) or not model_class.supports_gradient_checkpointing: continue _a = model_class(__UpperCamelCase ) model.to(__UpperCamelCase ) model.gradient_checkpointing_enable() model.train() _a = self._prepare_for_class(__UpperCamelCase , __UpperCamelCase , return_labels=__UpperCamelCase ) _a = model(**__UpperCamelCase ).loss loss.backward() def _A ( self: str ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = _config_zero_init(__UpperCamelCase ) for model_class in self.all_model_classes: _a = model_class(config=__UpperCamelCase ) # Skip the check for the backbone _a = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": _a = [f"{name}.{key}" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _A ( self: int ): pass @slow def _A ( self: Dict ): for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: _a = DPTModel.from_pretrained(__UpperCamelCase ) self.assertIsNotNone(__UpperCamelCase ) def _A ( self: Tuple ): # We do this test only for DPTForDepthEstimation since it is the only model that uses readout_type _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = '''add''' with self.assertRaises(__UpperCamelCase ): _a = DPTForDepthEstimation(__UpperCamelCase ) def __snake_case ( ) -> Optional[int]: _a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class UpperCAmelCase ( unittest.TestCase ): def _A ( self: List[Any] ): _a = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) _a = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(__UpperCamelCase ) _a = prepare_img() _a = image_processor(images=__UpperCamelCase , return_tensors='''pt''' ).to(__UpperCamelCase ) # forward pass with torch.no_grad(): _a = model(**__UpperCamelCase ) _a = outputs.predicted_depth # verify the predicted depth _a = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , __UpperCamelCase ) _a = torch.tensor( [[[5.6_4_3_7, 5.6_1_4_6, 5.6_5_1_1], [5.4_3_7_1, 5.5_6_4_9, 5.5_9_5_8], [5.5_2_1_5, 5.5_1_8_4, 5.5_2_9_3]]] ).to(__UpperCamelCase ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , __UpperCamelCase , atol=1E-4 ) )
719
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def __snake_case ( _UpperCamelCase=None ) -> List[str]: _a = argparse.ArgumentParser(add_help=_UpperCamelCase , allow_abbrev=_UpperCamelCase ) # The main config parser _a = config_command_parser(_UpperCamelCase ) # The subparser to add commands to _a = config_parser.add_subparsers(title='''subcommands''' , dest='''subcommand''' ) # Then add other parsers with the parent parser default_command_parser(_UpperCamelCase , parents=[parent_parser] ) update_command_parser(_UpperCamelCase , parents=[parent_parser] ) return config_parser def __snake_case ( ) -> Optional[Any]: _a = get_config_parser() _a = config_parser.parse_args() if not hasattr(_UpperCamelCase , '''func''' ): config_parser.print_help() exit(1 ) # Run args.func(_UpperCamelCase ) if __name__ == "__main__": main()
346
0
import unittest import numpy as np from transformers.testing_utils import require_pytesseract, require_torch from transformers.utils import is_pytesseract_available, is_torch_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_pytesseract_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCAmelCase , lowerCAmelCase=7 , lowerCAmelCase=3 , lowerCAmelCase=18 , lowerCAmelCase=30 , lowerCAmelCase=400 , lowerCAmelCase=True , lowerCAmelCase=None , lowerCAmelCase=True , ): UpperCAmelCase_ = size if size is not None else {'''height''': 18, '''width''': 18} UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = num_channels UpperCAmelCase_ = image_size UpperCAmelCase_ = min_resolution UpperCAmelCase_ = max_resolution UpperCAmelCase_ = do_resize UpperCAmelCase_ = size UpperCAmelCase_ = apply_ocr def A__ ( self ): return {"do_resize": self.do_resize, "size": self.size, "apply_ocr": self.apply_ocr} @require_torch @require_pytesseract class lowerCamelCase ( lowercase__, unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ : str = LayoutLMvaImageProcessor if is_pytesseract_available() else None def A__ ( self ): UpperCAmelCase_ = LayoutLMvaImageProcessingTester(self ) @property def A__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def A__ ( self ): UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase , "do_resize" ) ) self.assertTrue(hasattr(lowerCAmelCase , "size" ) ) self.assertTrue(hasattr(lowerCAmelCase , "apply_ocr" ) ) def A__ ( self ): UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 18} ) UpperCAmelCase_ = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) def A__ ( self ): pass def A__ ( self ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , Image.Image ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ) self.assertEqual( encoding.pixel_values.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) self.assertIsInstance(encoding.words , lowerCAmelCase ) self.assertIsInstance(encoding.boxes , lowerCAmelCase ) # Test batched UpperCAmelCase_ = image_processing(lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def A__ ( self ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , numpify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , np.ndarray ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def A__ ( self ): # Initialize image_processing UpperCAmelCase_ = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCAmelCase_ = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase , torchify=lowerCAmelCase ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase , torch.Tensor ) # Test not batched input UpperCAmelCase_ = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched UpperCAmelCase_ = image_processing(lowerCAmelCase , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) def A__ ( self ): # with apply_OCR = True UpperCAmelCase_ = LayoutLMvaImageProcessor() from datasets import load_dataset UpperCAmelCase_ = load_dataset("hf-internal-testing/fixtures_docvqa" , split="test" ) UpperCAmelCase_ = Image.open(ds[0]["file"] ).convert("RGB" ) UpperCAmelCase_ = image_processing(lowerCAmelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) ) self.assertEqual(len(encoding.words ) , len(encoding.boxes ) ) # fmt: off # the words and boxes were obtained with Tesseract 4.1.1 UpperCAmelCase_ = [['''11:14''', '''to''', '''11:39''', '''a.m''', '''11:39''', '''to''', '''11:44''', '''a.m.''', '''11:44''', '''a.m.''', '''to''', '''12:25''', '''p.m.''', '''12:25''', '''to''', '''12:58''', '''p.m.''', '''12:58''', '''to''', '''4:00''', '''p.m.''', '''2:00''', '''to''', '''5:00''', '''p.m.''', '''Coffee''', '''Break''', '''Coffee''', '''will''', '''be''', '''served''', '''for''', '''men''', '''and''', '''women''', '''in''', '''the''', '''lobby''', '''adjacent''', '''to''', '''exhibit''', '''area.''', '''Please''', '''move''', '''into''', '''exhibit''', '''area.''', '''(Exhibits''', '''Open)''', '''TRRF''', '''GENERAL''', '''SESSION''', '''(PART''', '''|)''', '''Presiding:''', '''Lee''', '''A.''', '''Waller''', '''TRRF''', '''Vice''', '''President''', '''“Introductory''', '''Remarks”''', '''Lee''', '''A.''', '''Waller,''', '''TRRF''', '''Vice''', '''Presi-''', '''dent''', '''Individual''', '''Interviews''', '''with''', '''TRRF''', '''Public''', '''Board''', '''Members''', '''and''', '''Sci-''', '''entific''', '''Advisory''', '''Council''', '''Mem-''', '''bers''', '''Conducted''', '''by''', '''TRRF''', '''Treasurer''', '''Philip''', '''G.''', '''Kuehn''', '''to''', '''get''', '''answers''', '''which''', '''the''', '''public''', '''refrigerated''', '''warehousing''', '''industry''', '''is''', '''looking''', '''for.''', '''Plus''', '''questions''', '''from''', '''the''', '''floor.''', '''Dr.''', '''Emil''', '''M.''', '''Mrak,''', '''University''', '''of''', '''Cal-''', '''ifornia,''', '''Chairman,''', '''TRRF''', '''Board;''', '''Sam''', '''R.''', '''Cecil,''', '''University''', '''of''', '''Georgia''', '''College''', '''of''', '''Agriculture;''', '''Dr.''', '''Stanley''', '''Charm,''', '''Tufts''', '''University''', '''School''', '''of''', '''Medicine;''', '''Dr.''', '''Robert''', '''H.''', '''Cotton,''', '''ITT''', '''Continental''', '''Baking''', '''Company;''', '''Dr.''', '''Owen''', '''Fennema,''', '''University''', '''of''', '''Wis-''', '''consin;''', '''Dr.''', '''Robert''', '''E.''', '''Hardenburg,''', '''USDA.''', '''Questions''', '''and''', '''Answers''', '''Exhibits''', '''Open''', '''Capt.''', '''Jack''', '''Stoney''', '''Room''', '''TRRF''', '''Scientific''', '''Advisory''', '''Council''', '''Meeting''', '''Ballroom''', '''Foyer''']] # noqa: E231 UpperCAmelCase_ = [[[141, 57, 214, 69], [228, 58, 252, 69], [141, 75, 216, 88], [230, 79, 280, 88], [142, 260, 218, 273], [230, 261, 255, 273], [143, 279, 218, 290], [231, 282, 290, 291], [143, 342, 218, 354], [231, 345, 289, 355], [202, 362, 227, 373], [143, 379, 220, 392], [231, 382, 291, 394], [144, 714, 220, 726], [231, 715, 256, 726], [144, 732, 220, 745], [232, 736, 291, 747], [144, 769, 218, 782], [231, 770, 256, 782], [141, 788, 202, 801], [215, 791, 274, 804], [143, 826, 204, 838], [215, 826, 240, 838], [142, 844, 202, 857], [215, 847, 274, 859], [334, 57, 427, 69], [440, 57, 522, 69], [369, 75, 461, 88], [469, 75, 516, 88], [528, 76, 562, 88], [570, 76, 667, 88], [675, 75, 711, 87], [721, 79, 778, 88], [789, 75, 840, 88], [369, 97, 470, 107], [484, 94, 507, 106], [518, 94, 562, 107], [576, 94, 655, 110], [668, 94, 792, 109], [804, 95, 829, 107], [369, 113, 465, 125], [477, 116, 547, 125], [562, 113, 658, 125], [671, 116, 748, 125], [761, 113, 811, 125], [369, 131, 465, 143], [477, 133, 548, 143], [563, 130, 698, 145], [710, 130, 802, 146], [336, 171, 412, 183], [423, 171, 572, 183], [582, 170, 716, 184], [728, 171, 817, 187], [829, 171, 844, 186], [338, 197, 482, 212], [507, 196, 557, 209], [569, 196, 595, 208], [610, 196, 702, 209], [505, 214, 583, 226], [595, 214, 656, 227], [670, 215, 807, 227], [335, 259, 543, 274], [556, 259, 708, 272], [372, 279, 422, 291], [435, 279, 460, 291], [474, 279, 574, 292], [587, 278, 664, 291], [676, 278, 738, 291], [751, 279, 834, 291], [372, 298, 434, 310], [335, 341, 483, 354], [497, 341, 655, 354], [667, 341, 728, 354], [740, 341, 825, 354], [335, 360, 430, 372], [442, 360, 534, 372], [545, 359, 687, 372], [697, 360, 754, 372], [765, 360, 823, 373], [334, 378, 428, 391], [440, 378, 577, 394], [590, 378, 705, 391], [720, 378, 801, 391], [334, 397, 400, 409], [370, 416, 529, 429], [544, 416, 576, 432], [587, 416, 665, 428], [677, 416, 814, 429], [372, 435, 452, 450], [465, 434, 495, 447], [511, 434, 600, 447], [611, 436, 637, 447], [649, 436, 694, 451], [705, 438, 824, 447], [369, 453, 452, 466], [464, 454, 509, 466], [522, 453, 611, 469], [625, 453, 792, 469], [370, 472, 556, 488], [570, 472, 684, 487], [697, 472, 718, 485], [732, 472, 835, 488], [369, 490, 411, 503], [425, 490, 484, 503], [496, 490, 635, 506], [645, 490, 707, 503], [718, 491, 761, 503], [771, 490, 840, 503], [336, 510, 374, 521], [388, 510, 447, 522], [460, 510, 489, 521], [503, 510, 580, 522], [592, 509, 736, 525], [745, 509, 770, 522], [781, 509, 840, 522], [338, 528, 434, 541], [448, 528, 596, 541], [609, 527, 687, 540], [700, 528, 792, 541], [336, 546, 397, 559], [407, 546, 431, 559], [443, 546, 525, 560], [537, 546, 680, 562], [688, 546, 714, 559], [722, 546, 837, 562], [336, 565, 449, 581], [461, 565, 485, 577], [497, 565, 665, 581], [681, 565, 718, 577], [732, 565, 837, 580], [337, 584, 438, 597], [452, 583, 521, 596], [535, 584, 677, 599], [690, 583, 787, 596], [801, 583, 825, 596], [338, 602, 478, 615], [492, 602, 530, 614], [543, 602, 638, 615], [650, 602, 676, 614], [688, 602, 788, 615], [802, 602, 843, 614], [337, 621, 502, 633], [516, 621, 615, 637], [629, 621, 774, 636], [789, 621, 827, 633], [337, 639, 418, 652], [432, 640, 571, 653], [587, 639, 731, 655], [743, 639, 769, 652], [780, 639, 841, 652], [338, 658, 440, 673], [455, 658, 491, 670], [508, 658, 602, 671], [616, 658, 638, 670], [654, 658, 835, 674], [337, 677, 429, 689], [337, 714, 482, 726], [495, 714, 548, 726], [561, 714, 683, 726], [338, 770, 461, 782], [474, 769, 554, 785], [489, 788, 562, 803], [576, 788, 643, 801], [656, 787, 751, 804], [764, 788, 844, 801], [334, 825, 421, 838], [430, 824, 574, 838], [584, 824, 723, 841], [335, 844, 450, 857], [464, 843, 583, 860], [628, 862, 755, 875], [769, 861, 848, 878]]] # noqa: E231 # fmt: on self.assertListEqual(encoding.words , lowerCAmelCase ) self.assertListEqual(encoding.boxes , lowerCAmelCase ) # with apply_OCR = False UpperCAmelCase_ = LayoutLMvaImageProcessor(apply_ocr=lowerCAmelCase ) UpperCAmelCase_ = image_processing(lowerCAmelCase , return_tensors="pt" ) self.assertEqual(encoding.pixel_values.shape , (1, 3, 224, 224) )
579
"""simple docstring""" from string import ascii_uppercase _lowerCAmelCase :str = {str(ord(c) - 55): c for c in ascii_uppercase} def lowerCamelCase_ (UpperCamelCase__ : int , UpperCamelCase__ : int ): if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''int() can\'t convert non-string with explicit base''' ) if num < 0: raise ValueError('''parameter must be positive int''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''\'str\' object cannot be interpreted as an integer''' ) if isinstance(UpperCamelCase__ , UpperCamelCase__ ): raise TypeError('''\'float\' object cannot be interpreted as an integer''' ) if base in (0, 1): raise ValueError('''base must be >= 2''' ) if base > 36: raise ValueError('''base must be <= 36''' ) _UpperCAmelCase : Optional[int] = '''''' _UpperCAmelCase : List[Any] = 0 _UpperCAmelCase : Dict = 0 while div != 1: _UpperCAmelCase , _UpperCAmelCase : List[str] = divmod(UpperCamelCase__ , UpperCamelCase__ ) if base >= 11 and 9 < mod < 36: _UpperCAmelCase : Optional[int] = ALPHABET_VALUES[str(UpperCamelCase__ )] else: _UpperCAmelCase : Any = str(UpperCamelCase__ ) new_value += actual_value _UpperCAmelCase : Tuple = num // base _UpperCAmelCase : Union[str, Any] = div if div == 0: return str(new_value[::-1] ) elif div == 1: new_value += str(UpperCamelCase__ ) return str(new_value[::-1] ) return new_value[::-1] if __name__ == "__main__": import doctest doctest.testmod() for base in range(2, 37): for num in range(1_000): assert int(decimal_to_any(num, base), base) == num, ( num, base, decimal_to_any(num, base), int(decimal_to_any(num, base), base), )
506
0
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class _UpperCAmelCase : def __init__( self , a__ , a__=13 , a__=10 , a__=3 , a__=2 , a__=2 , a__=2 , a__=True , a__=True , a__=32 , a__=5 , a__=4 , a__=37 , a__="gelu" , a__=0.1 , a__=0.1 , a__=10 , a__=0.02 , a__=0.9 , a__=None , ): A_ : Tuple = parent A_ : Union[str, Any] = batch_size A_ : str = image_size A_ : Union[str, Any] = num_channels A_ : List[str] = patch_size A_ : Optional[Any] = tubelet_size A_ : List[Any] = num_frames A_ : str = is_training A_ : List[Any] = use_labels A_ : List[str] = hidden_size A_ : Optional[Any] = num_hidden_layers A_ : str = num_attention_heads A_ : Union[str, Any] = intermediate_size A_ : Dict = hidden_act A_ : int = hidden_dropout_prob A_ : Union[str, Any] = attention_probs_dropout_prob A_ : Union[str, Any] = type_sequence_label_size A_ : int = initializer_range A_ : Dict = mask_ratio A_ : Optional[Any] = scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame A_ : int = (image_size // patch_size) ** 2 A_ : Dict = (num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos A_ : Dict = int(mask_ratio * self.seq_length ) def _lowerCamelCase ( self ): A_ : Any = floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) A_ : Optional[int] = None if self.use_labels: A_ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : List[Any] = self.get_config() return config, pixel_values, labels def _lowerCamelCase ( self ): return VideoMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_frames=self.num_frames , tubelet_size=self.tubelet_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a__ , initializer_range=self.initializer_range , ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Dict = VideoMAEModel(config=a__ ) model.to(a__ ) model.eval() A_ : Dict = model(a__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _lowerCamelCase ( self , a__ , a__ , a__ ): A_ : Optional[Any] = VideoMAEForPreTraining(a__ ) model.to(a__ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A_ : List[Any] = torch.ones((self.num_masks,) ) A_ : Dict = torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) A_ : int = mask.expand(self.batch_size , -1 ).bool() A_ : List[Any] = model(a__ , a__ ) # model only returns predictions for masked patches A_ : Union[str, Any] = mask.sum().item() A_ : Tuple = 3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_masked_patches, decoder_num_labels) ) def _lowerCamelCase ( self ): A_ : Union[str, Any] = self.prepare_config_and_inputs() A_ : Optional[Any] = config_and_inputs A_ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class _UpperCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): a = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) a = ( {'''feature-extraction''': VideoMAEModel, '''video-classification''': VideoMAEForVideoClassification} if is_torch_available() else {} ) a = False a = False a = False a = False def _lowerCamelCase ( self ): A_ : int = VideoMAEModelTester(self ) A_ : Any = ConfigTester(self , config_class=a__ , has_text_modality=a__ , hidden_size=37 ) def _lowerCamelCase ( self , a__ , a__ , a__=False ): A_ : Optional[Any] = copy.deepcopy(a__ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch A_ : List[Any] = torch.ones((self.model_tester.num_masks,) ) A_ : List[str] = torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) A_ : Union[str, Any] = mask.expand(self.model_tester.batch_size , -1 ).bool() A_ : int = bool_masked_pos.to(a__ ) if return_labels: if model_class in [ *get_values(a__ ), ]: A_ : List[str] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=a__ ) return inputs_dict def _lowerCamelCase ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""VideoMAE does not use inputs_embeds""" ) def _lowerCamelCase ( self ): pass def _lowerCamelCase ( self ): A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Tuple = model_class(a__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A_ : Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a__ , nn.Linear ) ) def _lowerCamelCase ( self ): A_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : List[str] = model_class(a__ ) A_ : List[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A_ : Dict = [*signature.parameters.keys()] A_ : str = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a__ ) def _lowerCamelCase ( self ): A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a__ ) def _lowerCamelCase ( self ): A_ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a__ ) @slow def _lowerCamelCase ( self ): for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : Any = VideoMAEModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) def _lowerCamelCase ( self ): if not self.has_attentions: pass else: A_ : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() A_ : Optional[int] = True for model_class in self.all_model_classes: A_ : str = self.model_tester.seq_length - self.model_tester.num_masks A_ : List[Any] = ( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) A_ : Optional[int] = True A_ : Optional[Any] = False A_ : List[Any] = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : List[Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Dict = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] A_ : List[Any] = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : int = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Any = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) A_ : Union[str, Any] = len(a__ ) # Check attention is always last and order is fine A_ : Optional[Any] = True A_ : int = True A_ : List[str] = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : Tuple = model(**self._prepare_for_class(a__ , a__ ) ) self.assertEqual(out_len + 1 , len(a__ ) ) A_ : Optional[Any] = outputs.attentions self.assertEqual(len(a__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def _lowerCamelCase ( self ): def check_hidden_states_output(a__ , a__ , a__ ): A_ : str = model_class(a__ ) model.to(a__ ) model.eval() with torch.no_grad(): A_ : Union[str, Any] = model(**self._prepare_for_class(a__ , a__ ) ) A_ : Optional[Any] = outputs.hidden_states A_ : Union[str, Any] = self.model_tester.num_hidden_layers + 1 self.assertEqual(len(a__ ) , a__ ) A_ : str = self.model_tester.seq_length - self.model_tester.num_masks A_ : str = num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) A_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A_ : Union[str, Any] = True check_hidden_states_output(a__ , a__ , a__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A_ : Tuple = True check_hidden_states_output(a__ , a__ , a__ ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _lowerCamelCase ( self ): pass def _lowerCAmelCase ( ): '''simple docstring''' A_ : int = hf_hub_download( repo_id="""hf-internal-testing/spaghetti-video""" ,filename="""eating_spaghetti.npy""" ,repo_type="""dataset""" ) A_ : Optional[int] = np.load(_lowerCAmelCase ) return list(_lowerCAmelCase ) @require_torch @require_vision class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def _lowerCamelCase ( self ): A_ : List[str] = VideoMAEForVideoClassification.from_pretrained("""MCG-NJU/videomae-base-finetuned-kinetics""" ).to( a__ ) A_ : Any = self.default_image_processor A_ : Optional[Any] = prepare_video() A_ : Union[str, Any] = image_processor(a__ , return_tensors="""pt""" ).to(a__ ) # forward pass with torch.no_grad(): A_ : Any = model(**a__ ) # verify the logits A_ : List[str] = torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape , a__ ) A_ : Optional[Any] = torch.tensor([0.3669, -0.0688, -0.2421] ).to(a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , a__ , atol=1E-4 ) ) @slow def _lowerCamelCase ( self ): A_ : int = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" ).to(a__ ) A_ : str = self.default_image_processor A_ : Any = prepare_video() A_ : Union[str, Any] = image_processor(a__ , return_tensors="""pt""" ).to(a__ ) # add boolean mask, indicating which patches to mask A_ : Optional[Any] = hf_hub_download(repo_id="""hf-internal-testing/bool-masked-pos""" , filename="""bool_masked_pos.pt""" ) A_ : Dict = torch.load(a__ ) # forward pass with torch.no_grad(): A_ : Optional[int] = model(**a__ ) # verify the logits A_ : int = torch.Size([1, 1408, 1536] ) A_ : Union[str, Any] = torch.tensor( [[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] , device=a__ ) self.assertEqual(outputs.logits.shape , a__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , a__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) A_ : Optional[Any] = torch.tensor([0.5142] , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) A_ : Optional[int] = VideoMAEForPreTraining.from_pretrained("""MCG-NJU/videomae-base-short""" , norm_pix_loss=a__ ).to( a__ ) with torch.no_grad(): A_ : Optional[Any] = model(**a__ ) A_ : List[Any] = torch.tensor(torch.tensor([0.6469] ) , device=a__ ) self.assertTrue(torch.allclose(outputs.loss , a__ , atol=1E-4 ) )
706
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = """PoolFormerConfig""" # Base docstring _lowerCAmelCase = """sail/poolformer_s12""" _lowerCAmelCase = [1, 512, 7, 7] # Image classification docstring _lowerCAmelCase = """sail/poolformer_s12""" _lowerCAmelCase = """tabby, tabby cat""" _lowerCAmelCase = [ """sail/poolformer_s12""", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = 0.0 ,_lowerCAmelCase = False ): '''simple docstring''' if drop_prob == 0.0 or not training: return input A_ : int = 1 - drop_prob A_ : List[str] = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets A_ : Optional[int] = keep_prob + torch.rand(_lowerCAmelCase ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize A_ : Optional[int] = input.div(_lowerCAmelCase ) * random_tensor return output class _UpperCAmelCase ( nn.Module ): def __init__( self , a__ = None ): super().__init__() A_ : int = drop_prob def _lowerCamelCase ( self , a__ ): return drop_path(a__ , self.drop_prob , self.training ) def _lowerCamelCase ( self ): return "p={}".format(self.drop_prob ) class _UpperCAmelCase ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ , a__ , a__=None ): super().__init__() A_ : Dict = patch_size if isinstance(a__ , collections.abc.Iterable ) else (patch_size, patch_size) A_ : Optional[Any] = stride if isinstance(a__ , collections.abc.Iterable ) else (stride, stride) A_ : int = padding if isinstance(a__ , collections.abc.Iterable ) else (padding, padding) A_ : Dict = nn.Convad(a__ , a__ , kernel_size=a__ , stride=a__ , padding=a__ ) A_ : Optional[Any] = norm_layer(a__ ) if norm_layer else nn.Identity() def _lowerCamelCase ( self , a__ ): A_ : Dict = self.projection(a__ ) A_ : List[Any] = self.norm(a__ ) return embeddings class _UpperCAmelCase ( nn.GroupNorm ): def __init__( self , a__ , **a__ ): super().__init__(1 , a__ , **a__ ) class _UpperCAmelCase ( nn.Module ): def __init__( self , a__ ): super().__init__() A_ : Optional[int] = nn.AvgPoolad(a__ , stride=1 , padding=pool_size // 2 , count_include_pad=a__ ) def _lowerCamelCase ( self , a__ ): return self.pool(a__ ) - hidden_states class _UpperCAmelCase ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ ): super().__init__() A_ : str = nn.Convad(a__ , a__ , 1 ) A_ : List[str] = nn.Convad(a__ , a__ , 1 ) A_ : Optional[Any] = PoolFormerDropPath(a__ ) if isinstance(config.hidden_act , a__ ): A_ : int = ACTaFN[config.hidden_act] else: A_ : Optional[int] = config.hidden_act def _lowerCamelCase ( self , a__ ): A_ : Tuple = self.conva(a__ ) A_ : str = self.act_fn(a__ ) A_ : Union[str, Any] = self.drop(a__ ) A_ : int = self.conva(a__ ) A_ : Any = self.drop(a__ ) return hidden_states class _UpperCAmelCase ( nn.Module ): def __init__( self , a__ , a__ , a__ , a__ , a__ , a__ ): super().__init__() A_ : Dict = PoolFormerPooling(a__ ) A_ : Dict = PoolFormerOutput(a__ , a__ , a__ , a__ ) A_ : Dict = PoolFormerGroupNorm(a__ ) A_ : Dict = PoolFormerGroupNorm(a__ ) # Useful for training neural nets A_ : Union[str, Any] = PoolFormerDropPath(a__ ) if drop_path > 0.0 else nn.Identity() A_ : Union[str, Any] = config.use_layer_scale if config.use_layer_scale: A_ : Tuple = nn.Parameter( config.layer_scale_init_value * torch.ones((a__) ) , requires_grad=a__ ) A_ : Tuple = nn.Parameter( config.layer_scale_init_value * torch.ones((a__) ) , requires_grad=a__ ) def _lowerCamelCase ( self , a__ ): if self.use_layer_scale: A_ : List[str] = self.pooling(self.before_norm(a__ ) ) A_ : Optional[Any] = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection A_ : List[Any] = hidden_states + self.drop_path(a__ ) A_ : Tuple = () A_ : List[Any] = self.output(self.after_norm(a__ ) ) A_ : str = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection A_ : Optional[Any] = hidden_states + self.drop_path(a__ ) A_ : int = (output,) + outputs return outputs else: A_ : Union[str, Any] = self.drop_path(self.pooling(self.before_norm(a__ ) ) ) # First residual connection A_ : Any = pooling_output + hidden_states A_ : Tuple = () # Second residual connection inside the PoolFormerOutput block A_ : Dict = self.drop_path(self.output(self.after_norm(a__ ) ) ) A_ : int = hidden_states + layer_output A_ : str = (output,) + outputs return outputs class _UpperCAmelCase ( nn.Module ): def __init__( self , a__ ): super().__init__() A_ : Union[str, Any] = config # stochastic depth decay rule A_ : Union[str, Any] = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings A_ : Union[str, Any] = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) A_ : Optional[int] = nn.ModuleList(a__ ) # Transformer blocks A_ : Union[str, Any] = [] A_ : Union[str, Any] = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers A_ : Dict = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( a__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(a__ ) ) A_ : str = nn.ModuleList(a__ ) def _lowerCamelCase ( self , a__ , a__=False , a__=True ): A_ : Optional[int] = () if output_hidden_states else None A_ : str = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): A_ , A_ : Union[str, Any] = layers # Get patch embeddings from hidden_states A_ : Tuple = embedding_layer(a__ ) # Send the embeddings through the blocks for _, blk in enumerate(a__ ): A_ : List[str] = blk(a__ ) A_ : Union[str, Any] = layer_outputs[0] if output_hidden_states: A_ : Dict = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=a__ , hidden_states=a__ ) class _UpperCAmelCase ( _lowerCamelCase ): a = PoolFormerConfig a = '''poolformer''' a = '''pixel_values''' a = True def _lowerCamelCase ( self , a__ ): if isinstance(a__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(a__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def _lowerCamelCase ( self , a__ , a__=False ): if isinstance(a__ , a__ ): A_ : List[Any] = value _lowerCAmelCase = R""" This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. """ _lowerCAmelCase = R""" Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. """ @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , _lowerCamelCase , ) class _UpperCAmelCase ( _lowerCamelCase ): def __init__( self , a__ ): super().__init__(a__ ) A_ : List[Any] = config A_ : Optional[int] = PoolFormerEncoder(a__ ) # Initialize weights and apply final processing self.post_init() def _lowerCamelCase ( self ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=a__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def _lowerCamelCase ( self , a__ = None , a__ = None , a__ = None , ): A_ : Union[str, Any] = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) A_ : str = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) A_ : Optional[Any] = self.encoder( a__ , output_hidden_states=a__ , return_dict=a__ , ) A_ : Optional[int] = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=a__ , hidden_states=encoder_outputs.hidden_states , ) class _UpperCAmelCase ( nn.Module ): def __init__( self , a__ ): super().__init__() A_ : int = nn.Linear(config.hidden_size , config.hidden_size ) def _lowerCamelCase ( self , a__ ): A_ : Any = self.dense(a__ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , _lowerCamelCase , ) class _UpperCAmelCase ( _lowerCamelCase ): def __init__( self , a__ ): super().__init__(a__ ) A_ : str = config.num_labels A_ : Union[str, Any] = PoolFormerModel(a__ ) # Final norm A_ : str = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head A_ : Optional[int] = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(a__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=a__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def _lowerCamelCase ( self , a__ = None , a__ = None , a__ = None , a__ = None , ): A_ : List[Any] = return_dict if return_dict is not None else self.config.use_return_dict A_ : Optional[int] = self.poolformer( a__ , output_hidden_states=a__ , return_dict=a__ , ) A_ : List[str] = outputs[0] A_ : int = self.classifier(self.norm(a__ ).mean([-2, -1] ) ) A_ : Dict = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: A_ : Tuple = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): A_ : Tuple = """single_label_classification""" else: A_ : Tuple = """multi_label_classification""" if self.config.problem_type == "regression": A_ : int = MSELoss() if self.num_labels == 1: A_ : List[str] = loss_fct(logits.squeeze() , labels.squeeze() ) else: A_ : Tuple = loss_fct(a__ , a__ ) elif self.config.problem_type == "single_label_classification": A_ : str = CrossEntropyLoss() A_ : int = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": A_ : List[str] = BCEWithLogitsLoss() A_ : Optional[Any] = loss_fct(a__ , a__ ) if not return_dict: A_ : Optional[Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=a__ , logits=a__ , hidden_states=outputs.hidden_states )
481
0
from dataclasses import dataclass, field from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import pyarrow as pa if TYPE_CHECKING: from .features import FeatureType @dataclass class __snake_case : lowerCAmelCase__ = 42 lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="Translation" , init=_a , repr=_a ) def __call__( self : Tuple ) -> Optional[int]: '''simple docstring''' return pa.struct({lang: pa.string() for lang in sorted(self.languages )} ) def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Value return {k: Value("""string""" ) for k in sorted(self.languages )} @dataclass class __snake_case : lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None # Automatically constructed lowerCAmelCase__ = "dict" lowerCAmelCase__ = None lowerCAmelCase__ = field(default="TranslationVariableLanguages" , init=_a , repr=_a ) def SCREAMING_SNAKE_CASE ( self : Dict ) -> str: '''simple docstring''' _lowerCAmelCase : Union[str, Any] = sorted(set(self.languages ) ) if self.languages else None _lowerCAmelCase : Optional[int] = len(self.languages ) if self.languages else None def __call__( self : Optional[int] ) -> Optional[int]: '''simple docstring''' return pa.struct({"""language""": pa.list_(pa.string() ), """translation""": pa.list_(pa.string() )} ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , _UpperCAmelCase : List[str] ) -> List[Any]: '''simple docstring''' _lowerCAmelCase : Optional[int] = set(self.languages ) if self.languages and set(_UpperCAmelCase ) - lang_set: raise ValueError( f"Some languages in example ({', '.join(sorted(set(_UpperCAmelCase ) - lang_set ) )}) are not in valid set ({', '.join(_UpperCAmelCase )})." ) # Convert dictionary into tuples, splitting out cases where there are # multiple translations for a single language. _lowerCAmelCase : Dict = [] for lang, text in translation_dict.items(): if isinstance(_UpperCAmelCase , _UpperCAmelCase ): translation_tuples.append((lang, text) ) else: translation_tuples.extend([(lang, el) for el in text] ) # Ensure translations are in ascending order by language code. _lowerCAmelCase , _lowerCAmelCase : int = zip(*sorted(_UpperCAmelCase ) ) return {"language": languages, "translation": translations} def SCREAMING_SNAKE_CASE ( self : str ) -> Union["FeatureType", Dict[str, "FeatureType"]]: '''simple docstring''' from .features import Sequence, Value return { "language": Sequence(Value("""string""" ) ), "translation": Sequence(Value("""string""" ) ), }
429
import math import os from copy import deepcopy import datasets import evaluate import torch import transformers from datasets import load_dataset from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer from accelerate import Accelerator from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import is_tpu_available, set_seed _lowerCamelCase : Optional[Any] = "true" def _UpperCAmelCase (UpperCamelCase_ : Any , UpperCamelCase_ : List[Any]=82 , UpperCamelCase_ : List[str]=16 ): '''simple docstring''' set_seed(42 ) _lowerCAmelCase : Optional[Any] = RegressionModel() _lowerCAmelCase : List[Any] = deepcopy(UpperCamelCase_ ) _lowerCAmelCase : Tuple = RegressionDataset(length=UpperCamelCase_ ) _lowerCAmelCase : int = DataLoader(UpperCamelCase_ , batch_size=UpperCamelCase_ ) model.to(accelerator.device ) _lowerCAmelCase , _lowerCAmelCase : Dict = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) return model, ddp_model, dataloader def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : int=False ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained("""hf-internal-testing/mrpc-bert-base-cased""" ) _lowerCAmelCase : str = load_dataset("""glue""" , """mrpc""" , split="""validation""" ) def tokenize_function(UpperCamelCase_ : Optional[int] ): _lowerCAmelCase : str = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=UpperCamelCase_ , max_length=UpperCamelCase_ ) return outputs with accelerator.main_process_first(): _lowerCAmelCase : str = dataset.map( UpperCamelCase_ , batched=UpperCamelCase_ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , ) _lowerCAmelCase : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCamelCase_ : Optional[int] ): if use_longest: return tokenizer.pad(UpperCamelCase_ , padding="""longest""" , return_tensors="""pt""" ) return tokenizer.pad(UpperCamelCase_ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return DataLoader(UpperCamelCase_ , shuffle=UpperCamelCase_ , collate_fn=UpperCamelCase_ , batch_size=16 ) def _UpperCAmelCase (UpperCamelCase_ : int , UpperCamelCase_ : int ): '''simple docstring''' _lowerCAmelCase : Optional[int] = Accelerator(dispatch_batches=UpperCamelCase_ , split_batches=UpperCamelCase_ ) _lowerCAmelCase : Any = get_dataloader(UpperCamelCase_ , not dispatch_batches ) _lowerCAmelCase : Optional[int] = AutoModelForSequenceClassification.from_pretrained( """hf-internal-testing/mrpc-bert-base-cased""" , return_dict=UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = accelerator.prepare(UpperCamelCase_ , UpperCamelCase_ ) return {"ddp": [ddp_model, ddp_dataloader, "cuda:0"], "no": [model, dataloader, accelerator.device]}, accelerator def _UpperCAmelCase (UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] ): '''simple docstring''' _lowerCAmelCase : str = [] for batch in dataloader: _lowerCAmelCase , _lowerCAmelCase : Optional[int] = batch.values() with torch.no_grad(): _lowerCAmelCase : Optional[int] = model(UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : int = accelerator.gather_for_metrics((logit, target) ) logits_and_targets.append((logit, target) ) _lowerCAmelCase , _lowerCAmelCase : List[Any] = [], [] for logit, targ in logits_and_targets: logits.append(UpperCamelCase_ ) targs.append(UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : Dict = torch.cat(UpperCamelCase_ ), torch.cat(UpperCamelCase_ ) return logits, targs def _UpperCAmelCase (UpperCamelCase_ : Accelerator , UpperCamelCase_ : Any=82 , UpperCamelCase_ : str=False , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Dict=16 ): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Any = get_basic_setup(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) _lowerCAmelCase , _lowerCAmelCase : List[str] = generate_predictions(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) assert ( len(UpperCamelCase_ ) == num_samples ), F"Unexpected number of inputs:\n Expected: {num_samples}\n Actual: {len(UpperCamelCase_ )}" def _UpperCAmelCase (UpperCamelCase_ : bool = False , UpperCamelCase_ : bool = False ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = evaluate.load("""glue""" , """mrpc""" ) _lowerCAmelCase , _lowerCAmelCase : Tuple = get_mrpc_setup(UpperCamelCase_ , UpperCamelCase_ ) # First do baseline _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : List[str] = setup["""no"""] model.to(UpperCamelCase_ ) model.eval() for batch in dataloader: batch.to(UpperCamelCase_ ) with torch.inference_mode(): _lowerCAmelCase : Tuple = model(**UpperCamelCase_ ) _lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) metric.add_batch(predictions=UpperCamelCase_ , references=batch["""labels"""] ) _lowerCAmelCase : int = metric.compute() # Then do distributed _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : int = setup["""ddp"""] model.eval() for batch in dataloader: with torch.inference_mode(): _lowerCAmelCase : Dict = model(**UpperCamelCase_ ) _lowerCAmelCase : List[str] = outputs.logits.argmax(dim=-1 ) _lowerCAmelCase : Optional[int] = batch["""labels"""] _lowerCAmelCase , _lowerCAmelCase : Union[str, Any] = accelerator.gather_for_metrics((preds, references) ) metric.add_batch(predictions=UpperCamelCase_ , references=UpperCamelCase_ ) _lowerCAmelCase : Optional[Any] = metric.compute() for key in "accuracy f1".split(): assert math.isclose( baseline[key] , distributed[key] ), F"Baseline and Distributed are not the same for key {key}:\n\tBaseline: {baseline[key]}\n\tDistributed: {distributed[key]}\n" def _UpperCAmelCase (): '''simple docstring''' _lowerCAmelCase : Dict = Accelerator(split_batches=UpperCamelCase_ , dispatch_batches=UpperCamelCase_ ) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_warning() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # These are a bit slower so they should only be ran on the GPU or TPU if torch.cuda.is_available() or is_tpu_available(): if accelerator.is_local_main_process: print("""**Testing gather_for_metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`" ) test_mrpc(UpperCamelCase_ , UpperCamelCase_ ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test torch metrics**""" ) for split_batches in [True, False]: for dispatch_batches in [True, False]: _lowerCAmelCase : List[str] = Accelerator(split_batches=UpperCamelCase_ , dispatch_batches=UpperCamelCase_ ) if accelerator.is_local_main_process: print(F"With: `split_batches={split_batches}`, `dispatch_batches={dispatch_batches}`, length=99" ) test_torch_metrics(UpperCamelCase_ , 99 ) accelerator.state._reset_state() if accelerator.is_local_main_process: print("""**Test last batch is not dropped when perfectly divisible**""" ) _lowerCAmelCase : Optional[int] = Accelerator() test_torch_metrics(UpperCamelCase_ , 512 ) accelerator.state._reset_state() def _UpperCAmelCase (UpperCamelCase_ : List[Any] ): '''simple docstring''' # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
429
1
import sys __SCREAMING_SNAKE_CASE : int = ( '73167176531330624919225119674426574742355349194934' '96983520312774506326239578318016984801869478851843' '85861560789112949495459501737958331952853208805511' '12540698747158523863050715693290963295227443043557' '66896648950445244523161731856403098711121722383113' '62229893423380308135336276614282806444486645238749' '30358907296290491560440772390713810515859307960866' '70172427121883998797908792274921901699720888093776' '65727333001053367881220235421809751254540594752243' '52584907711670556013604839586446706324415722155397' '53697817977846174064955149290862569321978468622482' '83972241375657056057490261407972968652414535100474' '82166370484403199890008895243450658541227588666881' '16427171479924442928230863465674813919123162824586' '17866458359124566529476545682848912883142607690042' '24219022671055626321111109370544217506941658960408' '07198403850962455444362981230987879927244284909188' '84580156166097919133875499200524063689912560717606' '05886116467109405077541002256983155200055935729725' '71636269561882670428252483600823257530420752963450' ) def snake_case (__lowercase = N ) -> int: '''simple docstring''' _snake_case : Union[str, Any] = -sys.maxsize - 1 for i in range(len(__lowercase ) - 12 ): _snake_case : List[str] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: _snake_case : Optional[int] = product return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
580
import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch __SCREAMING_SNAKE_CASE : str = random.Random() def snake_case (__lowercase , __lowercase=1.0 , __lowercase=None , __lowercase=None ) -> Union[str, Any]: '''simple docstring''' if rng is None: _snake_case : Any = global_rng _snake_case : Optional[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class lowercase_ ( unittest.TestCase ): def __init__( self , lowercase_ , lowercase_=7 , lowercase_=400 , lowercase_=2_000 , lowercase_=10 , lowercase_=160 , lowercase_=8 , lowercase_=0.0 , lowercase_=4_000 , lowercase_=False , lowercase_=True , ): _snake_case : List[Any] = parent _snake_case : Optional[Any] = batch_size _snake_case : Optional[Any] = min_seq_length _snake_case : int = max_seq_length _snake_case : str = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _snake_case : Optional[Any] = padding_value _snake_case : List[str] = sampling_rate _snake_case : Any = return_attention_mask _snake_case : str = do_normalize _snake_case : Any = feature_size _snake_case : Optional[int] = chunk_length _snake_case : Optional[Any] = hop_length def UpperCamelCase ( self ): return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase ( self , lowercase_=False , lowercase_=False ): def _flatten(lowercase_ ): return list(itertools.chain(*lowercase_ ) ) if equal_length: _snake_case : Tuple = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _snake_case : List[str] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _snake_case : Optional[Any] = [np.asarray(lowercase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowercase_ ( __snake_case , unittest.TestCase ): _lowerCamelCase = WhisperFeatureExtractor if is_speech_available() else None def UpperCamelCase ( self ): _snake_case : int = WhisperFeatureExtractionTester(self ) def UpperCamelCase ( self ): _snake_case : int = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : int = feat_extract_first.save_pretrained(lowercase_ )[0] check_json_file_has_correct_format(lowercase_ ) _snake_case : Any = self.feature_extraction_class.from_pretrained(lowercase_ ) _snake_case : str = feat_extract_first.to_dict() _snake_case : Any = feat_extract_second.to_dict() _snake_case : List[str] = feat_extract_first.mel_filters _snake_case : Any = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCamelCase ( self ): _snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _snake_case : Dict = os.path.join(lowercase_ , "feat_extract.json" ) feat_extract_first.to_json_file(lowercase_ ) _snake_case : str = self.feature_extraction_class.from_json_file(lowercase_ ) _snake_case : Optional[int] = feat_extract_first.to_dict() _snake_case : Optional[Any] = feat_extract_second.to_dict() _snake_case : Optional[int] = feat_extract_first.mel_filters _snake_case : Optional[int] = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowercase_ , lowercase_ ) ) self.assertEqual(lowercase_ , lowercase_ ) def UpperCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus _snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _snake_case : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] _snake_case : int = [np.asarray(lowercase_ ) for speech_input in speech_inputs] # Test feature size _snake_case : Any = feature_extractor(lowercase_ , padding="max_length" , return_tensors="np" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _snake_case : Union[str, Any] = feature_extractor(speech_inputs[0] , return_tensors="np" ).input_features _snake_case : Tuple = feature_extractor(np_speech_inputs[0] , return_tensors="np" ).input_features self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test batched _snake_case : int = feature_extractor(lowercase_ , return_tensors="np" ).input_features _snake_case : Any = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. _snake_case : Any = [floats_list((1, x) )[0] for x in (800, 800, 800)] _snake_case : Any = np.asarray(lowercase_ ) _snake_case : Any = feature_extractor(lowercase_ , return_tensors="np" ).input_features _snake_case : Dict = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) # Test truncation required _snake_case : List[str] = [floats_list((1, x) )[0] for x in range(200 , (feature_extractor.n_samples + 500) , 200 )] _snake_case : str = [np.asarray(lowercase_ ) for speech_input in speech_inputs] _snake_case : Tuple = [x[: feature_extractor.n_samples] for x in speech_inputs] _snake_case : Dict = [np.asarray(lowercase_ ) for speech_input in speech_inputs_truncated] _snake_case : Tuple = feature_extractor(lowercase_ , return_tensors="np" ).input_features _snake_case : Optional[Any] = feature_extractor(lowercase_ , return_tensors="np" ).input_features for enc_seq_a, enc_seq_a in zip(lowercase_ , lowercase_ ): self.assertTrue(np.allclose(lowercase_ , lowercase_ , atol=1e-3 ) ) def UpperCamelCase ( self ): import torch _snake_case : str = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : List[Any] = np.random.rand(100 , 32 ).astype(np.floataa ) _snake_case : Optional[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _snake_case : Dict = feature_extractor.pad([{"input_features": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _snake_case : int = feature_extractor.pad([{"input_features": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def UpperCamelCase ( self , lowercase_ ): _snake_case : int = load_dataset("hf-internal-testing/librispeech_asr_dummy" , "clean" , split="validation" ) # automatic decoding with librispeech _snake_case : Any = ds.sort("id" ).select(range(lowercase_ ) )[:num_samples]["audio"] return [x["array"] for x in speech_samples] def UpperCamelCase ( self ): # fmt: off _snake_case : Optional[int] = torch.tensor( [ 0.1_193, -0.0_946, -0.1_098, -0.0_196, 0.0_225, -0.0_690, -0.1_736, 0.0_951, 0.0_971, -0.0_817, -0.0_702, 0.0_162, 0.0_260, 0.0_017, -0.0_192, -0.1_678, 0.0_709, -0.1_867, -0.0_655, -0.0_274, -0.0_234, -0.1_884, -0.0_516, -0.0_554, -0.0_274, -0.1_425, -0.1_423, 0.0_837, 0.0_377, -0.0_854 ] ) # fmt: on _snake_case : Tuple = self._load_datasamples(1 ) _snake_case : Dict = WhisperFeatureExtractor() _snake_case : int = feature_extractor(lowercase_ , return_tensors="pt" ).input_features self.assertEqual(input_features.shape , (1, 80, 3_000) ) self.assertTrue(torch.allclose(input_features[0, 0, :30] , lowercase_ , atol=1e-4 ) ) def UpperCamelCase ( self ): _snake_case : Union[str, Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _snake_case : Optional[Any] = self._load_datasamples(1 )[0] _snake_case : Union[str, Any] = ((audio - audio.min()) / (audio.max() - audio.min())) * 65_535 # Rescale to [0, 65535] to show issue _snake_case : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowercase_ )[0] self.assertTrue(np.all(np.mean(lowercase_ ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowercase_ ) - 1 ) < 1e-3 ) )
580
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _UpperCAmelCase : Optional[int] = {'''configuration_plbart''': ['''PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''PLBartConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Any = ['''PLBartTokenizer'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase : Optional[Any] = [ '''PLBART_PRETRAINED_MODEL_ARCHIVE_LIST''', '''PLBartForCausalLM''', '''PLBartForConditionalGeneration''', '''PLBartForSequenceClassification''', '''PLBartModel''', '''PLBartPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_plbart import PLBART_PRETRAINED_CONFIG_ARCHIVE_MAP, PLBartConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_plbart import PLBartTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_plbart import ( PLBART_PRETRAINED_MODEL_ARCHIVE_LIST, PLBartForCausalLM, PLBartForConditionalGeneration, PLBartForSequenceClassification, PLBartModel, PLBartPreTrainedModel, ) else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
107
'''simple docstring''' import os from pathlib import Path from unittest.mock import patch import pytest import zstandard as zstd from datasets.download.download_config import DownloadConfig from datasets.utils.file_utils import ( OfflineModeIsEnabled, cached_path, fsspec_get, fsspec_head, ftp_get, ftp_head, get_from_cache, http_get, http_head, ) _UpperCAmelCase : Optional[int] = '''\ Text data. Second line of data.''' _UpperCAmelCase : Optional[Any] = '''file''' @pytest.fixture(scope='session' ) def _SCREAMING_SNAKE_CASE ( __snake_case : Any ): _A = tmp_path_factory.mktemp('data' ) / (FILE_PATH + '.zstd') _A = bytes(__snake_case , 'utf-8' ) with zstd.open(__snake_case , 'wb' ) as f: f.write(__snake_case ) return path @pytest.fixture def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] ): with open(os.path.join(tmpfs.local_root_dir , __snake_case ) , 'w' ) as f: f.write(__snake_case ) return FILE_PATH @pytest.mark.parametrize('compression_format' , ['gzip', 'xz', 'zstd'] ) def _SCREAMING_SNAKE_CASE ( __snake_case : Dict , __snake_case : str , __snake_case : Any , __snake_case : Any , __snake_case : List[str] , __snake_case : List[str] ): _A = {'gzip': gz_file, 'xz': xz_file, 'zstd': zstd_path} _A = input_paths[compression_format] _A = tmp_path / 'cache' _A = DownloadConfig(cache_dir=__snake_case , extract_compressed_file=__snake_case ) _A = cached_path(__snake_case , download_config=__snake_case ) with open(__snake_case ) as f: _A = f.read() with open(__snake_case ) as f: _A = f.read() assert extracted_file_content == expected_file_content @pytest.mark.parametrize('default_extracted' , [True, False] ) @pytest.mark.parametrize('default_cache_dir' , [True, False] ) def _SCREAMING_SNAKE_CASE ( __snake_case : Union[str, Any] , __snake_case : List[str] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : List[str] ): _A = 'custom_cache' _A = 'custom_extracted_dir' _A = tmp_path / 'custom_extracted_path' if default_extracted: _A = ('downloads' if default_cache_dir else custom_cache_dir, 'extracted') else: monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_DIR' , __snake_case ) monkeypatch.setattr('datasets.config.EXTRACTED_DATASETS_PATH' , str(__snake_case ) ) _A = custom_extracted_path.parts[-2:] if default_cache_dir else (custom_cache_dir, custom_extracted_dir) _A = xz_file _A = ( DownloadConfig(extract_compressed_file=__snake_case ) if default_cache_dir else DownloadConfig(cache_dir=tmp_path / custom_cache_dir , extract_compressed_file=__snake_case ) ) _A = cached_path(__snake_case , download_config=__snake_case ) assert Path(__snake_case ).parent.parts[-2:] == expected def _SCREAMING_SNAKE_CASE ( __snake_case : str ): # absolute path _A = str(Path(__snake_case ).resolve() ) assert cached_path(__snake_case ) == text_file # relative path _A = str(Path(__snake_case ).resolve().relative_to(Path(os.getcwd() ) ) ) assert cached_path(__snake_case ) == text_file def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): # absolute path _A = str(tmp_path.resolve() / '__missing_file__.txt' ) with pytest.raises(__snake_case ): cached_path(__snake_case ) # relative path _A = './__missing_file__.txt' with pytest.raises(__snake_case ): cached_path(__snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : int ): _A = get_from_cache(F'tmp://{tmpfs_file}' ) with open(__snake_case ) as f: _A = f.read() assert output_file_content == FILE_CONTENT @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( ): with pytest.raises(__snake_case ): cached_path('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Tuple ): _A = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): http_get('https://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): http_head('https://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : Optional[int] ): _A = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): ftp_get('ftp://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): ftp_head('ftp://huggingface.co' ) @patch('datasets.config.HF_DATASETS_OFFLINE' , __snake_case ) def _SCREAMING_SNAKE_CASE ( __snake_case : List[str] ): _A = tmp_path_factory.mktemp('data' ) / 'file.html' with pytest.raises(__snake_case ): fsspec_get('s3://huggingface.co' , temp_file=__snake_case ) with pytest.raises(__snake_case ): fsspec_head('s3://huggingface.co' )
107
1
def lowercase ( _a ,_a ) -> float: return base * power(_a ,(exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("""Raise base to the power of exponent using recursion...""") _lowerCAmelCase = int(input("""Enter the base: """).strip()) _lowerCAmelCase = int(input("""Enter the exponent: """).strip()) _lowerCAmelCase = power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents _lowerCAmelCase = 1 / result print(F"""{base} to the power of {exponent} is {result}""")
306
_lowerCAmelCase = {0: [2, 3], 1: [0], 2: [1], 3: [4], 4: []} _lowerCAmelCase = {0: [1, 2, 3], 1: [2], 2: [0], 3: [4], 4: [5], 5: [3]} def lowercase ( _a ,_a ,_a ) -> list[int]: UpperCAmelCase_: Tuple = True UpperCAmelCase_: Optional[int] = [] for neighbour in graph[vert]: if not visited[neighbour]: order += topology_sort(_a ,_a ,_a ) order.append(_a ) return order def lowercase ( _a ,_a ,_a ) -> list[int]: UpperCAmelCase_: Optional[int] = True UpperCAmelCase_: str = [vert] for neighbour in reversed_graph[vert]: if not visited[neighbour]: component += find_components(_a ,_a ,_a ) return component def lowercase ( _a ) -> list[list[int]]: UpperCAmelCase_: Union[str, Any] = len(_a ) * [False] UpperCAmelCase_: dict[int, list[int]] = {vert: [] for vert in range(len(_a ) )} for vert, neighbours in graph.items(): for neighbour in neighbours: reversed_graph[neighbour].append(_a ) UpperCAmelCase_: Optional[int] = [] for i, was_visited in enumerate(_a ): if not was_visited: order += topology_sort(_a ,_a ,_a ) UpperCAmelCase_: Optional[Any] = [] UpperCAmelCase_: Union[str, Any] = len(_a ) * [False] for i in range(len(_a ) ): UpperCAmelCase_: str = order[len(_a ) - i - 1] if not visited[vert]: UpperCAmelCase_: List[str] = find_components(_a ,_a ,_a ) components_list.append(_a ) return components_list
306
1
"""simple docstring""" import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @property def _UpperCAmelCase ( self : Dict): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = ort.SessionOptions() lowercase_ = False return options def _UpperCAmelCase ( self : List[str]): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""") lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""") lowercase_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_) lowercase_ = """A red cat sitting on a park bench""" lowercase_ = np.random.RandomState(0) lowercase_ = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=1_0 , generator=lowerCAmelCase_ , output_type="""np""" , ) lowercase_ = output.images lowercase_ = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array([0.2_514, 0.3_007, 0.3_517, 0.1_790, 0.2_382, 0.3_167, 0.1_944, 0.2_273, 0.2_464]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3 def _UpperCAmelCase ( self : Optional[int]): """simple docstring""" lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo.png""") lowercase_ = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/in_paint/overture-creations-5sI6fQgYIuo_mask.png""") lowercase_ = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-inpainting""" , subfolder="""scheduler""" , revision="""onnx""") lowercase_ = OnnxStableDiffusionInpaintPipeline.from_pretrained( """runwayml/stable-diffusion-inpainting""" , revision="""onnx""" , scheduler=lowerCAmelCase_ , safety_checker=lowerCAmelCase_ , feature_extractor=lowerCAmelCase_ , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=lowerCAmelCase_) lowercase_ = """A red cat sitting on a park bench""" lowercase_ = np.random.RandomState(0) lowercase_ = pipe( prompt=lowerCAmelCase_ , image=lowerCAmelCase_ , mask_image=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=2_0 , generator=lowerCAmelCase_ , output_type="""np""" , ) lowercase_ = output.images lowercase_ = images[0, 2_5_5:2_5_8, 2_5_5:2_5_8, -1] assert images.shape == (1, 5_1_2, 5_1_2, 3) lowercase_ = np.array([0.0_086, 0.0_077, 0.0_083, 0.0_093, 0.0_107, 0.0_139, 0.0_094, 0.0_097, 0.0_125]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-3
567
"""simple docstring""" import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase : List[Any] = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class SCREAMING_SNAKE_CASE__ ( nn.Module ): def __init__( self : Dict , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" super().__init__() lowercase_ = torchvision.models.resnetaaa(pretrained=lowerCAmelCase_) lowercase_ = list(model.children())[:-2] lowercase_ = nn.Sequential(*lowerCAmelCase_) lowercase_ = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds]) def _UpperCAmelCase ( self : Optional[int] , lowerCAmelCase_ : int): """simple docstring""" lowercase_ = self.pool(self.model(lowerCAmelCase_)) lowercase_ = torch.flatten(lowerCAmelCase_ , start_dim=2) lowercase_ = out.transpose(1 , 2).contiguous() return out # BxNx2048 class SCREAMING_SNAKE_CASE__ ( __UpperCAmelCase ): def __init__( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[str]): """simple docstring""" lowercase_ = [json.loads(lowerCAmelCase_) for l in open(lowerCAmelCase_)] lowercase_ = os.path.dirname(lowerCAmelCase_) lowercase_ = tokenizer lowercase_ = labels lowercase_ = len(lowerCAmelCase_) lowercase_ = max_seq_length lowercase_ = transforms def __len__( self : List[Any]): """simple docstring""" return len(self.data) def __getitem__( self : Tuple , lowerCAmelCase_ : Union[str, Any]): """simple docstring""" lowercase_ = torch.LongTensor(self.tokenizer.encode(self.data[index]["""text"""] , add_special_tokens=lowerCAmelCase_)) lowercase_ , lowercase_ , lowercase_ = sentence[0], sentence[1:-1], sentence[-1] lowercase_ = sentence[: self.max_seq_length] lowercase_ = torch.zeros(self.n_classes) lowercase_ = 1 lowercase_ = Image.open(os.path.join(self.data_dir , self.data[index]["""img"""])).convert("""RGB""") lowercase_ = self.transforms(lowerCAmelCase_) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def _UpperCAmelCase ( self : Optional[Any]): """simple docstring""" lowercase_ = Counter() for row in self.data: label_freqs.update(row["""label"""]) return label_freqs def _SCREAMING_SNAKE_CASE (__lowerCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = [len(row["""sentence"""] ) for row in batch] lowercase_ , lowercase_ = len(__lowerCAmelCase ), max(__lowerCAmelCase ) lowercase_ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) lowercase_ = torch.zeros(__lowerCAmelCase , __lowerCAmelCase , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): lowercase_ = input_row["""sentence"""] lowercase_ = 1 lowercase_ = torch.stack([row["""image"""] for row in batch] ) lowercase_ = torch.stack([row["""label"""] for row in batch] ) lowercase_ = torch.stack([row["""image_start_token"""] for row in batch] ) lowercase_ = torch.stack([row["""image_end_token"""] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def _SCREAMING_SNAKE_CASE () -> Dict: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def _SCREAMING_SNAKE_CASE () -> List[Any]: '''simple docstring''' return transforms.Compose( [ transforms.Resize(2_56 ), transforms.CenterCrop(2_24 ), transforms.ToTensor(), transforms.Normalize( mean=[0.46_777_044, 0.44_531_429, 0.40_661_017] , std=[0.12_221_994, 0.12_145_835, 0.14_380_469] , ), ] )
567
1
'''simple docstring''' import numpy as np import datasets a = '\nCompute the Mahalanobis Distance\n\nMahalonobis distance is the distance between a point and a distribution.\nAnd not between two distinct points. It is effectively a multivariate equivalent of the Euclidean distance.\nIt was introduced by Prof. P. C. Mahalanobis in 1936\nand has been used in various statistical applications ever since\n[source: https://www.machinelearningplus.com/statistics/mahalanobis-distance/]\n' a = '\\n@article{de2000mahalanobis,\n title={The mahalanobis distance},\n author={De Maesschalck, Roy and Jouan-Rimbaud, Delphine and Massart, D{\'e}sir{\'e} L},\n journal={Chemometrics and intelligent laboratory systems},\n volume={50},\n number={1},\n pages={1--18},\n year={2000},\n publisher={Elsevier}\n}\n' a = '\nArgs:\n X: List of datapoints to be compared with the `reference_distribution`.\n reference_distribution: List of datapoints from the reference distribution we want to compare to.\nReturns:\n mahalanobis: The Mahalonobis distance for each datapoint in `X`.\nExamples:\n\n >>> mahalanobis_metric = datasets.load_metric("mahalanobis")\n >>> results = mahalanobis_metric.compute(reference_distribution=[[0, 1], [1, 0]], X=[[0, 1]])\n >>> print(results)\n {\'mahalanobis\': array([0.5])}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : int ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """X""": datasets.Sequence(datasets.Value("""float""" , id="""sequence""" ) , id="""X""" ), } ) , ) def UpperCAmelCase__ ( self : Any , UpperCamelCase__ : Any , UpperCamelCase__ : Union[str, Any] ): '''simple docstring''' lowercase_ = np.array(UpperCamelCase__ ) lowercase_ = np.array(UpperCamelCase__ ) # Assert that arrays are 2D if len(X.shape ) != 2: raise ValueError("""Expected `X` to be a 2D vector""" ) if len(reference_distribution.shape ) != 2: raise ValueError("""Expected `reference_distribution` to be a 2D vector""" ) if reference_distribution.shape[0] < 2: raise ValueError( """Expected `reference_distribution` to be a 2D vector with more than one element in the first dimension""" ) # Get mahalanobis distance for each prediction lowercase_ = X - np.mean(UpperCamelCase__ ) lowercase_ = np.cov(reference_distribution.T ) try: lowercase_ = np.linalg.inv(UpperCamelCase__ ) except np.linalg.LinAlgError: lowercase_ = np.linalg.pinv(UpperCamelCase__ ) lowercase_ = np.dot(UpperCamelCase__ , UpperCamelCase__ ) lowercase_ = np.dot(UpperCamelCase__ , X_minus_mu.T ).diagonal() return {"mahalanobis": mahal_dist}
721
import os import re import warnings from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_ta import TaTokenizer else: a = None a = logging.get_logger(__name__) a = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} a = { 'vocab_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/spiece.model', 't5-base': 'https://huggingface.co/t5-base/resolve/main/spiece.model', 't5-large': 'https://huggingface.co/t5-large/resolve/main/spiece.model', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/spiece.model', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/spiece.model', }, 'tokenizer_file': { 't5-small': 'https://huggingface.co/t5-small/resolve/main/tokenizer.json', 't5-base': 'https://huggingface.co/t5-base/resolve/main/tokenizer.json', 't5-large': 'https://huggingface.co/t5-large/resolve/main/tokenizer.json', 't5-3b': 'https://huggingface.co/t5-3b/resolve/main/tokenizer.json', 't5-11b': 'https://huggingface.co/t5-11b/resolve/main/tokenizer.json', }, } # TODO(PVP) - this should be removed in Transformers v5 a = { 't5-small': 5_1_2, 't5-base': 5_1_2, 't5-large': 5_1_2, 't5-3b': 5_1_2, 't5-11b': 5_1_2, } class UpperCamelCase__ ( __magic_name__ ): __SCREAMING_SNAKE_CASE : Union[str, Any] = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : int = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : str = ['input_ids', 'attention_mask'] __SCREAMING_SNAKE_CASE : Dict = TaTokenizer __SCREAMING_SNAKE_CASE : List[int] = [] def __init__( self : int , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : Any=None , UpperCamelCase__ : Dict="</s>" , UpperCamelCase__ : Tuple="<unk>" , UpperCamelCase__ : Optional[Any]="<pad>" , UpperCamelCase__ : Union[str, Any]=100 , UpperCamelCase__ : Optional[Any]=None , **UpperCamelCase__ : List[str] , ): '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: lowercase_ = [F'''<extra_id_{i}>''' for i in range(UpperCamelCase__ )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra special tokens lowercase_ = len(set(filter(lambda UpperCamelCase__ : bool("""extra_id_""" in str(UpperCamelCase__ ) ) , UpperCamelCase__ ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' """ provided to T5Tokenizer. In this case the additional_special_tokens must include the extra_ids""" """ tokens""" ) super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , eos_token=UpperCamelCase__ , unk_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , extra_ids=UpperCamelCase__ , additional_special_tokens=UpperCamelCase__ , **UpperCamelCase__ , ) lowercase_ = vocab_file lowercase_ = False if not self.vocab_file else True lowercase_ = extra_ids @staticmethod def UpperCAmelCase__ ( UpperCamelCase__ : Tuple , UpperCamelCase__ : str , UpperCamelCase__ : int ): '''simple docstring''' if pretrained_model_name_or_path in TaTokenizerFast.max_model_input_sizes: lowercase_ = TaTokenizerFast.max_model_input_sizes[pretrained_model_name_or_path] if init_max_model_length is not None and init_max_model_length != max_model_length: return init_max_model_length elif init_max_model_length is None: warnings.warn( """This tokenizer was incorrectly instantiated with a model max length of""" F''' {deprecated_max_model_length} which will be corrected in Transformers v5.\nFor now, this''' """ behavior is kept to avoid breaking backwards compatibility when padding/encoding with""" """ `truncation is True`.\n- Be aware that you SHOULD NOT rely on""" F''' {pretrained_model_name_or_path} automatically truncating your input to''' F''' {deprecated_max_model_length} when padding/encoding.\n- If you want to encode/pad to sequences''' F''' longer than {deprecated_max_model_length} you can either instantiate this tokenizer with''' """ `model_max_length` or pass `max_length` when encoding/padding.\n- To avoid this warning, please""" """ instantiate this tokenizer with `model_max_length` set to your preferred value.""" , UpperCamelCase__ , ) return max_model_length def UpperCAmelCase__ ( self : int , UpperCamelCase__ : str , UpperCamelCase__ : Optional[str] = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( """Your fast tokenizer does not have the necessary information to save the vocabulary for a slow """ """tokenizer.""" ) if not os.path.isdir(UpperCamelCase__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowercase_ = os.path.join( UpperCamelCase__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase__ ): copyfile(self.vocab_file , UpperCamelCase__ ) logger.info(F'''Copy vocab file to {out_vocab_file}''' ) return (out_vocab_file,) def UpperCAmelCase__ ( self : int , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = token_ids_a + [self.eos_token_id] if token_ids_a is None: return self.prefix_tokens + token_ids_a else: lowercase_ = token_ids_a + [self.eos_token_id] return self.prefix_tokens + token_ids_a + token_ids_a def UpperCAmelCase__ ( self : str , UpperCamelCase__ : List[int] , UpperCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' lowercase_ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def UpperCAmelCase__ ( self : Dict ): '''simple docstring''' return list( set(filter(lambda UpperCamelCase__ : bool(re.search(R"""<extra_id_\d+>""" , UpperCamelCase__ ) ) is not None , self.additional_special_tokens ) ) ) def UpperCAmelCase__ ( self : str ): '''simple docstring''' return [self.convert_tokens_to_ids(UpperCamelCase__ ) for token in self.get_sentinel_tokens()]
650
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __magic_name__ = logging.get_logger(__name__) __magic_name__ = {"vocab_file": "vocab.txt"} __magic_name__ = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } __magic_name__ = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } __magic_name__ = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class SCREAMING_SNAKE_CASE_ ( __a ): """simple docstring""" __lowercase : str = VOCAB_FILES_NAMES __lowercase : str = PRETRAINED_VOCAB_FILES_MAP __lowercase : Tuple = PRETRAINED_INIT_CONFIGURATION __lowercase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Optional[int] = ConvBertTokenizer def __init__( self , lowerCAmelCase__=None , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__="[UNK]" , lowerCAmelCase__="[SEP]" , lowerCAmelCase__="[PAD]" , lowerCAmelCase__="[CLS]" , lowerCAmelCase__="[MASK]" , lowerCAmelCase__=True , lowerCAmelCase__=None , **lowerCAmelCase__ , ): super().__init__( lowerCAmelCase__ , tokenizer_file=lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , unk_token=lowerCAmelCase__ , sep_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , cls_token=lowerCAmelCase__ , mask_token=lowerCAmelCase__ , tokenize_chinese_chars=lowerCAmelCase__ , strip_accents=lowerCAmelCase__ , **lowerCAmelCase__ , ) __SCREAMING_SNAKE_CASE = json.loads(self.backend_tokenizer.normalizer.__getstate__()) if ( normalizer_state.get("""lowercase""" , lowerCAmelCase__) != do_lower_case or normalizer_state.get("""strip_accents""" , lowerCAmelCase__) != strip_accents or normalizer_state.get("""handle_chinese_chars""" , lowerCAmelCase__) != tokenize_chinese_chars ): __SCREAMING_SNAKE_CASE = getattr(lowerCAmelCase__ , normalizer_state.pop("""type""")) __SCREAMING_SNAKE_CASE = do_lower_case __SCREAMING_SNAKE_CASE = strip_accents __SCREAMING_SNAKE_CASE = tokenize_chinese_chars __SCREAMING_SNAKE_CASE = normalizer_class(**lowerCAmelCase__) __SCREAMING_SNAKE_CASE = do_lower_case def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__=None): __SCREAMING_SNAKE_CASE = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = [self.sep_token_id] __SCREAMING_SNAKE_CASE = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep) * [0] + len(token_ids_a + sep) * [1] def snake_case_ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None): __SCREAMING_SNAKE_CASE = self._tokenizer.model.save(lowerCAmelCase__ , name=lowerCAmelCase__) return tuple(lowerCAmelCase__)
155
"""simple docstring""" import os import pickle import unittest from transformers import AutoTokenizer from transformers.models.bert.tokenization_bert import BertTokenizer from transformers.models.bert_japanese.tokenization_bert_japanese import ( VOCAB_FILES_NAMES, BertJapaneseTokenizer, CharacterTokenizer, JumanppTokenizer, MecabTokenizer, SudachiTokenizer, WordpieceTokenizer, ) from transformers.testing_utils import custom_tokenizers, require_jumanpp, require_sudachi from ...test_tokenization_common import TokenizerTesterMixin @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : Dict = BertJapaneseTokenizer __lowercase : List[str] = False __lowercase : List[Any] = True def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = [ """[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは""", """世界""", """##世界""", """、""", """##、""", """。""", """##。""", ] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """こんにちは、世界。 \nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = """こんにちは 、 世界 。 こんばんは 、 世界 。""" return input_text, output_text def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = self.get_input_output_texts(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.decode(lowerCAmelCase__ , clean_up_tokenization_spaces=lowerCAmelCase__) return text, ids def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file) __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""こんにちは、世界。\nこんばんは、世界。""") self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""mecab""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""unidic_lite""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer(mecab_dic="""unidic""") except ModuleNotFoundError: return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(do_lower_case=lowerCAmelCase__ , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iphone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) def snake_case_ ( self): try: __SCREAMING_SNAKE_CASE = MecabTokenizer( do_lower_case=lowerCAmelCase__ , normalize_text=lowerCAmelCase__ , mecab_option="""-d /usr/local/lib/mecab/dic/jumandic""") except RuntimeError: # if dict doesn't exist in the system, previous code raises this error. return self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = MecabTokenizer(normalize_text=lowerCAmelCase__ , mecab_dic="""ipadic""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップルストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """ """, """。"""] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""sudachi""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""A""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国""", """人""", """参政""", """権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""B""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人""", """参政権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(sudachi_dict_type="""core""" , sudachi_split_mode="""C""") self.assertListEqual(tokenizer.tokenize("""外国人参政権""") , ["""外国人参政権"""]) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(do_lower_case=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iphone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """ """, """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(normalize_text=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , [""" """, """\t""", """アップル""", """ストア""", """で""", """iPhone""", """8""", """ """, """が""", """ """, """ """, """\n """, """発売""", """さ""", """れ""", """た""", """\u3000""", """。""", """ """, """ """] , ) @require_sudachi def snake_case_ ( self): __SCREAMING_SNAKE_CASE = SudachiTokenizer(trim_whitespace=lowerCAmelCase__ , sudachi_dict_type="""core""") self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れ""", """た""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , word_tokenizer_type="""jumanpp""") self.assertIsNotNone(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = """こんにちは、世界。\nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , ["""こんにちは""", """、""", """世界""", """。""", """こん""", """##ばんは""", """、""", """世界""", """。"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 1_2, 1_0, 1_4, 4, 9, 1_2, 1_0, 1_4]) __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , """tokenizer.bin""") with open(lowerCAmelCase__ , """wb""") as handle: pickle.dump(lowerCAmelCase__ , lowerCAmelCase__) with open(lowerCAmelCase__ , """rb""") as handle: __SCREAMING_SNAKE_CASE = pickle.load(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer_new.tokenize(lowerCAmelCase__) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(do_lower_case=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iphone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(normalize_text=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""ア""", """ッ""", """フ""", """゚""", """ル""", """ストア""", """で""", """iPhone""", """8""", """\u3000""", """が""", """\u3000""", """\u3000""", """\u3000""", """発売""", """さ""", """れた""", """\u3000""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer(trim_whitespace=lowerCAmelCase__) self.assertListEqual( tokenizer.tokenize(""" \tアップルストアでiPhone8 が \n 発売された 。 """) , ["""アップル""", """ストア""", """で""", """iPhone""", """8""", """が""", """発売""", """さ""", """れた""", """。"""] , ) @require_jumanpp def snake_case_ ( self): __SCREAMING_SNAKE_CASE = JumanppTokenizer() self.assertListEqual( tokenizer.tokenize("""ありがとうございますm(_ _)m見つけるのが大変です。""") , ["""ありがとう""", """ございます""", """m(_ _)m""", """見つける""", """の""", """が""", """大変です""", """。"""] , ) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こんにちは""", """こん""", """にちは""", """ばんは""", """##こん""", """##にちは""", """##ばんは"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = WordpieceTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こんにちは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは""") , ["""こん""", """##ばんは"""]) self.assertListEqual(tokenizer.tokenize("""こんばんは こんばんにちは こんにちは""") , ["""こん""", """##ばんは""", """[UNK]""", """こんにちは"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = BertJapaneseTokenizer.from_pretrained("""nlp-waseda/roberta-base-japanese-with-auto-jumanpp""") __SCREAMING_SNAKE_CASE = tokenizer.subword_tokenizer __SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("""国境 の 長い トンネル を 抜ける と 雪国 であった 。""") self.assertListEqual(lowerCAmelCase__ , ["""▁国境""", """▁の""", """▁長い""", """▁トンネル""", """▁を""", """▁抜ける""", """▁と""", """▁雪""", """国""", """▁であった""", """▁。"""]) __SCREAMING_SNAKE_CASE = subword_tokenizer.tokenize("""こんばんは こんばん にち は こんにちは""") self.assertListEqual(lowerCAmelCase__ , ["""▁こん""", """ばん""", """は""", """▁こん""", """ばん""", """▁に""", """ち""", """▁は""", """▁こんにちは"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( __a , unittest.TestCase ): """simple docstring""" __lowercase : str = BertJapaneseTokenizer __lowercase : int = False def snake_case_ ( self): super().setUp() __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) def snake_case_ ( self , **lowerCAmelCase__): return BertJapaneseTokenizer.from_pretrained(self.tmpdirname , subword_tokenizer_type="""character""" , **lowerCAmelCase__) def snake_case_ ( self , lowerCAmelCase__): __SCREAMING_SNAKE_CASE = """こんにちは、世界。 \nこんばんは、世界。""" __SCREAMING_SNAKE_CASE = """こ ん に ち は 、 世 界 。 こ ん ば ん は 、 世 界 。""" return input_text, output_text def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): pass # TODO add if relevant def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , subword_tokenizer_type="""character""") __SCREAMING_SNAKE_CASE = tokenizer.tokenize("""こんにちは、世界。 \nこんばんは、世界。""") self.assertListEqual( lowerCAmelCase__ , ["""こ""", """ん""", """に""", """ち""", """は""", """、""", """世""", """界""", """。""", """こ""", """ん""", """ば""", """ん""", """は""", """、""", """世""", """界""", """。"""]) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCAmelCase__) , [3, 4, 5, 6, 7, 1_1, 9, 1_0, 1_2, 3, 4, 8, 4, 7, 1_1, 9, 1_0, 1_2]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """こ""", """ん""", """に""", """ち""", """は""", """ば""", """世""", """界""", """、""", """。"""] __SCREAMING_SNAKE_CASE = {} for i, token in enumerate(lowerCAmelCase__): __SCREAMING_SNAKE_CASE = i __SCREAMING_SNAKE_CASE = CharacterTokenizer(vocab=lowerCAmelCase__ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""こんにちは""") , ["""こ""", """ん""", """に""", """ち""", """は"""]) self.assertListEqual(tokenizer.tokenize("""こんにちほ""") , ["""こ""", """ん""", """に""", """ち""", """[UNK]"""]) def snake_case_ ( self): __SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained("""cl-tohoku/bert-base-japanese-char""") __SCREAMING_SNAKE_CASE = tokenizer.encode("""ありがとう。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.encode("""どういたしまして。""" , add_special_tokens=lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__) __SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__) # 2 is for "[CLS]", 3 is for "[SEP]" assert encoded_sentence == [2] + text + [3] assert encoded_pair == [2] + text + [3] + text_a + [3] @custom_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cl-tohoku/bert-base-japanese""" __SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained(lowerCAmelCase__) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__) class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self): __SCREAMING_SNAKE_CASE = """cl-tohoku/bert-base-japanese""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from.""")) __SCREAMING_SNAKE_CASE = """bert-base-cased""" with self.assertLogs("""transformers""" , level="""WARNING""") as cm: BertJapaneseTokenizer.from_pretrained(lowerCAmelCase__) self.assertTrue( cm.records[0].message.startswith( """The tokenizer class you load from this checkpoint is not the same type as the class this function""" """ is called from."""))
155
1
'''simple docstring''' import doctest from collections import deque import numpy as np class a : """simple docstring""" def __init__( self ) -> None: _A = [2, 1, 2, -1] _A = [1, 2, 3, 4] def UpperCAmelCase ( self ) -> list[float]: _A = len(self.first_signal ) _A = len(self.second_signal ) _A = max(A__ , A__ ) # create a zero matrix of max_length x max_length _A = [[0] * max_length for i in range(A__ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(A__ ): _A = deque(self.second_signal ) rotated_signal.rotate(A__ ) for j, item in enumerate(A__ ): matrix[i][j] += item # multiply the matrix with the first signal _A = np.matmul(np.transpose(A__ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(A__ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
83
0
SCREAMING_SNAKE_CASE__ : Union[str, Any] = { "Pillow": "Pillow", "accelerate": "accelerate>=0.11.0", "compel": "compel==0.1.8", "black": "black~=23.1", "datasets": "datasets", "filelock": "filelock", "flax": "flax>=0.4.1", "hf-doc-builder": "hf-doc-builder>=0.3.0", "huggingface-hub": "huggingface-hub>=0.13.2", "requests-mock": "requests-mock==1.10.0", "importlib_metadata": "importlib_metadata", "invisible-watermark": "invisible-watermark", "isort": "isort>=5.5.4", "jax": "jax>=0.2.8,!=0.3.2", "jaxlib": "jaxlib>=0.1.65", "Jinja2": "Jinja2", "k-diffusion": "k-diffusion>=0.0.12", "torchsde": "torchsde", "note_seq": "note_seq", "librosa": "librosa", "numpy": "numpy", "omegaconf": "omegaconf", "parameterized": "parameterized", "protobuf": "protobuf>=3.20.3,<4", "pytest": "pytest", "pytest-timeout": "pytest-timeout", "pytest-xdist": "pytest-xdist", "ruff": "ruff>=0.0.241", "safetensors": "safetensors", "sentencepiece": "sentencepiece>=0.1.91,!=0.1.92", "scipy": "scipy", "onnx": "onnx", "regex": "regex!=2019.12.17", "requests": "requests", "tensorboard": "tensorboard", "torch": "torch>=1.4", "torchvision": "torchvision", "transformers": "transformers>=4.25.1", "urllib3": "urllib3<=2.0.0", }
85
def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int ) -> int: def count_of_possible_combinations(SCREAMING_SNAKE_CASE :int ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int ) -> int: def count_of_possible_combinations_with_dp_array( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] __lowerCAmelCase : int = sum( count_of_possible_combinations_with_dp_array(target - item , SCREAMING_SNAKE_CASE ) for item in array ) __lowerCAmelCase : Optional[Any] = answer return answer __lowerCAmelCase : Optional[int] = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :int , SCREAMING_SNAKE_CASE :list[int] , SCREAMING_SNAKE_CASE :int ) -> int: __lowerCAmelCase : Tuple = [0] * (target + 1) __lowerCAmelCase : List[str] = 1 for i in range(1 , target + 1 ): for j in range(SCREAMING_SNAKE_CASE ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase = 3 _UpperCAmelCase = 5 _UpperCAmelCase = [1, 2, 5] print(combination_sum_iv(n, array, target))
504
0
'''simple docstring''' def __a(SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): '''simple docstring''' if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = F'''Expected string as input, found {type(SCREAMING_SNAKE_CASE_ )}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = F'''Expected boolean as use_pascal parameter, found {type(SCREAMING_SNAKE_CASE_ )}''' raise ValueError(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = input_str.split("_" ) _lowerCAmelCase = 0 if use_pascal else 1 _lowerCAmelCase = words[start_index:] _lowerCAmelCase = [word[0].upper() + word[1:] for word in words_to_capitalize] _lowerCAmelCase = "" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
489
'''simple docstring''' from math import isqrt, loga def __a(SCREAMING_SNAKE_CASE_ : int ): '''simple docstring''' _lowerCAmelCase = [True] * max_number for i in range(2 , isqrt(max_number - 1 ) + 1 ): if is_prime[i]: for j in range(i**2 , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): _lowerCAmelCase = False return [i for i in range(2 , SCREAMING_SNAKE_CASE_ ) if is_prime[i]] def __a(SCREAMING_SNAKE_CASE_ : int = 800800 , SCREAMING_SNAKE_CASE_ : int = 800800 ): '''simple docstring''' _lowerCAmelCase = degree * loga(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = int(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = calculate_prime_numbers(SCREAMING_SNAKE_CASE_ ) _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = len(SCREAMING_SNAKE_CASE_ ) - 1 while left < right: while ( prime_numbers[right] * loga(prime_numbers[left] ) + prime_numbers[left] * loga(prime_numbers[right] ) > upper_bound ): right -= 1 hybrid_integers_count += right - left left += 1 return hybrid_integers_count if __name__ == "__main__": print(f'''{solution() = }''')
489
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def __snake_case ( lowercase : str , lowercase : List[str] , lowercase : Tuple=None , lowercase : List[str]=None ): if attention_mask is None: snake_case_ = tf.cast(tf.math.not_equal(lowercase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class UpperCAmelCase_ : """simple docstring""" snake_case = OPTConfig snake_case = {} snake_case = """gelu""" def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=7 , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_=99 , UpperCAmelCase_=16 , UpperCAmelCase_=2 , UpperCAmelCase_=4 , UpperCAmelCase_=4 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=20 , UpperCAmelCase_=2 , UpperCAmelCase_=1 , UpperCAmelCase_=0 , UpperCAmelCase_=16 , UpperCAmelCase_=16 , ): snake_case_ = parent snake_case_ = batch_size snake_case_ = seq_length snake_case_ = is_training snake_case_ = use_labels snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = eos_token_id snake_case_ = pad_token_id snake_case_ = bos_token_id snake_case_ = embed_dim snake_case_ = word_embed_proj_dim snake_case_ = False def _lowercase ( self ): snake_case_ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) snake_case_ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) snake_case_ = tf.concat([input_ids, eos_tensor] , axis=1 ) snake_case_ = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=UpperCAmelCase_ , **self.config_updates , ) snake_case_ = prepare_opt_inputs_dict(UpperCAmelCase_ , UpperCAmelCase_ ) return config, inputs_dict def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_ ): snake_case_ = TFOPTModel(config=UpperCAmelCase_ ) snake_case_ = inputs_dict["input_ids"] snake_case_ = input_ids[:1, :] snake_case_ = inputs_dict["attention_mask"][:1, :] snake_case_ = 1 # first forward pass snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , use_cache=UpperCAmelCase_ ) snake_case_ , snake_case_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids snake_case_ = ids_tensor((self.batch_size, 3) , config.vocab_size ) snake_case_ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and snake_case_ = tf.concat([input_ids, next_tokens] , axis=-1 ) snake_case_ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ )[0] snake_case_ = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , past_key_values=UpperCAmelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice snake_case_ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) snake_case_ = output_from_no_past[:, -3:, random_slice_idx] snake_case_ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCAmelCase_ , UpperCAmelCase_ , rtol=1e-3 ) @require_tf class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () snake_case = (TFOPTForCausalLM,) if is_tf_available() else () snake_case = ( {"""feature-extraction""": TFOPTModel, """text-generation""": TFOPTForCausalLM} if is_tf_available() else {} ) snake_case = False snake_case = False snake_case = False snake_case = 1_0 def _lowercase ( self ): snake_case_ = TFOPTModelTester(self ) snake_case_ = ConfigTester(self , config_class=UpperCAmelCase_ ) def _lowercase ( self ): self.config_tester.run_common_tests() def _lowercase ( self ): snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(UpperCAmelCase_ , UpperCAmelCase_ ): if hasattr(UpperCAmelCase_ , "weight" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(UpperCAmelCase_ , "weight" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings snake_case_ = model_class(config=UpperCAmelCase_ ) snake_case_ = _get_word_embedding_weight(UpperCAmelCase_ , model.get_input_embeddings() ) snake_case_ = _get_word_embedding_weight(UpperCAmelCase_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(UpperCAmelCase_ ) snake_case_ = _get_word_embedding_weight(UpperCAmelCase_ , model.get_input_embeddings() ) snake_case_ = _get_word_embedding_weight(UpperCAmelCase_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. snake_case_ = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , UpperCAmelCase_ ) # check that weights remain the same after resizing snake_case_ = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case_ = False self.assertTrue(UpperCAmelCase_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , UpperCAmelCase_ ) snake_case_ = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: snake_case_ = False self.assertTrue(UpperCAmelCase_ ) def __snake_case ( lowercase : Any ): return tf.constant(lowercase , dtype=tf.intaa ) @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" snake_case = 9_9 def _lowercase ( self ): snake_case_ = tf.ones((4, 1) , dtype=tf.intaa ) * 2 snake_case_ = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) snake_case_ = input_ids.shape[0] snake_case_ = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @slow def _lowercase ( self ): snake_case_ = TFOPTModel.from_pretrained("facebook/opt-350m" ) snake_case_ = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) snake_case_ = tf.not_equal(UpperCAmelCase_ , model.config.pad_token_id ) with tf.GradientTape(): snake_case_ = model(input_ids=UpperCAmelCase_ , attention_mask=UpperCAmelCase_ ).last_hidden_state snake_case_ = (1, 11, 5_12) self.assertEqual(output.shape , UpperCAmelCase_ ) snake_case_ = tf.constant( [[-0.2_873, -1.9_218, -0.3_033], [-1.2_710, -0.1_338, -0.1_902], [0.4_095, 0.1_214, -1.3_121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=4e-3 ) ) snake_case_ = tf.function(UpperCAmelCase_ , jit_compile=UpperCAmelCase_ ) snake_case_ = xla_generate(UpperCAmelCase_ , UpperCAmelCase_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=4e-2 ) ) @require_tf @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ): super().setUp() snake_case_ = "facebook/opt-350m" def _lowercase ( self ): snake_case_ = TFOPTForCausalLM.from_pretrained(self.path_model ) snake_case_ = GPTaTokenizer.from_pretrained(self.path_model ) snake_case_ = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False snake_case_ = tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ ) snake_case_ = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) snake_case_ = tf.constant( [ [1.3_851, -13.8_923, -10.5_229, -10.7_533, -0.2_309, -10.2_384, -0.5_365, -9.0_947, -5.1_670], [-4.7_073, -10.6_276, -3.9_415, -21.5_242, -0.2_822, -0.2_822, -0.2_822, -0.2_822, -0.2_822], [0.6_247, -3.4_229, -8.9_179, -1.4_297, -14.1_650, 1.4_146, -9.0_218, -0.2_703, -0.2_703], [6.4_783, -1.9_913, -10.7_926, -2.3_336, 1.5_092, -0.9_974, -6.8_213, 1.3_477, 1.3_477], ] ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-4 ) ) snake_case_ = tf.function(UpperCAmelCase_ , jit_compile=UpperCAmelCase_ ) snake_case_ = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(UpperCAmelCase_ , UpperCAmelCase_ , atol=1e-4 ) ) @require_tf @slow class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" @property def _lowercase ( self ): return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def _lowercase ( self ): snake_case_ = "facebook/opt-125m" snake_case_ = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] snake_case_ = [] snake_case_ = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) snake_case_ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) for prompt in self.prompts: snake_case_ = tokenizer(UpperCAmelCase_ , return_tensors="tf" ).input_ids snake_case_ = model.generate(UpperCAmelCase_ , max_length=10 ) snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) def _lowercase ( self ): snake_case_ = "facebook/opt-350m" snake_case_ = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) snake_case_ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) snake_case_ = "left" # use different length sentences to test batching snake_case_ = [ "Hello, my dog is a little", "Today, I", ] snake_case_ = tokenizer(UpperCAmelCase_ , return_tensors="tf" , padding=UpperCAmelCase_ ) snake_case_ = inputs["input_ids"] snake_case_ = model.generate(input_ids=UpperCAmelCase_ , attention_mask=inputs["attention_mask"] ) snake_case_ = tokenizer(sentences[0] , return_tensors="tf" ).input_ids snake_case_ = model.generate(input_ids=UpperCAmelCase_ ) snake_case_ = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["attention_mask"][-1] , tf.intaa ) ) snake_case_ = tokenizer(sentences[1] , return_tensors="tf" ).input_ids snake_case_ = model.generate(input_ids=UpperCAmelCase_ , max_length=model.config.max_length - num_paddings ) snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase_ ) snake_case_ = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ ) self.assertListEqual(UpperCAmelCase_ , [non_padded_sentence, padded_sentence] ) def _lowercase ( self ): snake_case_ = "facebook/opt-350m" snake_case_ = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] snake_case_ = [] snake_case_ = GPTaTokenizer.from_pretrained(UpperCAmelCase_ ) snake_case_ = TFOPTForCausalLM.from_pretrained(UpperCAmelCase_ ) for prompt in self.prompts: snake_case_ = tokenizer(UpperCAmelCase_ , return_tensors="tf" ).input_ids snake_case_ = model.generate(UpperCAmelCase_ , max_length=10 ) snake_case_ = tokenizer.batch_decode(UpperCAmelCase_ , skip_special_tokens=UpperCAmelCase_ ) predicted_outputs += generated_string self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_ )
508
'''simple docstring''' import math import sys import cva import numpy as np def __snake_case ( lowercase : np.ndarray , lowercase : float ): # For applying gaussian function for each element in matrix. snake_case_ = math.sqrt(lowercase ) snake_case_ = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __snake_case ( lowercase : np.ndarray , lowercase : int , lowercase : int , lowercase : int ): snake_case_ = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __snake_case ( lowercase : int , lowercase : float ): # Creates a gaussian kernel of given dimension. snake_case_ = np.zeros((kernel_size, kernel_size) ) for i in range(0 , lowercase ): for j in range(0 , lowercase ): snake_case_ = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(lowercase , lowercase ) def __snake_case ( lowercase : np.ndarray , lowercase : float , lowercase : float , lowercase : int , ): snake_case_ = np.zeros(img.shape ) snake_case_ = get_gauss_kernel(lowercase , lowercase ) snake_case_ , snake_case_ = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): snake_case_ = get_slice(lowercase , lowercase , lowercase , lowercase ) snake_case_ = img_s - img_s[kernel_size // 2, kernel_size // 2] snake_case_ = vec_gaussian(lowercase , lowercase ) snake_case_ = np.multiply(lowercase , lowercase ) snake_case_ = np.multiply(lowercase , lowercase ) snake_case_ = np.sum(lowercase ) / np.sum(lowercase ) snake_case_ = val return imga def __snake_case ( lowercase : list ): snake_case_ = args[1] if args[1:] else "../image_data/lena.jpg" snake_case_ = float(args[2] ) if args[2:] else 1.0 snake_case_ = float(args[3] ) if args[3:] else 1.0 if args[4:]: snake_case_ = int(args[4] ) snake_case_ = kernel_size + abs(kernel_size % 2 - 1 ) else: snake_case_ = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowercase__ , lowercase__ , lowercase__ , lowercase__ = parse_args(sys.argv) lowercase__ = cva.imread(filename, 0) cva.imshow('''input image''', img) lowercase__ = img / 2_55 lowercase__ = out.astype('''float32''') lowercase__ = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowercase__ = out * 2_55 lowercase__ = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
508
1
"""simple docstring""" import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def _lowerCamelCase ( _UpperCamelCase : Optional[Any] ): '''simple docstring''' if ( (cp >= 0x4E00 and cp <= 0x9FFF) or (cp >= 0x3400 and cp <= 0x4DBF) # or (cp >= 0x2_0000 and cp <= 0x2_A6DF) # or (cp >= 0x2_A700 and cp <= 0x2_B73F) # or (cp >= 0x2_B740 and cp <= 0x2_B81F) # or (cp >= 0x2_B820 and cp <= 0x2_CEAF) # or (cp >= 0xF900 and cp <= 0xFAFF) or (cp >= 0x2_F800 and cp <= 0x2_FA1F) # ): # return True return False def _lowerCamelCase ( _UpperCamelCase : Optional[Any] ): '''simple docstring''' for char in word: __lowerCAmelCase = ord(_UpperCamelCase ) if not _is_chinese_char(_UpperCamelCase ): return 0 return 1 def _lowerCamelCase ( _UpperCamelCase : Any ): '''simple docstring''' __lowerCAmelCase = set() for token in tokens: __lowerCAmelCase = len(_UpperCamelCase ) > 1 and is_chinese(_UpperCamelCase ) if chinese_word: word_set.add(_UpperCamelCase ) __lowerCAmelCase = list(_UpperCamelCase ) return word_list def _lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Dict ): '''simple docstring''' if not chinese_word_set: return bert_tokens __lowerCAmelCase = max([len(_UpperCamelCase ) for w in chinese_word_set] ) __lowerCAmelCase = bert_tokens __lowerCAmelCase , __lowerCAmelCase = 0, len(_UpperCamelCase ) while start < end: __lowerCAmelCase = True if is_chinese(bert_word[start] ): __lowerCAmelCase = min(end - start , _UpperCamelCase ) for i in range(_UpperCamelCase , 1 , -1 ): __lowerCAmelCase = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __lowerCAmelCase = "##" + bert_word[j] __lowerCAmelCase = start + i __lowerCAmelCase = False break if single_word: start += 1 return bert_word def _lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Tuple ): '''simple docstring''' __lowerCAmelCase = [] for i in range(0 , len(_UpperCamelCase ) , 100 ): __lowerCAmelCase = ltp_tokenizer.pipeline(lines[i : i + 100] , tasks=["cws"] ).cws __lowerCAmelCase = [get_chinese_word(_UpperCamelCase ) for r in res] ltp_res.extend(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) __lowerCAmelCase = [] for i in range(0 , len(_UpperCamelCase ) , 100 ): __lowerCAmelCase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=_UpperCamelCase , truncation=_UpperCamelCase , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) __lowerCAmelCase = [] for input_ids, chinese_word in zip(_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase = [] for id in input_ids: __lowerCAmelCase = bert_tokenizer._convert_id_to_token(_UpperCamelCase ) input_tokens.append(_UpperCamelCase ) __lowerCAmelCase = add_sub_symbol(_UpperCamelCase , _UpperCamelCase ) __lowerCAmelCase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(_UpperCamelCase ): if token[:2] == "##": __lowerCAmelCase = token[2:] # save chinese tokens' pos if len(_UpperCamelCase ) == 1 and _is_chinese_char(ord(_UpperCamelCase ) ): ref_id.append(_UpperCamelCase ) ref_ids.append(_UpperCamelCase ) assert len(_UpperCamelCase ) == len(_UpperCamelCase ) return ref_ids def _lowerCamelCase ( _UpperCamelCase : List[str] ): '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: __lowerCAmelCase = f.readlines() __lowerCAmelCase = [line.strip() for line in data if len(_UpperCamelCase ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __lowerCAmelCase = LTP(args.ltp ) # faster in GPU device __lowerCAmelCase = BertTokenizer.from_pretrained(args.bert ) __lowerCAmelCase = prepare_ref(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) with open(args.save_path , "w" , encoding="utf-8" ) as f: __lowerCAmelCase = [json.dumps(_UpperCamelCase ) + "\n" for ref in ref_ids] f.writelines(_UpperCamelCase ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) A : List[Any] = parser.parse_args() main(args)
701
"""simple docstring""" from itertools import product def _lowerCamelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' __lowerCAmelCase = sides_number __lowerCAmelCase = max_face_number * dice_number __lowerCAmelCase = [0] * (max_total + 1) __lowerCAmelCase = 1 __lowerCAmelCase = range(_UpperCamelCase , max_face_number + 1 ) for dice_numbers in product(_UpperCamelCase , repeat=_UpperCamelCase ): __lowerCAmelCase = sum(_UpperCamelCase ) totals_frequencies[total] += 1 return totals_frequencies def _lowerCamelCase ( ): '''simple docstring''' __lowerCAmelCase = total_frequency_distribution( sides_number=4 , dice_number=9 ) __lowerCAmelCase = total_frequency_distribution( sides_number=6 , dice_number=6 ) __lowerCAmelCase = 0 __lowerCAmelCase = 9 __lowerCAmelCase = 4 * 9 __lowerCAmelCase = 6 for peter_total in range(_UpperCamelCase , max_peter_total + 1 ): peter_wins_count += peter_totals_frequencies[peter_total] * sum( colin_totals_frequencies[min_colin_total:peter_total] ) __lowerCAmelCase = (4**9) * (6**6) __lowerCAmelCase = peter_wins_count / total_games_number __lowerCAmelCase = round(_UpperCamelCase , ndigits=7 ) return rounded_peter_win_probability if __name__ == "__main__": print(f'''{solution() = }''')
282
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} lowerCAmelCase_ = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } lowerCAmelCase_ = { '''gpt2''': 10_24, '''gpt2-medium''': 10_24, '''gpt2-large''': 10_24, '''gpt2-xl''': 10_24, '''distilgpt2''': 10_24, } class snake_case_ ( __A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE : Union[str, Any] = ["input_ids", "attention_mask"] SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer def __init__( self : List[str] , _UpperCamelCase : List[Any]=None , _UpperCamelCase : int=None , _UpperCamelCase : Optional[Any]=None , _UpperCamelCase : int="<|endoftext|>" , _UpperCamelCase : List[Any]="<|endoftext|>" , _UpperCamelCase : Any="<|endoftext|>" , _UpperCamelCase : List[str]=False , **_UpperCamelCase : Tuple , ) ->Optional[Any]: super().__init__( _UpperCamelCase , _UpperCamelCase , tokenizer_file=_UpperCamelCase , unk_token=_UpperCamelCase , bos_token=_UpperCamelCase , eos_token=_UpperCamelCase , add_prefix_space=_UpperCamelCase , **_UpperCamelCase , ) snake_case_ = kwargs.pop('''add_bos_token''' , _UpperCamelCase ) snake_case_ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('''add_prefix_space''' , _UpperCamelCase ) != add_prefix_space: snake_case_ = getattr(_UpperCamelCase , pre_tok_state.pop('''type''' ) ) snake_case_ = add_prefix_space snake_case_ = pre_tok_class(**_UpperCamelCase ) snake_case_ = add_prefix_space def snake_case__( self : Tuple , *_UpperCamelCase : List[Any] , **_UpperCamelCase : List[str] ) ->BatchEncoding: snake_case_ = kwargs.get('''is_split_into_words''' , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : str , *_UpperCamelCase : Any , **_UpperCamelCase : List[str] ) ->BatchEncoding: snake_case_ = kwargs.get('''is_split_into_words''' , _UpperCamelCase ) assert self.add_prefix_space or not is_split_into_words, ( f'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*_UpperCamelCase , **_UpperCamelCase ) def snake_case__( self : Union[str, Any] , _UpperCamelCase : str , _UpperCamelCase : Optional[str] = None ) ->Tuple[str]: snake_case_ = self._tokenizer.model.save(_UpperCamelCase , name=_UpperCamelCase ) return tuple(_UpperCamelCase ) def snake_case__( self : str , _UpperCamelCase : "Conversation" ) ->List[int]: snake_case_ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(_UpperCamelCase , add_special_tokens=_UpperCamelCase ) + [self.eos_token_id] ) if len(_UpperCamelCase ) > self.model_max_length: snake_case_ = input_ids[-self.model_max_length :] return input_ids
39
'''simple docstring''' import math import tensorflow as tf from packaging import version def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : str = tf.convert_to_tensor(__magic_name__ ) UpperCAmelCase : int = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Optional[int] = tf.convert_to_tensor(__magic_name__ ) UpperCAmelCase : Tuple = tf.cast(math.pi , x.dtype ) UpperCAmelCase : List[str] = tf.cast(0.0_4_4_7_1_5 , x.dtype ) UpperCAmelCase : List[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(__magic_name__ , 3 )) )) return x * cdf def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : Tuple = tf.convert_to_tensor(__magic_name__ ) return x * tf.tanh(tf.math.softplus(__magic_name__ ) ) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = tf.convert_to_tensor(__magic_name__ ) UpperCAmelCase : List[str] = tf.cast(0.0_4_4_7_1_5 , x.dtype ) UpperCAmelCase : int = tf.cast(0.7_9_7_8_8_4_5_6_0_8 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowercase ( __magic_name__ ): '''simple docstring''' UpperCAmelCase : int = tf.convert_to_tensor(__magic_name__ ) UpperCAmelCase : Optional[Any] = tf.cast(1.7_0_2 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowercase ( __magic_name__ ): '''simple docstring''' return tf.clip_by_value(_gelu(__magic_name__ ) , -10 , 10 ) def lowercase ( __magic_name__ , __magic_name__=-1 ): '''simple docstring''' UpperCAmelCase , UpperCAmelCase : Dict = tf.split(__magic_name__ , 2 , axis=__magic_name__ ) return a * tf.math.sigmoid(__magic_name__ ) if version.parse(tf.version.VERSION) >= version.parse("2.4"): def lowercase ( __magic_name__ ): '''simple docstring''' return tf.keras.activations.gelu(__magic_name__ , approximate=__magic_name__ ) a : Tuple = tf.keras.activations.gelu a : Dict = approximate_gelu_wrap else: a : List[str] = _gelu a : List[Any] = _gelu_new a : Optional[int] = { "gelu": gelu, "gelu_10": gelu_aa, "gelu_fast": gelu_fast, "gelu_new": gelu_new, "glu": glu, "mish": mish, "quick_gelu": quick_gelu, "relu": tf.keras.activations.relu, "sigmoid": tf.keras.activations.sigmoid, "silu": tf.keras.activations.swish, "swish": tf.keras.activations.swish, "tanh": tf.keras.activations.tanh, } def lowercase ( __magic_name__ ): '''simple docstring''' if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F"function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}" )
679
0
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class a__ : def __init__( self , _A , _A=1_3 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=9_9 , _A=3_2 , _A=2 , _A=4 , _A=3_7 , _A="gelu" , _A=0.1 , _A=0.1 , _A=5_1_2 , _A=1_6 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ): """simple docstring""" __lowerCAmelCase = parent __lowerCAmelCase = 1_3 __lowerCAmelCase = 7 __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = True __lowerCAmelCase = 9_9 __lowerCAmelCase = 3_2 __lowerCAmelCase = 2 __lowerCAmelCase = 4 __lowerCAmelCase = 3_7 __lowerCAmelCase = "gelu" __lowerCAmelCase = 0.1 __lowerCAmelCase = 0.1 __lowerCAmelCase = 5_1_2 __lowerCAmelCase = 1_6 __lowerCAmelCase = 2 __lowerCAmelCase = 0.02 __lowerCAmelCase = 3 __lowerCAmelCase = 4 __lowerCAmelCase = None def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCAmelCase = None if self.use_input_mask: __lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCAmelCase = None if self.use_token_type_ids: __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None if self.use_labels: __lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) __lowerCAmelCase = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFRoFormerModel(config=_A ) __lowerCAmelCase = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} __lowerCAmelCase = [input_ids, input_mask] __lowerCAmelCase = model(_A ) __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = True __lowerCAmelCase = TFRoFormerForCausalLM(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A )["logits"] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFRoFormerForMaskedLM(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFRoFormerForSequenceClassification(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_choices __lowerCAmelCase = TFRoFormerForMultipleChoice(config=_A ) __lowerCAmelCase = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) __lowerCAmelCase = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = self.num_labels __lowerCAmelCase = TFRoFormerForTokenClassification(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A , _A , _A ): """simple docstring""" __lowerCAmelCase = TFRoFormerForQuestionAnswering(config=_A ) __lowerCAmelCase = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } __lowerCAmelCase = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.prepare_config_and_inputs() ( ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ( __lowerCAmelCase ) , ) = config_and_inputs __lowerCAmelCase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class a__ ( snake_case__ , snake_case__ , unittest.TestCase ): _a : Union[str, Any] = ( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) _a : Dict = ( { """feature-extraction""": TFRoFormerModel, """fill-mask""": TFRoFormerForMaskedLM, """question-answering""": TFRoFormerForQuestionAnswering, """text-classification""": TFRoFormerForSequenceClassification, """text-generation""": TFRoFormerForCausalLM, """token-classification""": TFRoFormerForTokenClassification, """zero-shot""": TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) _a : Optional[Any] = False _a : List[str] = False def __SCREAMING_SNAKE_CASE( self , _A , _A , _A , _A , _A ): """simple docstring""" if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFRoFormerModelTester(self ) __lowerCAmelCase = ConfigTester(self , config_class=_A , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFRoFormerModel.from_pretrained("junnyu/roformer_chinese_base" ) self.assertIsNotNone(_A ) @require_tf class a__ ( unittest.TestCase ): @slow def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = TFRoFormerForMaskedLM.from_pretrained("junnyu/roformer_chinese_base" ) __lowerCAmelCase = tf.constant([[0, 1, 2, 3, 4, 5]] ) __lowerCAmelCase = model(_A )[0] # TODO Replace vocab size __lowerCAmelCase = 5_0_0_0_0 __lowerCAmelCase = [1, 6, vocab_size] self.assertEqual(output.shape , _A ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. __lowerCAmelCase = tf.constant( [ [ [-0.12_05_33_41, -1.0_26_49_01, 0.29_22_19_46], [-1.5_13_37_83, 0.19_74_33, 0.15_19_06_07], [-5.0_13_54_03, -3.90_02_56, -0.84_03_87_64], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 ) @require_tf class a__ ( unittest.TestCase ): _a : str = 1E-4 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = tf.constant([[4, 1_0]] ) __lowerCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) __lowerCAmelCase = emba(input_ids.shape ) __lowerCAmelCase = tf.constant( [[0.00_00, 0.00_00, 0.00_00, 1.00_00, 1.00_00, 1.00_00], [0.84_15, 0.04_64, 0.00_22, 0.54_03, 0.99_89, 1.00_00]] ) tf.debugging.assert_near(_A , _A , atol=self.tolerance ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = tf.constant( [ [0.00_00, 0.00_00, 0.00_00, 0.00_00, 0.00_00], [0.84_15, 0.82_19, 0.80_20, 0.78_19, 0.76_17], [0.90_93, 0.93_64, 0.95_81, 0.97_49, 0.98_70], ] ) __lowerCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=5_1_2 , embedding_dim=5_1_2 ) emba([2, 1_6, 5_1_2] ) __lowerCAmelCase = emba.weight[:3, :5] tf.debugging.assert_near(_A , _A , atol=self.tolerance ) @require_tf class a__ ( unittest.TestCase ): _a : Any = 1E-4 def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __lowerCAmelCase = -tf.reshape(tf.range(2 * 1_2 * 1_6 * 6_4 , dtype=tf.floataa ) , shape=(2, 1_2, 1_6, 6_4) ) / 1_0_0 __lowerCAmelCase = TFRoFormerSinusoidalPositionalEmbedding(num_positions=3_2 , embedding_dim=6_4 ) __lowerCAmelCase = embed_positions([2, 1_6, 7_6_8] )[None, None, :, :] __lowerCAmelCase , __lowerCAmelCase = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _A , _A , _A ) __lowerCAmelCase = tf.constant( [ [0.00_00, 0.01_00, 0.02_00, 0.03_00, 0.04_00, 0.05_00, 0.06_00, 0.07_00], [-0.20_12, 0.88_97, 0.02_63, 0.94_01, 0.20_74, 0.94_63, 0.34_81, 0.93_43], [-1.70_57, 0.62_71, -1.21_45, 1.38_97, -0.63_03, 1.76_47, -0.11_73, 1.89_85], [-2.17_31, -1.63_97, -2.73_58, 0.28_54, -2.18_40, 1.71_83, -1.30_18, 2.48_71], [0.27_17, -3.61_73, -2.92_06, -2.19_88, -3.66_38, 0.38_58, -2.91_55, 2.29_80], [3.98_59, -2.15_80, -0.79_84, -4.49_04, -4.11_81, -2.02_52, -4.47_82, 1.12_53], ] ) __lowerCAmelCase = tf.constant( [ [0.00_00, -0.01_00, -0.02_00, -0.03_00, -0.04_00, -0.05_00, -0.06_00, -0.07_00], [0.20_12, -0.88_97, -0.02_63, -0.94_01, -0.20_74, -0.94_63, -0.34_81, -0.93_43], [1.70_57, -0.62_71, 1.21_45, -1.38_97, 0.63_03, -1.76_47, 0.11_73, -1.89_85], [2.17_31, 1.63_97, 2.73_58, -0.28_54, 2.18_40, -1.71_83, 1.30_18, -2.48_71], [-0.27_17, 3.61_73, 2.92_06, 2.19_88, 3.66_38, -0.38_58, 2.91_55, -2.29_80], [-3.98_59, 2.15_80, 0.79_84, 4.49_04, 4.11_81, 2.02_52, 4.47_82, -1.12_53], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _A , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _A , atol=self.tolerance )
552
from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """facebook/nllb-moe-54B""": """https://huggingface.co/facebook/nllb-moe-54b/resolve/main/config.json""", } class a__ ( snake_case__ ): _a : Tuple = """nllb-moe""" _a : Dict = ["""past_key_values"""] _a : Optional[int] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , _A=1_2_8_1_1_2 , _A=1_0_2_4 , _A=1_2 , _A=4_0_9_6 , _A=1_6 , _A=1_2 , _A=4_0_9_6 , _A=1_6 , _A=0.05 , _A=0.05 , _A=True , _A=True , _A="relu" , _A=1_0_2_4 , _A=0.1 , _A=0.1 , _A=0.0 , _A=0.02 , _A=2 , _A=True , _A=False , _A="float32" , _A=False , _A=1_2_8 , _A=6_4 , _A=4 , _A=4 , _A=0.0_01 , _A=0.0_01 , _A="all" , _A=False , _A=False , _A=1.0 , _A=0.2 , _A=1 , _A=0 , _A=2 , _A=False , **_A , ): """simple docstring""" __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = router_z_loss_coef __lowerCAmelCase = router_aux_loss_coef __lowerCAmelCase = decoder_sparse_step __lowerCAmelCase = encoder_sparse_step __lowerCAmelCase = num_experts __lowerCAmelCase = expert_capacity __lowerCAmelCase = router_bias if router_dtype not in ["float32", "float16", "bfloat16"]: raise ValueError(f"""`router_dtype` must be one of 'float32', 'float16' or 'bfloat16', got {router_dtype}""" ) __lowerCAmelCase = router_dtype __lowerCAmelCase = router_ignore_padding_tokens __lowerCAmelCase = batch_prioritized_routing __lowerCAmelCase = second_expert_policy __lowerCAmelCase = normalize_router_prob_before_dropping __lowerCAmelCase = moe_eval_capacity_token_fraction __lowerCAmelCase = moe_token_dropout __lowerCAmelCase = output_router_logits super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , is_encoder_decoder=_A , decoder_start_token_id=_A , **_A , )
552
1
import inspect import unittest from transformers import DPTConfig from transformers.file_utils import is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import MODEL_MAPPING, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel from transformers.models.dpt.modeling_dpt import DPT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class _SCREAMING_SNAKE_CASE : def __init__( self : str , snake_case_ : Union[str, Any] , snake_case_ : List[Any]=2 , snake_case_ : List[str]=32 , snake_case_ : List[str]=16 , snake_case_ : List[Any]=3 , snake_case_ : Optional[int]=True , snake_case_ : List[str]=True , snake_case_ : str=32 , snake_case_ : Any=4 , snake_case_ : int=[0, 1, 2, 3] , snake_case_ : Union[str, Any]=4 , snake_case_ : Dict=37 , snake_case_ : Any="gelu" , snake_case_ : str=0.1 , snake_case_ : Optional[int]=0.1 , snake_case_ : Union[str, Any]=0.02 , snake_case_ : Optional[Any]=3 , snake_case_ : Dict=[1, 384, 24, 24] , snake_case_ : str=True , snake_case_ : str=None , ): """simple docstring""" A : Optional[Any] = parent A : int = batch_size A : int = image_size A : Optional[Any] = patch_size A : Optional[Any] = num_channels A : Union[str, Any] = is_training A : Optional[int] = use_labels A : List[str] = hidden_size A : str = num_hidden_layers A : List[str] = backbone_out_indices A : Dict = num_attention_heads A : List[Any] = intermediate_size A : Tuple = hidden_act A : Optional[Any] = hidden_dropout_prob A : Optional[int] = attention_probs_dropout_prob A : List[str] = initializer_range A : Union[str, Any] = num_labels A : List[Any] = backbone_featmap_shape A : Union[str, Any] = scope A : List[Any] = is_hybrid # sequence length of DPT = num_patches + 1 (we add 1 for the [CLS] token) A : List[Any] = (image_size // patch_size) ** 2 A : int = num_patches + 1 def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" A : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A : Union[str, Any] = None if self.use_labels: A : List[str] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) A : str = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" A : Union[str, Any] = { '''global_padding''': '''same''', '''layer_type''': '''bottleneck''', '''depths''': [3, 4, 9], '''out_features''': ['''stage1''', '''stage2''', '''stage3'''], '''embedding_dynamic_padding''': True, '''hidden_sizes''': [96, 192, 384, 768], '''num_groups''': 2, } return DPTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , backbone_out_indices=self.backbone_out_indices , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case_ , initializer_range=self.initializer_range , is_hybrid=self.is_hybrid , backbone_config=snake_case_ , backbone_featmap_shape=self.backbone_featmap_shape , ) def _UpperCAmelCase ( self : Tuple , snake_case_ : List[Any] , snake_case_ : Union[str, Any] , snake_case_ : List[Any] ): """simple docstring""" A : List[Any] = DPTModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() A : List[str] = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self : Optional[int] , snake_case_ : List[Any] , snake_case_ : Tuple , snake_case_ : int ): """simple docstring""" A : int = self.num_labels A : int = DPTForDepthEstimation(snake_case_ ) model.to(snake_case_ ) model.eval() A : int = model(snake_case_ ) self.parent.assertEqual(result.predicted_depth.shape , (self.batch_size, self.image_size, self.image_size) ) def _UpperCAmelCase ( self : int , snake_case_ : List[str] , snake_case_ : Optional[int] , snake_case_ : List[Any] ): """simple docstring""" A : Any = self.num_labels A : Union[str, Any] = DPTForSemanticSegmentation(snake_case_ ) model.to(snake_case_ ) model.eval() A : List[Any] = model(snake_case_ , labels=snake_case_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : Any = self.prepare_config_and_inputs() A , A , A : List[str] = config_and_inputs A : List[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class _SCREAMING_SNAKE_CASE ( snake_case, snake_case, unittest.TestCase ): lowerCamelCase_ = (DPTModel, DPTForDepthEstimation, DPTForSemanticSegmentation) if is_torch_available() else () lowerCamelCase_ = ( { 'depth-estimation': DPTForDepthEstimation, 'feature-extraction': DPTModel, 'image-segmentation': DPTForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase_ = False lowerCamelCase_ = False lowerCamelCase_ = False def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : Dict = DPTModelTester(self ) A : int = ConfigTester(self , config_class=snake_case_ , has_text_modality=snake_case_ , hidden_size=37 ) def _UpperCAmelCase ( self : str ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''DPT does not use inputs_embeds''' ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" pass def _UpperCAmelCase ( self : str ): """simple docstring""" A , A : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Tuple = model_class(snake_case_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A : Any = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case_ , nn.Linear ) ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" A , A : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: A : Union[str, Any] = model_class(snake_case_ ) A : Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A : int = [*signature.parameters.keys()] A : int = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case_ ) def _UpperCAmelCase ( self : List[Any] ): """simple docstring""" A : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case_ ) def _UpperCAmelCase ( self : Tuple ): """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_depth_estimation(*snake_case_ ) def _UpperCAmelCase ( self : Optional[int] ): """simple docstring""" A : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case_ ) def _UpperCAmelCase ( self : int ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A , A : str = self.model_tester.prepare_config_and_inputs_for_common() A : Tuple = True if model_class in get_values(snake_case_ ): continue A : List[str] = model_class(snake_case_ ) model.to(snake_case_ ) model.train() A : str = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) A : Union[str, Any] = model(**snake_case_ ).loss loss.backward() def _UpperCAmelCase ( self : Tuple ): """simple docstring""" for model_class in self.all_model_classes: if model_class.__name__ == "DPTForDepthEstimation": continue A , A : Any = self.model_tester.prepare_config_and_inputs_for_common() A : Union[str, Any] = False A : List[Any] = True if model_class in get_values(snake_case_ ) or not model_class.supports_gradient_checkpointing: continue A : Optional[Any] = model_class(snake_case_ ) model.to(snake_case_ ) model.gradient_checkpointing_enable() model.train() A : Union[str, Any] = self._prepare_for_class(snake_case_ , snake_case_ , return_labels=snake_case_ ) A : Tuple = model(**snake_case_ ).loss loss.backward() def _UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" A , A : List[str] = self.model_tester.prepare_config_and_inputs_for_common() A : List[Any] = _config_zero_init(snake_case_ ) for model_class in self.all_model_classes: A : str = model_class(config=snake_case_ ) # Skip the check for the backbone A : List[str] = [] for name, module in model.named_modules(): if module.__class__.__name__ == "DPTViTHybridEmbeddings": A : int = [f"""{name}.{key}""" for key in module.state_dict().keys()] break for name, param in model.named_parameters(): if param.requires_grad: if name in backbone_params: continue self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def _UpperCAmelCase ( self : Dict ): """simple docstring""" pass @slow def _UpperCAmelCase ( self : str ): """simple docstring""" for model_name in DPT_PRETRAINED_MODEL_ARCHIVE_LIST[1:]: A : List[Any] = DPTModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) def _UpperCAmelCase ( self : int ): """simple docstring""" A , A : Tuple = self.model_tester.prepare_config_and_inputs_for_common() A : Union[str, Any] = '''add''' with self.assertRaises(snake_case_ ): A : List[Any] = DPTForDepthEstimation(snake_case_ ) def _lowerCamelCase ( ): '''simple docstring''' A : Dict = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision @slow class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): def _UpperCAmelCase ( self : Tuple ): """simple docstring""" A : str = DPTImageProcessor.from_pretrained('''Intel/dpt-hybrid-midas''' ) A : Optional[int] = DPTForDepthEstimation.from_pretrained('''Intel/dpt-hybrid-midas''' ).to(snake_case_ ) A : Optional[int] = prepare_img() A : List[str] = image_processor(images=snake_case_ , return_tensors='''pt''' ).to(snake_case_ ) # forward pass with torch.no_grad(): A : Optional[Any] = model(**snake_case_ ) A : int = outputs.predicted_depth # verify the predicted depth A : Any = torch.Size((1, 384, 384) ) self.assertEqual(predicted_depth.shape , snake_case_ ) A : Dict = torch.tensor( [[[5.64_37, 5.61_46, 5.65_11], [5.43_71, 5.56_49, 5.59_58], [5.52_15, 5.51_84, 5.52_93]]] ).to(snake_case_ ) self.assertTrue(torch.allclose(outputs.predicted_depth[:3, :3, :3] / 100 , snake_case_ , atol=1E-4 ) )
256
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_funnel import FunnelTokenizer UpperCamelCase_ = logging.get_logger(__name__) UpperCamelCase_ = {"vocab_file": "vocab.txt", "tokenizer_file": "tokenizer.json"} UpperCamelCase_ = [ "small", "small-base", "medium", "medium-base", "intermediate", "intermediate-base", "large", "large-base", "xlarge", "xlarge-base", ] UpperCamelCase_ = { "vocab_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/vocab.txt", "funnel-transformer/small-base": "https://huggingface.co/funnel-transformer/small-base/resolve/main/vocab.txt", "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/vocab.txt", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/vocab.txt" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/vocab.txt" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/vocab.txt" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/vocab.txt", "funnel-transformer/large-base": "https://huggingface.co/funnel-transformer/large-base/resolve/main/vocab.txt", "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/vocab.txt", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/vocab.txt" ), }, "tokenizer_file": { "funnel-transformer/small": "https://huggingface.co/funnel-transformer/small/resolve/main/tokenizer.json", "funnel-transformer/small-base": ( "https://huggingface.co/funnel-transformer/small-base/resolve/main/tokenizer.json" ), "funnel-transformer/medium": "https://huggingface.co/funnel-transformer/medium/resolve/main/tokenizer.json", "funnel-transformer/medium-base": ( "https://huggingface.co/funnel-transformer/medium-base/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate": ( "https://huggingface.co/funnel-transformer/intermediate/resolve/main/tokenizer.json" ), "funnel-transformer/intermediate-base": ( "https://huggingface.co/funnel-transformer/intermediate-base/resolve/main/tokenizer.json" ), "funnel-transformer/large": "https://huggingface.co/funnel-transformer/large/resolve/main/tokenizer.json", "funnel-transformer/large-base": ( "https://huggingface.co/funnel-transformer/large-base/resolve/main/tokenizer.json" ), "funnel-transformer/xlarge": "https://huggingface.co/funnel-transformer/xlarge/resolve/main/tokenizer.json", "funnel-transformer/xlarge-base": ( "https://huggingface.co/funnel-transformer/xlarge-base/resolve/main/tokenizer.json" ), }, } UpperCamelCase_ = {F'''funnel-transformer/{name}''': 5_12 for name in _model_names} UpperCamelCase_ = {F'''funnel-transformer/{name}''': {"do_lower_case": True} for name in _model_names} class _SCREAMING_SNAKE_CASE ( snake_case ): lowerCamelCase_ = VOCAB_FILES_NAMES lowerCamelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCamelCase_ = FunnelTokenizer lowerCamelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase_ = 2 def __init__( self : Union[str, Any] , snake_case_ : Any=None , snake_case_ : Dict=None , snake_case_ : str=True , snake_case_ : Optional[Any]="<unk>" , snake_case_ : List[str]="<sep>" , snake_case_ : str="<pad>" , snake_case_ : Optional[Any]="<cls>" , snake_case_ : Dict="<mask>" , snake_case_ : Dict="<s>" , snake_case_ : List[Any]="</s>" , snake_case_ : int=True , snake_case_ : Dict=True , snake_case_ : Optional[Any]=None , snake_case_ : str="##" , **snake_case_ : Optional[int] , ): """simple docstring""" super().__init__( snake_case_ , tokenizer_file=snake_case_ , do_lower_case=snake_case_ , unk_token=snake_case_ , sep_token=snake_case_ , pad_token=snake_case_ , cls_token=snake_case_ , mask_token=snake_case_ , bos_token=snake_case_ , eos_token=snake_case_ , clean_text=snake_case_ , tokenize_chinese_chars=snake_case_ , strip_accents=snake_case_ , wordpieces_prefix=snake_case_ , **snake_case_ , ) A : Optional[int] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('''lowercase''' , snake_case_ ) != do_lower_case or normalizer_state.get('''strip_accents''' , snake_case_ ) != strip_accents or normalizer_state.get('''handle_chinese_chars''' , snake_case_ ) != tokenize_chinese_chars ): A : Union[str, Any] = getattr(snake_case_ , normalizer_state.pop('''type''' ) ) A : List[str] = do_lower_case A : int = strip_accents A : int = tokenize_chinese_chars A : Any = normalizer_class(**snake_case_ ) A : Any = do_lower_case def _UpperCAmelCase ( self : Any , snake_case_ : Optional[Any] , snake_case_ : List[Any]=None ): """simple docstring""" A : Optional[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self : List[Any] , snake_case_ : List[int] , snake_case_ : Optional[List[int]] = None ): """simple docstring""" A : Optional[int] = [self.sep_token_id] A : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] return len(cls ) * [self.cls_token_type_id] + len(token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : Union[str, Any] , snake_case_ : str , snake_case_ : Optional[str] = None ): """simple docstring""" A : Dict = self._tokenizer.model.save(snake_case_ , name=snake_case_ ) return tuple(snake_case_ )
256
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _snake_case : List[Any] = logging.get_logger(__name__) _snake_case : Union[str, Any] = { 'facebook/s2t-small-librispeech-asr': ( 'https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech_to_text } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """speech_to_text""" a_ = ["""past_key_values"""] a_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self : List[str] , lowerCAmelCase_ : int=1_0_0_0_0 , lowerCAmelCase_ : Optional[Any]=1_2 , lowerCAmelCase_ : Optional[int]=2_0_4_8 , lowerCAmelCase_ : int=4 , lowerCAmelCase_ : Optional[Any]=6 , lowerCAmelCase_ : int=2_0_4_8 , lowerCAmelCase_ : Any=4 , lowerCAmelCase_ : Union[str, Any]=0.0 , lowerCAmelCase_ : Optional[Any]=0.0 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=True , lowerCAmelCase_ : Union[str, Any]="relu" , lowerCAmelCase_ : List[str]=2_5_6 , lowerCAmelCase_ : List[str]=0.1 , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : int=0.0 , lowerCAmelCase_ : Any=0.02 , lowerCAmelCase_ : Dict=2 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Tuple=1 , lowerCAmelCase_ : Optional[Any]=0 , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Tuple=6_0_0_0 , lowerCAmelCase_ : List[str]=1_0_2_4 , lowerCAmelCase_ : int=2 , lowerCAmelCase_ : Any=(5, 5) , lowerCAmelCase_ : Dict=1_0_2_4 , lowerCAmelCase_ : Union[str, Any]=8_0 , lowerCAmelCase_ : Tuple=1 , **lowerCAmelCase_ : Optional[Any] , ) -> int: __lowerCAmelCase = vocab_size __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True __lowerCAmelCase = max_source_positions __lowerCAmelCase = max_target_positions __lowerCAmelCase = num_conv_layers __lowerCAmelCase = list(lowerCAmelCase_ ) __lowerCAmelCase = conv_channels __lowerCAmelCase = input_feat_per_channel __lowerCAmelCase = input_channels if len(self.conv_kernel_sizes ) != self.num_conv_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.conv_kernel_sizes)` == `config.num_conv_layers` ' f"""but is `len(config.conv_kernel_sizes) = {len(self.conv_kernel_sizes )}`, """ f"""`config.num_conv_layers = {self.num_conv_layers}`.""" ) super().__init__( pad_token_id=lowerCAmelCase_ , bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , decoder_start_token_id=lowerCAmelCase_ , **lowerCAmelCase_ , )
421
def a_ ( lowerCAmelCase_ : str, lowerCAmelCase_ : str ): if not (isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and isinstance(lowerCAmelCase_, lowerCAmelCase_ )): raise ValueError('longest_common_substring() takes two strings for inputs' ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = [[0] * (texta_length + 1) for _ in range(texta_length + 1 )] __lowerCAmelCase = 0 __lowerCAmelCase = 0 for i in range(1, texta_length + 1 ): for j in range(1, texta_length + 1 ): if texta[i - 1] == texta[j - 1]: __lowerCAmelCase = 1 + dp[i - 1][j - 1] if dp[i][j] > ans_length: __lowerCAmelCase = i __lowerCAmelCase = dp[i][j] return texta[ans_index - ans_length : ans_index] if __name__ == "__main__": import doctest doctest.testmod()
421
1
import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _lowerCAmelCase : Dict = logging.getLogger(__name__) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=30_522, type=int) _lowerCAmelCase : str = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: _lowerCAmelCase : str = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _lowerCAmelCase : Optional[int] = Counter() for tk_ids in data: counter.update(tk_ids) _lowerCAmelCase : int = [0] * args.vocab_size for k, v in counter.items(): _lowerCAmelCase : List[Any] = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
454
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def lowerCAmelCase_ ( __lowerCamelCase ): __snake_case , __snake_case : List[Any] = image.size __snake_case , __snake_case : Tuple = (x - x % 3_2 for x in (w, h)) # resize to integer multiple of 32 __snake_case : str = image.resize((w, h) , resample=PIL_INTERPOLATION["lanczos"] ) __snake_case : int = np.array(__lowerCamelCase ).astype(np.floataa ) / 2_5_5.0 __snake_case : Union[str, Any] = image[None].transpose(0 , 3 , 1 , 2 ) __snake_case : Union[str, Any] = torch.from_numpy(__lowerCamelCase ) return 2.0 * image - 1.0 class a (_lowerCAmelCase ): """simple docstring""" def __init__( self : Tuple , lowerCamelCase : VQModel , lowerCamelCase : UNetaDModel , lowerCamelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Union[str, Any]: super().__init__() self.register_modules(vqvae=lowerCamelCase , unet=lowerCamelCase , scheduler=lowerCamelCase ) @torch.no_grad() def __call__( self : List[str] , lowerCamelCase : Union[torch.Tensor, PIL.Image.Image] = None , lowerCamelCase : Optional[int] = 1 , lowerCamelCase : Optional[int] = 100 , lowerCamelCase : Optional[float] = 0.0 , lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCamelCase : Optional[str] = "pil" , lowerCamelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: if isinstance(lowerCamelCase , PIL.Image.Image ): __snake_case : Any = 1 elif isinstance(lowerCamelCase , torch.Tensor ): __snake_case : Any = image.shape[0] else: raise ValueError(F'`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(lowerCamelCase )}' ) if isinstance(lowerCamelCase , PIL.Image.Image ): __snake_case : List[Any] = preprocess(lowerCamelCase ) __snake_case , __snake_case : int = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __snake_case : str = (batch_size, self.unet.config.in_channels // 2, height, width) __snake_case : str = next(self.unet.parameters() ).dtype __snake_case : Tuple = randn_tensor(lowerCamelCase , generator=lowerCamelCase , device=self.device , dtype=lowerCamelCase ) __snake_case : List[Any] = image.to(device=self.device , dtype=lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(lowerCamelCase , device=self.device ) __snake_case : str = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __snake_case : Dict = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __snake_case : Union[str, Any] = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __snake_case : int = {} if accepts_eta: __snake_case : List[str] = eta for t in self.progress_bar(lowerCamelCase ): # concat latents and low resolution image in the channel dimension. __snake_case : Union[str, Any] = torch.cat([latents, image] , dim=1 ) __snake_case : Optional[Any] = self.scheduler.scale_model_input(lowerCamelCase , lowerCamelCase ) # predict the noise residual __snake_case : int = self.unet(lowerCamelCase , lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __snake_case : Union[str, Any] = self.scheduler.step(lowerCamelCase , lowerCamelCase , lowerCamelCase , **lowerCamelCase ).prev_sample # decode the image latents with the VQVAE __snake_case : List[Any] = self.vqvae.decode(lowerCamelCase ).sample __snake_case : Dict = torch.clamp(lowerCamelCase , -1.0 , 1.0 ) __snake_case : Any = image / 2 + 0.5 __snake_case : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case : Tuple = self.numpy_to_pil(lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowerCamelCase )
81
0
'''simple docstring''' import argparse from collections import OrderedDict from pathlib import Path import requests import torch from PIL import Image from transformers import GLPNConfig, GLPNForDepthEstimation, GLPNImageProcessor from transformers.utils import logging logging.set_verbosity_info() __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __a ( lowerCAmelCase__ : Dict ): a__ : str = OrderedDict() for key, value in state_dict.items(): if key.startswith('''module.encoder''' ): a__ : int = key.replace('''module.encoder''' , '''glpn.encoder''' ) if key.startswith('''module.decoder''' ): a__ : Optional[Any] = key.replace('''module.decoder''' , '''decoder.stages''' ) if "patch_embed" in key: # replace for example patch_embed1 by patch_embeddings.0 a__ : Any = key[key.find('''patch_embed''' ) + len('''patch_embed''' )] a__ : Tuple = key.replace(F'patch_embed{idx}' , F'patch_embeddings.{int(lowerCAmelCase__ )-1}' ) if "norm" in key: a__ : Any = key.replace('''norm''' , '''layer_norm''' ) if "glpn.encoder.layer_norm" in key: # replace for example layer_norm1 by layer_norm.0 a__ : int = key[key.find('''glpn.encoder.layer_norm''' ) + len('''glpn.encoder.layer_norm''' )] a__ : List[str] = key.replace(F'layer_norm{idx}' , F'layer_norm.{int(lowerCAmelCase__ )-1}' ) if "layer_norm1" in key: a__ : List[Any] = key.replace('''layer_norm1''' , '''layer_norm_1''' ) if "layer_norm2" in key: a__ : Union[str, Any] = key.replace('''layer_norm2''' , '''layer_norm_2''' ) if "block" in key: # replace for example block1 by block.0 a__ : str = key[key.find('''block''' ) + len('''block''' )] a__ : Dict = key.replace(F'block{idx}' , F'block.{int(lowerCAmelCase__ )-1}' ) if "attn.q" in key: a__ : Optional[int] = key.replace('''attn.q''' , '''attention.self.query''' ) if "attn.proj" in key: a__ : Optional[int] = key.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in key: a__ : Optional[Any] = key.replace('''attn''' , '''attention.self''' ) if "fc1" in key: a__ : Tuple = key.replace('''fc1''' , '''dense1''' ) if "fc2" in key: a__ : Optional[Any] = key.replace('''fc2''' , '''dense2''' ) if "linear_pred" in key: a__ : Any = key.replace('''linear_pred''' , '''classifier''' ) if "linear_fuse" in key: a__ : List[Any] = key.replace('''linear_fuse.conv''' , '''linear_fuse''' ) a__ : Optional[Any] = key.replace('''linear_fuse.bn''' , '''batch_norm''' ) if "linear_c" in key: # replace for example linear_c4 by linear_c.3 a__ : List[str] = key[key.find('''linear_c''' ) + len('''linear_c''' )] a__ : int = key.replace(F'linear_c{idx}' , F'linear_c.{int(lowerCAmelCase__ )-1}' ) if "bot_conv" in key: a__ : int = key.replace('''bot_conv''' , '''0.convolution''' ) if "skip_conv1" in key: a__ : Dict = key.replace('''skip_conv1''' , '''1.convolution''' ) if "skip_conv2" in key: a__ : Optional[int] = key.replace('''skip_conv2''' , '''2.convolution''' ) if "fusion1" in key: a__ : List[Any] = key.replace('''fusion1''' , '''1.fusion''' ) if "fusion2" in key: a__ : str = key.replace('''fusion2''' , '''2.fusion''' ) if "fusion3" in key: a__ : Any = key.replace('''fusion3''' , '''3.fusion''' ) if "fusion" in key and "conv" in key: a__ : Any = key.replace('''conv''' , '''convolutional_layer''' ) if key.startswith('''module.last_layer_depth''' ): a__ : str = key.replace('''module.last_layer_depth''' , '''head.head''' ) a__ : Any = value return new_state_dict def __a ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[Any] ): # for each of the encoder blocks: for i in range(config.num_encoder_blocks ): for j in range(config.depths[i] ): # read in weights + bias of keys and values (which is a single matrix in the original implementation) a__ : int = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.weight' ) a__ : Optional[int] = state_dict.pop(F'glpn.encoder.block.{i}.{j}.attention.self.kv.bias' ) # next, add keys and values (in that order) to the state dict a__ : str = kv_weight[ : config.hidden_sizes[i], : ] a__ : Union[str, Any] = kv_bias[: config.hidden_sizes[i]] a__ : int = kv_weight[ config.hidden_sizes[i] :, : ] a__ : Tuple = kv_bias[config.hidden_sizes[i] :] def __a ( ): a__ : int = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a__ : int = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return image @torch.no_grad() def __a ( lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any]=False , lowerCAmelCase__ : Dict=None ): a__ : int = GLPNConfig(hidden_sizes=[64, 128, 320, 512] , decoder_hidden_size=64 , depths=[3, 8, 27, 3] ) # load image processor (only resize + rescale) a__ : List[Any] = GLPNImageProcessor() # prepare image a__ : Optional[Any] = prepare_img() a__ : Union[str, Any] = image_processor(images=lowerCAmelCase__ , return_tensors='''pt''' ).pixel_values logger.info('''Converting model...''' ) # load original state dict a__ : Dict = torch.load(lowerCAmelCase__ , map_location=torch.device('''cpu''' ) ) # rename keys a__ : Optional[Any] = rename_keys(lowerCAmelCase__ ) # key and value matrices need special treatment read_in_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # create HuggingFace model and load state dict a__ : Union[str, Any] = GLPNForDepthEstimation(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() # forward pass a__ : str = model(lowerCAmelCase__ ) a__ : Dict = outputs.predicted_depth # verify output if model_name is not None: if "nyu" in model_name: a__ : Optional[int] = torch.tensor( [[4.4147, 4.0873, 4.0673], [3.7890, 3.2881, 3.1525], [3.7674, 3.5423, 3.4913]] ) elif "kitti" in model_name: a__ : int = torch.tensor( [[3.4291, 2.7865, 2.5151], [3.2841, 2.7021, 2.3502], [3.1147, 2.4625, 2.2481]] ) else: raise ValueError(F'Unknown model name: {model_name}' ) a__ : Tuple = torch.Size([1, 480, 640] ) assert predicted_depth.shape == expected_shape assert torch.allclose(predicted_depth[0, :3, :3] , lowerCAmelCase__ , atol=1E-4 ) print('''Looks ok!''' ) # finally, push to hub if required if push_to_hub: logger.info('''Pushing model and image processor to the hub...''' ) model.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=lowerCAmelCase__ , ) image_processor.push_to_hub( repo_path_or_name=Path(lowerCAmelCase__ , lowerCAmelCase__ ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=lowerCAmelCase__ , ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether to upload the model to the HuggingFace hub.' ) parser.add_argument( '--model_name', default='glpn-kitti', type=str, help='Name of the model in case you\'re pushing to the hub.', ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_glpn_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
704
'''simple docstring''' import os def __a ( ): with open(os.path.dirname(lowerCAmelCase__ ) + '''/grid.txt''' ) as f: a__ : Optional[int] = [] # noqa: E741 for _ in range(20 ): l.append([int(lowerCAmelCase__ ) for x in f.readline().split()] ) a__ : List[str] = 0 # right for i in range(20 ): for j in range(17 ): a__ : int = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: a__ : str = temp # down for i in range(17 ): for j in range(20 ): a__ : List[str] = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: a__ : Dict = temp # diagonal 1 for i in range(17 ): for j in range(17 ): a__ : str = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: a__ : Optional[Any] = temp # diagonal 2 for i in range(17 ): for j in range(3 , 20 ): a__ : str = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: a__ : Tuple = temp return maximum if __name__ == "__main__": print(solution())
340
0
'''simple docstring''' from __future__ import annotations import math def __snake_case (__UpperCAmelCase ): """simple docstring""" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__UpperCAmelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def __snake_case (__UpperCAmelCase ): """simple docstring""" lowerCamelCase_ : Tuple = str(__UpperCAmelCase ) lowerCamelCase_ : Any = [n] for i in range(1 , len(__UpperCAmelCase ) ): list_nums.append(int(str_num[i:] ) ) list_nums.append(int(str_num[:-i] ) ) return list_nums def __snake_case (__UpperCAmelCase ): """simple docstring""" if len(str(__UpperCAmelCase ) ) > 3: if not is_prime(int(str(__UpperCAmelCase )[-3:] ) ) or not is_prime(int(str(__UpperCAmelCase )[:3] ) ): return False return True def __snake_case (__UpperCAmelCase = 11 ): """simple docstring""" lowerCamelCase_ : list[int] = [] lowerCamelCase_ : List[str] = 13 while len(__UpperCAmelCase ) != count: if validate(__UpperCAmelCase ): lowerCamelCase_ : Any = list_truncated_nums(__UpperCAmelCase ) if all(is_prime(__UpperCAmelCase ) for i in list_nums ): list_truncated_primes.append(__UpperCAmelCase ) num += 2 return list_truncated_primes def __snake_case (): """simple docstring""" return sum(compute_truncated_primes(11 ) ) if __name__ == "__main__": print(f"""{sum(compute_truncated_primes(11)) = }""")
501
'''simple docstring''' import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask __lowerCamelCase : Dict = logging.getLogger(__name__) class lowerCAmelCase__ ( _lowerCAmelCase ): A = "token-classification" def __init__( self : Tuple , UpperCamelCase_ : Tuple ) -> Dict: """simple docstring""" if type(UpperCamelCase_ ) == dict: lowerCamelCase_ : Tuple = Namespace(**UpperCamelCase_ ) lowerCamelCase_ : Any = import_module('''tasks''' ) try: lowerCamelCase_ : Any = getattr(UpperCamelCase_ , hparams.task_type ) lowerCamelCase_ : TokenClassificationTask = token_classification_task_clazz() except AttributeError: raise ValueError( F"""Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. """ F"""Available tasks classes are: {TokenClassificationTask.__subclasses__()}""" ) lowerCamelCase_ : int = self.token_classification_task.get_labels(hparams.labels ) lowerCamelCase_ : Optional[Any] = CrossEntropyLoss().ignore_index super().__init__(UpperCamelCase_ , len(self.labels ) , self.mode ) def __UpperCamelCase ( self : Dict , **UpperCamelCase_ : List[str] ) -> Dict: """simple docstring""" return self.model(**UpperCamelCase_ ) def __UpperCamelCase ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] ) -> Any: """simple docstring""" lowerCamelCase_ : Dict = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowerCamelCase_ : str = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase_ : List[str] = self(**UpperCamelCase_ ) lowerCamelCase_ : int = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def __UpperCamelCase ( self : int ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = self.hparams for mode in ["train", "dev", "test"]: lowerCamelCase_ : List[Any] = self._feature_file(UpperCamelCase_ ) if os.path.exists(UpperCamelCase_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowerCamelCase_ : Dict = torch.load(UpperCamelCase_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) lowerCamelCase_ : Optional[int] = self.token_classification_task.read_examples_from_file(args.data_dir , UpperCamelCase_ ) lowerCamelCase_ : int = self.token_classification_task.convert_examples_to_features( UpperCamelCase_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=UpperCamelCase_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , UpperCamelCase_ ) torch.save(UpperCamelCase_ , UpperCamelCase_ ) def __UpperCamelCase ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : bool = False ) -> DataLoader: """simple docstring""" lowerCamelCase_ : Dict = self._feature_file(UpperCamelCase_ ) logger.info('''Loading features from cached file %s''' , UpperCamelCase_ ) lowerCamelCase_ : Optional[Any] = torch.load(UpperCamelCase_ ) lowerCamelCase_ : List[Any] = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) lowerCamelCase_ : Union[str, Any] = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: lowerCamelCase_ : Optional[int] = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: lowerCamelCase_ : Optional[int] = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) lowerCamelCase_ : Optional[Any] = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) , batch_size=UpperCamelCase_ ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str ) -> Any: """simple docstring""" """Compute validation""" "" lowerCamelCase_ : Optional[Any] = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": lowerCamelCase_ : Any = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids lowerCamelCase_ : List[Any] = self(**UpperCamelCase_ ) lowerCamelCase_ , lowerCamelCase_ : List[Any] = outputs[:2] lowerCamelCase_ : List[Any] = logits.detach().cpu().numpy() lowerCamelCase_ : str = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def __UpperCamelCase ( self : Tuple , UpperCamelCase_ : str ) -> Tuple: """simple docstring""" lowerCamelCase_ : Tuple = torch.stack([x['''val_loss'''] for x in outputs] ).mean() lowerCamelCase_ : Dict = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) lowerCamelCase_ : Optional[Any] = np.argmax(UpperCamelCase_ , axis=2 ) lowerCamelCase_ : List[str] = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) lowerCamelCase_ : List[str] = dict(enumerate(self.labels ) ) lowerCamelCase_ : Optional[Any] = [[] for _ in range(out_label_ids.shape[0] )] lowerCamelCase_ : str = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) lowerCamelCase_ : Optional[Any] = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(UpperCamelCase_ , UpperCamelCase_ ), '''precision''': precision_score(UpperCamelCase_ , UpperCamelCase_ ), '''recall''': recall_score(UpperCamelCase_ , UpperCamelCase_ ), '''f1''': fa_score(UpperCamelCase_ , UpperCamelCase_ ), } lowerCamelCase_ : Union[str, Any] = dict(results.items() ) lowerCamelCase_ : List[str] = results return ret, preds_list, out_label_list def __UpperCamelCase ( self : Optional[Any] , UpperCamelCase_ : Tuple ) -> List[Any]: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Any = self._eval_end(UpperCamelCase_ ) lowerCamelCase_ : Tuple = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def __UpperCamelCase ( self : Dict , UpperCamelCase_ : Tuple ) -> Dict: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ : Optional[Any] = self._eval_end(UpperCamelCase_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 lowerCamelCase_ : Optional[int] = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def __UpperCamelCase ( UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" BaseTransformer.add_model_specific_args(UpperCamelCase_ , UpperCamelCase_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=UpperCamelCase_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=128 , type=UpperCamelCase_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=UpperCamelCase_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=UpperCamelCase_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": __lowerCamelCase : Tuple = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) __lowerCamelCase : Optional[int] = NERTransformer.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase : Any = parser.parse_args() __lowerCamelCase : List[Any] = NERTransformer(args) __lowerCamelCase : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 __lowerCamelCase : Any = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) __lowerCamelCase : List[Any] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
501
1
"""simple docstring""" from __future__ import annotations from random import random class _lowerCamelCase : def __init__( self : Optional[Any] , UpperCamelCase : int | None = None ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Dict = value lowerCAmelCase__ : str = random() lowerCAmelCase__ : Node | None = None lowerCAmelCase__ : Node | None = None def __repr__( self : Any ) -> str: """simple docstring""" from pprint import pformat if self.left is None and self.right is None: return f"""'{self.value}: {self.prior:.5}'""" else: return pformat( {f"""{self.value}: {self.prior:.5}""": (self.left, self.right)} , indent=1 ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = str(self.value ) + """ """ lowerCAmelCase__ : Dict = str(self.left or """""" ) lowerCAmelCase__ : List[Any] = str(self.right or """""" ) return value + left + right def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> tuple[Node | None, Node | None]: if root is None: # None tree is split into 2 Nones return None, None elif root.value is None: return None, None else: if value < root.value: lowerCAmelCase__ , lowerCAmelCase__ : Dict = split(root.left , __UpperCAmelCase ) return left, root else: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = split(root.right , __UpperCAmelCase ) return root, right def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Node | None: if (not left) or (not right): # If one node is None, return the other return left or right elif left.prior < right.prior: lowerCAmelCase__ : Any = merge(left.right , __UpperCAmelCase ) return left else: lowerCAmelCase__ : Union[str, Any] = merge(__UpperCAmelCase , right.left ) return right def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Node | None: lowerCAmelCase__ : Optional[int] = Node(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : str = split(__UpperCAmelCase , __UpperCAmelCase ) return merge(merge(__UpperCAmelCase , __UpperCAmelCase ) , __UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Node | None: lowerCAmelCase__ , lowerCAmelCase__ : Optional[int] = split(__UpperCAmelCase , value - 1 ) lowerCAmelCase__ , lowerCAmelCase__ : Dict = split(__UpperCAmelCase , __UpperCAmelCase ) return merge(__UpperCAmelCase , __UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase ) -> None: if not root: # None return else: inorder(root.left ) print(root.value , end=""",""" ) inorder(root.right ) def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Node | None: for arg in args.split(): if arg[0] == "+": lowerCAmelCase__ : Dict = insert(__UpperCAmelCase , int(arg[1:] ) ) elif arg[0] == "-": lowerCAmelCase__ : str = erase(__UpperCAmelCase , int(arg[1:] ) ) else: print("""Unknown command""" ) return root def lowercase_ ( ) -> None: lowerCAmelCase__ : List[str] = None print( """enter numbers to create a tree, + value to add value into treap, """ """- value to erase all nodes with value. 'q' to quit. """ ) lowerCAmelCase__ : Union[str, Any] = input() while args != "q": lowerCAmelCase__ : Union[str, Any] = interact_treap(__UpperCAmelCase , __UpperCAmelCase ) print(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = input() print("""good by!""" ) if __name__ == "__main__": import doctest doctest.testmod() main()
507
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def lowercase_ ( ) -> Tuple: lowerCAmelCase__ : Any = ArgumentParser( description=( """PyTorch TPU distributed training launch """ """helper utility that will spawn up """ """multiple distributed processes""" ) ) # Optional arguments for the launch helper parser.add_argument("""--num_cores""" , type=__UpperCAmelCase , default=1 , help="""Number of TPU cores to use (1 or 8).""" ) # positional parser.add_argument( """training_script""" , type=__UpperCAmelCase , help=( """The full path to the single TPU training """ """program/script to be launched in parallel, """ """followed by all the arguments for the """ """training script""" ) , ) # rest from the training program parser.add_argument("""training_script_args""" , nargs=__UpperCAmelCase ) return parser.parse_args() def lowercase_ ( ) -> str: lowerCAmelCase__ : Optional[int] = parse_args() # Import training_script as a module. lowerCAmelCase__ : Optional[Any] = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) lowerCAmelCase__ : Optional[int] = script_fpath.stem lowerCAmelCase__ : Dict = importlib.import_module(__UpperCAmelCase ) # Patch sys.argv lowerCAmelCase__ : List[str] = [args.training_script] + args.training_script_args + ["""--tpu_num_cores""", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
507
1
"""simple docstring""" import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def __A ( a_ :BertModel , a_ :str , a_ :str) -> str: __a : List[str] = ('''dense.weight''', '''attention.self.query''', '''attention.self.key''', '''attention.self.value''') __a : Any = ( ('''layer.''', '''layer_'''), ('''word_embeddings.weight''', '''word_embeddings'''), ('''position_embeddings.weight''', '''position_embeddings'''), ('''token_type_embeddings.weight''', '''token_type_embeddings'''), ('''.''', '''/'''), ('''LayerNorm/weight''', '''LayerNorm/gamma'''), ('''LayerNorm/bias''', '''LayerNorm/beta'''), ('''weight''', '''kernel'''), ) if not os.path.isdir(a_): os.makedirs(a_) __a : List[Any] = model.state_dict() def to_tf_var_name(a_ :str): for patt, repl in iter(a_): __a : int = name.replace(a_ , a_) return F"""bert/{name}""" def create_tf_var(a_ :np.ndarray , a_ :str , a_ :tf.Session): __a : int = tf.dtypes.as_dtype(tensor.dtype) __a : Optional[int] = tf.get_variable(dtype=a_ , shape=tensor.shape , name=a_ , initializer=tf.zeros_initializer()) session.run(tf.variables_initializer([tf_var])) session.run(a_) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __a : Any = to_tf_var_name(a_) __a : Tuple = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose): __a : List[Any] = torch_tensor.T __a : Optional[Any] = create_tf_var(tensor=a_ , name=a_ , session=a_) tf.keras.backend.set_value(a_ , a_) __a : int = session.run(a_) print(F"""Successfully created {tf_name}: {np.allclose(a_ , a_)}""") __a : Tuple = tf.train.Saver(tf.trainable_variables()) saver.save(a_ , os.path.join(a_ , model_name.replace('''-''' , '''_''') + '''.ckpt''')) def __A ( a_ :int=None) -> str: __a : str = argparse.ArgumentParser() parser.add_argument('''--model_name''' , type=a_ , required=a_ , help='''model name e.g. bert-base-uncased''') parser.add_argument( '''--cache_dir''' , type=a_ , default=a_ , required=a_ , help='''Directory containing pytorch model''') parser.add_argument('''--pytorch_model_path''' , type=a_ , required=a_ , help='''/path/to/<pytorch-model-name>.bin''') parser.add_argument('''--tf_cache_dir''' , type=a_ , required=a_ , help='''Directory in which to save tensorflow model''') __a : Optional[Any] = parser.parse_args(a_) __a : Optional[Any] = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=a_ , ckpt_dir=args.tf_cache_dir , model_name=args.model_name) if __name__ == "__main__": main()
52
"""simple docstring""" def A_ ( lowercase ) -> int: """simple docstring""" return 1 if digit in (0, 1) else (digit * factorial(digit - 1 )) def A_ ( lowercase ) -> bool: """simple docstring""" UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Union[str, Any] = number while duplicate > 0: UpperCAmelCase_ ,UpperCAmelCase_ : Tuple = divmod(lowercase , 10 ) fact_sum += factorial(lowercase ) return fact_sum == number if __name__ == "__main__": print("Program to check whether a number is a Krisnamurthy Number or not.") lowercase_ = int(input("Enter number: ").strip()) print( f"""{number} is {'' if krishnamurthy(number) else 'not '}a Krishnamurthy Number.""" )
470
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_flax, require_tf, require_torch from transformers.utils import ( expand_dims, flatten_dict, is_flax_available, is_tf_available, is_torch_available, reshape, squeeze, transpose, ) if is_flax_available(): import jax.numpy as jnp if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch class __magic_name__( unittest.TestCase ): def __lowerCAmelCase( self : Optional[int] ): '''simple docstring''' snake_case__ = { """task_specific_params""": { """summarization""": {"""length_penalty""": 1.0, """max_length""": 1_2_8, """min_length""": 1_2, """num_beams""": 4}, """summarization_cnn""": {"""length_penalty""": 2.0, """max_length""": 1_4_2, """min_length""": 5_6, """num_beams""": 4}, """summarization_xsum""": {"""length_penalty""": 1.0, """max_length""": 6_2, """min_length""": 1_1, """num_beams""": 6}, } } snake_case__ = { """task_specific_params.summarization.length_penalty""": 1.0, """task_specific_params.summarization.max_length""": 1_2_8, """task_specific_params.summarization.min_length""": 1_2, """task_specific_params.summarization.num_beams""": 4, """task_specific_params.summarization_cnn.length_penalty""": 2.0, """task_specific_params.summarization_cnn.max_length""": 1_4_2, """task_specific_params.summarization_cnn.min_length""": 5_6, """task_specific_params.summarization_cnn.num_beams""": 4, """task_specific_params.summarization_xsum.length_penalty""": 1.0, """task_specific_params.summarization_xsum.max_length""": 6_2, """task_specific_params.summarization_xsum.min_length""": 1_1, """task_specific_params.summarization_xsum.num_beams""": 6, } self.assertEqual(flatten_dict(__UpperCamelCase ) , __UpperCamelCase ) def __lowerCAmelCase( self : List[str] ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(transpose(__UpperCamelCase ) , x.transpose() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(transpose(__UpperCamelCase , axes=(1, 2, 0) ) , x.transpose((1, 2, 0) ) ) ) @require_torch def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase ) , transpose(__UpperCamelCase ).numpy() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase , axes=(1, 2, 0) ) , transpose(__UpperCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_tf def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase ) , transpose(__UpperCamelCase ).numpy() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase , axes=(1, 2, 0) ) , transpose(__UpperCamelCase , axes=(1, 2, 0) ).numpy() ) ) @require_flax def __lowerCAmelCase( self : List[str] ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase ) , np.asarray(transpose(__UpperCamelCase ) ) ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(transpose(__UpperCamelCase , axes=(1, 2, 0) ) , np.asarray(transpose(__UpperCamelCase , axes=(1, 2, 0) ) ) ) ) def __lowerCAmelCase( self : str ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (4, 3) ) , np.reshape(__UpperCamelCase , (4, 3) ) ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (1_2, 5) ) , np.reshape(__UpperCamelCase , (1_2, 5) ) ) ) @require_torch def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (4, 3) ) , reshape(__UpperCamelCase , (4, 3) ).numpy() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (1_2, 5) ) , reshape(__UpperCamelCase , (1_2, 5) ).numpy() ) ) @require_tf def __lowerCAmelCase( self : Dict ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (4, 3) ) , reshape(__UpperCamelCase , (4, 3) ).numpy() ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (1_2, 5) ) , reshape(__UpperCamelCase , (1_2, 5) ).numpy() ) ) @require_flax def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (4, 3) ) , np.asarray(reshape(__UpperCamelCase , (4, 3) ) ) ) ) snake_case__ = np.random.randn(3 , 4 , 5 ) snake_case__ = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(reshape(__UpperCamelCase , (1_2, 5) ) , np.asarray(reshape(__UpperCamelCase , (1_2, 5) ) ) ) ) def __lowerCAmelCase( self : List[str] ): '''simple docstring''' snake_case__ = np.random.randn(1 , 3 , 4 ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase ) , np.squeeze(__UpperCamelCase ) ) ) snake_case__ = np.random.randn(1 , 4 , 1 , 5 ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase , axis=2 ) , np.squeeze(__UpperCamelCase , axis=2 ) ) ) @require_torch def __lowerCAmelCase( self : Optional[Any] ): '''simple docstring''' snake_case__ = np.random.randn(1 , 3 , 4 ) snake_case__ = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase ) , squeeze(__UpperCamelCase ).numpy() ) ) snake_case__ = np.random.randn(1 , 4 , 1 , 5 ) snake_case__ = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase , axis=2 ) , squeeze(__UpperCamelCase , axis=2 ).numpy() ) ) @require_tf def __lowerCAmelCase( self : Tuple ): '''simple docstring''' snake_case__ = np.random.randn(1 , 3 , 4 ) snake_case__ = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase ) , squeeze(__UpperCamelCase ).numpy() ) ) snake_case__ = np.random.randn(1 , 4 , 1 , 5 ) snake_case__ = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase , axis=2 ) , squeeze(__UpperCamelCase , axis=2 ).numpy() ) ) @require_flax def __lowerCAmelCase( self : List[Any] ): '''simple docstring''' snake_case__ = np.random.randn(1 , 3 , 4 ) snake_case__ = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase ) , np.asarray(squeeze(__UpperCamelCase ) ) ) ) snake_case__ = np.random.randn(1 , 4 , 1 , 5 ) snake_case__ = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(squeeze(__UpperCamelCase , axis=2 ) , np.asarray(squeeze(__UpperCamelCase , axis=2 ) ) ) ) def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) self.assertTrue(np.allclose(expand_dims(__UpperCamelCase , axis=1 ) , np.expand_dims(__UpperCamelCase , axis=1 ) ) ) @require_torch def __lowerCAmelCase( self : int ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = torch.tensor(__UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCamelCase , axis=1 ) , expand_dims(__UpperCamelCase , axis=1 ).numpy() ) ) @require_tf def __lowerCAmelCase( self : Any ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = tf.constant(__UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCamelCase , axis=1 ) , expand_dims(__UpperCamelCase , axis=1 ).numpy() ) ) @require_flax def __lowerCAmelCase( self : Union[str, Any] ): '''simple docstring''' snake_case__ = np.random.randn(3 , 4 ) snake_case__ = jnp.array(__UpperCamelCase ) self.assertTrue(np.allclose(expand_dims(__UpperCamelCase , axis=1 ) , np.asarray(expand_dims(__UpperCamelCase , axis=1 ) ) ) )
566
'''simple docstring''' print((lambda quine: quine % quine)('''print((lambda quine: quine %% quine)(%r))'''))
566
1
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class SCREAMING_SNAKE_CASE (unittest.TestCase ): def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = 'ylacombe/bark-small' __A : List[str] = tempfile.mkdtemp() __A : int = 'en_speaker_1' __A : List[Any] = 'This is a test string' __A : Any = 'speaker_embeddings_path.json' __A : int = 'speaker_embeddings' def SCREAMING_SNAKE_CASE ( self , **_UpperCAmelCase): '''simple docstring''' return AutoTokenizer.from_pretrained(self.checkpoint , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' shutil.rmtree(self.tmpdirname) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Optional[Any] = self.get_tokenizer() __A : Optional[int] = BarkProcessor(tokenizer=_UpperCAmelCase) processor.save_pretrained(self.tmpdirname) __A : Optional[Any] = BarkProcessor.from_pretrained(self.tmpdirname) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab()) @slow def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : str = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) __A : Dict = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)') __A : List[str] = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab()) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : int = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) __A : str = 35 __A : Tuple = 2 __A : str = 8 __A : Union[str, Any] = { 'semantic_prompt': np.ones(_UpperCAmelCase), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len)), 'fine_prompt': np.ones((nb_codebooks_total, seq_len)), } # test providing already loaded voice_preset __A : int = processor(text=self.input_string , voice_preset=_UpperCAmelCase) __A : int = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([])).tolist()) # test loading voice preset from npz file __A : int = os.path.join(self.tmpdirname , 'file.npz') np.savez(_UpperCAmelCase , **_UpperCAmelCase) __A : Optional[int] = processor(text=self.input_string , voice_preset=_UpperCAmelCase) __A : Any = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(_UpperCAmelCase , np.array([])).tolist()) # test loading voice preset from the hub __A : List[Any] = processor(text=self.input_string , voice_preset=self.voice_preset) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' __A : Dict = self.get_tokenizer() __A : Optional[int] = BarkProcessor(tokenizer=_UpperCAmelCase) __A : Dict = processor(text=self.input_string) __A : str = tokenizer( self.input_string , padding='max_length' , max_length=256 , add_special_tokens=_UpperCAmelCase , return_attention_mask=_UpperCAmelCase , return_token_type_ids=_UpperCAmelCase , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist())
8
"""simple docstring""" import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput __lowerCAmelCase : Tuple = '''scheduler_config.json''' class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 1 _lowerCamelCase = 2 _lowerCamelCase = 3 _lowerCamelCase = 4 _lowerCamelCase = 5 @dataclass class _lowerCAmelCase ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _lowerCamelCase = 42 class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = SCHEDULER_CONFIG_NAME _lowerCamelCase = ['''dtype'''] _lowerCamelCase = [] _lowerCamelCase = True @classmethod def UpperCAmelCase__ ( cls , _lowercase = None , _lowercase = None , _lowercase=False , **_lowercase , ) -> Any: '''simple docstring''' snake_case_ , snake_case_ : int = cls.load_config( pretrained_model_name_or_path=_lowercase , subfolder=_lowercase , return_unused_kwargs=_lowercase , **_lowercase , ) snake_case_ , snake_case_ : Dict = cls.from_config(_lowercase , return_unused_kwargs=_lowercase , **_lowercase ) if hasattr(_lowercase , """create_state""" ) and getattr(_lowercase , """has_state""" , _lowercase ): snake_case_ : Any = scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def UpperCAmelCase__ ( self , _lowercase , _lowercase = False , **_lowercase ) -> Optional[Any]: '''simple docstring''' self.save_config(save_directory=_lowercase , push_to_hub=_lowercase , **_lowercase ) @property def UpperCAmelCase__ ( self ) -> Tuple: '''simple docstring''' return self._get_compatibles() @classmethod def UpperCAmelCase__ ( cls ) -> Dict: '''simple docstring''' snake_case_ : Union[str, Any] = list(set([cls.__name__] + cls._compatibles ) ) snake_case_ : str = importlib.import_module(__name__.split(""".""" )[0] ) snake_case_ : Optional[int] = [ getattr(_lowercase , _lowercase ) for c in compatible_classes_str if hasattr(_lowercase , _lowercase ) ] return compatible_classes def __lowerCAmelCase ( __UpperCamelCase : jnp.ndarray , __UpperCamelCase : Tuple[int] ): '''simple docstring''' assert len(__UpperCamelCase ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(__UpperCamelCase ) - x.ndim) ) , __UpperCamelCase ) def __lowerCAmelCase ( __UpperCamelCase : int , __UpperCamelCase : Any=0.999 , __UpperCamelCase : Optional[int]=jnp.floataa ): '''simple docstring''' def alpha_bar(__UpperCamelCase : Optional[int] ): return math.cos((time_step + 0.008) / 1.008 * math.pi / 2 ) ** 2 snake_case_ : Optional[Any] = [] for i in range(__UpperCamelCase ): snake_case_ : Dict = i / num_diffusion_timesteps snake_case_ : Union[str, Any] = (i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(__UpperCamelCase ) / alpha_bar(__UpperCamelCase ) , __UpperCamelCase ) ) return jnp.array(__UpperCamelCase , dtype=__UpperCamelCase ) @flax.struct.dataclass class _lowerCAmelCase : """simple docstring""" _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 42 @classmethod def UpperCAmelCase__ ( cls , _lowercase ) -> int: '''simple docstring''' snake_case_ : Any = scheduler.config if config.trained_betas is not None: snake_case_ : Optional[Any] = jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": snake_case_ : int = jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. snake_case_ : str = ( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule snake_case_ : int = betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( f'beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}' ) snake_case_ : Optional[Any] = 1.0 - betas snake_case_ : Any = jnp.cumprod(_lowercase , axis=0 ) return cls( alphas=_lowercase , betas=_lowercase , alphas_cumprod=_lowercase , ) def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ : Tuple = state.alphas_cumprod snake_case_ : Optional[int] = alphas_cumprod[timesteps] ** 0.5 snake_case_ : Dict = sqrt_alpha_prod.flatten() snake_case_ : int = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) snake_case_ : Optional[Any] = (1 - alphas_cumprod[timesteps]) ** 0.5 snake_case_ : Dict = sqrt_one_minus_alpha_prod.flatten() snake_case_ : Tuple = broadcast_to_shape_from_left(__UpperCamelCase , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : str = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def __lowerCAmelCase ( __UpperCamelCase : CommonSchedulerState , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray , __UpperCamelCase : jnp.ndarray ): '''simple docstring''' snake_case_ , snake_case_ : List[Any] = get_sqrt_alpha_prod(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) snake_case_ : Any = sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
58
0
def lowerCamelCase_ ( _lowercase ) -> list: __A : List[Any] = [0] * len(_lowercase ) for i in range(1 , len(_lowercase ) ): # use last results for better performance - dynamic programming __A : Dict = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: __A : Any = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 __A : Any = j return prefix_result def lowerCamelCase_ ( _lowercase ) -> int: return max(prefix_function(_lowercase ) ) if __name__ == "__main__": import doctest doctest.testmod()
707
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase , _lowercase , _lowercase=True , _lowercase="pt" ) -> Dict: __A : Dict = {"add_prefix_space": True} if isinstance(_lowercase , _lowercase ) and not line.startswith(" " ) else {} __A : Tuple = padding_side return tokenizer( [line] , max_length=_lowercase , padding="max_length" if pad_to_max_length else None , truncation=_lowercase , return_tensors=_lowercase , add_special_tokens=_lowercase , **_lowercase , ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase=None , ) -> Dict: __A : Optional[int] = input_ids.ne(_lowercase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class _a ( lowerCAmelCase__ ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase="train" , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase=None , __UpperCAmelCase="" , ): super().__init__() __A : Union[str, Any] = Path(__UpperCAmelCase ).joinpath(type_path + ".source" ) __A : int = Path(__UpperCAmelCase ).joinpath(type_path + ".target" ) __A : Any = self.get_char_lens(self.src_file ) __A : List[str] = max_source_length __A : Union[str, Any] = max_target_length assert min(self.src_lens ) > 0, F"found empty line in {self.src_file}" __A : Dict = tokenizer __A : Union[str, Any] = prefix if n_obs is not None: __A : List[str] = self.src_lens[:n_obs] __A : Tuple = src_lang __A : Optional[int] = tgt_lang def __len__( self ): return len(self.src_lens ) def __getitem__( self , __UpperCAmelCase ): __A : str = index + 1 # linecache starts at 1 __A : str = self.prefix + linecache.getline(str(self.src_file ) , __UpperCAmelCase ).rstrip("\n" ) __A : List[str] = linecache.getline(str(self.tgt_file ) , __UpperCAmelCase ).rstrip("\n" ) assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer , __UpperCAmelCase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __A : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer ) __A : List[Any] = self.tokenizer.generator if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer __A : Optional[int] = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_source_length , "right" ) __A : Dict = encode_line(__UpperCAmelCase , __UpperCAmelCase , self.max_target_length , "right" ) __A : List[str] = source_inputs["input_ids"].squeeze() __A : List[Any] = target_inputs["input_ids"].squeeze() __A : str = source_inputs["attention_mask"].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def __UpperCAmelCase( __UpperCAmelCase ): return [len(__UpperCAmelCase ) for x in Path(__UpperCAmelCase ).open().readlines()] def __UpperCAmelCase( self , __UpperCAmelCase ): __A : Tuple = torch.stack([x["input_ids"] for x in batch] ) __A : Optional[Any] = torch.stack([x["attention_mask"] for x in batch] ) __A : int = torch.stack([x["decoder_input_ids"] for x in batch] ) __A : Any = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) __A : int = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , __UpperCAmelCase ) else self.tokenizer.pad_token_id ) __A : str = trim_batch(__UpperCAmelCase , __UpperCAmelCase ) __A , __A : Any = trim_batch(__UpperCAmelCase , __UpperCAmelCase , attention_mask=__UpperCAmelCase ) __A : List[Any] = { "input_ids": source_ids, "attention_mask": source_mask, "decoder_input_ids": y, } return batch UpperCamelCase = getLogger(__name__) def lowerCamelCase_ ( _lowercase ) -> List[str]: return list(itertools.chain.from_iterable(_lowercase ) ) def lowerCamelCase_ ( _lowercase ) -> None: __A : Optional[int] = get_git_info() save_json(_lowercase , os.path.join(_lowercase , "git_log.json" ) ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase=4 , **_lowercase ) -> List[str]: with open(_lowercase , "w" ) as f: json.dump(_lowercase , _lowercase , indent=_lowercase , **_lowercase ) def lowerCamelCase_ ( _lowercase ) -> Any: with open(_lowercase ) as f: return json.load(_lowercase ) def lowerCamelCase_ ( ) -> Optional[int]: __A : Tuple = git.Repo(search_parent_directories=_lowercase ) __A : Optional[Any] = { "repo_id": str(_lowercase ), "repo_sha": str(repo.head.object.hexsha ), "repo_branch": str(repo.active_branch ), "hostname": str(socket.gethostname() ), } return repo_infos def lowerCamelCase_ ( _lowercase , _lowercase ) -> List: return list(map(_lowercase , _lowercase ) ) def lowerCamelCase_ ( _lowercase , _lowercase ) -> Optional[Any]: with open(_lowercase , "wb" ) as f: return pickle.dump(_lowercase , _lowercase ) def lowerCamelCase_ ( _lowercase ) -> Optional[Any]: def remove_articles(_lowercase ): return re.sub(r"\b(a|an|the)\b" , " " , _lowercase ) def white_space_fix(_lowercase ): return " ".join(text.split() ) def remove_punc(_lowercase ): __A : List[Any] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowercase ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowercase ) ) ) ) def lowerCamelCase_ ( _lowercase , _lowercase ) -> List[str]: __A : Tuple = normalize_answer(_lowercase ).split() __A : Optional[int] = normalize_answer(_lowercase ).split() __A : Tuple = Counter(_lowercase ) & Counter(_lowercase ) __A : int = sum(common.values() ) if num_same == 0: return 0 __A : Dict = 1.0 * num_same / len(_lowercase ) __A : str = 1.0 * num_same / len(_lowercase ) __A : int = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase_ ( _lowercase , _lowercase ) -> List[Any]: return normalize_answer(_lowercase ) == normalize_answer(_lowercase ) def lowerCamelCase_ ( _lowercase , _lowercase ) -> Dict: assert len(_lowercase ) == len(_lowercase ) __A : Optional[int] = 0 for hypo, pred in zip(_lowercase , _lowercase ): em += exact_match_score(_lowercase , _lowercase ) if len(_lowercase ) > 0: em /= len(_lowercase ) return {"em": em} def lowerCamelCase_ ( _lowercase ) -> Dict: return model_prefix.startswith("rag" ) def lowerCamelCase_ ( _lowercase , _lowercase , _lowercase ) -> Optional[Any]: __A : List[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __A : Tuple = "dropout_rate" for p in extra_params: if getattr(_lowercase , _lowercase , _lowercase ): if not hasattr(_lowercase , _lowercase ) and not hasattr(_lowercase , equivalent_param[p] ): logger.info("config doesn't have a `{}` attribute".format(_lowercase ) ) delattr(_lowercase , _lowercase ) continue __A : int = p if hasattr(_lowercase , _lowercase ) else equivalent_param[p] setattr(_lowercase , _lowercase , getattr(_lowercase , _lowercase ) ) delattr(_lowercase , _lowercase ) return hparams, config
387
0
from typing import Any class __lowercase : def __init__(self : List[Any] , snake_case : Any ) -> Optional[int]: _lowercase : Optional[int] = data _lowercase : Optional[Any] = None class __lowercase : def __init__(self : Tuple ) -> List[Any]: _lowercase : str = None def _a(self : Union[str, Any] ) -> Dict: _lowercase : Dict = self.head while temp is not None: print(temp.data , end=" " ) _lowercase : Union[str, Any] = temp.next print() def _a(self : int , snake_case : Any ) -> Union[str, Any]: _lowercase : int = Node(snake_case ) _lowercase : Any = self.head _lowercase : Optional[int] = new_node def _a(self : Tuple , snake_case : Optional[Any] , snake_case : Optional[Any] ) -> int: if node_data_a == node_data_a: return else: _lowercase : Tuple = self.head while node_a is not None and node_a.data != node_data_a: _lowercase : Optional[int] = node_a.next _lowercase : Dict = self.head while node_a is not None and node_a.data != node_data_a: _lowercase : Optional[int] = node_a.next if node_a is None or node_a is None: return _lowercase , _lowercase : Dict = node_a.data, node_a.data if __name__ == "__main__": UpperCamelCase_ : str = LinkedList() for i in range(5, 0, -1): ll.push(i) ll.print_list() ll.swap_nodes(1, 4) print("""After swapping""") ll.print_list()
461
import os import tempfile import unittest from transformers import DistilBertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, DistilBertModel, ) class __lowercase ( __snake_case ): def __init__(self : Dict , snake_case : str , snake_case : str=13 , snake_case : Union[str, Any]=7 , snake_case : int=True , snake_case : Any=True , snake_case : str=False , snake_case : Optional[Any]=True , snake_case : Optional[Any]=99 , snake_case : Dict=32 , snake_case : Union[str, Any]=5 , snake_case : List[str]=4 , snake_case : Optional[int]=37 , snake_case : Optional[int]="gelu" , snake_case : Optional[Any]=0.1 , snake_case : Optional[int]=0.1 , snake_case : List[Any]=512 , snake_case : List[Any]=16 , snake_case : Optional[int]=2 , snake_case : Tuple=0.02 , snake_case : Union[str, Any]=3 , snake_case : Any=4 , snake_case : Any=None , ) -> List[Any]: _lowercase : Dict = parent _lowercase : int = batch_size _lowercase : Optional[Any] = seq_length _lowercase : int = is_training _lowercase : Dict = use_input_mask _lowercase : Union[str, Any] = use_token_type_ids _lowercase : Tuple = use_labels _lowercase : int = vocab_size _lowercase : Union[str, Any] = hidden_size _lowercase : int = num_hidden_layers _lowercase : Optional[Any] = num_attention_heads _lowercase : Tuple = intermediate_size _lowercase : Dict = hidden_act _lowercase : int = hidden_dropout_prob _lowercase : int = attention_probs_dropout_prob _lowercase : Tuple = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : int = type_sequence_label_size _lowercase : Any = initializer_range _lowercase : Optional[Any] = num_labels _lowercase : Optional[Any] = num_choices _lowercase : str = scope def _a(self : int ) -> Dict: _lowercase : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowercase : Tuple = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : Tuple = None if self.use_labels: _lowercase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Dict = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _a(self : Any ) -> Any: return DistilBertConfig( vocab_size=self.vocab_size , dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , hidden_dim=self.intermediate_size , hidden_act=self.hidden_act , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _a(self : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : List[str] , snake_case : Tuple , snake_case : Any , snake_case : Dict ) -> Optional[int]: _lowercase : Optional[int] = DistilBertModel(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : List[Any] = model(snake_case , snake_case ) _lowercase : int = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a(self : int , snake_case : Optional[Any] , snake_case : Tuple , snake_case : Optional[Any] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Optional[Any] ) -> Dict: _lowercase : Optional[int] = DistilBertForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : int = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _a(self : Tuple , snake_case : List[str] , snake_case : Any , snake_case : List[str] , snake_case : Dict , snake_case : str , snake_case : str ) -> Any: _lowercase : Dict = DistilBertForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : List[str] = model( snake_case , attention_mask=snake_case , start_positions=snake_case , end_positions=snake_case ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a(self : Union[str, Any] , snake_case : str , snake_case : Dict , snake_case : Dict , snake_case : Union[str, Any] , snake_case : Optional[int] , snake_case : Dict ) -> Dict: _lowercase : str = self.num_labels _lowercase : Any = DistilBertForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() _lowercase : Optional[Any] = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a(self : int , snake_case : Union[str, Any] , snake_case : Optional[Any] , snake_case : int , snake_case : Optional[int] , snake_case : Optional[int] , snake_case : str ) -> str: _lowercase : str = self.num_labels _lowercase : List[str] = DistilBertForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : str = model(snake_case , attention_mask=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _a(self : List[str] , snake_case : int , snake_case : str , snake_case : Union[str, Any] , snake_case : Dict , snake_case : int , snake_case : Union[str, Any] ) -> Optional[Any]: _lowercase : str = self.num_choices _lowercase : Dict = DistilBertForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() _lowercase : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : int = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowercase : Tuple = model( snake_case , attention_mask=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _a(self : List[str] ) -> List[str]: _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ((_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase) , (_lowercase)) : Union[str, Any] = config_and_inputs _lowercase : Union[str, Any] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class __lowercase ( __snake_case , __snake_case , unittest.TestCase ): _A = ( ( DistilBertModel, DistilBertForMaskedLM, DistilBertForMultipleChoice, DistilBertForQuestionAnswering, DistilBertForSequenceClassification, DistilBertForTokenClassification, ) if is_torch_available() else None ) _A = ( { "feature-extraction": DistilBertModel, "fill-mask": DistilBertForMaskedLM, "question-answering": DistilBertForQuestionAnswering, "text-classification": DistilBertForSequenceClassification, "token-classification": DistilBertForTokenClassification, "zero-shot": DistilBertForSequenceClassification, } if is_torch_available() else {} ) _A = True _A = True _A = True _A = True def _a(self : Dict ) -> List[Any]: _lowercase : Optional[Any] = DistilBertModelTester(self ) _lowercase : str = ConfigTester(self , config_class=snake_case , dim=37 ) def _a(self : int ) -> List[str]: self.config_tester.run_common_tests() def _a(self : Optional[Any] ) -> Optional[int]: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_model(*snake_case ) def _a(self : Any ) -> int: _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_masked_lm(*snake_case ) def _a(self : Dict ) -> List[Any]: _lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_question_answering(*snake_case ) def _a(self : str ) -> Tuple: _lowercase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_sequence_classification(*snake_case ) def _a(self : Any ) -> List[Any]: _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_token_classification(*snake_case ) def _a(self : Optional[int] ) -> Optional[int]: _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_distilbert_for_multiple_choice(*snake_case ) @slow def _a(self : Optional[Any] ) -> Dict: for model_name in DISTILBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : Tuple = DistilBertModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @slow @require_torch_gpu def _a(self : Optional[int] ) -> Optional[int]: _lowercase , _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # BertForMultipleChoice behaves incorrectly in JIT environments. if model_class == DistilBertForMultipleChoice: return _lowercase : str = True _lowercase : Tuple = model_class(config=snake_case ) _lowercase : str = self._prepare_for_class(snake_case , snake_case ) _lowercase : Optional[int] = torch.jit.trace( snake_case , (inputs_dict["input_ids"].to("cpu" ), inputs_dict["attention_mask"].to("cpu" )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(snake_case , os.path.join(snake_case , "traced_model.pt" ) ) _lowercase : Dict = torch.jit.load(os.path.join(snake_case , "traced_model.pt" ) , map_location=snake_case ) loaded(inputs_dict["input_ids"].to(snake_case ) , inputs_dict["attention_mask"].to(snake_case ) ) @require_torch class __lowercase ( unittest.TestCase ): @slow def _a(self : int ) -> str: _lowercase : Any = DistilBertModel.from_pretrained("distilbert-base-uncased" ) _lowercase : Dict = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _lowercase : List[Any] = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): _lowercase : Optional[int] = model(snake_case , attention_mask=snake_case )[0] _lowercase : List[str] = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , snake_case ) _lowercase : Any = torch.tensor( [[[-0.16_39, 0.32_99, 0.16_48], [-0.17_46, 0.32_89, 0.17_10], [-0.18_84, 0.33_57, 0.18_10]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , snake_case , atol=1e-4 ) )
461
1
"""simple docstring""" from scipy.stats import spearmanr import datasets a : Optional[Any] = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ a : Optional[Any] = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ a : Tuple = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCamelCase ( datasets.Metric ): '''simple docstring''' def A__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""float""" ), """references""": datasets.Value("""float""" ), } ) , reference_urls=["""https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"""] , ) def A__ ( self , __lowercase , __lowercase , __lowercase=False ): UpperCAmelCase__ = spearmanr(snake_case_ , snake_case_ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
721
"""simple docstring""" import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation a : Union[str, Any] = logging.get_logger(__name__) a : Dict = {'''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_file''': '''tokenizer.json'''} a : Optional[Any] = { '''vocab_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/vocab.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/vocab.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/vocab.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/vocab.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/vocab.json''', }, '''merges_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/merges.txt''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/merges.txt''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/merges.txt''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/merges.txt''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/merges.txt''', }, '''tokenizer_file''': { '''gpt2''': '''https://huggingface.co/gpt2/resolve/main/tokenizer.json''', '''gpt2-medium''': '''https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json''', '''gpt2-large''': '''https://huggingface.co/gpt2-large/resolve/main/tokenizer.json''', '''gpt2-xl''': '''https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json''', '''distilgpt2''': '''https://huggingface.co/distilgpt2/resolve/main/tokenizer.json''', }, } a : Tuple = { '''gpt2''': 1024, '''gpt2-medium''': 1024, '''gpt2-large''': 1024, '''gpt2-xl''': 1024, '''distilgpt2''': 1024, } class _UpperCamelCase ( __UpperCamelCase ): '''simple docstring''' __lowercase : Any = VOCAB_FILES_NAMES __lowercase : int = PRETRAINED_VOCAB_FILES_MAP __lowercase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : List[str] = ['input_ids', 'attention_mask'] __lowercase : Dict = GPTaTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="<|endoftext|>" , __lowercase="<|endoftext|>" , __lowercase="<|endoftext|>" , __lowercase=False , **__lowercase , ): super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , unk_token=__lowercase , bos_token=__lowercase , eos_token=__lowercase , add_prefix_space=__lowercase , **__lowercase , ) UpperCAmelCase__ = kwargs.pop("""add_bos_token""" , __lowercase ) UpperCAmelCase__ = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowercase ) != add_prefix_space: UpperCAmelCase__ = getattr(__lowercase , pre_tok_state.pop("""type""" ) ) UpperCAmelCase__ = add_prefix_space UpperCAmelCase__ = pre_tok_class(**__lowercase ) UpperCAmelCase__ = add_prefix_space def A__ ( self , *__lowercase , **__lowercase ): UpperCAmelCase__ = kwargs.get("""is_split_into_words""" , __lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase , **__lowercase ) def A__ ( self , *__lowercase , **__lowercase ): UpperCAmelCase__ = kwargs.get("""is_split_into_words""" , __lowercase ) assert self.add_prefix_space or not is_split_into_words, ( F'''You need to instantiate {self.__class__.__name__} with add_prefix_space=True ''' "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase , **__lowercase ) def A__ ( self , __lowercase , __lowercase = None ): UpperCAmelCase__ = self._tokenizer.model.save(__lowercase , name=__lowercase ) return tuple(__lowercase ) def A__ ( self , __lowercase ): UpperCAmelCase__ = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__lowercase , add_special_tokens=__lowercase ) + [self.eos_token_id] ) if len(__lowercase ) > self.model_max_length: UpperCAmelCase__ = input_ids[-self.model_max_length :] return input_ids
422
0
from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
117
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase__ = logging.get_logger(__name__) def _a ( a :List[str] , a :Tuple=False ) -> List[Any]: a = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""blocks.{i}.norm1.weight""", F"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""blocks.{i}.norm1.bias""", F"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((F"""blocks.{i}.attn.proj.weight""", F"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.attn.proj.bias""", F"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""blocks.{i}.norm2.weight""", F"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""blocks.{i}.norm2.bias""", F"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.weight""", F"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc1.bias""", F"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.weight""", F"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""blocks.{i}.mlp.fc2.bias""", F"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ('''cls_token''', '''vit.embeddings.cls_token'''), ('''patch_embed.proj.weight''', '''vit.embeddings.patch_embeddings.projection.weight'''), ('''patch_embed.proj.bias''', '''vit.embeddings.patch_embeddings.projection.bias'''), ('''pos_embed''', '''vit.embeddings.position_embeddings'''), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ('''norm.weight''', '''layernorm.weight'''), ('''norm.bias''', '''layernorm.bias'''), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" a = [(pair[0], pair[1][4:]) if pair[1].startswith('''vit''' ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ('''norm.weight''', '''vit.layernorm.weight'''), ('''norm.bias''', '''vit.layernorm.bias'''), ('''head.weight''', '''classifier.weight'''), ('''head.bias''', '''classifier.bias'''), ] ) return rename_keys def _a ( a :List[str] , a :int , a :Tuple=False ) -> Any: for i in range(config.num_hidden_layers ): if base_model: a = '''''' else: a = '''vit.''' # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) a = state_dict.pop(F"""blocks.{i}.attn.qkv.weight""" ) a = state_dict.pop(F"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict a = in_proj_weight[ : config.hidden_size, : ] a = in_proj_bias[: config.hidden_size] a = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] a = in_proj_weight[ -config.hidden_size :, : ] a = in_proj_bias[-config.hidden_size :] def _a ( a :List[Any] ) -> Dict: a = ['''head.weight''', '''head.bias'''] for k in ignore_keys: state_dict.pop(a , a ) def _a ( a :Union[str, Any] , a :str , a :List[Any] ) -> str: a = dct.pop(a ) a = val def _a ( ) -> Optional[Any]: a = '''http://images.cocodataset.org/val2017/000000039769.jpg''' a = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def _a ( a :Tuple , a :str , a :Optional[int]=True ) -> Dict: a = ViTConfig() # patch_size if model_name[-1] == "8": a = 8 # set labels if required if not base_model: a = 1_000 a = '''huggingface/label-files''' a = '''imagenet-1k-id2label.json''' a = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) a = {int(a ): v for k, v in idalabel.items()} a = idalabel a = {v: k for k, v in idalabel.items()} # size of the architecture if model_name in ["dino_vits8", "dino_vits16"]: a = 384 a = 1_536 a = 12 a = 6 # load original model from torch hub a = torch.hub.load('''facebookresearch/dino:main''' , a ) original_model.eval() # load state_dict of original model, remove and rename some keys a = original_model.state_dict() if base_model: remove_classification_head_(a ) a = create_rename_keys(a , base_model=a ) for src, dest in rename_keys: rename_key(a , a , a ) read_in_q_k_v(a , a , a ) # load HuggingFace model if base_model: a = ViTModel(a , add_pooling_layer=a ).eval() else: a = ViTForImageClassification(a ).eval() model.load_state_dict(a ) # Check outputs on an image, prepared by ViTImageProcessor a = ViTImageProcessor() a = image_processor(images=prepare_img() , return_tensors='''pt''' ) a = encoding['''pixel_values'''] a = model(a ) if base_model: a = original_model(a ) assert torch.allclose(a , outputs.last_hidden_state[:, 0, :] , atol=1e-1 ) else: a = original_model(a ) assert logits.shape == outputs.logits.shape assert torch.allclose(a , outputs.logits , atol=1e-3 ) Path(a ).mkdir(exist_ok=a ) print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(a ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="dino_vitb16", type=str, help="Name of the model trained with DINO you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--base_model", action="store_true", help="Whether to only convert the base model (no projection head weights).", ) parser.set_defaults(base_model=True) UpperCAmelCase__ = parser.parse_args() convert_vit_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.base_model)
117
1
def a ( A__ : int , A__ : int ) -> Tuple: """simple docstring""" if a < 0 or b < 0: raise ValueError('the value of both inputs must be positive' ) _lowercase =str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" _lowercase =str(bin(lowerCamelCase_ ) )[2:] # remove the leading "0b" _lowercase =max(len(lowerCamelCase_ ) , len(lowerCamelCase_ ) ) return "0b" + "".join( str(int(char_a == '1' and char_b == '1' ) ) for char_a, char_b in zip(a_binary.zfill(lowerCamelCase_ ) , b_binary.zfill(lowerCamelCase_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
712
import math import tensorflow as tf from packaging import version def a ( A__ : Tuple ) -> List[Any]: """simple docstring""" _lowercase =tf.convert_to_tensor(A__ ) _lowercase =0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def a ( A__ : Any ) -> int: """simple docstring""" _lowercase =tf.convert_to_tensor(A__ ) _lowercase =tf.cast(math.pi , x.dtype ) _lowercase =tf.cast(0.044715 , x.dtype ) _lowercase =0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(A__ , 3 )) )) return x * cdf def a ( A__ : Optional[int] ) -> int: """simple docstring""" _lowercase =tf.convert_to_tensor(A__ ) return x * tf.tanh(tf.math.softplus(A__ ) ) def a ( A__ : Tuple ) -> List[str]: """simple docstring""" _lowercase =tf.convert_to_tensor(A__ ) _lowercase =tf.cast(0.044715 , x.dtype ) _lowercase =tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def a ( A__ : int ) -> Any: """simple docstring""" _lowercase =tf.convert_to_tensor(A__ ) _lowercase =tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def a ( A__ : int ) -> Dict: """simple docstring""" return tf.clip_by_value(_gelu(A__ ) , -10 , 10 ) def a ( A__ : Optional[int] , A__ : int=-1 ) -> Optional[Any]: """simple docstring""" _lowercase , _lowercase =tf.split(A__ , 2 , axis=A__ ) return a * tf.math.sigmoid(A__ ) if version.parse(tf.version.VERSION) >= version.parse('2.4'): def a ( A__ : Any ) -> Dict: """simple docstring""" return tf.keras.activations.gelu(A__ , approximate=A__ ) lowercase_ = tf.keras.activations.gelu lowercase_ = approximate_gelu_wrap else: lowercase_ = _gelu lowercase_ = _gelu_new lowercase_ = { 'gelu': gelu, 'gelu_10': gelu_aa, 'gelu_fast': gelu_fast, 'gelu_new': gelu_new, 'glu': glu, 'mish': mish, 'quick_gelu': quick_gelu, 'relu': tf.keras.activations.relu, 'sigmoid': tf.keras.activations.sigmoid, 'silu': tf.keras.activations.swish, 'swish': tf.keras.activations.swish, 'tanh': tf.keras.activations.tanh, } def a ( A__ : Optional[int] ) -> str: """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
380
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A__ : Optional[int] = { 'configuration_clap': [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapAudioConfig', 'ClapConfig', 'ClapTextConfig', ], 'processing_clap': ['ClapProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ : str = [ 'CLAP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ClapModel', 'ClapPreTrainedModel', 'ClapTextModel', 'ClapTextModelWithProjection', 'ClapAudioModel', 'ClapAudioModelWithProjection', ] A__ : List[Any] = ['ClapFeatureExtractor'] if TYPE_CHECKING: from .configuration_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioConfig, ClapConfig, ClapTextConfig, ) from .processing_clap import ClapProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clap import ClapFeatureExtractor from .modeling_clap import ( CLAP_PRETRAINED_MODEL_ARCHIVE_LIST, ClapAudioModel, ClapAudioModelWithProjection, ClapModel, ClapPreTrainedModel, ClapTextModel, ClapTextModelWithProjection, ) else: import sys A__ : int = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
183
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def a ( lowerCamelCase_=None ): '''simple docstring''' if subparsers is not None: lowercase__ = subparsers.add_parser('''test''' ) else: lowercase__ = argparse.ArgumentParser('''Accelerate test command''' ) parser.add_argument( '''--config_file''' , default=lowerCamelCase_ , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase_ ) return parser def a ( lowerCamelCase_ ): '''simple docstring''' lowercase__ = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ['''test_utils''', '''scripts''', '''test_script.py'''] ) if args.config_file is None: lowercase__ = script_name else: lowercase__ = F"""--config_file={args.config_file} {script_name}""" lowercase__ = ['''accelerate-launch'''] + test_args.split() lowercase__ = execute_subprocess_async(lowerCamelCase_ , env=os.environ.copy() ) if result.returncode == 0: print('''Test is a success! You are ready for your distributed training!''' ) def a ( ): '''simple docstring''' lowercase__ = test_command_parser() lowercase__ = parser.parse_args() test_command(lowerCamelCase_ ) if __name__ == "__main__": main()
183
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { """EleutherAI/gpt-neox-20b""": """https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json""", # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class a__ ( _lowercase ): __magic_name__ : Dict = "gpt_neox" def __init__(self : Any, __UpperCAmelCase : Dict=50432, __UpperCAmelCase : Union[str, Any]=6144, __UpperCAmelCase : int=44, __UpperCAmelCase : Optional[int]=64, __UpperCAmelCase : int=24576, __UpperCAmelCase : List[Any]="gelu", __UpperCAmelCase : Tuple=0.25, __UpperCAmelCase : Any=10000, __UpperCAmelCase : List[Any]=0.0, __UpperCAmelCase : Any=0.0, __UpperCAmelCase : str=0.1, __UpperCAmelCase : List[Any]=2048, __UpperCAmelCase : int=0.02, __UpperCAmelCase : str=1e-5, __UpperCAmelCase : List[Any]=True, __UpperCAmelCase : int=0, __UpperCAmelCase : int=2, __UpperCAmelCase : Union[str, Any]=False, __UpperCAmelCase : int=True, __UpperCAmelCase : Any=None, **__UpperCAmelCase : List[Any], ) -> Optional[Any]: """simple docstring""" super().__init__(bos_token_id=__UpperCAmelCase, eos_token_id=__UpperCAmelCase, **__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : List[Any] = hidden_size SCREAMING_SNAKE_CASE : Tuple = num_hidden_layers SCREAMING_SNAKE_CASE : Dict = num_attention_heads SCREAMING_SNAKE_CASE : int = intermediate_size SCREAMING_SNAKE_CASE : List[str] = hidden_act SCREAMING_SNAKE_CASE : List[str] = rotary_pct SCREAMING_SNAKE_CASE : Optional[Any] = rotary_emb_base SCREAMING_SNAKE_CASE : str = attention_dropout SCREAMING_SNAKE_CASE : Optional[int] = hidden_dropout SCREAMING_SNAKE_CASE : List[Any] = classifier_dropout SCREAMING_SNAKE_CASE : int = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : List[Any] = use_cache SCREAMING_SNAKE_CASE : Any = tie_word_embeddings SCREAMING_SNAKE_CASE : Union[str, Any] = use_parallel_residual SCREAMING_SNAKE_CASE : List[str] = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( '''The hidden size is not divisble by the number of attention heads! Make sure to update them!''' ) def lowercase__ (self : Optional[int] ) -> str: """simple docstring""" if self.rope_scaling is None: return if not isinstance(self.rope_scaling, __UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' F'''got {self.rope_scaling}''' ) SCREAMING_SNAKE_CASE : Dict = self.rope_scaling.get('''type''', __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = self.rope_scaling.get('''factor''', __UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(__UpperCAmelCase, __UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
355
'''simple docstring''' def __lowercase (_SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : Tuple = 1 for i in range(1 , num + 1 ): fact *= i return fact def __lowercase (_SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : List[Any] = 0 while number > 0: SCREAMING_SNAKE_CASE : List[str] = number % 10 sum_of_digits += last_digit SCREAMING_SNAKE_CASE : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __lowercase (_SCREAMING_SNAKE_CASE :int = 1_00 ): SCREAMING_SNAKE_CASE : List[Any] = factorial(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = split_and_add(_SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
355
1
"""simple docstring""" from typing import List, Optional, Tuple, Union import PIL import torch from torchvision import transforms from diffusers.pipeline_utils import DiffusionPipeline, ImagePipelineOutput from diffusers.schedulers import DDIMScheduler from diffusers.utils import randn_tensor snake_case = transforms.Compose( [ transforms.Resize((2_5_6, 2_5_6)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5]), ] ) def snake_case ( lowerCAmelCase_ ) -> Tuple: if isinstance(lowerCAmelCase_ , torch.Tensor ): return image elif isinstance(lowerCAmelCase_ , PIL.Image.Image ): _snake_case = [image] _snake_case = [trans(img.convert('''RGB''' ) ) for img in image] _snake_case = torch.stack(lowerCAmelCase_ ) return image class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , __lowerCamelCase : str , __lowerCamelCase : str ): """simple docstring""" super().__init__() # make sure scheduler can always be converted to DDIM _snake_case = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__lowerCamelCase , scheduler=__lowerCamelCase ) def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : Tuple ): """simple docstring""" if strength < 0 or strength > 1: raise ValueError(f"""The value of strength should in [0.0, 1.0] but is {strength}""" ) def __UpperCAmelCase ( self : List[str] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any] ): """simple docstring""" # get the original timestep using init_timestep _snake_case = min(int(num_inference_steps * strength ) , __lowerCamelCase ) _snake_case = max(num_inference_steps - init_timestep , 0 ) _snake_case = self.scheduler.timesteps[t_start:] return timesteps, num_inference_steps - t_start def __UpperCAmelCase ( self : Any , __lowerCamelCase : Any , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=None ): """simple docstring""" if not isinstance(__lowerCamelCase , (torch.Tensor, PIL.Image.Image, list) ): raise ValueError( f"""`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(__lowerCamelCase )}""" ) _snake_case = image.to(device=__lowerCamelCase , dtype=__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__lowerCamelCase )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) _snake_case = init_latents.shape _snake_case = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=__lowerCamelCase , dtype=__lowerCamelCase ) # get latents print('''add noise to latents at timestep''' , __lowerCamelCase ) _snake_case = self.scheduler.add_noise(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) _snake_case = init_latents return latents @torch.no_grad() def __call__( self : int , __lowerCamelCase : Union[torch.FloatTensor, PIL.Image.Image] = None , __lowerCamelCase : float = 0.8 , __lowerCamelCase : int = 1 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : float = 0.0 , __lowerCamelCase : int = 5_0 , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ): """simple docstring""" self.check_inputs(__lowerCamelCase ) # 2. Preprocess image _snake_case = preprocess(__lowerCamelCase ) # 3. set timesteps self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) _snake_case , _snake_case = self.get_timesteps(__lowerCamelCase , __lowerCamelCase , self.device ) _snake_case = timesteps[:1].repeat(__lowerCamelCase ) # 4. Prepare latent variables _snake_case = self.prepare_latents(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , self.unet.dtype , self.device , __lowerCamelCase ) _snake_case = latents # 5. Denoising loop for t in self.progress_bar(__lowerCamelCase ): # 1. predict noise model_output _snake_case = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 _snake_case = self.scheduler.step( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , eta=__lowerCamelCase , use_clipped_model_output=__lowerCamelCase , generator=__lowerCamelCase , ).prev_sample _snake_case = (image / 2 + 0.5).clamp(0 , 1 ) _snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": _snake_case = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image, latent_timestep.item()) return ImagePipelineOutput(images=__lowerCamelCase )
103
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __lowerCamelCase ( UpperCamelCase__ , unittest.TestCase ): """simple docstring""" snake_case__ = VideoToVideoSDPipeline snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({"video"} ) - {"image", "width", "height"} snake_case__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({"video"} ) - {"image"} snake_case__ = PipelineTesterMixin.required_optional_params - {"latents"} snake_case__ = False # No `output_type`. snake_case__ = frozenset( [ "num_inference_steps", "generator", "latents", "return_dict", "callback", "callback_steps", ] ) def a ( self : int ) -> Optional[int]: torch.manual_seed(0 ) lowerCAmelCase__ = UNetaDConditionModel( block_out_channels=(32, 64, 64, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "CrossAttnDownBlock3D", "DownBlock3D") , up_block_types=("UpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D", "CrossAttnUpBlock3D") , cross_attention_dim=32 , attention_head_dim=4 , ) lowerCAmelCase__ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=SCREAMING_SNAKE_CASE__ , set_alpha_to_one=SCREAMING_SNAKE_CASE__ , ) torch.manual_seed(0 ) lowerCAmelCase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) lowerCAmelCase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , hidden_act="gelu" , projection_dim=512 , ) lowerCAmelCase__ = CLIPTextModel(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) lowerCAmelCase__ = { "unet": unet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, } return components def a ( self : Tuple , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Dict=0 ) -> Tuple: # 3 frames lowerCAmelCase__ = floats_tensor((1, 3, 3, 32, 32) , rng=random.Random(SCREAMING_SNAKE_CASE__ ) ).to(SCREAMING_SNAKE_CASE__ ) if str(SCREAMING_SNAKE_CASE__ ).startswith("mps" ): lowerCAmelCase__ = torch.manual_seed(SCREAMING_SNAKE_CASE__ ) else: lowerCAmelCase__ = torch.Generator(device=SCREAMING_SNAKE_CASE__ ).manual_seed(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = { "prompt": "A painting of a squirrel eating a burger", "video": video, "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "pt", } return inputs def a ( self : Union[str, Any] ) -> str: lowerCAmelCase__ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ = self.get_dummy_components() lowerCAmelCase__ = VideoToVideoSDPipeline(**SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = sd_pipe.to(SCREAMING_SNAKE_CASE__ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = self.get_dummy_inputs(SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = "np" lowerCAmelCase__ = sd_pipe(**SCREAMING_SNAKE_CASE__ ).frames lowerCAmelCase__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (32, 32, 3) lowerCAmelCase__ = np.array([106, 117, 113, 174, 137, 112, 148, 151, 131] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def a ( self : List[Any] ) -> str: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=SCREAMING_SNAKE_CASE__ , expected_max_diff=5e-3 ) @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def a ( self : List[Any] ) -> str: pass @unittest.skip(reason="Batching needs to be properly figured out first for this pipeline." ) def a ( self : int ) -> Optional[Any]: pass @unittest.skip(reason="`num_images_per_prompt` argument is not supported for this pipeline." ) def a ( self : List[str] ) -> Optional[int]: pass def a ( self : Optional[Any] ) -> Tuple: return super().test_progress_bar() @slow @skip_mps class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def a ( self : str ) -> int: lowerCAmelCase__ = VideoToVideoSDPipeline.from_pretrained("cerspense/zeroscope_v2_XL" , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames lowerCAmelCase__ = torch.Generator(device="cpu" ).manual_seed(0 ) lowerCAmelCase__ = torch.randn((1, 10, 3, 1_024, 576) , generator=SCREAMING_SNAKE_CASE__ ) lowerCAmelCase__ = video.to("cuda" ) lowerCAmelCase__ = "Spiderman is surfing" lowerCAmelCase__ = pipe(SCREAMING_SNAKE_CASE__ , video=SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ , num_inference_steps=3 , output_type="pt" ).frames lowerCAmelCase__ = np.array([-1.0_458_984, -1.1_279_297, -0.9_663_086, -0.91_503_906, -0.75_097_656] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
61
0
"""simple docstring""" import inspect import unittest from transformers import RegNetConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import RegNetForImageClassification, RegNetModel from transformers.models.regnet.modeling_regnet import REGNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __magic_name__ : def __init__( self : Optional[int] , snake_case__ : Union[str, Any] , snake_case__ : Optional[Any]=3 , snake_case__ : int=3_2 , snake_case__ : List[str]=3 , snake_case__ : Any=1_0 , snake_case__ : Optional[int]=[1_0, 2_0, 3_0, 4_0] , snake_case__ : Any=[1, 1, 2, 1] , snake_case__ : Optional[Any]=True , snake_case__ : Any=True , snake_case__ : Optional[int]="relu" , snake_case__ : List[Any]=3 , snake_case__ : int=None , ): '''simple docstring''' lowercase :Any = parent lowercase :List[str] = batch_size lowercase :Dict = image_size lowercase :Dict = num_channels lowercase :Tuple = embeddings_size lowercase :Any = hidden_sizes lowercase :Any = depths lowercase :Optional[int] = is_training lowercase :int = use_labels lowercase :Tuple = hidden_act lowercase :Union[str, Any] = num_labels lowercase :Any = scope lowercase :int = len(snake_case__ ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :str = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowercase :int = None if self.use_labels: lowercase :Dict = ids_tensor([self.batch_size] , self.num_labels ) lowercase :str = self.get_config() return config, pixel_values, labels def __snake_case ( self : int ): '''simple docstring''' return RegNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , ) def __snake_case ( self : Optional[int] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : Dict ): '''simple docstring''' lowercase :Optional[Any] = RegNetModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Union[str, Any] = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def __snake_case ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Any ): '''simple docstring''' lowercase :int = self.num_labels lowercase :List[str] = RegNetForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() lowercase :Tuple = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[Any] = self.prepare_config_and_inputs() lowercase , lowercase , lowercase :Optional[Any] = config_and_inputs lowercase :Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __magic_name__ ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __A : Union[str, Any] = (RegNetModel, RegNetForImageClassification) if is_torch_available() else () __A : List[str] = ( {"feature-extraction": RegNetModel, "image-classification": RegNetForImageClassification} if is_torch_available() else {} ) __A : Any = False __A : int = False __A : Any = False __A : Optional[Any] = False def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Any = RegNetModelTester(self ) lowercase :int = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ ) def __snake_case ( self : Dict ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __snake_case ( self : Tuple ): '''simple docstring''' return @unittest.skip(reason='''RegNet does not use inputs_embeds''' ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='''RegNet does not support input and output embeddings''' ) def __snake_case ( self : Tuple ): '''simple docstring''' pass def __snake_case ( self : List[str] ): '''simple docstring''' lowercase , lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :List[str] = model_class(snake_case__ ) lowercase :Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowercase :Optional[Any] = [*signature.parameters.keys()] lowercase :Dict = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , snake_case__ ) def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def __snake_case ( self : Any ): '''simple docstring''' lowercase , lowercase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowercase :List[Any] = model_class(config=snake_case__ ) for name, module in model.named_modules(): if isinstance(snake_case__ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def __snake_case ( self : str ): '''simple docstring''' def check_hidden_states_output(snake_case__ : Optional[int] , snake_case__ : Optional[int] , snake_case__ : Dict ): lowercase :Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): lowercase :Optional[Any] = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) lowercase :Tuple = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states lowercase :Any = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # RegNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 2, self.model_tester.image_size // 2] , ) lowercase , lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() lowercase :Optional[int] = ['''basic''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: lowercase :int = layer_type lowercase :Optional[int] = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowercase :Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def __snake_case ( self : Optional[int] ): '''simple docstring''' lowercase :Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def __snake_case ( self : List[str] ): '''simple docstring''' for model_name in REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase :Tuple = RegNetModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase () -> Dict: lowercase :Any = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''') return image @require_torch @require_vision class __magic_name__ ( unittest.TestCase ): @cached_property def __snake_case ( self : List[str] ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :Optional[int] = RegNetForImageClassification.from_pretrained(REGNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(snake_case__ ) lowercase :Optional[int] = self.default_image_processor lowercase :Optional[int] = prepare_img() lowercase :str = image_processor(images=snake_case__ , return_tensors='''pt''' ).to(snake_case__ ) # forward pass with torch.no_grad(): lowercase :List[Any] = model(**snake_case__ ) # verify the logits lowercase :str = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , snake_case__ ) lowercase :Optional[int] = torch.tensor([-0.41_80, -1.50_51, -3.48_36] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
475
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..utils import cached_file # docstyle-ignore UpperCAmelCase = ''' Human: <<task>> Assistant: ''' UpperCAmelCase = '''huggingface-tools/default-prompts''' UpperCAmelCase = {'''chat''': '''chat_prompt_template.txt''', '''run''': '''run_prompt_template.txt'''} def lowerCamelCase (a_ :int , a_ :str , a_ :Dict="run") -> Optional[Any]: if prompt_or_repo_id is None: lowercase :Tuple = DEFAULT_PROMPTS_REPO # prompt is considered a repo ID when it does not contain any kind of space if re.search('''\\s''' , a_) is not None: return prompt_or_repo_id lowercase :List[str] = cached_file( a_ , PROMPT_FILES[mode] , repo_type='''dataset''' , user_agent={'''agent''': agent_name}) with open(a_ , '''r''' , encoding='''utf-8''') as f: return f.read()
475
1
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import torch from ...models import AutoencoderKL, TransformeraDModel from ...schedulers import KarrasDiffusionSchedulers from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase_ (__A ): def __init__( self : List[Any] , lowerCAmelCase_ : TransformeraDModel , lowerCAmelCase_ : AutoencoderKL , lowerCAmelCase_ : KarrasDiffusionSchedulers , lowerCAmelCase_ : Optional[Dict[int, str]] = None , ) -> List[Any]: super().__init__() self.register_modules(transformer=lowerCAmelCase_ , vae=lowerCAmelCase_ , scheduler=lowerCAmelCase_ ) # create a imagenet -> id dictionary for easier use UpperCAmelCase_ : str = {} if idalabel is not None: for key, value in idalabel.items(): for label in value.split("," ): UpperCAmelCase_ : Union[str, Any] = int(lowerCAmelCase_ ) UpperCAmelCase_ : Optional[int] = dict(sorted(self.labels.items() ) ) def _SCREAMING_SNAKE_CASE ( self : str , lowerCAmelCase_ : Union[str, List[str]] ) -> List[int]: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : str = list(lowerCAmelCase_ ) for l in label: if l not in self.labels: raise ValueError( f"""{l} does not exist. Please make sure to select one of the following labels: \n {self.labels}.""" ) return [self.labels[l] for l in label] @torch.no_grad() def __call__( self : List[str] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : float = 4.0 , lowerCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , lowerCAmelCase_ : int = 50 , lowerCAmelCase_ : Optional[str] = "pil" , lowerCAmelCase_ : bool = True , ) -> Union[ImagePipelineOutput, Tuple]: UpperCAmelCase_ : Optional[int] = len(lowerCAmelCase_ ) UpperCAmelCase_ : int = self.transformer.config.sample_size UpperCAmelCase_ : Optional[Any] = self.transformer.config.in_channels UpperCAmelCase_ : Tuple = randn_tensor( shape=(batch_size, latent_channels, latent_size, latent_size) , generator=lowerCAmelCase_ , device=self.device , dtype=self.transformer.dtype , ) UpperCAmelCase_ : str = torch.cat([latents] * 2 ) if guidance_scale > 1 else latents UpperCAmelCase_ : List[Any] = torch.tensor(lowerCAmelCase_ , device=self.device ).reshape(-1 ) UpperCAmelCase_ : Optional[Any] = torch.tensor([1_000] * batch_size , device=self.device ) UpperCAmelCase_ : int = torch.cat([class_labels, class_null] , 0 ) if guidance_scale > 1 else class_labels # set step values self.scheduler.set_timesteps(lowerCAmelCase_ ) for t in self.progress_bar(self.scheduler.timesteps ): if guidance_scale > 1: UpperCAmelCase_ : Optional[Any] = latent_model_input[: len(lowerCAmelCase_ ) // 2] UpperCAmelCase_ : int = torch.cat([half, half] , dim=0 ) UpperCAmelCase_ : Optional[int] = self.scheduler.scale_model_input(lowerCAmelCase_ , lowerCAmelCase_ ) UpperCAmelCase_ : Union[str, Any] = t if not torch.is_tensor(lowerCAmelCase_ ): # TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can # This would be a good case for the `match` statement (Python 3.10+) UpperCAmelCase_ : List[Any] = latent_model_input.device.type == "mps" if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): UpperCAmelCase_ : Optional[int] = torch.floataa if is_mps else torch.floataa else: UpperCAmelCase_ : int = torch.intaa if is_mps else torch.intaa UpperCAmelCase_ : Optional[int] = torch.tensor([timesteps] , dtype=lowerCAmelCase_ , device=latent_model_input.device ) elif len(timesteps.shape ) == 0: UpperCAmelCase_ : List[Any] = timesteps[None].to(latent_model_input.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML UpperCAmelCase_ : List[Any] = timesteps.expand(latent_model_input.shape[0] ) # predict noise model_output UpperCAmelCase_ : List[Any] = self.transformer( lowerCAmelCase_ , timestep=lowerCAmelCase_ , class_labels=lowerCAmelCase_ ).sample # perform guidance if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[int] = noise_pred[:, :latent_channels], noise_pred[:, latent_channels:] UpperCAmelCase_ , UpperCAmelCase_ : Union[str, Any] = torch.split(lowerCAmelCase_ , len(lowerCAmelCase_ ) // 2 , dim=0 ) UpperCAmelCase_ : Optional[Any] = uncond_eps + guidance_scale * (cond_eps - uncond_eps) UpperCAmelCase_ : Tuple = torch.cat([half_eps, half_eps] , dim=0 ) UpperCAmelCase_ : Optional[Any] = torch.cat([eps, rest] , dim=1 ) # learned sigma if self.transformer.config.out_channels // 2 == latent_channels: UpperCAmelCase_ , UpperCAmelCase_ : List[str] = torch.split(lowerCAmelCase_ , lowerCAmelCase_ , dim=1 ) else: UpperCAmelCase_ : Optional[Any] = noise_pred # compute previous image: x_t -> x_t-1 UpperCAmelCase_ : Union[str, Any] = self.scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ).prev_sample if guidance_scale > 1: UpperCAmelCase_ , UpperCAmelCase_ : Optional[Any] = latent_model_input.chunk(2 , dim=0 ) else: UpperCAmelCase_ : Optional[int] = latent_model_input UpperCAmelCase_ : Dict = 1 / self.vae.config.scaling_factor * latents UpperCAmelCase_ : Dict = self.vae.decode(lowerCAmelCase_ ).sample UpperCAmelCase_ : Tuple = (samples / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 UpperCAmelCase_ : Optional[Any] = samples.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": UpperCAmelCase_ : Optional[int] = self.numpy_to_pil(lowerCAmelCase_ ) if not return_dict: return (samples,) return ImagePipelineOutput(images=lowerCAmelCase_ )
95
"""simple docstring""" import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort a = logging.get_logger(__name__) a = { '''tensor(bool)''': np.bool_, '''tensor(int8)''': np.inta, '''tensor(uint8)''': np.uinta, '''tensor(int16)''': np.intaa, '''tensor(uint16)''': np.uintaa, '''tensor(int32)''': np.intaa, '''tensor(uint32)''': np.uintaa, '''tensor(int64)''': np.intaa, '''tensor(uint64)''': np.uintaa, '''tensor(float16)''': np.floataa, '''tensor(float)''': np.floataa, '''tensor(double)''': np.floataa, } class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : Optional[Any] ): logger.info('`diffusers.OnnxRuntimeModel` is experimental and might change in the future.' ) _A = model _A = kwargs.get('model_save_dir' , _UpperCAmelCase ) _A = kwargs.get('latest_model_name' , _UpperCAmelCase ) def __call__( self : Dict , **_UpperCAmelCase : List[Any] ): _A = {k: np.array(_UpperCAmelCase ) for k, v in kwargs.items()} return self.model.run(_UpperCAmelCase , _UpperCAmelCase ) @staticmethod def lowerCAmelCase_ ( _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : List[str]=None , _UpperCAmelCase : List[Any]=None ): if provider is None: logger.info('No onnxruntime provider specified, using CPUExecutionProvider' ) _A = 'CPUExecutionProvider' return ort.InferenceSession(_UpperCAmelCase , providers=[provider] , sess_options=_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : List[Any] ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME _A = self.model_save_dir.joinpath(self.latest_model_name ) _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) _A = self.model_save_dir.joinpath(_UpperCAmelCase ) if src_path.exists(): _A = Path(_UpperCAmelCase ).joinpath(_UpperCAmelCase ) try: shutil.copyfile(_UpperCAmelCase , _UpperCAmelCase ) except shutil.SameFileError: pass def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : Union[str, os.PathLike] , **_UpperCAmelCase : List[str] , ): if os.path.isfile(_UpperCAmelCase ): logger.error(F'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(_UpperCAmelCase , exist_ok=_UpperCAmelCase ) # saving model weights/files self._save_pretrained(_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : Tuple , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : Optional[Union[bool, str, None]] = None , _UpperCAmelCase : Optional[Union[str, None]] = None , _UpperCAmelCase : bool = False , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional["ort.SessionOptions"] = None , **_UpperCAmelCase : Union[str, Any] , ): _A = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_UpperCAmelCase ): _A = OnnxRuntimeModel.load_model( os.path.join(_UpperCAmelCase , _UpperCAmelCase ) , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) _A = Path(_UpperCAmelCase ) # load model from hub else: # download model _A = hf_hub_download( repo_id=_UpperCAmelCase , filename=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , ) _A = Path(_UpperCAmelCase ).parent _A = Path(_UpperCAmelCase ).name _A = OnnxRuntimeModel.load_model(_UpperCAmelCase , provider=_UpperCAmelCase , sess_options=_UpperCAmelCase ) return cls(model=_UpperCAmelCase , **_UpperCAmelCase ) @classmethod def lowerCAmelCase_ ( cls : List[Any] , _UpperCAmelCase : Union[str, Path] , _UpperCAmelCase : bool = True , _UpperCAmelCase : Optional[str] = None , _UpperCAmelCase : Optional[str] = None , **_UpperCAmelCase : Tuple , ): _A = None if len(str(_UpperCAmelCase ).split('@' ) ) == 2: _A , _A = model_id.split('@' ) return cls._from_pretrained( model_id=_UpperCAmelCase , revision=_UpperCAmelCase , cache_dir=_UpperCAmelCase , force_download=_UpperCAmelCase , use_auth_token=_UpperCAmelCase , **_UpperCAmelCase , )
7
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConfig, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaForCTC, WavaVecaForPreTraining, WavaVecaProcessor, logging, ) from transformers.models.wavaveca.modeling_wavaveca import WavaVecaForSequenceClassification logging.set_verbosity_info() __lowerCAmelCase :int = logging.get_logger(__name__) __lowerCAmelCase :Tuple = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'adapter_layer': 'encoder.layers.*.adapter_layer', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', 'pooling_layer.linear': 'projector', 'pooling_layer.projection': 'classifier', } __lowerCAmelCase :Dict = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', 'projector', 'classifier', ] def A ( UpperCAmelCase ): _snake_case : Optional[int] = {} with open(UpperCAmelCase , "r" ) as file: for line_number, line in enumerate(UpperCAmelCase ): _snake_case : Union[str, Any] = line.strip() if line: _snake_case : Optional[int] = line.split() _snake_case : Any = line_number _snake_case : Dict = words[0] _snake_case : str = value return result def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): for attribute in key.split("." ): _snake_case : List[str] = getattr(UpperCAmelCase , UpperCAmelCase ) _snake_case : List[Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase ): _snake_case : Optional[int] = PARAM_MAPPING[full_name.split("." )[-1]] _snake_case : Any = "param" if weight_type is not None and weight_type != "param": _snake_case : Tuple = getattr(UpperCAmelCase , UpperCAmelCase ).shape elif weight_type is not None and weight_type == "param": _snake_case : str = hf_pointer for attribute in hf_param_name.split("." ): _snake_case : Tuple = getattr(UpperCAmelCase , UpperCAmelCase ) _snake_case : Tuple = shape_pointer.shape # let's reduce dimension _snake_case : Tuple = value[0] else: _snake_case : int = hf_pointer.shape if hf_shape != value.shape: raise ValueError( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _snake_case : Tuple = value elif weight_type == "weight_g": _snake_case : Any = value elif weight_type == "weight_v": _snake_case : Optional[Any] = value elif weight_type == "bias": _snake_case : int = value elif weight_type == "param": for attribute in hf_param_name.split("." ): _snake_case : List[Any] = getattr(UpperCAmelCase , UpperCAmelCase ) _snake_case : Tuple = value else: _snake_case : str = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case : Union[str, Any] = None for param_key in PARAM_MAPPING.keys(): if full_name.endswith(UpperCAmelCase ): _snake_case : Any = PARAM_MAPPING[full_name.split("." )[-1]] _snake_case : str = "param" if weight_type is not None and weight_type != "param": _snake_case : Any = ".".join([key, weight_type] ) elif weight_type is not None and weight_type == "param": _snake_case : int = ".".join([key, hf_param_name] ) else: _snake_case : Tuple = key _snake_case : str = value if "lm_head" in full_key else value[0] __lowerCAmelCase :Tuple = { 'W_a': 'linear_1.weight', 'W_b': 'linear_2.weight', 'b_a': 'linear_1.bias', 'b_b': 'linear_2.bias', 'ln_W': 'norm.weight', 'ln_b': 'norm.bias', } def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None ): _snake_case : int = False for key, mapped_key in MAPPING.items(): _snake_case : List[str] = "wav2vec2." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: _snake_case : Union[str, Any] = True if "*" in mapped_key: _snake_case : List[Any] = name.split(UpperCAmelCase )[0].split("." )[-2] _snake_case : List[Any] = mapped_key.replace("*" , UpperCAmelCase ) if "weight_g" in name: _snake_case : Union[str, Any] = "weight_g" elif "weight_v" in name: _snake_case : int = "weight_v" elif "bias" in name: _snake_case : str = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj _snake_case : Dict = "weight" else: _snake_case : str = None if hf_dict is not None: rename_dict(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) else: set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) return is_used return is_used def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case : Optional[Any] = [] _snake_case : Optional[Any] = fairseq_model.state_dict() _snake_case : List[Any] = hf_model.wavaveca.feature_extractor for name, value in fairseq_dict.items(): _snake_case : Tuple = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == "group" , ) _snake_case : Optional[Any] = True else: _snake_case : Dict = load_wavaveca_layer(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(F"""Unused weights: {unused_weights}""" ) def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): _snake_case : Any = full_name.split("conv_layers." )[-1] _snake_case : str = name.split("." ) _snake_case : List[Any] = int(items[0] ) _snake_case : str = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _snake_case : Dict = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _snake_case : Optional[int] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) _snake_case : Optional[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) _snake_case : Optional[int] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase ) @torch.no_grad() def A ( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase=None , UpperCAmelCase=True , UpperCAmelCase=False ): if config_path is not None: _snake_case : Tuple = WavaVecaConfig.from_pretrained(UpperCAmelCase ) else: _snake_case : str = WavaVecaConfig() if is_seq_class: _snake_case : Tuple = read_txt_into_dict(UpperCAmelCase ) _snake_case : Tuple = idalabel _snake_case : str = WavaVecaForSequenceClassification(UpperCAmelCase ) _snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) feature_extractor.save_pretrained(UpperCAmelCase ) elif is_finetuned: if dict_path: _snake_case : Optional[int] = Dictionary.load(UpperCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _snake_case : Tuple = target_dict.pad_index _snake_case : List[Any] = target_dict.bos_index _snake_case : Dict = target_dict.eos_index _snake_case : str = len(target_dict.symbols ) _snake_case : List[str] = os.path.join(UpperCAmelCase , "vocab.json" ) if not os.path.isdir(UpperCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(UpperCAmelCase ) ) return os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) _snake_case : Union[str, Any] = target_dict.indices # fairseq has the <pad> and <s> switched _snake_case : List[Any] = 0 _snake_case : str = 1 with open(UpperCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(UpperCAmelCase , UpperCAmelCase ) _snake_case : Tuple = WavaVecaCTCTokenizer( UpperCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=UpperCAmelCase , ) _snake_case : Any = True if config.feat_extract_norm == "layer" else False _snake_case : int = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=UpperCAmelCase , return_attention_mask=UpperCAmelCase , ) _snake_case : Optional[Any] = WavaVecaProcessor(feature_extractor=UpperCAmelCase , tokenizer=UpperCAmelCase ) processor.save_pretrained(UpperCAmelCase ) _snake_case : List[Any] = WavaVecaForCTC(UpperCAmelCase ) else: _snake_case : List[str] = WavaVecaForPreTraining(UpperCAmelCase ) if is_finetuned or is_seq_class: _snake_case : List[Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _snake_case : List[Any] = argparse.Namespace(task="audio_pretraining" ) _snake_case : List[Any] = fairseq.tasks.setup_task(UpperCAmelCase ) _snake_case : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=UpperCAmelCase ) _snake_case : Optional[int] = model[0].eval() recursively_load_weights(UpperCAmelCase , UpperCAmelCase , not is_finetuned ) hf_wavavec.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __lowerCAmelCase :int = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) parser.add_argument( '--is_seq_class', action='store_true', help='Whether the model to convert is a fine-tuned sequence classification model or not', ) __lowerCAmelCase :str = parser.parse_args() __lowerCAmelCase :Optional[int] = not args.not_finetuned and not args.is_seq_class convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, is_finetuned, args.is_seq_class, )
716
import json import os import torch from diffusers import UNetaDModel os.makedirs('hub/hopper-medium-v2/unet/hor32', exist_ok=True) os.makedirs('hub/hopper-medium-v2/unet/hor128', exist_ok=True) os.makedirs('hub/hopper-medium-v2/value_function', exist_ok=True) def A ( UpperCAmelCase ): if hor == 128: _snake_case : int = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") _snake_case : Tuple = (32, 128, 256) _snake_case : str = ("UpResnetBlock1D", "UpResnetBlock1D") elif hor == 32: _snake_case : List[Any] = ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D") _snake_case : Optional[int] = (32, 64, 128, 256) _snake_case : int = ("UpResnetBlock1D", "UpResnetBlock1D", "UpResnetBlock1D") _snake_case : Dict = torch.load(F"""/Users/bglickenhaus/Documents/diffuser/temporal_unet-hopper-mediumv2-hor{hor}.torch""" ) _snake_case : Dict = model.state_dict() _snake_case : Tuple = { "down_block_types": down_block_types, "block_out_channels": block_out_channels, "up_block_types": up_block_types, "layers_per_block": 1, "use_timestep_embedding": True, "out_block_type": "OutConv1DBlock", "norm_num_groups": 8, "downsample_each_block": False, "in_channels": 14, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "flip_sin_to_cos": False, "freq_shift": 1, "sample_size": 65_536, "mid_block_type": "MidResTemporalBlock1D", "act_fn": "mish", } _snake_case : Any = UNetaDModel(**UpperCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _snake_case : List[Any] = dict(zip(model.state_dict().keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : Optional[int] = state_dict.pop(UpperCAmelCase ) hf_value_function.load_state_dict(UpperCAmelCase ) torch.save(hf_value_function.state_dict() , F"""hub/hopper-medium-v2/unet/hor{hor}/diffusion_pytorch_model.bin""" ) with open(F"""hub/hopper-medium-v2/unet/hor{hor}/config.json""" , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) def A ( ): _snake_case : Any = { "in_channels": 14, "down_block_types": ("DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D", "DownResnetBlock1D"), "up_block_types": (), "out_block_type": "ValueFunction", "mid_block_type": "ValueFunctionMidBlock1D", "block_out_channels": (32, 64, 128, 256), "layers_per_block": 1, "downsample_each_block": True, "sample_size": 65_536, "out_channels": 14, "extra_in_channels": 0, "time_embedding_type": "positional", "use_timestep_embedding": True, "flip_sin_to_cos": False, "freq_shift": 1, "norm_num_groups": 8, "act_fn": "mish", } _snake_case : Dict = torch.load("/Users/bglickenhaus/Documents/diffuser/value_function-hopper-mediumv2-hor32.torch" ) _snake_case : Optional[int] = model _snake_case : List[str] = UNetaDModel(**UpperCAmelCase ) print(F"""length of state dict: {len(state_dict.keys() )}""" ) print(F"""length of value function dict: {len(hf_value_function.state_dict().keys() )}""" ) _snake_case : Optional[int] = dict(zip(state_dict.keys() , hf_value_function.state_dict().keys() ) ) for k, v in mapping.items(): _snake_case : Any = state_dict.pop(UpperCAmelCase ) hf_value_function.load_state_dict(UpperCAmelCase ) torch.save(hf_value_function.state_dict() , "hub/hopper-medium-v2/value_function/diffusion_pytorch_model.bin" ) with open("hub/hopper-medium-v2/value_function/config.json" , "w" ) as f: json.dump(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": unet(32) # unet(128) value_function()
278
0
'''simple docstring''' from PIL import Image def snake_case ( snake_case : Image ) -> List[Any]: """simple docstring""" lowerCAmelCase = image.size lowerCAmelCase = 0 lowerCAmelCase = image.load() for i in range(snake_case ): for j in range(snake_case ): lowerCAmelCase = pixels[j, i] mean += pixel mean //= width * height for j in range(snake_case ): for i in range(snake_case ): lowerCAmelCase = 255 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": _UpperCamelCase : int = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
284
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase__ = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
381
0
import copy import re class lowerCamelCase : """simple docstring""" UpperCAmelCase_ = "hp" UpperCAmelCase_ = {} UpperCAmelCase_ = None @classmethod def A_ ( cls : str, _UpperCAmelCase : Optional[Any], _UpperCAmelCase : str ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] = prefix SCREAMING_SNAKE_CASE__ : str = defaults cls.build_naming_info() @staticmethod def A_ ( _UpperCAmelCase : List[str], _UpperCAmelCase : List[str] ) -> List[str]: """simple docstring""" if len(_UpperCAmelCase ) == 0: return "" SCREAMING_SNAKE_CASE__ : int = None if any(char.isdigit() for char in word ): raise Exception(F'''Parameters should not contain numbers: \'{word}\' contains a number''' ) if word in info["short_word"]: return info["short_word"][word] for prefix_len in range(1, len(_UpperCAmelCase ) + 1 ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = word[:prefix_len] if prefix in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE__ : Tuple = prefix break if short_word is None: # Paranoid fallback def int_to_alphabetic(_UpperCAmelCase : Dict ): SCREAMING_SNAKE_CASE__ : List[Any] = "" while integer != 0: SCREAMING_SNAKE_CASE__ : Dict = chr(ord("A" ) + integer % 1_0 ) + s integer //= 1_0 return s SCREAMING_SNAKE_CASE__ : Any = 0 while True: SCREAMING_SNAKE_CASE__ : Optional[Any] = word + "#" + int_to_alphabetic(_UpperCAmelCase ) if sword in info["reverse_short_word"]: continue else: SCREAMING_SNAKE_CASE__ : List[str] = sword break SCREAMING_SNAKE_CASE__ : str = short_word SCREAMING_SNAKE_CASE__ : Tuple = word return short_word @staticmethod def A_ ( _UpperCAmelCase : int, _UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ : List[str] = param_name.split("_" ) SCREAMING_SNAKE_CASE__ : Dict = [TrialShortNamer.shortname_for_word(_UpperCAmelCase, _UpperCAmelCase ) for word in words] # We try to create a separatorless short name, but if there is a collision we have to fallback # to a separated short name SCREAMING_SNAKE_CASE__ : str = ["", "_"] for separator in separators: SCREAMING_SNAKE_CASE__ : Optional[Any] = separator.join(_UpperCAmelCase ) if shortname not in info["reverse_short_param"]: SCREAMING_SNAKE_CASE__ : Tuple = shortname SCREAMING_SNAKE_CASE__ : Any = param_name return shortname return param_name @staticmethod def A_ ( _UpperCAmelCase : Optional[int], _UpperCAmelCase : List[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Tuple = TrialShortNamer.shortname_for_key(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Dict = short_name SCREAMING_SNAKE_CASE__ : Tuple = param_name @classmethod def A_ ( cls : List[Any] ) -> Optional[int]: """simple docstring""" if cls.NAMING_INFO is not None: return SCREAMING_SNAKE_CASE__ : str = { "short_word": {}, "reverse_short_word": {}, "short_param": {}, "reverse_short_param": {}, } SCREAMING_SNAKE_CASE__ : int = list(cls.DEFAULTS.keys() ) for k in field_keys: cls.add_new_param_name(_UpperCAmelCase, _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : str = info @classmethod def A_ ( cls : Dict, _UpperCAmelCase : List[str] ) -> Optional[Any]: """simple docstring""" cls.build_naming_info() assert cls.PREFIX is not None SCREAMING_SNAKE_CASE__ : Union[str, Any] = [copy.copy(cls.PREFIX )] for k, v in params.items(): if k not in cls.DEFAULTS: raise Exception(F'''You should provide a default value for the param name {k} with value {v}''' ) if v == cls.DEFAULTS[k]: # The default value is not added to the name continue SCREAMING_SNAKE_CASE__ : str = cls.NAMING_INFO["short_param"][k] if isinstance(_UpperCAmelCase, _UpperCAmelCase ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = 1 if v else 0 SCREAMING_SNAKE_CASE__ : Any = "" if isinstance(_UpperCAmelCase, (int, float) ) else "-" SCREAMING_SNAKE_CASE__ : Union[str, Any] = F'''{key}{sep}{v}''' name.append(_UpperCAmelCase ) return "_".join(_UpperCAmelCase ) @classmethod def A_ ( cls : Union[str, Any], _UpperCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Union[str, Any] = repr[len(cls.PREFIX ) + 1 :] if repr == "": SCREAMING_SNAKE_CASE__ : Tuple = [] else: SCREAMING_SNAKE_CASE__ : Optional[int] = repr.split("_" ) SCREAMING_SNAKE_CASE__ : int = {} for value in values: if "-" in value: SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ : Union[str, Any] = value.split("-" ) else: SCREAMING_SNAKE_CASE__ : Dict = re.sub("[0-9.]", "", _UpperCAmelCase ) SCREAMING_SNAKE_CASE__ : Any = float(re.sub("[^0-9.]", "", _UpperCAmelCase ) ) SCREAMING_SNAKE_CASE__ : Dict = cls.NAMING_INFO["reverse_short_param"][p_k] SCREAMING_SNAKE_CASE__ : List[str] = p_v for k in cls.DEFAULTS: if k not in parameters: SCREAMING_SNAKE_CASE__ : List[Any] = cls.DEFAULTS[k] return parameters
157
# Note: if you intend to run this script make sure you look under scripts/fsmt/ # to locate the appropriate script to do the work correctly. There is a set of scripts to: # - download and prepare data and run the conversion script # - perform eval to get the best hparam into the config # - generate model_cards - useful if you have multiple models from the same paper import argparse import json import os import re from collections import OrderedDict from os.path import basename, dirname import fairseq import torch from fairseq import hub_utils from fairseq.data.dictionary import Dictionary from transformers import FSMTConfig, FSMTForConditionalGeneration from transformers.models.fsmt.tokenization_fsmt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() _lowerCamelCase : List[str] = 2 # based on the results of a search on a range of `num_beams`, `length_penalty` and `early_stopping` # values against wmt19 test data to obtain the best BLEU scores, we will use the following defaults: # # * `num_beams`: 5 (higher scores better, but requires more memory/is slower, can be adjusted by users) # * `early_stopping`: `False` consistently scored better # * `length_penalty` varied, so will assign the best one depending on the model _lowerCamelCase : List[Any] = { # fairseq: '''wmt19-ru-en''': {'''length_penalty''': 1.1}, '''wmt19-en-ru''': {'''length_penalty''': 1.15}, '''wmt19-en-de''': {'''length_penalty''': 1.0}, '''wmt19-de-en''': {'''length_penalty''': 1.1}, # allenai: '''wmt16-en-de-dist-12-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-dist-6-1''': {'''length_penalty''': 0.6}, '''wmt16-en-de-12-1''': {'''length_penalty''': 0.8}, '''wmt19-de-en-6-6-base''': {'''length_penalty''': 0.6}, '''wmt19-de-en-6-6-big''': {'''length_penalty''': 0.6}, } # this remaps the different models to their organization names _lowerCamelCase : List[str] = {} for m in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: _lowerCamelCase : Optional[Any] = '''facebook''' for m in [ "wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1", "wmt19-de-en-6-6-base", "wmt19-de-en-6-6-big", ]: _lowerCamelCase : Any = '''allenai''' def _a ( SCREAMING_SNAKE_CASE__ : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = dict((re.sub(R"@@$" , "" , SCREAMING_SNAKE_CASE__ ), v) if k.endswith("@@" ) else (re.sub(R"$" , "</w>" , SCREAMING_SNAKE_CASE__ ), v) for k, v in d.items() ) SCREAMING_SNAKE_CASE__ : Tuple = "<s> <pad> </s> <unk>".split() # restore the special tokens for k in keep_keys: del da[f'''{k}</w>'''] SCREAMING_SNAKE_CASE__ : int = d[k] # restore return da def _a ( SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Any: '''simple docstring''' assert os.path.exists(SCREAMING_SNAKE_CASE__ ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) print(f'''Writing results to {pytorch_dump_folder_path}''' ) # handle various types of models SCREAMING_SNAKE_CASE__ : str = basename(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = dirname(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = fairseq.model_parallel.models.transformer.ModelParallelTransformerModel SCREAMING_SNAKE_CASE__ : List[str] = cls.hub_models() SCREAMING_SNAKE_CASE__ : Union[str, Any] = {"bpe": "fastbpe", "tokenizer": "moses"} SCREAMING_SNAKE_CASE__ : List[str] = "." # note: since the model dump is old, fairseq has upgraded its model some # time later, and it does a whole lot of rewrites and splits on the saved # weights, therefore we can't use torch.load() directly on the model file. # see: upgrade_state_dict(state_dict) in fairseq_model.py print(f'''using checkpoint {checkpoint_file}''' ) SCREAMING_SNAKE_CASE__ : Dict = hub_utils.from_pretrained( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , archive_map=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[Any] = vars(chkpt["args"]["model"] ) SCREAMING_SNAKE_CASE__ : Dict = args["source_lang"] SCREAMING_SNAKE_CASE__ : Optional[int] = args["target_lang"] SCREAMING_SNAKE_CASE__ : int = dirname(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = basename(SCREAMING_SNAKE_CASE__ ) # dicts SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , f'''dict.{src_lang}.txt''' ) SCREAMING_SNAKE_CASE__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , f'''dict.{tgt_lang}.txt''' ) SCREAMING_SNAKE_CASE__ : List[Any] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : str = rewrite_dict_keys(src_dict.indices ) SCREAMING_SNAKE_CASE__ : int = len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab-src.json" ) print(f'''Generating {src_vocab_file} of {src_vocab_size} of {src_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # detect whether this is a do_lower_case situation, which can be derived by checking whether we # have at least one uppercase letter in the source vocab SCREAMING_SNAKE_CASE__ : Optional[int] = True for k in src_vocab.keys(): if not k.islower(): SCREAMING_SNAKE_CASE__ : Optional[int] = False break SCREAMING_SNAKE_CASE__ : Dict = Dictionary.load(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Any = rewrite_dict_keys(tgt_dict.indices ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , "vocab-tgt.json" ) print(f'''Generating {tgt_vocab_file} of {tgt_vocab_size} of {tgt_lang} records''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # merges_file (bpecodes) SCREAMING_SNAKE_CASE__ : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE__ , VOCAB_FILES_NAMES["merges_file"] ) for fn in ["bpecodes", "code"]: # older fairseq called the merges file "code" SCREAMING_SNAKE_CASE__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) if os.path.exists(SCREAMING_SNAKE_CASE__ ): break with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as fin: SCREAMING_SNAKE_CASE__ : Optional[Any] = fin.read() SCREAMING_SNAKE_CASE__ : Optional[Any] = re.sub(R" \d+$" , "" , SCREAMING_SNAKE_CASE__ , 0 , re.M ) # remove frequency number print(f'''Generating {merges_file}''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as fout: fout.write(SCREAMING_SNAKE_CASE__ ) # model config SCREAMING_SNAKE_CASE__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , "config.json" ) # validate bpe/tokenizer config, as currently it's hardcoded to moses+fastbpe - # may have to modify the tokenizer if a different type is used by a future model assert args["bpe"] == "fastbpe", f'''need to extend tokenizer to support bpe={args["bpe"]}''' assert args["tokenizer"] == "moses", f'''need to extend tokenizer to support bpe={args["tokenizer"]}''' SCREAMING_SNAKE_CASE__ : Optional[int] = { "architectures": ["FSMTForConditionalGeneration"], "model_type": "fsmt", "activation_dropout": args["activation_dropout"], "activation_function": "relu", "attention_dropout": args["attention_dropout"], "d_model": args["decoder_embed_dim"], "dropout": args["dropout"], "init_std": 0.0_2, "max_position_embeddings": args["max_source_positions"], "num_hidden_layers": args["encoder_layers"], "src_vocab_size": src_vocab_size, "tgt_vocab_size": tgt_vocab_size, "langs": [src_lang, tgt_lang], "encoder_attention_heads": args["encoder_attention_heads"], "encoder_ffn_dim": args["encoder_ffn_embed_dim"], "encoder_layerdrop": args["encoder_layerdrop"], "encoder_layers": args["encoder_layers"], "decoder_attention_heads": args["decoder_attention_heads"], "decoder_ffn_dim": args["decoder_ffn_embed_dim"], "decoder_layerdrop": args["decoder_layerdrop"], "decoder_layers": args["decoder_layers"], "bos_token_id": 0, "pad_token_id": 1, "eos_token_id": 2, "is_encoder_decoder": True, "scale_embedding": not args["no_scale_embedding"], "tie_word_embeddings": args["share_all_embeddings"], } # good hparam defaults to start with SCREAMING_SNAKE_CASE__ : Tuple = 5 SCREAMING_SNAKE_CASE__ : Dict = False if model_dir in best_score_hparams and "length_penalty" in best_score_hparams[model_dir]: SCREAMING_SNAKE_CASE__ : str = best_score_hparams[model_dir]["length_penalty"] else: SCREAMING_SNAKE_CASE__ : Tuple = 1.0 print(f'''Generating {fsmt_model_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # tokenizer config SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : List[str] = { "langs": [src_lang, tgt_lang], "model_max_length": 10_24, "do_lower_case": do_lower_case, } print(f'''Generating {fsmt_tokenizer_config_file}''' ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # model SCREAMING_SNAKE_CASE__ : List[str] = chkpt["models"][0] SCREAMING_SNAKE_CASE__ : Dict = model.state_dict() # rename keys to start with 'model.' SCREAMING_SNAKE_CASE__ : str = OrderedDict(("model." + k, v) for k, v in model_state_dict.items() ) # remove unneeded keys SCREAMING_SNAKE_CASE__ : List[str] = [ "model.model", "model.encoder.version", "model.decoder.version", "model.encoder_embed_tokens.weight", "model.decoder_embed_tokens.weight", "model.encoder.embed_positions._float_tensor", "model.decoder.embed_positions._float_tensor", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : Optional[Any] = FSMTConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) SCREAMING_SNAKE_CASE__ : int = FSMTForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE__ , strict=SCREAMING_SNAKE_CASE__ ) # save SCREAMING_SNAKE_CASE__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(f'''Generating {pytorch_weights_dump_path}''' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("Conversion is done!" ) print("\nLast step is to upload the files to s3" ) print(f'''cd {data_root}''' ) print(f'''transformers-cli upload {model_dir}''' ) if __name__ == "__main__": _lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--fsmt_checkpoint_path''', default=None, type=str, required=True, help=( '''Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,''' ''' bpecodes, etc.''' ), ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) _lowerCamelCase : int = parser.parse_args() convert_fsmt_checkpoint_to_pytorch(args.fsmt_checkpoint_path, args.pytorch_dump_folder_path)
157
1
"""simple docstring""" import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef _UpperCamelCase = ( """This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate """ """library. You can have a look at this example script for pointers: """ """https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py""" ) def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> Optional[Any]: warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , "sklearn" ) return (preds == labels).mean() def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> Union[str, Any]: warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , "sklearn" ) lowerCAmelCase__ : Union[str, Any] = simple_accuracy(lowercase__ , lowercase__ ) lowerCAmelCase__ : Tuple = fa_score(y_true=lowercase__ , y_pred=lowercase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> List[Any]: warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , "sklearn" ) lowerCAmelCase__ : Optional[int] = pearsonr(lowercase__ , lowercase__ )[0] lowerCAmelCase__ : Dict = spearmanr(lowercase__ , lowercase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ) -> Dict: warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , "sklearn" ) assert len(lowercase__ ) == len(lowercase__ ), F"""Predictions and labels have mismatched lengths {len(lowercase__ )} and {len(lowercase__ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowercase__ , lowercase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "mrpc": return acc_and_fa(lowercase__ , lowercase__ ) elif task_name == "sts-b": return pearson_and_spearman(lowercase__ , lowercase__ ) elif task_name == "qqp": return acc_and_fa(lowercase__ , lowercase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "rte": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} elif task_name == "hans": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError(lowercase__ ) def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ , lowercase__ ) -> List[str]: warnings.warn(lowercase__ , lowercase__ ) requires_backends(lowercase__ , "sklearn" ) if len(lowercase__ ) != len(lowercase__ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowercase__ )} and {len(lowercase__ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowercase__ , lowercase__ )} else: raise KeyError(lowercase__ )
453
"""simple docstring""" def SCREAMING_SNAKE_CASE ( lowercase__ , lowercase__ ) -> float: if digit_amount > 0: return round(number - int(lowercase__ ) , lowercase__ ) return number - int(lowercase__ ) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
453
1
"""simple docstring""" from __future__ import annotations def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float ): '''simple docstring''' if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def a_ ( _lowerCAmelCase : float , _lowerCAmelCase : float , _lowerCAmelCase : float , ): '''simple docstring''' if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( _lowerCAmelCase , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
707
"""simple docstring""" import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class UpperCAmelCase_ ( unittest.TestCase): @slow def _UpperCAmelCase ( self ) -> str: lowercase__ : Optional[Any] = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) lowercase__ : Union[str, Any] = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(a ) from datasets import load_dataset lowercase__ : str = load_dataset('nielsr/rvlcdip-demo' ) lowercase__ : Tuple = dataset['train'][0]['image'].convert('RGB' ) lowercase__ : int = image_processor(a , return_tensors='pt' ).to(a ) # forward pass with torch.no_grad(): lowercase__ : List[str] = model(**a ) lowercase__ : List[Any] = outputs.logits lowercase__ : Union[str, Any] = torch.Size((1, 1_6) ) self.assertEqual(logits.shape , a ) lowercase__ : Tuple = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=a , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , a , atol=1e-4 ) )
645
0
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time a__ : str = Lock() def _lowerCAmelCase ( A__ , A__ , A__ , A__ , A__ , A__ , A__ ): global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(__A ) process_lock.release() # receive your right neighbor's value process_lock.acquire() lowercase__ = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left lowercase__ = min(__A , __A ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(__A ) process_lock.release() # receive your left neighbor's value process_lock.acquire() lowercase__ = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right lowercase__ = max(__A , __A ) # after all swaps are performed, send the values back to main result_pipe[1].send(__A ) def _lowerCAmelCase ( A__ ): lowercase__ = [] lowercase__ = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop lowercase__ = Pipe() lowercase__ = Pipe() process_array_.append( Process( target=__A , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) lowercase__ = temp_rs lowercase__ = temp_rr for i in range(1 , len(__A ) - 1 ): lowercase__ = Pipe() lowercase__ = Pipe() process_array_.append( Process( target=__A , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) lowercase__ = temp_rs lowercase__ = temp_rr process_array_.append( Process( target=__A , args=( len(__A ) - 1, arr[len(__A ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(__A ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(__A ) ): lowercase__ = result_pipe[p][0].recv() process_array_[p].join() return arr def _lowerCAmelCase ( ): lowercase__ = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*__A ) lowercase__ = odd_even_transposition(__A ) print('Sorted List\n' ) print(*__A ) if __name__ == "__main__": main()
622
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.linear_k': 'encoder.layers.*.self_attn.linear_k', 'self_attn.linear_v': 'encoder.layers.*.self_attn.linear_v', 'self_attn.linear_q': 'encoder.layers.*.self_attn.linear_q', 'self_attn.pos_bias_u': 'encoder.layers.*.self_attn.pos_bias_u', 'self_attn.pos_bias_v': 'encoder.layers.*.self_attn.pos_bias_v', 'self_attn.linear_out': 'encoder.layers.*.self_attn.linear_out', 'self_attn.linear_pos': 'encoder.layers.*.self_attn.linear_pos', 'self_attn.rotary_emb': 'encoder.embed_positions', 'self_attn_layer_norm': 'encoder.layers.*.self_attn_layer_norm', 'conv_module.pointwise_conv1': 'encoder.layers.*.conv_module.pointwise_conv1', 'conv_module.pointwise_conv2': 'encoder.layers.*.conv_module.pointwise_conv2', 'conv_module.depthwise_conv': 'encoder.layers.*.conv_module.depthwise_conv', 'conv_module.batch_norm': 'encoder.layers.*.conv_module.batch_norm', 'conv_module.layer_norm': 'encoder.layers.*.conv_module.layer_norm', 'ffn1.w_1': 'encoder.layers.*.ffn1.intermediate_dense', 'ffn1.w_2': 'encoder.layers.*.ffn1.output_dense', 'ffn1.layer_norm': 'encoder.layers.*.ffn1_layer_norm', 'ffn2.w_1': 'encoder.layers.*.ffn2.intermediate_dense', 'ffn2.w_2': 'encoder.layers.*.ffn2.output_dense', 'ffn2.layer_norm': 'encoder.layers.*.ffn2_layer_norm', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } UpperCamelCase__ = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' for attribute in key.split("." ): UpperCAmelCase__ = getattr(__A, __A ) if weight_type is not None: UpperCAmelCase__ = getattr(__A, __A ).shape else: UpperCAmelCase__ = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": UpperCAmelCase__ = value elif weight_type == "weight_g": UpperCAmelCase__ = value elif weight_type == "weight_v": UpperCAmelCase__ = value elif weight_type == "bias": UpperCAmelCase__ = value elif weight_type == "running_mean": UpperCAmelCase__ = value elif weight_type == "running_var": UpperCAmelCase__ = value elif weight_type == "num_batches_tracked": UpperCAmelCase__ = value elif weight_type == "inv_freq": UpperCAmelCase__ = value else: UpperCAmelCase__ = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def lowerCAmelCase_ ( __A, __A, __A ) -> Union[str, Any]: '''simple docstring''' UpperCAmelCase__ = [] UpperCAmelCase__ = fairseq_model.state_dict() UpperCAmelCase__ = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): UpperCAmelCase__ = False if "conv_layers" in name: load_conv_layer( __A, __A, __A, __A, hf_model.config.feat_extract_norm == "group", ) UpperCAmelCase__ = True else: for key, mapped_key in MAPPING.items(): UpperCAmelCase__ = "wav2vec2_conformer." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: UpperCAmelCase__ = True if "*" in mapped_key: UpperCAmelCase__ = name.split(__A )[0].split("." )[-2] UpperCAmelCase__ = mapped_key.replace("*", __A ) if "pos_bias_u" in name: UpperCAmelCase__ = None elif "pos_bias_v" in name: UpperCAmelCase__ = None elif "weight_g" in name: UpperCAmelCase__ = "weight_g" elif "weight_v" in name: UpperCAmelCase__ = "weight_v" elif "bias" in name: UpperCAmelCase__ = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj UpperCAmelCase__ = "weight" elif "running_mean" in name: UpperCAmelCase__ = "running_mean" elif "inv_freq" in name: UpperCAmelCase__ = "inv_freq" elif "running_var" in name: UpperCAmelCase__ = "running_var" elif "num_batches_tracked" in name: UpperCAmelCase__ = "num_batches_tracked" else: UpperCAmelCase__ = None set_recursively(__A, __A, __A, __A, __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(f"""Unused weights: {unused_weights}""" ) def lowerCAmelCase_ ( __A, __A, __A, __A, __A ) -> Any: '''simple docstring''' UpperCAmelCase__ = full_name.split("conv_layers." )[-1] UpperCAmelCase__ = name.split("." ) UpperCAmelCase__ = int(items[0] ) UpperCAmelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.""" ) UpperCAmelCase__ = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(__A ) @torch.no_grad() def lowerCAmelCase_ ( __A, __A, __A=None, __A=None, __A=True ) -> Optional[Any]: '''simple docstring''' if config_path is not None: UpperCAmelCase__ = WavaVecaConformerConfig.from_pretrained(__A, hidden_act="swish" ) else: UpperCAmelCase__ = WavaVecaConformerConfig() if "rope" in checkpoint_path: UpperCAmelCase__ = "rotary" if is_finetuned: if dict_path: UpperCAmelCase__ = Dictionary.load(__A ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq UpperCAmelCase__ = target_dict.pad_index UpperCAmelCase__ = target_dict.bos_index UpperCAmelCase__ = target_dict.eos_index UpperCAmelCase__ = len(target_dict.symbols ) UpperCAmelCase__ = os.path.join(__A, "vocab.json" ) if not os.path.isdir(__A ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__A ) ) return os.makedirs(__A, exist_ok=__A ) UpperCAmelCase__ = target_dict.indices # fairseq has the <pad> and <s> switched UpperCAmelCase__ = 0 UpperCAmelCase__ = 1 with open(__A, "w", encoding="utf-8" ) as vocab_handle: json.dump(__A, __A ) UpperCAmelCase__ = WavaVecaCTCTokenizer( __A, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=__A, ) UpperCAmelCase__ = True if config.feat_extract_norm == "layer" else False UpperCAmelCase__ = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=__A, return_attention_mask=__A, ) UpperCAmelCase__ = WavaVecaProcessor(feature_extractor=__A, tokenizer=__A ) processor.save_pretrained(__A ) UpperCAmelCase__ = WavaVecaConformerForCTC(__A ) else: UpperCAmelCase__ = WavaVecaConformerForPreTraining(__A ) if is_finetuned: UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: UpperCAmelCase__ = argparse.Namespace(task="audio_pretraining" ) UpperCAmelCase__ = fairseq.tasks.setup_task(__A ) UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path], task=__A ) UpperCAmelCase__ = model[0].eval() recursively_load_weights(__A, __A, not is_finetuned ) hf_wavavec.save_pretrained(__A ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--not_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) UpperCamelCase__ = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
486
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = {"""vocab_file""": """vocab.txt"""} UpperCAmelCase_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } UpperCAmelCase_ = { """YituTech/conv-bert-base""": 512, """YituTech/conv-bert-medium-small""": 512, """YituTech/conv-bert-small""": 512, } UpperCAmelCase_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class UpperCamelCase_ ( _lowerCamelCase ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_INIT_CONFIGURATION lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ConvBertTokenizer def __init__( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=True , lowerCAmelCase_="[UNK]" , lowerCAmelCase_="[SEP]" , lowerCAmelCase_="[PAD]" , lowerCAmelCase_="[CLS]" , lowerCAmelCase_="[MASK]" , lowerCAmelCase_=True , lowerCAmelCase_=None , **lowerCAmelCase_ , ) -> Dict: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) _snake_case = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): _snake_case = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) _snake_case = do_lower_case _snake_case = strip_accents _snake_case = tokenize_chinese_chars _snake_case = normalizer_class(**lowerCAmelCase_ ) _snake_case = do_lower_case def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> Optional[Any]: _snake_case = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> List[int]: _snake_case = [self.sep_token_id] _snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> Tuple[str]: _snake_case = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
541
from collections import deque from .hash_table import HashTable class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ) -> Any: super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[int]: _snake_case = deque([] ) if self.values[key] is None else self.values[key] self.values[key].appendleft(lowerCAmelCase_ ) _snake_case = self.values[key] def lowerCAmelCase ( self ) -> Optional[int]: return ( sum(self.charge_factor - len(lowerCAmelCase_ ) for slot in self.values ) / self.size_table * self.charge_factor ) def lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=None ) -> str: if not ( len(self.values[key] ) == self.charge_factor and self.values.count(lowerCAmelCase_ ) == 0 ): return key return super()._collision_resolution(lowerCAmelCase_ , lowerCAmelCase_ )
541
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __A = {"configuration_fnet": ["FNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "FNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = ["FNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __A = [ "FNET_PRETRAINED_MODEL_ARCHIVE_LIST", "FNetForMaskedLM", "FNetForMultipleChoice", "FNetForNextSentencePrediction", "FNetForPreTraining", "FNetForQuestionAnswering", "FNetForSequenceClassification", "FNetForTokenClassification", "FNetLayer", "FNetModel", "FNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys __A = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
59
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL UpperCamelCase__ = version.parse(version.parse(torch.__version__).base_version) < version.parse('''1.11''') def lowerCamelCase__ ( __A :Any ,__A :tuple ,__A :Path ,__A :int ,__A :Union[str, Any] ,__A :Optional[Any] ,__A :Optional[Any] ,__A :List[Any]=False ,): """simple docstring""" output_path.parent.mkdir(parents=__A ,exist_ok=__A ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( __A ,__A ,f=output_path.as_posix() ,input_names=__A ,output_names=__A ,dynamic_axes=__A ,do_constant_folding=__A ,use_external_data_format=__A ,enable_onnx_checker=__A ,opset_version=__A ,) else: export( __A ,__A ,f=output_path.as_posix() ,input_names=__A ,output_names=__A ,dynamic_axes=__A ,do_constant_folding=__A ,opset_version=__A ,) @torch.no_grad() def lowerCamelCase__ ( __A :str ,__A :str ,__A :int ,__A :bool = False ): """simple docstring""" __snake_case = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): __snake_case = """cuda""" elif fpaa and not torch.cuda.is_available(): raise ValueError("""`float16` model export is only supported on GPUs with CUDA""" ) else: __snake_case = """cpu""" __snake_case = Path(__A ) # VAE DECODER __snake_case = AutoencoderKL.from_pretrained(model_path + """/vae""" ) __snake_case = vae_decoder.config.latent_channels # forward only through the decoder part __snake_case = vae_decoder.decode onnx_export( __A ,model_args=( torch.randn(1 ,__A ,2_5 ,2_5 ).to(device=__A ,dtype=__A ), False, ) ,output_path=output_path / """vae_decoder""" / """model.onnx""" ,ordered_input_names=["""latent_sample""", """return_dict"""] ,output_names=["""sample"""] ,dynamic_axes={ """latent_sample""": {0: """batch""", 1: """channels""", 2: """height""", 3: """width"""}, } ,opset=__A ,) del vae_decoder if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument( '''--model_path''', type=str, required=True, help='''Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).''', ) parser.add_argument('''--output_path''', type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--opset''', default=14, type=int, help='''The version of the ONNX operator set to use.''', ) parser.add_argument('''--fp16''', action='''store_true''', default=False, help='''Export the models in `float16` mode''') UpperCamelCase__ = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print('''SD: Done: ONNX''')
268
0
"""simple docstring""" from math import sqrt def __snake_case ( UpperCamelCase__ ) -> int: """simple docstring""" A = 0 for i in range(1 , int(sqrt(UpperCamelCase__ ) + 1 ) ): if n % i == 0 and i != sqrt(UpperCamelCase__ ): total += i + n // i elif i == sqrt(UpperCamelCase__ ): total += i return total - n def __snake_case ( UpperCamelCase__ = 10000 ) -> int: """simple docstring""" A = sum( i for i in range(1 , UpperCamelCase__ ) if sum_of_divisors(sum_of_divisors(UpperCamelCase__ ) ) == i and sum_of_divisors(UpperCamelCase__ ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
91
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Dict ): A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def __a ( self : Union[str, Any] ): A = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def __a ( self : int ): A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def __a ( self : Dict ): A = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] self.assertTrue(is_safetensors_compatible(_lowercase ) ) def __a ( self : Union[str, Any] ): A = [ 'safety_checker/pytorch_model.bin', 'safety_checker/model.safetensors', 'vae/diffusion_pytorch_model.bin', 'vae/diffusion_pytorch_model.safetensors', 'text_encoder/pytorch_model.bin', # Removed: 'text_encoder/model.safetensors', 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(_lowercase ) ) def __a ( self : Any ): A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def __a ( self : Union[str, Any] ): A = [ 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def __a ( self : Optional[Any] ): # pass variant but use the non-variant filenames A = [ 'unet/diffusion_pytorch_model.bin', 'unet/diffusion_pytorch_model.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def __a ( self : Dict ): A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def __a ( self : Dict ): A = [ 'text_encoder/pytorch_model.fp16.bin', 'text_encoder/model.fp16.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def __a ( self : Any ): # pass variant but use the non-variant filenames A = [ 'text_encoder/pytorch_model.bin', 'text_encoder/model.safetensors', ] A = 'fp16' self.assertTrue(is_safetensors_compatible(_lowercase , variant=_lowercase ) ) def __a ( self : List[str] ): A = [ 'safety_checker/pytorch_model.fp16.bin', 'safety_checker/model.fp16.safetensors', 'vae/diffusion_pytorch_model.fp16.bin', 'vae/diffusion_pytorch_model.fp16.safetensors', 'text_encoder/pytorch_model.fp16.bin', # 'text_encoder/model.fp16.safetensors', 'unet/diffusion_pytorch_model.fp16.bin', 'unet/diffusion_pytorch_model.fp16.safetensors', ] A = 'fp16' self.assertFalse(is_safetensors_compatible(_lowercase , variant=_lowercase ) )
91
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input __lowerCamelCase : Any = "Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine" def UpperCAmelCase_ ( ): """simple docstring""" lowercase = _ask_options( "In which compute environment are you running?" , ["This machine", "AWS (Amazon SageMaker)"] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: lowercase = get_sagemaker_input() else: lowercase = get_cluster_input() return config def UpperCAmelCase_ ( lowerCAmelCase_=None ): """simple docstring""" if subparsers is not None: lowercase = subparsers.add_parser("config" , description=lowerCAmelCase_ ) else: lowercase = argparse.ArgumentParser("Accelerate config command" , description=lowerCAmelCase_ ) parser.add_argument( "--config_file" , default=lowerCAmelCase_ , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , ) if subparsers is not None: parser.set_defaults(func=lowerCAmelCase_ ) return parser def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = get_user_input() if args.config_file is not None: lowercase = args.config_file else: if not os.path.isdir(lowerCAmelCase_ ): os.makedirs(lowerCAmelCase_ ) lowercase = default_yaml_config_file if config_file.endswith(".json" ): config.to_json_file(lowerCAmelCase_ ) else: config.to_yaml_file(lowerCAmelCase_ ) print(f'accelerate configuration saved at {config_file}' ) def UpperCAmelCase_ ( ): """simple docstring""" lowercase = config_command_parser() lowercase = parser.parse_args() config_command(lowerCAmelCase_ ) if __name__ == "__main__": main()
310
'''simple docstring''' import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder __lowerCamelCase : Union[str, Any] = logging.get_logger(__name__) # pylint: disable=invalid-name __lowerCamelCase : Optional[Any] = 256 class UpperCAmelCase ( _lowercase ): UpperCAmelCase : Union[str, Any] = ['''melgan'''] def __init__(self : Optional[Any] , A__ : SpectrogramNotesEncoder , A__ : SpectrogramContEncoder , A__ : TaFilmDecoder , A__ : DDPMScheduler , A__ : OnnxRuntimeModel if is_onnx_available() else Any , ) -> None: super().__init__() # From MELGAN lowercase = math.log(1e-5 ) # Matches MelGAN training. lowercase = 4.0 # Largest value for most examples lowercase = 1_2_8 self.register_modules( notes_encoder=A__ , continuous_encoder=A__ , decoder=A__ , scheduler=A__ , melgan=A__ , ) def UpperCAmelCase__ (self : Union[str, Any] , A__ : Any , A__ : Tuple=(-1.0, 1.0) , A__ : Any=False ) -> Any: lowercase , lowercase = output_range if clip: lowercase = torch.clip(A__ , self.min_value , self.max_value ) # Scale to [0, 1]. lowercase = (features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCAmelCase__ (self : Tuple , A__ : Any , A__ : List[str]=(-1.0, 1.0) , A__ : Any=False ) -> str: lowercase , lowercase = input_range lowercase = torch.clip(A__ , A__ , A__ ) if clip else outputs # Scale to [0, 1]. lowercase = (outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCAmelCase__ (self : List[str] , A__ : Optional[int] , A__ : Optional[Any] , A__ : List[Any] ) -> Dict: lowercase = input_tokens > 0 lowercase , lowercase = self.notes_encoder( encoder_input_tokens=A__ , encoder_inputs_mask=A__ ) lowercase , lowercase = self.continuous_encoder( encoder_inputs=A__ , encoder_inputs_mask=A__ ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCAmelCase__ (self : int , A__ : int , A__ : Optional[int] , A__ : List[Any] ) -> str: lowercase = noise_time if not torch.is_tensor(A__ ): lowercase = torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(A__ ) and len(timesteps.shape ) == 0: lowercase = timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML lowercase = timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) lowercase = self.decoder( encodings_and_masks=A__ , decoder_input_tokens=A__ , decoder_noise_time=A__ ) return logits @torch.no_grad() def __call__(self : int , A__ : List[List[int]] , A__ : Optional[torch.Generator] = None , A__ : int = 1_0_0 , A__ : bool = True , A__ : str = "numpy" , A__ : Optional[Callable[[int, int, torch.FloatTensor], None]] = None , A__ : int = 1 , ) -> Union[AudioPipelineOutput, Tuple]: if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0) ): raise ValueError( f'`callback_steps` has to be a positive integer but is {callback_steps} of type' f' {type(A__ )}.' ) lowercase = np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) lowercase = np.zeros([1, 0, self.n_dims] , np.floataa ) lowercase = torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) for i, encoder_input_tokens in enumerate(A__ ): if i == 0: lowercase = torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. lowercase = torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=A__ , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. lowercase = ones lowercase = self.scale_features( A__ , output_range=[-1.0, 1.0] , clip=A__ ) lowercase = self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=A__ , continuous_mask=A__ , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop lowercase = randn_tensor( shape=encoder_continuous_inputs.shape , generator=A__ , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(A__ ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): lowercase = self.decode( encodings_and_masks=A__ , input_tokens=A__ , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 lowercase = self.scheduler.step(A__ , A__ , A__ , generator=A__ ).prev_sample lowercase = self.scale_to_features(A__ , input_range=[-1.0, 1.0] ) lowercase = mel[:1] lowercase = mel.cpu().float().numpy() lowercase = np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ , A__ ) logger.info("Generated segment" , A__ ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( "Cannot return output in 'np' format if ONNX is not available. Make sure to have ONNX installed or set 'output_type' to 'mel'." ) elif output_type == "numpy" and self.melgan is None: raise ValueError( "Cannot return output in 'np' format if melgan component is not defined. Make sure to define `self.melgan` or set 'output_type' to 'mel'." ) if output_type == "numpy": lowercase = self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: lowercase = full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=A__ )
310
1
'''simple docstring''' from __future__ import annotations def lowerCamelCase_ ( lowercase__): lowerCamelCase__ = str(lowercase__) return len(lowercase__) == 9 and set(lowercase__) == set("123456789") def lowerCamelCase_ ( ): for base_num in range(9999 , 4999 , -1): lowerCamelCase__ = 100002 * base_num if is_9_pandigital(lowercase__): return candidate for base_num in range(333 , 99 , -1): lowerCamelCase__ = 1002003 * base_num if is_9_pandigital(lowercase__): return candidate return None if __name__ == "__main__": print(F"""{solution() = }""")
187
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging __A : Union[str, Any] = logging.get_logger(__name__) __A : Tuple = { """EleutherAI/gpt-neo-1.3B""": """https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json""", # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class lowercase ( _lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = "gpt_neo" lowerCAmelCase__ = ["past_key_values"] lowerCAmelCase__ = {"num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self : str , __lowerCamelCase : Optional[int]=50257 , __lowerCamelCase : Optional[int]=2048 , __lowerCamelCase : Optional[int]=2048 , __lowerCamelCase : Any=24 , __lowerCamelCase : List[Any]=[[["global", "local"], 12]] , __lowerCamelCase : Any=16 , __lowerCamelCase : Any=None , __lowerCamelCase : Optional[Any]=256 , __lowerCamelCase : List[Any]="gelu_new" , __lowerCamelCase : Any=0.0 , __lowerCamelCase : List[Any]=0.0 , __lowerCamelCase : Union[str, Any]=0.0 , __lowerCamelCase : Any=0.1 , __lowerCamelCase : Dict=1E-5 , __lowerCamelCase : List[Any]=0.0_2 , __lowerCamelCase : List[Any]=True , __lowerCamelCase : Optional[int]=50256 , __lowerCamelCase : Tuple=50256 , **__lowerCamelCase : Optional[int] , ) -> str: '''simple docstring''' lowerCamelCase__ = vocab_size lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = hidden_size lowerCamelCase__ = num_layers lowerCamelCase__ = num_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = window_size lowerCamelCase__ = activation_function lowerCamelCase__ = resid_dropout lowerCamelCase__ = embed_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = classifier_dropout lowerCamelCase__ = layer_norm_epsilon lowerCamelCase__ = initializer_range lowerCamelCase__ = use_cache lowerCamelCase__ = bos_token_id lowerCamelCase__ = eos_token_id lowerCamelCase__ = attention_types lowerCamelCase__ = self.expand_attention_types_params(__lowerCamelCase ) if len(self.attention_layers ) != self.num_layers: raise ValueError( "Configuration for convolutional module is incorrect. " "It is required that `len(config.attention_layers)` == `config.num_layers` " f'''but is `len(config.attention_layers) = {len(self.attention_layers )}`, ''' f'''`config.num_layers = {self.num_layers}`. ''' "`config.attention_layers` is prepared using `config.attention_types`. " "Please verify the value of `config.attention_types` argument." ) super().__init__(bos_token_id=__lowerCamelCase , eos_token_id=__lowerCamelCase , **__lowerCamelCase ) @staticmethod def a__ ( __lowerCamelCase : int ) -> str: '''simple docstring''' lowerCamelCase__ = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def lowerCamelCase_ ( lowercase__ , lowercase__ , lowercase__ , lowercase__): import torch lowerCamelCase__ = input.size() lowerCamelCase__ = len(lowercase__) lowerCamelCase__ = shape[dimension] lowerCamelCase__ = torch.arange(0 , lowercase__ , lowercase__) lowerCamelCase__ = torch.div(sizedim - size , lowercase__ , rounding_mode="floor") + 1 lowerCamelCase__ = torch.arange(lowercase__) + low_indices[:min_length][:, None] lowerCamelCase__ = [slice(lowercase__)] * rank lowerCamelCase__ = indices lowerCamelCase__ = input[s] lowerCamelCase__ = list(range(0 , rank + 1)) perm.append(perm.pop(dimension + 1)) return sliced.permute(lowercase__) def lowerCamelCase_ ( lowercase__ , lowercase__): import torch lowerCamelCase__ = torch.arange(1 , lowercase__) lowerCamelCase__ = torch.remainder(lowercase__ , lowercase__) lowerCamelCase__ = remainders == 0 lowerCamelCase__ = candidates[divisor_indices] lowerCamelCase__ = torch.max(lowercase__) return largest_divisor, torch.div(lowercase__ , lowercase__ , rounding_mode="floor") class lowercase ( _lowerCamelCase ): '''simple docstring''' @property def a__ ( self : Any ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' lowerCamelCase__ = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}} ) if self.use_past: self.fill_with_past_key_values_(__lowerCamelCase , direction="inputs" ) lowerCamelCase__ = {0: "batch", 1: "past_sequence + sequence"} else: lowerCamelCase__ = {0: "batch", 1: "sequence"} return common_inputs @property def a__ ( self : Any ) -> int: '''simple docstring''' return self._config.num_heads def a__ ( self : Optional[Any] , __lowerCamelCase : PreTrainedTokenizer , __lowerCamelCase : int = -1 , __lowerCamelCase : int = -1 , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[TensorType] = None , ) -> Mapping[str, Any]: '''simple docstring''' lowerCamelCase__ = super(__lowerCamelCase , self ).generate_dummy_inputs( __lowerCamelCase , batch_size=__lowerCamelCase , seq_length=__lowerCamelCase , is_pair=__lowerCamelCase , framework=__lowerCamelCase ) # We need to order the input in the way they appears in the forward() lowerCamelCase__ = OrderedDict({"input_ids": common_inputs["input_ids"]} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch lowerCamelCase__ , lowerCamelCase__ = common_inputs["input_ids"].shape # Not using the same length for past_key_values lowerCamelCase__ = seqlen + 2 lowerCamelCase__ = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) lowerCamelCase__ = [ (torch.zeros(__lowerCamelCase ), torch.zeros(__lowerCamelCase )) for _ in range(self.num_layers ) ] lowerCamelCase__ = common_inputs["attention_mask"] if self.use_past: lowerCamelCase__ = ordered_inputs["attention_mask"].dtype lowerCamelCase__ = torch.cat( [ordered_inputs["attention_mask"], torch.ones(__lowerCamelCase , __lowerCamelCase , dtype=__lowerCamelCase )] , dim=1 ) return ordered_inputs @property def a__ ( self : Optional[Any] ) -> int: '''simple docstring''' return 13
187
1
'''simple docstring''' from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import numpy as np import tensorflow as tf from transformers import TFXLMRobertaModel @require_tf @require_sentencepiece @require_tokenizers class __UpperCamelCase (unittest.TestCase ): @slow def _a ( self ) -> List[str]: '''simple docstring''' lowercase = TFXLMRobertaModel.from_pretrained("""jplu/tf-xlm-roberta-base""" ) lowercase = { """input_ids""": tf.convert_to_tensor([[0, 2646, 1_0269, 83, 9_9942, 2]] , dtype=tf.intaa ), # "My dog is cute" """attention_mask""": tf.convert_to_tensor([[1, 1, 1, 1, 1, 1]] , dtype=tf.intaa ), } lowercase = model(_lowerCAmelCase )["""last_hidden_state"""] lowercase = tf.TensorShape((1, 6, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice. lowercase = tf.convert_to_tensor( [ [ [0.068_1762, 0.1089_4451, 0.0677_2504], [-0.0642_3668, 0.0236_6615, 0.0432_9344], [-0.0605_7295, 0.0997_4135, -0.0007_0584], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1E-4 ) )
588
'''simple docstring''' import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf if is_tf_available(): import tensorflow as tf from tensorflow.python.eager import context from tensorflow.python.framework import ops from transformers import GradientAccumulator, create_optimizer @require_tf class __UpperCamelCase (unittest.TestCase ): def _a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) -> Dict: '''simple docstring''' self.assertEqual(len(_lowerCAmelCase ) , len(_lowerCAmelCase ) ) for a, b in zip(_lowerCAmelCase , _lowerCAmelCase ): self.assertAlmostEqual(_lowerCAmelCase , _lowerCAmelCase , delta=_lowerCAmelCase ) def _a ( self ) -> Optional[int]: '''simple docstring''' lowercase = GradientAccumulator() accumulator([tf.constant([1.0, 2.0] )] ) accumulator([tf.constant([-2.0, 1.0] )] ) accumulator([tf.constant([-1.0, 2.0] )] ) with self.assertRaises(_lowerCAmelCase ): accumulator([tf.constant([1.0, 1.0] ), tf.constant([2.0, 2.0] )] ) self.assertEqual(accumulator.step , 3 ) self.assertEqual(len(accumulator.gradients ) , 1 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [-2.0, 5.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) self.assertListAlmostEqual(accumulator.gradients[0].numpy().tolist() , [0.0, 0.0] , tol=1E-2 ) def _a ( self ) -> int: '''simple docstring''' lowercase = None ops.enable_eager_execution_internal() lowercase = tf.config.list_physical_devices("""CPU""" ) if len(_lowerCAmelCase ) == 1: tf.config.set_logical_device_configuration( physical_devices[0] , [tf.config.LogicalDeviceConfiguration(), tf.config.LogicalDeviceConfiguration()] ) lowercase = tf.config.list_logical_devices(device_type="""CPU""" ) lowercase = tf.distribute.MirroredStrategy(devices=devices[:2] ) with strategy.scope(): lowercase = GradientAccumulator() lowercase = tf.Variable([4.0, 3.0] ) lowercase , lowercase = create_optimizer(5E-5 , 10 , 5 ) lowercase = tf.Variable([0.0, 0.0] , trainable=_lowerCAmelCase ) def accumulate_on_replica(_lowerCAmelCase ): accumulator([gradient] ) def apply_on_replica(): optimizer.apply_gradients(list(zip(accumulator.gradients , [variable] ) ) ) @tf.function def accumulate(_lowerCAmelCase , _lowerCAmelCase ): with strategy.scope(): lowercase = strategy.experimental_local_results(_lowerCAmelCase ) local_variables[0].assign(_lowerCAmelCase ) local_variables[1].assign(_lowerCAmelCase ) strategy.run(_lowerCAmelCase , args=(gradient_placeholder,) ) @tf.function def apply_grad(): with strategy.scope(): strategy.run(_lowerCAmelCase ) def _check_local_values(_lowerCAmelCase , _lowerCAmelCase ): lowercase = strategy.experimental_local_results(accumulator._gradients[0] ) self.assertListAlmostEqual(values[0].value() , _lowerCAmelCase , tol=1E-2 ) self.assertListAlmostEqual(values[1].value() , _lowerCAmelCase , tol=1E-2 ) accumulate([1.0, 2.0] , [-1.0, 1.0] ) accumulate([3.0, -1.0] , [-1.0, -1.0] ) accumulate([-2.0, 2.0] , [3.0, -2.0] ) self.assertEqual(accumulator.step , 3 ) _check_local_values([2.0, 3.0] , [1.0, -2.0] ) apply_grad() self.assertListAlmostEqual(variable.value() , [4.0, 3.0] , tol=1E-2 ) accumulator.reset() self.assertEqual(accumulator.step , 0 ) _check_local_values([0.0, 0.0] , [0.0, 0.0] )
588
1
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : list ) -> bool: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(snake_case_ ) == 0: raise ValueError("Input list must be a non empty list" ) if len(snake_case_ ) == 1: return True UpperCAmelCase_ = series[1] - series[0] for index in range(len(snake_case_ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def lowerCAmelCase_ ( snake_case_ : list ) -> float: '''simple docstring''' if not isinstance(snake_case_ , snake_case_ ): raise ValueError("Input series is not valid, valid series - [2, 4, 6]" ) if len(snake_case_ ) == 0: raise ValueError("Input list must be a non empty list" ) UpperCAmelCase_ = 0 for val in series: answer += val return answer / len(snake_case_ ) if __name__ == "__main__": import doctest doctest.testmod()
702
'''simple docstring''' def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = abs(snake_case_ ) UpperCAmelCase_ = 0 while n > 0: res += n % 10 n //= 10 return res def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' UpperCAmelCase_ = abs(snake_case_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def lowerCAmelCase_ ( snake_case_ : int ) -> int: '''simple docstring''' return sum(int(snake_case_ ) for c in str(abs(snake_case_ ) ) ) def lowerCAmelCase_ ( ) -> None: '''simple docstring''' from collections.abc import Callable from timeit import timeit def benchmark_a_function(snake_case_ : Callable , snake_case_ : int ) -> None: UpperCAmelCase_ = f"""{func.__name__}({value})""" UpperCAmelCase_ = timeit(f"""__main__.{call}""" , setup="import __main__" ) print(f"""{call:56} = {func(snake_case_ )} -- {timing:.4f} seconds""" ) for value in (26_21_44, 11_25_89_99_06_84_26_24, 1_26_76_50_60_02_28_22_94_01_49_67_03_20_53_76): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(snake_case_ , snake_case_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
415
0
from graphs.minimum_spanning_tree_kruskal import kruskal def __UpperCAmelCase ( ) -> Optional[int]: """simple docstring""" _a : Union[str, Any] = 9 _a : str = [ [0, 1, 4], [0, 7, 8], [1, 2, 8], [7, 8, 7], [7, 6, 1], [2, 8, 2], [8, 6, 6], [2, 3, 7], [2, 5, 4], [6, 5, 2], [3, 5, 14], [3, 4, 9], [5, 4, 10], [1, 7, 11], ] _a : List[str] = kruskal(__a ,__a ) _a : Optional[int] = [ [7, 6, 1], [2, 8, 2], [6, 5, 2], [0, 1, 4], [2, 5, 4], [2, 3, 7], [0, 7, 8], [3, 4, 9], ] assert sorted(__a ) == sorted(__a )
14
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata def _snake_case ( A_ : Any , A_ : Any=False ): """simple docstring""" try: a_ : List[Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. a_ : str = default else: # KEY is set, convert it to True or False. try: a_ : Union[str, Any] = strtobool(A_ ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(f'''If set, {key} must be yes or no.''' ) return _value __snake_case: Optional[Any] = parse_flag_from_env("RUN_SLOW", default=False) __snake_case: str = parse_flag_from_env("RUN_REMOTE", default=False) __snake_case: Any = parse_flag_from_env("RUN_LOCAL", default=True) __snake_case: Dict = parse_flag_from_env("RUN_PACKAGED", default=True) # Compression __snake_case: str = pytest.mark.skipif(not config.LZ4_AVAILABLE, reason="test requires lz4") __snake_case: Optional[int] = pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason="test requires py7zr") __snake_case: str = pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason="test requires zstandard") # Audio __snake_case: Optional[Any] = pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec("soundfile") is None or version.parse(importlib_metadata.version("soundfile")) < version.parse("0.12.0"), reason="test requires sndfile>=0.12.1: 'pip install \"soundfile>=0.12.1\"'; ", ) # Beam __snake_case: str = pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse("0.3.2"), reason="test requires apache-beam and a compatible dill version", ) # Dill-cloudpickle compatibility __snake_case: Union[str, Any] = pytest.mark.skipif( config.DILL_VERSION <= version.parse("0.3.2"), reason="test requires dill>0.3.2 for cloudpickle compatibility", ) # Windows __snake_case: Optional[Any] = pytest.mark.skipif( sys.platform == "win32", reason="test should not be run on Windows", ) def _snake_case ( A_ : Union[str, Any] ): """simple docstring""" try: import faiss # noqa except ImportError: a_ : int = unittest.skip("""test requires faiss""" )(A_ ) return test_case def _snake_case ( A_ : Union[str, Any] ): """simple docstring""" try: import regex # noqa except ImportError: a_ : str = unittest.skip("""test requires regex""" )(A_ ) return test_case def _snake_case ( A_ : List[Any] ): """simple docstring""" try: import elasticsearch # noqa except ImportError: a_ : List[Any] = unittest.skip("""test requires elasticsearch""" )(A_ ) return test_case def _snake_case ( A_ : int ): """simple docstring""" try: import sqlalchemy # noqa except ImportError: a_ : str = unittest.skip("""test requires sqlalchemy""" )(A_ ) return test_case def _snake_case ( A_ : int ): """simple docstring""" if not config.TORCH_AVAILABLE: a_ : Optional[int] = unittest.skip("""test requires PyTorch""" )(A_ ) return test_case def _snake_case ( A_ : int ): """simple docstring""" if not config.TF_AVAILABLE: a_ : Dict = unittest.skip("""test requires TensorFlow""" )(A_ ) return test_case def _snake_case ( A_ : Optional[int] ): """simple docstring""" if not config.JAX_AVAILABLE: a_ : str = unittest.skip("""test requires JAX""" )(A_ ) return test_case def _snake_case ( A_ : List[Any] ): """simple docstring""" if not config.PIL_AVAILABLE: a_ : Optional[int] = unittest.skip("""test requires Pillow""" )(A_ ) return test_case def _snake_case ( A_ : Union[str, Any] ): """simple docstring""" try: import transformers # noqa F401 except ImportError: return unittest.skip("""test requires transformers""" )(A_ ) else: return test_case def _snake_case ( A_ : Union[str, Any] ): """simple docstring""" try: import tiktoken # noqa F401 except ImportError: return unittest.skip("""test requires tiktoken""" )(A_ ) else: return test_case def _snake_case ( A_ : Dict ): """simple docstring""" try: import spacy # noqa F401 except ImportError: return unittest.skip("""test requires spacy""" )(A_ ) else: return test_case def _snake_case ( A_ : List[Any] ): """simple docstring""" def _require_spacy_model(A_ : List[Any] ): try: import spacy # noqa F401 spacy.load(A_ ) except ImportError: return unittest.skip("""test requires spacy""" )(A_ ) except OSError: return unittest.skip("""test requires spacy model '{}'""".format(A_ ) )(A_ ) else: return test_case return _require_spacy_model def _snake_case ( A_ : List[Any] ): """simple docstring""" try: import pyspark # noqa F401 except ImportError: return unittest.skip("""test requires pyspark""" )(A_ ) else: return test_case def _snake_case ( A_ : Tuple ): """simple docstring""" try: import joblibspark # noqa F401 except ImportError: return unittest.skip("""test requires joblibspark""" )(A_ ) else: return test_case def _snake_case ( A_ : Any ): """simple docstring""" if not _run_slow_tests or _run_slow_tests == 0: a_ : Optional[int] = unittest.skip("""test is slow""" )(A_ ) return test_case def _snake_case ( A_ : int ): """simple docstring""" if not _run_local_tests or _run_local_tests == 0: a_ : Any = unittest.skip("""test is local""" )(A_ ) return test_case def _snake_case ( A_ : Dict ): """simple docstring""" if not _run_packaged_tests or _run_packaged_tests == 0: a_ : Union[str, Any] = unittest.skip("""test is packaged""" )(A_ ) return test_case def _snake_case ( A_ : Dict ): """simple docstring""" if not _run_remote_tests or _run_remote_tests == 0: a_ : List[str] = unittest.skip("""test requires remote""" )(A_ ) return test_case def _snake_case ( *A_ : List[str] ): """simple docstring""" def decorate(cls : Union[str, Any] ): for name, fn in cls.__dict__.items(): if callable(A_ ) and name.startswith("""test""" ): for decorator in decorators: a_ : Optional[int] = decorator(A_ ) setattr(cls , A_ , A_ ) return cls return decorate class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" pass class _UpperCAmelCase ( lowerCAmelCase__ ): """simple docstring""" a_ = 0 a_ = 1 a_ = 2 @contextmanager def _snake_case ( A_ : int=OfflineSimulationMode.CONNECTION_FAILS , A_ : Union[str, Any]=1E-16 ): """simple docstring""" a_ : Any = requests.Session().request def timeout_request(A_ : List[str] , A_ : Optional[Any] , A_ : Optional[Any] , **A_ : Optional[int] ): # Change the url to an invalid url so that the connection hangs a_ : str = """https://10.255.255.1""" if kwargs.get("""timeout""" ) is None: raise RequestWouldHangIndefinitelyError( f'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''' ) a_ : Tuple = timeout try: return online_request(A_ , A_ , **A_ ) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier a_ : Dict = url a_ : List[Any] = e.args[0] a_ : Dict = (max_retry_error.args[0].replace("""10.255.255.1""" , f'''OfflineMock[{url}]''' ),) a_ : Optional[int] = (max_retry_error,) raise def raise_connection_error(A_ : Optional[Any] , A_ : Any , **A_ : Any ): raise requests.ConnectionError("""Offline mode is enabled.""" , request=A_ ) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch("""requests.Session.send""" , A_ ): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch("""requests.Session.request""" , A_ ): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch("""datasets.config.HF_DATASETS_OFFLINE""" , A_ ): yield else: raise ValueError("""Please use a value from the OfflineSimulationMode enum.""" ) @contextmanager def _snake_case ( *A_ : Union[str, Any] , **A_ : List[str] ): """simple docstring""" a_ : str = str(Path().resolve() ) with tempfile.TemporaryDirectory(*A_ , **A_ ) as tmp_dir: try: os.chdir(A_ ) yield finally: os.chdir(A_ ) @contextmanager def _snake_case ( ): """simple docstring""" import gc gc.collect() a_ : List[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def _snake_case ( ): """simple docstring""" import gc gc.collect() a_ : List[Any] = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def _snake_case ( A_ : Any , A_ : Optional[Any] ): """simple docstring""" return deepcopy(A_ ).integers(0 , 100 , 10 ).tolist() == deepcopy(A_ ).integers(0 , 100 , 10 ).tolist() def _snake_case ( A_ : Optional[Any] ): """simple docstring""" import decorator from requests.exceptions import HTTPError def _wrapper(A_ : str , *A_ : Optional[Any] , **A_ : Union[str, Any] ): try: return func(*A_ , **A_ ) except HTTPError as err: if str(A_ ).startswith("""500""" ) or str(A_ ).startswith("""502""" ): pytest.xfail(str(A_ ) ) raise err return decorator.decorator(_wrapper , A_ ) class _UpperCAmelCase : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): '''simple docstring''' a_ : Dict = returncode a_ : Tuple = stdout a_ : List[str] = stderr async def _snake_case ( A_ : Optional[Any] , A_ : Tuple ): """simple docstring""" while True: a_ : Optional[int] = await stream.readline() if line: callback(A_ ) else: break async def _snake_case ( A_ : Optional[int] , A_ : Tuple=None , A_ : Union[str, Any]=None , A_ : Tuple=None , A_ : int=False , A_ : int=False ): """simple docstring""" if echo: print("""\nRunning: """ , """ """.join(A_ ) ) a_ : str = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=A_ , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=A_ , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) a_ : Any = [] a_ : Optional[Any] = [] def tee(A_ : Dict , A_ : List[Any] , A_ : List[Any] , A_ : Dict="" ): a_ : List[str] = line.decode("""utf-8""" ).rstrip() sink.append(A_ ) if not quiet: print(A_ , A_ , file=A_ ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda A_ : tee(A_ , A_ , sys.stdout , label="""stdout:""" ) ), _read_stream(p.stderr , lambda A_ : tee(A_ , A_ , sys.stderr , label="""stderr:""" ) ), ] , timeout=A_ , ) return _RunOutput(await p.wait() , A_ , A_ ) def _snake_case ( A_ : List[Any] , A_ : Optional[Any]=None , A_ : Optional[Any]=None , A_ : Union[str, Any]=180 , A_ : int=False , A_ : Tuple=True ): """simple docstring""" a_ : Optional[Any] = asyncio.get_event_loop() a_ : Any = loop.run_until_complete( _stream_subprocess(A_ , env=A_ , stdin=A_ , timeout=A_ , quiet=A_ , echo=A_ ) ) a_ : Union[str, Any] = """ """.join(A_ ) if result.returncode > 0: a_ : Union[str, Any] = """\n""".join(result.stderr ) raise RuntimeError( f'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' f'''The combined stderr from workers follows:\n{stderr}''' ) # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(f'''\'{cmd_str}\' produced no output.''' ) return result def _snake_case ( ): """simple docstring""" a_ : Optional[int] = os.environ.get("""PYTEST_XDIST_WORKER""" , """gw0""" ) a_ : Union[str, Any] = re.sub(R"""^gw""" , """""" , A_ , 0 , re.M ) return int(A_ ) def _snake_case ( ): """simple docstring""" a_ : Tuple = 2_9500 a_ : str = pytest_xdist_worker_id() return port + uniq_delta
577
0
"""simple docstring""" import inspect import os import re from transformers.configuration_utils import PretrainedConfig from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py _snake_case = '''src/transformers''' # This is to make sure the transformers module imported is the one in the repo. _snake_case = direct_transformers_import(PATH_TO_TRANSFORMERS) _snake_case = transformers.models.auto.configuration_auto.CONFIG_MAPPING _snake_case = { # used to compute the property `self.chunk_length` '''EncodecConfig''': ['''overlap'''], # used as `self.bert_model = BertModel(config, ...)` '''DPRConfig''': True, # not used in modeling files, but it's an important information '''FSMTConfig''': ['''langs'''], # used internally in the configuration class file '''GPTNeoConfig''': ['''attention_types'''], # used internally in the configuration class file '''EsmConfig''': ['''is_folding_model'''], # used during training (despite we don't have training script for these models yet) '''Mask2FormerConfig''': ['''ignore_value'''], # `ignore_value` used during training (despite we don't have training script for these models yet) # `norm` used in conversion script (despite not using in the modeling file) '''OneFormerConfig''': ['''ignore_value''', '''norm'''], # used during preprocessing and collation, see `collating_graphormer.py` '''GraphormerConfig''': ['''spatial_pos_max'''], # used internally in the configuration class file '''T5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file # `tokenizer_class` get default value `T5Tokenizer` intentionally '''MT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], '''UMT5Config''': ['''feed_forward_proj''', '''tokenizer_class'''], # used internally in the configuration class file '''LongT5Config''': ['''feed_forward_proj'''], # used internally in the configuration class file '''SwitchTransformersConfig''': ['''feed_forward_proj'''], # having default values other than `1e-5` - we can't fix them without breaking '''BioGptConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''GLPNConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''SegformerConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''CvtConfig''': ['''layer_norm_eps'''], # having default values other than `1e-5` - we can't fix them without breaking '''PerceiverConfig''': ['''layer_norm_eps'''], # used internally to calculate the feature size '''InformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''TimeSeriesTransformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate the feature size '''AutoformerConfig''': ['''num_static_real_features''', '''num_time_features'''], # used internally to calculate `mlp_dim` '''SamVisionConfig''': ['''mlp_ratio'''], # For (head) training, but so far not implemented '''ClapAudioConfig''': ['''num_classes'''], # Not used, but providing useful information to users '''SpeechT5HifiGanConfig''': ['''sampling_rate'''], } # TODO (ydshieh): Check the failing cases, try to fix them or move some cases to the above block once we are sure SPECIAL_CASES_TO_ALLOW.update( { '''CLIPSegConfig''': True, '''DeformableDetrConfig''': True, '''DetaConfig''': True, '''DinatConfig''': True, '''DonutSwinConfig''': True, '''EfficientFormerConfig''': True, '''FSMTConfig''': True, '''JukeboxConfig''': True, '''LayoutLMv2Config''': True, '''MaskFormerSwinConfig''': True, '''MT5Config''': True, '''NatConfig''': True, '''OneFormerConfig''': True, '''PerceiverConfig''': True, '''RagConfig''': True, '''SpeechT5Config''': True, '''SwinConfig''': True, '''Swin2SRConfig''': True, '''Swinv2Config''': True, '''SwitchTransformersConfig''': True, '''TableTransformerConfig''': True, '''TapasConfig''': True, '''TransfoXLConfig''': True, '''UniSpeechConfig''': True, '''UniSpeechSatConfig''': True, '''WavLMConfig''': True, '''WhisperConfig''': True, # TODO: @Arthur (for `alignment_head` and `alignment_layer`) '''JukeboxPriorConfig''': True, # TODO: @Younes (for `is_decoder`) '''Pix2StructTextConfig''': True, } ) def __snake_case ( SCREAMING_SNAKE_CASE: str , SCREAMING_SNAKE_CASE: int , SCREAMING_SNAKE_CASE: Optional[Any] , SCREAMING_SNAKE_CASE: int ): """simple docstring""" _lowerCAmelCase = False for attribute in attributes: for modeling_source in source_strings: # check if we can find `config.xxx`, `getattr(config, "xxx", ...)` or `getattr(self.config, "xxx", ...)` if ( f"""config.{attribute}""" in modeling_source or f"""getattr(config, \"{attribute}\"""" in modeling_source or f"""getattr(self.config, \"{attribute}\"""" in modeling_source ): _lowerCAmelCase = True # Deal with multi-line cases elif ( re.search( Rf"""getattr[ \t\v\n\r\f]*\([ \t\v\n\r\f]*(self\.)?config,[ \t\v\n\r\f]*\"{attribute}\"""" , SCREAMING_SNAKE_CASE , ) is not None ): _lowerCAmelCase = True # `SequenceSummary` is called with `SequenceSummary(config)` elif attribute in [ "summary_type", "summary_use_proj", "summary_activation", "summary_last_dropout", "summary_proj_to_labels", "summary_first_dropout", ]: if "SequenceSummary" in modeling_source: _lowerCAmelCase = True if attribute_used: break if attribute_used: break # common and important attributes, even if they do not always appear in the modeling files _lowerCAmelCase = [ 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index', 'image_size', 'use_cache', 'out_features', 'out_indices', ] _lowerCAmelCase = ['encoder_no_repeat_ngram_size'] # Special cases to be allowed _lowerCAmelCase = True if not attribute_used: _lowerCAmelCase = False for attribute in attributes: # Allow if the default value in the configuration class is different from the one in `PretrainedConfig` if attribute in ["is_encoder_decoder"] and default_value is True: _lowerCAmelCase = True elif attribute in ["tie_word_embeddings"] and default_value is False: _lowerCAmelCase = True # Allow cases without checking the default value in the configuration class elif attribute in attributes_to_allow + attributes_used_in_generation: _lowerCAmelCase = True elif attribute.endswith('_token_id' ): _lowerCAmelCase = True # configuration class specific cases if not case_allowed: _lowerCAmelCase = SPECIAL_CASES_TO_ALLOW.get(config_class.__name__ , [] ) _lowerCAmelCase = allowed_cases is True or attribute in allowed_cases return attribute_used or case_allowed def __snake_case ( SCREAMING_SNAKE_CASE: Optional[Any] ): """simple docstring""" _lowerCAmelCase = dict(inspect.signature(config_class.__init__ ).parameters ) _lowerCAmelCase = [x for x in list(signature.keys() ) if x not in ['self', 'kwargs']] _lowerCAmelCase = [signature[param].default for param in parameter_names] # If `attribute_map` exists, an attribute can have different names to be used in the modeling files, and as long # as one variant is used, the test should pass _lowerCAmelCase = {} if len(config_class.attribute_map ) > 0: _lowerCAmelCase = {v: k for k, v in config_class.attribute_map.items()} # Get the path to modeling source files _lowerCAmelCase = inspect.getsourcefile(SCREAMING_SNAKE_CASE ) _lowerCAmelCase = os.path.dirname(SCREAMING_SNAKE_CASE ) # Let's check against all frameworks: as long as one framework uses an attribute, we are good. _lowerCAmelCase = [os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for fn in os.listdir(SCREAMING_SNAKE_CASE ) if fn.startswith('modeling_' )] # Get the source code strings _lowerCAmelCase = [] for path in modeling_paths: if os.path.isfile(SCREAMING_SNAKE_CASE ): with open(SCREAMING_SNAKE_CASE ) as fp: modeling_sources.append(fp.read() ) _lowerCAmelCase = [] for config_param, default_value in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # `attributes` here is all the variant names for `config_param` _lowerCAmelCase = [config_param] # some configuration classes have non-empty `attribute_map`, and both names could be used in the # corresponding modeling files. As long as one of them appears, it is fine. if config_param in reversed_attribute_map: attributes.append(reversed_attribute_map[config_param] ) if not check_attribute_being_used(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): unused_attributes.append(attributes[0] ) return sorted(SCREAMING_SNAKE_CASE ) def __snake_case ( ): """simple docstring""" _lowerCAmelCase = {} for _config_class in list(CONFIG_MAPPING.values() ): # Skip deprecated models if "models.deprecated" in _config_class.__module__: continue # Some config classes are not in `CONFIG_MAPPING` (e.g. `CLIPVisionConfig`, `Blip2VisionConfig`, etc.) _lowerCAmelCase = [ cls for name, cls in inspect.getmembers( inspect.getmodule(_config_class ) , lambda SCREAMING_SNAKE_CASE : inspect.isclass(SCREAMING_SNAKE_CASE ) and issubclass(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and inspect.getmodule(SCREAMING_SNAKE_CASE ) == inspect.getmodule(_config_class ) , ) ] for config_class in config_classes_in_module: _lowerCAmelCase = check_config_attributes_being_used(SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = unused_attributes if len(SCREAMING_SNAKE_CASE ) > 0: _lowerCAmelCase = 'The following configuration classes contain unused attributes in the corresponding modeling files:\n' for name, attributes in configs_with_unused_attributes.items(): error += f"""{name}: {attributes}\n""" raise ValueError(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": check_config_attributes()
491
"""simple docstring""" def __snake_case ( SCREAMING_SNAKE_CASE: list[int] ): """simple docstring""" _lowerCAmelCase = [] if len(SCREAMING_SNAKE_CASE ) == 1: return [nums.copy()] for _ in range(len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase = nums.pop(0 ) _lowerCAmelCase = permute(SCREAMING_SNAKE_CASE ) for perm in permutations: perm.append(SCREAMING_SNAKE_CASE ) result.extend(SCREAMING_SNAKE_CASE ) nums.append(SCREAMING_SNAKE_CASE ) return result def __snake_case ( SCREAMING_SNAKE_CASE: Any ): """simple docstring""" def backtrack(SCREAMING_SNAKE_CASE: Tuple ): if start == len(SCREAMING_SNAKE_CASE ) - 1: output.append(nums[:] ) else: for i in range(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ): _lowerCAmelCase , _lowerCAmelCase = nums[i], nums[start] backtrack(start + 1 ) _lowerCAmelCase , _lowerCAmelCase = nums[i], nums[start] # backtrack _lowerCAmelCase = [] backtrack(0 ) return output if __name__ == "__main__": import doctest # use res to print the data in permute2 function _snake_case = permutea([1, 2, 3]) print(res) doctest.testmod()
491
1
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, ChannelDimension, ImageInput, PILImageResampling, is_batched, to_numpy_array, valid_images, ) from ...utils import TensorType, logging _lowerCAmelCase = logging.get_logger(__name__) class UpperCAmelCase__ ( snake_case__ ): snake_case_ = ['''pixel_values'''] def __init__( self , A__ = True , A__ = None , A__ = PILImageResampling.BICUBIC , A__ = True , A__ = True , A__ = 1 / 255 , A__ = None , A__ = True , A__ = None , A__ = None , **A__ , ): """simple docstring""" super().__init__(**A__ ) UpperCAmelCase_: Dict = size if size is not None else {"height": 224, "width": 224} UpperCAmelCase_: Optional[Any] = get_size_dict(A__ ) UpperCAmelCase_: str = crop_size if crop_size is not None else {"height": 224, "width": 224} UpperCAmelCase_: Any = get_size_dict(A__ , default_to_square=A__ , param_name="crop_size" ) UpperCAmelCase_: List[Any] = do_resize UpperCAmelCase_: Dict = do_rescale UpperCAmelCase_: Tuple = do_normalize UpperCAmelCase_: Any = do_center_crop UpperCAmelCase_: str = crop_size UpperCAmelCase_: int = size UpperCAmelCase_: Union[str, Any] = resample UpperCAmelCase_: str = rescale_factor UpperCAmelCase_: str = image_mean if image_mean is not None else IMAGENET_DEFAULT_MEAN UpperCAmelCase_: List[Any] = image_std if image_std is not None else IMAGENET_DEFAULT_STD def snake_case_ ( self , A__ , A__ , A__ = PILImageResampling.BILINEAR , A__ = None , **A__ , ): """simple docstring""" UpperCAmelCase_: Any = get_size_dict(A__ ) if "shortest_edge" in size: UpperCAmelCase_: Tuple = get_resize_output_image_size(A__ , size=size["shortest_edge"] , default_to_square=A__ ) # size = get_resize_output_image_size(image, size["shortest_edge"], size["longest_edge"]) elif "height" in size and "width" in size: UpperCAmelCase_: List[str] = (size["height"], size["width"]) else: raise ValueError(F"Size must contain 'height' and 'width' keys or 'shortest_edge' key. Got {size.keys()}" ) return resize(A__ , size=A__ , resample=A__ , data_format=A__ , **A__ ) def snake_case_ ( self , A__ , A__ , A__ = None , **A__ , ): """simple docstring""" UpperCAmelCase_: Optional[int] = get_size_dict(A__ ) if "height" not in size or "width" not in size: raise ValueError(F"The `size` parameter must contain the keys (height, width). Got {size.keys()}" ) return center_crop(A__ , size=(size["height"], size["width"]) , data_format=A__ , **A__ ) def snake_case_ ( self , A__ , A__ , A__ = None , **A__ ): """simple docstring""" return rescale(A__ , scale=A__ , data_format=A__ , **A__ ) def snake_case_ ( self , A__ , A__ , A__ , A__ = None , **A__ , ): """simple docstring""" return normalize(A__ , mean=A__ , std=A__ , data_format=A__ , **A__ ) def snake_case_ ( self , A__ , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = None , A__ = ChannelDimension.FIRST , **A__ , ): """simple docstring""" UpperCAmelCase_: Dict = do_resize if do_resize is not None else self.do_resize UpperCAmelCase_: List[str] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase_: Union[str, Any] = do_normalize if do_normalize is not None else self.do_normalize UpperCAmelCase_: int = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase_: Union[str, Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase_: int = get_size_dict(A__ , param_name="crop_size" , default_to_square=A__ ) UpperCAmelCase_: int = resample if resample is not None else self.resample UpperCAmelCase_: List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase_: int = image_mean if image_mean is not None else self.image_mean UpperCAmelCase_: Optional[int] = image_std if image_std is not None else self.image_std UpperCAmelCase_: List[Any] = size if size is not None else self.size UpperCAmelCase_: Optional[int] = get_size_dict(A__ ) if not is_batched(A__ ): UpperCAmelCase_: List[str] = [images] if not valid_images(A__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) # All transformations expect numpy arrays. UpperCAmelCase_: List[Any] = [to_numpy_array(A__ ) for image in images] if do_resize: UpperCAmelCase_: Dict = [self.resize(image=A__ , size=A__ , resample=A__ ) for image in images] if do_center_crop: UpperCAmelCase_: Optional[Any] = [self.center_crop(image=A__ , size=A__ ) for image in images] if do_rescale: UpperCAmelCase_: Optional[int] = [self.rescale(image=A__ , scale=A__ ) for image in images] if do_normalize: UpperCAmelCase_: List[str] = [self.normalize(image=A__ , mean=A__ , std=A__ ) for image in images] UpperCAmelCase_: Optional[Any] = [to_channel_dimension_format(A__ , A__ ) for image in images] UpperCAmelCase_: List[str] = {"pixel_values": images} return BatchFeature(data=A__ , tensor_type=A__ )
137
from __future__ import annotations from fractions import Fraction def lowercase ( _a ,_a ) -> bool: return ( num != den and num % 10 == den // 10 and (num // 10) / (den % 10) == num / den ) def lowercase ( _a ) -> list[str]: UpperCAmelCase_: int = [] UpperCAmelCase_: Any = 11 UpperCAmelCase_: Union[str, Any] = int("1" + "0" * digit_len ) for num in range(_a ,_a ): while den <= 99: if (num != den) and (num % 10 == den // 10) and (den % 10 != 0): if is_digit_cancelling(_a ,_a ): solutions.append(f"{num}/{den}" ) den += 1 num += 1 UpperCAmelCase_: Any = 10 return solutions def lowercase ( _a = 2 ) -> int: UpperCAmelCase_: Dict = 1.0 for fraction in fraction_list(_a ): UpperCAmelCase_: int = Fraction(_a ) result *= frac.denominator / frac.numerator return int(_a ) if __name__ == "__main__": print(solution())
137
1
'''simple docstring''' from ....configuration_utils import PretrainedConfig from ....utils import logging __UpperCAmelCase = logging.get_logger(__name__) # TODO: upload to AWS __UpperCAmelCase = { 'yjernite/retribert-base-uncased': ( 'https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/config.json' ), } class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = 'retribert' def __init__( self ,__SCREAMING_SNAKE_CASE=30522 ,__SCREAMING_SNAKE_CASE=768 ,__SCREAMING_SNAKE_CASE=8 ,__SCREAMING_SNAKE_CASE=12 ,__SCREAMING_SNAKE_CASE=3072 ,__SCREAMING_SNAKE_CASE="gelu" ,__SCREAMING_SNAKE_CASE=0.1 ,__SCREAMING_SNAKE_CASE=0.1 ,__SCREAMING_SNAKE_CASE=512 ,__SCREAMING_SNAKE_CASE=2 ,__SCREAMING_SNAKE_CASE=0.02 ,__SCREAMING_SNAKE_CASE=1e-12 ,__SCREAMING_SNAKE_CASE=True ,__SCREAMING_SNAKE_CASE=128 ,__SCREAMING_SNAKE_CASE=0 ,**__SCREAMING_SNAKE_CASE ,): super().__init__(pad_token_id=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : Optional[int] = hidden_act SCREAMING_SNAKE_CASE : List[Any] = intermediate_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : Dict = max_position_embeddings SCREAMING_SNAKE_CASE : Any = type_vocab_size SCREAMING_SNAKE_CASE : Any = initializer_range SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE : Union[str, Any] = share_encoders SCREAMING_SNAKE_CASE : str = projection_dim
721
'''simple docstring''' import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt', 'tokenizer_file': 'tokenizer.json'} # See all BART models at https://huggingface.co/models?filter=bart __UpperCAmelCase = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, 'tokenizer_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json', }, } __UpperCAmelCase = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } class _a ( SCREAMING_SNAKE_CASE ): """simple docstring""" A = VOCAB_FILES_NAMES A = PRETRAINED_VOCAB_FILES_MAP A = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A = ['input_ids', 'attention_mask'] A = BartTokenizer def __init__( self ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE=None ,__SCREAMING_SNAKE_CASE="replace" ,__SCREAMING_SNAKE_CASE="<s>" ,__SCREAMING_SNAKE_CASE="</s>" ,__SCREAMING_SNAKE_CASE="</s>" ,__SCREAMING_SNAKE_CASE="<s>" ,__SCREAMING_SNAKE_CASE="<unk>" ,__SCREAMING_SNAKE_CASE="<pad>" ,__SCREAMING_SNAKE_CASE="<mask>" ,__SCREAMING_SNAKE_CASE=False ,__SCREAMING_SNAKE_CASE=True ,**__SCREAMING_SNAKE_CASE ,): super().__init__( __SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ,tokenizer_file=__SCREAMING_SNAKE_CASE ,errors=__SCREAMING_SNAKE_CASE ,bos_token=__SCREAMING_SNAKE_CASE ,eos_token=__SCREAMING_SNAKE_CASE ,sep_token=__SCREAMING_SNAKE_CASE ,cls_token=__SCREAMING_SNAKE_CASE ,unk_token=__SCREAMING_SNAKE_CASE ,pad_token=__SCREAMING_SNAKE_CASE ,mask_token=__SCREAMING_SNAKE_CASE ,add_prefix_space=__SCREAMING_SNAKE_CASE ,trim_offsets=__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ,) SCREAMING_SNAKE_CASE : List[str] = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__SCREAMING_SNAKE_CASE ) != add_prefix_space: SCREAMING_SNAKE_CASE : Optional[Any] = getattr(__SCREAMING_SNAKE_CASE ,pre_tok_state.pop('type' ) ) SCREAMING_SNAKE_CASE : int = add_prefix_space SCREAMING_SNAKE_CASE : Tuple = pre_tok_class(**__SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : int = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` SCREAMING_SNAKE_CASE : int = 'post_processor' SCREAMING_SNAKE_CASE : List[Any] = getattr(self.backend_tokenizer ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) if tokenizer_component_instance: SCREAMING_SNAKE_CASE : List[str] = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: SCREAMING_SNAKE_CASE : str = tuple(state['sep'] ) if "cls" in state: SCREAMING_SNAKE_CASE : Tuple = tuple(state['cls'] ) SCREAMING_SNAKE_CASE : Tuple = False if state.get('add_prefix_space' ,__SCREAMING_SNAKE_CASE ) != add_prefix_space: SCREAMING_SNAKE_CASE : int = add_prefix_space SCREAMING_SNAKE_CASE : Any = True if state.get('trim_offsets' ,__SCREAMING_SNAKE_CASE ) != trim_offsets: SCREAMING_SNAKE_CASE : Optional[int] = trim_offsets SCREAMING_SNAKE_CASE : List[Any] = True if changes_to_apply: SCREAMING_SNAKE_CASE : Union[str, Any] = getattr(__SCREAMING_SNAKE_CASE ,state.pop('type' ) ) SCREAMING_SNAKE_CASE : Optional[int] = component_class(**__SCREAMING_SNAKE_CASE ) setattr(self.backend_tokenizer ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) @property def __a ( self ): if self._mask_token is None: if self.verbose: logger.error('Using mask_token, but it is not set yet.' ) return None return str(self._mask_token ) @mask_token.setter def __a ( self ,__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[str] = AddedToken(__SCREAMING_SNAKE_CASE ,lstrip=__SCREAMING_SNAKE_CASE ,rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE ) else value SCREAMING_SNAKE_CASE : List[Any] = value def __a ( self ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : Optional[Any] = kwargs.get('is_split_into_words' ,__SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._batch_encode_plus(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE : List[str] = kwargs.get('is_split_into_words' ,__SCREAMING_SNAKE_CASE ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ 'to use it with pretokenized inputs.' ) return super()._encode_plus(*__SCREAMING_SNAKE_CASE ,**__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Union[str, Any] = self._tokenizer.model.save(__SCREAMING_SNAKE_CASE ,name=__SCREAMING_SNAKE_CASE ) return tuple(__SCREAMING_SNAKE_CASE ) def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE=None ): SCREAMING_SNAKE_CASE : Union[str, Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self ,__SCREAMING_SNAKE_CASE ,__SCREAMING_SNAKE_CASE = None ): SCREAMING_SNAKE_CASE : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
220
0
import argparse import json import os import re import shutil import torch from transformers import BioGptConfig, BioGptForCausalLM from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES from transformers.tokenization_utils_base import TOKENIZER_CONFIG_FILE from transformers.utils import WEIGHTS_NAME, logging logging.set_verbosity_warning() lowerCamelCase__ : Optional[Any] = 2 class _snake_case : def __init__( self , *, # begin keyword-only arguments SCREAMING_SNAKE_CASE_="<s>" , SCREAMING_SNAKE_CASE_="<pad>" , SCREAMING_SNAKE_CASE_="</s>" , SCREAMING_SNAKE_CASE_="<unk>" , SCREAMING_SNAKE_CASE_=None , ): '''simple docstring''' lowercase__ : Union[str, Any] = bos, unk, pad, eos lowercase__ : List[str] = [] lowercase__ : Any = [] lowercase__ : Dict = {} lowercase__ : Tuple = self.add_symbol(__snake_case) lowercase__ : Any = self.add_symbol(__snake_case) lowercase__ : Optional[Any] = self.add_symbol(__snake_case) lowercase__ : Dict = self.add_symbol(__snake_case) if extra_special_symbols: for s in extra_special_symbols: self.add_symbol(__snake_case) lowercase__ : Tuple = len(self.symbols) def __eq__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return self.indices == other.indices def __getitem__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if idx < len(self.symbols): return self.symbols[idx] return self.unk_word def __len__( self): '''simple docstring''' return len(self.symbols) def __contains__( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return sym in self.indices @classmethod def lowercase__ ( cls , SCREAMING_SNAKE_CASE_): '''simple docstring''' lowercase__ : Dict = cls() d.add_from_file(__snake_case) return d def lowercase__ ( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=1 , SCREAMING_SNAKE_CASE_=False): '''simple docstring''' if word in self.indices and not overwrite: lowercase__ : Union[str, Any] = self.indices[word] lowercase__ : Tuple = self.count[idx] + n return idx else: lowercase__ : Optional[Any] = len(self.symbols) lowercase__ : List[Any] = idx self.symbols.append(__snake_case) self.count.append(__snake_case) return idx def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' return 0 def lowercase__ ( self , SCREAMING_SNAKE_CASE_): '''simple docstring''' if isinstance(__snake_case , __snake_case): try: with open(__snake_case , """r""" , encoding="""utf-8""") as fd: self.add_from_file(__snake_case) except FileNotFoundError as fnfe: raise fnfe except UnicodeError: raise Exception("""Incorrect encoding detected in {}, please rebuild the dataset""".format(__snake_case)) return lowercase__ : List[Any] = f.readlines() lowercase__ : Optional[Any] = self._load_meta(__snake_case) for line in lines[indices_start_line:]: try: lowercase__ : Optional[int] = line.rstrip().rsplit(""" """ , 1) if field == "#fairseq:overwrite": lowercase__ : List[str] = True lowercase__ : Tuple = line.rsplit(""" """ , 1) else: lowercase__ : Tuple = False lowercase__ : int = int(__snake_case) lowercase__ : Optional[Any] = line if word in self and not overwrite: raise RuntimeError( """Duplicate word found when loading Dictionary: '{}'. """ """Duplicate words can overwrite earlier ones by adding the """ """#fairseq:overwrite flag at the end of the corresponding row """ """in the dictionary file. If using the Camembert model, please """ """download an updated copy of the model file.""".format(__snake_case)) self.add_symbol(__snake_case , n=__snake_case , overwrite=__snake_case) except ValueError: raise ValueError("""Incorrect dictionary format, expected '<token> <cnt> [flags]'""") def UpperCamelCase ( lowercase_ ) -> int: '''simple docstring''' lowercase__ : Union[str, Any] = dict((re.sub(R"""@@$""" , """""" , SCREAMING_SNAKE_CASE__ ), v) if k.endswith("""@@""" ) else (re.sub(R"""$""" , """</w>""" , SCREAMING_SNAKE_CASE__ ), v) for k, v in d.items() ) lowercase__ : str = """<s> <pad> </s> <unk>""".split() # restore the special tokens for k in keep_keys: del da[F'{k}</w>'] lowercase__ : List[Any] = d[k] # restore return da def UpperCamelCase ( lowercase_ , lowercase_ ) -> Optional[int]: '''simple docstring''' if not os.path.exists(SCREAMING_SNAKE_CASE__ ): raise ValueError(F'path {biogpt_checkpoint_path} does not exist!' ) os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) print(F'Writing results to {pytorch_dump_folder_path}' ) # handle various types of models lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , """checkpoint.pt""" ) if not os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F'path to the file {checkpoint_file} does not exist!' ) lowercase__ : str = torch.load(SCREAMING_SNAKE_CASE__ , map_location="""cpu""" ) lowercase__ : List[Any] = chkpt["""cfg"""]["""model"""] # dicts lowercase__ : Dict = os.path.join(SCREAMING_SNAKE_CASE__ , """dict.txt""" ) if not os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F'path to the file {dict_file} does not exist!' ) lowercase__ : Optional[int] = Dictionary.load(SCREAMING_SNAKE_CASE__ ) lowercase__ : Optional[Any] = rewrite_dict_keys(src_dict.indices ) lowercase__ : List[Any] = len(SCREAMING_SNAKE_CASE__ ) lowercase__ : Tuple = os.path.join(SCREAMING_SNAKE_CASE__ , VOCAB_FILES_NAMES["""vocab_file"""] ) print(F'Generating {src_vocab_file} of {src_vocab_size} records' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # merges_file (bpecodes) lowercase__ : int = os.path.join(SCREAMING_SNAKE_CASE__ , """bpecodes""" ) if not os.path.isfile(SCREAMING_SNAKE_CASE__ ): raise ValueError(F'path to the file {bpecodes_file} does not exist!' ) lowercase__ : Optional[Any] = os.path.join(SCREAMING_SNAKE_CASE__ , VOCAB_FILES_NAMES["""merges_file"""] ) shutil.copyfile(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) # model config lowercase__ : int = os.path.join(SCREAMING_SNAKE_CASE__ , """config.json""" ) lowercase__ : Union[str, Any] = { """activation_dropout""": args["""activation_dropout"""], """architectures""": ["""BioGptForCausalLM"""], """attention_probs_dropout_prob""": args["""attention_dropout"""], """bos_token_id""": 0, """eos_token_id""": 2, """hidden_act""": args["""activation_fn"""], """hidden_dropout_prob""": args["""dropout"""], """hidden_size""": args["""decoder_embed_dim"""], """initializer_range""": 0.02, """intermediate_size""": args["""decoder_ffn_embed_dim"""], """layer_norm_eps""": 1E-12, """layerdrop""": args["""decoder_layerdrop"""], """max_position_embeddings""": args["""max_target_positions"""], """model_type""": """biogpt""", """num_attention_heads""": args["""decoder_attention_heads"""], """num_hidden_layers""": args["""decoder_layers"""], """pad_token_id""": 1, """scale_embedding""": not args["""no_scale_embedding"""], """tie_word_embeddings""": args["""share_decoder_input_output_embed"""], """vocab_size""": src_vocab_size, } # good hparam defaults to start with print(F'Generating {biogpt_model_config_file}' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # tokenizer config lowercase__ : Any = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase__ : str = { """bos_token""": """<s>""", """eos_token""": """</s>""", """model_max_length""": 10_24, """pad_token""": """<pad>""", """special_tokens_map_file""": None, """tokenizer_class""": """BioGptTokenizer""", """unk_token""": """<unk>""", } print(F'Generating {biogpt_tokenizer_config_file}' ) with open(SCREAMING_SNAKE_CASE__ , """w""" , encoding="""utf-8""" ) as f: f.write(json.dumps(SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ , indent=SCREAMING_SNAKE_CASE__ ) ) # model lowercase__ : Any = chkpt["""model"""] # remove unneeded keys lowercase__ : List[Any] = [ """decoder.version""", ] for k in ignore_keys: model_state_dict.pop(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowercase__ : List[Any] = list(model_state_dict.keys() ) for layer_name in layer_names: if layer_name.endswith("""output_projection.weight""" ): lowercase__ : Optional[Any] = model_state_dict.pop(SCREAMING_SNAKE_CASE__ ) else: lowercase__ : Dict = model_state_dict.pop(SCREAMING_SNAKE_CASE__ ) lowercase__ : List[str] = BioGptConfig.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowercase__ : Tuple = BioGptForCausalLM(SCREAMING_SNAKE_CASE__ ) # check that it loads ok model_new.load_state_dict(SCREAMING_SNAKE_CASE__ ) # save lowercase__ : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print(F'Generating {pytorch_weights_dump_path}' ) torch.save(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) print("""Conversion is done!""" ) if __name__ == "__main__": lowerCamelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--biogpt_checkpoint_path""", default=None, type=str, required=True, help=( """Path to the official PyTorch checkpoint file which is expected to reside in the dump dir with dicts,""" """ bpecodes, etc.""" ), ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) lowerCamelCase__ : Any = parser.parse_args() convert_biogpt_checkpoint_to_pytorch(args.biogpt_checkpoint_path, args.pytorch_dump_folder_path)
12
'''simple docstring''' import gc import random import unittest import numpy as np import torch from diffusers import DDIMScheduler, KandinskyVaaPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel from diffusers.utils import floats_tensor, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class lowercase__ ( _snake_case , unittest.TestCase ): '''simple docstring''' A_ : Dict = KandinskyVaaPipeline A_ : List[str] = [ """image_embeds""", """negative_image_embeds""", ] A_ : Optional[int] = ["""image_embeds""", """negative_image_embeds"""] A_ : Optional[Any] = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] A_ : Dict = False @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return 32 @property def UpperCAmelCase_ ( self ): return self.time_input_dim @property def UpperCAmelCase_ ( self ): return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self ): return 100 @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Tuple = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } _SCREAMING_SNAKE_CASE : Any = UNetaDConditionModel(**__snake_case ) return model @property def UpperCAmelCase_ ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def UpperCAmelCase_ ( self ): torch.manual_seed(0 ) _SCREAMING_SNAKE_CASE : Tuple = VQModel(**self.dummy_movq_kwargs ) return model def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : int = self.dummy_unet _SCREAMING_SNAKE_CASE : List[str] = self.dummy_movq _SCREAMING_SNAKE_CASE : Optional[Any] = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__snake_case , set_alpha_to_one=__snake_case , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__snake_case , ) _SCREAMING_SNAKE_CASE : Dict = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def UpperCAmelCase_ ( self , __snake_case , __snake_case=0 ): _SCREAMING_SNAKE_CASE : int = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__snake_case ) ).to(__snake_case ) _SCREAMING_SNAKE_CASE : List[str] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __snake_case ) if str(__snake_case ).startswith("""mps""" ): _SCREAMING_SNAKE_CASE : str = torch.manual_seed(__snake_case ) else: _SCREAMING_SNAKE_CASE : Dict = torch.Generator(device=__snake_case ).manual_seed(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : Optional[Any] = """cpu""" _SCREAMING_SNAKE_CASE : Dict = self.get_dummy_components() _SCREAMING_SNAKE_CASE : List[Any] = self.pipeline_class(**__snake_case ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pipe.to(__snake_case ) pipe.set_progress_bar_config(disable=__snake_case ) _SCREAMING_SNAKE_CASE : Any = pipe(**self.get_dummy_inputs(__snake_case ) ) _SCREAMING_SNAKE_CASE : Tuple = output.images _SCREAMING_SNAKE_CASE : Dict = pipe( **self.get_dummy_inputs(__snake_case ) , return_dict=__snake_case , )[0] _SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] _SCREAMING_SNAKE_CASE : List[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _SCREAMING_SNAKE_CASE : Dict = np.array( [0.6237976, 1.0, 0.36441332, 1.0, 0.70639634, 0.29877186, 0.85652125, 0.5216843, 0.54454046] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class lowercase__ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCAmelCase_ ( self ): _SCREAMING_SNAKE_CASE : List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_text2img_cat_fp16.npy""" ) _SCREAMING_SNAKE_CASE : List[Any] = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__snake_case ) _SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-decoder""" , torch_dtype=torch.floataa ) _SCREAMING_SNAKE_CASE : Union[str, Any] = pipeline.to(__snake_case ) pipeline.set_progress_bar_config(disable=__snake_case ) _SCREAMING_SNAKE_CASE : Dict = """red cat, 4k photo""" _SCREAMING_SNAKE_CASE : List[str] = torch.Generator(device="""cuda""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = pipe_prior( __snake_case , generator=__snake_case , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() _SCREAMING_SNAKE_CASE : Dict = torch.Generator(device="""cuda""" ).manual_seed(0 ) _SCREAMING_SNAKE_CASE : List[str] = pipeline( image_embeds=__snake_case , negative_image_embeds=__snake_case , generator=__snake_case , num_inference_steps=100 , output_type="""np""" , ) _SCREAMING_SNAKE_CASE : List[Any] = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__snake_case , __snake_case )
533
0
import math def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ) -> str: SCREAMING_SNAKE_CASE_ : Tuple = [True] * n SCREAMING_SNAKE_CASE_ : Optional[Any] = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = False SCREAMING_SNAKE_CASE_ : List[str] = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): SCREAMING_SNAKE_CASE_ : List[Any] = i * 2 while index < n: SCREAMING_SNAKE_CASE_ : Tuple = False SCREAMING_SNAKE_CASE_ : Union[str, Any] = index + i SCREAMING_SNAKE_CASE_ : Optional[Any] = [2] for i in range(3 , SCREAMING_SNAKE_CASE , 2 ): if is_prime[i]: primes.append(SCREAMING_SNAKE_CASE ) return primes def __SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = 9999_6666_3333 ) -> Any: SCREAMING_SNAKE_CASE_ : Any = math.floor(math.sqrt(SCREAMING_SNAKE_CASE ) ) + 100 SCREAMING_SNAKE_CASE_ : Optional[Any] = prime_sieve(SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : Any = 0 SCREAMING_SNAKE_CASE_ : int = primes[prime_index] while (last_prime**2) <= limit: SCREAMING_SNAKE_CASE_ : List[str] = primes[prime_index + 1] SCREAMING_SNAKE_CASE_ : Optional[int] = last_prime**2 SCREAMING_SNAKE_CASE_ : int = next_prime**2 # Get numbers divisible by lps(current) SCREAMING_SNAKE_CASE_ : Tuple = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) SCREAMING_SNAKE_CASE_ : int = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps SCREAMING_SNAKE_CASE_ : int = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair SCREAMING_SNAKE_CASE_ : Union[str, Any] = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
706
import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowerCAmelCase__: Optional[Any] = logging.get_logger(__name__) lowerCAmelCase__: Dict = {"vocab_file": "spiece.model"} lowerCAmelCase__: Dict = { "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", } } lowerCAmelCase__: Dict = { "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } lowerCAmelCase__: List[str] = "▁" class snake_case_ ( lowerCAmelCase ): __lowerCamelCase : Optional[int] = VOCAB_FILES_NAMES __lowerCamelCase : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , __lowerCAmelCase , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=False , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="[SEP]" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="[CLS]" , __lowerCAmelCase="[MASK]" , __lowerCAmelCase = None , **__lowerCAmelCase , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. SCREAMING_SNAKE_CASE_ : Any = ( AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase , normalized=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else mask_token ) SCREAMING_SNAKE_CASE_ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__lowerCAmelCase , remove_space=__lowerCAmelCase , keep_accents=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCAmelCase , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = do_lower_case SCREAMING_SNAKE_CASE_ : str = remove_space SCREAMING_SNAKE_CASE_ : Any = keep_accents SCREAMING_SNAKE_CASE_ : List[str] = vocab_file SCREAMING_SNAKE_CASE_ : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__lowerCAmelCase ) @property def __A ( self ): return len(self.sp_model ) def __A ( self ): SCREAMING_SNAKE_CASE_ : Any = {self.convert_ids_to_tokens(__lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ): SCREAMING_SNAKE_CASE_ : Any = self.__dict__.copy() SCREAMING_SNAKE_CASE_ : Optional[int] = None return state def __setstate__( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __A ( self , __lowerCAmelCase ): if self.remove_space: SCREAMING_SNAKE_CASE_ : Any = ' '.join(inputs.strip().split() ) else: SCREAMING_SNAKE_CASE_ : List[str] = inputs SCREAMING_SNAKE_CASE_ : str = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: SCREAMING_SNAKE_CASE_ : Dict = unicodedata.normalize('NFKD' , __lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = ''.join([c for c in outputs if not unicodedata.combining(__lowerCAmelCase )] ) if self.do_lower_case: SCREAMING_SNAKE_CASE_ : Union[str, Any] = outputs.lower() return outputs def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = self.preprocess_text(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : str = self.sp_model.encode(__lowerCAmelCase , out_type=__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[int] = [] for piece in pieces: if len(__lowerCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.sp_model.EncodeAsPieces(piece[:-1].replace(__lowerCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: SCREAMING_SNAKE_CASE_ : Any = cur_pieces[1:] else: SCREAMING_SNAKE_CASE_ : Any = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(__lowerCAmelCase ) else: new_pieces.append(__lowerCAmelCase ) return new_pieces def __A ( self , __lowerCAmelCase ): return self.sp_model.PieceToId(__lowerCAmelCase ) def __A ( self , __lowerCAmelCase ): return self.sp_model.IdToPiece(__lowerCAmelCase ) def __A ( self , __lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : List[Any] = [] SCREAMING_SNAKE_CASE_ : List[Any] = '' SCREAMING_SNAKE_CASE_ : List[str] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(__lowerCAmelCase ) + token SCREAMING_SNAKE_CASE_ : Dict = True SCREAMING_SNAKE_CASE_ : Optional[Any] = [] else: current_sub_tokens.append(__lowerCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = False out_string += self.sp_model.decode(__lowerCAmelCase ) return out_string.strip() def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : List[str] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None , __lowerCAmelCase = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCAmelCase , token_ids_a=__lowerCAmelCase , already_has_special_tokens=__lowerCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(__lowerCAmelCase )) + [1] + ([0] * len(__lowerCAmelCase )) + [1] return [1] + ([0] * len(__lowerCAmelCase )) + [1] def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = [self.sep_token_id] SCREAMING_SNAKE_CASE_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __A ( self , __lowerCAmelCase , __lowerCAmelCase = None ): if not os.path.isdir(__lowerCAmelCase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return SCREAMING_SNAKE_CASE_ : Union[str, Any] = os.path.join( __lowerCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(__lowerCAmelCase , 'wb' ) as fi: SCREAMING_SNAKE_CASE_ : Dict = self.sp_model.serialized_model_proto() fi.write(__lowerCAmelCase ) return (out_vocab_file,)
311
0
'''simple docstring''' import os import shutil import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np from datasets import Dataset from transformers.models.realm.configuration_realm import RealmConfig from transformers.models.realm.retrieval_realm import _REALM_BLOCK_RECORDS_FILENAME, RealmRetriever from transformers.models.realm.tokenization_realm import VOCAB_FILES_NAMES, RealmTokenizer class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" def lowercase_ ( self ) -> Optional[int]: __lowerCamelCase : Union[str, Any] = tempfile.mkdtemp() __lowerCamelCase : Optional[Any] = 5 # Realm tok __lowerCamelCase : List[str] = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'test', 'question', 'this', 'is', 'the', 'first', 'second', 'third', 'fourth', 'fifth', 'record', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] __lowerCamelCase : Optional[Any] = os.path.join(self.tmpdirname , 'realm_tokenizer' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase : Any = os.path.join(SCREAMING_SNAKE_CASE_ , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) __lowerCamelCase : str = os.path.join(self.tmpdirname , 'realm_block_records' ) os.makedirs(SCREAMING_SNAKE_CASE_ , exist_ok=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> RealmTokenizer: return RealmTokenizer.from_pretrained(os.path.join(self.tmpdirname , 'realm_tokenizer' ) ) def lowercase_ ( self ) -> Optional[int]: shutil.rmtree(self.tmpdirname ) def lowercase_ ( self ) -> Any: __lowerCamelCase : List[str] = RealmConfig(num_block_records=self.num_block_records ) return config def lowercase_ ( self ) -> Union[str, Any]: __lowerCamelCase : Optional[Any] = Dataset.from_dict( { 'id': ['0', '1'], 'question': ['foo', 'bar'], 'answers': [['Foo', 'Bar'], ['Bar']], } ) return dataset def lowercase_ ( self ) -> List[str]: __lowerCamelCase : Optional[int] = np.array( [ B'This is the first record', B'This is the second record', B'This is the third record', B'This is the fourth record', B'This is the fifth record', B'This is a longer longer longer record', ] , dtype=SCREAMING_SNAKE_CASE_ , ) return block_records def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : Any = RealmRetriever( block_records=self.get_dummy_block_records() , tokenizer=self.get_tokenizer() , ) return retriever def lowercase_ ( self ) -> str: __lowerCamelCase : Union[str, Any] = self.get_config() __lowerCamelCase : int = self.get_dummy_retriever() __lowerCamelCase : Any = retriever.tokenizer __lowerCamelCase : List[str] = np.array([0, 3] , dtype='long' ) __lowerCamelCase : Union[str, Any] = tokenizer(['Test question'] ).input_ids __lowerCamelCase : Optional[Any] = tokenizer( ['the fourth'] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids __lowerCamelCase : int = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Tuple = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , 2 ) self.assertEqual(concat_inputs.input_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.attention_mask.shape , (2, 10) ) self.assertEqual(concat_inputs.token_type_ids.shape , (2, 10) ) self.assertEqual(concat_inputs.special_tokens_mask.shape , (2, 10) ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[0] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'first', 'record', '[SEP]'] , ) self.assertEqual( tokenizer.convert_ids_to_tokens(concat_inputs.input_ids[1] ) , ['[CLS]', 'test', 'question', '[SEP]', 'this', 'is', 'the', 'fourth', 'record', '[SEP]'] , ) def lowercase_ ( self ) -> Dict: __lowerCamelCase : Optional[Any] = self.get_config() __lowerCamelCase : Any = self.get_dummy_retriever() __lowerCamelCase : Optional[int] = retriever.tokenizer __lowerCamelCase : Any = np.array([0, 3, 5] , dtype='long' ) __lowerCamelCase : Optional[Any] = tokenizer(['Test question'] ).input_ids __lowerCamelCase : List[str] = tokenizer( ['the fourth', 'longer longer'] , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , ).input_ids __lowerCamelCase : Union[str, Any] = config.reader_seq_len __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : str = retriever( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , answer_ids=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) self.assertEqual([False, True, True] , SCREAMING_SNAKE_CASE_ ) self.assertEqual([[-1, -1, -1], [6, -1, -1], [6, 7, 8]] , SCREAMING_SNAKE_CASE_ ) self.assertEqual([[-1, -1, -1], [7, -1, -1], [7, 8, 9]] , SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : int = self.get_dummy_retriever() retriever.save_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) # Test local path __lowerCamelCase : List[Any] = retriever.from_pretrained(os.path.join(self.tmpdirname , 'realm_block_records' ) ) self.assertEqual(retriever.block_records[0] , B'This is the first record' ) # Test mocked remote path with patch('transformers.models.realm.retrieval_realm.hf_hub_download' ) as mock_hf_hub_download: __lowerCamelCase : Union[str, Any] = os.path.join( os.path.join(self.tmpdirname , 'realm_block_records' ) , _REALM_BLOCK_RECORDS_FILENAME ) __lowerCamelCase : str = RealmRetriever.from_pretrained('google/realm-cc-news-pretrained-openqa' ) self.assertEqual(retriever.block_records[0] , B'This is the first record' )
13
'''simple docstring''' import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all BART models at https://huggingface.co/models?filter=bart UpperCamelCase__ = { 'vocab_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/vocab.json', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/vocab.json', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json', }, 'merges_file': { 'facebook/bart-base': 'https://huggingface.co/facebook/bart-base/resolve/main/merges.txt', 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/merges.txt', 'facebook/bart-large-mnli': 'https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt', 'facebook/bart-large-cnn': 'https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt', 'facebook/bart-large-xsum': 'https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt', 'yjernite/bart_eli5': 'https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt', }, } UpperCamelCase__ = { 'facebook/bart-base': 1024, 'facebook/bart-large': 1024, 'facebook/bart-large-mnli': 1024, 'facebook/bart-large-cnn': 1024, 'facebook/bart-large-xsum': 1024, 'yjernite/bart_eli5': 1024, } @lru_cache() def __SCREAMING_SNAKE_CASE ( ): """simple docstring""" lowercase_ : List[Any] = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) lowercase_ : str = bs[:] lowercase_ : Dict = 0 for b in range(2**8 ): if b not in bs: bs.append(_UpperCamelCase ) cs.append(2**8 + n ) n += 1 lowercase_ : Optional[int] = [chr(_UpperCamelCase ) for n in cs] return dict(zip(_UpperCamelCase , _UpperCamelCase ) ) def __SCREAMING_SNAKE_CASE ( _UpperCamelCase ): """simple docstring""" lowercase_ : Optional[int] = set() lowercase_ : Union[str, Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowercase_ : Dict = char return pairs class _UpperCAmelCase ( snake_case ): __lowerCamelCase: Dict = VOCAB_FILES_NAMES __lowerCamelCase: int = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase: Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase: str = ['input_ids', 'attention_mask'] def __init__( self : Tuple , a : Tuple , a : Tuple , a : int="replace" , a : Optional[int]="<s>" , a : Tuple="</s>" , a : Tuple="</s>" , a : Tuple="<s>" , a : Optional[Any]="<unk>" , a : Dict="<pad>" , a : List[str]="<mask>" , a : Tuple=False , **a : Optional[int] , ): '''simple docstring''' lowercase_ : List[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else bos_token lowercase_ : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else eos_token lowercase_ : str = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else sep_token lowercase_ : Any = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else cls_token lowercase_ : Dict = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else unk_token lowercase_ : List[Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else pad_token # Mask token behave like a normal word, i.e. include the space before it lowercase_ : Union[str, Any] = AddedToken(a , lstrip=a , rstrip=a ) if isinstance(a , a ) else mask_token super().__init__( errors=a , bos_token=a , eos_token=a , unk_token=a , sep_token=a , cls_token=a , pad_token=a , mask_token=a , add_prefix_space=a , **a , ) with open(a , encoding="utf-8" ) as vocab_handle: lowercase_ : Any = json.load(a ) lowercase_ : Union[str, Any] = {v: k for k, v in self.encoder.items()} lowercase_ : Dict = errors # how to handle errors in decoding lowercase_ : Any = bytes_to_unicode() lowercase_ : List[Any] = {v: k for k, v in self.byte_encoder.items()} with open(a , encoding="utf-8" ) as merges_handle: lowercase_ : Optional[Any] = merges_handle.read().split("\n" )[1:-1] lowercase_ : Any = [tuple(merge.split() ) for merge in bpe_merges] lowercase_ : List[str] = dict(zip(a , range(len(a ) ) ) ) lowercase_ : Optional[Any] = {} lowercase_ : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions lowercase_ : str = re.compile(R"'s|'t|'re|'ve|'m|'ll|'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return len(self.encoder ) def lowerCAmelCase__ ( self : Dict ): '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase__ ( self : Any , a : int ): '''simple docstring''' if token in self.cache: return self.cache[token] lowercase_ : Optional[Any] = tuple(a ) lowercase_ : Tuple = get_pairs(a ) if not pairs: return token while True: lowercase_ : Any = min(a , key=lambda a : self.bpe_ranks.get(a , float("inf" ) ) ) if bigram not in self.bpe_ranks: break lowercase_ , lowercase_ : Dict = bigram lowercase_ : List[Any] = [] lowercase_ : Optional[Any] = 0 while i < len(a ): try: lowercase_ : Union[str, Any] = word.index(a , a ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowercase_ : Any = j if word[i] == first and i < len(a ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowercase_ : Any = tuple(a ) lowercase_ : List[str] = new_word if len(a ) == 1: break else: lowercase_ : Union[str, Any] = get_pairs(a ) lowercase_ : List[str] = " ".join(a ) lowercase_ : Optional[int] = word return word def lowerCAmelCase__ ( self : Any , a : str ): '''simple docstring''' lowercase_ : Dict = [] for token in re.findall(self.pat , a ): lowercase_ : Tuple = "".join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(a ).split(" " ) ) return bpe_tokens def lowerCAmelCase__ ( self : Tuple , a : Dict ): '''simple docstring''' return self.encoder.get(a , self.encoder.get(self.unk_token ) ) def lowerCAmelCase__ ( self : Tuple , a : str ): '''simple docstring''' return self.decoder.get(a ) def lowerCAmelCase__ ( self : int , a : Optional[Any] ): '''simple docstring''' lowercase_ : int = "".join(a ) lowercase_ : str = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase__ ( self : List[str] , a : str , a : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(a ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return lowercase_ : Any = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) lowercase_ : Optional[int] = os.path.join( a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(a , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=a , ensure_ascii=a ) + "\n" ) lowercase_ : Dict = 0 with open(a , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda a : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" " Please check that the tokenizer is not corrupted!" ) lowercase_ : Optional[Any] = token_index writer.write(" ".join(a ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase__ ( self : List[str] , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] lowercase_ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase__ ( self : int , a : List[int] , a : Optional[List[int]] = None , a : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=a , token_ids_a=a , already_has_special_tokens=a ) if token_ids_a is None: return [1] + ([0] * len(a )) + [1] return [1] + ([0] * len(a )) + [1, 1] + ([0] * len(a )) + [1] def lowerCAmelCase__ ( self : Optional[int] , a : List[int] , a : Optional[List[int]] = None ): '''simple docstring''' lowercase_ : Union[str, Any] = [self.sep_token_id] lowercase_ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase__ ( self : str , a : Any , a : int=False , **a : List[Any] ): '''simple docstring''' lowercase_ : Any = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(a ) > 0 and not text[0].isspace()): lowercase_ : str = " " + text return (text, kwargs)
620
0
from typing import List, Optional, Union import numpy as np from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging snake_case = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Any = ['''input_values''', '''padding_mask'''] def __init__( self : Tuple , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : int = 2_4000 , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : float = None , UpperCAmelCase_ : float = None , **UpperCAmelCase_ : Optional[Any] , ): super().__init__(feature_size=UpperCAmelCase_ , sampling_rate=UpperCAmelCase_ , padding_value=UpperCAmelCase_ , **UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = chunk_length_s SCREAMING_SNAKE_CASE : List[str] = overlap @property def _A ( self : Optional[Any] ): if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _A ( self : List[str] ): if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) def __call__( self : Dict , UpperCAmelCase_ : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , UpperCAmelCase_ : Optional[Union[bool, str, PaddingStrategy]] = None , UpperCAmelCase_ : Optional[bool] = False , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Union[str, TensorType]] = None , UpperCAmelCase_ : Optional[int] = None , ): if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( "It is strongly recommended to pass the `sampling_rate` argument to this function. " "Failing to do so can result in silent errors that might be hard to debug." ) if padding and truncation: raise ValueError("Both padding and truncation were set. Make sure you only set one." ) elif padding is None: # by default let's pad the inputs SCREAMING_SNAKE_CASE : int = True SCREAMING_SNAKE_CASE : Tuple = bool( isinstance(UpperCAmelCase_ , (list, tuple) ) and (isinstance(raw_audio[0] , (np.ndarray, tuple, list) )) ) if is_batched: SCREAMING_SNAKE_CASE : Any = [np.asarray(UpperCAmelCase_ , dtype=np.floataa ).T for audio in raw_audio] elif not is_batched and not isinstance(UpperCAmelCase_ , np.ndarray ): SCREAMING_SNAKE_CASE : Optional[int] = np.asarray(UpperCAmelCase_ , dtype=np.floataa ) elif isinstance(UpperCAmelCase_ , np.ndarray ) and raw_audio.dtype is np.dtype(np.floataa ): SCREAMING_SNAKE_CASE : str = raw_audio.astype(np.floataa ) # always return batch if not is_batched: SCREAMING_SNAKE_CASE : Any = [np.asarray(UpperCAmelCase_ ).T] # verify inputs are valid for idx, example in enumerate(UpperCAmelCase_ ): if example.ndim > 2: raise ValueError(f'''Expected input shape (channels, length) but got shape {example.shape}''' ) if self.feature_size == 1 and example.ndim != 1: raise ValueError(f'''Expected mono audio but example has {example.shape[-1]} channels''' ) if self.feature_size == 2 and example.shape[-1] != 2: raise ValueError(f'''Expected stereo audio but example has {example.shape[-1]} channels''' ) SCREAMING_SNAKE_CASE : List[str] = None SCREAMING_SNAKE_CASE : List[Any] = BatchFeature({"input_values": raw_audio} ) if self.chunk_stride is not None and self.chunk_length is not None and max_length is None: if truncation: SCREAMING_SNAKE_CASE : Tuple = min(array.shape[0] for array in raw_audio ) SCREAMING_SNAKE_CASE : Dict = int(np.floor(max_length / self.chunk_stride ) ) SCREAMING_SNAKE_CASE : int = (nb_step - 1) * self.chunk_stride + self.chunk_length elif padding: SCREAMING_SNAKE_CASE : List[Any] = max(array.shape[0] for array in raw_audio ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(np.ceil(max_length / self.chunk_stride ) ) SCREAMING_SNAKE_CASE : int = (nb_step - 1) * self.chunk_stride + self.chunk_length SCREAMING_SNAKE_CASE : Dict = "max_length" else: SCREAMING_SNAKE_CASE : List[str] = input_values # normal padding on batch if padded_inputs is None: SCREAMING_SNAKE_CASE : Tuple = self.pad( UpperCAmelCase_ , max_length=UpperCAmelCase_ , truncation=UpperCAmelCase_ , padding=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , ) if padding: SCREAMING_SNAKE_CASE : Optional[Any] = padded_inputs.pop("attention_mask" ) SCREAMING_SNAKE_CASE : List[str] = [] for example in padded_inputs.pop("input_values" ): if self.feature_size == 1: SCREAMING_SNAKE_CASE : Optional[Any] = example[..., None] input_values.append(example.T ) SCREAMING_SNAKE_CASE : Tuple = input_values if return_tensors is not None: SCREAMING_SNAKE_CASE : Any = padded_inputs.convert_to_tensors(UpperCAmelCase_ ) return padded_inputs
704
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Any=18 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Dict=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = min_resolution SCREAMING_SNAKE_CASE : Any = max_resolution SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {"height": 18, "width": 20} SCREAMING_SNAKE_CASE : Optional[Any] = do_thumbnail SCREAMING_SNAKE_CASE : Tuple = do_align_axis SCREAMING_SNAKE_CASE : List[str] = do_pad SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Any = image_mean SCREAMING_SNAKE_CASE : Any = image_std def _A ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : str = DonutImageProcessor if is_vision_available() else None def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = DonutImageProcessingTester(self ) @property def _A ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_thumbnail" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_align_long_axis" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_pad" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def _A ( self : Dict ): pass @is_flaky() def _A ( self : Optional[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Dict = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def _A ( self : List[str] ): # Initialize image_processing SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def _A ( self : Dict ): # Initialize image_processing SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
488
0
'''simple docstring''' import argparse import os import torch from transformers.utils import WEIGHTS_NAME UpperCamelCase_ = ["""small""", """medium""", """large"""] UpperCamelCase_ = """lm_head.decoder.weight""" UpperCamelCase_ = """lm_head.weight""" def _lowerCAmelCase ( __magic_name__ : str , __magic_name__ : str ) -> List[str]: lowercase : List[str] =torch.load(__magic_name__ ) lowercase : List[str] =d.pop(__magic_name__ ) os.makedirs(__magic_name__ , exist_ok=__magic_name__ ) torch.save(__magic_name__ , os.path.join(__magic_name__ , __magic_name__ ) ) if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("""--dialogpt_path""", default=""".""", type=str) UpperCamelCase_ = parser.parse_args() for MODEL in DIALOGPT_MODELS: UpperCamelCase_ = os.path.join(args.dialogpt_path, f'''{MODEL}_ft.pkl''') UpperCamelCase_ = f'''./DialoGPT-{MODEL}''' convert_dialogpt_checkpoint( checkpoint_path, pytorch_dump_folder_path, )
92
class snake_case_ : '''simple docstring''' def __init__( self : Tuple , __magic_name__ : Any , __magic_name__ : int , __magic_name__ : List[Any] ) -> Union[str, Any]: lowerCamelCase_ : Any = name lowerCamelCase_ : Optional[Any] = value lowerCamelCase_ : str = weight def __repr__( self : int ) -> Optional[int]: return F"{self.__class__.__name__}({self.name}, {self.value}, {self.weight})" def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[Any]: return self.value def __SCREAMING_SNAKE_CASE ( self : str ) -> int: return self.name def __SCREAMING_SNAKE_CASE ( self : Tuple ) -> str: return self.weight def __SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Optional[Any]: return self.value / self.weight def __a ( __UpperCAmelCase : Any , __UpperCAmelCase : Tuple , __UpperCAmelCase : Any ) -> int: """simple docstring""" lowerCamelCase_ : int = [] for i in range(len(__UpperCAmelCase ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __a ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_ : Dict = sorted(__UpperCAmelCase , key=__UpperCAmelCase , reverse=__UpperCAmelCase ) lowerCamelCase_ : List[Any] = [] lowerCamelCase_ , lowerCamelCase_ : Tuple = 0.0, 0.0 for i in range(len(__UpperCAmelCase ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __a ( ) -> List[str]: """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
488
0
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE_ : Optional[Any] = {'configuration_mmbt': ['MMBTConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ : Dict = ['MMBTForClassification', 'MMBTModel', 'ModalEmbeddings'] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys SCREAMING_SNAKE_CASE_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE_ : Tuple = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' SCREAMING_SNAKE_CASE_ : Optional[int] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' SCREAMING_SNAKE_CASE_ : int = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): if label_map is not None: for old_id, new_id in label_map.items(): A__ = new_id # turn into Numpy arrays A__ = np.array(UpperCAmelCase_ ) A__ = np.array(UpperCAmelCase_ ) if reduce_labels: A__ = 255 A__ = label - 1 A__ = 255 A__ = label != ignore_index A__ = np.not_equal(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = pred_label[mask] A__ = np.array(UpperCAmelCase_ )[mask] A__ = pred_label[pred_label == label] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCAmelCase_ , UpperCAmelCase_ ): A__ , A__ , A__ , A__ = intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): A__ , A__ , A__ , A__ = total_intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # compute metrics A__ = {} A__ = total_area_intersect.sum() / total_area_label.sum() A__ = total_area_intersect / total_area_union A__ = total_area_intersect / total_area_label A__ = np.nanmean(UpperCAmelCase_ ) A__ = np.nanmean(UpperCAmelCase_ ) A__ = all_acc A__ = iou A__ = acc if nan_to_num is not None: A__ = {metric: np.nan_to_num(UpperCAmelCase_ , nan=UpperCAmelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def UpperCamelCase ( self: str , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int , UpperCamelCase: bool , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[Dict[int, int]] = None , UpperCamelCase: bool = False , ): """simple docstring""" A__ = mean_iou( results=UpperCamelCase , gt_seg_maps=UpperCamelCase , num_labels=UpperCamelCase , ignore_index=UpperCamelCase , nan_to_num=UpperCamelCase , label_map=UpperCamelCase , reduce_labels=UpperCamelCase , ) return iou_result
500
0
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCamelCase : Dict = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _lowerCamelCase : Any = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
import os import numpy import onnx def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : List[str] = a.name A_ : int = b.name A_ : int = """""" A_ : Union[str, Any] = """""" A_ : Tuple = a == b A_ : Optional[Any] = name_a A_ : int = name_b return res def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(_lowerCAmelCase ,_lowerCAmelCase ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g ,_lowerCAmelCase ,_lowerCAmelCase ) _graph_replace_input_with(node_proto.attribute[1].g ,_lowerCAmelCase ,_lowerCAmelCase ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g ,_lowerCAmelCase ,_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' for n in graph_proto.node: _node_replace_input_with(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ): '''simple docstring''' A_ : List[Any] = list(model.graph.initializer ) A_ : List[Any] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i A_ : Optional[int] = inits[i].name A_ : Any = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph ,_lowerCAmelCase ,_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase ): '''simple docstring''' A_ : Tuple = os.path.dirname(_lowerCAmelCase ) A_ : int = os.path.basename(_lowerCAmelCase ) A_ : Optional[int] = onnx.load(os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) ) A_ : Union[str, Any] = list(model.graph.initializer ) A_ : Tuple = set() A_ : Tuple = {} A_ : Optional[int] = [] A_ : List[Any] = 0 for i in range(len(_lowerCAmelCase ) ): if i in dup_set: continue for j in range(i + 1 ,len(_lowerCAmelCase ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] ,inits[j] ): dup_set.add(_lowerCAmelCase ) dup_set.add(_lowerCAmelCase ) A_ : Any = inits[j].data_type A_ : Tuple = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 1_1: mem_size *= 8 else: print("""unexpected data type: """ ,_lowerCAmelCase ) total_reduced_size += mem_size A_ : Optional[int] = inits[i].name A_ : Optional[int] = inits[j].name if name_i in dup_map: dup_map[name_i].append(_lowerCAmelCase ) else: A_ : Any = [name_j] ind_to_replace.append((j, i) ) print("""total reduced size: """ ,total_reduced_size / 1_0_2_4 / 1_0_2_4 / 1_0_2_4 ,"""GB""" ) A_ : List[str] = sorted(_lowerCAmelCase ) _remove_dup_initializers_from_model(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) A_ : Optional[Any] = """optimized_""" + model_file_name A_ : Union[str, Any] = os.path.join(_lowerCAmelCase ,_lowerCAmelCase ) onnx.save(_lowerCAmelCase ,_lowerCAmelCase ) return new_model
569
0
"""simple docstring""" import unittest import numpy as np import torch from diffusers import KarrasVePipeline, KarrasVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _A ( unittest.TestCase ): @property def _lowerCamelCase ( self ) -> str: torch.manual_seed(0 ) lowerCamelCase__ = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def _lowerCamelCase ( self ) -> Optional[Any]: lowerCamelCase__ = self.dummy_uncond_unet lowerCamelCase__ = KarrasVeScheduler() lowerCamelCase__ = KarrasVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe(num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="numpy" ).images lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe(num_inference_steps=2 , generator=SCREAMING_SNAKE_CASE__ , output_type="numpy" , return_dict=SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = image[0, -3:, -3:, -1] lowerCamelCase__ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) lowerCamelCase__ = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _A ( unittest.TestCase ): def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = "google/ncsnpp-celebahq-256" lowerCamelCase__ = UNetaDModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = KarrasVeScheduler() lowerCamelCase__ = KarrasVePipeline(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) pipe.to(SCREAMING_SNAKE_CASE__ ) pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.manual_seed(0 ) lowerCamelCase__ = pipe(num_inference_steps=20 , generator=SCREAMING_SNAKE_CASE__ , output_type="numpy" ).images lowerCamelCase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) lowerCamelCase__ = np.array([0.5_78, 0.58_11, 0.59_24, 0.58_09, 0.5_87, 0.58_86, 0.58_61, 0.58_02, 0.5_86] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
718
"""simple docstring""" import os import unittest from transformers.models.phobert.tokenization_phobert import VOCAB_FILES_NAMES, PhobertTokenizer from ...test_tokenization_common import TokenizerTesterMixin class _A ( __a , unittest.TestCase ): __a = PhobertTokenizer __a = False def _lowerCamelCase ( self ) -> Any: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt lowerCamelCase__ = ["T@@", "i", "I", "R@@", "r", "e@@"] lowerCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) lowerCamelCase__ = ["#version: 0.2", "l à</w>"] lowerCamelCase__ = {"unk_token": "<unk>"} lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) lowerCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: for token in vocab_tokens: fp.write(f'{token} {vocab_tokens[token]}\n' ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(SCREAMING_SNAKE_CASE__ ) ) def _lowerCamelCase ( self , **SCREAMING_SNAKE_CASE__ ) -> Tuple: kwargs.update(self.special_tokens_map ) return PhobertTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE__ ) def _lowerCamelCase ( self , SCREAMING_SNAKE_CASE__ ) -> Tuple: lowerCamelCase__ = "Tôi là VinAI Research" lowerCamelCase__ = "T<unk> i <unk> <unk> <unk> <unk> <unk> <unk> I Re<unk> e<unk> <unk> <unk> <unk>" return input_text, output_text def _lowerCamelCase ( self ) -> Tuple: lowerCamelCase__ = PhobertTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) lowerCamelCase__ = "Tôi là VinAI Research" lowerCamelCase__ = "T@@ ô@@ i l@@ à V@@ i@@ n@@ A@@ I R@@ e@@ s@@ e@@ a@@ r@@ c@@ h".split() lowerCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE__ ) print(SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = tokens + [tokenizer.unk_token] lowerCamelCase__ = [4, 3, 5, 3, 3, 3, 3, 3, 3, 6, 7, 9, 3, 9, 3, 3, 3, 3, 3] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE__ ) , SCREAMING_SNAKE_CASE__ )
274
0
import sys import turtle def _snake_case (__lowercase , __lowercase): return (pa[0] + pa[0]) / 2, (pa[1] + pa[1]) / 2 def _snake_case (__lowercase , __lowercase , __lowercase , __lowercase , ): my_pen.up() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.down() my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) my_pen.goto(vertexa[0] , vertexa[1]) if depth == 0: return triangle(__lowercase , get_mid(__lowercase , __lowercase) , get_mid(__lowercase , __lowercase) , depth - 1) triangle(__lowercase , get_mid(__lowercase , __lowercase) , get_mid(__lowercase , __lowercase) , depth - 1) triangle(__lowercase , get_mid(__lowercase , __lowercase) , get_mid(__lowercase , __lowercase) , depth - 1) if __name__ == "__main__": if len(sys.argv) != 2: raise ValueError( """Correct format for using this script: """ """python fractals.py <int:depth_for_fractal>""" ) snake_case__ : Tuple = turtle.Turtle() my_pen.ht() my_pen.speed(5) my_pen.pencolor("""red""") snake_case__ : Optional[Any] = [(-1_7_5, -1_2_5), (0, 1_7_5), (1_7_5, -1_2_5)] # vertices of triangle triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
23
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class a ( a__ ): snake_case__ = 42 class a ( a__ , a__ ): @register_to_config def __init__( self , _snake_case = 3 , _snake_case = 3 , _snake_case = ("DownEncoderBlock2D",) , _snake_case = ("UpDecoderBlock2D",) , _snake_case = (64,) , _snake_case = 1 , _snake_case = "silu" , _snake_case = 3 , _snake_case = 32 , _snake_case = 2_56 , _snake_case = 32 , _snake_case = None , _snake_case = 0.18_215 , _snake_case = "group" , ): """simple docstring""" super().__init__() # pass init params to Encoder lowerCAmelCase = Encoder( in_channels=_snake_case , out_channels=_snake_case , down_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , double_z=_snake_case , ) lowerCAmelCase = vq_embed_dim if vq_embed_dim is not None else latent_channels lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) lowerCAmelCase = VectorQuantizer(_snake_case , _snake_case , beta=0.25 , remap=_snake_case , sane_index_shape=_snake_case ) lowerCAmelCase = nn.Convad(_snake_case , _snake_case , 1 ) # pass init params to Decoder lowerCAmelCase = Decoder( in_channels=_snake_case , out_channels=_snake_case , up_block_types=_snake_case , block_out_channels=_snake_case , layers_per_block=_snake_case , act_fn=_snake_case , norm_num_groups=_snake_case , norm_type=_snake_case , ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = self.encoder(_snake_case ) lowerCAmelCase = self.quant_conv(_snake_case ) if not return_dict: return (h,) return VQEncoderOutput(latents=_snake_case ) @apply_forward_hook def UpperCamelCase__ ( self , _snake_case , _snake_case = False , _snake_case = True ): """simple docstring""" if not force_not_quantize: lowerCAmelCase ,lowerCAmelCase ,lowerCAmelCase = self.quantize(_snake_case ) else: lowerCAmelCase = h lowerCAmelCase = self.post_quant_conv(_snake_case ) lowerCAmelCase = self.decoder(_snake_case , quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case ) def UpperCamelCase__ ( self , _snake_case , _snake_case = True ): """simple docstring""" lowerCAmelCase = sample lowerCAmelCase = self.encode(_snake_case ).latents lowerCAmelCase = self.decode(_snake_case ).sample if not return_dict: return (dec,) return DecoderOutput(sample=_snake_case )
4
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available A : Optional[int] = { 'configuration_xmod': [ 'XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP', 'XmodConfig', 'XmodOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : Tuple = [ 'XMOD_PRETRAINED_MODEL_ARCHIVE_LIST', 'XmodForCausalLM', 'XmodForMaskedLM', 'XmodForMultipleChoice', 'XmodForQuestionAnswering', 'XmodForSequenceClassification', 'XmodForTokenClassification', 'XmodModel', 'XmodPreTrainedModel', ] if TYPE_CHECKING: from .configuration_xmod import XMOD_PRETRAINED_CONFIG_ARCHIVE_MAP, XmodConfig, XmodOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xmod import ( XMOD_PRETRAINED_MODEL_ARCHIVE_LIST, XmodForCausalLM, XmodForMaskedLM, XmodForMultipleChoice, XmodForQuestionAnswering, XmodForSequenceClassification, XmodForTokenClassification, XmodModel, XmodPreTrainedModel, ) else: import sys A : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
715
"""simple docstring""" import argparse import hashlib # hashlib is only used inside the Test class import struct class lowerCAmelCase : '''simple docstring''' def __init__( self :List[str] , lowerCamelCase_ :List[Any] ) -> Dict: """simple docstring""" UpperCamelCase__ = data UpperCamelCase__ = [0X6745_2301, 0Xefcd_ab89, 0X98ba_dcfe, 0X1032_5476, 0Xc3d2_e1f0] @staticmethod def lowerCamelCase__ ( lowerCamelCase_ :Dict , lowerCamelCase_ :Tuple ) -> int: """simple docstring""" return ((n << b) | (n >> (3_2 - b))) & 0Xffff_ffff def lowerCamelCase__ ( self :List[str] ) -> str: """simple docstring""" UpperCamelCase__ = b"\x80" + b"\x00" * (6_3 - (len(self.data ) + 8) % 6_4) UpperCamelCase__ = self.data + padding + struct.pack(">Q" , 8 * len(self.data ) ) return padded_data def lowerCamelCase__ ( self :Optional[Any] ) -> Any: """simple docstring""" return [ self.padded_data[i : i + 6_4] for i in range(0 , len(self.padded_data ) , 6_4 ) ] def lowerCamelCase__ ( self :Optional[int] , lowerCamelCase_ :Dict ) -> Any: """simple docstring""" UpperCamelCase__ = list(struct.unpack(">16L" , lowerCamelCase_ ) ) + [0] * 6_4 for i in range(1_6 , 8_0 ): UpperCamelCase__ = self.rotate((w[i - 3] ^ w[i - 8] ^ w[i - 1_4] ^ w[i - 1_6]) , 1 ) return w def lowerCamelCase__ ( self :Union[str, Any] ) -> List[str]: """simple docstring""" UpperCamelCase__ = self.padding() UpperCamelCase__ = self.split_blocks() for block in self.blocks: UpperCamelCase__ = self.expand_block(lowerCamelCase_ ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = self.h for i in range(0 , 8_0 ): if 0 <= i < 2_0: UpperCamelCase__ = (b & c) | ((~b) & d) UpperCamelCase__ = 0X5a82_7999 elif 2_0 <= i < 4_0: UpperCamelCase__ = b ^ c ^ d UpperCamelCase__ = 0X6ed9_eba1 elif 4_0 <= i < 6_0: UpperCamelCase__ = (b & c) | (b & d) | (c & d) UpperCamelCase__ = 0X8f1b_bcdc elif 6_0 <= i < 8_0: UpperCamelCase__ = b ^ c ^ d UpperCamelCase__ = 0Xca62_c1d6 UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = ( self.rotate(lowerCamelCase_ , 5 ) + f + e + k + expanded_block[i] & 0Xffff_ffff, a, self.rotate(lowerCamelCase_ , 3_0 ), c, d, ) UpperCamelCase__ = ( self.h[0] + a & 0Xffff_ffff, self.h[1] + b & 0Xffff_ffff, self.h[2] + c & 0Xffff_ffff, self.h[3] + d & 0Xffff_ffff, self.h[4] + e & 0Xffff_ffff, ) return ("{:08x}" * 5).format(*self.h ) def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = b"Test String" assert SHAaHash(_snake_case ).final_hash() == hashlib.shaa(_snake_case ).hexdigest() # noqa: S324 def snake_case__ ( ): """simple docstring""" UpperCamelCase__ = argparse.ArgumentParser(description="Process some strings or files" ) parser.add_argument( "--string" , dest="input_string" , default="Hello World!! Welcome to Cryptography" , help="Hash the string" , ) parser.add_argument("--file" , dest="input_file" , help="Hash contents of a file" ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = args.input_string # In any case hash input should be a bytestring if args.input_file: with open(args.input_file , "rb" ) as f: UpperCamelCase__ = f.read() else: UpperCamelCase__ = bytes(_snake_case , "utf-8" ) print(SHAaHash(_snake_case ).final_hash() ) if __name__ == "__main__": main() import doctest doctest.testmod()
304
0
from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch __magic_name__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowerCamelCase ): """simple docstring""" __UpperCAmelCase : Dict = ['''pixel_values'''] def __init__( self , a_ = True , a_ = None , a_ = PILImageResampling.BILINEAR , a_ = True , a_ = 1 / 255 , a_ = True , a_ = None , a_ = True , **a_ , ): super().__init__(**a_ ) lowerCamelCase_ : Optional[int] = size if size is not None else {"shortest_edge": 224} lowerCamelCase_ : str = get_size_dict(a_ , default_to_square=a_ ) lowerCamelCase_ : Any = crop_size if crop_size is not None else {"height": 256, "width": 256} lowerCamelCase_ : Tuple = get_size_dict(a_ , param_name="crop_size" ) lowerCamelCase_ : Optional[Any] = do_resize lowerCamelCase_ : List[str] = size lowerCamelCase_ : List[Any] = resample lowerCamelCase_ : List[str] = do_rescale lowerCamelCase_ : Optional[int] = rescale_factor lowerCamelCase_ : str = do_center_crop lowerCamelCase_ : str = crop_size lowerCamelCase_ : List[Any] = do_flip_channel_order def _UpperCamelCase ( self , a_ , a_ , a_ = PIL.Image.BILINEAR , a_ = None , **a_ , ): lowerCamelCase_ : Optional[Any] = get_size_dict(a_ , default_to_square=a_ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) lowerCamelCase_ : Dict = get_resize_output_image_size(a_ , size=size["shortest_edge"] , default_to_square=a_ ) return resize(a_ , size=a_ , resample=a_ , data_format=a_ , **a_ ) def _UpperCamelCase ( self , a_ , a_ , a_ = None , **a_ , ): lowerCamelCase_ : str = get_size_dict(a_ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(a_ , size=(size["height"], size["width"]) , data_format=a_ , **a_ ) def _UpperCamelCase ( self , a_ , a_ , a_ = None , **a_ , ): return rescale(a_ , scale=a_ , data_format=a_ , **a_ ) def _UpperCamelCase ( self , a_ , a_ = None ): return flip_channel_order(a_ , data_format=a_ ) def _UpperCamelCase ( self , a_ , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = None , a_ = ChannelDimension.FIRST , **a_ , ): lowerCamelCase_ : Union[str, Any] = do_resize if do_resize is not None else self.do_resize lowerCamelCase_ : List[str] = resample if resample is not None else self.resample lowerCamelCase_ : List[Any] = do_rescale if do_rescale is not None else self.do_rescale lowerCamelCase_ : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor lowerCamelCase_ : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop lowerCamelCase_ : List[Any] = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) lowerCamelCase_ : int = size if size is not None else self.size lowerCamelCase_ : List[Any] = get_size_dict(a_ , default_to_square=a_ ) lowerCamelCase_ : Tuple = crop_size if crop_size is not None else self.crop_size lowerCamelCase_ : Optional[Any] = get_size_dict(a_ , param_name="crop_size" ) lowerCamelCase_ : Optional[Any] = make_list_of_images(a_ ) if not valid_images(a_ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. lowerCamelCase_ : List[str] = [to_numpy_array(a_ ) for image in images] if do_resize: lowerCamelCase_ : List[Any] = [self.resize(image=a_ , size=a_ , resample=a_ ) for image in images] if do_center_crop: lowerCamelCase_ : Optional[Any] = [self.center_crop(image=a_ , size=a_ ) for image in images] if do_rescale: lowerCamelCase_ : Tuple = [self.rescale(image=a_ , scale=a_ ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: lowerCamelCase_ : Tuple = [self.flip_channel_order(image=a_ ) for image in images] lowerCamelCase_ : List[Any] = [to_channel_dimension_format(a_ , a_ ) for image in images] lowerCamelCase_ : str = {"pixel_values": images} return BatchFeature(data=a_ , tensor_type=a_ ) def _UpperCamelCase ( self , a_ , a_ = None ): lowerCamelCase_ : List[Any] = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a_ ) != len(a_ ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a_ ): lowerCamelCase_ : int = target_sizes.numpy() lowerCamelCase_ : List[Any] = [] for idx in range(len(a_ ) ): lowerCamelCase_ : Optional[int] = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a_ ) lowerCamelCase_ : str = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a_ ) else: lowerCamelCase_ : Union[str, Any] = logits.argmax(dim=1 ) lowerCamelCase_ : Optional[int] = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
250
import os def __magic_name__ ( lowerCAmelCase_ = "input.txt"): '''simple docstring''' with open(os.path.join(os.path.dirname(lowerCAmelCase_) , lowerCAmelCase_)) as input_file: lowerCamelCase_ : Dict = [ [int(lowerCAmelCase_) for element in line.split(",")] for line in input_file.readlines() ] lowerCamelCase_ : str = len(lowerCAmelCase_) lowerCamelCase_ : Any = len(matrix[0]) lowerCamelCase_ : Optional[Any] = [[-1 for _ in range(lowerCAmelCase_)] for _ in range(lowerCAmelCase_)] for i in range(lowerCAmelCase_): lowerCamelCase_ : Union[str, Any] = matrix[i][0] for j in range(1 , lowerCAmelCase_): for i in range(lowerCAmelCase_): lowerCamelCase_ : List[Any] = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1 , lowerCAmelCase_): lowerCamelCase_ : Any = min( minimal_path_sums[i][j] , minimal_path_sums[i - 1][j] + matrix[i][j]) for i in range(rows - 2 , -1 , -1): lowerCamelCase_ : Optional[int] = min( minimal_path_sums[i][j] , minimal_path_sums[i + 1][j] + matrix[i][j]) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums) if __name__ == "__main__": print(f'''{solution() = }''')
250
1
'''simple docstring''' def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase ): return "\n".join( F"{number} * {i} = {number * i}" for i in range(1, number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
329
'''simple docstring''' lowerCAmelCase__ : Any = [4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase__ : int = [3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] lowerCAmelCase__ : List[Any] = { 0: "Sunday", 1: "Monday", 2: "Tuesday", 3: "Wednesday", 4: "Thursday", 5: "Friday", 6: "Saturday", } def __UpperCamelCase ( _UpperCAmelCase, _UpperCAmelCase, _UpperCAmelCase ): assert len(str(_UpperCAmelCase ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __UpperCAmelCase : Optional[int] = year // 100 __UpperCAmelCase : int = (5 * (century % 4) + 2) % 7 __UpperCAmelCase : Optional[Any] = year % 100 __UpperCAmelCase : int = centurian % 12 __UpperCAmelCase : Optional[Any] = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __UpperCAmelCase : Union[str, Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __UpperCAmelCase : Optional[Any] = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
329
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) snake_case_ = {'''configuration_reformer''': ['''REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ReformerConfig''']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''ReformerTokenizer'''] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = ['''ReformerTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ = [ '''REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ReformerAttention''', '''ReformerForMaskedLM''', '''ReformerForQuestionAnswering''', '''ReformerForSequenceClassification''', '''ReformerLayer''', '''ReformerModel''', '''ReformerModelWithLMHead''', '''ReformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys snake_case_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
164
from ....configuration_utils import PretrainedConfig from ....utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = { '''Visual-Attention-Network/van-base''': ( '''https://huggingface.co/Visual-Attention-Network/van-base/blob/main/config.json''' ), } class SCREAMING_SNAKE_CASE__ (__snake_case ): __lowerCamelCase : Optional[Any] = """van""" def __init__( self , a=224 , a=3 , a=[7, 3, 3, 3] , a=[4, 2, 2, 2] , a=[64, 128, 320, 512] , a=[3, 3, 12, 3] , a=[8, 8, 4, 4] , a="gelu" , a=0.02 , a=1e-6 , a=1e-2 , a=0.0 , a=0.0 , **a , ): super().__init__(**a) lowercase__ : Any = image_size lowercase__ : Optional[Any] = num_channels lowercase__ : Optional[Any] = patch_sizes lowercase__ : str = strides lowercase__ : List[Any] = hidden_sizes lowercase__ : str = depths lowercase__ : int = mlp_ratios lowercase__ : Tuple = hidden_act lowercase__ : List[str] = initializer_range lowercase__ : Tuple = layer_norm_eps lowercase__ : str = layer_scale_init_value lowercase__ : Tuple = drop_path_rate lowercase__ : Tuple = dropout_rate
164
1
'''simple docstring''' _SCREAMING_SNAKE_CASE = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' _SCREAMING_SNAKE_CASE = [{'type': 'code', 'content': INSTALL_CONTENT}] _SCREAMING_SNAKE_CASE = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _SCREAMING_SNAKE_CASE = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
83
0
from typing import Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import get_image_size, pad, rescale, to_channel_dimension_format from ...image_utils import ChannelDimension, ImageInput, make_list_of_images, to_numpy_array, valid_images from ...utils import TensorType, logging UpperCAmelCase_ : Tuple = logging.get_logger(__name__) class lowerCamelCase_ ( _lowercase ): _lowercase : Union[str, Any] = ['''pixel_values'''] def __init__( self : Any , __A : bool = True , __A : Union[int, float] = 1 / 255 , __A : bool = True , __A : int = 8 , **__A : Union[str, Any] , ): super().__init__(**__A ) __A : List[str] = do_rescale __A : Optional[int] = rescale_factor __A : Dict = do_pad __A : Any = pad_size def lowerCAmelCase_ ( self : Optional[int] , __A : np.ndarray , __A : float , __A : Optional[Union[str, ChannelDimension]] = None , **__A : str ): return rescale(__A , scale=__A , data_format=__A , **__A ) def lowerCAmelCase_ ( self : Tuple , __A : np.ndarray , __A : int , __A : Optional[Union[str, ChannelDimension]] = None ): __A , __A : Any = get_image_size(__A ) __A : str = (old_height // size + 1) * size - old_height __A : Optional[Any] = (old_width // size + 1) * size - old_width return pad(__A , ((0, pad_height), (0, pad_width)) , mode="""symmetric""" , data_format=__A ) def lowerCAmelCase_ ( self : Dict , __A : ImageInput , __A : Optional[bool] = None , __A : Optional[float] = None , __A : Optional[bool] = None , __A : Optional[int] = None , __A : Optional[Union[str, TensorType]] = None , __A : Union[str, ChannelDimension] = ChannelDimension.FIRST , **__A : Optional[int] , ): __A : Dict = do_rescale if do_rescale is not None else self.do_rescale __A : List[str] = rescale_factor if rescale_factor is not None else self.rescale_factor __A : Union[str, Any] = do_pad if do_pad is not None else self.do_pad __A : Dict = pad_size if pad_size is not None else self.pad_size __A : Tuple = make_list_of_images(__A ) if not valid_images(__A ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) # All transformations expect numpy arrays. __A : Optional[int] = [to_numpy_array(__A ) for image in images] if do_rescale: __A : Tuple = [self.rescale(image=__A , scale=__A ) for image in images] if do_pad: __A : int = [self.pad(__A , size=__A ) for image in images] __A : Optional[int] = [to_channel_dimension_format(__A , __A ) for image in images] __A : List[Any] = {"""pixel_values""": images} return BatchFeature(data=__A , tensor_type=__A )
17
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DetaImageProcessor class lowerCamelCase_ ( unittest.TestCase ): def __init__( self : Optional[int] , __A : Union[str, Any] , __A : int=7 , __A : int=3 , __A : int=30 , __A : Dict=400 , __A : str=True , __A : str=None , __A : str=True , __A : Optional[int]=[0.5, 0.5, 0.5] , __A : List[str]=[0.5, 0.5, 0.5] , __A : Optional[Any]=True , __A : int=1 / 255 , __A : List[Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __A : Union[str, Any] = size if size is not None else {"""shortest_edge""": 18, """longest_edge""": 1333} __A : Union[str, Any] = parent __A : Union[str, Any] = batch_size __A : Union[str, Any] = num_channels __A : Optional[Any] = min_resolution __A : Union[str, Any] = max_resolution __A : Any = do_resize __A : Union[str, Any] = size __A : Optional[int] = do_normalize __A : Dict = image_mean __A : Optional[int] = image_std __A : Tuple = do_rescale __A : Optional[Any] = rescale_factor __A : Tuple = do_pad def lowerCAmelCase_ ( self : Any ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowerCAmelCase_ ( self : Optional[Any] , __A : Optional[int] , __A : Dict=False ): if not batched: __A : Union[str, Any] = image_inputs[0] if isinstance(__A , Image.Image ): __A , __A : Union[str, Any] = image.size else: __A , __A : Optional[int] = image.shape[1], image.shape[2] if w < h: __A : Optional[int] = int(self.size["""shortest_edge"""] * h / w ) __A : Dict = self.size["""shortest_edge"""] elif w > h: __A : Optional[Any] = self.size["""shortest_edge"""] __A : List[Any] = int(self.size["""shortest_edge"""] * w / h ) else: __A : Union[str, Any] = self.size["""shortest_edge"""] __A : str = self.size["""shortest_edge"""] else: __A : Any = [] for image in image_inputs: __A , __A : List[str] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __A : Tuple = max(__A , key=lambda __A : item[0] )[0] __A : Union[str, Any] = max(__A , key=lambda __A : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class lowerCamelCase_ ( _lowercase , unittest.TestCase ): _lowercase : Tuple = DetaImageProcessor if is_vision_available() else None def lowerCAmelCase_ ( self : Optional[Any] ): __A : Tuple = DetaImageProcessingTester(self ) @property def lowerCAmelCase_ ( self : List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def lowerCAmelCase_ ( self : List[str] ): __A : Tuple = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__A , """image_mean""" ) ) self.assertTrue(hasattr(__A , """image_std""" ) ) self.assertTrue(hasattr(__A , """do_normalize""" ) ) self.assertTrue(hasattr(__A , """do_resize""" ) ) self.assertTrue(hasattr(__A , """do_rescale""" ) ) self.assertTrue(hasattr(__A , """do_pad""" ) ) self.assertTrue(hasattr(__A , """size""" ) ) def lowerCAmelCase_ ( self : Any ): __A : Dict = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""shortest_edge""": 18, """longest_edge""": 1333} ) self.assertEqual(image_processor.do_pad , __A ) def lowerCAmelCase_ ( self : Optional[Any] ): pass def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __A : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A ) for image in image_inputs: self.assertIsInstance(__A , Image.Image ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : int = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A , __A : List[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) __A : List[str] = image_processing(__A , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Optional[int] ): # Initialize image_processing __A : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __A : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , numpify=__A ) for image in image_inputs: self.assertIsInstance(__A , np.ndarray ) # Test not batched input __A : str = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : int = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Optional[Any] = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowerCAmelCase_ ( self : Dict ): # Initialize image_processing __A : int = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __A : Dict = prepare_image_inputs(self.image_processor_tester , equal_resolution=__A , torchify=__A ) for image in image_inputs: self.assertIsInstance(__A , torch.Tensor ) # Test not batched input __A : Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values __A , __A : Optional[int] = self.image_processor_tester.get_expected_values(__A ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __A : Tuple = image_processing(__A , return_tensors="""pt""" ).pixel_values __A , __A : Any = self.image_processor_tester.get_expected_values(__A , batched=__A ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowerCAmelCase_ ( self : Tuple ): # prepare image and target __A : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_annotations.txt""" , """r""" ) as f: __A : Any = json.loads(f.read() ) __A : int = {"""image_id""": 3_9769, """annotations""": target} # encode them __A : List[str] = DetaImageProcessor() __A : List[str] = image_processing(images=__A , annotations=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Tuple = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Tuple = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : List[str] = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : List[str] = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Dict = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : List[Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify orig_size __A : str = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) ) @slow def lowerCAmelCase_ ( self : Optional[int] ): # prepare image, target and masks_path __A : Optional[int] = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) with open("""./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt""" , """r""" ) as f: __A : Tuple = json.loads(f.read() ) __A : Optional[int] = {"""file_name""": """000000039769.png""", """image_id""": 3_9769, """segments_info""": target} __A : Any = pathlib.Path("""./tests/fixtures/tests_samples/COCO/coco_panoptic""" ) # encode them __A : Any = DetaImageProcessor(format="""coco_panoptic""" ) __A : int = image_processing(images=__A , annotations=__A , masks_path=__A , return_tensors="""pt""" ) # verify pixel values __A : Tuple = torch.Size([1, 3, 800, 1066] ) self.assertEqual(encoding["""pixel_values"""].shape , __A ) __A : Optional[Any] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding["""pixel_values"""][0, 0, 0, :3] , __A , atol=1e-4 ) ) # verify area __A : Union[str, Any] = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""area"""] , __A ) ) # verify boxes __A : Union[str, Any] = torch.Size([6, 4] ) self.assertEqual(encoding["""labels"""][0]["""boxes"""].shape , __A ) __A : Union[str, Any] = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""boxes"""][0] , __A , atol=1e-3 ) ) # verify image_id __A : Any = torch.tensor([3_9769] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""image_id"""] , __A ) ) # verify is_crowd __A : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""iscrowd"""] , __A ) ) # verify class_labels __A : Optional[Any] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""class_labels"""] , __A ) ) # verify masks __A : List[str] = 82_2873 self.assertEqual(encoding["""labels"""][0]["""masks"""].sum().item() , __A ) # verify orig_size __A : Tuple = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""orig_size"""] , __A ) ) # verify size __A : Any = torch.tensor([800, 1066] ) self.assertTrue(torch.allclose(encoding["""labels"""][0]["""size"""] , __A ) )
17
1
"""simple docstring""" from typing import Any, Dict, Optional import torch import torch.nn.functional as F from torch import nn from ..utils import maybe_allow_in_graph from .activations import get_activation from .attention_processor import Attention from .embeddings import CombinedTimestepLabelEmbeddings @maybe_allow_in_graph class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=0.0 , __UpperCAmelCase = None , __UpperCAmelCase = "geglu" , __UpperCAmelCase = None , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = False , __UpperCAmelCase = True , __UpperCAmelCase = "layer_norm" , __UpperCAmelCase = False , ) -> Optional[Any]: super().__init__() _a = only_cross_attention _a = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm_zero''' _a = (num_embeds_ada_norm is not None) and norm_type == '''ada_norm''' if norm_type in ("ada_norm", "ada_norm_zero") and num_embeds_ada_norm is None: raise ValueError( F'`norm_type` is set to {norm_type}, but `num_embeds_ada_norm` is not defined. Please make sure to' F' define `num_embeds_ada_norm` if setting `norm_type` to {norm_type}.' ) # Define 3 blocks. Each block has its own normalization layer. # 1. Self-Attn if self.use_ada_layer_norm: _a = AdaLayerNorm(__UpperCAmelCase , __UpperCAmelCase ) elif self.use_ada_layer_norm_zero: _a = AdaLayerNormZero(__UpperCAmelCase , __UpperCAmelCase ) else: _a = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) _a = Attention( query_dim=__UpperCAmelCase , heads=__UpperCAmelCase , dim_head=__UpperCAmelCase , dropout=__UpperCAmelCase , bias=__UpperCAmelCase , cross_attention_dim=cross_attention_dim if only_cross_attention else None , upcast_attention=__UpperCAmelCase , ) # 2. Cross-Attn if cross_attention_dim is not None or double_self_attention: # We currently only use AdaLayerNormZero for self attention where there will only be one attention block. # I.e. the number of returned modulation chunks from AdaLayerZero would not make sense if returned during # the second cross attention block. _a = ( AdaLayerNorm(__UpperCAmelCase , __UpperCAmelCase ) if self.use_ada_layer_norm else nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) ) _a = Attention( query_dim=__UpperCAmelCase , cross_attention_dim=cross_attention_dim if not double_self_attention else None , heads=__UpperCAmelCase , dim_head=__UpperCAmelCase , dropout=__UpperCAmelCase , bias=__UpperCAmelCase , upcast_attention=__UpperCAmelCase , ) # is self-attn if encoder_hidden_states is none else: _a = None _a = None # 3. Feed-forward _a = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) _a = FeedForward(__UpperCAmelCase , dropout=__UpperCAmelCase , activation_fn=__UpperCAmelCase , final_dropout=__UpperCAmelCase ) # let chunk size default to None _a = None _a = 0 def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> Dict: # Sets chunk feed-forward _a = chunk_size _a = dim def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , ) -> Tuple: # Notice that normalization is always applied before the real computation in the following blocks. # 1. Self-Attention if self.use_ada_layer_norm: _a = self.norma(__UpperCAmelCase , __UpperCAmelCase ) elif self.use_ada_layer_norm_zero: _a , _a , _a , _a , _a = self.norma( __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , hidden_dtype=hidden_states.dtype ) else: _a = self.norma(__UpperCAmelCase ) _a = cross_attention_kwargs if cross_attention_kwargs is not None else {} _a = self.attna( __UpperCAmelCase , encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None , attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) if self.use_ada_layer_norm_zero: _a = gate_msa.unsqueeze(1 ) * attn_output _a = attn_output + hidden_states # 2. Cross-Attention if self.attna is not None: _a = ( self.norma(__UpperCAmelCase , __UpperCAmelCase ) if self.use_ada_layer_norm else self.norma(__UpperCAmelCase ) ) _a = self.attna( __UpperCAmelCase , encoder_hidden_states=__UpperCAmelCase , attention_mask=__UpperCAmelCase , **__UpperCAmelCase , ) _a = attn_output + hidden_states # 3. Feed-forward _a = self.norma(__UpperCAmelCase ) if self.use_ada_layer_norm_zero: _a = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] if self._chunk_size is not None: # "feed_forward_chunk_size" can be used to save memory if norm_hidden_states.shape[self._chunk_dim] % self._chunk_size != 0: raise ValueError( F'`hidden_states` dimension to be chunked: {norm_hidden_states.shape[self._chunk_dim]} has to be divisible by chunk size: {self._chunk_size}. Make sure to set an appropriate `chunk_size` when calling `unet.enable_forward_chunking`.' ) _a = norm_hidden_states.shape[self._chunk_dim] // self._chunk_size _a = torch.cat( [self.ff(__UpperCAmelCase ) for hid_slice in norm_hidden_states.chunk(__UpperCAmelCase , dim=self._chunk_dim )] , dim=self._chunk_dim , ) else: _a = self.ff(__UpperCAmelCase ) if self.use_ada_layer_norm_zero: _a = gate_mlp.unsqueeze(1 ) * ff_output _a = ff_output + hidden_states return hidden_states class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 4 , __UpperCAmelCase = 0.0 , __UpperCAmelCase = "geglu" , __UpperCAmelCase = False , ) -> List[Any]: super().__init__() _a = int(dim * mult ) _a = dim_out if dim_out is not None else dim if activation_fn == "gelu": _a = GELU(__UpperCAmelCase , __UpperCAmelCase ) if activation_fn == "gelu-approximate": _a = GELU(__UpperCAmelCase , __UpperCAmelCase , approximate='''tanh''' ) elif activation_fn == "geglu": _a = GEGLU(__UpperCAmelCase , __UpperCAmelCase ) elif activation_fn == "geglu-approximate": _a = ApproximateGELU(__UpperCAmelCase , __UpperCAmelCase ) _a = nn.ModuleList([] ) # project in self.net.append(__UpperCAmelCase ) # project dropout self.net.append(nn.Dropout(__UpperCAmelCase ) ) # project out self.net.append(nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) ) # FF as used in Vision Transformer, MLP-Mixer, etc. have a final dropout if final_dropout: self.net.append(nn.Dropout(__UpperCAmelCase ) ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[int]: for module in self.net: _a = module(__UpperCAmelCase ) return hidden_states class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = "none" ) -> Union[str, Any]: super().__init__() _a = nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) _a = approximate def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: if gate.device.type != "mps": return F.gelu(__UpperCAmelCase , approximate=self.approximate ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) , approximate=self.approximate ).to(dtype=gate.dtype ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Tuple: _a = self.proj(__UpperCAmelCase ) _a = self.gelu(__UpperCAmelCase ) return hidden_states class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: super().__init__() _a = nn.Linear(__UpperCAmelCase , dim_out * 2 ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> List[Any]: if gate.device.type != "mps": return F.gelu(__UpperCAmelCase ) # mps: gelu is not implemented for float16 return F.gelu(gate.to(dtype=torch.floataa ) ).to(dtype=gate.dtype ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> Optional[Any]: _a , _a = self.proj(__UpperCAmelCase ).chunk(2 , dim=-1 ) return hidden_states * self.gelu(__UpperCAmelCase ) class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[Any]: super().__init__() _a = nn.Linear(__UpperCAmelCase , __UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase ) -> str: _a = self.proj(__UpperCAmelCase ) return x * torch.sigmoid(1.702 * x ) class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> Optional[Any]: super().__init__() _a = nn.Embedding(__UpperCAmelCase , __UpperCAmelCase ) _a = nn.SiLU() _a = nn.Linear(__UpperCAmelCase , embedding_dim * 2 ) _a = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: _a = self.linear(self.silu(self.emb(__UpperCAmelCase ) ) ) _a , _a = torch.chunk(__UpperCAmelCase , 2 ) _a = self.norm(__UpperCAmelCase ) * (1 + scale) + shift return x class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase ) -> List[str]: super().__init__() _a = CombinedTimestepLabelEmbeddings(__UpperCAmelCase , __UpperCAmelCase ) _a = nn.SiLU() _a = nn.Linear(__UpperCAmelCase , 6 * embedding_dim , bias=__UpperCAmelCase ) _a = nn.LayerNorm(__UpperCAmelCase , elementwise_affine=__UpperCAmelCase , eps=1e-6 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase=None ) -> Optional[Any]: _a = self.linear(self.silu(self.emb(__UpperCAmelCase , __UpperCAmelCase , hidden_dtype=__UpperCAmelCase ) ) ) _a , _a , _a , _a , _a , _a = emb.chunk(6 , dim=1 ) _a = self.norm(__UpperCAmelCase ) * (1 + scale_msa[:, None]) + shift_msa[:, None] return x, gate_msa, shift_mlp, scale_mlp, gate_mlp class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = 1e-5 ) -> Any: super().__init__() _a = num_groups _a = eps if act_fn is None: _a = None else: _a = get_activation(__UpperCAmelCase ) _a = nn.Linear(__UpperCAmelCase , out_dim * 2 ) def _UpperCAmelCase ( self , __UpperCAmelCase , __UpperCAmelCase ) -> int: if self.act: _a = self.act(__UpperCAmelCase ) _a = self.linear(__UpperCAmelCase ) _a = emb[:, :, None, None] _a , _a = emb.chunk(2 , dim=1 ) _a = F.group_norm(__UpperCAmelCase , self.num_groups , eps=self.eps ) _a = x * (1 + scale) + shift return x
719
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __snake_case = { '''configuration_pix2struct''': [ '''PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Pix2StructConfig''', '''Pix2StructTextConfig''', '''Pix2StructVisionConfig''', ], '''processing_pix2struct''': ['''Pix2StructProcessor'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = ['''Pix2StructImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __snake_case = [ '''PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Pix2StructPreTrainedModel''', '''Pix2StructForConditionalGeneration''', '''Pix2StructVisionModel''', '''Pix2StructTextModel''', ] if TYPE_CHECKING: from .configuration_pixastruct import ( PIX2STRUCT_PRETRAINED_CONFIG_ARCHIVE_MAP, PixaStructConfig, PixaStructTextConfig, PixaStructVisionConfig, ) from .processing_pixastruct import PixaStructProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_pixastruct import PixaStructImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pixastruct import ( PIX2STRUCT_PRETRAINED_MODEL_ARCHIVE_LIST, PixaStructForConditionalGeneration, PixaStructPreTrainedModel, PixaStructTextModel, PixaStructVisionModel, ) else: import sys __snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
285
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Tuple = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Union[str, Any] = "xlm-roberta-xl" def __init__( self , a__=250_880 , a__=2_560 , a__=36 , a__=32 , a__=10_240 , a__="gelu" , a__=0.1 , a__=0.1 , a__=514 , a__=1 , a__=0.0_2 , a__=1e-05 , a__=1 , a__=0 , a__=2 , a__="absolute" , a__=True , a__=None , **a__ , ) -> Optional[Any]: '''simple docstring''' super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) snake_case_ = vocab_size snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = hidden_act snake_case_ = intermediate_size snake_case_ = hidden_dropout_prob snake_case_ = attention_probs_dropout_prob snake_case_ = max_position_embeddings snake_case_ = type_vocab_size snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = position_embedding_type snake_case_ = use_cache snake_case_ = classifier_dropout class _snake_case ( lowercase_ ): @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": snake_case_ = {0: "batch", 1: "choice", 2: "sequence"} else: snake_case_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
400
'''simple docstring''' import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _SCREAMING_SNAKE_CASE : str = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE : Dict = { "facebook/bart-large": "https://huggingface.co/facebook/bart-large/resolve/main/config.json", # See all BART models at https://huggingface.co/models?filter=bart } class _snake_case ( lowercase_ ): lowerCAmelCase_ : Dict = "bart" lowerCAmelCase_ : Optional[Any] = ["past_key_values"] lowerCAmelCase_ : Tuple = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self , a__=50_265 , a__=1_024 , a__=12 , a__=4_096 , a__=16 , a__=12 , a__=4_096 , a__=16 , a__=0.0 , a__=0.0 , a__="gelu" , a__=1_024 , a__=0.1 , a__=0.0 , a__=0.0 , a__=0.0_2 , a__=0.0 , a__=False , a__=True , a__=3 , a__=1 , a__=0 , a__=2 , a__=True , a__=2 , a__=2 , **a__ , ) -> Union[str, Any]: '''simple docstring''' snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = d_model snake_case_ = encoder_ffn_dim snake_case_ = encoder_layers snake_case_ = encoder_attention_heads snake_case_ = decoder_ffn_dim snake_case_ = decoder_layers snake_case_ = decoder_attention_heads snake_case_ = dropout snake_case_ = attention_dropout snake_case_ = activation_dropout snake_case_ = activation_function snake_case_ = init_std snake_case_ = encoder_layerdrop snake_case_ = decoder_layerdrop snake_case_ = classifier_dropout snake_case_ = use_cache snake_case_ = encoder_layers snake_case_ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated" , a__ ): snake_case_ = self.bos_token_id warnings.warn( F'Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. ' "The config can simply be saved and uploaded again to be fixed." ) class _snake_case ( lowercase_ ): @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case_ = {0: "batch"} snake_case_ = {0: "batch", 1: "past_decoder_sequence + sequence"} else: snake_case_ = {0: "batch", 1: "decoder_sequence"} snake_case_ = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(a__ , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. snake_case_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: snake_case_ , snake_case_ = self.num_layers for i in range(a__ ): snake_case_ = {0: "batch", 2: "past_sequence + sequence"} snake_case_ = {0: "batch", 2: "past_sequence + sequence"} else: snake_case_ = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def lowerCAmelCase__ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ = super().outputs else: snake_case_ = super(a__ , self ).outputs if self.use_past: snake_case_ , snake_case_ = self.num_layers for i in range(a__ ): snake_case_ = {0: "batch", 2: "past_sequence + sequence"} snake_case_ = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) # Generate decoder inputs snake_case_ = seq_length if not self.use_past else 1 snake_case_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) snake_case_ = {F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} snake_case_ = dict(**a__ , **a__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case_ , snake_case_ = common_inputs["input_ids"].shape snake_case_ = common_inputs["decoder_input_ids"].shape[1] snake_case_ , snake_case_ = self.num_attention_heads snake_case_ = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ = decoder_seq_length + 3 snake_case_ = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) snake_case_ = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(a__ , a__ )] , dim=1 ) snake_case_ = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered snake_case_ , snake_case_ = self.num_layers snake_case_ = min(a__ , a__ ) snake_case_ = max(a__ , a__ ) - min_num_layers snake_case_ = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(a__ ): common_inputs["past_key_values"].append( ( torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), ) ) # TODO: test this. snake_case_ = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(a__ , a__ ): common_inputs["past_key_values"].append((torch.zeros(a__ ), torch.zeros(a__ )) ) return common_inputs def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch snake_case_ , snake_case_ = common_inputs["input_ids"].shape # Not using the same length for past_key_values snake_case_ = seqlen + 2 snake_case_ , snake_case_ = self.num_layers snake_case_ , snake_case_ = self.num_attention_heads snake_case_ = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) snake_case_ = common_inputs["attention_mask"].dtype snake_case_ = torch.cat( [common_inputs["attention_mask"], torch.ones(a__ , a__ , dtype=a__ )] , dim=1 ) snake_case_ = [ (torch.zeros(a__ ), torch.zeros(a__ )) for _ in range(a__ ) ] return common_inputs def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' snake_case_ = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX snake_case_ = tokenizer.num_special_tokens_to_add(a__ ) snake_case_ = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a__ ) # Generate dummy inputs according to compute batch and sequence snake_case_ = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size snake_case_ = dict(tokenizer(a__ , return_tensors=a__ ) ) return common_inputs def lowerCAmelCase__ ( self , a__ , a__ = -1 , a__ = -1 , a__ = False , a__ = None , ) -> Mapping[str, Any]: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) elif self.task == "causal-lm": snake_case_ = self._generate_dummy_inputs_for_causal_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) else: snake_case_ = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) return common_inputs def lowerCAmelCase__ ( self , a__ , a__ , a__ , a__ ) -> str: '''simple docstring''' if self.task in ["default", "seq2seq-lm"]: snake_case_ = super()._flatten_past_key_values_(a__ , a__ , a__ , a__ ) else: snake_case_ = super(a__ , self )._flatten_past_key_values_( a__ , a__ , a__ , a__ )
400
1
'''simple docstring''' from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def _a( UpperCamelCase__ : str, UpperCamelCase__ : float | Decimal, UpperCamelCase__ : float = 1_0**-1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =a while True: SCREAMING_SNAKE_CASE__ : Tuple =Decimal(a_ ) - ( Decimal(eval(a_ ) ) / Decimal(eval(str(diff(a_ ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(a_ ) ) < precision: # noqa: S307 return float(a_ ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F'''The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}''') # Find root of polynomial print(F'''The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}''') # Find Square Root of 5 print(F'''The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}''') # Exponential Roots print(F'''The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}''')
718
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPImageProcessor, CLIPVisionConfig, CLIPVisionModel from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEImgaImgPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import floats_tensor, load_image, load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class __SCREAMING_SNAKE_CASE ( lowerCamelCase , unittest.TestCase ): snake_case_ = ShapEImgaImgPipeline snake_case_ = ["""image"""] snake_case_ = ["""image"""] snake_case_ = [ """num_images_per_prompt""", """num_inference_steps""", """generator""", """latents""", """guidance_scale""", """frame_size""", """output_type""", """return_dict""", ] snake_case_ = False @property def __magic_name__ ( self : List[Any] ) -> List[Any]: return 32 @property def __magic_name__ ( self : List[str] ) -> Optional[int]: return 32 @property def __magic_name__ ( self : Optional[int] ) -> Optional[Any]: return self.time_input_dim * 4 @property def __magic_name__ ( self : Dict ) -> Union[str, Any]: return 8 @property def __magic_name__ ( self : Optional[int] ) -> Union[str, Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict =CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=64 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1 , ) SCREAMING_SNAKE_CASE__ : str =CLIPVisionModel(__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: SCREAMING_SNAKE_CASE__ : int =CLIPImageProcessor( crop_size=2_24 , do_center_crop=__lowercase , do_normalize=__lowercase , do_resize=__lowercase , image_mean=[0.48145466, 0.4578275, 0.40821073] , image_std=[0.26862954, 0.26130258, 0.27577711] , resample=3 , size=2_24 , ) return image_processor @property def __magic_name__ ( self : List[str] ) -> Dict: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : str ={ '''num_attention_heads''': 2, '''attention_head_dim''': 16, '''embedding_dim''': self.time_input_dim, '''num_embeddings''': 32, '''embedding_proj_dim''': self.text_embedder_hidden_size, '''time_embed_dim''': self.time_embed_dim, '''num_layers''': 1, '''clip_embed_dim''': self.time_input_dim * 2, '''additional_embeddings''': 0, '''time_embed_act_fn''': '''gelu''', '''norm_in_type''': '''layer''', '''embedding_proj_norm_type''': '''layer''', '''encoder_hid_proj_type''': None, '''added_emb_type''': None, } SCREAMING_SNAKE_CASE__ : str =PriorTransformer(**__lowercase ) return model @property def __magic_name__ ( self : Tuple ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] ={ '''param_shapes''': ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), '''d_latent''': self.time_input_dim, '''d_hidden''': self.renderer_dim, '''n_output''': 12, '''background''': ( 0.1, 0.1, 0.1, ), } SCREAMING_SNAKE_CASE__ : str =ShapERenderer(**__lowercase ) return model def __magic_name__ ( self : List[Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ : int =self.dummy_prior SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] =self.dummy_image_processor SCREAMING_SNAKE_CASE__ : Tuple =self.dummy_renderer SCREAMING_SNAKE_CASE__ : int =HeunDiscreteScheduler( beta_schedule='''exp''' , num_train_timesteps=10_24 , prediction_type='''sample''' , use_karras_sigmas=__lowercase , clip_sample=__lowercase , clip_sample_range=1.0 , ) SCREAMING_SNAKE_CASE__ : Any ={ '''prior''': prior, '''image_encoder''': image_encoder, '''image_processor''': image_processor, '''renderer''': renderer, '''scheduler''': scheduler, } return components def __magic_name__ ( self : Any , __lowercase : List[str] , __lowercase : Any=0 ) -> Any: SCREAMING_SNAKE_CASE__ : int =floats_tensor((1, 3, 64, 64) , rng=random.Random(__lowercase ) ).to(__lowercase ) if str(__lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : List[str] =torch.manual_seed(__lowercase ) else: SCREAMING_SNAKE_CASE__ : Optional[Any] =torch.Generator(device=__lowercase ).manual_seed(__lowercase ) SCREAMING_SNAKE_CASE__ : Any ={ '''image''': input_image, '''generator''': generator, '''num_inference_steps''': 1, '''frame_size''': 32, '''output_type''': '''np''', } return inputs def __magic_name__ ( self : List[str] ) -> str: SCREAMING_SNAKE_CASE__ : int ='''cpu''' SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : str =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Any =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Dict =pipe(**self.get_dummy_inputs(__lowercase ) ) SCREAMING_SNAKE_CASE__ : Tuple =output.images[0] SCREAMING_SNAKE_CASE__ : List[Any] =image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) SCREAMING_SNAKE_CASE__ : List[Any] =np.array( [ 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, 0.00039216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def __magic_name__ ( self : List[Any] ) -> List[str]: # NOTE: Larger batch sizes cause this test to timeout, only test on smaller batches self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def __magic_name__ ( self : Optional[int] ) -> str: SCREAMING_SNAKE_CASE__ : Union[str, Any] =torch_device == '''cpu''' SCREAMING_SNAKE_CASE__ : Optional[Any] =True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=__lowercase , relax_max_difference=__lowercase , ) def __magic_name__ ( self : Dict ) -> List[str]: SCREAMING_SNAKE_CASE__ : Any =self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Dict =self.pipeline_class(**__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] =1 SCREAMING_SNAKE_CASE__ : List[str] =2 SCREAMING_SNAKE_CASE__ : Dict =self.get_dummy_inputs(__lowercase ) for key in inputs.keys(): if key in self.batch_params: SCREAMING_SNAKE_CASE__ : Tuple =batch_size * [inputs[key]] SCREAMING_SNAKE_CASE__ : List[Any] =pipe(**__lowercase , num_images_per_prompt=__lowercase )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def __magic_name__ ( self : Optional[Any] ) -> int: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __magic_name__ ( self : int ) -> Dict: SCREAMING_SNAKE_CASE__ : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/corgi.png''' ) SCREAMING_SNAKE_CASE__ : Dict =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/shap_e/test_shap_e_img2img_out.npy''' ) SCREAMING_SNAKE_CASE__ : List[Any] =ShapEImgaImgPipeline.from_pretrained('''openai/shap-e-img2img''' ) SCREAMING_SNAKE_CASE__ : Tuple =pipe.to(__lowercase ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Tuple =torch.Generator(device=__lowercase ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple =pipe( __lowercase , generator=__lowercase , guidance_scale=3.0 , num_inference_steps=64 , frame_size=64 , output_type='''np''' , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(__lowercase , __lowercase )
665
0
def SCREAMING_SNAKE_CASE_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : int , UpperCAmelCase_ : int ) -> float: SCREAMING_SNAKE_CASE_ : Tuple =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: print(sum_of_series(1 , 1 , 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
443
import os def SCREAMING_SNAKE_CASE_ ( ) -> List[str]: with open(os.path.dirname(UpperCAmelCase_ ) + '''/p022_names.txt''' ) as file: SCREAMING_SNAKE_CASE_ : Any =str(file.readlines()[0] ) SCREAMING_SNAKE_CASE_ : List[Any] =names.replace('''"''' , '''''' ).split(''',''' ) names.sort() SCREAMING_SNAKE_CASE_ : Optional[int] =0 SCREAMING_SNAKE_CASE_ : Optional[int] =0 for i, name in enumerate(UpperCAmelCase_ ): for letter in name: name_score += ord(UpperCAmelCase_ ) - 6_4 total_score += (i + 1) * name_score SCREAMING_SNAKE_CASE_ : Any =0 return total_score if __name__ == "__main__": print(solution())
443
1
'''simple docstring''' import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def SCREAMING_SNAKE_CASE_ ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Optional[int] , snake_case_ : Dict=1024 ) -> Any: SCREAMING_SNAKE_CASE : Dict = [], [] SCREAMING_SNAKE_CASE : Optional[int] = list(zip(snake_case_ , snake_case_ ) ) SCREAMING_SNAKE_CASE : Union[str, Any] = sorted_examples[0] def is_too_big(snake_case_ : int ): return tok(snake_case_ , return_tensors='pt' ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): SCREAMING_SNAKE_CASE : Optional[int] = new_src + ' ' + src SCREAMING_SNAKE_CASE : Dict = new_tgt + ' ' + tgt if is_too_big(snake_case_ ) or is_too_big(snake_case_ ): # cant fit, finalize example finished_src.append(snake_case_ ) finished_tgt.append(snake_case_ ) SCREAMING_SNAKE_CASE : str = src, tgt else: # can fit, keep adding SCREAMING_SNAKE_CASE : Tuple = cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(snake_case_ ) finished_tgt.append(snake_case_ ) return finished_src, finished_tgt def SCREAMING_SNAKE_CASE_ ( snake_case_ : Any , snake_case_ : Path , snake_case_ : Optional[int] , snake_case_ : int ) -> int: SCREAMING_SNAKE_CASE : Optional[int] = Path(snake_case_ ) save_path.mkdir(exist_ok=snake_case_ ) for split in ["train"]: SCREAMING_SNAKE_CASE : Any = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" SCREAMING_SNAKE_CASE : Dict = [x.rstrip() for x in Path(snake_case_ ).open().readlines()] SCREAMING_SNAKE_CASE : int = [x.rstrip() for x in Path(snake_case_ ).open().readlines()] SCREAMING_SNAKE_CASE : List[Any] = pack_examples(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) print(f"""packed {split} split from {len(snake_case_ )} examples -> {len(snake_case_ )}.""" ) Path(save_path / f"""{split}.source""" ).open('w' ).write('\n'.join(snake_case_ ) ) Path(save_path / f"""{split}.target""" ).open('w' ).write('\n'.join(snake_case_ ) ) for split in ["val", "test"]: SCREAMING_SNAKE_CASE : str = data_dir / f"""{split}.source""", data_dir / f"""{split}.target""" shutil.copyfile(snake_case_ , save_path / f"""{split}.source""" ) shutil.copyfile(snake_case_ , save_path / f"""{split}.target""" ) def SCREAMING_SNAKE_CASE_ ( ) -> Tuple: SCREAMING_SNAKE_CASE : str = argparse.ArgumentParser() parser.add_argument('--tok_name' , type=snake_case_ , help='like facebook/bart-large-cnn,t5-base, etc.' ) parser.add_argument('--max_seq_len' , type=snake_case_ , default=128 ) parser.add_argument('--data_dir' , type=snake_case_ ) parser.add_argument('--save_path' , type=snake_case_ ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() SCREAMING_SNAKE_CASE : Union[str, Any] = AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(snake_case_ , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
701
'''simple docstring''' import argparse from pathlib import Path import fairseq import torch from fairseq.models.xmod import XMODModel as FairseqXmodModel from packaging import version from transformers import XmodConfig, XmodForMaskedLM, XmodForSequenceClassification from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('0.12.2'): raise Exception('requires fairseq >= 0.12.2') if version.parse(fairseq.__version__) > version.parse('2'): raise Exception('requires fairseq < v2') logging.set_verbosity_info() __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = 'Hello, World!' __UpperCAmelCase = 'en_XX' def SCREAMING_SNAKE_CASE_ ( snake_case_ : str , snake_case_ : str , snake_case_ : bool ) -> Union[str, Any]: SCREAMING_SNAKE_CASE : List[Any] = Path('data_bin' ) SCREAMING_SNAKE_CASE : List[Any] = FairseqXmodModel.from_pretrained( model_name_or_path=str(Path(snake_case_ ).parent ) , checkpoint_file=Path(snake_case_ ).name , _name='xmod_base' , arch='xmod_base' , task='multilingual_masked_lm' , data_name_or_path=str(snake_case_ ) , bpe='sentencepiece' , sentencepiece_model=str(Path(snake_case_ ).parent / 'sentencepiece.bpe.model' ) , src_dict=str(data_dir / 'dict.txt' ) , ) xmod.eval() # disable dropout print(snake_case_ ) SCREAMING_SNAKE_CASE : Any = xmod.model.encoder.sentence_encoder SCREAMING_SNAKE_CASE : Optional[int] = XmodConfig( vocab_size=xmod_sent_encoder.embed_tokens.num_embeddings , hidden_size=xmod.cfg.model.encoder_embed_dim , num_hidden_layers=xmod.cfg.model.encoder_layers , num_attention_heads=xmod.cfg.model.encoder_attention_heads , intermediate_size=xmod.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=514 , type_vocab_size=1 , layer_norm_eps=1e-5 , pre_norm=xmod.cfg.model.encoder_normalize_before , adapter_reduction_factor=getattr(xmod.cfg.model , 'bottleneck' , 2 ) , adapter_layer_norm=xmod.cfg.model.adapter_layer_norm , adapter_reuse_layer_norm=xmod.cfg.model.adapter_reuse_layer_norm , ln_before_adapter=xmod.cfg.model.ln_before_adapter , languages=xmod.cfg.model.languages , ) if classification_head: SCREAMING_SNAKE_CASE : List[Any] = xmod.model.classification_heads['mnli'].out_proj.weight.shape[0] print('Our X-MOD config:' , snake_case_ ) SCREAMING_SNAKE_CASE : int = XmodForSequenceClassification(snake_case_ ) if classification_head else XmodForMaskedLM(snake_case_ ) model.eval() # Now let's copy all the weights. # Embeddings SCREAMING_SNAKE_CASE : Tuple = xmod_sent_encoder.embed_tokens.weight SCREAMING_SNAKE_CASE : str = xmod_sent_encoder.embed_positions.weight SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c xmod doesn't use them. SCREAMING_SNAKE_CASE : Optional[int] = xmod_sent_encoder.layernorm_embedding.weight SCREAMING_SNAKE_CASE : Any = xmod_sent_encoder.layernorm_embedding.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer SCREAMING_SNAKE_CASE : List[str] = model.roberta.encoder.layer[i] SCREAMING_SNAKE_CASE : List[Any] = xmod_sent_encoder.layers[i] # self attention SCREAMING_SNAKE_CASE : Dict = layer.attention.self if not ( xmod_layer.self_attn.k_proj.weight.data.shape == xmod_layer.self_attn.q_proj.weight.data.shape == xmod_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ): raise AssertionError('Dimensions of self-attention weights do not match.' ) SCREAMING_SNAKE_CASE : List[Any] = xmod_layer.self_attn.q_proj.weight SCREAMING_SNAKE_CASE : Union[str, Any] = xmod_layer.self_attn.q_proj.bias SCREAMING_SNAKE_CASE : List[Any] = xmod_layer.self_attn.k_proj.weight SCREAMING_SNAKE_CASE : int = xmod_layer.self_attn.k_proj.bias SCREAMING_SNAKE_CASE : int = xmod_layer.self_attn.v_proj.weight SCREAMING_SNAKE_CASE : Optional[Any] = xmod_layer.self_attn.v_proj.bias # self-attention output SCREAMING_SNAKE_CASE : List[Any] = layer.attention.output if self_output.dense.weight.shape != xmod_layer.self_attn.out_proj.weight.shape: raise AssertionError('Dimensions of self-attention output weights do not match.' ) SCREAMING_SNAKE_CASE : int = xmod_layer.self_attn.out_proj.weight SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.self_attn.out_proj.bias SCREAMING_SNAKE_CASE : Union[str, Any] = xmod_layer.self_attn_layer_norm.weight SCREAMING_SNAKE_CASE : str = xmod_layer.self_attn_layer_norm.bias # intermediate SCREAMING_SNAKE_CASE : Union[str, Any] = layer.intermediate if intermediate.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of intermediate weights do not match.' ) SCREAMING_SNAKE_CASE : int = xmod_layer.fca.weight SCREAMING_SNAKE_CASE : List[str] = xmod_layer.fca.bias # output SCREAMING_SNAKE_CASE : Dict = layer.output if bert_output.dense.weight.shape != xmod_layer.fca.weight.shape: raise AssertionError('Dimensions of feed-forward weights do not match.' ) SCREAMING_SNAKE_CASE : int = xmod_layer.fca.weight SCREAMING_SNAKE_CASE : Optional[Any] = xmod_layer.fca.bias SCREAMING_SNAKE_CASE : Tuple = xmod_layer.final_layer_norm.weight SCREAMING_SNAKE_CASE : Dict = xmod_layer.final_layer_norm.bias if bert_output.adapter_layer_norm is not None: SCREAMING_SNAKE_CASE : Tuple = xmod_layer.adapter_layer_norm.weight SCREAMING_SNAKE_CASE : str = xmod_layer.adapter_layer_norm.bias if sorted(bert_output.adapter_modules.keys() ) != sorted(xmod_layer.adapter_modules.keys() ): raise AssertionError('Lists of language adapters do not match.' ) for lang_code, adapter in xmod_layer.adapter_modules.items(): SCREAMING_SNAKE_CASE : int = bert_output.adapter_modules[lang_code] SCREAMING_SNAKE_CASE : Optional[int] = xmod_layer.adapter_modules[lang_code] SCREAMING_SNAKE_CASE : Optional[int] = from_adapter.fca.weight SCREAMING_SNAKE_CASE : Optional[int] = from_adapter.fca.bias SCREAMING_SNAKE_CASE : Optional[int] = from_adapter.fca.weight SCREAMING_SNAKE_CASE : Any = from_adapter.fca.bias # end of layer if xmod_sent_encoder.layer_norm is not None: SCREAMING_SNAKE_CASE : Any = xmod_sent_encoder.layer_norm.weight SCREAMING_SNAKE_CASE : List[Any] = xmod_sent_encoder.layer_norm.bias if classification_head: SCREAMING_SNAKE_CASE : int = xmod.model.classification_heads['mnli'].dense.weight SCREAMING_SNAKE_CASE : List[Any] = xmod.model.classification_heads['mnli'].dense.bias SCREAMING_SNAKE_CASE : str = xmod.model.classification_heads['mnli'].out_proj.weight SCREAMING_SNAKE_CASE : int = xmod.model.classification_heads['mnli'].out_proj.bias else: # LM Head SCREAMING_SNAKE_CASE : Optional[Any] = xmod.model.encoder.lm_head.dense.weight SCREAMING_SNAKE_CASE : Tuple = xmod.model.encoder.lm_head.dense.bias SCREAMING_SNAKE_CASE : Optional[int] = xmod.model.encoder.lm_head.layer_norm.weight SCREAMING_SNAKE_CASE : Optional[int] = xmod.model.encoder.lm_head.layer_norm.bias SCREAMING_SNAKE_CASE : Optional[int] = xmod.model.encoder.lm_head.weight SCREAMING_SNAKE_CASE : Tuple = xmod.model.encoder.lm_head.bias # Let's check that we get the same results. SCREAMING_SNAKE_CASE : Union[str, Any] = xmod.encode(snake_case_ ).unsqueeze(0 ) # batch of size 1 model.roberta.set_default_language(snake_case_ ) SCREAMING_SNAKE_CASE : Union[str, Any] = model(snake_case_ )[0] if classification_head: SCREAMING_SNAKE_CASE : List[str] = xmod.model.classification_heads['mnli'](xmod.extract_features(snake_case_ ) ) else: SCREAMING_SNAKE_CASE : Any = xmod.model(snake_case_ , lang_id=[SAMPLE_LANGUAGE] )[0] print(our_output.shape , their_output.shape ) SCREAMING_SNAKE_CASE : List[str] = torch.max(torch.abs(our_output - their_output ) ).item() print(f"""max_absolute_diff = {max_absolute_diff}""" ) # ~ 1e-7 SCREAMING_SNAKE_CASE : Dict = torch.allclose(snake_case_ , snake_case_ , atol=1e-3 ) print('Do both models output the same tensors?' , '🔥' if success else '💩' ) if not success: raise Exception('Something went wRoNg' ) Path(snake_case_ ).mkdir(parents=snake_case_ , exist_ok=snake_case_ ) print(f"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case_ ) if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--xmod_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __UpperCAmelCase = parser.parse_args() convert_xmod_checkpoint_to_pytorch( args.xmod_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
220
0
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( __snake_case : List[Any] ): _A = len(__snake_case ) for i in range(length - 1 ): _A = i for k in range(i + 1 , __snake_case ): if collection[k] < collection[least]: _A = k if least != i: _A , _A = (collection[i], collection[least]) return collection if __name__ == "__main__": _UpperCAmelCase : Optional[Any] = input('''Enter numbers separated by a comma:\n''').strip() _UpperCAmelCase : List[str] = [int(item) for item in user_input.split(''',''')] print(selection_sort(unsorted))
107
from collections import namedtuple import requests from lxml import html # type: ignore snake_case = namedtuple("covid_data", "cases deaths recovered") def UpperCamelCase_ ( lowerCAmelCase__ = "https://www.worldometers.info/coronavirus/" ): """simple docstring""" _lowerCAmelCase : int = "//div[@class = \"maincounter-number\"]/span/text()" return covid_data(*html.fromstring(requests.get(lowerCAmelCase__ ).content ).xpath(lowerCAmelCase__ ) ) snake_case = "Total COVID-19 cases in the world: {}\nTotal deaths due to COVID-19 in the world: {}\nTotal COVID-19 patients recovered in the world: {}" print(fmt.format(*covid_stats()))
424
0
'''simple docstring''' from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class lowercase ( __lowerCamelCase ): lowerCamelCase_ =['image_processor'] lowerCamelCase_ ='SamImageProcessor' def __init__( self : Optional[int] , __lowerCAmelCase : str) -> List[str]: super().__init__(__lowerCAmelCase) lowercase_ = self.image_processor lowercase_ = -10 lowercase_ = self.image_processor.size["longest_edge"] def __call__( self : int , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Any=None , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : int=None , __lowerCAmelCase : Optional[Union[str, TensorType]] = None , **__lowerCAmelCase : List[Any] , ) -> BatchEncoding: lowercase_ = self.image_processor( __lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) # pop arguments that are not used in the foward but used nevertheless lowercase_ = encoding_image_processor["original_sizes"] if hasattr(__lowerCAmelCase , "numpy"): # Checks if Torch or TF tensor lowercase_ = original_sizes.numpy() lowercase_ , lowercase_ , lowercase_ = self._check_and_preprocess_points( input_points=__lowerCAmelCase , input_labels=__lowerCAmelCase , input_boxes=__lowerCAmelCase , ) lowercase_ = self._normalize_and_convert( __lowerCAmelCase , __lowerCAmelCase , input_points=__lowerCAmelCase , input_labels=__lowerCAmelCase , input_boxes=__lowerCAmelCase , return_tensors=__lowerCAmelCase , ) return encoding_image_processor def __UpperCAmelCase ( self : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : List[str]=None , __lowerCAmelCase : Union[str, Any]=None , __lowerCAmelCase : List[str]="pt" , ) -> str: if input_points is not None: if len(__lowerCAmelCase) != len(__lowerCAmelCase): lowercase_ = [ self._normalize_coordinates(self.target_size , __lowerCAmelCase , original_sizes[0]) for point in input_points ] else: lowercase_ = [ self._normalize_coordinates(self.target_size , __lowerCAmelCase , __lowerCAmelCase) for point, original_size in zip(__lowerCAmelCase , __lowerCAmelCase) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points): if input_labels is not None: lowercase_ , lowercase_ = self._pad_points_and_labels(__lowerCAmelCase , __lowerCAmelCase) lowercase_ = np.array(__lowerCAmelCase) if input_labels is not None: lowercase_ = np.array(__lowerCAmelCase) if input_boxes is not None: if len(__lowerCAmelCase) != len(__lowerCAmelCase): lowercase_ = [ self._normalize_coordinates(self.target_size , __lowerCAmelCase , original_sizes[0] , is_bounding_box=__lowerCAmelCase) for box in input_boxes ] else: lowercase_ = [ self._normalize_coordinates(self.target_size , __lowerCAmelCase , __lowerCAmelCase , is_bounding_box=__lowerCAmelCase) for box, original_size in zip(__lowerCAmelCase , __lowerCAmelCase) ] lowercase_ = np.array(__lowerCAmelCase) if input_boxes is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(__lowerCAmelCase) # boxes batch size of 1 by default lowercase_ = input_boxes.unsqueeze(1) if len(input_boxes.shape) != 3 else input_boxes elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(__lowerCAmelCase) # boxes batch size of 1 by default lowercase_ = tf.expand_dims(__lowerCAmelCase , 1) if len(input_boxes.shape) != 3 else input_boxes encoding_image_processor.update({"input_boxes": input_boxes}) if input_points is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(__lowerCAmelCase) # point batch size of 1 by default lowercase_ = input_points.unsqueeze(1) if len(input_points.shape) != 4 else input_points elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(__lowerCAmelCase) # point batch size of 1 by default lowercase_ = tf.expand_dims(__lowerCAmelCase , 1) if len(input_points.shape) != 4 else input_points encoding_image_processor.update({"input_points": input_points}) if input_labels is not None: if return_tensors == "pt": lowercase_ = torch.from_numpy(__lowerCAmelCase) # point batch size of 1 by default lowercase_ = input_labels.unsqueeze(1) if len(input_labels.shape) != 3 else input_labels elif return_tensors == "tf": lowercase_ = tf.convert_to_tensor(__lowerCAmelCase) # point batch size of 1 by default lowercase_ = tf.expand_dims(__lowerCAmelCase , 1) if len(input_labels.shape) != 3 else input_labels encoding_image_processor.update({"input_labels": input_labels}) return encoding_image_processor def __UpperCAmelCase ( self : str , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any]) -> Dict: lowercase_ = max([point.shape[0] for point in input_points]) lowercase_ = [] for i, point in enumerate(__lowerCAmelCase): if point.shape[0] != expected_nb_points: lowercase_ = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2)) + self.point_pad_value] , axis=0) lowercase_ = np.append(input_labels[i] , [self.point_pad_value]) processed_input_points.append(__lowerCAmelCase) lowercase_ = processed_input_points return input_points, input_labels def __UpperCAmelCase ( self : Union[str, Any] , __lowerCAmelCase : int , __lowerCAmelCase : np.ndarray , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple=False) -> np.ndarray: lowercase_ , lowercase_ = original_size lowercase_ , lowercase_ = self.image_processor._get_preprocess_shape(__lowerCAmelCase , longest_edge=__lowerCAmelCase) lowercase_ = deepcopy(__lowerCAmelCase).astype(__lowerCAmelCase) if is_bounding_box: lowercase_ = coords.reshape(-1 , 2 , 2) lowercase_ = coords[..., 0] * (new_w / old_w) lowercase_ = coords[..., 1] * (new_h / old_h) if is_bounding_box: lowercase_ = coords.reshape(-1 , 4) return coords def __UpperCAmelCase ( self : Dict , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Tuple=None , __lowerCAmelCase : int=None , ) -> int: if input_points is not None: if hasattr(__lowerCAmelCase , "numpy"): # Checks for TF or Torch tensor lowercase_ = input_points.numpy().tolist() if not isinstance(__lowerCAmelCase , __lowerCAmelCase) or not isinstance(input_points[0] , __lowerCAmelCase): raise ValueError("Input points must be a list of list of floating points.") lowercase_ = [np.array(__lowerCAmelCase) for input_point in input_points] else: lowercase_ = None if input_labels is not None: if hasattr(__lowerCAmelCase , "numpy"): lowercase_ = input_labels.numpy().tolist() if not isinstance(__lowerCAmelCase , __lowerCAmelCase) or not isinstance(input_labels[0] , __lowerCAmelCase): raise ValueError("Input labels must be a list of list integers.") lowercase_ = [np.array(__lowerCAmelCase) for label in input_labels] else: lowercase_ = None if input_boxes is not None: if hasattr(__lowerCAmelCase , "numpy"): lowercase_ = input_boxes.numpy().tolist() if ( not isinstance(__lowerCAmelCase , __lowerCAmelCase) or not isinstance(input_boxes[0] , __lowerCAmelCase) or not isinstance(input_boxes[0][0] , __lowerCAmelCase) ): raise ValueError("Input boxes must be a list of list of list of floating points.") lowercase_ = [np.array(__lowerCAmelCase).astype(np.floataa) for box in input_boxes] else: lowercase_ = None return input_points, input_labels, input_boxes @property def __UpperCAmelCase ( self : Optional[Any]) -> List[str]: lowercase_ = self.image_processor.model_input_names return list(dict.fromkeys(__lowerCAmelCase)) def __UpperCAmelCase ( self : Any , *__lowerCAmelCase : List[Any] , **__lowerCAmelCase : int) -> Union[str, Any]: return self.image_processor.post_process_masks(*__lowerCAmelCase , **__lowerCAmelCase)
461
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) lowerCAmelCase_ : Optional[Any] = "bert-base-cased" lowerCAmelCase_ : Any = "fp16" lowerCAmelCase_ : Union[str, Any] = "bf16" lowerCAmelCase_ : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class lowercase ( __lowerCamelCase ): def __UpperCAmelCase ( self : str) -> Union[str, Any]: super().setUp() lowercase_ = dict( ACCELERATE_USE_FSDP="true" , MASTER_ADDR="localhost" , MASTER_PORT="10999" , RANK="0" , LOCAL_RANK="0" , WORLD_SIZE="1" , ) def __UpperCAmelCase ( self : Optional[Any]) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = F'{i + 1}' lowercase_ = strategy with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1)) def __UpperCAmelCase ( self : Union[str, Any]) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = prefetch_policy with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1)) def __UpperCAmelCase ( self : Dict) -> List[str]: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__lowerCAmelCase): lowercase_ = self.dist_env.copy() lowercase_ = state_dict_type with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1)) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only) def __UpperCAmelCase ( self : Optional[int]) -> List[Any]: lowercase_ = AutoModel.from_pretrained(__lowerCAmelCase) for policy in FSDP_AUTO_WRAP_POLICY: lowercase_ = self.dist_env.copy() lowercase_ = policy if policy == "TRANSFORMER_BASED_WRAP": lowercase_ = "BertLayer" elif policy == "SIZE_BASED_WRAP": lowercase_ = "2000" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy) lowercase_ = self.dist_env.copy() lowercase_ = "TRANSFORMER_BASED_WRAP" lowercase_ = "T5Layer" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() with self.assertRaises(__lowerCAmelCase) as cm: fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) self.assertTrue("Could not find the transformer layer class to wrap in the model." in str(cm.exception)) lowercase_ = self.dist_env.copy() lowercase_ = "SIZE_BASED_WRAP" lowercase_ = "0" with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__lowerCAmelCase) self.assertIsNone(fsdp_plugin.auto_wrap_policy) def __UpperCAmelCase ( self : Union[str, Any]) -> int: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: lowercase_ = self.dist_env.copy() lowercase_ = mp_dtype with mockenv_context(**__lowerCAmelCase): lowercase_ = Accelerator() if mp_dtype == "fp16": lowercase_ = torch.floataa elif mp_dtype == "bf16": lowercase_ = torch.bfloataa lowercase_ = MixedPrecision(param_dtype=__lowerCAmelCase , reduce_dtype=__lowerCAmelCase , buffer_dtype=__lowerCAmelCase) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __lowerCAmelCase) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __lowerCAmelCase)) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler) AcceleratorState._reset_state(__lowerCAmelCase) def __UpperCAmelCase ( self : List[str]) -> Dict: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: lowercase_ = self.dist_env.copy() lowercase_ = str(__lowerCAmelCase).lower() with mockenv_context(**__lowerCAmelCase): lowercase_ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__lowerCAmelCase)) @require_fsdp @require_multi_gpu @slow class lowercase ( __lowerCamelCase ): def __UpperCAmelCase ( self : Optional[int]) -> str: super().setUp() lowercase_ = 0.82 lowercase_ = [ "fsdp_shard_grad_op_transformer_based_wrap", "fsdp_full_shard_transformer_based_wrap", ] lowercase_ = { "multi_gpu_fp16": 3200, "fsdp_shard_grad_op_transformer_based_wrap_fp16": 2000, "fsdp_full_shard_transformer_based_wrap_fp16": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } lowercase_ = 160 lowercase_ = 160 lowercase_ = inspect.getfile(accelerate.test_utils) lowercase_ = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "external_deps"]) def __UpperCAmelCase ( self : Optional[Any]) -> Optional[Any]: lowercase_ = os.path.join(self.test_scripts_folder , "test_performance.py") lowercase_ = ["accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp"] for config in self.performance_configs: lowercase_ = cmd.copy() for i, strategy in enumerate(__lowerCAmelCase): if strategy.lower() in config: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "fp32" in config: cmd_config.append("--mixed_precision=no") else: cmd_config.append("--mixed_precision=fp16") if "cpu_offload" in config: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--performance_lower_bound={self.performance_lower_bound}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) def __UpperCAmelCase ( self : Dict) -> Dict: lowercase_ = os.path.join(self.test_scripts_folder , "test_checkpointing.py") lowercase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", "--use_fsdp", "--mixed_precision=fp16", "--fsdp_transformer_layer_cls_to_wrap=BertLayer", ] for i, strategy in enumerate(__lowerCAmelCase): lowercase_ = cmd.copy() cmd_config.append(F'--fsdp_sharding_strategy={i+1}') if strategy != "FULL_SHARD": continue lowercase_ = len(__lowerCAmelCase) for state_dict_type in FSDP_STATE_DICT_TYPE: lowercase_ = cmd_config[:state_dict_config_index] cmd_config.append(F'--fsdp_state_dict_type={state_dict_type}') cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', "--partial_train_epoch=1", ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) lowercase_ = cmd_config[:-1] lowercase_ = os.path.join(self.tmpdir , "epoch_0") cmd_config.extend( [ F'--resume_from_checkpoint={resume_from_checkpoint}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy()) def __UpperCAmelCase ( self : Optional[int]) -> int: lowercase_ = os.path.join(self.test_scripts_folder , "test_peak_memory_usage.py") lowercase_ = [ "accelerate", "launch", "--num_processes=2", "--num_machines=1", "--machine_rank=0", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): lowercase_ = cmd.copy() if "fp16" in spec: cmd_config.extend(["--mixed_precision=fp16"]) else: cmd_config.extend(["--mixed_precision=no"]) if "multi_gpu" in spec: continue else: cmd_config.extend(["--use_fsdp"]) for i, strategy in enumerate(__lowerCAmelCase): if strategy.lower() in spec: cmd_config.append(F'--fsdp_sharding_strategy={i+1}') break if "cpu_offload" in spec: cmd_config.append("--fsdp_offload_params=True") for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'--fsdp_auto_wrap_policy={policy}') break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("--fsdp_transformer_layer_cls_to_wrap=BertLayer") elif policy == "SIZE_BASED_WRAP": cmd_config.append("--fsdp_min_num_params=2000") cmd_config.extend( [ self.test_file_path, F'--output_dir={self.tmpdir}', F'--peak_memory_upper_bound={peak_mem_upper_bound}', F'--n_train={self.n_train}', F'--n_val={self.n_val}', ]) with patch_environment(omp_num_threads=1): execute_subprocess_async(__lowerCAmelCase , env=os.environ.copy())
461
1
import glob import os import random from string import ascii_lowercase, digits import cva __snake_case = '''''' __snake_case = '''''' __snake_case = '''''' __snake_case = 1 # (0 is vertical, 1 is horizontal) def _A ( ) -> None: """simple docstring""" __UpperCamelCase, __UpperCamelCase = get_dataset(_lowercase , _lowercase ) print('Processing...' ) __UpperCamelCase, __UpperCamelCase, __UpperCamelCase = update_image_and_anno(_lowercase , _lowercase , _lowercase ) for index, image in enumerate(_lowercase ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' __UpperCamelCase = random_chars(32 ) __UpperCamelCase = paths[index].split(os.sep )[-1].rsplit('.' , 1 )[0] __UpperCamelCase = f'''{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}''' cva.imwrite(f'''/{file_root}.jpg''' , _lowercase , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(f'''Success {index+1}/{len(_lowercase )} with {file_name}''' ) __UpperCamelCase = [] for anno in new_annos[index]: __UpperCamelCase = f'''{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}''' annos_list.append(_lowercase ) with open(f'''/{file_root}.txt''' , 'w' ) as outfile: outfile.write('\n'.join(line for line in annos_list ) ) def _A ( _lowercase , _lowercase ) -> tuple[list, list]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = [] for label_file in glob.glob(os.path.join(_lowercase , '*.txt' ) ): __UpperCamelCase = label_file.split(os.sep )[-1].rsplit('.' , 1 )[0] with open(_lowercase ) as in_file: __UpperCamelCase = in_file.readlines() __UpperCamelCase = os.path.join(_lowercase , f'''{label_name}.jpg''' ) __UpperCamelCase = [] for obj_list in obj_lists: __UpperCamelCase = obj_list.rstrip('\n' ).split(' ' ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_lowercase ) labels.append(_lowercase ) return img_paths, labels def _A ( _lowercase , _lowercase , _lowercase = 1 ) -> tuple[list, list, list]: """simple docstring""" __UpperCamelCase = [] __UpperCamelCase = [] __UpperCamelCase = [] for idx in range(len(_lowercase ) ): __UpperCamelCase = [] __UpperCamelCase = img_list[idx] path_list.append(_lowercase ) __UpperCamelCase = anno_list[idx] __UpperCamelCase = cva.imread(_lowercase ) if flip_type == 1: __UpperCamelCase = cva.flip(_lowercase , _lowercase ) for bbox in img_annos: __UpperCamelCase = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: __UpperCamelCase = cva.flip(_lowercase , _lowercase ) for bbox in img_annos: __UpperCamelCase = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_lowercase ) new_imgs_list.append(_lowercase ) return new_imgs_list, new_annos_lists, path_list def _A ( _lowercase = 32 ) -> str: """simple docstring""" assert number_char > 1, "The number of character should greater than 1" __UpperCamelCase = ascii_lowercase + digits return "".join(random.choice(_lowercase ) for _ in range(_lowercase ) ) if __name__ == "__main__": main() print('''DONE ✅''')
1
import logging import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEncoder, BertModel, BertPreTrainedModel, ) __snake_case : Optional[int] = logging.getLogger(__name__) class A__(a_ ): """simple docstring""" def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase=None , _lowercase=None ) -> Tuple: a_ : str = self.layer[current_layer](_lowercase , _lowercase , head_mask[current_layer] ) a_ : str = layer_outputs[0] return hidden_states @add_start_docstrings( '''The bare Bert Model transformer with PABEE outputting raw hidden-states without any specific head on top.''', a_, ) class A__(a_ ): """simple docstring""" def __init__( self , _lowercase ) -> List[str]: super().__init__(_lowercase ) a_ : Tuple = BertEncoderWithPabee(_lowercase ) self.init_weights() a_ : int = 0 a_ : Any = 0 a_ : Tuple = 0 a_ : Optional[int] = 0 def UpperCamelCase__ ( self , _lowercase ) -> Tuple: a_ : Dict = threshold def UpperCamelCase__ ( self , _lowercase ) -> List[Any]: a_ : Optional[int] = patience def UpperCamelCase__ ( self ) -> Dict: a_ : str = 0 a_ : Optional[int] = 0 def UpperCamelCase__ ( self ) -> List[Any]: a_ : Union[str, Any] = self.inference_layers_num / self.inference_instances_num a_ : Optional[int] = ( F'''*** Patience = {self.patience} Avg. Inference Layers = {avg_inf_layers:.2f} Speed Up =''' F''' {1 - avg_inf_layers / self.config.num_hidden_layers:.2f} ***''' ) print(_lowercase ) @add_start_docstrings_to_model_forward(_lowercase ) def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=False , ) -> str: if input_ids is not None and inputs_embeds is not None: raise ValueError("""You cannot specify both input_ids and inputs_embeds at the same time""" ) elif input_ids is not None: a_ : Dict = input_ids.size() elif inputs_embeds is not None: a_ : Dict = inputs_embeds.size()[:-1] else: raise ValueError("""You have to specify either input_ids or inputs_embeds""" ) a_ : Optional[Any] = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: a_ : Tuple = torch.ones(_lowercase , device=_lowercase ) if token_type_ids is None: a_ : List[str] = torch.zeros(_lowercase , dtype=torch.long , device=_lowercase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. a_ : torch.Tensor = self.get_extended_attention_mask(_lowercase , _lowercase , _lowercase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: a_ , a_ , a_ : int = encoder_hidden_states.size() a_ : List[str] = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: a_ : Tuple = torch.ones(_lowercase , device=_lowercase ) a_ : List[Any] = self.invert_attention_mask(_lowercase ) else: a_ : Optional[Any] = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] a_ : List[Any] = self.get_head_mask(_lowercase , self.config.num_hidden_layers ) a_ : List[str] = self.embeddings( input_ids=_lowercase , position_ids=_lowercase , token_type_ids=_lowercase , inputs_embeds=_lowercase ) a_ : List[Any] = embedding_output if self.training: a_ : Any = [] for i in range(self.config.num_hidden_layers ): a_ : int = self.encoder.adaptive_forward( _lowercase , current_layer=_lowercase , attention_mask=_lowercase , head_mask=_lowercase ) a_ : List[Any] = self.pooler(_lowercase ) a_ : Optional[int] = output_layers[i](output_dropout(_lowercase ) ) res.append(_lowercase ) elif self.patience == 0: # Use all layers for inference a_ : Union[str, Any] = self.encoder( _lowercase , attention_mask=_lowercase , head_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) a_ : Union[str, Any] = self.pooler(encoder_outputs[0] ) a_ : List[str] = [output_layers[self.config.num_hidden_layers - 1](_lowercase )] else: a_ : Any = 0 a_ : Dict = None a_ : Tuple = 0 for i in range(self.config.num_hidden_layers ): calculated_layer_num += 1 a_ : Optional[Any] = self.encoder.adaptive_forward( _lowercase , current_layer=_lowercase , attention_mask=_lowercase , head_mask=_lowercase ) a_ : Optional[int] = self.pooler(_lowercase ) a_ : int = output_layers[i](_lowercase ) if regression: a_ : Dict = logits.detach() if patient_result is not None: a_ : Optional[Any] = patient_result.detach() if (patient_result is not None) and torch.abs(patient_result - labels ) < self.regression_threshold: patient_counter += 1 else: a_ : Optional[Any] = 0 else: a_ : str = logits.detach().argmax(dim=1 ) if patient_result is not None: a_ : str = patient_result.detach().argmax(dim=1 ) if (patient_result is not None) and torch.all(labels.eq(_lowercase ) ): patient_counter += 1 else: a_ : Tuple = 0 a_ : Union[str, Any] = logits if patient_counter == self.patience: break a_ : str = [patient_result] self.inference_layers_num += calculated_layer_num self.inference_instances_num += 1 return res @add_start_docstrings( '''Bert Model transformer with PABEE and a sequence classification/regression head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. ''', a_, ) class A__(a_ ): """simple docstring""" def __init__( self , _lowercase ) -> str: super().__init__(_lowercase ) a_ : str = config.num_labels a_ : Optional[Any] = BertModelWithPabee(_lowercase ) a_ : int = nn.Dropout(config.hidden_dropout_prob ) a_ : str = nn.ModuleList( [nn.Linear(config.hidden_size , self.config.num_labels ) for _ in range(config.num_hidden_layers )] ) self.init_weights() @add_start_docstrings_to_model_forward(_lowercase ) def UpperCamelCase__ ( self , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=None , ) -> Tuple: a_ : Optional[Any] = self.bert( input_ids=_lowercase , attention_mask=_lowercase , token_type_ids=_lowercase , position_ids=_lowercase , head_mask=_lowercase , inputs_embeds=_lowercase , output_dropout=self.dropout , output_layers=self.classifiers , regression=self.num_labels == 1 , ) a_ : Optional[Any] = (logits[-1],) if labels is not None: a_ : int = None a_ : Union[str, Any] = 0 for ix, logits_item in enumerate(_lowercase ): if self.num_labels == 1: # We are doing regression a_ : Any = MSELoss() a_ : Union[str, Any] = loss_fct(logits_item.view(-1 ) , labels.view(-1 ) ) else: a_ : Any = CrossEntropyLoss() a_ : int = loss_fct(logits_item.view(-1 , self.num_labels ) , labels.view(-1 ) ) if total_loss is None: a_ : str = loss else: total_loss += loss * (ix + 1) total_weights += ix + 1 a_ : Any = (total_loss / total_weights,) + outputs return outputs
540
0
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _A : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=13 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=99 , __lowerCAmelCase=16 , __lowerCAmelCase=36 , __lowerCAmelCase=6 , __lowerCAmelCase=6 , __lowerCAmelCase=6 , __lowerCAmelCase=37 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.1 , __lowerCAmelCase=0.1 , __lowerCAmelCase=512 , __lowerCAmelCase=16 , __lowerCAmelCase=2 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" lowercase = parent lowercase = batch_size lowercase = seq_length lowercase = is_training lowercase = use_input_mask lowercase = use_token_type_ids lowercase = use_labels lowercase = vocab_size lowercase = embedding_size lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_hidden_groups lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = max_position_embeddings lowercase = type_vocab_size lowercase = type_sequence_label_size lowercase = initializer_range lowercase = num_labels lowercase = num_choices lowercase = scope def A__ ( self ): """simple docstring""" lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowercase = None if self.use_input_mask: lowercase = random_attention_mask([self.batch_size, self.seq_length] ) lowercase = None if self.use_token_type_ids: lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowercase = None lowercase = None lowercase = None if self.use_labels: lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowercase = ids_tensor([self.batch_size] , self.num_choices ) lowercase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A__ ( self ): """simple docstring""" return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = AlbertModel(config=__A ) model.to(__A ) model.eval() lowercase = model(__A , attention_mask=__A , token_type_ids=__A ) lowercase = model(__A , token_type_ids=__A ) lowercase = model(__A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = AlbertForPreTraining(config=__A ) model.to(__A ) model.eval() lowercase = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , sentence_order_label=__A , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = AlbertForMaskedLM(config=__A ) model.to(__A ) model.eval() lowercase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = AlbertForQuestionAnswering(config=__A ) model.to(__A ) model.eval() lowercase = model( __A , attention_mask=__A , token_type_ids=__A , start_positions=__A , end_positions=__A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = AlbertForSequenceClassification(__A ) model.to(__A ) model.eval() lowercase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_labels lowercase = AlbertForTokenClassification(config=__A ) model.to(__A ) model.eval() lowercase = model(__A , attention_mask=__A , token_type_ids=__A , labels=__A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = self.num_choices lowercase = AlbertForMultipleChoice(config=__A ) model.to(__A ) model.eval() lowercase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowercase = model( __A , attention_mask=__A , token_type_ids=__A , labels=__A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A__ ( self ): """simple docstring""" lowercase = self.prepare_config_and_inputs() ( ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ( lowercase ) , ) = config_and_inputs lowercase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class _A ( __lowercase , __lowercase , unittest.TestCase ): snake_case__ : Dict = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) snake_case__ : Union[str, Any] = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) snake_case__ : int = True def A__ ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=False ): """simple docstring""" lowercase = super()._prepare_for_class(__A , __A , return_labels=__A ) if return_labels: if model_class in get_values(__A ): lowercase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__A ) lowercase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__A ) return inputs_dict def A__ ( self ): """simple docstring""" lowercase = AlbertModelTester(self ) lowercase = ConfigTester(self , config_class=__A , hidden_size=37 ) def A__ ( self ): """simple docstring""" self.config_tester.run_common_tests() def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__A ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__A ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__A ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__A ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__A ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__A ) def A__ ( self ): """simple docstring""" lowercase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: lowercase = type self.model_tester.create_and_check_model(*__A ) @slow def A__ ( self ): """simple docstring""" for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase = AlbertModel.from_pretrained(__A ) self.assertIsNotNone(__A ) @require_torch class _A ( unittest.TestCase ): @slow def A__ ( self ): """simple docstring""" lowercase = AlbertModel.from_pretrained("""albert-base-v2""" ) lowercase = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) lowercase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): lowercase = model(__A , attention_mask=__A )[0] lowercase = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , __A ) lowercase = torch.tensor( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __A , atol=1E-4 ) )
714
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_bart import BartTokenizer __lowerCAmelCase : Tuple =logging.get_logger(__name__) __lowerCAmelCase : str ={"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} # See all BART models at https://huggingface.co/models?filter=bart __lowerCAmelCase : Optional[int] ={ """vocab_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/vocab.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/vocab.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/vocab.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/vocab.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/vocab.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/vocab.json""", }, """merges_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/merges.txt""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/merges.txt""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/merges.txt""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/merges.txt""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/merges.txt""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/merges.txt""", }, """tokenizer_file""": { """facebook/bart-base""": """https://huggingface.co/facebook/bart-base/resolve/main/tokenizer.json""", """facebook/bart-large""": """https://huggingface.co/facebook/bart-large/resolve/main/tokenizer.json""", """facebook/bart-large-mnli""": """https://huggingface.co/facebook/bart-large-mnli/resolve/main/tokenizer.json""", """facebook/bart-large-cnn""": """https://huggingface.co/facebook/bart-large-cnn/resolve/main/tokenizer.json""", """facebook/bart-large-xsum""": """https://huggingface.co/facebook/bart-large-xsum/resolve/main/tokenizer.json""", """yjernite/bart_eli5""": """https://huggingface.co/yjernite/bart_eli5/resolve/main/tokenizer.json""", }, } __lowerCAmelCase : Optional[int] ={ """facebook/bart-base""": 1_0_2_4, """facebook/bart-large""": 1_0_2_4, """facebook/bart-large-mnli""": 1_0_2_4, """facebook/bart-large-cnn""": 1_0_2_4, """facebook/bart-large-xsum""": 1_0_2_4, """yjernite/bart_eli5""": 1_0_2_4, } class _A ( lowerCAmelCase ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case__ : Optional[Any] = ['input_ids', 'attention_mask'] snake_case__ : Dict = BartTokenizer def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase="replace" , __lowerCAmelCase="<s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="</s>" , __lowerCAmelCase="<s>" , __lowerCAmelCase="<unk>" , __lowerCAmelCase="<pad>" , __lowerCAmelCase="<mask>" , __lowerCAmelCase=False , __lowerCAmelCase=True , **__lowerCAmelCase , ): """simple docstring""" super().__init__( __lowerCAmelCase , __lowerCAmelCase , tokenizer_file=__lowerCAmelCase , errors=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , sep_token=__lowerCAmelCase , cls_token=__lowerCAmelCase , unk_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , mask_token=__lowerCAmelCase , add_prefix_space=__lowerCAmelCase , trim_offsets=__lowerCAmelCase , **__lowerCAmelCase , ) lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: lowercase = getattr(__lowerCAmelCase , pre_tok_state.pop("""type""" ) ) lowercase = add_prefix_space lowercase = pre_tok_class(**__lowerCAmelCase ) lowercase = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` lowercase = """post_processor""" lowercase = getattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) if tokenizer_component_instance: lowercase = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: lowercase = tuple(state["""sep"""] ) if "cls" in state: lowercase = tuple(state["""cls"""] ) lowercase = False if state.get("""add_prefix_space""" , __lowerCAmelCase ) != add_prefix_space: lowercase = add_prefix_space lowercase = True if state.get("""trim_offsets""" , __lowerCAmelCase ) != trim_offsets: lowercase = trim_offsets lowercase = True if changes_to_apply: lowercase = getattr(__lowerCAmelCase , state.pop("""type""" ) ) lowercase = component_class(**__lowerCAmelCase ) setattr(self.backend_tokenizer , __lowerCAmelCase , __lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" if self._mask_token is None: if self.verbose: logger.error("""Using mask_token, but it is not set yet.""" ) return None return str(self._mask_token ) @mask_token.setter def A__ ( self , __lowerCAmelCase ): """simple docstring""" lowercase = AddedToken(__lowerCAmelCase , lstrip=__lowerCAmelCase , rstrip=__lowerCAmelCase ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ) else value lowercase = value def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._batch_encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" lowercase = kwargs.get("""is_split_into_words""" , __lowerCAmelCase ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' """to use it with pretokenized inputs.""" ) return super()._encode_plus(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = self._tokenizer.model.save(__lowerCAmelCase , name=__lowerCAmelCase ) return tuple(__lowerCAmelCase ) def A__ ( self , __lowerCAmelCase , __lowerCAmelCase=None ): """simple docstring""" lowercase = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def A__ ( self , __lowerCAmelCase , __lowerCAmelCase = None ): """simple docstring""" lowercase = [self.sep_token_id] lowercase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0]
197
0
import inspect from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch import torch.utils.checkpoint from ...models import UNetaDModel, VQModel from ...schedulers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, PNDMScheduler, ) from ...utils import PIL_INTERPOLATION, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput def SCREAMING_SNAKE_CASE ( snake_case ) -> List[str]: __lowercase = image.size __lowercase = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __lowercase = image.resize((w, h) , resample=PIL_INTERPOLATION['lanczos'] ) __lowercase = np.array(__UpperCAmelCase ).astype(np.floataa ) / 255.0 __lowercase = image[None].transpose(0 , 3 , 1 , 2 ) __lowercase = torch.from_numpy(__UpperCAmelCase ) return 2.0 * image - 1.0 class snake_case_ ( a_ ): '''simple docstring''' def __init__( self : int , __lowerCamelCase : VQModel , __lowerCamelCase : UNetaDModel , __lowerCamelCase : Union[ DDIMScheduler, PNDMScheduler, LMSDiscreteScheduler, EulerDiscreteScheduler, EulerAncestralDiscreteScheduler, DPMSolverMultistepScheduler, ] , ) -> Union[str, Any]: '''simple docstring''' super().__init__() self.register_modules(vqvae=__lowerCamelCase , unet=__lowerCamelCase , scheduler=__lowerCamelCase ) @torch.no_grad() def __call__( self : int , __lowerCamelCase : Union[torch.Tensor, PIL.Image.Image] = None , __lowerCamelCase : Optional[int] = 1 , __lowerCamelCase : Optional[int] = 100 , __lowerCamelCase : Optional[float] = 0.0 , __lowerCamelCase : Optional[Union[torch.Generator, List[torch.Generator]]] = None , __lowerCamelCase : Optional[str] = "pil" , __lowerCamelCase : bool = True , ) -> Union[Tuple, ImagePipelineOutput]: '''simple docstring''' if isinstance(__lowerCamelCase , PIL.Image.Image ): __lowercase = 1 elif isinstance(__lowerCamelCase , torch.Tensor ): __lowercase = image.shape[0] else: raise ValueError(F"`image` has to be of type `PIL.Image.Image` or `torch.Tensor` but is {type(__lowerCamelCase )}" ) if isinstance(__lowerCamelCase , PIL.Image.Image ): __lowercase = preprocess(__lowerCamelCase ) __lowercase = image.shape[-2:] # in_channels should be 6: 3 for latents, 3 for low resolution image __lowercase = (batch_size, self.unet.config.in_channels // 2, height, width) __lowercase = next(self.unet.parameters() ).dtype __lowercase = randn_tensor(__lowerCamelCase , generator=__lowerCamelCase , device=self.device , dtype=__lowerCamelCase ) __lowercase = image.to(device=self.device , dtype=__lowerCamelCase ) # set timesteps and move to the correct device self.scheduler.set_timesteps(__lowerCamelCase , device=self.device ) __lowercase = self.scheduler.timesteps # scale the initial noise by the standard deviation required by the scheduler __lowercase = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature. # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] __lowercase = """eta""" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) __lowercase = {} if accepts_eta: __lowercase = eta for t in self.progress_bar(__lowerCamelCase ): # concat latents and low resolution image in the channel dimension. __lowercase = torch.cat([latents, image] , dim=1 ) __lowercase = self.scheduler.scale_model_input(__lowerCamelCase , __lowerCamelCase ) # predict the noise residual __lowercase = self.unet(__lowerCamelCase , __lowerCamelCase ).sample # compute the previous noisy sample x_t -> x_t-1 __lowercase = self.scheduler.step(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , **__lowerCamelCase ).prev_sample # decode the image latents with the VQVAE __lowercase = self.vqvae.decode(__lowerCamelCase ).sample __lowercase = torch.clamp(__lowerCamelCase , -1.0 , 1.0 ) __lowercase = image / 2 + 0.5 __lowercase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __lowercase = self.numpy_to_pil(__lowerCamelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__lowerCamelCase )
375
"""simple docstring""" import os import unittest from tempfile import TemporaryDirectory import torch import torch.nn as nn from accelerate.utils import ( OffloadedWeightsLoader, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, ) class _lowerCamelCase ( nn.Module ): def __init__( self : Optional[Any] ) -> Optional[int]: """simple docstring""" super().__init__() lowerCAmelCase__ : Optional[int] = nn.Linear(3 , 4 ) lowerCAmelCase__ : int = nn.BatchNormad(4 ) lowerCAmelCase__ : Optional[Any] = nn.Linear(4 , 5 ) def _lowerCAmelCase ( self : List[str] , UpperCamelCase : List[Any] ) -> Tuple: """simple docstring""" return self.lineara(self.batchnorm(self.lineara(UpperCamelCase ) ) ) class _lowerCamelCase ( unittest.TestCase ): def _lowerCAmelCase ( self : Any ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ : Any = ModelForTest() with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase , model.state_dict() ) lowerCAmelCase__ : List[str] = os.path.join(UpperCamelCase , """index.json""" ) self.assertTrue(os.path.isfile(UpperCamelCase ) ) # TODO: add tests on what is inside the index for key in ["linear1.weight", "linear1.bias", "linear2.weight", "linear2.bias"]: lowerCAmelCase__ : Tuple = os.path.join(UpperCamelCase , f"""{key}.dat""" ) self.assertTrue(os.path.isfile(UpperCamelCase ) ) # TODO: add tests on the fact weights are properly loaded def _lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowerCAmelCase__ : List[str] = [torch.floataa, torch.floataa, torch.bfloataa] for dtype in dtypes: lowerCAmelCase__ : Union[str, Any] = torch.randn(2 , 3 , dtype=UpperCamelCase ) with TemporaryDirectory() as tmp_dir: lowerCAmelCase__ : Optional[Any] = offload_weight(UpperCamelCase , """weight""" , UpperCamelCase , {} ) lowerCAmelCase__ : Dict = os.path.join(UpperCamelCase , """weight.dat""" ) self.assertTrue(os.path.isfile(UpperCamelCase ) ) self.assertDictEqual(UpperCamelCase , {"""weight""": {"""shape""": [2, 3], """dtype""": str(UpperCamelCase ).split(""".""" )[1]}} ) lowerCAmelCase__ : Any = load_offloaded_weight(UpperCamelCase , index["""weight"""] ) self.assertTrue(torch.equal(UpperCamelCase , UpperCamelCase ) ) def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = ModelForTest() lowerCAmelCase__ : Optional[Any] = model.state_dict() lowerCAmelCase__ : Tuple = {k: v for k, v in state_dict.items() if """linear2""" not in k} lowerCAmelCase__ : Any = {k: v for k, v in state_dict.items() if """linear2""" in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : str = OffloadedWeightsLoader(state_dict=UpperCamelCase , save_folder=UpperCamelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase , weight_map[key] ) ) lowerCAmelCase__ : str = {k: v for k, v in state_dict.items() if """weight""" in k} lowerCAmelCase__ : str = {k: v for k, v in state_dict.items() if """weight""" not in k} with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase , UpperCamelCase ) lowerCAmelCase__ : Any = OffloadedWeightsLoader(state_dict=UpperCamelCase , save_folder=UpperCamelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase , weight_map[key] ) ) with TemporaryDirectory() as tmp_dir: offload_state_dict(UpperCamelCase , UpperCamelCase ) # Duplicates are removed lowerCAmelCase__ : List[str] = OffloadedWeightsLoader(state_dict=UpperCamelCase , save_folder=UpperCamelCase ) # Every key is there with the right value self.assertEqual(sorted(UpperCamelCase ) , sorted(state_dict.keys() ) ) for key, param in state_dict.items(): self.assertTrue(torch.allclose(UpperCamelCase , weight_map[key] ) ) def _lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowerCAmelCase__ : List[str] = {"""a.1""": 0, """a.10""": 1, """a.2""": 2} lowerCAmelCase__ : Any = extract_submodules_state_dict(UpperCamelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(UpperCamelCase , {"""a.1""": 0, """a.2""": 2} ) lowerCAmelCase__ : str = {"""a.1.a""": 0, """a.10.a""": 1, """a.2.a""": 2} lowerCAmelCase__ : Union[str, Any] = extract_submodules_state_dict(UpperCamelCase , ["""a.1""", """a.2"""] ) self.assertDictEqual(UpperCamelCase , {"""a.1.a""": 0, """a.2.a""": 2} )
299
0
def snake_case__ ( __SCREAMING_SNAKE_CASE ) -> Tuple: if not nums: # Makes sure that the list is not empty raise ValueError("List is empty" ) UpperCAmelCase_ = sum(_lowerCamelCase ) / len(_lowerCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(_lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
718
def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: UpperCAmelCase_ = 0 while b > 0: if b & 1: res += a a += a b >>= 1 return res def snake_case__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: UpperCAmelCase_ = 0 while b > 0: if b & 1: UpperCAmelCase_ = ((res % c) + (a % c)) % c a += a b >>= 1 return res
23
0
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __magic_name__ = {"configuration_mra": ["MRA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MraConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ "MRA_PRETRAINED_MODEL_ARCHIVE_LIST", "MraForMaskedLM", "MraForMultipleChoice", "MraForQuestionAnswering", "MraForSequenceClassification", "MraForTokenClassification", "MraLayer", "MraModel", "MraPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mra import MRA_PRETRAINED_CONFIG_ARCHIVE_MAP, MraConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mra import ( MRA_PRETRAINED_MODEL_ARCHIVE_LIST, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraLayer, MraModel, MraPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["__file__"], _import_structure)
232
"""simple docstring""" import warnings from typing import Dict, List, Optional, Tuple from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __magic_name__ = logging.get_logger(__name__) class SCREAMING_SNAKE_CASE ( a ): """simple docstring""" a_ : str =["input_ids", "attention_mask"] def __init__( self : str , _snake_case : Tuple="</s>" , _snake_case : List[str]="<unk>" , _snake_case : Dict="<pad>" , _snake_case : Any=125 , _snake_case : Optional[Any]=None , **_snake_case : Optional[int] , ) -> None: '''simple docstring''' if extra_ids > 0 and additional_special_tokens is None: a__ = [F'''<extra_id_{i}>''' for i in range(_snake_case )] elif extra_ids > 0 and additional_special_tokens is not None: # Check that we have the right number of extra_id special tokens a__ = len(set(filter(lambda _snake_case : bool('extra_id' in str(_snake_case ) ) , _snake_case ) ) ) if extra_tokens != extra_ids: raise ValueError( F'''Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are''' ' provided to ByT5Tokenizer. In this case the additional_special_tokens must include the' ' extra_ids tokens' ) a__ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else pad_token a__ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else eos_token a__ = AddedToken(_snake_case , lstrip=_snake_case , rstrip=_snake_case ) if isinstance(_snake_case , _snake_case ) else unk_token super().__init__( eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , extra_ids=_snake_case , additional_special_tokens=_snake_case , **_snake_case , ) a__ = extra_ids a__ = 2**8 # utf is 8 bits # define special tokens dict a__ = { self.pad_token: 0, self.eos_token: 1, self.unk_token: 2, } a__ = len(self.special_tokens_encoder ) a__ = len(_snake_case ) for i, token in enumerate(_snake_case ): a__ = self.vocab_size + i - n a__ = {v: k for k, v in self.special_tokens_encoder.items()} @property def _lowerCAmelCase ( self : List[str] ) -> List[str]: '''simple docstring''' return self._utf_vocab_size + self._num_special_tokens + self._extra_ids def _lowerCAmelCase ( self : Optional[int] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) # normal case: some special tokens if token_ids_a is None: return ([0] * len(_snake_case )) + [1] return ([0] * len(_snake_case )) + [1] + ([0] * len(_snake_case )) + [1] def _lowerCAmelCase ( self : Optional[Any] , _snake_case : List[int] ) -> List[int]: '''simple docstring''' if len(_snake_case ) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( F'''This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated''' ' eos tokens being added.' ) return token_ids else: return token_ids + [self.eos_token_id] def _lowerCAmelCase ( self : List[str] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ = [self.eos_token_id] if token_ids_a is None: return len(token_ids_a + eos ) * [0] return len(token_ids_a + eos + token_ids_a + eos ) * [0] def _lowerCAmelCase ( self : List[str] , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: '''simple docstring''' a__ = self._add_eos_if_not_present(_snake_case ) if token_ids_a is None: return token_ids_a else: a__ = self._add_eos_if_not_present(_snake_case ) return token_ids_a + token_ids_a def _lowerCAmelCase ( self : List[str] , _snake_case : str ) -> List[str]: '''simple docstring''' a__ = [chr(_snake_case ) for i in text.encode('utf-8' )] return tokens def _lowerCAmelCase ( self : str , _snake_case : List[str] ) -> str: '''simple docstring''' if token in self.special_tokens_encoder: a__ = self.special_tokens_encoder[token] elif token in self.added_tokens_encoder: a__ = self.added_tokens_encoder[token] elif len(_snake_case ) != 1: a__ = self.unk_token_id else: a__ = ord(_snake_case ) + self._num_special_tokens return token_id def _lowerCAmelCase ( self : str , _snake_case : Any ) -> List[str]: '''simple docstring''' if index in self.special_tokens_decoder: a__ = self.special_tokens_decoder[index] else: a__ = chr(index - self._num_special_tokens ) return token def _lowerCAmelCase ( self : Dict , _snake_case : Any ) -> str: '''simple docstring''' a__ = b'' for token in tokens: if token in self.special_tokens_decoder: a__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.added_tokens_decoder: a__ = self.special_tokens_decoder[token].encode('utf-8' ) elif token in self.special_tokens_encoder: a__ = token.encode('utf-8' ) elif token in self.added_tokens_encoder: a__ = token.encode('utf-8' ) else: a__ = bytes([ord(_snake_case )] ) bstring += tok_string a__ = bstring.decode('utf-8' , errors='ignore' ) return string def _lowerCAmelCase ( self : int , _snake_case : str , _snake_case : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' return ()
232
1
import functools def lowerCamelCase__ ( __lowerCAmelCase : str , __lowerCAmelCase : str ): """simple docstring""" lowerCAmelCase_ = len(__lowerCAmelCase ) lowerCAmelCase_ = len(__lowerCAmelCase ) @functools.cache def min_distance(__lowerCAmelCase : int , __lowerCAmelCase : int ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa lowerCAmelCase_ = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , __lowerCAmelCase ) , 1 + min_distance(__lowerCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
279
import math class _lowerCAmelCase : def __init__( self , _UpperCamelCase=0 ) -> Tuple: # a graph with Node 0,1,...,N-1 lowerCAmelCase_ = n lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # adjacency matrix for weight lowerCAmelCase_ = [ [math.inf for j in range(0 , _UpperCamelCase )] for i in range(0 , _UpperCamelCase ) ] # dp[i][j] stores minimum distance from i to j def __a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> List[Any]: lowerCAmelCase_ = w def __a ( self ) -> List[str]: for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): lowerCAmelCase_ = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def __a ( self , _UpperCamelCase , _UpperCamelCase ) -> Dict: return self.dp[u][v] if __name__ == "__main__": _A = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
279
1