code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import json import os from datetime import date from pathlib import Path from tabulate import DataRow, TableFormat, tabulate lowerCAmelCase : Any = TableFormat( lineabove=None, linebelowheader=None, linebetweenrows=None, linebelow=None, headerrow=DataRow("""""", """|""", """|"""), datarow=DataRow("""""", """|""", """|"""), padding=1, with_header_hide=None, ) lowerCAmelCase : Dict = [] lowerCAmelCase : List[Any] = [] lowerCAmelCase : List[str] = {"type": "section", "text": {"type": "plain_text", "text": "No failed tests! 🤗", "emoji": True}} lowerCAmelCase : List[Any] = [ { "type": "header", "text": { "type": "plain_text", "text": F"""🤗 Accelerate nightly {os.environ.get('TEST_TYPE', '')} test results""", "emoji": True, }, } ] lowerCAmelCase : Dict = 0 for log in Path().glob("""*.log"""): lowerCAmelCase : Tuple = 0 with open(log, """r""") as f: for line in f: lowerCAmelCase : Dict = json.loads(line) if line.get("""nodeid""", """""") != "": lowerCAmelCase : Union[str, Any] = line["nodeid"] if line.get("""duration""", None) is not None: lowerCAmelCase : Tuple = F"""{line['duration']:.4f}""" if line.get("""outcome""", """""") == "failed": section_num_failed += 1 failed.append([test, duration, log.name.split("""_""")[0]]) total_num_failed += 1 group_info.append([str(log), section_num_failed, failed]) lowerCAmelCase : Tuple = [] log.unlink() lowerCAmelCase : Optional[int] = "" lowerCAmelCase : Optional[Any] = [] if total_num_failed > 0: for name, num_failed, failed_tests in group_info: if num_failed > 0: if num_failed == 1: message += F"*{name[1:]}: {num_failed} failed test*\n" else: message += F"*{name[1:]}: {num_failed} failed tests*\n" lowerCAmelCase : Union[str, Any] = [] lowerCAmelCase : Dict = {} for test in failed_tests: lowerCAmelCase : int = test[0].split("""::""") lowerCAmelCase : str = data[0].split("""/""")[-1] if data[0] not in filesafailed: lowerCAmelCase : Any = [data[1:]] else: filesafailed[data[0]] += [data[1:]] failed_table.append(data) lowerCAmelCase : Dict = [test[0] for test in failed_table] lowerCAmelCase : List[str] = list(set(files)) # Count number of instances in failed_tests lowerCAmelCase : Union[str, Any] = [] for file in individual_files: table.append([file, len(filesafailed[file])]) lowerCAmelCase : List[Any] = tabulate( table, headers=["""Test Location""", """Num Failed"""], tablefmt=hf_table_format, stralign="""right""", ) message += F"\n```\n{failed_table}\n```" all_filesafailed.append(filesafailed) if len(message) > 3000: lowerCAmelCase : str = "Too many failed tests, please see the full report in the Action results." lowerCAmelCase : Dict = len(err) + 10 lowerCAmelCase : int = message[: 3000 - offset] + F"""\n...\n```\n{err}""" print(F"""### {message}""") else: lowerCAmelCase : int = "No failed tests! 🤗" print(F"""## {message}""") payload.append(no_error_payload) if os.environ.get("""TEST_TYPE""", """""") != "": from slack_sdk import WebClient lowerCAmelCase : int = WebClient(token=os.environ["""SLACK_API_TOKEN"""]) if message != "No failed tests! 🤗": lowerCAmelCase : int = { "type": "section", "text": { "type": "mrkdwn", "text": message, }, } payload.append(md_report) lowerCAmelCase : List[str] = { "type": "section", "text": { "type": "mrkdwn", "text": "*For more details:*", }, "accessory": { "type": "button", "text": { "type": "plain_text", "text": "Check Action results", "emoji": True, }, "url": F"""https://github.com/{os.environ['GITHUB_REPOSITORY']}/actions/runs/{os.environ['GITHUB_RUN_ID']}""", }, } payload.append(action_button) lowerCAmelCase : List[str] = { "type": "context", "elements": [ { "type": "plain_text", "text": F"""Nightly {os.environ.get('TEST_TYPE')} test results for {date.today()}""", } ], } payload.append(date_report) lowerCAmelCase : Tuple = client.chat_postMessage(channel="""#accelerate-ci-daily""", text=message, blocks=payload) lowerCAmelCase : Optional[Any] = response.data["ts"] for failed_file in all_filesafailed: for test_location, test_failures in failed_file.items(): # Keep only the first instance of the test name lowerCAmelCase : List[str] = "" for i, row in enumerate(test_failures): if row[0] != test_class: lowerCAmelCase : Any = row[0] else: lowerCAmelCase : Tuple = "" lowerCAmelCase : Union[str, Any] = { "type": "section", "text": { "type": "mrkdwn", "text": F"""Test location: {test_location}\n```\n{tabulate(test_failures, headers=['Class', 'Test'], tablefmt=hf_table_format, stralign='right')}\n```""", }, } client.chat_postMessage( channel="""#accelerate-ci-daily""", thread_ts=ts, blocks=[payload], )
543
def lowerCAmelCase_ ( _lowercase : list , _lowercase : int , _lowercase : int = 0 , _lowercase : int = 0) -> int: """simple docstring""" a__ : str = right or len(_lowercase) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowercase , _lowercase , left + 1 , right - 1) if __name__ == "__main__": import doctest doctest.testmod()
136
0
class UpperCamelCase_ : '''simple docstring''' def __init__( self : int , UpperCAmelCase__ : list) ->None: '''simple docstring''' A__ = set_counts A__ = max(UpperCAmelCase__) A__ = len(UpperCAmelCase__) A__ = [1] * num_sets A__ = list(range(UpperCAmelCase__)) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : int) ->bool: '''simple docstring''' A__ = self.get_parent(UpperCAmelCase__) A__ = self.get_parent(UpperCAmelCase__) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] A__ = 0 A__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 A__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] A__ = 0 A__ = src_parent A__ = self.set_counts[src_parent] A__ = max(self.max_set , UpperCAmelCase__) return True def SCREAMING_SNAKE_CASE ( self : str , UpperCAmelCase__ : int) ->int: '''simple docstring''' if self.parents[disj_set] == disj_set: return disj_set A__ = self.get_parent(self.parents[disj_set]) return self.parents[disj_set]
177
from __future__ import annotations import unittest from transformers import XGLMConfig, XGLMTokenizer, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.xglm.modeling_tf_xglm import ( TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXGLMForCausalLM, TFXGLMModel, ) @require_tf class UpperCamelCase_ : '''simple docstring''' UpperCAmelCase__ = XGLMConfig UpperCAmelCase__ = {} UpperCAmelCase__ = '''gelu''' def __init__( self : str , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Union[str, Any]=14 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : List[Any]=True , UpperCAmelCase__ : Optional[Any]=True , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=99 , UpperCAmelCase__ : Union[str, Any]=32 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : List[str]=37 , UpperCAmelCase__ : Union[str, Any]="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : Any=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : List[Any]=0.02 , ) ->str: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_labels A__ = vocab_size A__ = d_model A__ = num_hidden_layers A__ = num_attention_heads A__ = ffn_dim A__ = activation_function A__ = activation_dropout A__ = attention_dropout A__ = max_position_embeddings A__ = initializer_range A__ = None A__ = 0 A__ = 2 A__ = 1 def SCREAMING_SNAKE_CASE ( self : Tuple) ->Optional[int]: '''simple docstring''' return XGLMConfig.from_pretrained('''facebook/xglm-564M''') def SCREAMING_SNAKE_CASE ( self : Tuple) ->Tuple: '''simple docstring''' A__ = tf.clip_by_value( ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) , clip_value_min=0 , clip_value_max=3) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = self.get_config() A__ = floats_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, ) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Dict: '''simple docstring''' return XGLMConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , num_layers=self.num_hidden_layers , attention_heads=self.num_attention_heads , ffn_dim=self.ffn_dim , activation_function=self.activation_function , activation_dropout=self.activation_dropout , attention_dropout=self.attention_dropout , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , return_dict=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = { '''input_ids''': input_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_tf class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = (TFXGLMModel, TFXGLMForCausalLM) if is_tf_available() else () UpperCAmelCase__ = (TFXGLMForCausalLM,) if is_tf_available() else () UpperCAmelCase__ = ( {'''feature-extraction''': TFXGLMModel, '''text-generation''': TFXGLMForCausalLM} if is_tf_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : List[Any]) ->List[Any]: '''simple docstring''' A__ = TFXGLMModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , n_embd=37) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->str: '''simple docstring''' self.config_tester.run_common_tests() @slow def SCREAMING_SNAKE_CASE ( self : Any) ->List[str]: '''simple docstring''' for model_name in TF_XGLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = TFXGLMModel.from_pretrained(UpperCAmelCase__) self.assertIsNotNone(UpperCAmelCase__) @unittest.skip(reason='''Currently, model embeddings are going to undergo a major refactor.''') def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' super().test_resize_token_embeddings() @require_tf class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any]=True) ->Union[str, Any]: '''simple docstring''' A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') A__ = tf.convert_to_tensor([[2, 268, 9_865]] , dtype=tf.intaa) # The dog # </s> The dog is a very friendly dog. He is very affectionate and loves to play with other # fmt: off A__ = [2, 268, 9_865, 67, 11, 1_988, 57_252, 9_865, 5, 984, 67, 1_988, 213_838, 1_658, 53, 70_446, 33, 6_657, 278, 1_581] # fmt: on A__ = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ , num_beams=1) if verify_outputs: self.assertListEqual(output_ids[0].numpy().tolist() , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : int) ->Optional[int]: '''simple docstring''' A__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') tf.random.set_seed(0) A__ = tokenizer('''Today is a nice day and''' , return_tensors='''tf''') A__ = tokenized.input_ids # forces the generation to happen on CPU, to avoid GPU-related quirks (and assure same output regardless of the available devices) with tf.device(''':/CPU:0'''): A__ = model.generate(UpperCAmelCase__ , do_sample=UpperCAmelCase__ , seed=[7, 0]) A__ = tokenizer.decode(output_ids[0] , skip_special_tokens=UpperCAmelCase__) A__ = ( '''Today is a nice day and warm evening here over Southern Alberta!! Today when they closed schools due''' ) self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Union[str, Any]: '''simple docstring''' A__ = TFXGLMForCausalLM.from_pretrained('''facebook/xglm-564M''') A__ = XGLMTokenizer.from_pretrained('''facebook/xglm-564M''') A__ = '''left''' # use different length sentences to test batching A__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When''', '''Hello, my dog is a little''', ] A__ = tokenizer(UpperCAmelCase__ , return_tensors='''tf''' , padding=UpperCAmelCase__) A__ = inputs['''input_ids'''] A__ = model.generate(input_ids=UpperCAmelCase__ , attention_mask=inputs['''attention_mask'''] , max_new_tokens=12) A__ = tokenizer(sentences[0] , return_tensors='''tf''').input_ids A__ = model.generate(input_ids=UpperCAmelCase__ , max_new_tokens=12) A__ = tokenizer(sentences[1] , return_tensors='''tf''').input_ids A__ = model.generate(input_ids=UpperCAmelCase__ , max_new_tokens=12) A__ = tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(output_non_padded[0] , skip_special_tokens=UpperCAmelCase__) A__ = tokenizer.decode(output_padded[0] , skip_special_tokens=UpperCAmelCase__) A__ = [ '''This is an extremelly long sentence that only exists to test the ability of the model to cope with ''' '''left-padding, such as in batched generation. The output for the sequence below should be the same ''' '''regardless of whether left padding is applied or not. When left padding is applied, the sequence will be ''' '''a single''', '''Hello, my dog is a little bit of a shy one, but he is very friendly''', ] self.assertListEqual(UpperCAmelCase__ , UpperCAmelCase__) self.assertListEqual(UpperCAmelCase__ , [non_padded_sentence, padded_sentence])
177
1
import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class UpperCamelCase_ : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=3 , UpperCAmelCase__ : List[Any]=7 , UpperCAmelCase__ : List[str]=True , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Dict=True , UpperCAmelCase__ : Any=99 , UpperCAmelCase__ : Optional[int]=32 , UpperCAmelCase__ : str=5 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : str=37 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Dict=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : Any=512 , UpperCAmelCase__ : Union[str, Any]=16 , UpperCAmelCase__ : Tuple=2 , UpperCAmelCase__ : Any=0.02 , UpperCAmelCase__ : List[Any]=3 , UpperCAmelCase__ : Tuple=4 , UpperCAmelCase__ : Union[str, Any]=None , ) ->Optional[Any]: '''simple docstring''' A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_size A__ = hidden_act A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def SCREAMING_SNAKE_CASE ( self : List[str]) ->Tuple: '''simple docstring''' A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length]) A__ = None A__ = None A__ = None A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size) A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) A__ = ids_tensor([self.batch_size] , self.num_choices) A__ = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE ( self : Union[str, Any]) ->Optional[int]: '''simple docstring''' return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCAmelCase__ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=UpperCAmelCase__ , ) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : str , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str]) ->List[str]: '''simple docstring''' A__ = FalconModel(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__) A__ = model(UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : Optional[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : str , UpperCAmelCase__ : Optional[int] , ) ->Optional[int]: '''simple docstring''' A__ = True A__ = FalconModel(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , ) A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , ) A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict , UpperCAmelCase__ : List[Any] , ) ->int: '''simple docstring''' A__ = FalconForCausalLM(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : Dict , UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : int , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , ) ->Optional[int]: '''simple docstring''' A__ = True A__ = True A__ = FalconForCausalLM(config=UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() # first forward pass A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , use_cache=UpperCAmelCase__ , ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1) A__ = torch.cat([input_mask, next_mask] , dim=-1) A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] A__ = model( UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , encoder_hidden_states=UpperCAmelCase__ , encoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , output_hidden_states=UpperCAmelCase__ , )['''hidden_states'''][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1]).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(UpperCAmelCase__ , UpperCAmelCase__ , atol=1e-3)) def SCREAMING_SNAKE_CASE ( self : int) ->List[str]: '''simple docstring''' A__ = self.prepare_config_and_inputs() ( ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ( A__ ) , ) = config_and_inputs A__ = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ = (FalconForCausalLM,) if is_torch_available() else () UpperCAmelCase__ = ( { '''feature-extraction''': FalconModel, '''text-classification''': FalconForSequenceClassification, '''text-generation''': FalconForCausalLM, '''question-answering''': FalconForQuestionAnswering, '''token-classification''': FalconForTokenClassification, '''zero-shot''': FalconForSequenceClassification, } if is_torch_available() else {} ) UpperCAmelCase__ = False UpperCAmelCase__ = False def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Tuple: '''simple docstring''' A__ = FalconModelTester(self) A__ = ConfigTester(self , config_class=UpperCAmelCase__ , hidden_size=37) def SCREAMING_SNAKE_CASE ( self : Optional[Any]) ->Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE ( self : List[str]) ->Dict: '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->Union[str, Any]: '''simple docstring''' A__ , *A__ = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: A__ = alibi self.model_tester.create_and_check_model(UpperCAmelCase__ , *UpperCAmelCase__) def SCREAMING_SNAKE_CASE ( self : int) ->Optional[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = input_dict['''input_ids'''] A__ = input_ids.ne(1).to(UpperCAmelCase__) A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) A__ = FalconForSequenceClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = '''single_label_classification''' A__ = input_dict['''input_ids'''] A__ = input_ids.ne(1).to(UpperCAmelCase__) A__ = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) A__ = FalconForSequenceClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def SCREAMING_SNAKE_CASE ( self : Tuple) ->Dict: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = input_dict['''input_ids'''] A__ = FalconForCausalLM(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , use_cache=UpperCAmelCase__) A__ = input_ids.shape[0] A__ = model._convert_to_rw_cache(result.past_key_values) A__ = model._convert_cache_to_standard_format(UpperCAmelCase__ , UpperCAmelCase__) for layer in range(len(UpperCAmelCase__)): for tensor_idx in range(2): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx])) def SCREAMING_SNAKE_CASE ( self : Optional[int]) ->List[str]: '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = '''multi_label_classification''' A__ = input_dict['''input_ids'''] A__ = input_ids.ne(1).to(UpperCAmelCase__) A__ = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) A__ = FalconForSequenceClassification(UpperCAmelCase__) model.to(UpperCAmelCase__) model.eval() A__ = model(UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , labels=UpperCAmelCase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def SCREAMING_SNAKE_CASE ( self : Tuple) ->List[str]: '''simple docstring''' for model_class in self.all_generative_model_classes: A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(UpperCAmelCase__ , '''use_cache'''): return A__ = model_class(UpperCAmelCase__).to(UpperCAmelCase__) if "use_cache" not in inputs: A__ = True A__ = model(**UpperCAmelCase__) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return A__ = ( getattr(UpperCAmelCase__ , '''decoder_layers''' , UpperCAmelCase__) or getattr(UpperCAmelCase__ , '''num_decoder_layers''' , UpperCAmelCase__) or config.num_hidden_layers ) A__ = getattr(UpperCAmelCase__ , '''num_kv_heads''' , config.num_attention_heads) A__ = getattr(UpperCAmelCase__ , '''d_model''' , config.hidden_size) A__ = embed_dim // num_attention_heads A__ = outputs['''past_key_values'''] self.assertEqual(len(UpperCAmelCase__) , UpperCAmelCase__) A__ , A__ = inputs['''input_ids'''].shape for i in range(UpperCAmelCase__): if config.new_decoder_architecture: A__ = config.num_attention_heads elif config.multi_query: A__ = 1 self.assertEqual(len(past_kv[0]) , 2) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim)) @require_torch class UpperCamelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def SCREAMING_SNAKE_CASE ( self : List[Any]) ->Union[str, Any]: '''simple docstring''' A__ = AutoTokenizer.from_pretrained('''Rocketknight1/falcon-rw-1b''') A__ = FalconForCausalLM.from_pretrained('''Rocketknight1/falcon-rw-1b''') model.eval() model.to(UpperCAmelCase__) A__ = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(UpperCAmelCase__) A__ = ( '''My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday.''' ) A__ = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=19) A__ = tokenizer.batch_decode(UpperCAmelCase__)[0] self.assertEqual(UpperCAmelCase__ , UpperCAmelCase__) @slow def SCREAMING_SNAKE_CASE ( self : List[str]) ->List[Any]: '''simple docstring''' for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: A__ = AutoTokenizer.from_pretrained(UpperCAmelCase__) A__ = FalconForCausalLM.from_pretrained(UpperCAmelCase__) model.eval() model.to(UpperCAmelCase__) A__ = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(UpperCAmelCase__) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4) model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=4) model.generate(**UpperCAmelCase__ , num_beams=2 , max_new_tokens=4) @slow def SCREAMING_SNAKE_CASE ( self : Dict) ->int: '''simple docstring''' with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: A__ = AutoTokenizer.from_pretrained(UpperCAmelCase__) A__ = FalconForCausalLM.from_pretrained(UpperCAmelCase__) model.eval() model.to(device=UpperCAmelCase__) A__ = tokenizer('''My favorite food is''' , return_tensors='''pt''').to(UpperCAmelCase__) # Test results are the same with and without cache A__ = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=20 , use_cache=UpperCAmelCase__) A__ = model.generate(**UpperCAmelCase__ , do_sample=UpperCAmelCase__ , max_new_tokens=20 , use_cache=UpperCAmelCase__) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0)
87
"""simple docstring""" import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets A__ : Optional[Any] = '\\n @inproceedings{kakwani2020indicnlpsuite,\n title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}},\n author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar},\n year={2020},\n booktitle={Findings of EMNLP},\n}\n' A__ : Any = '\\n IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide\n variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te.\n' A__ : List[str] = '\nCompute IndicGLUE evaluation metric associated to each IndicGLUE dataset.\nArgs:\n predictions: list of predictions to score (as int64),\n except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32).\n references: list of ground truth labels corresponding to the predictions (as int64),\n except for \'cvit-mkb-clsr\' where each reference is a vector (of float32).\nReturns: depending on the IndicGLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "precision": Precision@10\nExamples:\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\')\n >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]]\n >>> results = indic_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'precision@10\': 1.0}\n\n' def _snake_case ( lowerCamelCase__ : Union[str, Any] , lowerCamelCase__ : Any ) -> Tuple: return float((preds == labels).mean() ) def _snake_case ( lowerCamelCase__ : Dict , lowerCamelCase__ : Union[str, Any] ) -> Optional[Any]: lowerCamelCase_ : int =simple_accuracy(lowerCamelCase__ , lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =float(fa_score(y_true=lowerCamelCase__ , y_pred=lowerCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def _snake_case ( lowerCamelCase__ : Tuple , lowerCamelCase__ : str ) -> int: lowerCamelCase_ : Any =np.array(lowerCamelCase__ ) lowerCamelCase_ : int =np.array(lowerCamelCase__ ) lowerCamelCase_ : Optional[Any] =en_sentvecs.shape[0] # mean centering lowerCamelCase_ : int =en_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) lowerCamelCase_ : Dict =in_sentvecs - np.mean(lowerCamelCase__ , axis=0 ) lowerCamelCase_ : Dict =cdist(lowerCamelCase__ , lowerCamelCase__ , "cosine" ) lowerCamelCase_ : str =np.array(range(lowerCamelCase__ ) ) lowerCamelCase_ : Any =sim.argsort(axis=1 )[:, :10] lowerCamelCase_ : Optional[Any] =np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class lowercase__ ( datasets.Metric ): def UpperCAmelCase__ ( self : Optional[Any] ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def UpperCAmelCase__ ( self : List[str] , snake_case__ : Dict , snake_case__ : Optional[Any] ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(snake_case__ , snake_case__ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(snake_case__ , snake_case__ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(snake_case__ , snake_case__ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
153
0
from .testing import ( are_the_same_tensors, execute_subprocess_async, require_bnb, require_cpu, require_cuda, require_huggingface_suite, require_mps, require_multi_gpu, require_multi_xpu, require_safetensors, require_single_gpu, require_single_xpu, require_torch_min_version, require_tpu, require_xpu, skip, slow, ) from .training import RegressionDataset, RegressionModel, RegressionModelaXPU from .scripts import test_script, test_sync, test_ops # isort: skip
372
__UpperCamelCase : List[str] = 256 # Modulus to hash a string __UpperCamelCase : int = 1000003 def a_ ( _A , _A ) -> bool: """simple docstring""" snake_case__ = len(_A ) snake_case__ = len(_A ) if p_len > t_len: return False snake_case__ = 0 snake_case__ = 0 snake_case__ = 1 # Calculating the hash of pattern and substring of text for i in range(_A ): snake_case__ = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus snake_case__ = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue snake_case__ = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash snake_case__ = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def a_ ( ) -> None: """simple docstring""" snake_case__ = 'abc1abc12' snake_case__ = 'alskfjaldsabc1abc1abc12k23adsfabcabc' snake_case__ = 'alskfjaldsk23adsfabcabc' assert rabin_karp(_A , _A ) and not rabin_karp(_A , _A ) # Test 2) snake_case__ = 'ABABX' snake_case__ = 'ABABZABABYABABX' assert rabin_karp(_A , _A ) # Test 3) snake_case__ = 'AAAB' snake_case__ = 'ABAAAAAB' assert rabin_karp(_A , _A ) # Test 4) snake_case__ = 'abcdabcy' snake_case__ = 'abcxabcdabxabcdabcdabcy' assert rabin_karp(_A , _A ) # Test 5) snake_case__ = 'Lü' snake_case__ = 'Lüsai' assert rabin_karp(_A , _A ) snake_case__ = 'Lue' assert not rabin_karp(_A , _A ) print('Success.' ) if __name__ == "__main__": test_rabin_karp()
372
1
def _A ( _lowercase , _lowercase ) -> float: """simple docstring""" if density <= 0: raise ValueError('Impossible fluid density' ) if bulk_modulus <= 0: raise ValueError('Impossible bulk modulus' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
1
'''simple docstring''' def lowerCAmelCase (__A , __A): """simple docstring""" if digit_amount > 0: return round(number - int(__A) , __A) return number - int(__A) if __name__ == "__main__": print(decimal_isolate(1.53, 0)) print(decimal_isolate(35.345, 1)) print(decimal_isolate(35.345, 2)) print(decimal_isolate(35.345, 3)) print(decimal_isolate(-14.789, 3)) print(decimal_isolate(0, 2)) print(decimal_isolate(-14.123, 1)) print(decimal_isolate(-14.123, 2)) print(decimal_isolate(-14.123, 3))
11
0
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _lowercase : int =logging.get_logger(__name__) _lowercase : str ="▁" _lowercase : Union[str, Any] ={"vocab_file": "sentencepiece.bpe.model", "monolingual_vocab_file": "dict.txt"} _lowercase : int ={ "vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model", }, "monolingual_vocab_file": { "vinai/bartpho-syllable": "https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt", }, } _lowercase : List[str] ={"vinai/bartpho-syllable": 1024} class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = ['input_ids', 'attention_mask'] def __init__( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : Dict="<s>" , __UpperCamelCase : List[str]="</s>" , __UpperCamelCase : List[Any]="</s>" , __UpperCamelCase : List[str]="<s>" , __UpperCamelCase : str="<unk>" , __UpperCamelCase : Optional[int]="<pad>" , __UpperCamelCase : Optional[int]="<mask>" , __UpperCamelCase : Optional[Dict[str, Any]] = None , **__UpperCamelCase : str , ) -> None: """simple docstring""" snake_case__ : Optional[int] = AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token snake_case__ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , cls_token=__UpperCamelCase , pad_token=__UpperCamelCase , mask_token=__UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__UpperCamelCase , ) snake_case__ : str = vocab_file snake_case__ : Any = monolingual_vocab_file snake_case__ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__UpperCamelCase ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility snake_case__ : int = {} snake_case__ : List[str] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(__UpperCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : str = cnt cnt += 1 with open(__UpperCamelCase , '''r''' , encoding='''utf-8''' ) as f: for line in f.readlines(): snake_case__ : int = line.strip().split()[0] snake_case__ : Optional[int] = len(self.fairseq_tokens_to_ids ) if str(__UpperCamelCase ) not in self.fairseq_tokens_to_ids: snake_case__ : Any = len(self.fairseq_tokens_to_ids ) snake_case__ : List[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Optional[int] ) -> Optional[int]: """simple docstring""" snake_case__ : Optional[Any] = self.__dict__.copy() snake_case__ : List[Any] = None snake_case__ : Optional[int] = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , __UpperCamelCase : Dict ) -> List[str]: """simple docstring""" snake_case__ : List[Any] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ : List[str] = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def lowerCAmelCase ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] snake_case__ : List[str] = [self.cls_token_id] snake_case__ : List[str] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : List[str] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None , __UpperCamelCase : bool = False ) -> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__UpperCamelCase , token_ids_a=__UpperCamelCase , already_has_special_tokens=__UpperCamelCase ) if token_ids_a is None: return [1] + ([0] * len(__UpperCamelCase )) + [1] return [1] + ([0] * len(__UpperCamelCase )) + [1, 1] + ([0] * len(__UpperCamelCase )) + [1] def lowerCAmelCase ( self : int , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case__ : str = [self.sep_token_id] snake_case__ : Union[str, Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return len(self.fairseq_ids_to_tokens ) def lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" snake_case__ : Optional[int] = {self.convert_ids_to_tokens(__UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCAmelCase ( self : Union[str, Any] , __UpperCamelCase : str ) -> List[str]: """simple docstring""" return self.sp_model.encode(__UpperCamelCase , out_type=__UpperCamelCase ) def lowerCAmelCase ( self : Union[str, Any] , __UpperCamelCase : Optional[int] ) -> Any: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def lowerCAmelCase ( self : int , __UpperCamelCase : List[str] ) -> int: """simple docstring""" return self.fairseq_ids_to_tokens[index] def lowerCAmelCase ( self : List[Any] , __UpperCamelCase : Dict ) -> int: """simple docstring""" snake_case__ : Optional[Any] = ''''''.join(__UpperCamelCase ).replace(__UpperCamelCase , ''' ''' ).strip() return out_string def lowerCAmelCase ( self : Optional[int] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : Any = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case__ : int = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''monolingual_vocab_file'''] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(__UpperCamelCase , '''wb''' ) as fi: snake_case__ : Any = self.sp_model.serialized_model_proto() fi.write(__UpperCamelCase ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( __UpperCamelCase ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , __UpperCamelCase ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(__UpperCamelCase , '''w''' , encoding='''utf-8''' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(F'''{str(__UpperCamelCase )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
574
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_albert import AlbertTokenizer else: _lowercase : List[Any] =None _lowercase : List[str] =logging.get_logger(__name__) _lowercase : Tuple ={"vocab_file": "spiece.model", "tokenizer_file": "tokenizer.json"} _lowercase : Optional[Any] ={ "vocab_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/spiece.model", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/spiece.model", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/spiece.model", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/spiece.model", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model", }, "tokenizer_file": { "albert-base-v1": "https://huggingface.co/albert-base-v1/resolve/main/tokenizer.json", "albert-large-v1": "https://huggingface.co/albert-large-v1/resolve/main/tokenizer.json", "albert-xlarge-v1": "https://huggingface.co/albert-xlarge-v1/resolve/main/tokenizer.json", "albert-xxlarge-v1": "https://huggingface.co/albert-xxlarge-v1/resolve/main/tokenizer.json", "albert-base-v2": "https://huggingface.co/albert-base-v2/resolve/main/tokenizer.json", "albert-large-v2": "https://huggingface.co/albert-large-v2/resolve/main/tokenizer.json", "albert-xlarge-v2": "https://huggingface.co/albert-xlarge-v2/resolve/main/tokenizer.json", "albert-xxlarge-v2": "https://huggingface.co/albert-xxlarge-v2/resolve/main/tokenizer.json", }, } _lowercase : int ={ "albert-base-v1": 512, "albert-large-v1": 512, "albert-xlarge-v1": 512, "albert-xxlarge-v1": 512, "albert-base-v2": 512, "albert-large-v2": 512, "albert-xlarge-v2": 512, "albert-xxlarge-v2": 512, } _lowercase : Tuple ="▁" class _SCREAMING_SNAKE_CASE (lowercase__ ): A__ = VOCAB_FILES_NAMES A__ = PRETRAINED_VOCAB_FILES_MAP A__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES A__ = AlbertTokenizer def __init__( self : Optional[Any] , __UpperCamelCase : Dict=None , __UpperCamelCase : Optional[int]=None , __UpperCamelCase : Tuple=True , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Optional[int]=False , __UpperCamelCase : int="[CLS]" , __UpperCamelCase : List[Any]="[SEP]" , __UpperCamelCase : List[Any]="<unk>" , __UpperCamelCase : Optional[int]="[SEP]" , __UpperCamelCase : str="<pad>" , __UpperCamelCase : Any="[CLS]" , __UpperCamelCase : List[str]="[MASK]" , **__UpperCamelCase : str , ) -> int: """simple docstring""" snake_case__ : str = ( AddedToken(__UpperCamelCase , lstrip=__UpperCamelCase , rstrip=__UpperCamelCase , normalized=__UpperCamelCase ) if isinstance(__UpperCamelCase , __UpperCamelCase ) else mask_token ) super().__init__( __UpperCamelCase , tokenizer_file=__UpperCamelCase , do_lower_case=__UpperCamelCase , remove_space=__UpperCamelCase , keep_accents=__UpperCamelCase , bos_token=__UpperCamelCase , eos_token=__UpperCamelCase , unk_token=__UpperCamelCase , sep_token=__UpperCamelCase , pad_token=__UpperCamelCase , cls_token=__UpperCamelCase , mask_token=__UpperCamelCase , **__UpperCamelCase , ) snake_case__ : str = do_lower_case snake_case__ : int = remove_space snake_case__ : Optional[Any] = keep_accents snake_case__ : List[Any] = vocab_file snake_case__ : Optional[Any] = False if not self.vocab_file else True def lowerCAmelCase ( self : List[Any] , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case__ : List[Any] = [self.sep_token_id] snake_case__ : Optional[int] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase ( self : str , __UpperCamelCase : List[int] , __UpperCamelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" snake_case__ : str = [self.sep_token_id] snake_case__ : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase ( self : List[str] , __UpperCamelCase : str , __UpperCamelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(__UpperCamelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return snake_case__ : int = os.path.join( __UpperCamelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__UpperCamelCase ): copyfile(self.vocab_file , __UpperCamelCase ) return (out_vocab_file,)
574
1
"""simple docstring""" from __future__ import annotations from collections.abc import MutableSequence class __lowercase : def __init__( self : Dict ,A : int ,A : MutableSequence[float] ): '''simple docstring''' if len(_SCREAMING_SNAKE_CASE ) != degree + 1: raise ValueError( """The number of coefficients should be equal to the degree + 1.""" ) UpperCAmelCase__ : Tuple = list(_SCREAMING_SNAKE_CASE ) UpperCAmelCase__ : int = degree def __add__( self : Any ,A : Polynomial ): '''simple docstring''' if self.degree > polynomial_a.degree: UpperCAmelCase__ : Dict = self.coefficients[:] for i in range(polynomial_a.degree + 1 ): coefficients[i] += polynomial_a.coefficients[i] return Polynomial(self.degree ,_SCREAMING_SNAKE_CASE ) else: UpperCAmelCase__ : Any = polynomial_a.coefficients[:] for i in range(self.degree + 1 ): coefficients[i] += self.coefficients[i] return Polynomial(polynomial_a.degree ,_SCREAMING_SNAKE_CASE ) def __sub__( self : Optional[int] ,A : Polynomial ): '''simple docstring''' return self + polynomial_a * Polynomial(0 ,[-1] ) def __neg__( self : Any ): '''simple docstring''' return Polynomial(self.degree ,[-c for c in self.coefficients] ) def __mul__( self : Union[str, Any] ,A : Polynomial ): '''simple docstring''' UpperCAmelCase__ : List[str] = [0] * (self.degree + polynomial_a.degree + 1) for i in range(self.degree + 1 ): for j in range(polynomial_a.degree + 1 ): coefficients[i + j] += ( self.coefficients[i] * polynomial_a.coefficients[j] ) return Polynomial(self.degree + polynomial_a.degree ,_SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] ,A : int | float ): '''simple docstring''' UpperCAmelCase__ : Any = 0 for i in range(self.degree + 1 ): result += self.coefficients[i] * (substitution**i) return result def __str__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = """""" for i in range(self.degree ,-1 ,-1 ): if self.coefficients[i] == 0: continue elif self.coefficients[i] > 0: if polynomial: polynomial += " + " else: polynomial += " - " if i == 0: polynomial += str(abs(self.coefficients[i] ) ) elif i == 1: polynomial += str(abs(self.coefficients[i] ) ) + "x" else: polynomial += str(abs(self.coefficients[i] ) ) + "x^" + str(_SCREAMING_SNAKE_CASE ) return polynomial def __repr__( self : str ): '''simple docstring''' return self.__str__() def __lowercase ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = [0] * self.degree for i in range(self.degree ): UpperCAmelCase__ : Any = self.coefficients[i + 1] * (i + 1) return Polynomial(self.degree - 1 ,_SCREAMING_SNAKE_CASE ) def __lowercase ( self : Optional[int] ,A : int | float = 0 ): '''simple docstring''' UpperCAmelCase__ : Any = [0] * (self.degree + 2) UpperCAmelCase__ : List[Any] = constant for i in range(self.degree + 1 ): UpperCAmelCase__ : List[Any] = self.coefficients[i] / (i + 1) return Polynomial(self.degree + 1 ,_SCREAMING_SNAKE_CASE ) def __eq__( self : Any ,A : object ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ): return False if self.degree != polynomial_a.degree: return False for i in range(self.degree + 1 ): if self.coefficients[i] != polynomial_a.coefficients[i]: return False return True def __ne__( self : str ,A : object ): '''simple docstring''' return not self.__eq__(_SCREAMING_SNAKE_CASE )
65
from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class A__ ( __snake_case ): '''simple docstring''' @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = EncoderDecoderModel.from_encoder_decoder_pretrained('prajjwal1/bert-tiny' , 'prajjwal1/bert-tiny' ) UpperCamelCase = BertTokenizer.from_pretrained('bert-base-uncased' ) UpperCamelCase = bertabert.config.encoder.vocab_size UpperCamelCase = tokenizer.sep_token_id UpperCamelCase = tokenizer.cls_token_id UpperCamelCase = 128 UpperCamelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='train[:1%]' ) UpperCamelCase = datasets.load_dataset('cnn_dailymail' , '3.0.0' , split='validation[:1%]' ) UpperCamelCase = train_dataset.select(range(32 ) ) UpperCamelCase = val_dataset.select(range(16 ) ) UpperCamelCase = 4 def _map_to_encoder_decoder_inputs(_SCREAMING_SNAKE_CASE : Tuple ): # Tokenizer will automatically set [BOS] <text> [EOS] UpperCamelCase = tokenizer(batch['article'] , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , max_length=512 ) UpperCamelCase = tokenizer(batch['highlights'] , padding='max_length' , truncation=_SCREAMING_SNAKE_CASE , max_length=128 ) UpperCamelCase = inputs.input_ids UpperCamelCase = inputs.attention_mask UpperCamelCase = outputs.input_ids UpperCamelCase = outputs.input_ids.copy() UpperCamelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch['labels'] ] UpperCamelCase = outputs.attention_mask assert all(len(_SCREAMING_SNAKE_CASE ) == 512 for x in inputs.input_ids ) assert all(len(_SCREAMING_SNAKE_CASE ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(_SCREAMING_SNAKE_CASE : str ): UpperCamelCase = pred.label_ids UpperCamelCase = pred.predictions # all unnecessary tokens are removed UpperCamelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = tokenizer.batch_decode(_SCREAMING_SNAKE_CASE , skip_special_tokens=_SCREAMING_SNAKE_CASE ) UpperCamelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(_SCREAMING_SNAKE_CASE ) )] ) / len(_SCREAMING_SNAKE_CASE ) return {"accuracy": accuracy} # map train dataset UpperCamelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=['article', 'highlights'] , ) train_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) # same for validation dataset UpperCamelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=_SCREAMING_SNAKE_CASE , batch_size=_SCREAMING_SNAKE_CASE , remove_columns=['article', 'highlights'] , ) val_dataset.set_format( type='torch' , columns=['input_ids', 'attention_mask', 'decoder_input_ids', 'decoder_attention_mask', 'labels'] , ) UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = SeqaSeqTrainingArguments( output_dir=_SCREAMING_SNAKE_CASE , per_device_train_batch_size=_SCREAMING_SNAKE_CASE , per_device_eval_batch_size=_SCREAMING_SNAKE_CASE , predict_with_generate=_SCREAMING_SNAKE_CASE , evaluation_strategy='steps' , do_train=_SCREAMING_SNAKE_CASE , do_eval=_SCREAMING_SNAKE_CASE , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer UpperCamelCase = SeqaSeqTrainer( model=_SCREAMING_SNAKE_CASE , args=_SCREAMING_SNAKE_CASE , compute_metrics=_compute_metrics , train_dataset=_SCREAMING_SNAKE_CASE , eval_dataset=_SCREAMING_SNAKE_CASE , tokenizer=_SCREAMING_SNAKE_CASE , ) # start training trainer.train()
280
0
"""simple docstring""" import functools def lowercase_ ( _UpperCAmelCase , _UpperCAmelCase ): """simple docstring""" A_ : List[Any] = len(_UpperCAmelCase ) A_ : List[Any] = len(_UpperCAmelCase ) @functools.cache def min_distance(_UpperCAmelCase , _UpperCAmelCase ) -> int: # if first word index is overflow - delete all from the second word if indexa >= len_worda: return len_worda - indexa # if second word index is overflow - delete all from the first word if indexa >= len_worda: return len_worda - indexa A_ : Tuple = int(worda[indexa] != worda[indexa] ) # current letters not identical return min( 1 + min_distance(indexa + 1 , _UpperCAmelCase ) , 1 + min_distance(_UpperCAmelCase , indexa + 1 ) , diff + min_distance(indexa + 1 , indexa + 1 ) , ) return min_distance(0 , 0 ) if __name__ == "__main__": import doctest doctest.testmod()
361
"""simple docstring""" from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging _lowerCamelCase : List[str] = logging.get_logger(__name__) _lowerCamelCase : str = { 'google/umt5-small': 'https://huggingface.co/google/umt5-small/resolve/main/config.json', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowercase ( __UpperCAmelCase): __lowerCAmelCase : int = """umt5""" __lowerCAmelCase : List[str] = ["""past_key_values"""] def __init__( self : Any , _lowerCamelCase : Union[str, Any]=25_01_12 , _lowerCamelCase : Any=5_12 , _lowerCamelCase : Optional[int]=64 , _lowerCamelCase : str=10_24 , _lowerCamelCase : List[str]=8 , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : Any=6 , _lowerCamelCase : List[Any]=32 , _lowerCamelCase : Optional[Any]=1_28 , _lowerCamelCase : int=0.1 , _lowerCamelCase : Union[str, Any]=1E-6 , _lowerCamelCase : Tuple=1.0 , _lowerCamelCase : Optional[int]="gated-gelu" , _lowerCamelCase : List[str]=True , _lowerCamelCase : str=True , _lowerCamelCase : Tuple="T5Tokenizer" , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : Optional[int]=0 , _lowerCamelCase : Tuple=1 , _lowerCamelCase : Tuple=0 , **_lowerCamelCase : List[str] , ): """simple docstring""" super().__init__( is_encoder_decoder=_lowerCamelCase , tokenizer_class=_lowerCamelCase , tie_word_embeddings=_lowerCamelCase , pad_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , decoder_start_token_id=_lowerCamelCase , **_lowerCamelCase , ) A_ : str = vocab_size A_ : List[Any] = d_model A_ : Optional[int] = d_kv A_ : int = d_ff A_ : Union[str, Any] = num_layers A_ : Optional[Any] = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry A_ : Dict = num_heads A_ : Optional[int] = relative_attention_num_buckets A_ : Union[str, Any] = relative_attention_max_distance A_ : Any = dropout_rate A_ : Optional[int] = layer_norm_epsilon A_ : Tuple = initializer_factor A_ : Optional[int] = feed_forward_proj A_ : Dict = use_cache A_ : Any = self.feed_forward_proj.split('''-''' ) A_ : Tuple = act_info[-1] A_ : Any = act_info[0] == '''gated''' if len(_lowerCamelCase ) > 1 and act_info[0] != "gated" or len(_lowerCamelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" '''Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ''' '''\'gated-gelu\' or \'relu\'''' ) if feed_forward_proj == "gated-gelu": A_ : Dict = '''gelu_new''' @property def a_ ( self : Tuple ): """simple docstring""" return self.d_model @property def a_ ( self : Optional[int] ): """simple docstring""" return self.num_heads @property def a_ ( self : int ): """simple docstring""" return self.num_layers class lowercase ( __UpperCAmelCase): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def a_ ( self : Any ): """simple docstring""" A_ : str = { '''input_ids''': {0: '''batch''', 1: '''encoder_sequence'''}, '''attention_mask''': {0: '''batch''', 1: '''encoder_sequence'''}, } if self.use_past: A_ : Optional[Any] = '''past_encoder_sequence + sequence''' A_ : Optional[Any] = {0: '''batch'''} A_ : List[Any] = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: A_ : Optional[int] = {0: '''batch''', 1: '''decoder_sequence'''} A_ : List[str] = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(_lowerCamelCase , direction='''inputs''' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def a_ ( self : Union[str, Any] ): """simple docstring""" return 13 @property def a_ ( self : Any ): """simple docstring""" return 5E-4
361
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("3.8"): import importlib_metadata else: import importlib.metadata as importlib_metadata __lowerCamelCase = "" if version.parse(importlib_metadata.version("jiwer")) < version.parse("2.3.0"): class _lowercase ( tr.AbstractTransform ): def __init__( self , UpperCamelCase_ = " " ): __magic_name__ = sentence_delimiter def lowerCAmelCase__ ( self , UpperCamelCase_ ): return list(UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): __magic_name__ = [] for sent_idx, sentence in enumerate(UpperCamelCase_ ): chars.extend(self.process_string(UpperCamelCase_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(UpperCamelCase_ ) - 1: chars.append(self.sentence_delimiter ) return chars __lowerCamelCase = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: __lowerCamelCase = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) __lowerCamelCase = "\\n@inproceedings{inproceedings,\n author = {Morris, Andrew and Maier, Viktoria and Green, Phil},\n year = {2004},\n month = {01},\n pages = {},\n title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.}\n}\n" __lowerCamelCase = "\\nCharacter error rate (CER) is a common metric of the performance of an automatic speech recognition system.\n\nCER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information.\n\nCharacter error rate can be computed as:\n\nCER = (S + D + I) / N = (S + D + I) / (S + D + C)\n\nwhere\n\nS is the number of substitutions,\nD is the number of deletions,\nI is the number of insertions,\nC is the number of correct characters,\nN is the number of characters in the reference (N=S+D+C).\n\nCER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the\nperformance of the ASR system with a CER of 0 being a perfect score.\n" __lowerCamelCase = "\nComputes CER score of transcribed segments against references.\nArgs:\n references: list of references for each speech input.\n predictions: list of transcribtions to score.\n concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result.\nReturns:\n (float): the character error rate\n\nExamples:\n\n >>> predictions = [\"this is the prediction\", \"there is an other sample\"]\n >>> references = [\"this is the reference\", \"there is another one\"]\n >>> cer = datasets.load_metric(\"cer\")\n >>> cer_score = cer.compute(predictions=predictions, references=references)\n >>> print(cer_score)\n 0.34146341463414637\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowercase ( datasets.Metric ): def lowerCAmelCase__ ( self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', '''https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates''', ] , ) def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_=False ): if concatenate_texts: return jiwer.compute_measures( UpperCamelCase_ , UpperCamelCase_ , truth_transform=UpperCamelCase_ , hypothesis_transform=UpperCamelCase_ , )["wer"] __magic_name__ = 0 __magic_name__ = 0 for prediction, reference in zip(UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = jiwer.compute_measures( UpperCamelCase_ , UpperCamelCase_ , truth_transform=UpperCamelCase_ , hypothesis_transform=UpperCamelCase_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
490
"""simple docstring""" from collections.abc import Callable import numpy as np def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> np.array: __magic_name__ = int(np.ceil((x_end - xa) / step_size ) ) __magic_name__ = np.zeros((n + 1,) ) __magic_name__ = ya __magic_name__ = xa for k in range(__UpperCamelCase ): __magic_name__ = y[k] + step_size * ode_func(__UpperCamelCase , y[k] ) __magic_name__ = y[k] + ( (step_size / 2) * (ode_func(__UpperCamelCase , y[k] ) + ode_func(x + step_size , __UpperCamelCase )) ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
490
1
def UpperCAmelCase_ ( _UpperCAmelCase = 1_0_0 ): lowerCamelCase_: int = set() lowerCamelCase_: List[Any] = 0 lowerCamelCase_: Union[str, Any] = n + 1 # maximum limit for a in range(2 , _UpperCAmelCase ): for b in range(2 , _UpperCAmelCase ): lowerCamelCase_: Optional[Any] = a**b # calculates the current power collect_powers.add(_UpperCAmelCase ) # adds the result to the set return len(_UpperCAmelCase ) if __name__ == "__main__": print("""Number of terms """, solution(int(str(input()).strip())))
584
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def UpperCAmelCase_ ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None , _UpperCAmelCase=None ): if attention_mask is None: lowerCamelCase_: Optional[int] = tf.cast(tf.math.not_equal(_UpperCAmelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class a__ : _A = OPTConfig _A = {} _A = "gelu" def __init__( self : int , A_ : List[str] , A_ : Dict=13 , A_ : str=7 , A_ : Dict=True , A_ : int=False , A_ : Any=99 , A_ : Dict=16 , A_ : List[str]=2 , A_ : Dict=4 , A_ : Dict=4 , A_ : int="gelu" , A_ : Tuple=0.1 , A_ : Tuple=0.1 , A_ : Dict=20 , A_ : int=2 , A_ : List[Any]=1 , A_ : Optional[Any]=0 , A_ : Dict=16 , A_ : Dict=16 , ) -> Dict: """simple docstring""" lowerCamelCase_: str = parent lowerCamelCase_: Tuple = batch_size lowerCamelCase_: str = seq_length lowerCamelCase_: Any = is_training lowerCamelCase_: Tuple = use_labels lowerCamelCase_: Any = vocab_size lowerCamelCase_: Optional[Any] = hidden_size lowerCamelCase_: Any = num_hidden_layers lowerCamelCase_: Dict = num_attention_heads lowerCamelCase_: Optional[Any] = intermediate_size lowerCamelCase_: Optional[int] = hidden_act lowerCamelCase_: Any = hidden_dropout_prob lowerCamelCase_: Union[str, Any] = attention_probs_dropout_prob lowerCamelCase_: List[Any] = max_position_embeddings lowerCamelCase_: Union[str, Any] = eos_token_id lowerCamelCase_: Optional[int] = pad_token_id lowerCamelCase_: Optional[Any] = bos_token_id lowerCamelCase_: List[Any] = embed_dim lowerCamelCase_: Optional[Any] = word_embed_proj_dim lowerCamelCase_: Any = False def lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: int = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) lowerCamelCase_: Optional[int] = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) lowerCamelCase_: List[str] = tf.concat([input_ids, eos_tensor] , axis=1 ) lowerCamelCase_: Any = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=A_ , **self.config_updates , ) lowerCamelCase_: Optional[Any] = prepare_opt_inputs_dict(A_ , A_ ) return config, inputs_dict def lowerCAmelCase ( self : Any , A_ : Dict , A_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" lowerCamelCase_: List[Any] = TFOPTModel(config=A_ ) lowerCamelCase_: Union[str, Any] = inputs_dict["""input_ids"""] lowerCamelCase_: List[str] = input_ids[:1, :] lowerCamelCase_: int = inputs_dict["""attention_mask"""][:1, :] lowerCamelCase_: Tuple = 1 # first forward pass lowerCamelCase_: int = model(A_ , attention_mask=A_ , use_cache=A_ ) lowerCamelCase_ , lowerCamelCase_: Any = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_: List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size ) lowerCamelCase_: Union[str, Any] = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and lowerCamelCase_: Union[str, Any] = tf.concat([input_ids, next_tokens] , axis=-1 ) lowerCamelCase_: Optional[int] = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) lowerCamelCase_: Any = model(A_ , attention_mask=A_ )[0] lowerCamelCase_: List[str] = model(A_ , attention_mask=A_ , past_key_values=A_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice lowerCamelCase_: List[str] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) lowerCamelCase_: Tuple = output_from_no_past[:, -3:, random_slice_idx] lowerCamelCase_: List[str] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A_ , A_ , rtol=1e-3 ) @require_tf class a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): _A = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () _A = (TFOPTForCausalLM,) if is_tf_available() else () _A = ( {"feature-extraction": TFOPTModel, "text-generation": TFOPTForCausalLM} if is_tf_available() else {} ) _A = False _A = False _A = False _A = 10 def lowerCAmelCase ( self : Tuple ) -> Tuple: """simple docstring""" lowerCamelCase_: List[str] = TFOPTModelTester(self ) lowerCamelCase_: Optional[Any] = ConfigTester(self , config_class=A_ ) def lowerCAmelCase ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" lowerCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A_ ) def lowerCAmelCase ( self : Dict ) -> int: """simple docstring""" lowerCamelCase_ , lowerCamelCase_: Any = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(A_ : Optional[Any] , A_ : Union[str, Any] ): if hasattr(A_ , """weight""" ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(A_ , """weight""" ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings lowerCamelCase_: List[Any] = model_class(config=A_ ) lowerCamelCase_: List[Any] = _get_word_embedding_weight(A_ , model.get_input_embeddings() ) lowerCamelCase_: List[Any] = _get_word_embedding_weight(A_ , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(A_ ) lowerCamelCase_: int = _get_word_embedding_weight(A_ , model.get_input_embeddings() ) lowerCamelCase_: List[Any] = _get_word_embedding_weight(A_ , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. lowerCamelCase_: List[Any] = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , A_ ) # check that weights remain the same after resizing lowerCamelCase_: int = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase_: Tuple = False self.assertTrue(A_ ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , A_ ) lowerCamelCase_: Union[str, Any] = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: lowerCamelCase_: Any = False self.assertTrue(A_ ) def UpperCAmelCase_ ( _UpperCAmelCase ): return tf.constant(_UpperCAmelCase , dtype=tf.intaa ) @require_tf class a__ ( unittest.TestCase ): _A = 99 def lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" lowerCamelCase_: Dict = tf.ones((4, 1) , dtype=tf.intaa ) * 2 lowerCamelCase_: int = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) lowerCamelCase_: Tuple = input_ids.shape[0] lowerCamelCase_: Optional[int] = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class a__ ( unittest.TestCase ): @slow def lowerCAmelCase ( self : Optional[Any] ) -> Dict: """simple docstring""" lowerCamelCase_: Dict = TFOPTModel.from_pretrained("""facebook/opt-350m""" ) lowerCamelCase_: Dict = _long_tensor([[0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2]] ) lowerCamelCase_: Union[str, Any] = tf.not_equal(A_ , model.config.pad_token_id ) with tf.GradientTape(): lowerCamelCase_: Optional[int] = model(input_ids=A_ , attention_mask=A_ ).last_hidden_state lowerCamelCase_: Dict = (1, 11, 5_12) self.assertEqual(output.shape , A_ ) lowerCamelCase_: int = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , A_ , atol=4e-3 ) ) lowerCamelCase_: Any = tf.function(A_ , jit_compile=A_ ) lowerCamelCase_: int = xla_generate(A_ , A_ )[0] self.assertTrue(np.allclose(output[:, :3, :3] , A_ , atol=4e-2 ) ) @require_tf @slow class a__ ( unittest.TestCase ): def lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" super().setUp() lowerCamelCase_: List[str] = """facebook/opt-350m""" def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" lowerCamelCase_: Optional[Any] = TFOPTForCausalLM.from_pretrained(self.path_model ) lowerCamelCase_: Tuple = GPTaTokenizer.from_pretrained(self.path_model ) lowerCamelCase_: Optional[int] = [ """Today is a beautiful day and I want to""", """In the city of""", """Paris is the capital of France and""", """Computers and mobile phones have taken""", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False lowerCamelCase_: int = tokenizer(A_ , return_tensors="""tf""" , padding=A_ , add_special_tokens=A_ ) lowerCamelCase_: List[str] = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) lowerCamelCase_: int = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(A_ , A_ , atol=1e-4 ) ) lowerCamelCase_: Any = tf.function(A_ , jit_compile=A_ ) lowerCamelCase_: Any = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(A_ , A_ , atol=1e-4 ) ) @require_tf @slow class a__ ( unittest.TestCase ): @property def lowerCAmelCase ( self : Tuple ) -> Optional[Any]: """simple docstring""" return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def lowerCAmelCase ( self : str ) -> Optional[int]: """simple docstring""" lowerCamelCase_: Dict = """facebook/opt-125m""" lowerCamelCase_: Optional[int] = [ """Today is a beautiful day and I want to""", """In the city of New York, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase_: Union[str, Any] = [] lowerCamelCase_: str = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: Union[str, Any] = TFOPTForCausalLM.from_pretrained(A_ ) for prompt in self.prompts: lowerCamelCase_: int = tokenizer(A_ , return_tensors="""tf""" ).input_ids lowerCamelCase_: Optional[Any] = model.generate(A_ , max_length=10 ) lowerCamelCase_: List[Any] = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ ) def lowerCAmelCase ( self : Any ) -> List[str]: """simple docstring""" lowerCamelCase_: Optional[Any] = """facebook/opt-350m""" lowerCamelCase_: Optional[int] = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: Union[str, Any] = TFOPTForCausalLM.from_pretrained(A_ ) lowerCamelCase_: Optional[int] = """left""" # use different length sentences to test batching lowerCamelCase_: str = [ """Hello, my dog is a little""", """Today, I""", ] lowerCamelCase_: Any = tokenizer(A_ , return_tensors="""tf""" , padding=A_ ) lowerCamelCase_: int = inputs["""input_ids"""] lowerCamelCase_: List[str] = model.generate(input_ids=A_ , attention_mask=inputs["""attention_mask"""] ) lowerCamelCase_: Tuple = tokenizer(sentences[0] , return_tensors="""tf""" ).input_ids lowerCamelCase_: Optional[int] = model.generate(input_ids=A_ ) lowerCamelCase_: Union[str, Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs["""attention_mask"""][-1] , tf.intaa ) ) lowerCamelCase_: Union[str, Any] = tokenizer(sentences[1] , return_tensors="""tf""" ).input_ids lowerCamelCase_: Dict = model.generate(input_ids=A_ , max_length=model.config.max_length - num_paddings ) lowerCamelCase_: int = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) lowerCamelCase_: Optional[Any] = tokenizer.decode(output_non_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_: Tuple = tokenizer.decode(output_padded[0] , skip_special_tokens=A_ ) lowerCamelCase_: Any = [ """Hello, my dog is a little bit of a dork.\nI'm a little bit""", """Today, I was in the middle of a conversation with a friend about the""", ] self.assertListEqual(A_ , A_ ) self.assertListEqual(A_ , [non_padded_sentence, padded_sentence] ) def lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" lowerCamelCase_: Dict = """facebook/opt-350m""" lowerCamelCase_: Any = [ """Today is a beautiful day and I want to""", """In the city of San Francisco, the city""", """Paris is the capital of France and the capital""", """Computers and mobile phones have taken over the""", ] lowerCamelCase_: Union[str, Any] = [] lowerCamelCase_: Dict = GPTaTokenizer.from_pretrained(A_ ) lowerCamelCase_: Union[str, Any] = TFOPTForCausalLM.from_pretrained(A_ ) for prompt in self.prompts: lowerCamelCase_: List[str] = tokenizer(A_ , return_tensors="""tf""" ).input_ids lowerCamelCase_: Dict = model.generate(A_ , max_length=10 ) lowerCamelCase_: Optional[Any] = tokenizer.batch_decode(A_ , skip_special_tokens=A_ ) predicted_outputs += generated_string self.assertListEqual(A_ , A_ )
584
1
'''simple docstring''' def A__ ( A_ ) -> bool: return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print('''Program to check whether a number is a Perfect number or not...''') __magic_name__ : Dict = int(input('''Enter number: ''').strip()) print(f'''{number} is {"" if perfect(number) else "not "}a Perfect Number.''')
497
'''simple docstring''' import os import sys __magic_name__ : str = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __magic_name__ : List[Any] = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def A__ ( *A_ , **A_ ) -> List[str]: return AutoConfig.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def A__ ( *A_ , **A_ ) -> str: return AutoTokenizer.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModel.__doc__ ) def A__ ( *A_ , **A_ ) -> Dict: return AutoModel.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def A__ ( *A_ , **A_ ) -> int: return AutoModelForCausalLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def A__ ( *A_ , **A_ ) -> int: return AutoModelForMaskedLM.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def A__ ( *A_ , **A_ ) -> Any: return AutoModelForSequenceClassification.from_pretrained(*A_ , **A_ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def A__ ( *A_ , **A_ ) -> str: return AutoModelForQuestionAnswering.from_pretrained(*A_ , **A_ )
497
1
'''simple docstring''' import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class _lowerCAmelCase ( __A , unittest.TestCase ): '''simple docstring''' snake_case_ = BioGptTokenizer snake_case_ = False def __lowercase ( self : Optional[Any] ) -> Any: '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt _lowercase : Union[str, Any] = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] _lowercase : Optional[int] = dict(zip(UpperCamelCase_ , range(len(UpperCamelCase_ ) ) ) ) _lowercase : Optional[Any] = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] _lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) _lowercase : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(UpperCamelCase_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(UpperCamelCase_ ) ) def __lowercase ( self : Tuple , UpperCamelCase_ : Union[str, Any] ) -> Any: '''simple docstring''' _lowercase : Optional[Any] = '''lower newer''' _lowercase : Union[str, Any] = '''lower newer''' return input_text, output_text def __lowercase ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' _lowercase : Optional[int] = BioGptTokenizer(self.vocab_file , self.merges_file ) _lowercase : List[str] = '''lower''' _lowercase : int = ['''low''', '''er</w>'''] _lowercase : Union[str, Any] = tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) _lowercase : Any = tokens + ['''<unk>'''] _lowercase : Dict = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , UpperCamelCase_ ) @slow def __lowercase ( self : int ) -> Optional[int]: '''simple docstring''' _lowercase : int = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) _lowercase : Dict = tokenizer.encode('''sequence builders''' , add_special_tokens=UpperCamelCase_ ) _lowercase : List[str] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=UpperCamelCase_ ) _lowercase : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ ) _lowercase : List[str] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase_ , UpperCamelCase_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
411
'''simple docstring''' import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = OrderedDict( [ ('align', 'EfficientNetImageProcessor'), ('beit', 'BeitImageProcessor'), ('bit', 'BitImageProcessor'), ('blip', 'BlipImageProcessor'), ('blip-2', 'BlipImageProcessor'), ('bridgetower', 'BridgeTowerImageProcessor'), ('chinese_clip', 'ChineseCLIPImageProcessor'), ('clip', 'CLIPImageProcessor'), ('clipseg', 'ViTImageProcessor'), ('conditional_detr', 'ConditionalDetrImageProcessor'), ('convnext', 'ConvNextImageProcessor'), ('convnextv2', 'ConvNextImageProcessor'), ('cvt', 'ConvNextImageProcessor'), ('data2vec-vision', 'BeitImageProcessor'), ('deformable_detr', 'DeformableDetrImageProcessor'), ('deit', 'DeiTImageProcessor'), ('deta', 'DetaImageProcessor'), ('detr', 'DetrImageProcessor'), ('dinat', 'ViTImageProcessor'), ('donut-swin', 'DonutImageProcessor'), ('dpt', 'DPTImageProcessor'), ('efficientformer', 'EfficientFormerImageProcessor'), ('efficientnet', 'EfficientNetImageProcessor'), ('flava', 'FlavaImageProcessor'), ('focalnet', 'BitImageProcessor'), ('git', 'CLIPImageProcessor'), ('glpn', 'GLPNImageProcessor'), ('groupvit', 'CLIPImageProcessor'), ('imagegpt', 'ImageGPTImageProcessor'), ('instructblip', 'BlipImageProcessor'), ('layoutlmv2', 'LayoutLMv2ImageProcessor'), ('layoutlmv3', 'LayoutLMv3ImageProcessor'), ('levit', 'LevitImageProcessor'), ('mask2former', 'Mask2FormerImageProcessor'), ('maskformer', 'MaskFormerImageProcessor'), ('mgp-str', 'ViTImageProcessor'), ('mobilenet_v1', 'MobileNetV1ImageProcessor'), ('mobilenet_v2', 'MobileNetV2ImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevit', 'MobileViTImageProcessor'), ('mobilevitv2', 'MobileViTImageProcessor'), ('nat', 'ViTImageProcessor'), ('oneformer', 'OneFormerImageProcessor'), ('owlvit', 'OwlViTImageProcessor'), ('perceiver', 'PerceiverImageProcessor'), ('pix2struct', 'Pix2StructImageProcessor'), ('poolformer', 'PoolFormerImageProcessor'), ('regnet', 'ConvNextImageProcessor'), ('resnet', 'ConvNextImageProcessor'), ('sam', 'SamImageProcessor'), ('segformer', 'SegformerImageProcessor'), ('swiftformer', 'ViTImageProcessor'), ('swin', 'ViTImageProcessor'), ('swin2sr', 'Swin2SRImageProcessor'), ('swinv2', 'ViTImageProcessor'), ('table-transformer', 'DetrImageProcessor'), ('timesformer', 'VideoMAEImageProcessor'), ('tvlt', 'TvltImageProcessor'), ('upernet', 'SegformerImageProcessor'), ('van', 'ConvNextImageProcessor'), ('videomae', 'VideoMAEImageProcessor'), ('vilt', 'ViltImageProcessor'), ('vit', 'ViTImageProcessor'), ('vit_hybrid', 'ViTHybridImageProcessor'), ('vit_mae', 'ViTImageProcessor'), ('vit_msn', 'ViTImageProcessor'), ('xclip', 'CLIPImageProcessor'), ('yolos', 'YolosImageProcessor'), ] ) lowerCamelCase__ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _SCREAMING_SNAKE_CASE( snake_case_ : str ) ->Optional[Any]: '''simple docstring''' for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _lowercase : Optional[int] = model_type_to_module_name(snake_case_ ) _lowercase : Optional[Any] = importlib.import_module(F".{module_name}" , '''transformers.models''' ) try: return getattr(snake_case_ , snake_case_ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(snake_case_ , '''__name__''' , snake_case_ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _lowercase : int = importlib.import_module('''transformers''' ) if hasattr(snake_case_ , snake_case_ ): return getattr(snake_case_ , snake_case_ ) return None def _SCREAMING_SNAKE_CASE( snake_case_ : Union[str, os.PathLike] , snake_case_ : Optional[Union[str, os.PathLike]] = None , snake_case_ : bool = False , snake_case_ : bool = False , snake_case_ : Optional[Dict[str, str]] = None , snake_case_ : Optional[Union[bool, str]] = None , snake_case_ : Optional[str] = None , snake_case_ : bool = False , **snake_case_ : int , ) ->Union[str, Any]: '''simple docstring''' _lowercase : Dict = get_file_from_repo( snake_case_ , snake_case_ , cache_dir=snake_case_ , force_download=snake_case_ , resume_download=snake_case_ , proxies=snake_case_ , use_auth_token=snake_case_ , revision=snake_case_ , local_files_only=snake_case_ , ) if resolved_config_file is None: logger.info( '''Could not locate the image processor configuration file, will try to use the model config instead.''' ) return {} with open(snake_case_ , encoding='''utf-8''' ) as reader: return json.load(snake_case_ ) class _lowerCAmelCase : '''simple docstring''' def __init__( self : int ) -> Tuple: '''simple docstring''' raise EnvironmentError( '''AutoImageProcessor is designed to be instantiated ''' '''using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.''' ) @classmethod @replace_list_option_in_docstrings(UpperCamelCase_ ) def __lowercase ( cls : str , UpperCamelCase_ : Dict , **UpperCamelCase_ : Any ) -> Tuple: '''simple docstring''' _lowercase : int = kwargs.pop('''config''' , UpperCamelCase_ ) _lowercase : Union[str, Any] = kwargs.pop('''trust_remote_code''' , UpperCamelCase_ ) _lowercase : str = True _lowercase , _lowercase : int = ImageProcessingMixin.get_image_processor_dict(UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : Any = config_dict.get('''image_processor_type''' , UpperCamelCase_ ) _lowercase : List[str] = None if "AutoImageProcessor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoImageProcessor'''] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _lowercase : str = config_dict.pop('''feature_extractor_type''' , UpperCamelCase_ ) if feature_extractor_class is not None: logger.warning( '''Could not find image processor class in the image processor config or the model config. Loading''' ''' based on pattern matching with the model\'s feature extractor configuration.''' ) _lowercase : Any = feature_extractor_class.replace('''FeatureExtractor''' , '''ImageProcessor''' ) if "AutoFeatureExtractor" in config_dict.get('''auto_map''' , {} ): _lowercase : List[str] = config_dict['''auto_map''']['''AutoFeatureExtractor'''] _lowercase : List[str] = feature_extractor_auto_map.replace('''FeatureExtractor''' , '''ImageProcessor''' ) logger.warning( '''Could not find image processor auto map in the image processor config or the model config.''' ''' Loading based on pattern matching with the model\'s feature extractor configuration.''' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(UpperCamelCase_ , UpperCamelCase_ ): _lowercase : Tuple = AutoConfig.from_pretrained(UpperCamelCase_ , **UpperCamelCase_ ) # It could be in `config.image_processor_type`` _lowercase : Optional[int] = getattr(UpperCamelCase_ , '''image_processor_type''' , UpperCamelCase_ ) if hasattr(UpperCamelCase_ , '''auto_map''' ) and "AutoImageProcessor" in config.auto_map: _lowercase : List[Any] = config.auto_map['''AutoImageProcessor'''] if image_processor_class is not None: _lowercase : int = image_processor_class_from_name(UpperCamelCase_ ) _lowercase : str = image_processor_auto_map is not None _lowercase : List[str] = image_processor_class is not None or type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING _lowercase : Tuple = resolve_trust_remote_code( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if has_remote_code and trust_remote_code: _lowercase : Dict = get_class_from_dynamic_module( UpperCamelCase_ , UpperCamelCase_ , **UpperCamelCase_ ) _lowercase : List[str] = kwargs.pop('''code_revision''' , UpperCamelCase_ ) if os.path.isdir(UpperCamelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(UpperCamelCase_ ) in IMAGE_PROCESSOR_MAPPING: _lowercase : List[str] = IMAGE_PROCESSOR_MAPPING[type(UpperCamelCase_ )] return image_processor_class.from_dict(UpperCamelCase_ , **UpperCamelCase_ ) raise ValueError( F"Unrecognized image processor in {pretrained_model_name_or_path}. Should have a " F"`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following " F"`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}" ) @staticmethod def __lowercase ( UpperCamelCase_ : Dict , UpperCamelCase_ : Dict ) -> Optional[int]: '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(UpperCamelCase_ , UpperCamelCase_ )
411
1
"""simple docstring""" from __future__ import annotations def __snake_case ( __A : Tuple ) -> Dict: '''simple docstring''' create_state_space_tree(SCREAMING_SNAKE_CASE_ , [] , 0 , [0 for i in range(len(SCREAMING_SNAKE_CASE_ ) )] ) def __snake_case ( __A : Optional[int] , __A : int , __A : Dict , __A : str , ) -> List[Any]: '''simple docstring''' if index == len(SCREAMING_SNAKE_CASE_ ): print(SCREAMING_SNAKE_CASE_ ) return for i in range(len(SCREAMING_SNAKE_CASE_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) SCREAMING_SNAKE_CASE : List[str] = True create_state_space_tree(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , index + 1 , SCREAMING_SNAKE_CASE_ ) current_sequence.pop() SCREAMING_SNAKE_CASE : str = False A_ : Optional[int] = [3, 1, 2, 4] generate_all_permutations(sequence) A_ : Optional[Any] = ['A', 'B', 'C'] generate_all_permutations(sequence_a)
265
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _snake_case = { '''configuration_tapas''': ['''TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TapasConfig'''], '''tokenization_tapas''': ['''TapasTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TapasForMaskedLM''', '''TapasForQuestionAnswering''', '''TapasForSequenceClassification''', '''TapasModel''', '''TapasPreTrainedModel''', '''load_tf_weights_in_tapas''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _snake_case = [ '''TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFTapasForMaskedLM''', '''TFTapasForQuestionAnswering''', '''TFTapasForSequenceClassification''', '''TFTapasModel''', '''TFTapasPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_tapas import TAPAS_PRETRAINED_CONFIG_ARCHIVE_MAP, TapasConfig from .tokenization_tapas import TapasTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tapas import ( TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasPreTrainedModel, load_tf_weights_in_tapas, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_tapas import ( TF_TAPAS_PRETRAINED_MODEL_ARCHIVE_LIST, TFTapasForMaskedLM, TFTapasForQuestionAnswering, TFTapasForSequenceClassification, TFTapasModel, TFTapasPreTrainedModel, ) else: import sys _snake_case = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
340
0
'''simple docstring''' from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["image_processor", "tokenizer"] UpperCAmelCase_ ="Pix2StructImageProcessor" UpperCAmelCase_ =("T5Tokenizer", "T5TokenizerFast") def __init__( self , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = False super().__init__(_A , _A ) def __call__( self , _A=None , _A = None , _A = True , _A = False , _A = None , _A = None , _A = 2048 , _A = 0 , _A = None , _A = None , _A = False , _A = False , _A = False , _A = False , _A = False , _A = True , _A = None , **_A , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ = self.tokenizer SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ = self.image_processor( _A , return_tensors=_A , max_patches=_A , **_A ) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ = self.image_processor( _A , return_tensors=_A , max_patches=_A , header_text=_A , **_A ) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ = text_encoding.pop('''input_ids''' ) else: SCREAMING_SNAKE_CASE_ = None if text_encoding is not None: encoding_image_processor.update(_A ) return encoding_image_processor def _UpperCamelCase ( self , *_A , **_A ) -> int: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> List[str]: return self.tokenizer.decode(*_A , **_A ) @property def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
714
from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCamelCase__ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCAmelCase_ =["image_processor", "tokenizer"] UpperCAmelCase_ ="Pix2StructImageProcessor" UpperCAmelCase_ =("T5Tokenizer", "T5TokenizerFast") def __init__( self , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = False super().__init__(_A , _A ) def __call__( self , _A=None , _A = None , _A = True , _A = False , _A = None , _A = None , _A = 2048 , _A = 0 , _A = None , _A = None , _A = False , _A = False , _A = False , _A = False , _A = False , _A = True , _A = None , **_A , ) -> BatchEncoding: if images is None and text is None: raise ValueError('''You have to specify either images or text.''' ) # Get only text if images is None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ = self.tokenizer SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) return text_encoding if not self.image_processor.is_vqa: # add pixel_values SCREAMING_SNAKE_CASE_ = self.image_processor( _A , return_tensors=_A , max_patches=_A , **_A ) else: # add pixel_values and bbox SCREAMING_SNAKE_CASE_ = self.image_processor( _A , return_tensors=_A , max_patches=_A , header_text=_A , **_A ) if text is not None and not self.image_processor.is_vqa: SCREAMING_SNAKE_CASE_ = self.tokenizer( text=_A , add_special_tokens=_A , padding=_A , truncation=_A , max_length=_A , stride=_A , pad_to_multiple_of=_A , return_attention_mask=_A , return_overflowing_tokens=_A , return_special_tokens_mask=_A , return_offsets_mapping=_A , return_token_type_ids=_A , return_length=_A , verbose=_A , return_tensors=_A , **_A , ) if "attention_mask" in text_encoding: SCREAMING_SNAKE_CASE_ = text_encoding.pop('''attention_mask''' ) if "input_ids" in text_encoding: SCREAMING_SNAKE_CASE_ = text_encoding.pop('''input_ids''' ) else: SCREAMING_SNAKE_CASE_ = None if text_encoding is not None: encoding_image_processor.update(_A ) return encoding_image_processor def _UpperCamelCase ( self , *_A , **_A ) -> int: return self.tokenizer.batch_decode(*_A , **_A ) def _UpperCamelCase ( self , *_A , **_A ) -> List[str]: return self.tokenizer.decode(*_A , **_A ) @property def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.tokenizer.model_input_names SCREAMING_SNAKE_CASE_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
597
0
"""simple docstring""" import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING UpperCAmelCase__ =logging.get_logger(__name__) UpperCAmelCase__ ={ "salesforce/blip2-opt-2.7b": "https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json", } class lowerCamelCase__ ( _a ): a : Optional[int] = """blip_2_vision_model""" def __init__( self : int , A_ : Any=1_4_0_8 , A_ : Any=6_1_4_4 , A_ : Union[str, Any]=3_9 , A_ : Any=1_6 , A_ : Tuple=2_2_4 , A_ : Union[str, Any]=1_4 , A_ : Any="gelu" , A_ : List[str]=0.0_00_01 , A_ : int=0.0 , A_ : Optional[int]=1e-1_0 , A_ : List[Any]=True , **A_ : List[str] , ): '''simple docstring''' super().__init__(**A_ ) __lowercase = hidden_size __lowercase = intermediate_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = patch_size __lowercase = image_size __lowercase = initializer_range __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = hidden_act __lowercase = qkv_bias @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Tuple , A_ : Union[str, os.PathLike] , **A_ : Tuple ): '''simple docstring''' cls._set_token_in_kwargs(A_ ) __lowercase , __lowercase = cls.get_config_dict(A_ , **A_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __lowercase = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A_ , **A_ ) class lowerCamelCase__ ( _a ): a : Optional[int] = """blip_2_qformer""" def __init__( self : Union[str, Any] , A_ : Union[str, Any]=3_0_5_2_2 , A_ : Optional[int]=7_6_8 , A_ : Dict=1_2 , A_ : Dict=1_2 , A_ : Union[str, Any]=3_0_7_2 , A_ : int="gelu" , A_ : List[Any]=0.1 , A_ : Tuple=0.1 , A_ : Union[str, Any]=5_1_2 , A_ : str=0.02 , A_ : Optional[Any]=1e-1_2 , A_ : Tuple=0 , A_ : str="absolute" , A_ : List[Any]=2 , A_ : Any=1_4_0_8 , **A_ : Dict , ): '''simple docstring''' super().__init__(pad_token_id=A_ , **A_ ) __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = hidden_act __lowercase = intermediate_size __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = initializer_range __lowercase = layer_norm_eps __lowercase = position_embedding_type __lowercase = cross_attention_frequency __lowercase = encoder_hidden_size @classmethod def SCREAMING_SNAKE_CASE_ ( cls : Union[str, Any] , A_ : Union[str, os.PathLike] , **A_ : Dict ): '''simple docstring''' cls._set_token_in_kwargs(A_ ) __lowercase , __lowercase = cls.get_config_dict(A_ , **A_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get("""model_type""" ) == "blip-2": __lowercase = config_dict["""qformer_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A_ , **A_ ) class lowerCamelCase__ ( _a ): a : Union[str, Any] = """blip-2""" a : Any = True def __init__( self : str , A_ : str=None , A_ : Tuple=None , A_ : str=None , A_ : int=3_2 , **A_ : Union[str, Any] ): '''simple docstring''' super().__init__(**A_ ) if vision_config is None: __lowercase = {} logger.info("""vision_config is None. initializing the Blip2VisionConfig with default values.""" ) if qformer_config is None: __lowercase = {} logger.info("""qformer_config is None. Initializing the Blip2QFormerConfig with default values.""" ) if text_config is None: __lowercase = {} logger.info("""text_config is None. Initializing the text config with default values (`OPTConfig`).""" ) __lowercase = BlipaVisionConfig(**A_ ) __lowercase = BlipaQFormerConfig(**A_ ) __lowercase = text_config["""model_type"""] if """model_type""" in text_config else """opt""" __lowercase = CONFIG_MAPPING[text_model_type](**A_ ) __lowercase = self.text_config.tie_word_embeddings __lowercase = self.text_config.is_encoder_decoder __lowercase = num_query_tokens __lowercase = self.vision_config.hidden_size __lowercase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __lowercase = 1.0 __lowercase = 0.02 @classmethod def SCREAMING_SNAKE_CASE_ ( cls : List[str] , A_ : BlipaVisionConfig , A_ : BlipaQFormerConfig , A_ : PretrainedConfig , **A_ : str , ): '''simple docstring''' return cls( vision_config=vision_config.to_dict() , qformer_config=qformer_config.to_dict() , text_config=text_config.to_dict() , **A_ , ) def SCREAMING_SNAKE_CASE_ ( self : Optional[int] ): '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.vision_config.to_dict() __lowercase = self.qformer_config.to_dict() __lowercase = self.text_config.to_dict() __lowercase = self.__class__.model_type return output
616
"""simple docstring""" def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return x if y == 0 else greatest_common_divisor(UpperCamelCase__ , x % y ) def lowerCAmelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : int ): """simple docstring""" return (x * y) // greatest_common_divisor(UpperCamelCase__ , UpperCamelCase__ ) def lowerCAmelCase_ ( UpperCamelCase__ : int = 20 ): """simple docstring""" __lowercase = 1 for i in range(1 , n + 1 ): __lowercase = lcm(UpperCamelCase__ , UpperCamelCase__ ) return g if __name__ == "__main__": print(f"""{solution() = }""")
616
1
import requests from bsa import BeautifulSoup def UpperCamelCase__( UpperCamelCase__ : str = "https://www.worldometers.info/coronavirus" )->Dict: A__ = BeautifulSoup(requests.get(UpperCamelCase__ ).text , '''html.parser''' ) A__ = soup.findAll('''h1''' ) A__ = soup.findAll('''div''' , {'''class''': '''maincounter-number'''} ) keys += soup.findAll('''span''' , {'''class''': '''panel-title'''} ) values += soup.findAll('''div''' , {'''class''': '''number-table-main'''} ) return {key.text.strip(): value.text.strip() for key, value in zip(UpperCamelCase__ , UpperCamelCase__ )} if __name__ == "__main__": print('\033[1m' + 'COVID-19 Status of the World' + '\033[0m\n') for key, value in world_covidaa_stats().items(): print(F"{key}\n{value}\n")
717
import math def UpperCamelCase__( UpperCamelCase__ : int )->bool: assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or not number % 2: # Negatives, 0, 1 and all even numbers are not primes return False A__ = range(3 , int(math.sqrt(UpperCamelCase__ ) + 1 ) , 2 ) return not any(not number % i for i in odd_numbers ) def UpperCamelCase__( UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any]=1 , **UpperCamelCase__ : int )->List[Any]: A__ = factor * value A__ = value while not is_prime(UpperCamelCase__ ): value += 1 if not ("desc" in kwargs and kwargs["desc"] is True) else -1 if value == first_value_val: return next_prime(value + 1 , **UpperCamelCase__ ) return value
212
0
__magic_name__ = {str(digit): digit**5 for digit in range(10)} def _lowerCAmelCase ( A__: int ): '''simple docstring''' return sum(DIGITS_FIFTH_POWER[digit] for digit in str(A__ ) ) def _lowerCAmelCase ( ): '''simple docstring''' return sum( number for number in range(1000 , 100_0000 ) if number == digits_fifth_powers_sum(A__ ) ) if __name__ == "__main__": print(solution())
254
import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ = logging.get_logger(__name__) __magic_name__ = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class lowercase ( A__ ): '''simple docstring''' __SCREAMING_SNAKE_CASE = """encodec""" def __init__( self , _snake_case=[1.5, 3.0, 6.0, 12.0, 24.0] , _snake_case=2_4000 , _snake_case=1 , _snake_case=False , _snake_case=None , _snake_case=None , _snake_case=128 , _snake_case=32 , _snake_case=1 , _snake_case=[8, 5, 4, 2] , _snake_case="weight_norm" , _snake_case=7 , _snake_case=7 , _snake_case=3 , _snake_case=2 , _snake_case=True , _snake_case="reflect" , _snake_case=2 , _snake_case=2 , _snake_case=1.0 , _snake_case=1024 , _snake_case=None , _snake_case=True , **_snake_case , ) -> Dict: """simple docstring""" UpperCAmelCase = target_bandwidths UpperCAmelCase = sampling_rate UpperCAmelCase = audio_channels UpperCAmelCase = normalize UpperCAmelCase = chunk_length_s UpperCAmelCase = overlap UpperCAmelCase = hidden_size UpperCAmelCase = num_filters UpperCAmelCase = num_residual_layers UpperCAmelCase = upsampling_ratios UpperCAmelCase = norm_type UpperCAmelCase = kernel_size UpperCAmelCase = last_kernel_size UpperCAmelCase = residual_kernel_size UpperCAmelCase = dilation_growth_rate UpperCAmelCase = use_causal_conv UpperCAmelCase = pad_mode UpperCAmelCase = compress UpperCAmelCase = num_lstm_layers UpperCAmelCase = trim_right_ratio UpperCAmelCase = codebook_size UpperCAmelCase = codebook_dim if codebook_dim is not None else hidden_size UpperCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f"""self.norm_type must be one of `\"weight_norm\"`, `\"time_group_norm\"`), got {self.norm_type}""" ) super().__init__(**_snake_case ) @property def snake_case_ ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def snake_case_ ( self ) -> Optional[int]: """simple docstring""" if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def snake_case_ ( self ) -> int: """simple docstring""" return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
254
1
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any ) -> Optional[int]: def wrapper(*snake_case__ :Dict , **snake_case__ :Any ): _lowercase = timeit.default_timer() _lowercase = func(*snake_case__ , **snake_case__ ) _lowercase = timeit.default_timer() - starttime return delta _lowercase = func.__name__ return wrapper def SCREAMING_SNAKE_CASE__ ( snake_case__ :dict , snake_case__ :List[str]=100 , snake_case__ :List[Any]=None ) -> List[str]: _lowercase = [] _lowercase = seq_shapes or {} for i in range(snake_case__ ): _lowercase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(snake_case__ , _ArrayXD ): _lowercase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(snake_case__ , datasets.Value ): if v.dtype == "string": _lowercase = 'The small grey turtle was surprisingly fast when challenged.' else: _lowercase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(snake_case__ , datasets.Sequence ): while isinstance(snake_case__ , datasets.Sequence ): _lowercase = v.feature _lowercase = seq_shapes[k] _lowercase = np.random.rand(*snake_case__ ).astype(v.dtype ) _lowercase = data dummy_data.append((i, example) ) return dummy_data def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any , snake_case__ :Tuple , snake_case__ :str=100 , snake_case__ :Optional[Any]=None ) -> Any: _lowercase = generate_examples(snake_case__ , num_examples=snake_case__ , seq_shapes=snake_case__ ) with ArrowWriter(features=snake_case__ , path=snake_case__ ) as writer: for key, record in dummy_data: _lowercase = features.encode_example(snake_case__ ) writer.write(snake_case__ ) _lowercase , _lowercase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) _lowercase = datasets.Dataset.from_file(filename=snake_case__ , info=datasets.DatasetInfo(features=snake_case__ ) ) return dataset
535
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `FlaxStableDiffusionControlNetPipeline` from diffusers.pipelines.stable_diffusion.flax_pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import FlaxStableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
535
1
'''simple docstring''' import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _lowercase ( lowerCamelCase__ : Optional[int], lowerCamelCase__ : Dict, lowerCamelCase__ : List[Any] ): _a = OmegaConf.load(lowerCamelCase__ ) _a = torch.load(lowerCamelCase__, map_location="cpu" )["model"] _a = list(state_dict.keys() ) # extract state_dict for VQVAE _a = {} _a = "first_stage_model." for key in keys: if key.startswith(lowerCamelCase__ ): _a = state_dict[key] # extract state_dict for UNetLDM _a = {} _a = "model.diffusion_model." for key in keys: if key.startswith(lowerCamelCase__ ): _a = state_dict[key] _a = config.model.params.first_stage_config.params _a = config.model.params.unet_config.params _a = VQModel(**lowerCamelCase__ ).eval() vqvae.load_state_dict(lowerCamelCase__ ) _a = UNetLDMModel(**lowerCamelCase__ ).eval() unet.load_state_dict(lowerCamelCase__ ) _a = DDIMScheduler( timesteps=config.model.params.timesteps, beta_schedule="scaled_linear", beta_start=config.model.params.linear_start, beta_end=config.model.params.linear_end, clip_sample=lowerCamelCase__, ) _a = LDMPipeline(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) pipeline.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case : List[Any] = argparse.ArgumentParser() parser.add_argument("--checkpoint_path", type=str, required=True) parser.add_argument("--config_path", type=str, required=True) parser.add_argument("--output_path", type=str, required=True) __snake_case : Union[str, Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
131
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Optional[int] = logging.get_logger(__name__) __snake_case : int = { "transfo-xl-wt103": "https://huggingface.co/transfo-xl-wt103/resolve/main/config.json", } class A ( a ): __UpperCAmelCase : Dict = """transfo-xl""" __UpperCAmelCase : Any = ["""mems"""] __UpperCAmelCase : Any = { """n_token""": """vocab_size""", """hidden_size""": """d_model""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self , snake_case_=2_6_7_7_3_5 , snake_case_=[2_0_0_0_0, 4_0_0_0_0, 2_0_0_0_0_0] , snake_case_=1_0_2_4 , snake_case_=1_0_2_4 , snake_case_=1_6 , snake_case_=6_4 , snake_case_=4_0_9_6 , snake_case_=4 , snake_case_=False , snake_case_=1_8 , snake_case_=1_6_0_0 , snake_case_=1_0_0_0 , snake_case_=True , snake_case_=True , snake_case_=0 , snake_case_=-1 , snake_case_=True , snake_case_=0.1 , snake_case_=0.0 , snake_case_=True , snake_case_="normal" , snake_case_=0.01 , snake_case_=0.01 , snake_case_=0.02 , snake_case_=1E-5 , snake_case_=0 , **snake_case_ , ) -> str: _a = vocab_size _a = [] self.cutoffs.extend(snake_case_ ) if proj_share_all_but_first: _a = [False] + [True] * len(self.cutoffs ) else: _a = [False] + [False] * len(self.cutoffs ) _a = d_model _a = d_embed _a = d_head _a = d_inner _a = div_val _a = pre_lnorm _a = n_layer _a = n_head _a = mem_len _a = same_length _a = attn_type _a = clamp_len _a = sample_softmax _a = adaptive _a = dropout _a = dropatt _a = untie_r _a = init _a = init_range _a = proj_init_std _a = init_std _a = layer_norm_epsilon super().__init__(eos_token_id=snake_case_ , **snake_case_ ) @property def __lowerCAmelCase ( self ) -> Tuple: # Message copied from Transformer-XL documentation logger.info(F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' ) return -1 @max_position_embeddings.setter def __lowerCAmelCase ( self , snake_case_ ) -> str: # Message copied from Transformer-XL documentation raise NotImplementedError( F'''The model {self.model_type} is one of the few models that has no sequence length limit.''' )
131
1
import unittest from transformers import DebertaVaTokenizer, DebertaVaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/spiece.model""") @require_sentencepiece @require_tokenizers class snake_case_ ( a__ ,unittest.TestCase ): __lowerCAmelCase = DebertaVaTokenizer __lowerCAmelCase = DebertaVaTokenizerFast __lowerCAmelCase = True __lowerCAmelCase = True def snake_case_ ( self ): super().setUp() # We have a SentencePiece fixture for testing a_ : List[str] = DebertaVaTokenizer(lowerCAmelCase__ , unk_token="<unk>" ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self , a_ ): a_ : Tuple = "this is a test" a_ : int = "this is a test" return input_text, output_text def snake_case_ ( self ): a_ : Any = "<pad>" a_ : Dict = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCAmelCase__ ) , lowerCAmelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCAmelCase__ ) , lowerCAmelCase__ ) def snake_case_ ( self ): a_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<pad>" ) self.assertEqual(vocab_keys[1] , "<unk>" ) self.assertEqual(vocab_keys[-1] , "[PAD]" ) self.assertEqual(len(lowerCAmelCase__ ) , 3_0_0_0_1 ) def snake_case_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 3_0_0_0_0 ) def snake_case_ ( self ): # fmt: off a_ : Tuple = " \tHeLLo!how \n Are yoU? " a_ : Union[str, Any] = ["▁hello", "!", "how", "▁are", "▁you", "?"] # fmt: on a_ : List[str] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) a_ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : List[str] = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ ) a_ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def snake_case_ ( self ): pass @unittest.skip("There is an inconsistency between slow and fast tokenizer due to a bug in the fast one." ) def snake_case_ ( self ): pass def snake_case_ ( self ): # fmt: off a_ : Union[str, Any] = "I was born in 92000, and this is falsé." a_ : str = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on a_ : Tuple = DebertaVaTokenizer(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : Any = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : Dict = DebertaVaTokenizerFast(lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : Union[str, Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ ( self ): # fmt: off a_ : Any = "I was born in 92000, and this is falsé." a_ : Any = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on a_ : Optional[int] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : List[Any] = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ ( self ): # fmt: off a_ : Optional[int] = "I was born in 92000, and this is falsé." a_ : Dict = ["▁i", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on a_ : Tuple = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : int = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : Dict = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : str = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ ( self ): # fmt: off a_ : Dict = "I was born in 92000, and this is falsé." a_ : str = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", "▁", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", "▁", ".", ] # fmt: on a_ : Optional[Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : str = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : List[Any] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ ( self ): # fmt: off a_ : Dict = " \tHeLLo!how \n Are yoU? " a_ : Optional[Any] = ["▁", "<unk>", "e", "<unk>", "o", "!", "how", "▁", "<unk>", "re", "▁yo", "<unk>", "?"] # fmt: on a_ : List[Any] = DebertaVaTokenizer(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : str = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : List[str] = DebertaVaTokenizerFast(lowerCAmelCase__ , do_lower_case=lowerCAmelCase__ , split_by_punct=lowerCAmelCase__ ) a_ : int = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ ( self ): a_ : List[str] = self.get_tokenizer() a_ : Optional[Any] = self.get_rust_tokenizer() a_ : Union[str, Any] = "I was born in 92000, and this is falsé." a_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) a_ : List[str] = rust_tokenizer.convert_ids_to_tokens(rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : Tuple = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) a_ : Optional[Any] = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : Any = self.get_rust_tokenizer() a_ : Dict = tokenizer.encode(lowerCAmelCase__ ) a_ : Optional[int] = rust_tokenizer.encode(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ ( self ): a_ : Tuple = "This is a test" a_ : Optional[int] = [1_3, 1, 4_3_9_8, 2_5, 2_1, 1_2_8_9] a_ : Tuple = ["▁", "T", "his", "▁is", "▁a", "▁test"] a_ : Optional[Any] = ["▁", "<unk>", "his", "▁is", "▁a", "▁test"] a_ : int = DebertaVaTokenizer(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) a_ : Union[str, Any] = DebertaVaTokenizerFast(lowerCAmelCase__ , keep_accents=lowerCAmelCase__ ) a_ : Optional[Any] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : List[Any] = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : int = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : List[str] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : List[str] = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # fmt: off a_ : Dict = "I was born in 92000, and this is falsé." a_ : Optional[Any] = [1_3, 1, 2_3, 3_8_6, 1_9, 5_6_1, 3_0_5_0, 1_5, 1_7, 4_8, 2_5, 8_2_5_6, 1_8, 1, 9] a_ : Optional[int] = ["▁", "I", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "é", ".", ] a_ : int = ["▁", "<unk>", "▁was", "▁born", "▁in", "▁9", "2000", ",", "▁and", "▁this", "▁is", "▁fal", "s", "<unk>", ".", ] # fmt: on a_ : Optional[int] = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : int = tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : Any = tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : Tuple = rust_tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : List[Any] = rust_tokenizer.tokenize(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) a_ : str = rust_tokenizer.convert_ids_to_tokens(lowerCAmelCase__ ) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def snake_case_ ( self ): a_ : Optional[int] = DebertaVaTokenizer(lowerCAmelCase__ ) a_ : Optional[Any] = tokenizer.encode("sequence builders" ) a_ : int = tokenizer.encode("multi-sequence build" ) a_ : Tuple = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) a_ : Dict = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) self.assertEqual([tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] , lowerCAmelCase__ ) self.assertEqual( [tokenizer.cls_token_id] + text + [tokenizer.sep_token_id] + text_a + [tokenizer.sep_token_id] , lowerCAmelCase__ , ) @slow def snake_case_ ( self ): # fmt: off a_ : Any = {"input_ids": [[1, 3_9_8_6_7, 3_6, 1_9_3_9_0, 4_8_6, 2_7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 6_0_6_8_5, 1_2_2_5, 7, 3_5_0_5_2, 8_1_4_3_6, 1_8, 9_3_6_7, 1_6_8_9_9, 1_8, 1_5_9_3_7, 5_3, 5_9_4, 7_7_3, 1_8, 1_6_2_8_7, 3_0_4_6_5, 3_6, 1_5_9_3_7, 6, 4_1_1_3_9, 3_8, 3_6_9_7_9, 6_0_7_6_3, 1_9_1, 6, 3_4_1_3_2, 9_9, 6, 5_0_5_3_8, 3_9_0, 4_3_2_3_0, 6, 3_4_1_3_2, 2_7_7_9, 2_0_8_5_0, 1_4, 6_9_9, 1_0_7_2, 1_1_9_4, 3_6, 3_8_2, 1_0_9_0_1, 5_3, 7, 6_9_9, 1_0_7_2, 2_0_8_4, 3_6, 2_0_4_2_2, 6_3_0, 5_3, 1_9, 1_0_5, 3_0_4_9, 1_8_9_6, 1_0_5_3, 1_6_8_9_9, 1_5_0_6, 1_1, 3_7_9_7_8, 4_2_4_3, 7, 1_2_3_7, 3_1_8_6_9, 2_0_0, 1_6_5_6_6, 6_5_4, 6, 3_5_0_5_2, 8_1_4_3_6, 7, 5_5_6_3_0, 1_3_5_9_3, 4, 2], [1, 2_6, 1_5_0_1_1, 1_3, 6_6_7, 8, 1_0_5_3, 1_8, 2_3_6_1_1, 1_2_3_7, 7_2_3_5_6, 1_2_8_2_0, 3_4, 1_0_4_1_3_4, 1_2_0_9, 3_5, 1_3_3_1_3, 6_6_2_7, 2_1, 2_0_2, 3_4_7, 7, 1_6_4, 2_3_9_9, 1_1, 4_6, 4_4_8_5, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 5, 1_2_3_2, 2_8_6_4, 1_5_7_8_5, 1_4_9_5_1, 1_0_5, 5, 8_5_8_1, 1_2_5_0, 4, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "token_type_ids": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCAmelCase__ , model_name="microsoft/deberta-v2-xlarge" , revision="ad6e42c1532ddf3a15c39246b63f5559d558b670" , )
709
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_ = get_tests_dir("""fixtures/test_sentencepiece_bpe_char.model""") @require_sentencepiece @require_tokenizers class snake_case_ ( a_ ,unittest.TestCase ): __lowerCAmelCase = SpeechTaTokenizer __lowerCAmelCase = False __lowerCAmelCase = True def snake_case_ ( self ): super().setUp() # We have a SentencePiece fixture for testing a_ : Any = SpeechTaTokenizer(a_ ) a_ : Optional[int] = AddedToken("<mask>" , lstrip=a_ , rstrip=a_ ) a_ : Any = mask_token tokenizer.add_special_tokens({"mask_token": mask_token} ) tokenizer.add_tokens(["<ctc_blank>"] ) tokenizer.save_pretrained(self.tmpdirname ) def snake_case_ ( self , a_ ): a_ : Tuple = "this is a test" a_ : Any = "this is a test" return input_text, output_text def snake_case_ ( self , a_ , a_=False , a_=2_0 , a_=5 ): a_ , a_ : Optional[Any] = self.get_input_output_texts(a_ ) a_ : Optional[Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) a_ : Dict = tokenizer.decode(a_ , clean_up_tokenization_spaces=a_ ) return text, ids def snake_case_ ( self ): a_ : List[Any] = "<pad>" a_ : Optional[int] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a_ ) , a_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a_ ) , a_ ) def snake_case_ ( self ): a_ : List[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-4] , "œ" ) self.assertEqual(vocab_keys[-2] , "<mask>" ) self.assertEqual(vocab_keys[-1] , "<ctc_blank>" ) self.assertEqual(len(a_ ) , 8_1 ) def snake_case_ ( self ): self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def snake_case_ ( self ): a_ : Any = self.get_tokenizers(do_lower_case=a_ ) for tokenizer in tokenizers: with self.subTest(F"""{tokenizer.__class__.__name__}""" ): a_ : Dict = tokenizer.vocab_size a_ : List[str] = len(a_ ) self.assertNotEqual(a_ , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a_ : Optional[int] = ["aaaaa bbbbbb", "cccccccccdddddddd"] a_ : int = tokenizer.add_tokens(a_ ) a_ : List[Any] = tokenizer.vocab_size a_ : Tuple = len(a_ ) self.assertNotEqual(a_ , 0 ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , len(a_ ) ) self.assertEqual(a_ , all_size + len(a_ ) ) a_ : str = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l" , add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a_ : Tuple = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"} a_ : Dict = tokenizer.add_special_tokens(a_ ) a_ : Optional[Any] = tokenizer.vocab_size a_ : Any = len(a_ ) self.assertNotEqual(a_ , 0 ) self.assertEqual(a_ , a_ ) self.assertEqual(a_ , len(a_ ) ) self.assertEqual(a_ , all_size_a + len(a_ ) ) a_ : Any = tokenizer.encode( ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l" , add_special_tokens=a_ ) self.assertGreaterEqual(len(a_ ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def snake_case_ ( self ): pass def snake_case_ ( self ): pass def snake_case_ ( self ): a_ : Union[str, Any] = self.get_tokenizer() a_ : Any = tokenizer.tokenize("This is a test" ) # fmt: off self.assertListEqual(a_ , [SPIECE_UNDERLINE, "T", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "a", SPIECE_UNDERLINE, "t", "e", "s", "t"] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(a_ ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) a_ : Optional[int] = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( a_ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "92000", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) a_ : Tuple = tokenizer.convert_tokens_to_ids(a_ ) # fmt: off self.assertListEqual(a_ , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on a_ : Tuple = tokenizer.convert_ids_to_tokens(a_ ) self.assertListEqual( a_ , [SPIECE_UNDERLINE, "I", SPIECE_UNDERLINE, "w", "a", "s", SPIECE_UNDERLINE, "b", "o", "r", "n", SPIECE_UNDERLINE, "i", "n", SPIECE_UNDERLINE, "<unk>", ",", SPIECE_UNDERLINE, "a", "n", "d", SPIECE_UNDERLINE, "t", "h", "i", "s", SPIECE_UNDERLINE, "i", "s", SPIECE_UNDERLINE, "f", "a", "l", "s", "é", "."] ) @slow def snake_case_ ( self ): # Use custom sequence because this tokenizer does not handle numbers. a_ : List[Any] = [ "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides " "general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural " "Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained " "models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.", "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly " "conditioning on both left and right context in all layers.", "The quick brown fox jumps over the lazy dog.", ] # fmt: off a_ : Tuple = { "input_ids": [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], "attention_mask": [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=a_ , model_name="microsoft/speecht5_asr" , revision="c5ef64c71905caeccde0e4462ef3f9077224c524" , sequences=a_ , )
370
0
import numpy as np import torch import tqdm from ...models.unet_ad import UNetaDModel from ...pipelines import DiffusionPipeline from ...utils import randn_tensor from ...utils.dummy_pt_objects import DDPMScheduler class UpperCamelCase_ ( UpperCAmelCase__ ): '''simple docstring''' def __init__( self : Any , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : UNetaDModel , UpperCAmelCase__ : DDPMScheduler , UpperCAmelCase__ : Optional[int] , ) ->int: '''simple docstring''' super().__init__() A__ = value_function A__ = unet A__ = scheduler A__ = env A__ = env.get_dataset() A__ = {} for key in self.data.keys(): try: A__ = self.data[key].mean() except: # noqa: E722 pass A__ = {} for key in self.data.keys(): try: A__ = self.data[key].std() except: # noqa: E722 pass A__ = env.observation_space.shape[0] A__ = env.action_space.shape[0] def SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase__ : str , UpperCAmelCase__ : int) ->List[str]: '''simple docstring''' return (x_in - self.means[key]) / self.stds[key] def SCREAMING_SNAKE_CASE ( self : int , UpperCAmelCase__ : str , UpperCAmelCase__ : List[Any]) ->Any: '''simple docstring''' return x_in * self.stds[key] + self.means[key] def SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase__ : Union[str, Any]) ->Dict: '''simple docstring''' if type(UpperCAmelCase__) is dict: return {k: self.to_torch(UpperCAmelCase__) for k, v in x_in.items()} elif torch.is_tensor(UpperCAmelCase__): return x_in.to(self.unet.device) return torch.tensor(UpperCAmelCase__ , device=self.unet.device) def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : List[Any]) ->Any: '''simple docstring''' for key, val in cond.items(): A__ = val.clone() return x_in def SCREAMING_SNAKE_CASE ( self : List[str] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : str) ->List[Any]: '''simple docstring''' A__ = x.shape[0] A__ = None for i in tqdm.tqdm(self.scheduler.timesteps): # create batch of timesteps to pass into model A__ = torch.full((batch_size,) , UpperCAmelCase__ , device=self.unet.device , dtype=torch.long) for _ in range(UpperCAmelCase__): with torch.enable_grad(): x.requires_grad_() # permute to match dimension for pre-trained models A__ = self.value_function(x.permute(0 , 2 , 1) , UpperCAmelCase__).sample A__ = torch.autograd.grad([y.sum()] , [x])[0] A__ = self.scheduler._get_variance(UpperCAmelCase__) A__ = torch.exp(0.5 * posterior_variance) A__ = model_std * grad A__ = 0 A__ = x.detach() A__ = x + scale * grad A__ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim) A__ = self.unet(x.permute(0 , 2 , 1) , UpperCAmelCase__).sample.permute(0 , 2 , 1) # TODO: verify deprecation of this kwarg A__ = self.scheduler.step(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , predict_epsilon=UpperCAmelCase__)['''prev_sample'''] # apply conditions to the trajectory (set the initial state) A__ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim) A__ = self.to_torch(UpperCAmelCase__) return x, y def __call__( self : Tuple , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : List[Any]=64 , UpperCAmelCase__ : Dict=32 , UpperCAmelCase__ : int=2 , UpperCAmelCase__ : Dict=0.1) ->List[str]: '''simple docstring''' A__ = self.normalize(UpperCAmelCase__ , '''observations''') A__ = obs[None].repeat(UpperCAmelCase__ , axis=0) A__ = {0: self.to_torch(UpperCAmelCase__)} A__ = (batch_size, planning_horizon, self.state_dim + self.action_dim) # generate initial noise and apply our conditions (to make the trajectories start at current state) A__ = randn_tensor(UpperCAmelCase__ , device=self.unet.device) A__ = self.reset_xa(UpperCAmelCase__ , UpperCAmelCase__ , self.action_dim) A__ = self.to_torch(UpperCAmelCase__) # run the diffusion process A__ , A__ = self.run_diffusion(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__) # sort output trajectories by value A__ = y.argsort(0 , descending=UpperCAmelCase__).squeeze() A__ = x[sorted_idx] A__ = sorted_values[:, :, : self.action_dim] A__ = actions.detach().cpu().numpy() A__ = self.de_normalize(UpperCAmelCase__ , key='''actions''') # select the action with the highest value if y is not None: A__ = 0 else: # if we didn't run value guiding, select a random action A__ = np.random.randint(0 , UpperCAmelCase__) A__ = denorm_actions[selected_index, 0] return denorm_actions
87
from __future__ import annotations from collections import namedtuple def snake_case_ ( lowerCAmelCase_ : float , lowerCAmelCase_ : float , lowerCAmelCase_ : float ): __lowercase : str = namedtuple("""result""" , """name value""" ) if (voltage, current, power).count(0 ) != 1: raise ValueError("""Only one argument must be 0""" ) elif power < 0: raise ValueError( """Power cannot be negative in any electrical/electronics system""" ) elif voltage == 0: return result("""voltage""" , power / current ) elif current == 0: return result("""current""" , power / voltage ) elif power == 0: return result("""power""" , float(round(abs(voltage * current ) , 2 ) ) ) else: raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
149
0
'''simple docstring''' from ... import PretrainedConfig UpperCamelCase_ = { "sijunhe/nezha-cn-base": "https://huggingface.co/sijunhe/nezha-cn-base/resolve/main/config.json", } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Tuple = NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP A : Tuple = '''nezha''' def __init__( self, A=21_128, A=768, A=12, A=12, A=3_072, A="gelu", A=0.1, A=0.1, A=512, A=64, A=2, A=0.02, A=1E-12, A=0.1, A=0, A=2, A=3, A=True, **A, ): '''simple docstring''' super().__init__(pad_token_id=A, bos_token_id=A, eos_token_id=A, **A ) SCREAMING_SNAKE_CASE : Dict = vocab_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : List[str] = num_attention_heads SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_act SCREAMING_SNAKE_CASE : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE : Optional[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[str] = max_position_embeddings SCREAMING_SNAKE_CASE : Any = max_relative_position SCREAMING_SNAKE_CASE : str = type_vocab_size SCREAMING_SNAKE_CASE : Dict = initializer_range SCREAMING_SNAKE_CASE : Optional[int] = layer_norm_eps SCREAMING_SNAKE_CASE : Dict = classifier_dropout SCREAMING_SNAKE_CASE : Tuple = use_cache
508
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
508
1
import random import unittest import numpy as np from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionImgaImgPipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class _UpperCamelCase ( __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ ='hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def __UpperCamelCase ( self : Any , a : Optional[int]=0 ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 128, 128) , rng=random.Random(a ) ) SCREAMING_SNAKE_CASE : str = np.random.RandomState(a ) SCREAMING_SNAKE_CASE : int = { "prompt": "A painting of a squirrel eating a burger", "image": image, "generator": generator, "num_inference_steps": 3, "strength": 0.75, "guidance_scale": 7.5, "output_type": "numpy", } return inputs def __UpperCamelCase ( self : Optional[Any] ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : Tuple = pipe(**a ).images SCREAMING_SNAKE_CASE : List[Any] = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : str = np.array([0.6_9643, 0.5_8484, 0.5_0314, 0.5_8760, 0.5_5368, 0.5_9643, 0.5_1529, 0.4_1217, 0.4_9087] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : Tuple ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : Optional[Any] = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=a ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : List[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : List[str] = np.array([0.6_1737, 0.5_4642, 0.5_3183, 0.5_4465, 0.5_2742, 0.6_0525, 0.4_9969, 0.4_0655, 0.4_8154] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : List[Any] ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : Dict = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) # warmup pass to apply optimizations SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**self.get_dummy_inputs() ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : List[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : Any = np.array([0.5_2761, 0.5_9977, 0.4_9033, 0.4_9619, 0.5_4282, 0.5_0311, 0.4_7600, 0.4_0918, 0.4_5203] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : Any ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : List[str] = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[str] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : Dict = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : Optional[int] = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Optional[Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : Optional[Any] = pipe(**a ).images SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.5_2911, 0.6_0004, 0.4_9229, 0.4_9805, 0.5_4502, 0.5_0680, 0.4_7777, 0.4_1028, 0.4_5304] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def __UpperCamelCase ( self : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : int = OnnxStableDiffusionImgaImgPipeline.from_pretrained(self.hub_checkpoint , provider="CPUExecutionProvider" ) SCREAMING_SNAKE_CASE : str = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Union[str, Any] = self.get_dummy_inputs() SCREAMING_SNAKE_CASE : List[str] = pipe(**a ).images SCREAMING_SNAKE_CASE : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) SCREAMING_SNAKE_CASE : Optional[int] = np.array([0.6_5331, 0.5_8277, 0.4_8204, 0.5_6059, 0.5_3665, 0.5_6235, 0.5_0969, 0.4_0009, 0.4_6552] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @property def __UpperCamelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : Any ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Any = ort.SessionOptions() SCREAMING_SNAKE_CASE : str = False return options def __UpperCamelCase ( self : List[Any] ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) SCREAMING_SNAKE_CASE : Optional[int] = init_image.resize((768, 512) ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE : str = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "CompVis/stable-diffusion-v1-4" , revision="onnx" , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : Tuple = "A fantasy landscape, trending on artstation" SCREAMING_SNAKE_CASE : Optional[int] = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Dict = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=10 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : Any = output.images SCREAMING_SNAKE_CASE : str = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE : Tuple = np.array([0.4909, 0.5059, 0.5372, 0.4623, 0.4876, 0.5049, 0.4820, 0.4956, 0.5019] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def __UpperCamelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/img2img/sketch-mountains-input.jpg" ) SCREAMING_SNAKE_CASE : Dict = init_image.resize((768, 512) ) SCREAMING_SNAKE_CASE : Any = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-v1-5" , subfolder="scheduler" , revision="onnx" ) SCREAMING_SNAKE_CASE : List[str] = OnnxStableDiffusionImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , revision="onnx" , scheduler=a , safety_checker=a , feature_extractor=a , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=a ) SCREAMING_SNAKE_CASE : List[str] = "A fantasy landscape, trending on artstation" SCREAMING_SNAKE_CASE : List[Any] = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE : Dict = pipe( prompt=a , image=a , strength=0.75 , guidance_scale=7.5 , num_inference_steps=20 , generator=a , output_type="np" , ) SCREAMING_SNAKE_CASE : Union[str, Any] = output.images SCREAMING_SNAKE_CASE : Any = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 768, 3) SCREAMING_SNAKE_CASE : Union[str, Any] = np.array([0.8043, 0.926, 0.9581, 0.8119, 0.8954, 0.913, 0.7209, 0.7463, 0.7431] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
25
def A__ ( lowerCamelCase = 4_00_00_00 ) -> int: UpperCamelCase_: Dict = [] UpperCamelCase_, UpperCamelCase_: Optional[int] = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(lowerCamelCase ) UpperCamelCase_, UpperCamelCase_: int = b, a + b return sum(lowerCamelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
548
0
import functools def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) or not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for day in days ): raise ValueError('The parameter days should be a list of integers' ) if len(UpperCAmelCase__ ) != 3 or not all(isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) for cost in costs ): raise ValueError('The parameter costs should be a list of three integers' ) if len(UpperCAmelCase__ ) == 0: return 0 if min(UpperCAmelCase__ ) <= 0: raise ValueError('All days elements should be greater than 0' ) if max(UpperCAmelCase__ ) >= 366: raise ValueError('All days elements should be less than 366' ) __lowerCAmelCase = set(UpperCAmelCase__ ) @functools.cache def dynamic_programming(UpperCAmelCase__ ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
102
def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert x is not None assert y is not None __lowerCAmelCase = len(UpperCAmelCase__ ) __lowerCAmelCase = len(UpperCAmelCase__ ) # declaring the array for storing the dp values __lowerCAmelCase = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): __lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 __lowerCAmelCase = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) __lowerCAmelCase = '' __lowerCAmelCase, __lowerCAmelCase = m, n while i > 0 and j > 0: __lowerCAmelCase = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: __lowerCAmelCase = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase = '''AGGTAB''' lowerCamelCase = '''GXTXAYB''' lowerCamelCase = 4 lowerCamelCase = '''GTAB''' lowerCamelCase , lowerCamelCase = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
102
1
"""simple docstring""" from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy snake_case = logging.get_logger(__name__) class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : str , __lowerCamelCase : int , __lowerCamelCase : int , __lowerCamelCase : float , **__lowerCamelCase : str ): """simple docstring""" _snake_case = feature_size _snake_case = sampling_rate _snake_case = padding_value _snake_case = kwargs.pop('''padding_side''' , '''right''' ) _snake_case = kwargs.pop('''return_attention_mask''' , __lowerCamelCase ) super().__init__(**__lowerCamelCase ) def __UpperCAmelCase ( self : Dict , __lowerCamelCase : Union[ BatchFeature, List[BatchFeature], Dict[str, BatchFeature], Dict[str, List[BatchFeature]], List[Dict[str, BatchFeature]], ] , __lowerCamelCase : Union[bool, str, PaddingStrategy] = True , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : bool = False , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , __lowerCamelCase : Optional[Union[str, TensorType]] = None , ): """simple docstring""" # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(__lowerCamelCase , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): _snake_case = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' f""" to this method that includes {self.model_input_names[0]}, but you provided""" f""" {list(processed_features.keys() )}""" ) _snake_case = processed_features[self.model_input_names[0]] _snake_case = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(__lowerCamelCase ) == 0: if return_attention_mask: _snake_case = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch _snake_case = required_input[0] if isinstance(__lowerCamelCase , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. _snake_case = 0 while len(required_input[index] ) == 0: index += 1 if index < len(__lowerCamelCase ): _snake_case = required_input[index][0] if return_tensors is None: if is_tf_tensor(__lowerCamelCase ): _snake_case = '''tf''' elif is_torch_tensor(__lowerCamelCase ): _snake_case = '''pt''' elif isinstance(__lowerCamelCase , (int, float, list, tuple, np.ndarray) ): _snake_case = '''np''' else: raise ValueError( f"""type of {first_element} unknown: {type(__lowerCamelCase )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): _snake_case = to_numpy(__lowerCamelCase ) else: _snake_case = [to_numpy(__lowerCamelCase ) for v in value] # Convert padding_strategy in PaddingStrategy _snake_case = self._get_padding_strategies(padding=__lowerCamelCase , max_length=__lowerCamelCase ) _snake_case = processed_features[self.model_input_names[0]] _snake_case = len(__lowerCamelCase ) if not all(len(__lowerCamelCase ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) _snake_case = [] for i in range(__lowerCamelCase ): _snake_case = {k: v[i] for k, v in processed_features.items()} # truncation _snake_case = self._truncate( __lowerCamelCase , max_length=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , truncation=__lowerCamelCase , ) truncated_inputs.append(__lowerCamelCase ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length _snake_case = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) _snake_case = PaddingStrategy.MAX_LENGTH _snake_case = {} for i in range(__lowerCamelCase ): # padding _snake_case = self._pad( truncated_inputs[i] , max_length=__lowerCamelCase , padding_strategy=__lowerCamelCase , pad_to_multiple_of=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) for key, value in outputs.items(): if key not in batch_outputs: _snake_case = [] if value.dtype is np.dtype(np.floataa ): _snake_case = value.astype(np.floataa ) batch_outputs[key].append(__lowerCamelCase ) return BatchFeature(__lowerCamelCase , tensor_type=__lowerCamelCase ) def __UpperCAmelCase ( self : int , __lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): """simple docstring""" _snake_case = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: _snake_case = len(__lowerCamelCase ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _snake_case = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(__lowerCamelCase ) < max_length if return_attention_mask and "attention_mask" not in processed_features: _snake_case = np.ones(len(__lowerCamelCase ) , dtype=np.intaa ) if needs_to_be_padded: _snake_case = max_length - len(__lowerCamelCase ) if self.padding_side == "right": if return_attention_mask: _snake_case = np.pad( processed_features['''attention_mask'''] , (0, difference) ) _snake_case = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) _snake_case = np.pad( __lowerCamelCase , __lowerCamelCase , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: _snake_case = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) _snake_case = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) _snake_case = np.pad( __lowerCamelCase , __lowerCamelCase , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def __UpperCAmelCase ( self : Any , __lowerCamelCase : Union[Dict[str, np.ndarray], BatchFeature] , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[int] = None , __lowerCamelCase : Optional[bool] = None , ): """simple docstring""" if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) _snake_case = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): _snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of _snake_case = len(__lowerCamelCase ) > max_length if needs_to_be_truncated: _snake_case = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: _snake_case = processed_features['''attention_mask'''][:max_length] return processed_features def __UpperCAmelCase ( self : List[Any] , __lowerCamelCase : str=False , __lowerCamelCase : Any=None ): """simple docstring""" # Get padding strategy if padding is not False: if padding is True: _snake_case = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = PaddingStrategy(__lowerCamelCase ) elif isinstance(__lowerCamelCase , __lowerCamelCase ): _snake_case = padding else: _snake_case = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( f"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
103
import datasets import faiss import numpy as np import streamlit as st import torch from elasticsearch import Elasticsearch from elia_utils import ( embed_questions_for_retrieval, make_qa_sas_model, qa_sas_generate, query_es_index, query_qa_dense_index, ) import transformers from transformers import AutoModel, AutoModelForSeqaSeqLM, AutoTokenizer __lowerCamelCase : Dict = """bart""" __lowerCamelCase : Union[str, Any] = True @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): if LOAD_DENSE_INDEX: snake_case__ : Optional[Any] = AutoTokenizer.from_pretrained("yjernite/retribert-base-uncased" ) snake_case__ : str = AutoModel.from_pretrained("yjernite/retribert-base-uncased" ).to("cuda:0" ) snake_case__ : Dict = qar_model.eval() else: snake_case__, snake_case__ : str = (None, None) if MODEL_TYPE == "bart": snake_case__ : str = AutoTokenizer.from_pretrained("yjernite/bart_eli5" ) snake_case__ : int = AutoModelForSeqaSeqLM.from_pretrained("yjernite/bart_eli5" ).to("cuda:0" ) snake_case__ : str = torch.load("seq2seq_models/eli5_bart_model_blm_2.pth" ) sas_model.load_state_dict(save_dict["model"] ) snake_case__ : List[Any] = sas_model.eval() else: snake_case__, snake_case__ : Any = make_qa_sas_model( model_name="t5-small" , from_file="seq2seq_models/eli5_t5_model_1024_4.pth" , device="cuda:0" ) return (qar_tokenizer, qar_model, sas_tokenizer, sas_model) @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): if LOAD_DENSE_INDEX: snake_case__ : Optional[int] = faiss.StandardGpuResources() snake_case__ : int = datasets.load_dataset(path="wiki_snippets" , name="wiki40b_en_100_0" )["train"] snake_case__ : Tuple = np.memmap( "wiki40b_passages_reps_32_l-8_h-768_b-512-512.dat" , dtype="float32" , mode="r" , shape=(wikiaab_passages.num_rows, 128) , ) snake_case__ : int = faiss.IndexFlatIP(128 ) snake_case__ : Dict = faiss.index_cpu_to_gpu(snake_case_ , 1 , snake_case_ ) wikiaab_gpu_index_flat.add(snake_case_ ) # TODO fix for larger GPU else: snake_case__, snake_case__ : int = (None, None) snake_case__ : Tuple = Elasticsearch([{"host": "localhost", "port": "9200"}] ) return (wikiaab_passages, wikiaab_gpu_index_flat, es_client) @st.cache(allow_output_mutation=snake_case_ ) def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = datasets.load_dataset("eli5" , name="LFQA_reddit" ) snake_case__ : Dict = elia["train_eli5"] snake_case__ : Optional[int] = np.memmap( "eli5_questions_reps.dat" , dtype="float32" , mode="r" , shape=(elia_train.num_rows, 128) ) snake_case__ : List[str] = faiss.IndexFlatIP(128 ) eli5_train_q_index.add(snake_case_ ) return (elia_train, eli5_train_q_index) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : int = load_indexes() __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Optional[int] = load_models() __lowerCamelCase , __lowerCamelCase : List[str] = load_train_data() def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] , snake_case_ : Optional[int]=10 ): snake_case__ : Optional[Any] = embed_questions_for_retrieval([question] , snake_case_ , snake_case_ ) snake_case__, snake_case__ : int = eli5_train_q_index.search(snake_case_ , snake_case_ ) snake_case__ : Optional[int] = [elia_train[int(snake_case_ )] for i in I[0]] return nn_examples def SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] , snake_case_ : List[Any]="wiki40b" , snake_case_ : Optional[int]="dense" , snake_case_ : List[str]=10 ): if source == "none": snake_case__, snake_case__ : Tuple = (" <P> ".join(["" for _ in range(11 )] ).strip(), []) else: if method == "dense": snake_case__, snake_case__ : Tuple = query_qa_dense_index( snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) else: snake_case__, snake_case__ : Dict = query_es_index( snake_case_ , snake_case_ , index_name="english_wiki40b_snippets_100w" , n_results=snake_case_ , ) snake_case__ : Optional[Any] = [ (res["article_title"], res["section_title"].strip(), res["score"], res["passage_text"]) for res in hit_lst ] snake_case__ : int = "question: {} context: {}".format(snake_case_ , snake_case_ ) return question_doc, support_list @st.cache( hash_funcs={ torch.Tensor: (lambda snake_case_ : None), transformers.models.bart.tokenization_bart.BartTokenizer: (lambda snake_case_ : None), } ) def SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Optional[Any] , snake_case_ : Union[str, Any] , snake_case_ : Optional[Any]=64 , snake_case_ : List[str]=256 , snake_case_ : Union[str, Any]=False , snake_case_ : Optional[Any]=2 , snake_case_ : str=0.95 , snake_case_ : Optional[Any]=0.8 ): with torch.no_grad(): snake_case__ : List[str] = qa_sas_generate( snake_case_ , snake_case_ , snake_case_ , num_answers=1 , num_beams=snake_case_ , min_len=snake_case_ , max_len=snake_case_ , do_sample=snake_case_ , temp=snake_case_ , top_p=snake_case_ , top_k=snake_case_ , max_input_length=1024 , device="cuda:0" , )[0] return (answer, support_list) st.title("""Long Form Question Answering with ELI5""") # Start sidebar __lowerCamelCase : Dict = """<img src='https://huggingface.co/front/assets/huggingface_logo.svg'>""" __lowerCamelCase : Dict = """ <html> <head> <style> .img-container { padding-left: 90px; padding-right: 90px; padding-top: 50px; padding-bottom: 50px; background-color: #f0f3f9; } </style> </head> <body> <span class=\"img-container\"> <!-- Inline parent element --> %s </span> </body> </html> """ % ( header_html, ) st.sidebar.markdown( header_full, unsafe_allow_html=True, ) # Long Form QA with ELI5 and Wikipedia __lowerCamelCase : List[Any] = """ This demo presents a model trained to [provide long-form answers to open-domain questions](https://yjernite.github.io/lfqa.html). First, a document retriever fetches a set of relevant Wikipedia passages given the question from the [Wiki40b](https://research.google/pubs/pub49029/) dataset, a pre-processed fixed snapshot of Wikipedia. """ st.sidebar.markdown(description, unsafe_allow_html=True) __lowerCamelCase : Optional[int] = [ """Answer the question""", """View the retrieved document only""", """View the most similar ELI5 question and answer""", """Show me everything, please!""", ] __lowerCamelCase : Dict = st.sidebar.checkbox("""Demo options""") if demo_options: __lowerCamelCase : Tuple = st.sidebar.selectbox( """""", action_list, index=3, ) __lowerCamelCase : Optional[Any] = action_list.index(action_st) __lowerCamelCase : int = st.sidebar.selectbox( """""", ["""Show full text of passages""", """Show passage section titles"""], index=0, ) __lowerCamelCase : List[Any] = show_type == """Show full text of passages""" else: __lowerCamelCase : Any = 3 __lowerCamelCase : str = True __lowerCamelCase : Optional[Any] = st.sidebar.checkbox("""Retrieval options""") if retrieval_options: __lowerCamelCase : Any = """ ### Information retriever options The **sparse** retriever uses ElasticSearch, while the **dense** retriever uses max-inner-product search between a question and passage embedding trained using the [ELI5](https://arxiv.org/abs/1907.09190) questions-answer pairs. The answer is then generated by sequence to sequence model which takes the question and retrieved document as input. """ st.sidebar.markdown(retriever_info) __lowerCamelCase : List[str] = st.sidebar.selectbox("""Which Wikipedia format should the model use?""", ["""wiki40b""", """none"""]) __lowerCamelCase : int = st.sidebar.selectbox("""Which Wikipedia indexer should the model use?""", ["""dense""", """sparse""", """mixed"""]) else: __lowerCamelCase : Optional[int] = """wiki40b""" __lowerCamelCase : Optional[Any] = """dense""" __lowerCamelCase : int = """beam""" __lowerCamelCase : Optional[Any] = 2 __lowerCamelCase : Any = 64 __lowerCamelCase : List[str] = 256 __lowerCamelCase : Optional[int] = None __lowerCamelCase : int = None __lowerCamelCase : Any = st.sidebar.checkbox("""Generation options""") if generate_options: __lowerCamelCase : Optional[Any] = """ ### Answer generation options The sequence-to-sequence model was initialized with [BART](https://huggingface.co/facebook/bart-large) weights and fine-tuned on the ELI5 QA pairs and retrieved documents. You can use the model for greedy decoding with **beam** search, or **sample** from the decoder's output probabilities. """ st.sidebar.markdown(generate_info) __lowerCamelCase : Optional[Any] = st.sidebar.selectbox("""Would you like to use beam search or sample an answer?""", ["""beam""", """sampled"""]) __lowerCamelCase : Optional[Any] = st.sidebar.slider( """Minimum generation length""", min_value=8, max_value=256, value=64, step=8, format=None, key=None ) __lowerCamelCase : List[str] = st.sidebar.slider( """Maximum generation length""", min_value=64, max_value=512, value=256, step=16, format=None, key=None ) if sampled == "beam": __lowerCamelCase : Optional[Any] = st.sidebar.slider("""Beam size""", min_value=1, max_value=8, value=2, step=None, format=None, key=None) else: __lowerCamelCase : List[str] = st.sidebar.slider( """Nucleus sampling p""", min_value=0.1, max_value=1.0, value=0.95, step=0.01, format=None, key=None ) __lowerCamelCase : str = st.sidebar.slider( """Temperature""", min_value=0.1, max_value=1.0, value=0.7, step=0.01, format=None, key=None ) __lowerCamelCase : Any = None # start main text __lowerCamelCase : Any = [ """<MY QUESTION>""", """How do people make chocolate?""", """Why do we get a fever when we are sick?""", """How can different animals perceive different colors?""", """What is natural language processing?""", """What's the best way to treat a sunburn?""", """What exactly are vitamins ?""", """How does nuclear energy provide electricity?""", """What's the difference between viruses and bacteria?""", """Why are flutes classified as woodwinds when most of them are made out of metal ?""", """Why do people like drinking coffee even though it tastes so bad?""", """What happens when wine ages? How does it make the wine taste better?""", """If an animal is an herbivore, where does it get the protein that it needs to survive if it only eats grass?""", """How can we set a date to the beginning or end of an artistic period? Doesn't the change happen gradually?""", """How does New Zealand have so many large bird predators?""", ] __lowerCamelCase : Dict = st.selectbox( """What would you like to ask? ---- select <MY QUESTION> to enter a new query""", questions_list, index=1, ) if question_s == "<MY QUESTION>": __lowerCamelCase : Optional[Any] = st.text_input("""Enter your question here:""", """""") else: __lowerCamelCase : List[str] = question_s if st.button("""Show me!"""): if action in [0, 1, 3]: if index_type == "mixed": __lowerCamelCase , __lowerCamelCase : Tuple = make_support(question, source=wiki_source, method="""dense""", n_results=10) __lowerCamelCase , __lowerCamelCase : Optional[Any] = make_support(question, source=wiki_source, method="""sparse""", n_results=10) __lowerCamelCase : int = [] for res_d, res_s in zip(support_list_dense, support_list_sparse): if tuple(res_d) not in support_list: support_list += [tuple(res_d)] if tuple(res_s) not in support_list: support_list += [tuple(res_s)] __lowerCamelCase : List[str] = support_list[:10] __lowerCamelCase : Tuple = """<P> """ + """ <P> """.join([res[-1] for res in support_list]) else: __lowerCamelCase , __lowerCamelCase : Union[str, Any] = make_support(question, source=wiki_source, method=index_type, n_results=10) if action in [0, 3]: __lowerCamelCase , __lowerCamelCase : List[str] = answer_question( question_doc, sas_model, sas_tokenizer, min_len=min_len, max_len=int(max_len), sampling=(sampled == """sampled"""), n_beams=n_beams, top_p=top_p, temp=temp, ) st.markdown("""### The model generated answer is:""") st.write(answer) if action in [0, 1, 3] and wiki_source != "none": st.markdown("""--- \n ### The model is drawing information from the following Wikipedia passages:""") for i, res in enumerate(support_list): __lowerCamelCase : List[str] = """https://en.wikipedia.org/wiki/{}""".format(res[0].replace(""" """, """_""")) __lowerCamelCase : str = res[1].strip() if sec_titles == "": __lowerCamelCase : Union[str, Any] = """[{}]({})""".format(res[0], wiki_url) else: __lowerCamelCase : List[str] = sec_titles.split(""" & """) __lowerCamelCase : Dict = """ & """.join( ["""[{}]({}#{})""".format(sec.strip(), wiki_url, sec.strip().replace(""" """, """_""")) for sec in sec_list] ) st.markdown( """{0:02d} - **Article**: {1:<18} <br> _Section_: {2}""".format(i + 1, res[0], sections), unsafe_allow_html=True, ) if show_passages: st.write( """> <span style=\"font-family:arial; font-size:10pt;\">""" + res[-1] + """</span>""", unsafe_allow_html=True ) if action in [2, 3]: __lowerCamelCase : Optional[Any] = find_nearest_training(question) __lowerCamelCase : Optional[Any] = nn_train_list[0] st.markdown( """--- \n ### The most similar question in the ELI5 training set was: \n\n {}""".format(train_exple["""title"""]) ) __lowerCamelCase : Union[str, Any] = [ """{}. {}""".format(i + 1, """ \n""".join([line.strip() for line in ans.split("""\n""") if line.strip() != """"""])) for i, (ans, sc) in enumerate(zip(train_exple["""answers"""]["""text"""], train_exple["""answers"""]["""score"""])) if i == 0 or sc > 2 ] st.markdown("""##### Its answers were: \n\n {}""".format("""\n""".join(answers_st))) __lowerCamelCase : List[str] = """ --- **Disclaimer** *The intent of this app is to provide some (hopefully entertaining) insights into the behavior of a current LFQA system. Evaluating biases of such a model and ensuring factual generations are still very much open research problems. Therefore, until some significant progress is achieved, we caution against using the generated answers for practical purposes.* """ st.sidebar.markdown(disclaimer, unsafe_allow_html=True)
297
0
"""simple docstring""" from __future__ import annotations def _lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : list[str] | None = None ): lowercase__ : List[Any] = word_bank or [] # create a table lowercase__ : int = len(lowerCamelCase__ ) + 1 lowercase__ : list[list[list[str]]] = [] for _ in range(lowerCamelCase__ ): table.append([] ) # seed value lowercase__ : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase__ ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase__ )] == word: lowercase__ : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase__ )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase__ )]: combination.reverse() return table[len(lowerCamelCase__ )] if __name__ == "__main__": print(all_construct('jwajalapa', ['jwa', 'j', 'w', 'a', 'la', 'lapa'])) print(all_construct('rajamati', ['s', 'raj', 'amat', 'raja', 'ma', 'i', 't'])) print( all_construct( 'hexagonosaurus', ['h', 'ex', 'hex', 'ag', 'ago', 'ru', 'auru', 'rus', 'go', 'no', 'o', 's'], ) )
128
"""simple docstring""" import os def _lowerCamelCase ( lowerCamelCase__ : str = "matrix.txt" ): with open(os.path.join(os.path.dirname(lowerCamelCase__ ) , lowerCamelCase__ ) ) as in_file: lowercase__ : Optional[Any] = in_file.read() lowercase__ : Tuple = [[int(lowerCamelCase__ ) for cell in row.split(""",""" )] for row in data.strip().splitlines()] lowercase__ : List[str] = [[0 for cell in row] for row in grid] lowercase__ : Dict = len(grid[0] ) lowercase__ : List[Any] = [[0 for i in range(lowerCamelCase__ )] for j in range(lowerCamelCase__ )] lowercase__ : Any = grid[0][0] for i in range(1 , lowerCamelCase__ ): lowercase__ : Union[str, Any] = grid[0][i] + dp[0][i - 1] for i in range(1 , lowerCamelCase__ ): lowercase__ : List[Any] = grid[i][0] + dp[i - 1][0] for i in range(1 , lowerCamelCase__ ): for j in range(1 , lowerCamelCase__ ): lowercase__ : Dict = grid[i][j] + min(dp[i - 1][j] , dp[i][j - 1] ) return dp[-1][-1] if __name__ == "__main__": print(F"{solution() = }")
128
1
def lowerCAmelCase ( UpperCAmelCase = 100_0000 ) ->int: """simple docstring""" __magic_name__ : str = [i - 1 for i in range(limit + 1 )] for i in range(2, limit + 1 ): if phi[i] == i - 1: for j in range(2 * i, limit + 1, UpperCAmelCase ): phi[j] -= phi[j] // i return sum(phi[2 : limit + 1] ) if __name__ == "__main__": print(solution())
154
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal lowercase_ = logging.get_logger(__name__) lowercase_ = TypeVar('''DatasetType''', Dataset, IterableDataset) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = "first_exhausted", ) ->DatasetType: """simple docstring""" from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('''Unable to interleave an empty list of datasets.''' ) for i, dataset in enumerate(UpperCAmelCase ): if not isinstance(UpperCAmelCase, (Dataset, IterableDataset) ): if isinstance(UpperCAmelCase, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(UpperCAmelCase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCAmelCase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCAmelCase ).__name__}.''' ) if i == 0: __magic_name__ , __magic_name__ : Union[str, Any] = ( (Dataset, IterableDataset) if isinstance(UpperCAmelCase, UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCAmelCase, UpperCAmelCase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(F'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, stopping_strategy=UpperCAmelCase ) else: return _interleave_iterable_datasets( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, stopping_strategy=UpperCAmelCase ) def lowerCAmelCase ( UpperCAmelCase, UpperCAmelCase = None, UpperCAmelCase = None, UpperCAmelCase = 0, ) ->DatasetType: """simple docstring""" if not dsets: raise ValueError('''Unable to concatenate an empty list of datasets.''' ) for i, dataset in enumerate(UpperCAmelCase ): if not isinstance(UpperCAmelCase, (Dataset, IterableDataset) ): if isinstance(UpperCAmelCase, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' '''is an empty dataset dictionary.''' ) raise ValueError( F'''Dataset at position {i} has at least one split: {list(UpperCAmelCase )}\n''' F'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(UpperCAmelCase ) )}\']''' ) raise ValueError( F'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(UpperCAmelCase ).__name__}.''' ) if i == 0: __magic_name__ , __magic_name__ : int = ( (Dataset, IterableDataset) if isinstance(UpperCAmelCase, UpperCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(UpperCAmelCase, UpperCAmelCase ): raise ValueError( F'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, axis=UpperCAmelCase ) else: return _concatenate_iterable_datasets(UpperCAmelCase, info=UpperCAmelCase, split=UpperCAmelCase, axis=UpperCAmelCase )
154
1
"""simple docstring""" def snake_case ( A__ ,A__ ): if a < 0 or b < 0: raise ValueError("the value of both inputs must be positive" ) UpperCAmelCase_ : List[str] = str(bin(_lowerCamelCase ) )[2:] # remove the leading "0b" UpperCAmelCase_ : Optional[Any] = str(bin(_lowerCamelCase ) )[2:] UpperCAmelCase_ : Optional[int] = max(len(_lowerCamelCase ) ,len(_lowerCamelCase ) ) return "0b" + "".join( str(int("1" in (char_a, char_b) ) ) for char_a, char_b in zip(a_binary.zfill(_lowerCamelCase ) ,b_binary.zfill(_lowerCamelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
716
"""simple docstring""" from ..utils import DummyObject, requires_backends class UpperCamelCase_ (metaclass=__A ): __magic_name__ = ['''onnx'''] def __init__( self : List[Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Dict ) -> Dict: requires_backends(self , ["onnx"] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : Optional[Any] , *lowerCAmelCase_ : Dict , **lowerCAmelCase_ : Union[str, Any] ) -> int: requires_backends(cls , ["onnx"] ) @classmethod def _SCREAMING_SNAKE_CASE ( cls : str , *lowerCAmelCase_ : Optional[Any] , **lowerCAmelCase_ : str ) -> Optional[Any]: requires_backends(cls , ["onnx"] )
463
0
import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModel, PreTrainedModel from ...utils import logging UpperCAmelCase_ : List[str] = logging.get_logger(__name__) def lowerCAmelCase_ ( lowerCamelCase , lowerCamelCase ): __magic_name__ : Tuple =nn.functional.normalize(lowerCamelCase ) __magic_name__ : Optional[int] =nn.functional.normalize(lowerCamelCase ) return torch.mm(lowerCamelCase , normalized_text_embeds.t() ) class __A ( UpperCamelCase__ ): UpperCamelCase = CLIPConfig UpperCamelCase = ["""CLIPEncoderLayer"""] def __init__( self :Any , __snake_case :CLIPConfig ): '''simple docstring''' super().__init__(__snake_case ) __magic_name__ : Optional[Any] =CLIPVisionModel(config.vision_config ) __magic_name__ : Any =nn.Linear(config.vision_config.hidden_size , config.projection_dim , bias=__snake_case ) __magic_name__ : List[Any] =nn.Parameter(torch.ones(17 , config.projection_dim ) , requires_grad=__snake_case ) __magic_name__ : int =nn.Parameter(torch.ones(3 , config.projection_dim ) , requires_grad=__snake_case ) __magic_name__ : List[str] =nn.Parameter(torch.ones(17 ) , requires_grad=__snake_case ) __magic_name__ : Tuple =nn.Parameter(torch.ones(3 ) , requires_grad=__snake_case ) @torch.no_grad() def A__ ( self :Optional[Any] , __snake_case :List[Any] , __snake_case :str ): '''simple docstring''' __magic_name__ : Union[str, Any] =self.vision_model(__snake_case )[1] # pooled_output __magic_name__ : Tuple =self.visual_projection(__snake_case ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 __magic_name__ : List[Any] =cosine_distance(__snake_case , self.special_care_embeds ).cpu().float().numpy() __magic_name__ : int =cosine_distance(__snake_case , self.concept_embeds ).cpu().float().numpy() __magic_name__ : Dict =[] __magic_name__ : Any =image_embeds.shape[0] for i in range(__snake_case ): __magic_name__ : Optional[Any] ={"""special_scores""": {}, """special_care""": [], """concept_scores""": {}, """bad_concepts""": []} # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign images __magic_name__ : Dict =0.0 for concept_idx in range(len(special_cos_dist[0] ) ): __magic_name__ : Optional[Any] =special_cos_dist[i][concept_idx] __magic_name__ : Any =self.special_care_embeds_weights[concept_idx].item() __magic_name__ : Tuple =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["special_scores"][concept_idx] > 0: result_img["special_care"].append({concept_idx, result_img["""special_scores"""][concept_idx]} ) __magic_name__ : int =0.01 for concept_idx in range(len(cos_dist[0] ) ): __magic_name__ : Any =cos_dist[i][concept_idx] __magic_name__ : Union[str, Any] =self.concept_embeds_weights[concept_idx].item() __magic_name__ : Optional[int] =round(concept_cos - concept_threshold + adjustment , 3 ) if result_img["concept_scores"][concept_idx] > 0: result_img["bad_concepts"].append(__snake_case ) result.append(__snake_case ) __magic_name__ : Optional[int] =[len(res["""bad_concepts"""] ) > 0 for res in result] return images, has_nsfw_concepts @torch.no_grad() def A__ ( self :Tuple , __snake_case :torch.FloatTensor , __snake_case :torch.FloatTensor ): '''simple docstring''' __magic_name__ : Dict =self.vision_model(__snake_case )[1] # pooled_output __magic_name__ : Union[str, Any] =self.visual_projection(__snake_case ) __magic_name__ : Optional[Any] =cosine_distance(__snake_case , self.special_care_embeds ) __magic_name__ : str =cosine_distance(__snake_case , self.concept_embeds ) # increase this value to create a stronger `nsfw` filter # at the cost of increasing the possibility of filtering benign images __magic_name__ : str =0.0 __magic_name__ : Union[str, Any] =special_cos_dist - self.special_care_embeds_weights + adjustment # special_scores = special_scores.round(decimals=3) __magic_name__ : Tuple =torch.any(special_scores > 0 , dim=1 ) __magic_name__ : List[Any] =special_care * 0.01 __magic_name__ : int =special_adjustment.unsqueeze(1 ).expand(-1 , cos_dist.shape[1] ) __magic_name__ : Optional[int] =(cos_dist - self.concept_embeds_weights) + special_adjustment # concept_scores = concept_scores.round(decimals=3) __magic_name__ : int =torch.any(concept_scores > 0 , dim=1 ) return images, has_nsfw_concepts
21
import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : Any = logging.get_logger(__name__) UpperCAmelCase_ : List[str] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class __A ( UpperCamelCase__ ): UpperCamelCase = """segformer""" def __init__( self :List[str] , __snake_case :str=3 , __snake_case :Optional[Any]=4 , __snake_case :List[Any]=[2, 2, 2, 2] , __snake_case :Dict=[8, 4, 2, 1] , __snake_case :Optional[int]=[32, 64, 1_60, 2_56] , __snake_case :Union[str, Any]=[7, 3, 3, 3] , __snake_case :Optional[Any]=[4, 2, 2, 2] , __snake_case :Tuple=[1, 2, 5, 8] , __snake_case :List[Any]=[4, 4, 4, 4] , __snake_case :Optional[Any]="gelu" , __snake_case :Tuple=0.0 , __snake_case :Dict=0.0 , __snake_case :Optional[int]=0.1 , __snake_case :Optional[int]=0.02 , __snake_case :Tuple=0.1 , __snake_case :Union[str, Any]=1E-6 , __snake_case :int=2_56 , __snake_case :Optional[int]=2_55 , **__snake_case :Dict , ): '''simple docstring''' super().__init__(**__snake_case ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( """Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be""" """ removed, as the behaviour will default to that of reshape_last_stage = True.""" , __snake_case , ) __magic_name__ : Dict =num_channels __magic_name__ : str =num_encoder_blocks __magic_name__ : List[Any] =depths __magic_name__ : Optional[Any] =sr_ratios __magic_name__ : List[str] =hidden_sizes __magic_name__ : List[str] =patch_sizes __magic_name__ : Any =strides __magic_name__ : Optional[Any] =mlp_ratios __magic_name__ : str =num_attention_heads __magic_name__ : int =hidden_act __magic_name__ : List[Any] =hidden_dropout_prob __magic_name__ : Optional[Any] =attention_probs_dropout_prob __magic_name__ : Optional[Any] =classifier_dropout_prob __magic_name__ : List[str] =initializer_range __magic_name__ : List[str] =drop_path_rate __magic_name__ : List[Any] =layer_norm_eps __magic_name__ : List[str] =decoder_hidden_size __magic_name__ : Union[str, Any] =kwargs.get("""reshape_last_stage""" , __snake_case ) __magic_name__ : Dict =semantic_loss_ignore_index class __A ( UpperCamelCase__ ): UpperCamelCase = version.parse("""1.11""" ) @property def A__ ( self :List[str] ): '''simple docstring''' return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def A__ ( self :Any ): '''simple docstring''' return 1E-4 @property def A__ ( self :int ): '''simple docstring''' return 12
21
1
'''simple docstring''' from __future__ import annotations def _A ( _lowerCAmelCase , _lowerCAmelCase ): """simple docstring""" __lowercase =0 __lowercase =len(_lowerCAmelCase ) - 1 while i < j: if nums[i] + nums[j] == target: return [i, j] elif nums[i] + nums[j] < target: __lowercase =i + 1 else: __lowercase =j - 1 return [] if __name__ == "__main__": import doctest doctest.testmod() print(f"{two_pointer([2, 7, 11, 15], 9) = }")
454
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase = { """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
454
1
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return getitem, k def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" return setitem, k, v def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" return delitem, k def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , *lowerCamelCase__ ): """simple docstring""" try: return fun(SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ), None except Exception as e: return None, e lowerCAmelCase__ = ( _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), ) lowerCAmelCase__ = [ _set('''key_a''', '''val_a'''), _set('''key_a''', '''val_b'''), ] lowerCAmelCase__ = [ _set('''key_a''', '''val_a'''), _set('''key_b''', '''val_b'''), _del('''key_a'''), _del('''key_b'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), ] lowerCAmelCase__ = [ _get('''key_a'''), _del('''key_a'''), _set('''key_a''', '''val_a'''), _del('''key_a'''), _del('''key_a'''), _get('''key_a'''), ] lowerCAmelCase__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] lowerCAmelCase__ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('''key_a''', '''val_b'''), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items" ), pytest.param(_overwrite_items , id="overwrite items" ), pytest.param(_delete_items , id="delete items" ), pytest.param(_access_absent_items , id="access absent items" ), pytest.param(_add_with_resize_up , id="add with resize up" ), pytest.param(_add_with_resize_down , id="add with resize down" ), ) , ) def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Optional[int] = HashMap(initial_block_size=4 ) lowercase__ : Union[str, Any] = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE__ ): lowercase__ : int = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) lowercase__ : Any = _run_operation(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , *SCREAMING_SNAKE_CASE__ ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE__ ) == str(SCREAMING_SNAKE_CASE__ ) assert set(SCREAMING_SNAKE_CASE__ ) == set(SCREAMING_SNAKE_CASE__ ) assert len(SCREAMING_SNAKE_CASE__ ) == len(SCREAMING_SNAKE_CASE__ ) assert set(my.items() ) == set(py.items() ) def __lowerCamelCase ( ): """simple docstring""" def is_public(lowerCamelCase__ ) -> bool: return not name.startswith("_" ) lowercase__ : List[Any] = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE__ )} lowercase__ : List[str] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE__ )} assert dict_public_names > hash_public_names
496
'''simple docstring''' import math def snake_case_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Tuple = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(SCREAMING_SNAKE_CASE__ ) def snake_case_ ( SCREAMING_SNAKE_CASE__ = 1 / 1_2345 ): """simple docstring""" _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : str = 0 _SCREAMING_SNAKE_CASE : int = 3 while True: _SCREAMING_SNAKE_CASE : Optional[int] = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(SCREAMING_SNAKE_CASE__ ): _SCREAMING_SNAKE_CASE : int = int(SCREAMING_SNAKE_CASE__ ) total_partitions += 1 if check_partition_perfect(SCREAMING_SNAKE_CASE__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(SCREAMING_SNAKE_CASE__ ) integer += 1 if __name__ == "__main__": print(F"{solution() = }")
533
0
def a ( A__ , A__ , A__ ) -> float: '''simple docstring''' if principal <= 0: raise Exception('''Principal borrowed must be > 0''' ) if rate_per_annum < 0: raise Exception('''Rate of interest must be >= 0''' ) if years_to_repay <= 0 or not isinstance(A__ , A__ ): raise Exception('''Years to repay must be an integer > 0''' ) # Yearly rate is divided by 12 to get monthly rate SCREAMING_SNAKE_CASE__ : List[Any] = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly SCREAMING_SNAKE_CASE__ : Union[str, Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
250
import json import os from functools import lru_cache from typing import Dict, List, Optional, Tuple, Union import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...tokenization_utils_base import BatchEncoding, EncodedInput from ...utils import PaddingStrategy, logging a_ :str = logging.get_logger(__name__) a_ :List[Any] = {'vocab_file': 'vocab.json', 'merges_file': 'merges.txt'} # See all LED models at https://huggingface.co/models?filter=LED a_ :Union[str, Any] = { 'vocab_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json', }, 'merges_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt', }, 'tokenizer_file': { 'allenai/led-base-16384': 'https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json', }, } a_ :Any = { 'allenai/led-base-16384': 1_63_84, } @lru_cache() # Copied from transformers.models.bart.tokenization_bart.bytes_to_unicode def a ( ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Optional[int] = ( list(range(ord('''!''' ) , ord('''~''' ) + 1 ) ) + list(range(ord('''¡''' ) , ord('''¬''' ) + 1 ) ) + list(range(ord('''®''' ) , ord('''ÿ''' ) + 1 ) ) ) SCREAMING_SNAKE_CASE__ : str = bs[:] SCREAMING_SNAKE_CASE__ : Optional[int] = 0 for b in range(2**8 ): if b not in bs: bs.append(A__ ) cs.append(2**8 + n ) n += 1 SCREAMING_SNAKE_CASE__ : str = [chr(A__ ) for n in cs] return dict(zip(A__ , A__ ) ) def a ( A__ ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Dict = set() SCREAMING_SNAKE_CASE__ : List[Any] = word[0] for char in word[1:]: pairs.add((prev_char, char) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = char return pairs class lowercase ( _UpperCAmelCase ): lowerCamelCase : int = VOCAB_FILES_NAMES lowerCamelCase : Tuple = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase : List[str] = ['''input_ids''', '''attention_mask'''] def __init__( self : Tuple , _lowercase : Dict , _lowercase : Optional[int] , _lowercase : Any="replace" , _lowercase : List[Any]="<s>" , _lowercase : int="</s>" , _lowercase : Tuple="</s>" , _lowercase : Tuple="<s>" , _lowercase : Tuple="<unk>" , _lowercase : List[Any]="<pad>" , _lowercase : List[Any]="<mask>" , _lowercase : Optional[int]=False , **_lowercase : Optional[Any] , ): SCREAMING_SNAKE_CASE__ : Tuple = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else bos_token SCREAMING_SNAKE_CASE__ : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else eos_token SCREAMING_SNAKE_CASE__ : Any = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else sep_token SCREAMING_SNAKE_CASE__ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else cls_token SCREAMING_SNAKE_CASE__ : int = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else unk_token SCREAMING_SNAKE_CASE__ : List[Any] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else pad_token # Mask token behave like a normal word, i.e. include the space before it SCREAMING_SNAKE_CASE__ : List[str] = AddedToken(_lowercase , lstrip=_lowercase , rstrip=_lowercase ) if isinstance(_lowercase , _lowercase ) else mask_token super().__init__( errors=_lowercase , bos_token=_lowercase , eos_token=_lowercase , unk_token=_lowercase , sep_token=_lowercase , cls_token=_lowercase , pad_token=_lowercase , mask_token=_lowercase , add_prefix_space=_lowercase , **_lowercase , ) with open(_lowercase , encoding='''utf-8''' ) as vocab_handle: SCREAMING_SNAKE_CASE__ : Tuple = json.load(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ : Tuple = errors # how to handle errors in decoding SCREAMING_SNAKE_CASE__ : Dict = bytes_to_unicode() SCREAMING_SNAKE_CASE__ : str = {v: k for k, v in self.byte_encoder.items()} with open(_lowercase , encoding='''utf-8''' ) as merges_handle: SCREAMING_SNAKE_CASE__ : Dict = merges_handle.read().split('''\n''' )[1:-1] SCREAMING_SNAKE_CASE__ : Dict = [tuple(merge.split() ) for merge in bpe_merges] SCREAMING_SNAKE_CASE__ : Optional[Any] = dict(zip(_lowercase , range(len(_lowercase ) ) ) ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {} SCREAMING_SNAKE_CASE__ : Union[str, Any] = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions SCREAMING_SNAKE_CASE__ : Optional[int] = re.compile(R'''\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''' ) @property # Copied from transformers.models.bart.tokenization_bart.BartTokenizer.vocab_size def lowercase__ ( self : Optional[Any] ): return len(self.encoder ) def lowercase__ ( self : Tuple ): return dict(self.encoder , **self.added_tokens_encoder ) def lowercase__ ( self : Tuple , _lowercase : List[Any] ): if token in self.cache: return self.cache[token] SCREAMING_SNAKE_CASE__ : Optional[int] = tuple(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = get_pairs(_lowercase ) if not pairs: return token while True: SCREAMING_SNAKE_CASE__ : Tuple = min(_lowercase , key=lambda _lowercase : self.bpe_ranks.get(_lowercase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : List[Any] = bigram SCREAMING_SNAKE_CASE__ : List[str] = [] SCREAMING_SNAKE_CASE__ : Tuple = 0 while i < len(_lowercase ): try: SCREAMING_SNAKE_CASE__ : Optional[Any] = word.index(_lowercase , _lowercase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) SCREAMING_SNAKE_CASE__ : Dict = j if word[i] == first and i < len(_lowercase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 SCREAMING_SNAKE_CASE__ : List[Any] = tuple(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = new_word if len(_lowercase ) == 1: break else: SCREAMING_SNAKE_CASE__ : Any = get_pairs(_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = ''' '''.join(_lowercase ) SCREAMING_SNAKE_CASE__ : int = word return word def lowercase__ ( self : Optional[Any] , _lowercase : List[Any] ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = [] for token in re.findall(self.pat , _lowercase ): SCREAMING_SNAKE_CASE__ : Optional[Any] = ''''''.join( self.byte_encoder[b] for b in token.encode('''utf-8''' ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(_lowercase ).split(''' ''' ) ) return bpe_tokens def lowercase__ ( self : int , _lowercase : List[str] ): return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def lowercase__ ( self : int , _lowercase : int ): return self.decoder.get(_lowercase ) def lowercase__ ( self : List[str] , _lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : int = ''''''.join(_lowercase ) SCREAMING_SNAKE_CASE__ : Tuple = bytearray([self.byte_decoder[c] for c in text] ).decode('''utf-8''' , errors=self.errors ) return text def lowercase__ ( self : List[Any] , _lowercase : str , _lowercase : Optional[str] = None ): if not os.path.isdir(_lowercase ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return SCREAMING_SNAKE_CASE__ : int = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ : List[Any] = os.path.join( _lowercase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(_lowercase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=_lowercase , ensure_ascii=_lowercase ) + '''\n''' ) SCREAMING_SNAKE_CASE__ : str = 0 with open(_lowercase , '''w''' , encoding='''utf-8''' ) as writer: writer.write('''#version: 0.2\n''' ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda _lowercase : kv[1] ): if index != token_index: logger.warning( f"""Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.""" ''' Please check that the tokenizer is not corrupted!''' ) SCREAMING_SNAKE_CASE__ : str = token_index writer.write(''' '''.join(_lowercase ) + '''\n''' ) index += 1 return vocab_file, merge_file def lowercase__ ( self : Any , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE__ : Optional[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE__ : Union[str, Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowercase__ ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is None: return [1] + ([0] * len(_lowercase )) + [1] return [1] + ([0] * len(_lowercase )) + [1, 1] + ([0] * len(_lowercase )) + [1] def lowercase__ ( self : Tuple , _lowercase : List[int] , _lowercase : Optional[List[int]] = None ): SCREAMING_SNAKE_CASE__ : Optional[int] = [self.sep_token_id] SCREAMING_SNAKE_CASE__ : List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowercase__ ( self : Dict , _lowercase : Dict , _lowercase : List[str]=False , **_lowercase : Optional[int] ): SCREAMING_SNAKE_CASE__ : str = kwargs.pop('''add_prefix_space''' , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(_lowercase ) > 0 and not text[0].isspace()): SCREAMING_SNAKE_CASE__ : Any = ''' ''' + text return (text, kwargs) def lowercase__ ( self : int , _lowercase : Union[Dict[str, EncodedInput], BatchEncoding] , _lowercase : Optional[int] = None , _lowercase : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , _lowercase : Optional[int] = None , _lowercase : Optional[bool] = None , ): SCREAMING_SNAKE_CASE__ : Any = super()._pad( encoded_inputs=_lowercase , max_length=_lowercase , padding_strategy=_lowercase , pad_to_multiple_of=_lowercase , return_attention_mask=_lowercase , ) # Load from model defaults if return_attention_mask is None: SCREAMING_SNAKE_CASE__ : str = '''attention_mask''' in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: SCREAMING_SNAKE_CASE__ : List[str] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. SCREAMING_SNAKE_CASE__ : Union[str, Any] = len(encoded_inputs['''global_attention_mask'''] ) != len(_lowercase ) if needs_to_be_padded: SCREAMING_SNAKE_CASE__ : Dict = len(_lowercase ) - len(encoded_inputs['''global_attention_mask'''] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` SCREAMING_SNAKE_CASE__ : Any = ( encoded_inputs['''global_attention_mask'''] + [-1] * difference ) elif self.padding_side == "left": SCREAMING_SNAKE_CASE__ : int = [-1] * difference + encoded_inputs[ '''global_attention_mask''' ] else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return encoded_inputs
250
1
import math import tensorflow as tf from packaging import version def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) , x.dtype ) )) return x * cdf def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = tf.convert_to_tensor(lowercase ) SCREAMING_SNAKE_CASE : str = tf.cast(math.pi , x.dtype ) SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(0.044715 , x.dtype ) SCREAMING_SNAKE_CASE : List[Any] = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(lowercase , 3 )) )) return x * cdf def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = tf.convert_to_tensor(lowercase ) return x * tf.tanh(tf.math.softplus(lowercase ) ) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = tf.convert_to_tensor(lowercase ) SCREAMING_SNAKE_CASE : Tuple = tf.cast(0.044715 , x.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = tf.cast(0.7978845608 , x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = tf.convert_to_tensor(lowercase ) SCREAMING_SNAKE_CASE : List[str] = tf.cast(1.702 , x.dtype ) return x * tf.math.sigmoid(coeff * x ) def lowerCamelCase__ ( lowercase ): """simple docstring""" return tf.clip_by_value(_gelu(lowercase ) , -10 , 10 ) def lowerCamelCase__ ( lowercase , lowercase=-1 ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Union[str, Any] = tf.split(lowercase , 2 , axis=lowercase ) return a * tf.math.sigmoid(lowercase ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def lowerCamelCase__ ( lowercase ): """simple docstring""" return tf.keras.activations.gelu(lowercase , approximate=lowercase ) snake_case = tf.keras.activations.gelu snake_case = approximate_gelu_wrap else: snake_case = _gelu snake_case = _gelu_new snake_case = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def lowerCamelCase__ ( lowercase ): """simple docstring""" if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(F'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
62
'''simple docstring''' from ..utils import DummyObject, requires_backends class a ( metaclass=SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = ["""transformers""", """torch""", """note_seq"""] def __init__( self : Dict , *snake_case_ : Any , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(self , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __magic_name__ ( cls : Optional[int] , *snake_case_ : Union[str, Any] , **snake_case_ : List[Any] ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] ) @classmethod def __magic_name__ ( cls : List[Any] , *snake_case_ : Any , **snake_case_ : int ): '''simple docstring''' requires_backends(cls , ['''transformers''', '''torch''', '''note_seq'''] )
347
0
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __lowercase : str = logging.get_logger(__name__) __lowercase : List[str] = {'''vocab_file''': '''spiece.model'''} __lowercase : List[str] = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } __lowercase : List[str] = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } __lowercase : Optional[Any] = '''▁''' class __lowercase ( _lowercase ): lowerCamelCase : Tuple = VOCAB_FILES_NAMES lowerCamelCase : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase : List[str] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__(self , A , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , A = None , **A , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. lowerCamelCase_ : Dict = ( AddedToken(A , lstrip=A , rstrip=A , normalized=A ) if isinstance(A , A ) else mask_token ) lowerCamelCase_ : Any = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) lowerCamelCase_ : str = do_lower_case lowerCamelCase_ : Dict = remove_space lowerCamelCase_ : Union[str, Any] = keep_accents lowerCamelCase_ : List[str] = vocab_file lowerCamelCase_ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def UpperCAmelCase__ (self ): return len(self.sp_model ) def UpperCAmelCase__ (self ): lowerCamelCase_ : List[str] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__(self ): lowerCamelCase_ : Any = self.__dict__.copy() lowerCamelCase_ : int = None return state def __setstate__(self , A ): lowerCamelCase_ : Optional[int] = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase_ : Optional[Any] = {} lowerCamelCase_ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCAmelCase__ (self , A ): if self.remove_space: lowerCamelCase_ : Union[str, Any] = ''' '''.join(inputs.strip().split() ) else: lowerCamelCase_ : Tuple = inputs lowerCamelCase_ : str = outputs.replace('''``''' , '''"''' ).replace('''\'\'''' , '''"''' ) if not self.keep_accents: lowerCamelCase_ : int = unicodedata.normalize('''NFKD''' , A ) lowerCamelCase_ : Optional[Any] = ''''''.join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: lowerCamelCase_ : Union[str, Any] = outputs.lower() return outputs def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[Any] = self.preprocess_text(A ) lowerCamelCase_ : Dict = self.sp_model.encode(A , out_type=A ) lowerCamelCase_ : Union[str, Any] = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str(''',''' ) and piece[-2].isdigit(): lowerCamelCase_ : Tuple = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , '''''' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: lowerCamelCase_ : Optional[int] = cur_pieces[1:] else: lowerCamelCase_ : List[str] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def UpperCAmelCase__ (self , A ): return self.sp_model.PieceToId(A ) def UpperCAmelCase__ (self , A ): return self.sp_model.IdToPiece(A ) def UpperCAmelCase__ (self , A ): lowerCamelCase_ : Optional[int] = [] lowerCamelCase_ : List[Any] = '''''' lowerCamelCase_ : str = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token lowerCamelCase_ : Dict = True lowerCamelCase_ : List[str] = [] else: current_sub_tokens.append(A ) lowerCamelCase_ : str = False out_string += self.sp_model.decode(A ) return out_string.strip() def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Optional[Any] = [self.sep_token_id] lowerCamelCase_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def UpperCAmelCase__ (self , A , A = None , A = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def UpperCAmelCase__ (self , A , A = None ): lowerCamelCase_ : Tuple = [self.sep_token_id] lowerCamelCase_ : Tuple = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def UpperCAmelCase__ (self , A , A = None ): if not os.path.isdir(A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return lowerCamelCase_ : Any = os.path.join( A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , '''wb''' ) as fi: lowerCamelCase_ : Any = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
357
'''simple docstring''' import asyncio import os import shutil import subprocess import sys import tempfile import unittest from distutils.util import strtobool from functools import partial from pathlib import Path from typing import List, Union from unittest import mock import torch from ..state import AcceleratorState, PartialState from ..utils import ( gather, is_bnb_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_mps_available, is_safetensors_available, is_tensorboard_available, is_torch_version, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) def lowercase_ ( _lowercase , _lowercase=False ) -> int: '''simple docstring''' try: lowerCamelCase_ : Union[str, Any] = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCamelCase_ : Union[str, Any] = default else: # KEY is set, convert it to True or False. try: lowerCamelCase_ : List[str] = strtobool(_lowercase ) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F"""If set, {key} must be yes or no.""" ) return _value __lowercase : Union[str, Any] = parse_flag_from_env('''RUN_SLOW''', default=False) def lowercase_ ( _lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skip('''Test was skipped''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Optional[Any]: '''simple docstring''' return unittest.skipUnless(_run_slow_tests , '''test is slow''' )(_lowercase ) def lowercase_ ( _lowercase ) -> List[str]: '''simple docstring''' return unittest.skipUnless(not torch.cuda.is_available() , '''test requires only a CPU''' )(_lowercase ) def lowercase_ ( _lowercase ) -> str: '''simple docstring''' return unittest.skipUnless(torch.cuda.is_available() , '''test requires a GPU''' )(_lowercase ) def lowercase_ ( _lowercase ) -> str: '''simple docstring''' return unittest.skipUnless(is_xpu_available() , '''test requires a XPU''' )(_lowercase ) def lowercase_ ( _lowercase ) -> List[str]: '''simple docstring''' return unittest.skipUnless(is_mps_available() , '''test requires a `mps` backend support in `torch`''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Tuple: '''simple docstring''' return unittest.skipUnless( is_transformers_available() and is_datasets_available() , '''test requires the Hugging Face suite''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_bnb_available() , '''test requires the bitsandbytes library''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_tpu_available() , '''test requires TPU''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() == 1 , '''test requires a GPU''' )(_lowercase ) def lowercase_ ( _lowercase ) -> List[str]: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() == 1 , '''test requires a XPU''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Tuple: '''simple docstring''' return unittest.skipUnless(torch.cuda.device_count() > 1 , '''test requires multiple GPUs''' )(_lowercase ) def lowercase_ ( _lowercase ) -> str: '''simple docstring''' return unittest.skipUnless(torch.xpu.device_count() > 1 , '''test requires multiple XPUs''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Tuple: '''simple docstring''' return unittest.skipUnless(is_safetensors_available() , '''test requires safetensors''' )(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' return unittest.skipUnless(is_deepspeed_available() , '''test requires DeepSpeed''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_torch_version('''>=''' , '''1.12.0''' ) , '''test requires torch version >= 1.12.0''' )(_lowercase ) def lowercase_ ( _lowercase=None , _lowercase=None ) -> Any: '''simple docstring''' if test_case is None: return partial(_lowercase , version=_lowercase ) return unittest.skipUnless(is_torch_version('''>=''' , _lowercase ) , F"""test requires torch version >= {version}""" )(_lowercase ) def lowercase_ ( _lowercase ) -> str: '''simple docstring''' return unittest.skipUnless(is_tensorboard_available() , '''test requires Tensorboard''' )(_lowercase ) def lowercase_ ( _lowercase ) -> Union[str, Any]: '''simple docstring''' return unittest.skipUnless(is_wandb_available() , '''test requires wandb''' )(_lowercase ) def lowercase_ ( _lowercase ) -> int: '''simple docstring''' return unittest.skipUnless(is_comet_ml_available() , '''test requires comet_ml''' )(_lowercase ) __lowercase : str = ( any([is_wandb_available(), is_tensorboard_available()]) and not is_comet_ml_available() ) def lowercase_ ( _lowercase ) -> List[Any]: '''simple docstring''' return unittest.skipUnless( _atleast_one_tracker_available , '''test requires at least one tracker to be available and for `comet_ml` to not be installed''' , )(_lowercase ) class __lowercase ( unittest.TestCase ): lowerCamelCase : Optional[Any] = True @classmethod def UpperCAmelCase__ (cls ): lowerCamelCase_ : Optional[Any] = tempfile.mkdtemp() @classmethod def UpperCAmelCase__ (cls ): if os.path.exists(cls.tmpdir ): shutil.rmtree(cls.tmpdir ) def UpperCAmelCase__ (self ): if self.clear_on_setup: for path in Path(self.tmpdir ).glob('''**/*''' ): if path.is_file(): path.unlink() elif path.is_dir(): shutil.rmtree(A ) class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self ): super().tearDown() # Reset the state of the AcceleratorState singleton. AcceleratorState._reset_state() PartialState._reset_state() class __lowercase ( unittest.TestCase ): def UpperCAmelCase__ (self , A ): lowerCamelCase_ : List[str] = mocks if isinstance(A , (tuple, list) ) else [mocks] for m in self.mocks: m.start() self.addCleanup(m.stop ) def lowercase_ ( _lowercase ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Tuple = AcceleratorState() lowerCamelCase_ : Optional[Any] = tensor[None].clone().to(state.device ) lowerCamelCase_ : Dict = gather(_lowercase ).cpu() lowerCamelCase_ : List[str] = tensor[0].cpu() for i in range(tensors.shape[0] ): if not torch.equal(tensors[i] , _lowercase ): return False return True class __lowercase : def __init__(self , A , A , A ): lowerCamelCase_ : List[Any] = returncode lowerCamelCase_ : Optional[int] = stdout lowerCamelCase_ : List[str] = stderr async def lowercase_ ( _lowercase , _lowercase ) -> Tuple: '''simple docstring''' while True: lowerCamelCase_ : Any = await stream.readline() if line: callback(_lowercase ) else: break async def lowercase_ ( _lowercase , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase=False , _lowercase=False ) -> _RunOutput: '''simple docstring''' if echo: print('''\nRunning: ''' , ''' '''.join(_lowercase ) ) lowerCamelCase_ : Any = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=_lowercase , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=_lowercase , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCamelCase_ : List[Any] = [] lowerCamelCase_ : Optional[int] = [] def tee(_lowercase , _lowercase , _lowercase , _lowercase="" ): lowerCamelCase_ : Union[str, Any] = line.decode('''utf-8''' ).rstrip() sink.append(_lowercase ) if not quiet: print(_lowercase , _lowercase , file=_lowercase ) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ asyncio.create_task(_read_stream(p.stdout , lambda _lowercase : tee(_lowercase , _lowercase , sys.stdout , label='''stdout:''' ) ) ), asyncio.create_task(_read_stream(p.stderr , lambda _lowercase : tee(_lowercase , _lowercase , sys.stderr , label='''stderr:''' ) ) ), ] , timeout=_lowercase , ) return _RunOutput(await p.wait() , _lowercase , _lowercase ) def lowercase_ ( _lowercase , _lowercase=None , _lowercase=None , _lowercase=180 , _lowercase=False , _lowercase=True ) -> _RunOutput: '''simple docstring''' lowerCamelCase_ : Any = asyncio.get_event_loop() lowerCamelCase_ : List[str] = loop.run_until_complete( _stream_subprocess(_lowercase , env=_lowercase , stdin=_lowercase , timeout=_lowercase , quiet=_lowercase , echo=_lowercase ) ) lowerCamelCase_ : List[Any] = ''' '''.join(_lowercase ) if result.returncode > 0: lowerCamelCase_ : Optional[int] = '''\n'''.join(result.stderr ) raise RuntimeError( F"""'{cmd_str}' failed with returncode {result.returncode}\n\n""" F"""The combined stderr from workers follows:\n{stderr}""" ) return result class __lowercase ( _lowercase ): pass def lowercase_ ( _lowercase , _lowercase=False ) -> Dict: '''simple docstring''' try: lowerCamelCase_ : List[str] = subprocess.check_output(_lowercase , stderr=subprocess.STDOUT ) if return_stdout: if hasattr(_lowercase , '''decode''' ): lowerCamelCase_ : str = output.decode('''utf-8''' ) return output except subprocess.CalledProcessError as e: raise SubprocessCallException( F"""Command `{" ".join(_lowercase )}` failed with the following error:\n\n{e.output.decode()}""" ) from e
357
1
'''simple docstring''' from argparse import ArgumentParser from . import BaseTransformersCLICommand def a_ ( _UpperCAmelCase : Dict ) -> List[Any]: return DownloadCommand(args.model ,args.cache_dir ,args.force ,args.trust_remote_code ) class snake_case__ ( SCREAMING_SNAKE_CASE_ ): @staticmethod def A_ ( __a : ArgumentParser ) -> Optional[Any]: '''simple docstring''' __snake_case : Dict = parser.add_parser('download' ) download_parser.add_argument( '--cache-dir' , type=__a , default=__a , help='Path to location to store the models' ) download_parser.add_argument( '--force' , action='store_true' , help='Force the model to be download even if already in cache-dir' ) download_parser.add_argument( '--trust-remote-code' , action='store_true' , help='Whether or not to allow for custom models defined on the Hub in their own modeling files. Use only if you\'ve reviewed the code as it will execute on your local machine' , ) download_parser.add_argument('model' , type=__a , help='Name of the model to download' ) download_parser.set_defaults(func=__a ) def __init__( self : Dict , __a : str , __a : str , __a : bool , __a : bool ) -> Union[str, Any]: '''simple docstring''' __snake_case : str = model __snake_case : int = cache __snake_case : List[Any] = force __snake_case : int = trust_remote_code def A_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' from ..models.auto import AutoModel, AutoTokenizer AutoModel.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code ) AutoTokenizer.from_pretrained( self._model , cache_dir=self._cache , force_download=self._force , trust_remote_code=self._trust_remote_code )
286
'''simple docstring''' import pickle import numpy as np from matplotlib import pyplot as plt class snake_case__ : def __init__( self : List[Any] , __a : str , __a : Dict , __a : List[Any] , __a : str , __a : str , __a : List[str]=0.2 , __a : Any=0.2 ) -> Any: '''simple docstring''' __snake_case : Any = bp_numa __snake_case : str = bp_numa __snake_case : Optional[Any] = bp_numa __snake_case : Any = conva_get[:2] __snake_case : Dict = conva_get[2] __snake_case : Optional[int] = size_pa __snake_case : str = rate_w __snake_case : Optional[Any] = rate_t __snake_case : Optional[Any] = [ np.mat(-1 * np.random.rand(self.conva[0] , self.conva[0] ) + 0.5 ) for i in range(self.conva[1] ) ] __snake_case : List[Any] = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __snake_case : Any = np.mat(-1 * np.random.rand(self.num_bpa , self.num_bpa ) + 0.5 ) __snake_case : Optional[int] = -2 * np.random.rand(self.conva[1] ) + 1 __snake_case : Optional[Any] = -2 * np.random.rand(self.num_bpa ) + 1 __snake_case : str = -2 * np.random.rand(self.num_bpa ) + 1 def A_ ( self : int , __a : Dict ) -> Optional[Any]: '''simple docstring''' # save model dict with pickle __snake_case : int = { 'num_bp1': self.num_bpa, 'num_bp2': self.num_bpa, 'num_bp3': self.num_bpa, 'conv1': self.conva, 'step_conv1': self.step_conva, 'size_pooling1': self.size_poolinga, 'rate_weight': self.rate_weight, 'rate_thre': self.rate_thre, 'w_conv1': self.w_conva, 'wkj': self.wkj, 'vji': self.vji, 'thre_conv1': self.thre_conva, 'thre_bp2': self.thre_bpa, 'thre_bp3': self.thre_bpa, } with open(__a , 'wb' ) as f: pickle.dump(__a , __a ) print(f'''Model saved: {save_path}''' ) @classmethod def A_ ( cls : List[Any] , __a : Union[str, Any] ) -> int: '''simple docstring''' # read saved model with open(__a , 'rb' ) as f: __snake_case : Dict = pickle.load(__a ) # noqa: S301 __snake_case : Tuple = model_dic.get('conv1' ) conv_get.append(model_dic.get('step_conv1' ) ) __snake_case : Optional[Any] = model_dic.get('size_pooling1' ) __snake_case : int = model_dic.get('num_bp1' ) __snake_case : Optional[Any] = model_dic.get('num_bp2' ) __snake_case : Optional[Any] = model_dic.get('num_bp3' ) __snake_case : Any = model_dic.get('rate_weight' ) __snake_case : Optional[int] = model_dic.get('rate_thre' ) # create model instance __snake_case : Any = CNN(__a , __a , __a , __a , __a , __a , __a ) # modify model parameter __snake_case : Dict = model_dic.get('w_conv1' ) __snake_case : Any = model_dic.get('wkj' ) __snake_case : List[str] = model_dic.get('vji' ) __snake_case : int = model_dic.get('thre_conv1' ) __snake_case : Optional[int] = model_dic.get('thre_bp2' ) __snake_case : List[Any] = model_dic.get('thre_bp3' ) return conv_ins def A_ ( self : List[Any] , __a : Tuple ) -> Optional[int]: '''simple docstring''' return 1 / (1 + np.exp(-1 * x )) def A_ ( self : Any , __a : Union[str, Any] ) -> List[Any]: '''simple docstring''' return round(__a , 3 ) def A_ ( self : Optional[Any] , __a : Tuple , __a : List[str] , __a : Dict , __a : Optional[int] , __a : List[str] ) -> str: '''simple docstring''' # convolution process __snake_case : int = convs[0] __snake_case : List[str] = convs[1] __snake_case : Optional[Any] = np.shape(__a )[0] # get the data slice of original image data, data_focus __snake_case : str = [] for i_focus in range(0 , size_data - size_conv + 1 , __a ): for j_focus in range(0 , size_data - size_conv + 1 , __a ): __snake_case : Any = data[ i_focus : i_focus + size_conv, j_focus : j_focus + size_conv ] data_focus.append(__a ) # calculate the feature map of every single kernel, and saved as list of matrix __snake_case : Optional[int] = [] __snake_case : Dict = int((size_data - size_conv) / conv_step + 1 ) for i_map in range(__a ): __snake_case : Optional[int] = [] for i_focus in range(len(__a ) ): __snake_case : List[Any] = ( np.sum(np.multiply(data_focus[i_focus] , w_convs[i_map] ) ) - thre_convs[i_map] ) featuremap.append(self.sig(__a ) ) __snake_case : List[Any] = np.asmatrix(__a ).reshape( __a , __a ) data_featuremap.append(__a ) # expanding the data slice to One dimenssion __snake_case : Union[str, Any] = [] for each_focus in data_focus: focusa_list.extend(self.Expand_Mat(__a ) ) __snake_case : List[Any] = np.asarray(__a ) return focus_list, data_featuremap def A_ ( self : Any , __a : int , __a : Tuple , __a : List[Any]="average_pool" ) -> Dict: '''simple docstring''' # pooling process __snake_case : List[str] = len(featuremaps[0] ) __snake_case : Tuple = int(size_map / size_pooling ) __snake_case : int = [] for i_map in range(len(__a ) ): __snake_case : str = featuremaps[i_map] __snake_case : Optional[Any] = [] for i_focus in range(0 , __a , __a ): for j_focus in range(0 , __a , __a ): __snake_case : Dict = feature_map[ i_focus : i_focus + size_pooling, j_focus : j_focus + size_pooling, ] if pooling_type == "average_pool": # average pooling map_pooled.append(np.average(__a ) ) elif pooling_type == "max_pooling": # max pooling map_pooled.append(np.max(__a ) ) __snake_case : List[str] = np.asmatrix(__a ).reshape(__a , __a ) featuremap_pooled.append(__a ) return featuremap_pooled def A_ ( self : List[str] , __a : Union[str, Any] ) -> int: '''simple docstring''' # expanding three dimension data to one dimension list __snake_case : Tuple = [] for i in range(len(__a ) ): __snake_case : Optional[int] = np.shape(data[i] ) __snake_case : List[str] = data[i].reshape(1 , shapes[0] * shapes[1] ) __snake_case : List[Any] = data_listed.getA().tolist()[0] data_expanded.extend(__a ) __snake_case : Optional[int] = np.asarray(__a ) return data_expanded def A_ ( self : Union[str, Any] , __a : int ) -> Any: '''simple docstring''' # expanding matrix to one dimension list __snake_case : int = np.asarray(__a ) __snake_case : str = np.shape(__a ) __snake_case : Any = data_mat.reshape(1 , shapes[0] * shapes[1] ) return data_expanded def A_ ( self : List[Any] , __a : str , __a : Optional[int] , __a : List[str] , __a : int , __a : List[str] ) -> Dict: '''simple docstring''' __snake_case : Union[str, Any] = [] __snake_case : Tuple = 0 for i_map in range(__a ): __snake_case : Union[str, Any] = np.ones((size_map, size_map) ) for i in range(0 , __a , __a ): for j in range(0 , __a , __a ): __snake_case : Any = pd_pool[ i_pool ] __snake_case : List[Any] = i_pool + 1 __snake_case : List[Any] = np.multiply( __a , np.multiply(out_map[i_map] , (1 - out_map[i_map]) ) ) pd_all.append(__a ) return pd_all def A_ ( self : Tuple , __a : List[str] , __a : Optional[int] , __a : Union[str, Any] , __a : Dict , __a : Tuple , __a : Optional[int]=bool ) -> List[Any]: '''simple docstring''' # model traning print('----------------------Start Training-------------------------' ) print((' - - Shape: Train_Data ', np.shape(__a )) ) print((' - - Shape: Teach_Data ', np.shape(__a )) ) __snake_case : str = 0 __snake_case : List[str] = [] __snake_case : List[Any] = 10000 while rp < n_repeat and mse >= error_accuracy: __snake_case : int = 0 print(f'''-------------Learning Time {rp}--------------''' ) for p in range(len(__a ) ): # print('------------Learning Image: %d--------------'%p) __snake_case : List[Any] = np.asmatrix(datas_train[p] ) __snake_case : Optional[Any] = np.asarray(datas_teach[p] ) __snake_case , __snake_case : List[Any] = self.convolute( __a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __snake_case : Tuple = self.pooling(__a , self.size_poolinga ) __snake_case : Dict = np.shape(__a ) __snake_case : Tuple = self._expand(__a ) __snake_case : str = data_bp_input __snake_case : List[Any] = np.dot(__a , self.vji.T ) - self.thre_bpa __snake_case : Any = self.sig(__a ) __snake_case : Tuple = np.dot(__a , self.wkj.T ) - self.thre_bpa __snake_case : Optional[Any] = self.sig(__a ) # --------------Model Leaning ------------------------ # calculate error and gradient--------------- __snake_case : Tuple = np.multiply( (data_teach - bp_outa) , np.multiply(__a , (1 - bp_outa) ) ) __snake_case : Tuple = np.multiply( np.dot(__a , self.wkj ) , np.multiply(__a , (1 - bp_outa) ) ) __snake_case : Union[str, Any] = np.dot(__a , self.vji ) __snake_case : Optional[int] = pd_i_all / (self.size_poolinga * self.size_poolinga) __snake_case : Tuple = pd_conva_pooled.T.getA().tolist() __snake_case : Optional[Any] = self._calculate_gradient_from_pool( __a , __a , shape_featuremapa[0] , shape_featuremapa[1] , self.size_poolinga , ) # weight and threshold learning process--------- # convolution layer for k_conv in range(self.conva[1] ): __snake_case : int = self._expand_mat(pd_conva_all[k_conv] ) __snake_case : Optional[int] = self.rate_weight * np.dot(__a , __a ) __snake_case : List[Any] = self.w_conva[k_conv] + delta_w.reshape( (self.conva[0], self.conva[0]) ) __snake_case : Optional[Any] = ( self.thre_conva[k_conv] - np.sum(pd_conva_all[k_conv] ) * self.rate_thre ) # all connected layer __snake_case : Tuple = self.wkj + pd_k_all.T * bp_outa * self.rate_weight __snake_case : Optional[Any] = self.vji + pd_j_all.T * bp_outa * self.rate_weight __snake_case : str = self.thre_bpa - pd_k_all * self.rate_thre __snake_case : Optional[int] = self.thre_bpa - pd_j_all * self.rate_thre # calculate the sum error of all single image __snake_case : Any = np.sum(abs(data_teach - bp_outa ) ) error_count += errors # print(' ----Teach ',data_teach) # print(' ----BP_output ',bp_out3) __snake_case : Tuple = rp + 1 __snake_case : Tuple = error_count / patterns all_mse.append(__a ) def draw_error(): __snake_case : Union[str, Any] = [error_accuracy for i in range(int(n_repeat * 1.2 ) )] plt.plot(__a , '+-' ) plt.plot(__a , 'r--' ) plt.xlabel('Learning Times' ) plt.ylabel('All_mse' ) plt.grid(__a , alpha=0.5 ) plt.show() print('------------------Training Complished---------------------' ) print((' - - Training epoch: ', rp, f''' - - Mse: {mse:.6f}''') ) if draw_e: draw_error() return mse def A_ ( self : Tuple , __a : Union[str, Any] ) -> List[Any]: '''simple docstring''' # model predict __snake_case : str = [] print('-------------------Start Testing-------------------------' ) print((' - - Shape: Test_Data ', np.shape(__a )) ) for p in range(len(__a ) ): __snake_case : int = np.asmatrix(datas_test[p] ) __snake_case , __snake_case : str = self.convolute( __a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __snake_case : List[str] = self.pooling(__a , self.size_poolinga ) __snake_case : List[Any] = self._expand(__a ) __snake_case : Optional[Any] = data_bp_input __snake_case : Optional[Any] = bp_outa * self.vji.T - self.thre_bpa __snake_case : Any = self.sig(__a ) __snake_case : Any = bp_outa * self.wkj.T - self.thre_bpa __snake_case : str = self.sig(__a ) produce_out.extend(bp_outa.getA().tolist() ) __snake_case : List[Any] = [list(map(self.do_round , __a ) ) for each in produce_out] return np.asarray(__a ) def A_ ( self : Optional[Any] , __a : Optional[int] ) -> Tuple: '''simple docstring''' # return the data of image after convoluting process so we can check it out __snake_case : int = np.asmatrix(__a ) __snake_case , __snake_case : int = self.convolute( __a , self.conva , self.w_conva , self.thre_conva , conv_step=self.step_conva , ) __snake_case : Dict = self.pooling(__a , self.size_poolinga ) return data_conveda, data_pooleda if __name__ == "__main__": pass
286
1
from numpy import exp, pi, sqrt def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : float = 0.0 , SCREAMING_SNAKE_CASE : float = 1.0 ): '''simple docstring''' return 1 / sqrt(2 * pi * sigma**2 ) * exp(-((x - mu) ** 2) / (2 * sigma**2) ) if __name__ == "__main__": import doctest doctest.testmod()
702
"""simple docstring""" import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP _UpperCamelCase = False try: _UpperCamelCase = _is_package_available('google.colab') except ModuleNotFoundError: pass @input.register class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :str = None , __lowercase :list = [] ): __lowerCamelCase : Any =0 __lowerCamelCase : List[str] =choices __lowerCamelCase : int =prompt if sys.platform == "win32": __lowerCamelCase : Dict ='''*''' else: __lowerCamelCase : Union[str, Any] ='''➔ ''' def __lowercase ( self :Tuple , __lowercase :Any , __lowercase :str = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , __lowercase ) else: forceWrite(self.choices[index] , __lowercase ) def __lowercase ( self :Tuple , __lowercase :int ): if index == self.position: forceWrite(f' {self.arrow_char} ' ) self.write_choice(__lowercase ) else: forceWrite(f' {self.choices[index]}' ) reset_cursor() def __lowercase ( self :Tuple , __lowercase :Direction , __lowercase :int = 1 ): __lowerCamelCase : List[str] =self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(__lowercase ) move_cursor(__lowercase , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def __lowercase ( self :Union[str, Any] ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def __lowercase ( self :Union[str, Any] ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def __lowercase ( self :Any ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def __lowercase ( self :Any ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(__lowercase )] for number in range(10 )] ) def __lowercase ( self :Any ): __lowerCamelCase : Tuple =int(chr(self.current_selection ) ) __lowerCamelCase : Dict =index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , __lowercase ) else: return else: return def __lowercase ( self :Optional[int] , __lowercase :int = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) __lowerCamelCase : Union[str, Any] =default_choice for i in range(len(self.choices ) ): self.print_choice(__lowercase ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: __lowerCamelCase : Union[str, Any] =int(builtins.input() ) except ValueError: __lowerCamelCase : Optional[Any] =default_choice else: __lowerCamelCase : Dict =self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(__lowercase , '''\n''' ) return choice
363
0
"""simple docstring""" from __future__ import annotations def a ( __UpperCAmelCase : int | str ) -> bool: __magic_name__: List[str] = str(__UpperCAmelCase ) return n == n[::-1] def a ( __UpperCAmelCase : int = 1_0_0_0_0_0_0 ) -> Tuple: __magic_name__: int = 0 for i in range(1 , __UpperCAmelCase ): if is_palindrome(__UpperCAmelCase ) and is_palindrome(bin(__UpperCAmelCase ).split("""b""" )[1] ): total += i return total if __name__ == "__main__": print(solution(int(str(input().strip()))))
96
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class snake_case ( __snake_case ): """simple docstring""" __lowerCAmelCase = (UnCLIPScheduler,) def snake_case__ ( self , **lowerCAmelCase_ ): __lowercase = { "num_train_timesteps": 1000, "variance_type": "fixed_small_log", "clip_sample": True, "clip_sample_range": 1.0, "prediction_type": "epsilon", } config.update(**lowerCAmelCase_ ) return config def snake_case__ ( self ): for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase_ ) def snake_case__ ( self ): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=lowerCAmelCase_ ) def snake_case__ ( self ): for clip_sample in [True, False]: self.check_over_configs(clip_sample=lowerCAmelCase_ ) def snake_case__ ( self ): for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=lowerCAmelCase_ ) def snake_case__ ( self ): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=lowerCAmelCase_ ) def snake_case__ ( self ): for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ ) def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="fixed_small_log" ) __lowercase = scheduler_class(**lowerCAmelCase_ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0_0_0_0E-1_0 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_54_96_25 ) ) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_99_49_87 ) ) < 1E-5 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="learned_range" ) __lowercase = scheduler_class(**lowerCAmelCase_ ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=lowerCAmelCase_ ) - -10.1_71_27_90 < 1E-5 assert scheduler._get_variance(487 , predicted_variance=lowerCAmelCase_ ) - -5.7_99_80_52 < 1E-5 assert scheduler._get_variance(999 , predicted_variance=lowerCAmelCase_ ) - -0.0_01_00_11 < 1E-5 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase_ ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowercase = model(lowerCAmelCase_ , lowerCAmelCase_ ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_52.2_68_24_95 ) < 1E-2 assert abs(result_mean.item() - 0.3_28_47_43 ) < 1E-3 def snake_case__ ( self ): __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**lowerCAmelCase_ ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(lowerCAmelCase_ ): # 1. predict noise residual __lowercase = model(lowerCAmelCase_ , lowerCAmelCase_ ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , prev_timestep=lowerCAmelCase_ , generator=lowerCAmelCase_ ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(lowerCAmelCase_ ) ) __lowercase = torch.mean(torch.abs(lowerCAmelCase_ ) ) assert abs(result_sum.item() - 2_58.2_04_49_83 ) < 1E-2 assert abs(result_mean.item() - 0.3_36_20_38 ) < 1E-3 def snake_case__ ( self ): pass def snake_case__ ( self ): pass
321
0
def a__ ( a ) -> None: A_ : List[Any] = generate_pascal_triangle(a ) for row_idx in range(a ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=''' ''' ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=''' ''' ) else: print(triangle[row_idx][col_idx] , end='''''' ) print() def a__ ( a ) -> list[list[int]]: if not isinstance(a , a ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) A_ : list[list[int]] = [] for current_row_idx in range(a ): A_ : Any = populate_current_row(a , a ) triangle.append(a ) return triangle def a__ ( a , a ) -> list[int]: A_ : List[Any] = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 A_ : Dict = 1, 1 for current_col_idx in range(1 , a ): calculate_current_element( a , a , a , a ) return current_row def a__ ( a , a , a , a , ) -> None: A_ : List[str] = triangle[current_row_idx - 1][current_col_idx - 1] A_ : int = triangle[current_row_idx - 1][current_col_idx] A_ : Any = above_to_left_elt + above_to_right_elt def a__ ( a ) -> list[list[int]]: if not isinstance(a , a ): raise TypeError('''The input value of \'num_rows\' should be \'int\'''' ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( '''The input value of \'num_rows\' should be greater than or equal to 0''' ) A_ : list[list[int]] = [[1]] for row_index in range(1 , a ): A_ : Union[str, Any] = [0] + result[-1] + [0] A_ : int = row_index + 1 # Calculate the number of distinct elements in a row A_ : Union[str, Any] = sum(divmod(a , 2 ) ) A_ : Optional[int] = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] A_ : str = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() A_ : Optional[int] = row_first_half + row_second_half result.append(a ) return result def a__ ( ) -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(a , a ) -> None: A_ : Dict = f"""{func.__name__}({value})""" A_ : Union[str, Any] = timeit(f"""__main__.{call}""" , setup='''import __main__''' ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(f"""{call:38} -- {timing:.4f} seconds""" ) for value in range(1_5 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(a , a ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
707
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = '▁' _lowerCAmelCase = {'vocab_file': 'sentencepiece.bpe.model'} _lowerCAmelCase = { 'vocab_file': { 'facebook/mbart-large-en-ro': ( 'https://huggingface.co/facebook/mbart-large-en-ro/resolve/main/sentencepiece.bpe.model' ), 'facebook/mbart-large-cc25': ( 'https://huggingface.co/facebook/mbart-large-cc25/resolve/main/sentencepiece.bpe.model' ), } } _lowerCAmelCase = { 'facebook/mbart-large-en-ro': 1_0_2_4, 'facebook/mbart-large-cc25': 1_0_2_4, } # fmt: off _lowerCAmelCase = ['ar_AR', 'cs_CZ', 'de_DE', 'en_XX', 'es_XX', 'et_EE', 'fi_FI', 'fr_XX', 'gu_IN', 'hi_IN', 'it_IT', 'ja_XX', 'kk_KZ', 'ko_KR', 'lt_LT', 'lv_LV', 'my_MM', 'ne_NP', 'nl_XX', 'ro_RO', 'ru_RU', 'si_LK', 'tr_TR', 'vi_VN', 'zh_CN'] class __UpperCAmelCase( A__ ): """simple docstring""" __magic_name__ = VOCAB_FILES_NAMES __magic_name__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ = PRETRAINED_VOCAB_FILES_MAP __magic_name__ = ["""input_ids""", """attention_mask"""] __magic_name__ = [] __magic_name__ = [] def __init__( self , __magic_name__ , __magic_name__="<s>" , __magic_name__="</s>" , __magic_name__="</s>" , __magic_name__="<s>" , __magic_name__="<unk>" , __magic_name__="<pad>" , __magic_name__="<mask>" , __magic_name__=None , __magic_name__=None , __magic_name__=None , __magic_name__ = None , __magic_name__=None , **__magic_name__ , ): """simple docstring""" A_ : Tuple = AddedToken(__magic_name__ , lstrip=__magic_name__ , rstrip=__magic_name__ ) if isinstance(__magic_name__ , __magic_name__ ) else mask_token A_ : str = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__magic_name__ , eos_token=__magic_name__ , unk_token=__magic_name__ , sep_token=__magic_name__ , cls_token=__magic_name__ , pad_token=__magic_name__ , mask_token=__magic_name__ , tokenizer_file=__magic_name__ , src_lang=__magic_name__ , tgt_lang=__magic_name__ , additional_special_tokens=__magic_name__ , sp_model_kwargs=self.sp_model_kwargs , **__magic_name__ , ) A_ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__magic_name__ ) ) A_ : Union[str, Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token A_ : int = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab A_ : int = 1 A_ : Dict = len(self.sp_model ) A_ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__magic_name__ ) } A_ : Optional[Any] = {v: k for k, v in self.lang_code_to_id.items()} A_ : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) A_ : Optional[Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} A_ : Union[str, Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) A_ : Union[str, Any] = src_lang if src_lang is not None else '''en_XX''' A_ : Tuple = self.lang_code_to_id[self._src_lang] A_ : List[Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): """simple docstring""" A_ : Dict = self.__dict__.copy() A_ : int = None A_ : Union[str, Any] = self.sp_model.serialized_model_proto() return state def __setstate__( self , __magic_name__ ): """simple docstring""" A_ : Dict = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): A_ : Optional[int] = {} A_ : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCAmelCase ( self ): """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCAmelCase ( self ): """simple docstring""" return self._src_lang @src_lang.setter def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Optional[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None , __magic_name__ = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__magic_name__ , token_ids_a=__magic_name__ , already_has_special_tokens=__magic_name__ ) A_ : Optional[int] = [1] * len(self.prefix_tokens ) A_ : int = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__magic_name__ )) + suffix_ones return prefix_ones + ([0] * len(__magic_name__ )) + ([0] * len(__magic_name__ )) + suffix_ones def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" A_ : List[str] = [self.sep_token_id] A_ : Dict = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCAmelCase ( self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , **__magic_name__ ): """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) A_ : str = src_lang A_ : Tuple = self(__magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) A_ : Dict = self.convert_tokens_to_ids(__magic_name__ ) A_ : Any = tgt_lang_id return inputs def UpperCAmelCase ( self ): """simple docstring""" A_ : List[Any] = {self.convert_ids_to_tokens(__magic_name__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" return self.sp_model.encode(__magic_name__ , out_type=__magic_name__ ) def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] A_ : Optional[Any] = self.sp_model.PieceToId(__magic_name__ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Optional[int] = ''''''.join(__magic_name__ ).replace(__magic_name__ , ''' ''' ).strip() return out_string def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = None ): """simple docstring""" if not os.path.isdir(__magic_name__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return A_ : Dict = os.path.join( __magic_name__ , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__magic_name__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __magic_name__ ) elif not os.path.isfile(self.vocab_file ): with open(__magic_name__ , '''wb''' ) as fi: A_ : List[str] = self.sp_model.serialized_model_proto() fi.write(__magic_name__ ) return (out_vocab_file,) def UpperCAmelCase ( self , __magic_name__ , __magic_name__ = "en_XX" , __magic_name__ = None , __magic_name__ = "ro_RO" , **__magic_name__ , ): """simple docstring""" A_ : List[Any] = src_lang A_ : Optional[int] = tgt_lang return super().prepare_seqaseq_batch(__magic_name__ , __magic_name__ , **__magic_name__ ) def UpperCAmelCase ( self ): """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def UpperCAmelCase ( self ): """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : int = self.lang_code_to_id[src_lang] A_ : int = [] A_ : Optional[Any] = [self.eos_token_id, self.cur_lang_code] def UpperCAmelCase ( self , __magic_name__ ): """simple docstring""" A_ : Union[str, Any] = self.lang_code_to_id[lang] A_ : Any = [] A_ : Optional[int] = [self.eos_token_id, self.cur_lang_code]
236
0
'''simple docstring''' def _lowerCAmelCase ( __magic_name__ : Optional[int] ) -> Union[str, Any]: return [ { 0: [1, 2], 1: [0, 2], 2: [0, 1, 3, 5], 3: [2, 4], 4: [3], 5: [2, 6, 8], 6: [5, 7], 7: [6, 8], 8: [5, 7], }, { 0: [6], 1: [9], 2: [4, 5], 3: [4], 4: [2, 3], 5: [2], 6: [0, 7], 7: [6], 8: [], 9: [1], }, { 0: [4], 1: [6], 2: [], 3: [5, 6, 7], 4: [0, 6], 5: [3, 8, 9], 6: [1, 3, 4, 7], 7: [3, 6, 8, 9], 8: [5, 7], 9: [5, 7], }, { 0: [1, 3], 1: [0, 2, 4], 2: [1, 3, 4], 3: [0, 2, 4], 4: [1, 2, 3], }, ][index] def _lowerCAmelCase ( __magic_name__ : dict[int, list[int]] ) -> list[tuple[int, int]]: lowercase : Union[str, Any] =0 lowercase : Tuple =len(__magic_name__ ) # No of vertices in graph lowercase : Optional[Any] =[0] * n lowercase : List[str] =[False] * n def dfs(__magic_name__ : Optional[Any] , __magic_name__ : Dict , __magic_name__ : int , __magic_name__ : Optional[int] ): lowercase : List[str] =True lowercase : Union[str, Any] =id_ id_ += 1 for to in graph[at]: if to == parent: pass elif not visited[to]: dfs(__magic_name__ , __magic_name__ , __magic_name__ , id_ ) lowercase : Dict =min(low[at] , low[to] ) if id_ <= low[to]: bridges.append((at, to) if at < to else (to, at) ) else: # This edge is a back edge and cannot be a bridge lowercase : Optional[int] =min(low[at] , low[to] ) lowercase : list[tuple[int, int]] =[] for i in range(__magic_name__ ): if not visited[i]: dfs(__magic_name__ , -1 , __magic_name__ , id_ ) return bridges if __name__ == "__main__": import doctest doctest.testmod()
92
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __magic_name__ : list[float] ) -> float: lowercase : Any =0.0_0 lowercase : Tuple =0 for resistor in resistors: if resistor <= 0: lowercase : Dict =f'''Resistor at index {index} has a negative or zero value!''' raise ValueError(__magic_name__ ) first_sum += 1 / float(__magic_name__ ) index += 1 return 1 / first_sum def _lowerCAmelCase ( __magic_name__ : list[float] ) -> float: lowercase : Optional[Any] =0.0_0 lowercase : int =0 for resistor in resistors: sum_r += resistor if resistor < 0: lowercase : Tuple =f'''Resistor at index {index} has a negative value!''' raise ValueError(__magic_name__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
92
1
from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class lowerCamelCase_ : '''simple docstring''' a__ : List[Any] = LEDConfig a__ : int = {} a__ : Any = """gelu""" def __init__( self , __lowercase , __lowercase=13 , __lowercase=7 , __lowercase=True , __lowercase=False , __lowercase=99 , __lowercase=32 , __lowercase=2 , __lowercase=4 , __lowercase=37 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=20 , __lowercase=2 , __lowercase=1 , __lowercase=0 , __lowercase=4 , ) -> str: __UpperCamelCase :Optional[int] = parent __UpperCamelCase :str = batch_size __UpperCamelCase :Union[str, Any] = seq_length __UpperCamelCase :List[str] = is_training __UpperCamelCase :Union[str, Any] = use_labels __UpperCamelCase :Optional[int] = vocab_size __UpperCamelCase :List[Any] = hidden_size __UpperCamelCase :Dict = num_hidden_layers __UpperCamelCase :Union[str, Any] = num_attention_heads __UpperCamelCase :Union[str, Any] = intermediate_size __UpperCamelCase :Any = hidden_dropout_prob __UpperCamelCase :str = attention_probs_dropout_prob __UpperCamelCase :int = max_position_embeddings __UpperCamelCase :Union[str, Any] = eos_token_id __UpperCamelCase :Dict = pad_token_id __UpperCamelCase :List[Any] = bos_token_id __UpperCamelCase :List[Any] = attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __UpperCamelCase :Tuple = self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __UpperCamelCase :Union[str, Any] = ( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCamelCase__ ( self) -> List[Any]: __UpperCamelCase :Any = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) __UpperCamelCase :Tuple = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) __UpperCamelCase :Dict = tf.concat([input_ids, eos_tensor] , axis=1) __UpperCamelCase :List[str] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCamelCase :Union[str, Any] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __UpperCamelCase :Tuple = prepare_led_inputs_dict(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase) __UpperCamelCase :Tuple = tf.concat( [tf.zeros_like(__UpperCamelCase)[:, :-1], tf.ones_like(__UpperCamelCase)[:, -1:]] , axis=-1 , ) __UpperCamelCase :Union[str, Any] = global_attention_mask return config, inputs_dict def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :List[str] = TFLEDModel(config=__UpperCamelCase).get_decoder() __UpperCamelCase :Dict = inputs_dict['''input_ids'''] __UpperCamelCase :str = input_ids[:1, :] __UpperCamelCase :List[Any] = inputs_dict['''attention_mask'''][:1, :] __UpperCamelCase :int = 1 # first forward pass __UpperCamelCase :Optional[Any] = model(__UpperCamelCase , attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase) __UpperCamelCase , __UpperCamelCase :List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase :Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCamelCase :Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and __UpperCamelCase :List[Any] = tf.concat([input_ids, next_tokens] , axis=-1) __UpperCamelCase :int = tf.concat([attention_mask, next_attn_mask] , axis=-1) __UpperCamelCase :Tuple = model(__UpperCamelCase , attention_mask=__UpperCamelCase)[0] __UpperCamelCase :Dict = model(__UpperCamelCase , attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice __UpperCamelCase :Tuple = int(ids_tensor((1,) , output_from_past.shape[-1])) __UpperCamelCase :List[str] = output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase :Optional[Any] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__UpperCamelCase , __UpperCamelCase , rtol=1E-3) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , ): if attention_mask is None: __UpperCamelCase :Optional[Any] = tf.cast(tf.math.not_equal(lowercase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCamelCase :Any = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCamelCase :Union[str, Any] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase :Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class lowerCamelCase_ ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' a__ : Union[str, Any] = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () a__ : Dict = (TFLEDForConditionalGeneration,) if is_tf_available() else () a__ : List[Any] = ( { """conversational""": TFLEDForConditionalGeneration, """feature-extraction""": TFLEDModel, """summarization""": TFLEDForConditionalGeneration, """text2text-generation""": TFLEDForConditionalGeneration, """translation""": TFLEDForConditionalGeneration, } if is_tf_available() else {} ) a__ : List[str] = True a__ : int = False a__ : Optional[Any] = False a__ : Any = False def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :List[str] = TFLEDModelTester(self) __UpperCamelCase :Union[str, Any] = ConfigTester(self , config_class=__UpperCamelCase) def UpperCamelCase__ ( self) -> Optional[int]: self.config_tester.run_common_tests() def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__UpperCamelCase) def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase , __UpperCamelCase :Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase :Optional[Any] = tf.zeros_like(inputs_dict['''attention_mask''']) __UpperCamelCase :List[Any] = 2 __UpperCamelCase :int = tf.where( tf.range(self.model_tester.seq_length)[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) __UpperCamelCase :Dict = True __UpperCamelCase :Dict = self.model_tester.seq_length __UpperCamelCase :List[Any] = self.model_tester.encoder_seq_length def check_decoder_attentions_output(__lowercase): __UpperCamelCase :int = outputs.decoder_attentions self.assertEqual(len(__UpperCamelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(decoder_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(__lowercase): __UpperCamelCase :int = [t.numpy() for t in outputs.encoder_attentions] __UpperCamelCase :Any = [t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(__UpperCamelCase) , self.model_tester.num_hidden_layers) self.assertEqual(len(__UpperCamelCase) , self.model_tester.num_hidden_layers) self.assertListEqual( list(attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:]) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __UpperCamelCase :Tuple = True __UpperCamelCase :int = False __UpperCamelCase :Optional[int] = False __UpperCamelCase :List[Any] = model_class(__UpperCamelCase) __UpperCamelCase :int = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase)) __UpperCamelCase :Dict = len(__UpperCamelCase) self.assertEqual(config.output_hidden_states , __UpperCamelCase) check_encoder_attentions_output(__UpperCamelCase) if self.is_encoder_decoder: __UpperCamelCase :Dict = model_class(__UpperCamelCase) __UpperCamelCase :Optional[int] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase)) self.assertEqual(config.output_hidden_states , __UpperCamelCase) check_decoder_attentions_output(__UpperCamelCase) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCamelCase :Optional[Any] = True __UpperCamelCase :str = model_class(__UpperCamelCase) __UpperCamelCase :Optional[int] = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase)) self.assertEqual(config.output_hidden_states , __UpperCamelCase) check_encoder_attentions_output(__UpperCamelCase) # Check attention is always last and order is fine __UpperCamelCase :Dict = True __UpperCamelCase :int = True __UpperCamelCase :int = model_class(__UpperCamelCase) __UpperCamelCase :Dict = model(self._prepare_for_class(__UpperCamelCase , __UpperCamelCase)) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__UpperCamelCase)) self.assertEqual(model.config.output_hidden_states , __UpperCamelCase) check_encoder_attentions_output(__UpperCamelCase) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''') def UpperCamelCase__ ( self) -> List[Any]: pass def UpperCamelCase__ ( self) -> Union[str, Any]: pass def lowerCamelCase ( SCREAMING_SNAKE_CASE ): return tf.constant(lowercase__ , dtype=tf.intaa ) __lowercase = 1e-4 @slow @require_tf class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Union[str, Any]: __UpperCamelCase :Optional[int] = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''').led # change to intended input here __UpperCamelCase :int = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]]) __UpperCamelCase :Optional[int] = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]]) __UpperCamelCase :List[Any] = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase) __UpperCamelCase :int = model(**__UpperCamelCase)[0] __UpperCamelCase :List[str] = (1, 1_024, 768) self.assertEqual(output.shape , __UpperCamelCase) # change to expected output here __UpperCamelCase :List[str] = tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3) def UpperCamelCase__ ( self) -> Tuple: __UpperCamelCase :str = TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''') # change to intended input here __UpperCamelCase :Any = _long_tensor([512 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]]) __UpperCamelCase :Optional[Any] = _long_tensor([128 * [0, 31_414, 232, 328, 740, 1_140, 12_695, 69]]) __UpperCamelCase :str = prepare_led_inputs_dict(model.config , __UpperCamelCase , __UpperCamelCase) __UpperCamelCase :Optional[int] = model(**__UpperCamelCase)[0] __UpperCamelCase :Optional[int] = (1, 1_024, model.config.vocab_size) self.assertEqual(output.shape , __UpperCamelCase) # change to expected output here __UpperCamelCase :Optional[Any] = tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , __UpperCamelCase , atol=1E-3 , rtol=1E-3)
702
import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase = logging.get_logger(__name__) __lowercase = { '''microsoft/unispeech-large-1500h-cv''': ( '''https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json''' ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : Dict = """unispeech""" def __init__( self , __lowercase=32 , __lowercase=768 , __lowercase=12 , __lowercase=12 , __lowercase=3_072 , __lowercase="gelu" , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.0 , __lowercase=0.0 , __lowercase=0.1 , __lowercase=0.1 , __lowercase=0.02 , __lowercase=1E-5 , __lowercase="group" , __lowercase="gelu" , __lowercase=(512, 512, 512, 512, 512, 512, 512) , __lowercase=(5, 2, 2, 2, 2, 2, 2) , __lowercase=(10, 3, 3, 3, 3, 2, 2) , __lowercase=False , __lowercase=128 , __lowercase=16 , __lowercase=False , __lowercase=True , __lowercase=0.05 , __lowercase=10 , __lowercase=2 , __lowercase=0.0 , __lowercase=10 , __lowercase=0 , __lowercase=320 , __lowercase=2 , __lowercase=0.1 , __lowercase=100 , __lowercase=256 , __lowercase=256 , __lowercase=0.1 , __lowercase="mean" , __lowercase=False , __lowercase=False , __lowercase=256 , __lowercase=80 , __lowercase=0 , __lowercase=1 , __lowercase=2 , __lowercase=0.5 , **__lowercase , ) -> Optional[int]: super().__init__(**__lowercase , pad_token_id=__lowercase , bos_token_id=__lowercase , eos_token_id=__lowercase) __UpperCamelCase :str = hidden_size __UpperCamelCase :List[str] = feat_extract_norm __UpperCamelCase :str = feat_extract_activation __UpperCamelCase :str = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :List[Any] = list(__lowercase) __UpperCamelCase :Any = conv_bias __UpperCamelCase :List[Any] = num_conv_pos_embeddings __UpperCamelCase :Tuple = num_conv_pos_embedding_groups __UpperCamelCase :Optional[int] = len(self.conv_dim) __UpperCamelCase :Optional[int] = num_hidden_layers __UpperCamelCase :Union[str, Any] = intermediate_size __UpperCamelCase :Tuple = hidden_act __UpperCamelCase :Optional[int] = num_attention_heads __UpperCamelCase :Any = hidden_dropout __UpperCamelCase :List[str] = attention_dropout __UpperCamelCase :int = activation_dropout __UpperCamelCase :int = feat_proj_dropout __UpperCamelCase :Any = final_dropout __UpperCamelCase :Optional[Any] = layerdrop __UpperCamelCase :Any = layer_norm_eps __UpperCamelCase :List[str] = initializer_range __UpperCamelCase :Tuple = num_ctc_classes __UpperCamelCase :Union[str, Any] = vocab_size __UpperCamelCase :List[Any] = do_stable_layer_norm __UpperCamelCase :Dict = use_weighted_layer_sum __UpperCamelCase :str = classifier_proj_size if ( (len(self.conv_stride) != self.num_feat_extract_layers) or (len(self.conv_kernel) != self.num_feat_extract_layers) or (len(self.conv_dim) != self.num_feat_extract_layers) ): raise ValueError( '''Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==''' ''' `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =''' f""" {len(self.conv_dim)}`, `len(config.conv_stride) = {len(self.conv_stride)}`,""" f""" `len(config.conv_kernel) = {len(self.conv_kernel)}`.""") # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 __UpperCamelCase :List[Any] = apply_spec_augment __UpperCamelCase :Optional[int] = mask_time_prob __UpperCamelCase :int = mask_time_length __UpperCamelCase :Any = mask_time_min_masks __UpperCamelCase :Any = mask_feature_prob __UpperCamelCase :str = mask_feature_length __UpperCamelCase :Tuple = mask_feature_min_masks # parameters for pretraining with codevector quantized representations __UpperCamelCase :Optional[Any] = num_codevectors_per_group __UpperCamelCase :Dict = num_codevector_groups __UpperCamelCase :Optional[int] = contrastive_logits_temperature __UpperCamelCase :Union[str, Any] = feat_quantizer_dropout __UpperCamelCase :List[str] = num_negatives __UpperCamelCase :Union[str, Any] = codevector_dim __UpperCamelCase :int = proj_codevector_dim __UpperCamelCase :Tuple = diversity_loss_weight # ctc loss __UpperCamelCase :List[Any] = ctc_loss_reduction __UpperCamelCase :int = ctc_zero_infinity # pretraining loss __UpperCamelCase :Optional[Any] = replace_prob @property def UpperCamelCase__ ( self) -> Dict: return functools.reduce(operator.mul , self.conv_stride , 1)
452
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class A ( a_ ): __UpperCAmelCase : "DiagonalGaussianDistribution" class A ( a_ , a_ ): __UpperCAmelCase : Union[str, Any] = True @register_to_config def __init__( self , snake_case_ = 3 , snake_case_ = 3 , snake_case_ = ("DownEncoderBlock2D",) , snake_case_ = ("UpDecoderBlock2D",) , snake_case_ = (6_4,) , snake_case_ = 1 , snake_case_ = "silu" , snake_case_ = 4 , snake_case_ = 3_2 , snake_case_ = 3_2 , snake_case_ = 0.18_215 , ) -> List[Any]: super().__init__() # pass init params to Encoder _a = Encoder( in_channels=snake_case_ , out_channels=snake_case_ , down_block_types=snake_case_ , block_out_channels=snake_case_ , layers_per_block=snake_case_ , act_fn=snake_case_ , norm_num_groups=snake_case_ , double_z=snake_case_ , ) # pass init params to Decoder _a = Decoder( in_channels=snake_case_ , out_channels=snake_case_ , up_block_types=snake_case_ , block_out_channels=snake_case_ , layers_per_block=snake_case_ , norm_num_groups=snake_case_ , act_fn=snake_case_ , ) _a = nn.Convad(2 * latent_channels , 2 * latent_channels , 1 ) _a = nn.Convad(snake_case_ , snake_case_ , 1 ) _a = False _a = False # only relevant if vae tiling is enabled _a = self.config.sample_size _a = ( self.config.sample_size[0] if isinstance(self.config.sample_size , (list, tuple) ) else self.config.sample_size ) _a = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) _a = 0.25 def __lowerCAmelCase ( self , snake_case_ , snake_case_=False ) -> List[str]: if isinstance(snake_case_ , (Encoder, Decoder) ): _a = value def __lowerCAmelCase ( self , snake_case_ = True ) -> List[Any]: _a = use_tiling def __lowerCAmelCase ( self ) -> str: self.enable_tiling(snake_case_ ) def __lowerCAmelCase ( self ) -> Dict: _a = True def __lowerCAmelCase ( self ) -> Tuple: _a = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __lowerCAmelCase ( self ) -> Dict[str, AttentionProcessor]: _a = {} def fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , "set_processor" ): _a = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) return processors for name, module in self.named_children(): fn_recursive_add_processors(snake_case_ , snake_case_ , snake_case_ ) return processors def __lowerCAmelCase ( self , snake_case_ ) -> Dict: _a = len(self.attn_processors.keys() ) if isinstance(snake_case_ , snake_case_ ) and len(snake_case_ ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(snake_case_ )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ): if hasattr(snake_case_ , "set_processor" ): if not isinstance(snake_case_ , snake_case_ ): module.set_processor(snake_case_ ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , snake_case_ , snake_case_ ) for name, module in self.named_children(): fn_recursive_attn_processor(snake_case_ , snake_case_ , snake_case_ ) def __lowerCAmelCase ( self ) -> Tuple: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(snake_case_ , return_dict=snake_case_ ) if self.use_slicing and x.shape[0] > 1: _a = [self.encoder(snake_case_ ) for x_slice in x.split(1 )] _a = torch.cat(snake_case_ ) else: _a = self.encoder(snake_case_ ) _a = self.quant_conv(snake_case_ ) _a = DiagonalGaussianDistribution(snake_case_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(snake_case_ , return_dict=snake_case_ ) _a = self.post_quant_conv(snake_case_ ) _a = self.decoder(snake_case_ ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case_ ) @apply_forward_hook def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: _a = [self._decode(snake_case_ ).sample for z_slice in z.split(1 )] _a = torch.cat(snake_case_ ) else: _a = self._decode(snake_case_ ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Optional[int]: _a = min(a.shape[2] , b.shape[2] , snake_case_ ) for y in range(snake_case_ ): _a = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ ) -> Tuple: _a = min(a.shape[3] , b.shape[3] , snake_case_ ) for x in range(snake_case_ ): _a = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> AutoencoderKLOutput: _a = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) _a = int(self.tile_latent_min_size * self.tile_overlap_factor ) _a = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. _a = [] for i in range(0 , x.shape[2] , snake_case_ ): _a = [] for j in range(0 , x.shape[3] , snake_case_ ): _a = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] _a = self.encoder(snake_case_ ) _a = self.quant_conv(snake_case_ ) row.append(snake_case_ ) rows.append(snake_case_ ) _a = [] for i, row in enumerate(snake_case_ ): _a = [] for j, tile in enumerate(snake_case_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _a = self.blend_v(rows[i - 1][j] , snake_case_ , snake_case_ ) if j > 0: _a = self.blend_h(row[j - 1] , snake_case_ , snake_case_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case_ , dim=3 ) ) _a = torch.cat(snake_case_ , dim=2 ) _a = DiagonalGaussianDistribution(snake_case_ ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = True ) -> Union[DecoderOutput, torch.FloatTensor]: _a = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) _a = int(self.tile_sample_min_size * self.tile_overlap_factor ) _a = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. _a = [] for i in range(0 , z.shape[2] , snake_case_ ): _a = [] for j in range(0 , z.shape[3] , snake_case_ ): _a = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] _a = self.post_quant_conv(snake_case_ ) _a = self.decoder(snake_case_ ) row.append(snake_case_ ) rows.append(snake_case_ ) _a = [] for i, row in enumerate(snake_case_ ): _a = [] for j, tile in enumerate(snake_case_ ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: _a = self.blend_v(rows[i - 1][j] , snake_case_ , snake_case_ ) if j > 0: _a = self.blend_h(row[j - 1] , snake_case_ , snake_case_ ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(snake_case_ , dim=3 ) ) _a = torch.cat(snake_case_ , dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=snake_case_ ) def __lowerCAmelCase ( self , snake_case_ , snake_case_ = False , snake_case_ = True , snake_case_ = None , ) -> Union[DecoderOutput, torch.FloatTensor]: _a = sample _a = self.encode(snake_case_ ).latent_dist if sample_posterior: _a = posterior.sample(generator=snake_case_ ) else: _a = posterior.mode() _a = self.decode(snake_case_ ).sample if not return_dict: return (dec,) return DecoderOutput(sample=snake_case_ )
131
import itertools import random import unittest import numpy as np from transformers import is_speech_available from transformers.testing_utils import require_torch, require_torchaudio from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import SpeechaTextFeatureExtractor UpperCAmelCase : Any = random.Random() def __lowerCamelCase ( lowerCamelCase__ : int , lowerCamelCase__ : Union[str, Any]=1.0 , lowerCamelCase__ : Union[str, Any]=None , lowerCamelCase__ : int=None ): '''simple docstring''' if rng is None: lowerCamelCase = global_rng lowerCamelCase = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class __lowercase ( unittest.TestCase ): """simple docstring""" def __init__( self , A , A=7 , A=4_00 , A=20_00 , A=24 , A=24 , A=0.0 , A=1_60_00 , A=True , A=True , ) -> str: '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = min_seq_length lowerCamelCase = max_seq_length lowerCamelCase = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCamelCase = feature_size lowerCamelCase = num_mel_bins lowerCamelCase = padding_value lowerCamelCase = sampling_rate lowerCamelCase = return_attention_mask lowerCamelCase = do_normalize def __A ( self ) -> List[str]: '''simple docstring''' return { "feature_size": self.feature_size, "num_mel_bins": self.num_mel_bins, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __A ( self , A=False , A=False ) -> Tuple: '''simple docstring''' def _flatten(A ): return list(itertools.chain(*A ) ) if equal_length: lowerCamelCase = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size lowerCamelCase = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCamelCase = [np.asarray(A ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class __lowercase ( a_ , unittest.TestCase ): """simple docstring""" UpperCamelCase : str = SpeechaTextFeatureExtractor if is_speech_available() else None def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = SpeechaTextFeatureExtractionTester(self ) def __A ( self , A ) -> List[Any]: '''simple docstring''' self.assertTrue(np.all(np.mean(A , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(A , axis=0 ) - 1 ) < 1e-3 ) ) def __A ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = [np.asarray(A ) for speech_input in speech_inputs] # Test feature size lowerCamelCase = feature_extractor(A , padding=A , return_tensors="""np""" ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.feature_size ) # Test not batched input lowerCamelCase = feature_extractor(speech_inputs[0] , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(np_speech_inputs[0] , return_tensors="""np""" ).input_features self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test batched lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCamelCase = [floats_list((1, x) )[0] for x in (8_00, 8_00, 8_00)] lowerCamelCase = np.asarray(A ) lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features lowerCamelCase = feature_extractor(A , return_tensors="""np""" ).input_features for enc_seq_a, enc_seq_a in zip(A , A ): self.assertTrue(np.allclose(A , A , atol=1e-3 ) ) def __A ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase = [None, 16, None] for max_length, padding in zip(A , A ): lowerCamelCase = feature_extractor( A , padding=A , max_length=A , return_attention_mask=A ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = [np.sum(A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = ["""longest""", """max_length""", """do_not_pad"""] lowerCamelCase = [None, 16, None] for max_length, padding in zip(A , A ): lowerCamelCase = feature_extractor( A , max_length=A , padding=A , return_tensors="""np""" , return_attention_mask=A ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = [np.sum(A ) for x in attention_mask] self._check_zero_mean_unit_variance(input_features[0][: fbank_feat_lengths[0]] ) self.assertTrue(input_features[0][fbank_feat_lengths[0] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[1][: fbank_feat_lengths[1]] ) self.assertTrue(input_features[0][fbank_feat_lengths[1] :].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_features[2][: fbank_feat_lengths[2]] ) def __A ( self ) -> int: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""max_length""" , max_length=4 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1] ) self._check_zero_mean_unit_variance(input_features[2] ) def __A ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""longest""" , max_length=4 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 4, 24) ) lowerCamelCase = [floats_list((1, x) )[0] for x in range(8_00 , 14_00 , 2_00 )] lowerCamelCase = feature_extractor( A , padding="""longest""" , max_length=16 , truncation=A , return_tensors="""np""" , return_attention_mask=A , ) lowerCamelCase = inputs.input_features lowerCamelCase = inputs.attention_mask lowerCamelCase = np.sum(attention_mask == 1 , axis=1 ) self._check_zero_mean_unit_variance(input_features[0, : fbank_feat_lengths[0]] ) self._check_zero_mean_unit_variance(input_features[1, : fbank_feat_lengths[1]] ) self._check_zero_mean_unit_variance(input_features[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertEqual(input_features.shape , (3, 6, 24) ) def __A ( self ) -> Optional[int]: '''simple docstring''' import torch lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = np.random.rand(1_00 , 32 ).astype(np.floataa ) lowerCamelCase = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCamelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""np""" ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) lowerCamelCase = feature_extractor.pad([{"""input_features""": inputs}] , return_tensors="""pt""" ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __A ( self , A ) -> Any: '''simple docstring''' from datasets import load_dataset lowerCamelCase = load_dataset("""hf-internal-testing/librispeech_asr_dummy""" , """clean""" , split="""validation""" ) # automatic decoding with librispeech lowerCamelCase = ds.sort("""id""" ).select(range(A ) )[:num_samples]["""audio"""] return [x["array"] for x in speech_samples] def __A ( self ) -> Any: '''simple docstring''' lowerCamelCase = np.array([ -1.5745, -1.7713, -1.7020, -1.6069, -1.2250, -1.1105, -0.9072, -0.8241, -1.2310, -0.8098, -0.3320, -0.4101, -0.7985, -0.4996, -0.8213, -0.9128, -1.0420, -1.1286, -1.0440, -0.7999, -0.8405, -1.2275, -1.5443, -1.4625, ] ) # fmt: on lowerCamelCase = self._load_datasamples(1 ) lowerCamelCase = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCamelCase = feature_extractor(A , return_tensors="""pt""" ).input_features self.assertEquals(input_features.shape , (1, 5_84, 24) ) self.assertTrue(np.allclose(input_features[0, 0, :30] , A , atol=1e-4 ) )
457
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __A : Optional[int] = logging.get_logger(__name__) __A : Union[str, Any] = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _a ( lowerCAmelCase): """simple docstring""" UpperCamelCase__ = """visual_bert""" def __init__( self : int , __UpperCamelCase : List[Any]=3_0_5_2_2 , __UpperCamelCase : Any=7_6_8 , __UpperCamelCase : int=5_1_2 , __UpperCamelCase : Tuple=1_2 , __UpperCamelCase : str=1_2 , __UpperCamelCase : int=3_0_7_2 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : int=0.1 , __UpperCamelCase : Optional[int]=0.1 , __UpperCamelCase : List[Any]=5_1_2 , __UpperCamelCase : Any=2 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : List[Any]=1e-12 , __UpperCamelCase : str=False , __UpperCamelCase : Tuple=True , __UpperCamelCase : Union[str, Any]=1 , __UpperCamelCase : str=0 , __UpperCamelCase : List[str]=2 , **__UpperCamelCase : List[str] , )->List[str]: super().__init__(pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = vocab_size _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = hidden_size _UpperCAmelCase = visual_embedding_dim _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = initializer_range _UpperCAmelCase = type_vocab_size _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = bypass_transformer _UpperCAmelCase = special_visual_initialize
95
"""simple docstring""" from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline __A : List[str] = logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase) class _a ( lowerCAmelCase): """simple docstring""" def __init__( self : Union[str, Any] , **__UpperCamelCase : Optional[Any] )->List[Any]: super().__init__(**__UpperCamelCase ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : Optional[int] , __UpperCamelCase : Union[np.ndarray, bytes, str] , **__UpperCamelCase : Tuple )->List[str]: return super().__call__(__UpperCamelCase , **__UpperCamelCase ) def lowercase__ ( self : Any , **__UpperCamelCase : Any )->Union[str, Any]: _UpperCAmelCase = {} if "candidate_labels" in kwargs: _UpperCAmelCase = kwargs['''candidate_labels'''] if "hypothesis_template" in kwargs: _UpperCAmelCase = kwargs['''hypothesis_template'''] return preprocess_params, {}, {} def lowercase__ ( self : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[Any]=None , __UpperCamelCase : Tuple="This is a sound of {}." )->int: if isinstance(__UpperCamelCase , __UpperCamelCase ): if audio.startswith('''http://''' ) or audio.startswith('''https://''' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _UpperCAmelCase = requests.get(__UpperCamelCase ).content else: with open(__UpperCamelCase , '''rb''' ) as f: _UpperCAmelCase = f.read() if isinstance(__UpperCamelCase , __UpperCamelCase ): _UpperCAmelCase = ffmpeg_read(__UpperCamelCase , self.feature_extractor.sampling_rate ) if not isinstance(__UpperCamelCase , np.ndarray ): raise ValueError('''We expect a numpy ndarray as input''' ) if len(audio.shape ) != 1: raise ValueError('''We expect a single channel audio input for ZeroShotAudioClassificationPipeline''' ) _UpperCAmelCase = self.feature_extractor( [audio] , sampling_rate=self.feature_extractor.sampling_rate , return_tensors='''pt''' ) _UpperCAmelCase = candidate_labels _UpperCAmelCase = [hypothesis_template.format(__UpperCamelCase ) for x in candidate_labels] _UpperCAmelCase = self.tokenizer(__UpperCamelCase , return_tensors=self.framework , padding=__UpperCamelCase ) _UpperCAmelCase = [text_inputs] return inputs def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Optional[int] )->Any: _UpperCAmelCase = model_inputs.pop('''candidate_labels''' ) _UpperCAmelCase = model_inputs.pop('''text_inputs''' ) if isinstance(text_inputs[0] , __UpperCamelCase ): _UpperCAmelCase = text_inputs[0] else: # Batching case. _UpperCAmelCase = text_inputs[0][0] _UpperCAmelCase = self.model(**__UpperCamelCase , **__UpperCamelCase ) _UpperCAmelCase = { '''candidate_labels''': candidate_labels, '''logits''': outputs.logits_per_audio, } return model_outputs def lowercase__ ( self : List[str] , __UpperCamelCase : Any )->List[Any]: _UpperCAmelCase = model_outputs.pop('''candidate_labels''' ) _UpperCAmelCase = model_outputs['''logits'''][0] if self.framework == "pt": _UpperCAmelCase = logits.softmax(dim=0 ) _UpperCAmelCase = probs.tolist() else: raise ValueError('''`tf` framework not supported.''' ) _UpperCAmelCase = [ {'''score''': score, '''label''': candidate_label} for score, candidate_label in sorted(zip(__UpperCamelCase , __UpperCamelCase ) , key=lambda __UpperCamelCase : -x[0] ) ] return result
95
1
'''simple docstring''' from typing import List, Optional from ...configuration_utils import PretrainedConfig from ...utils import logging a : List[str] = logging.get_logger(__name__) a : Tuple = { '''huggingface/autoformer-tourism-monthly''': '''https://huggingface.co/huggingface/autoformer-tourism-monthly/resolve/main/config.json''', } class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """autoformer""" __SCREAMING_SNAKE_CASE = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", """num_hidden_layers""": """encoder_layers""", } def __init__( self : List[Any] , a_ : Optional[int] = None , a_ : Optional[int] = None , a_ : str = "student_t" , a_ : str = "nll" , a_ : int = 1 , a_ : List[int] = [1, 2, 3, 4, 5, 6, 7] , a_ : bool = True , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : int = 0 , a_ : Optional[List[int]] = None , a_ : Optional[List[int]] = None , a_ : int = 64 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 2 , a_ : int = 32 , a_ : int = 32 , a_ : str = "gelu" , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : float = 0.1 , a_ : int = 100 , a_ : float = 0.02 , a_ : bool = True , a_ : Union[str, Any]=True , a_ : int = 10 , a_ : int = 25 , a_ : int = 3 , **a_ : Tuple , ): """simple docstring""" __snake_case = prediction_length __snake_case = context_length if context_length is not None else prediction_length __snake_case = distribution_output __snake_case = loss __snake_case = input_size __snake_case = num_time_features __snake_case = lags_sequence __snake_case = scaling __snake_case = num_dynamic_real_features __snake_case = num_static_real_features __snake_case = num_static_categorical_features if cardinality is not None and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The cardinality should be a list of the same length as `num_static_categorical_features`" ) __snake_case = cardinality else: __snake_case = [0] if embedding_dimension is not None and num_static_categorical_features > 0: if len(a_ ) != num_static_categorical_features: raise ValueError( "The embedding dimension should be a list of the same length as `num_static_categorical_features`" ) __snake_case = embedding_dimension else: __snake_case = [min(50 , (cat + 1) // 2 ) for cat in self.cardinality] __snake_case = num_parallel_samples # Transformer architecture configuration __snake_case = input_size * len(self.lags_sequence ) + self._number_of_features __snake_case = d_model __snake_case = encoder_attention_heads __snake_case = decoder_attention_heads __snake_case = encoder_ffn_dim __snake_case = decoder_ffn_dim __snake_case = encoder_layers __snake_case = decoder_layers __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = activation_function __snake_case = init_std __snake_case = use_cache # Autoformer __snake_case = label_length __snake_case = moving_average __snake_case = autocorrelation_factor super().__init__(is_encoder_decoder=a_ , **a_ ) @property def A ( self : Optional[int] ): """simple docstring""" return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
69
'''simple docstring''' import unittest from transformers import AutoTokenizer, FalconConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FalconForCausalLM, FalconForQuestionAnswering, FalconForSequenceClassification, FalconForTokenClassification, FalconModel, ) class SCREAMING_SNAKE_CASE__ : def __init__( self : str , a_ : List[str] , a_ : Tuple=3 , a_ : Any=7 , a_ : Any=True , a_ : Union[str, Any]=True , a_ : Tuple=False , a_ : Optional[int]=True , a_ : Any=99 , a_ : Dict=32 , a_ : Dict=5 , a_ : List[Any]=4 , a_ : Any=37 , a_ : Any="gelu" , a_ : List[str]=0.1 , a_ : Dict=0.1 , a_ : Optional[Any]=512 , a_ : List[Any]=16 , a_ : Any=2 , a_ : str=0.02 , a_ : Any=3 , a_ : List[Any]=4 , a_ : List[str]=None , ): """simple docstring""" __snake_case = parent __snake_case = batch_size __snake_case = seq_length __snake_case = is_training __snake_case = use_input_mask __snake_case = use_token_type_ids __snake_case = use_labels __snake_case = vocab_size __snake_case = hidden_size __snake_case = num_hidden_layers __snake_case = num_attention_heads __snake_case = intermediate_size __snake_case = hidden_act __snake_case = hidden_dropout_prob __snake_case = attention_probs_dropout_prob __snake_case = max_position_embeddings __snake_case = type_vocab_size __snake_case = type_sequence_label_size __snake_case = initializer_range __snake_case = num_labels __snake_case = num_choices __snake_case = scope def A ( self : Any ): """simple docstring""" __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __snake_case = None if self.use_input_mask: __snake_case = random_attention_mask([self.batch_size, self.seq_length] ) __snake_case = None __snake_case = None __snake_case = None __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __snake_case = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __snake_case = ids_tensor([self.batch_size] , self.num_choices ) __snake_case = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : Optional[int] ): """simple docstring""" return FalconConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a_ , initializer_range=self.initializer_range , pad_token_id=1 , new_decoder_architecture=a_ , ) def A ( self : List[str] , a_ : Dict , a_ : Tuple , a_ : Optional[Any] , a_ : Dict , a_ : Dict , a_ : Dict , a_ : Union[str, Any] ): """simple docstring""" __snake_case = FalconModel(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ ) __snake_case = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : List[Any] , a_ : List[Any] , a_ : Union[str, Any] , a_ : Optional[Any] , a_ : Any , a_ : List[Any] , a_ : Optional[Any] , a_ : Union[str, Any] , a_ : Tuple , a_ : Optional[int] , ): """simple docstring""" __snake_case = True __snake_case = FalconModel(a_ ) model.to(a_ ) model.eval() __snake_case = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , ) __snake_case = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , ) __snake_case = model(a_ , attention_mask=a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self : Optional[int] , a_ : int , a_ : int , a_ : List[Any] , a_ : str , a_ : List[str] , a_ : str , a_ : str , a_ : Union[str, Any] , a_ : Optional[int] , ): """simple docstring""" __snake_case = FalconForCausalLM(config=a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , a_ : Optional[int] , a_ : Optional[Any] , a_ : str , a_ : Tuple , a_ : str , a_ : List[Any] , a_ : Optional[Any] , a_ : Any , a_ : Dict , ): """simple docstring""" __snake_case = True __snake_case = True __snake_case = FalconForCausalLM(config=a_ ) model.to(a_ ) model.eval() # first forward pass __snake_case = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , use_cache=a_ , ) __snake_case = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __snake_case = ids_tensor((self.batch_size, 3) , config.vocab_size ) __snake_case = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __snake_case = torch.cat([input_ids, next_tokens] , dim=-1 ) __snake_case = torch.cat([input_mask, next_mask] , dim=-1 ) __snake_case = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , output_hidden_states=a_ , )["hidden_states"][0] __snake_case = model( a_ , attention_mask=a_ , encoder_hidden_states=a_ , encoder_attention_mask=a_ , past_key_values=a_ , output_hidden_states=a_ , )["hidden_states"][0] # select random slice __snake_case = ids_tensor((1,) , output_from_past.shape[-1] ).item() __snake_case = output_from_no_past[:, -3:, random_slice_idx].detach() __snake_case = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(a_ , a_ , atol=1e-3 ) ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = self.prepare_config_and_inputs() ( ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ( __snake_case ) , ) = config_and_inputs __snake_case = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): __SCREAMING_SNAKE_CASE = ( ( FalconModel, FalconForCausalLM, FalconForSequenceClassification, FalconForTokenClassification, FalconForQuestionAnswering, ) if is_torch_available() else () ) __SCREAMING_SNAKE_CASE = (FalconForCausalLM,) if is_torch_available() else () __SCREAMING_SNAKE_CASE = ( { """feature-extraction""": FalconModel, """text-classification""": FalconForSequenceClassification, """text-generation""": FalconForCausalLM, """question-answering""": FalconForQuestionAnswering, """token-classification""": FalconForTokenClassification, """zero-shot""": FalconForSequenceClassification, } if is_torch_available() else {} ) __SCREAMING_SNAKE_CASE = False __SCREAMING_SNAKE_CASE = False def A ( self : Optional[Any] ): """simple docstring""" __snake_case = FalconModelTester(self ) __snake_case = ConfigTester(self , config_class=a_ , hidden_size=37 ) def A ( self : Optional[Any] ): """simple docstring""" self.config_tester.run_common_tests() def A ( self : List[Any] ): """simple docstring""" __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def A ( self : List[str] ): """simple docstring""" __snake_case , *__snake_case = self.model_tester.prepare_config_and_inputs() for alibi in [True, False]: __snake_case = alibi self.model_tester.create_and_check_model(a_ , *a_ ) def A ( self : Tuple ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = input_dict["input_ids"] __snake_case = input_ids.ne(1 ).to(a_ ) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case = FalconForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Union[str, Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = "single_label_classification" __snake_case = input_dict["input_ids"] __snake_case = input_ids.ne(1 ).to(a_ ) __snake_case = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) __snake_case = FalconForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = input_dict["input_ids"] __snake_case = FalconForCausalLM(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , use_cache=a_ ) __snake_case = input_ids.shape[0] __snake_case = model._convert_to_rw_cache(result.past_key_values ) __snake_case = model._convert_cache_to_standard_format(a_ , a_ ) for layer in range(len(a_ ) ): for tensor_idx in range(2 ): self.assertTrue(rw_cache[layer][tensor_idx].ndim == 3 ) self.assertTrue(result.past_key_values[layer][tensor_idx].ndim == 4 ) self.assertTrue( torch.all(result.past_key_values[layer][tensor_idx] == standard_cache[layer][tensor_idx] ) ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() __snake_case = 3 __snake_case = "multi_label_classification" __snake_case = input_dict["input_ids"] __snake_case = input_ids.ne(1 ).to(a_ ) __snake_case = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) __snake_case = FalconForSequenceClassification(a_ ) model.to(a_ ) model.eval() __snake_case = model(a_ , attention_mask=a_ , labels=a_ ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def A ( self : Dict ): """simple docstring""" for model_class in self.all_generative_model_classes: __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() # If it doesn't support cache, pass the test if not hasattr(a_ , "use_cache" ): return __snake_case = model_class(a_ ).to(a_ ) if "use_cache" not in inputs: __snake_case = True __snake_case = model(**a_ ) # If "past_key_values" is not returned, pass the test (e.g. RWKV uses a different cache name and format) if "past_key_values" not in outputs: return __snake_case = ( getattr(a_ , "decoder_layers" , a_ ) or getattr(a_ , "num_decoder_layers" , a_ ) or config.num_hidden_layers ) __snake_case = getattr(a_ , "num_kv_heads" , config.num_attention_heads ) __snake_case = getattr(a_ , "d_model" , config.hidden_size ) __snake_case = embed_dim // num_attention_heads __snake_case = outputs["past_key_values"] self.assertEqual(len(a_ ) , a_ ) __snake_case , __snake_case = inputs["input_ids"].shape for i in range(a_ ): if config.new_decoder_architecture: __snake_case = config.num_attention_heads elif config.multi_query: __snake_case = 1 self.assertEqual(len(past_kv[0] ) , 2 ) # K V for the decoder = 2 self.assertEqual( past_kv[i][0].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) self.assertEqual( past_kv[i][1].shape , (batch_size, num_attention_heads, seq_length, per_head_embed_dim) ) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @slow def A ( self : Any ): """simple docstring""" __snake_case = AutoTokenizer.from_pretrained("Rocketknight1/falcon-rw-1b" ) __snake_case = FalconForCausalLM.from_pretrained("Rocketknight1/falcon-rw-1b" ) model.eval() model.to(a_ ) __snake_case = tokenizer("My favorite food is" , return_tensors="pt" ).to(a_ ) __snake_case = ( "My favorite food is pizza. I love it so much that I have a pizza party every year for my birthday." ) __snake_case = model.generate(**a_ , do_sample=a_ , max_new_tokens=19 ) __snake_case = tokenizer.batch_decode(a_ )[0] self.assertEqual(a_ , a_ ) @slow def A ( self : Optional[int] ): """simple docstring""" for repo in ["Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b"]: __snake_case = AutoTokenizer.from_pretrained(a_ ) __snake_case = FalconForCausalLM.from_pretrained(a_ ) model.eval() model.to(a_ ) __snake_case = tokenizer("My favorite food is" , return_tensors="pt" ).to(a_ ) # We just test that these run without errors - the models are randomly initialized # and so the actual text outputs will be garbage model.generate(**a_ , do_sample=a_ , max_new_tokens=4 ) model.generate(**a_ , do_sample=a_ , max_new_tokens=4 ) model.generate(**a_ , num_beams=2 , max_new_tokens=4 ) @slow def A ( self : Any ): """simple docstring""" with torch.no_grad(): for repo in [ "Rocketknight1/falcon-rw-1b", "Rocketknight1/tiny-random-falcon-7b", "Rocketknight1/tiny-random-falcon-40b", ]: __snake_case = AutoTokenizer.from_pretrained(a_ ) __snake_case = FalconForCausalLM.from_pretrained(a_ ) model.eval() model.to(device=a_ ) __snake_case = tokenizer("My favorite food is" , return_tensors="pt" ).to(a_ ) # Test results are the same with and without cache __snake_case = model.generate(**a_ , do_sample=a_ , max_new_tokens=20 , use_cache=a_ ) __snake_case = model.generate(**a_ , do_sample=a_ , max_new_tokens=20 , use_cache=a_ ) self.assertTrue((outputs_cache - outputs_no_cache).sum().item() == 0 )
69
1
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class _A ( lowerCAmelCase ): snake_case__ : List[Any] = ['image_processor', 'tokenizer'] snake_case__ : str = 'BlipImageProcessor' snake_case__ : str = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" lowercase = False super().__init__(__lowerCAmelCase , __lowerCAmelCase ) lowercase = self.image_processor def __call__( self , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = True , __lowerCAmelCase = False , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = 0 , __lowerCAmelCase = None , __lowerCAmelCase = None , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = False , __lowerCAmelCase = True , __lowerCAmelCase = None , **__lowerCAmelCase , ): """simple docstring""" if images is None and text is None: raise ValueError("""You have to specify either images or text.""" ) # Get only text if images is None: lowercase = self.tokenizer lowercase = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) return text_encoding # add pixel_values lowercase = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase ) if text is not None: lowercase = self.tokenizer( text=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , max_length=__lowerCAmelCase , stride=__lowerCAmelCase , pad_to_multiple_of=__lowerCAmelCase , return_attention_mask=__lowerCAmelCase , return_overflowing_tokens=__lowerCAmelCase , return_special_tokens_mask=__lowerCAmelCase , return_offsets_mapping=__lowerCAmelCase , return_token_type_ids=__lowerCAmelCase , return_length=__lowerCAmelCase , verbose=__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase , ) else: lowercase = None if text_encoding is not None: encoding_image_processor.update(__lowerCAmelCase ) return encoding_image_processor def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def A__ ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def A__ ( self ): """simple docstring""" lowercase = self.tokenizer.model_input_names lowercase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
197
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase__ ( lowerCAmelCase__ :int ) -> list[int]: '''simple docstring''' if num <= 0: lowercase = f'{num}: Invalid input, please enter a positive integer.' raise ValueError(lowerCAmelCase__ ) lowercase = [True] * (num + 1) lowercase = [] lowercase = 2 lowercase = int(math.sqrt(lowerCAmelCase__ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(lowerCAmelCase__ ) # Set multiples of start be False for i in range(start * start , num + 1 , lowerCAmelCase__ ): if sieve[i] is True: lowercase = False start += 1 for j in range(end + 1 , num + 1 ): if sieve[j] is True: prime.append(lowerCAmelCase__ ) return prime if __name__ == "__main__": print(prime_sieve(int(input("""Enter a positive integer: """).strip())))
197
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : UNetaDModel __SCREAMING_SNAKE_CASE : ScoreSdeVeScheduler def __init__( self : str , SCREAMING_SNAKE_CASE__ : UNetaDModel , SCREAMING_SNAKE_CASE__ : ScoreSdeVeScheduler ): '''simple docstring''' super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE__ , scheduler=SCREAMING_SNAKE_CASE__ ) @torch.no_grad() def __call__( self : Tuple , SCREAMING_SNAKE_CASE__ : int = 1 , SCREAMING_SNAKE_CASE__ : int = 2_0_0_0 , SCREAMING_SNAKE_CASE__ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = "pil" , SCREAMING_SNAKE_CASE__ : bool = True , **SCREAMING_SNAKE_CASE__ : List[str] , ): '''simple docstring''' __a : str = self.unet.config.sample_size __a : Any = (batch_size, 3, img_size, img_size) __a : List[str] = self.unet __a : str = randn_tensor(SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) * self.scheduler.init_noise_sigma __a : Union[str, Any] = sample.to(self.device ) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE__ ) self.scheduler.set_sigmas(SCREAMING_SNAKE_CASE__ ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __a : Tuple = self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __a : Any = self.unet(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample __a : List[str] = self.scheduler.step_correct(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ).prev_sample # prediction step __a : Tuple = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ).sample __a : Any = self.scheduler.step_pred(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , generator=SCREAMING_SNAKE_CASE__ ) __a , __a : int = output.prev_sample, output.prev_sample_mean __a : Tuple = sample_mean.clamp(0 , 1 ) __a : Optional[Any] = sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __a : str = self.numpy_to_pil(SCREAMING_SNAKE_CASE__ ) if not return_dict: return (sample,) return ImagePipelineOutput(images=SCREAMING_SNAKE_CASE__ )
47
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Optional[Any] = logging.get_logger(__name__) lowerCamelCase : Tuple = { '''kakaobrain/align-base''': '''https://huggingface.co/kakaobrain/align-base/resolve/main/config.json''', } class lowerCAmelCase ( __a ): '''simple docstring''' _A : List[str] = '''align_text_model''' def __init__( self : int , __a : Optional[int]=30522 , __a : int=768 , __a : Optional[Any]=12 , __a : Any=12 , __a : Tuple=3072 , __a : Tuple="gelu" , __a : List[Any]=0.1 , __a : Optional[int]=0.1 , __a : Dict=512 , __a : List[Any]=2 , __a : Dict=0.02 , __a : Optional[int]=1E-12 , __a : int=0 , __a : Optional[int]="absolute" , __a : Tuple=True , **__a : Union[str, Any] , ) -> Any: """simple docstring""" super().__init__(**__a ) __lowercase : Tuple = vocab_size __lowercase : Dict = hidden_size __lowercase : Tuple = num_hidden_layers __lowercase : Union[str, Any] = num_attention_heads __lowercase : Optional[Any] = hidden_act __lowercase : Tuple = intermediate_size __lowercase : List[str] = hidden_dropout_prob __lowercase : List[str] = attention_probs_dropout_prob __lowercase : Any = max_position_embeddings __lowercase : str = type_vocab_size __lowercase : List[str] = initializer_range __lowercase : Optional[int] = layer_norm_eps __lowercase : Optional[int] = position_embedding_type __lowercase : Union[str, Any] = use_cache __lowercase : int = pad_token_id @classmethod def lowerCAmelCase ( cls : Tuple , __a : Union[str, os.PathLike] , **__a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : List[Any] = cls.get_config_dict(__a , **__a ) # get the text config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __lowercase : Tuple = config_dict["""text_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : int = '''align_vision_model''' def __init__( self : List[str] , __a : int = 3 , __a : int = 600 , __a : float = 2.0 , __a : float = 3.1 , __a : int = 8 , __a : List[int] = [3, 3, 5, 3, 5, 5, 3] , __a : List[int] = [32, 16, 24, 40, 80, 112, 192] , __a : List[int] = [16, 24, 40, 80, 112, 192, 320] , __a : List[int] = [] , __a : List[int] = [1, 2, 2, 2, 1, 2, 1] , __a : List[int] = [1, 2, 2, 3, 3, 4, 1] , __a : List[int] = [1, 6, 6, 6, 6, 6, 6] , __a : float = 0.25 , __a : str = "swish" , __a : int = 2560 , __a : str = "mean" , __a : float = 0.02 , __a : float = 0.001 , __a : float = 0.99 , __a : float = 0.2 , **__a : Union[str, Any] , ) -> Tuple: """simple docstring""" super().__init__(**__a ) __lowercase : Any = num_channels __lowercase : Tuple = image_size __lowercase : Tuple = width_coefficient __lowercase : Any = depth_coefficient __lowercase : str = depth_divisor __lowercase : Union[str, Any] = kernel_sizes __lowercase : int = in_channels __lowercase : List[Any] = out_channels __lowercase : int = depthwise_padding __lowercase : Union[str, Any] = strides __lowercase : Optional[int] = num_block_repeats __lowercase : List[str] = expand_ratios __lowercase : int = squeeze_expansion_ratio __lowercase : str = hidden_act __lowercase : List[str] = hidden_dim __lowercase : Dict = pooling_type __lowercase : Any = initializer_range __lowercase : Tuple = batch_norm_eps __lowercase : int = batch_norm_momentum __lowercase : Tuple = drop_connect_rate __lowercase : Tuple = sum(__a ) * 4 @classmethod def lowerCAmelCase ( cls : str , __a : Union[str, os.PathLike] , **__a : Union[str, Any] ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(__a ) __lowercase , __lowercase : Optional[int] = cls.get_config_dict(__a , **__a ) # get the vision config dict if we are loading from AlignConfig if config_dict.get("""model_type""" ) == "align": __lowercase : List[str] = config_dict["""vision_config"""] if "model_type" in config_dict and hasattr(cls , """model_type""" ) and config_dict["model_type"] != cls.model_type: logger.warning( F"You are using a model of type {config_dict['model_type']} to instantiate a model of type " F"{cls.model_type}. This is not supported for all configurations of models and can yield errors." ) return cls.from_dict(__a , **__a ) class lowerCAmelCase ( __a ): '''simple docstring''' _A : Union[str, Any] = '''align''' _A : Optional[int] = True def __init__( self : Optional[Any] , __a : Optional[int]=None , __a : str=None , __a : int=640 , __a : List[Any]=1.0 , __a : Optional[int]=0.02 , **__a : List[Any] , ) -> Any: """simple docstring""" super().__init__(**__a ) if text_config is None: __lowercase : Optional[Any] = {} logger.info("""text_config is None. Initializing the AlignTextConfig with default values.""" ) if vision_config is None: __lowercase : Dict = {} logger.info("""vision_config is None. Initializing the AlignVisionConfig with default values.""" ) __lowercase : str = AlignTextConfig(**__a ) __lowercase : int = AlignVisionConfig(**__a ) __lowercase : str = projection_dim __lowercase : Optional[int] = temperature_init_value __lowercase : Dict = initializer_range @classmethod def lowerCAmelCase ( cls : List[Any] , __a : AlignTextConfig , __a : AlignVisionConfig , **__a : Any ) -> Any: """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **__a ) def lowerCAmelCase ( self : Dict ) -> Optional[Any]: """simple docstring""" __lowercase : List[str] = copy.deepcopy(self.__dict__ ) __lowercase : Tuple = self.text_config.to_dict() __lowercase : List[Any] = self.vision_config.to_dict() __lowercase : List[str] = self.__class__.model_type return output
149
0
'''simple docstring''' import requests from bsa import BeautifulSoup def __lowerCamelCase ( __lowerCAmelCase : str = "AAPL" ) -> str: snake_case = F'''https://in.finance.yahoo.com/quote/{symbol}?s={symbol}''' snake_case = BeautifulSoup(requests.get(__lowerCAmelCase ).text , """html.parser""" ) snake_case = """My(6px) Pos(r) smartphone_Mt(6px)""" return soup.find("""div""" , class_=class_ ).find("""span""" ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(F"""Current {symbol:<4} stock price is {stock_price(symbol):>8}""")
517
'''simple docstring''' import argparse from collections import defaultdict import yaml _SCREAMING_SNAKE_CASE = "docs/source/en/_toctree.yml" def __lowerCamelCase ( __lowerCAmelCase : Tuple ) -> Optional[int]: snake_case = defaultdict(__lowerCAmelCase ) for doc in model_doc: counts[doc["local"]] += 1 snake_case = [key for key, value in counts.items() if value > 1] snake_case = [] for duplicate_key in duplicates: snake_case = list({doc["""title"""] for doc in model_doc if doc["""local"""] == duplicate_key} ) if len(__lowerCAmelCase ) > 1: raise ValueError( F'''{duplicate_key} is present several times in the documentation table of content at ''' """`docs/source/en/_toctree.yml` with different *Title* values. Choose one of those and remove the """ """others.""" ) # Only add this once new_doc.append({"""local""": duplicate_key, """title""": titles[0]} ) # Add none duplicate-keys new_doc.extend([doc for doc in model_doc if counts[doc["""local"""]] == 1] ) # Sort return sorted(__lowerCAmelCase , key=lambda __lowerCAmelCase : s["title"].lower() ) def __lowerCamelCase ( __lowerCAmelCase : Any=False ) -> Optional[Any]: with open(__lowerCAmelCase , encoding="""utf-8""" ) as f: snake_case = yaml.safe_load(f.read() ) # Get to the API doc snake_case = 0 while content[api_idx]["title"] != "API": api_idx += 1 snake_case = content[api_idx]["""sections"""] # Then to the model doc snake_case = 0 while api_doc[model_idx]["title"] != "Models": model_idx += 1 snake_case = api_doc[model_idx]["""sections"""] snake_case = [(idx, section) for idx, section in enumerate(__lowerCAmelCase ) if """sections""" in section] snake_case = False for idx, modality_doc in modalities_docs: snake_case = modality_doc["""sections"""] snake_case = clean_model_doc_toc(__lowerCAmelCase ) if old_modality_doc != new_modality_doc: snake_case = True if overwrite: snake_case = new_modality_doc if diff: if overwrite: snake_case = model_doc snake_case = api_doc with open(__lowerCAmelCase , """w""" , encoding="""utf-8""" ) as f: f.write(yaml.dump(__lowerCAmelCase , allow_unicode=__lowerCAmelCase ) ) else: raise ValueError( """The model doc part of the table of content is not properly sorted, run `make style` to fix this.""" ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") _SCREAMING_SNAKE_CASE = parser.parse_args() check_model_doc(args.fix_and_overwrite)
517
1
"""simple docstring""" import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor __magic_name__ = logging.getLogger(__name__) __magic_name__ = 50 # max width of layer names __magic_name__ = 70 # max width of quantizer names def _A ( __lowercase ): """simple docstring""" lowerCamelCase__ = parser.add_argument_group("""quant_trainer arguments""" ) group.add_argument("""--wprec""" , type=__lowercase , default=8 , help="""weight precision""" ) group.add_argument("""--aprec""" , type=__lowercase , default=8 , help="""activation precision""" ) group.add_argument("""--quant-per-tensor""" , action="""store_true""" , help="""per tensor weight scaling""" ) group.add_argument("""--quant-disable""" , action="""store_true""" , help="""disable all quantizers""" ) group.add_argument("""--quant-disable-embeddings""" , action="""store_true""" , help="""disable all embeddings quantizers""" ) group.add_argument("""--quant-disable-keyword""" , type=__lowercase , nargs="""+""" , help="""disable quantizers by keyword""" ) group.add_argument("""--quant-disable-layer-module""" , type=__lowercase , help="""disable quantizers by keyword under layer.""" ) group.add_argument("""--quant-enable-layer-module""" , type=__lowercase , help="""enable quantizers by keyword under layer""" ) group.add_argument("""--calibrator""" , default="""max""" , help="""which quantization range calibrator to use""" ) group.add_argument("""--percentile""" , default=__lowercase , type=__lowercase , help="""percentile for PercentileCalibrator""" ) group.add_argument("""--fuse-qkv""" , action="""store_true""" , help="""use the same scale factor for qkv""" ) group.add_argument("""--clip-gelu""" , metavar="""N""" , type=__lowercase , help="""clip gelu output maximum value to N""" ) group.add_argument( """--recalibrate-weights""" , action="""store_true""" , help=( """recalibrate weight amaxes by taking the max of the weights.""" """ amaxes will be computed with the current quantization granularity (axis).""" ) , ) def _A ( __lowercase ): """simple docstring""" if args.calibrator == "max": lowerCamelCase__ = """max""" elif args.calibrator == "percentile": if args.percentile is None: raise ValueError("""Specify --percentile when using percentile calibrator""" ) lowerCamelCase__ = """histogram""" elif args.calibrator == "mse": lowerCamelCase__ = """histogram""" else: raise ValueError(f"""Invalid calibrator {args.calibrator}""" ) lowerCamelCase__ = QuantDescriptor(num_bits=args.aprec , calib_method=__lowercase ) lowerCamelCase__ = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(__lowercase ) quant_nn.QuantLinear.set_default_quant_desc_weight(__lowercase ) def _A ( __lowercase , __lowercase , __lowercase=False , __lowercase=False ): """simple docstring""" logger.info("""Configuring Model for Quantization""" ) logger.info(f"""using quantization package {pytorch_quantization.__file__}""" ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(__lowercase , ["""embeddings"""] , which="""weight""" , _disabled=__lowercase ) if args.quant_disable: set_quantizer_by_name(__lowercase , [""""""] , _disabled=__lowercase ) if args.quant_disable_keyword: set_quantizer_by_name(__lowercase , args.quant_disable_keyword , _disabled=__lowercase ) if args.quant_disable_layer_module: set_quantizer_by_name(__lowercase , [r"""layer.\d+.""" + args.quant_disable_layer_module] , _disabled=__lowercase ) if args.quant_enable_layer_module: set_quantizer_by_name(__lowercase , [r"""layer.\d+.""" + args.quant_enable_layer_module] , _disabled=__lowercase ) if args.recalibrate_weights: recalibrate_weights(__lowercase ) if args.fuse_qkv: fuse_qkv(__lowercase , __lowercase ) if args.clip_gelu: clip_gelu(__lowercase , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(__lowercase ) def _A ( __lowercase ): """simple docstring""" logger.info("""Enabling Calibration""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f"""{name:80}: {module}""" ) def _A ( __lowercase , __lowercase ): """simple docstring""" logger.info("""Loading calibrated amax""" ) for name, module in model.named_modules(): if name.endswith("""_quantizer""" ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax("""percentile""" , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(__lowercase ) def _A ( __lowercase , __lowercase ): """simple docstring""" def fusea(__lowercase , __lowercase , __lowercase ): for mod in [qq, qk, qv]: if not hasattr(__lowercase , """_amax""" ): print(""" WARNING: NO AMAX BUFFER""" ) return lowerCamelCase__ = qq._amax.detach().item() lowerCamelCase__ = qk._amax.detach().item() lowerCamelCase__ = qv._amax.detach().item() lowerCamelCase__ = max(__lowercase , __lowercase , __lowercase ) qq._amax.fill_(__lowercase ) qk._amax.fill_(__lowercase ) qv._amax.fill_(__lowercase ) logger.info(f""" q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}""" ) for name, mod in model.named_modules(): if name.endswith(""".attention.self""" ): logger.info(f"""FUSE_QKV: {name:{name_width}}""" ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def _A ( __lowercase , __lowercase ): """simple docstring""" for name, mod in model.named_modules(): if name.endswith(""".output.dense""" ) and not name.endswith("""attention.output.dense""" ): lowerCamelCase__ = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=__lowercase ) lowerCamelCase__ = mod._input_quantizer._amax.data.detach().item() logger.info(f"""CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}""" ) def _A ( __lowercase ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowercase , """_weight_quantizer""" ) and mod._weight_quantizer.axis is not None: lowerCamelCase__ = mod.weight.shape[0] lowerCamelCase__ = mod._weight_quantizer._amax.detach() lowerCamelCase__ = torch.ones(__lowercase , dtype=amax.dtype , device=amax.device ) * amax print(f"""expanding {name} {amax} -> {mod._weight_quantizer._amax}""" ) def _A ( __lowercase ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowercase , """_weight_quantizer""" ): if not hasattr(mod.weight_quantizer , """_amax""" ): print("""RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER""" ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) lowerCamelCase__ = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) lowerCamelCase__ = set(range(len(mod.weight.size() ) ) ) - axis_set lowerCamelCase__ = pytorch_quantization.utils.reduce_amax(mod.weight , axis=__lowercase , keepdims=__lowercase ).detach() logger.info(f"""RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}""" ) lowerCamelCase__ = amax def _A ( __lowercase , __lowercase=25 , __lowercase=180 , __lowercase=None ): """simple docstring""" if ignore is None: lowerCamelCase__ = [] elif not isinstance(__lowercase , __lowercase ): lowerCamelCase__ = [ignore] lowerCamelCase__ = 0 for name, mod in model.named_modules(): if not hasattr(__lowercase , """weight""" ): continue lowerCamelCase__ = max(__lowercase , len(__lowercase ) ) for name, mod in model.named_modules(): lowerCamelCase__ = getattr(__lowercase , """_input_quantizer""" , __lowercase ) lowerCamelCase__ = getattr(__lowercase , """_weight_quantizer""" , __lowercase ) if not hasattr(__lowercase , """weight""" ): continue if type(__lowercase ) in ignore: continue if [True for s in ignore if type(__lowercase ) is str and s in name]: continue lowerCamelCase__ = f"""Act:{input_q.extra_repr()}""" lowerCamelCase__ = f"""Wgt:{weight_q.extra_repr()}""" lowerCamelCase__ = f"""{name:{name_width}} {act_str} {wgt_str}""" if len(__lowercase ) <= line_width: logger.info(__lowercase ) else: logger.info(f"""{name:{name_width}} {act_str}""" ) logger.info(f"""{' ':{name_width}} {wgt_str}""" ) def _A ( __lowercase ): """simple docstring""" lowerCamelCase__ = 0 for name, mod in model.named_modules(): if isinstance(__lowercase , pytorch_quantization.nn.TensorQuantizer ): print(f"""{name:80} {mod}""" ) count += 1 print(f"""{count} TensorQuantizers found in model""" ) def _A ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ): """simple docstring""" lowerCamelCase__ = getattr(__lowercase , __lowercase , __lowercase ) if quantizer_mod is not None: assert hasattr(__lowercase , __lowercase ) setattr(__lowercase , __lowercase , __lowercase ) else: logger.warning(f"""{name} has no {quantizer}""" ) def _A ( __lowercase , __lowercase , __lowercase="both" , **__lowercase ): """simple docstring""" lowerCamelCase__ = f"""Warning: changing {which} quantizers of {name:{qname_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" if which in ["input", "both"]: set_quantizer(__lowercase , __lowercase , """_input_quantizer""" , __lowercase , __lowercase ) if which in ["weight", "both"]: set_quantizer(__lowercase , __lowercase , """_weight_quantizer""" , __lowercase , __lowercase ) logger.info(__lowercase ) def _A ( __lowercase , __lowercase , **__lowercase ): """simple docstring""" for name, mod in model.named_modules(): if hasattr(__lowercase , """_input_quantizer""" ) or hasattr(__lowercase , """_weight_quantizer""" ): for n in names: if re.search(__lowercase , __lowercase ): set_quantizers(__lowercase , __lowercase , **__lowercase ) elif name.endswith("""_quantizer""" ): for n in names: if re.search(__lowercase , __lowercase ): lowerCamelCase__ = f"""Warning: changing {name:{name_width}}""" for k, v in kwargs.items(): s += f""" {k}={v}""" setattr(__lowercase , __lowercase , __lowercase ) logger.info(__lowercase )
129
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) __magic_name__ = {"""configuration_reformer""": ["""REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ReformerConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["""ReformerTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ["""ReformerTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ """REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """ReformerAttention""", """ReformerForMaskedLM""", """ReformerForQuestionAnswering""", """ReformerForSequenceClassification""", """ReformerLayer""", """ReformerModel""", """ReformerModelWithLMHead""", """ReformerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
129
1
from __future__ import annotations from collections.abc import Callable from typing import Generic, TypeVar __magic_name__ = TypeVar('T') __magic_name__ = TypeVar('U') class __lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self : Dict ,_a : Tuple ,_a : Optional[Any] ): '''simple docstring''' A_ : Any = key A_ : List[Any] = val A_ : DoubleLinkedListNode[T, U] | None = None A_ : DoubleLinkedListNode[T, U] | None = None def __repr__( self : str ): '''simple docstring''' return ( f'Node: key: {self.key}, val: {self.val}, ' f'has next: {bool(self.next )}, has prev: {bool(self.prev )}' ) class __lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' def __init__( self : Tuple ): '''simple docstring''' A_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_ ,lowercase_ ) A_ : DoubleLinkedListNode[T, U] = DoubleLinkedListNode(lowercase_ ,lowercase_ ) A_ : Union[str, Any] = self.rear, self.head def __repr__( self : List[str] ): '''simple docstring''' A_ : Dict = ["DoubleLinkedList"] A_ : Dict = self.head while node.next is not None: rep.append(str(lowercase_ ) ) A_ : List[str] = node.next rep.append(str(self.rear ) ) return ",\n ".join(lowercase_ ) def _a ( self : int ,_a : List[Any] ): '''simple docstring''' A_ : List[str] = self.rear.prev # All nodes other than self.head are guaranteed to have non-None previous assert previous is not None A_ : Tuple = node A_ : str = previous A_ : Optional[Any] = node A_ : Any = self.rear def _a ( self : int ,_a : Optional[int] ): '''simple docstring''' if node.prev is None or node.next is None: return None A_ : Union[str, Any] = node.next A_ : Optional[int] = node.prev A_ : str = None A_ : int = None return node class __lowerCAmelCase ( Generic[T, U] ): '''simple docstring''' a_ = {} def __init__( self : Optional[int] ,_a : Union[str, Any] ): '''simple docstring''' A_ : DoubleLinkedList[T, U] = DoubleLinkedList() A_ : List[str] = capacity A_ : Any = 0 A_ : Dict = 0 A_ : Union[str, Any] = 0 A_ : dict[T, DoubleLinkedListNode[T, U]] = {} def __repr__( self : str ): '''simple docstring''' return ( f'CacheInfo(hits={self.hits}, misses={self.miss}, ' f'capacity={self.capacity}, current size={self.num_keys})' ) def __contains__( self : str ,_a : int ): '''simple docstring''' return key in self.cache def _a ( self : Any ,_a : int ): '''simple docstring''' if key in self.cache: self.hits += 1 A_ : DoubleLinkedListNode[T, U] = self.cache[key] A_ : Optional[Any] = self.list.remove(self.cache[key] ) assert node == value_node # node is guaranteed not None because it is in self.cache assert node is not None self.list.add(lowercase_ ) return node.val self.miss += 1 return None def _a ( self : Tuple ,_a : Tuple ,_a : Dict ): '''simple docstring''' if key not in self.cache: if self.num_keys >= self.capacity: # delete first node (oldest) when over capacity A_ : Optional[Any] = self.list.head.next # guaranteed to have a non-None first node when num_keys > 0 # explain to type checker via assertions assert first_node is not None assert first_node.key is not None assert ( self.list.remove(lowercase_ ) is not None ) # node guaranteed to be in list assert node.key is not None del self.cache[first_node.key] self.num_keys -= 1 A_ : Dict = DoubleLinkedListNode(lowercase_ ,lowercase_ ) self.list.add(self.cache[key] ) self.num_keys += 1 else: # bump node to the end of the list, update value A_ : List[Any] = self.list.remove(self.cache[key] ) assert node is not None # node guaranteed to be in list A_ : Optional[Any] = value self.list.add(lowercase_ ) @classmethod def _a ( cls : Optional[Any] ,_a : str = 128 ): '''simple docstring''' def cache_decorator_inner(_a : str ) -> Callable[..., U]: def cache_decorator_wrapper(*_a : Any ) -> U: if func not in cls.decorator_function_to_instance_map: A_ : List[str] = LRUCache(lowercase_ ) A_ : Optional[Any] = cls.decorator_function_to_instance_map[func].get(args[0] ) if result is None: A_ : Any = func(*lowercase_ ) cls.decorator_function_to_instance_map[func].put(args[0] ,lowercase_ ) return result def cache_info() -> LRUCache[T, U]: return cls.decorator_function_to_instance_map[func] setattr(lowercase_ ,"""cache_info""" ,lowercase_ ) # noqa: B010 return cache_decorator_wrapper return cache_decorator_inner if __name__ == "__main__": import doctest doctest.testmod()
703
'''simple docstring''' import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Tuple , lowerCamelCase : int , lowerCamelCase : Optional[Any] , lowerCamelCase : str=True , lowerCamelCase : Optional[Any]="pt"): A_ : Optional[int] = {"""add_prefix_space""": True} if isinstance(lowerCamelCase , lowerCamelCase) and not line.startswith(""" """) else {} A_ : Optional[int] = padding_side return tokenizer( [line] , max_length=lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=lowerCamelCase , return_tensors=lowerCamelCase , add_special_tokens=lowerCamelCase , **lowerCamelCase , ) def lowerCamelCase ( lowerCamelCase : Optional[int] , lowerCamelCase : Union[str, Any] , lowerCamelCase : List[Any]=None , ): A_ : Dict = input_ids.ne(lowerCamelCase).any(dim=0) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self : List[Any] ,_a : Optional[Any] ,_a : Tuple ,_a : Dict ,_a : Tuple ,_a : Tuple="train" ,_a : Optional[int]=None ,_a : Any=None ,_a : int=None ,_a : Union[str, Any]="" ,): '''simple docstring''' super().__init__() A_ : Union[str, Any] = Path(_a ).joinpath(type_path + """.source""" ) A_ : Any = Path(_a ).joinpath(type_path + """.target""" ) A_ : Dict = self.get_char_lens(self.src_file ) A_ : Optional[int] = max_source_length A_ : List[str] = max_target_length assert min(self.src_lens ) > 0, f'found empty line in {self.src_file}' A_ : List[Any] = tokenizer A_ : Optional[Any] = prefix if n_obs is not None: A_ : Any = self.src_lens[:n_obs] A_ : Optional[int] = src_lang A_ : Tuple = tgt_lang def __len__( self : Tuple ): '''simple docstring''' return len(self.src_lens ) def __getitem__( self : List[str] ,_a : Tuple ): '''simple docstring''' A_ : int = index + 1 # linecache starts at 1 A_ : Union[str, Any] = self.prefix + linecache.getline(str(self.src_file ) ,_a ).rstrip("""\n""" ) A_ : Dict = linecache.getline(str(self.tgt_file ) ,_a ).rstrip("""\n""" ) assert source_line, f'empty source line for index {index}' assert tgt_line, f'empty tgt line for index {index}' # Need to add eos token manually for T5 if isinstance(self.tokenizer ,_a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right A_ : List[str] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,_a ) else self.tokenizer ) A_ : Any = self.tokenizer.generator if isinstance(self.tokenizer ,_a ) else self.tokenizer A_ : Optional[int] = encode_line(_a ,_a ,self.max_source_length ,"""right""" ) A_ : Optional[int] = encode_line(_a ,_a ,self.max_target_length ,"""right""" ) A_ : Optional[Any] = source_inputs["""input_ids"""].squeeze() A_ : Dict = target_inputs["""input_ids"""].squeeze() A_ : Union[str, Any] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def _a ( _a : int ): '''simple docstring''' return [len(_a ) for x in Path(_a ).open().readlines()] def _a ( self : Optional[int] ,_a : Dict ): '''simple docstring''' A_ : str = torch.stack([x["""input_ids"""] for x in batch] ) A_ : Optional[Any] = torch.stack([x["""attention_mask"""] for x in batch] ) A_ : str = torch.stack([x["""decoder_input_ids"""] for x in batch] ) A_ : Union[str, Any] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : str = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,_a ) else self.tokenizer.pad_token_id ) A_ : List[str] = trim_batch(_a ,_a ) A_ , A_ : Union[str, Any] = trim_batch(_a ,_a ,attention_mask=_a ) A_ : List[str] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch __magic_name__ = getLogger(__name__) def lowerCamelCase ( lowerCamelCase : List[List]): return list(itertools.chain.from_iterable(lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : str): A_ : Union[str, Any] = get_git_info() save_json(lowerCamelCase , os.path.join(lowerCamelCase , """git_log.json""")) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[Any] , lowerCamelCase : List[str]=4 , **lowerCamelCase : List[str]): with open(lowerCamelCase , """w""") as f: json.dump(lowerCamelCase , lowerCamelCase , indent=lowerCamelCase , **lowerCamelCase) def lowerCamelCase ( lowerCamelCase : Any): with open(lowerCamelCase) as f: return json.load(lowerCamelCase) def lowerCamelCase ( ): A_ : List[str] = git.Repo(search_parent_directories=lowerCamelCase) A_ : Union[str, Any] = { """repo_id""": str(lowerCamelCase), """repo_sha""": str(repo.head.object.hexsha), """repo_branch""": str(repo.active_branch), """hostname""": str(socket.gethostname()), } return repo_infos def lowerCamelCase ( lowerCamelCase : Callable , lowerCamelCase : Iterable): return list(map(lowerCamelCase , lowerCamelCase)) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : Union[str, Any]): with open(lowerCamelCase , """wb""") as f: return pickle.dump(lowerCamelCase , lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str]): def remove_articles(lowerCamelCase : Any): return re.sub(r"""\b(a|an|the)\b""" , """ """ , lowerCamelCase) def white_space_fix(lowerCamelCase : List[Any]): return " ".join(text.split()) def remove_punc(lowerCamelCase : Union[str, Any]): A_ : Optional[int] = set(string.punctuation) return "".join(ch for ch in text if ch not in exclude) def lower(lowerCamelCase : List[str]): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase)))) def lowerCamelCase ( lowerCamelCase : int , lowerCamelCase : int): A_ : Tuple = normalize_answer(lowerCamelCase).split() A_ : Dict = normalize_answer(lowerCamelCase).split() A_ : int = Counter(lowerCamelCase) & Counter(lowerCamelCase) A_ : Any = sum(common.values()) if num_same == 0: return 0 A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = 1.0 * num_same / len(lowerCamelCase) A_ : Any = (2 * precision * recall) / (precision + recall) return fa def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Any): return normalize_answer(lowerCamelCase) == normalize_answer(lowerCamelCase) def lowerCamelCase ( lowerCamelCase : List[str] , lowerCamelCase : List[str]): assert len(lowerCamelCase) == len(lowerCamelCase) A_ : Any = 0 for hypo, pred in zip(lowerCamelCase , lowerCamelCase): em += exact_match_score(lowerCamelCase , lowerCamelCase) if len(lowerCamelCase) > 0: em /= len(lowerCamelCase) return {"em": em} def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return model_prefix.startswith("""rag""") def lowerCamelCase ( lowerCamelCase : Optional[Any] , lowerCamelCase : int , lowerCamelCase : Union[str, Any]): A_ : Optional[Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead A_ : Tuple = """dropout_rate""" for p in extra_params: if getattr(lowerCamelCase , lowerCamelCase , lowerCamelCase): if not hasattr(lowerCamelCase , lowerCamelCase) and not hasattr(lowerCamelCase , equivalent_param[p]): logger.info("""config doesn't have a `{}` attribute""".format(lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) continue A_ : Tuple = p if hasattr(lowerCamelCase , lowerCamelCase) else equivalent_param[p] setattr(lowerCamelCase , lowerCamelCase , getattr(lowerCamelCase , lowerCamelCase)) delattr(lowerCamelCase , lowerCamelCase) return hparams, config
27
0
from dataclasses import dataclass, field from typing import Optional @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be trained."} ) SCREAMING_SNAKE_CASE = field( default="./" , metadata={"help": "Save dir where model repo is cloned and models updates are saved to."} ) SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path of training dataset."} ) SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) SCREAMING_SNAKE_CASE = field(default=2 , metadata={"help": "Batch size for training."} ) SCREAMING_SNAKE_CASE = field(default=2 , metadata={"help": "Batch size for evaluation."} ) SCREAMING_SNAKE_CASE = field(default=0.1 , metadata={"help": "Value of weight decay."} ) SCREAMING_SNAKE_CASE = field( default=1_00_00 , metadata={"help": "Size of buffer used to shuffle streaming dataset."} ) SCREAMING_SNAKE_CASE = field(default=2E-4 , metadata={"help": "Learning rate fo training."} ) SCREAMING_SNAKE_CASE = field(default="cosine" , metadata={"help": "Learning rate."} ) SCREAMING_SNAKE_CASE = field( default=7_50 , metadata={"help": "Number of warmup steps in the learning rate schedule."} ) SCREAMING_SNAKE_CASE = field( default=16 , metadata={"help": "Number of gradient accumulation steps."} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Use gradient checkpointing to reduce memory footprint."} ) SCREAMING_SNAKE_CASE = field(default=5_00_00 , metadata={"help": "Maximum number of training steps."} ) SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) SCREAMING_SNAKE_CASE = field(default=10_24 , metadata={"help": "Sequence lengths used for training."} ) SCREAMING_SNAKE_CASE = field(default=1 , metadata={"help": "Training seed."} ) SCREAMING_SNAKE_CASE = field( default=10_24 , metadata={"help": "Interval to save checkpoints. Measured as number of forward passes not training steps."} , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "States path if the training should continue from a checkpoint folder."} ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "If True the data is pretokenized."} ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot-clean-valid" , metadata={"help": "Name or path of validation dataset."} ) SCREAMING_SNAKE_CASE = field(default=2 , metadata={"help": "Batch size used for evaluation."} ) SCREAMING_SNAKE_CASE = field( default=-1 , metadata={"help": "Maximum number of evaluation steps. If -1 the full dataset is evaluated."} ) SCREAMING_SNAKE_CASE = field(default=10_24 , metadata={"help": "Length of sequences to be evaluated."} ) SCREAMING_SNAKE_CASE = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot" , metadata={"help": "Model name or path of model to be evaluated."} ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "Number of workers used for code evaluation."} ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "The number of human-eval tasks to run. If not included all tasks are evaluated."} , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "Sample from the language model's output distribution."} ) SCREAMING_SNAKE_CASE = field(default=0.2 , metadata={"help": "Sampling temperature used for generation."} ) SCREAMING_SNAKE_CASE = field(default=2_56 , metadata={"help": "Maximum number of newly generated tokens."} ) SCREAMING_SNAKE_CASE = field(default=0 , metadata={"help": "Top-k parameter used for generation."} ) SCREAMING_SNAKE_CASE = field(default=0.95 , metadata={"help": "Top-p parameter used for nucleus sampling."} ) SCREAMING_SNAKE_CASE = field(default=10 , metadata={"help": "Number of generations to run in parallel."} ) SCREAMING_SNAKE_CASE = field( default=2_00 , metadata={"help": "Number of completions to generate for each sample."} ) SCREAMING_SNAKE_CASE = field(default=1 , metadata={"help": "Random seed used for evaluation."} ) SCREAMING_SNAKE_CASE = field( default="eval_results.json" , metadata={"help": "Random seed used for evaluation."} ) SCREAMING_SNAKE_CASE = field( default="0" , metadata={"help": "Allow `code_eval` to execute Python code on machine"} ) SCREAMING_SNAKE_CASE = field( default=-1 , metadata={ "help": ( "Determine which device to run the `text-generation` Pipeline on. -1 is CPU and any zero or positive" " number corresponds to which GPU device id to run on." ) } , ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={ "help": "The number of CPU cores to use for parallel preprocessing. Default uses the maximum available." } , ) SCREAMING_SNAKE_CASE = field( default="transformersbook/codeparrot" , metadata={"help": "Folder or name of dataset to process."} ) SCREAMING_SNAKE_CASE = field( default="codeparrot-clean" , metadata={"help": "Folder to save processed processed dataset."} ) SCREAMING_SNAKE_CASE = field( default=10_00_00 , metadata={"help": "Number of files to save per JSON output file."} ) SCREAMING_SNAKE_CASE = field(default="content" , metadata={"help": "Column containing text data to process."} ) SCREAMING_SNAKE_CASE = field( default=10_00 , metadata={"help": "Maximum line length in file, otherwise file is filtered."} ) SCREAMING_SNAKE_CASE = field( default=1_00 , metadata={"help": "Maximum mean line length in file, otherwise file is filtered."} ) SCREAMING_SNAKE_CASE = field( default=0.25 , metadata={"help": "Maximum fraction of non-alphanumeric characters, otherwise file is filtered."} ) SCREAMING_SNAKE_CASE = field( default=1.5 , metadata={"help": "Minimum character token ratio for the file, otherwise file is filtered."} ) SCREAMING_SNAKE_CASE = field( default=0.7 , metadata={"help": "Probability for filtering config, test and uncommon files."} ) SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} , ) SCREAMING_SNAKE_CASE = field( default=lowercase_ , metadata={"help": "If True, near-duplicate samples are removed."} ) SCREAMING_SNAKE_CASE = field( default=0.85 , metadata={"help": "Jaccard threshold for near-duplicate samples."} ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="gpt2" , metadata={"help": "Base tokenizer to build new tokenizer from."} ) SCREAMING_SNAKE_CASE = field( default="transformersbook/codeparrot-train" , metadata={"help": "Dataset to train tokenizer on."} ) SCREAMING_SNAKE_CASE = field(default="content" , metadata={"help": "Column containing text data to process."} ) SCREAMING_SNAKE_CASE = field(default=20_00_00 , metadata={"help": "Number of examples to train tokenizer on."} ) SCREAMING_SNAKE_CASE = field( default=3_27_68 , metadata={"help": "Number of examples to train the tokenizer on."} ) SCREAMING_SNAKE_CASE = field(default="codeparrot" , metadata={"help": "Name of new tokenizer."} ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "Push saved tokenizer to the hub."} ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot" , metadata={"help": "Name or path to the tokenizer."} ) SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot-clean-train" , metadata={"help": "Name or path to the dataset to pretokenize."} ) SCREAMING_SNAKE_CASE = field( default="tokenized-codeparrot-train" , metadata={"help": "Repo name of the pretokenized data."} ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "Number of workers used for code evaluation."} ) @dataclass class __lowercase : '''simple docstring''' SCREAMING_SNAKE_CASE = field( default="gpt2-large" , metadata={"help": "Configuration to use for model initialization."} ) SCREAMING_SNAKE_CASE = field( default="codeparrot/codeparrot" , metadata={"help": "Tokenizer attached to model."} ) SCREAMING_SNAKE_CASE = field(default="codeparrot" , metadata={"help": "Name of the created model."} ) SCREAMING_SNAKE_CASE = field(default=lowercase_ , metadata={"help": "Push saved tokenizer to the hub."} )
637
def _SCREAMING_SNAKE_CASE ( __lowercase : List[Any] ) -> Any: """simple docstring""" stooge(__lowercase , 0 , len(__lowercase ) - 1 ) return arr def _SCREAMING_SNAKE_CASE ( __lowercase : str , __lowercase : Dict , __lowercase : Dict ) -> int: """simple docstring""" if i >= h: return # If first element is smaller than the last then swap them if arr[i] > arr[h]: __A , __A = arr[h], arr[i] # If there are more than 2 elements in the array if h - i + 1 > 2: __A = (int)((h - i + 1) / 3 ) # Recursively sort first 2/3 elements stooge(__lowercase , __lowercase , (h - t) ) # Recursively sort last 2/3 elements stooge(__lowercase , i + t , (__lowercase) ) # Recursively sort first 2/3 elements stooge(__lowercase , __lowercase , (h - t) ) if __name__ == "__main__": __a : List[Any] = input("Enter numbers separated by a comma:\n").strip() __a : List[str] = [int(item) for item in user_input.split(",")] print(stooge_sort(unsorted))
637
1
'''simple docstring''' import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCamelCase : '''simple docstring''' @staticmethod def snake_case__ ( *__lowercase , **__lowercase ): """simple docstring""" pass @is_pipeline_test @require_vision class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def snake_case__ ( self ): """simple docstring""" __A : Dict = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , ) __A : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __A : Tuple = image_classifier(A_ , candidate_labels=['a', 'b', 'c'] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(A_ ) , [ [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}], [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'c'}, {'score': 0.3_3_3, 'label': 'b'}], ] , ) __A : int = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], ] , ) @require_tf def snake_case__ ( self ): """simple docstring""" __A : List[str] = pipeline( model='hf-internal-testing/tiny-random-clip-zero-shot-image-classification' , framework='tf' ) __A : Tuple = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __A : List[Any] = image_classifier(A_ , candidate_labels=['a', 'b', 'c'] ) self.assertEqual( nested_simplify(A_ ) , [{'score': 0.3_3_3, 'label': 'a'}, {'score': 0.3_3_3, 'label': 'b'}, {'score': 0.3_3_3, 'label': 'c'}] , ) __A : Optional[Any] = image_classifier([image] * 5 , candidate_labels=['A', 'B', 'C'] , batch_size=2 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], [ {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, {'score': 0.3_3_3, 'label': ANY(A_ )}, ], ] , ) @slow @require_torch def snake_case__ ( self ): """simple docstring""" __A : List[Any] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , ) # This is an image of 2 cats with remotes and no planes __A : Any = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __A : List[str] = image_classifier(A_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(A_ ) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) __A : Dict = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , ) @slow @require_tf def snake_case__ ( self ): """simple docstring""" __A : Optional[int] = pipeline( task='zero-shot-image-classification' , model='openai/clip-vit-base-patch32' , framework='tf' ) # This is an image of 2 cats with remotes and no planes __A : Optional[Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) __A : int = image_classifier(A_ , candidate_labels=['cat', 'plane', 'remote'] ) self.assertEqual( nested_simplify(A_ ) , [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ] , ) __A : Dict = image_classifier([image] * 5 , candidate_labels=['cat', 'plane', 'remote'] , batch_size=2 ) self.assertEqual( nested_simplify(A_ ) , [ [ {'score': 0.5_1_1, 'label': 'remote'}, {'score': 0.4_8_5, 'label': 'cat'}, {'score': 0.0_0_4, 'label': 'plane'}, ], ] * 5 , )
700
'''simple docstring''' import unittest from datasets import load_dataset from transformers.pipelines import pipeline from transformers.testing_utils import is_pipeline_test, nested_simplify, require_torch, slow @is_pipeline_test @require_torch class _lowerCamelCase ( unittest.TestCase ): '''simple docstring''' @require_torch def snake_case__ ( self ): """simple docstring""" __A : Optional[int] = pipeline( task='zero-shot-audio-classification' , model='hf-internal-testing/tiny-clap-htsat-unfused' ) __A : str = load_dataset('ashraq/esc50' ) __A : Union[str, Any] = dataset['train']['audio'][-1]['array'] __A : List[str] = audio_classifier(__lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowercase ) , [{'score': 0.5_0_1, 'label': 'Sound of a dog'}, {'score': 0.4_9_9, 'label': 'Sound of vaccum cleaner'}] , ) @unittest.skip('No models are available in TF' ) def snake_case__ ( self ): """simple docstring""" pass @slow @require_torch def snake_case__ ( self ): """simple docstring""" __A : Dict = pipeline( task='zero-shot-audio-classification' , model='laion/clap-htsat-unfused' , ) # This is an audio of a dog __A : Optional[Any] = load_dataset('ashraq/esc50' ) __A : List[str] = dataset['train']['audio'][-1]['array'] __A : Union[str, Any] = audio_classifier(__lowercase , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowercase ) , [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ] , ) __A : Any = audio_classifier([audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) __A : str = audio_classifier( [audio] * 5 , candidate_labels=['Sound of a dog', 'Sound of vaccum cleaner'] , batch_size=5 ) self.assertEqual( nested_simplify(__lowercase ) , [ [ {'score': 0.9_9_9, 'label': 'Sound of a dog'}, {'score': 0.0_0_1, 'label': 'Sound of vaccum cleaner'}, ], ] * 5 , ) @unittest.skip('No models are available in TF' ) def snake_case__ ( self ): """simple docstring""" pass
540
0
from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": __a = input('Enter image url: ').strip() print(f"Downloading image from {url} ...") __a = BeautifulSoup(requests.get(url).content, 'html.parser') # The image URL is in the content field of the first meta tag with property og:image __a = soup.find('meta', {'property': 'og:image'})['content'] __a = requests.get(image_url).content __a = f"{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg" with open(file_name, 'wb') as fp: fp.write(image_data) print(f"Done. Image saved to disk as {file_name}.")
97
"""simple docstring""" from manim import * class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Union[str, Any] ): _A = Rectangle(height=0.5 , width=0.5 ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0 ) _A = Rectangle(height=0.25 , width=0.25 ) _A = [mem.copy() for i in range(6 )] _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('CPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) cpu.move_to([-2.5, -0.5, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(4 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('GPU' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) gpu.move_to([-1, -1, 0] ) self.add(_UpperCAmelCase ) _A = [mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Model' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) model.move_to([3, -1.0, 0] ) self.add(_UpperCAmelCase ) _A = [] _A = [] for i, rect in enumerate(_UpperCAmelCase ): _A = fill.copy().set_fill(_UpperCAmelCase , opacity=0.8 ) target.move_to(_UpperCAmelCase ) model_arr.append(_UpperCAmelCase ) _A = Rectangle(height=0.46 , width=0.46 ).set_stroke(width=0.0 ).set_fill(_UpperCAmelCase , opacity=0.8 ) cpu_target.move_to(cpu_left_col_base[i] ) model_cpu_arr.append(_UpperCAmelCase ) self.add(*_UpperCAmelCase , *_UpperCAmelCase ) _A = [meta_mem.copy() for i in range(6 )] _A = [meta_mem.copy() for i in range(6 )] _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(*_UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = VGroup(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0 ) _A = Text('Disk' , font_size=24 ) _A = Group(_UpperCAmelCase , _UpperCAmelCase ).arrange(_UpperCAmelCase , buff=0.5 , aligned_edge=_UpperCAmelCase ) disk.move_to([-4, -1.25, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A = MarkupText( F'''<b>Key:</b>\n\n<span fgcolor=\'{YELLOW}\'>●</span> Empty Model''' , font_size=18 , ) key_text.move_to([-5, 2.4, 0] ) self.add(_UpperCAmelCase , _UpperCAmelCase ) _A = MarkupText( F'''<span fgcolor=\'{BLUE}\'>●</span> Checkpoint''' , font_size=18 , ) blue_text.next_to(_UpperCAmelCase , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(_UpperCAmelCase ) _A = MarkupText( F'''Now watch as an input is passed through the model\nand how the memory is utilized and handled.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase ) ) _A = Square(0.3 ) input.set_fill(_UpperCAmelCase , opacity=1.0 ) input.set_stroke(width=0.0 ) input.next_to(model_base[0] , _UpperCAmelCase , buff=0.5 ) self.play(Write(_UpperCAmelCase ) ) input.generate_target() input.target.next_to(model_arr[0] , direction=_UpperCAmelCase , buff=0.02 ) self.play(MoveToTarget(_UpperCAmelCase ) ) self.play(FadeOut(_UpperCAmelCase ) ) _A = Arrow(start=_UpperCAmelCase , end=_UpperCAmelCase , color=_UpperCAmelCase , buff=0.5 ) a.next_to(model_arr[0].get_left() , _UpperCAmelCase , buff=0.2 ) model_cpu_arr[0].generate_target() model_cpu_arr[0].target.move_to(gpu_rect[0] ) _A = MarkupText( F'''As the input reaches a layer, the hook triggers\nand weights are moved from the CPU\nto the GPU and back.''' , font_size=24 , ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) ) _A = {'run_time': 1, 'fade_in': True, 'fade_out': True, 'buff': 0.02} self.play( Write(_UpperCAmelCase ) , Circumscribe(model_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_cpu_arr[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[0] ) ) _A = a.copy() for i in range(6 ): a_c.next_to(model_arr[i].get_right() + 0.02 , _UpperCAmelCase , buff=0.2 ) input.generate_target() input.target.move_to(model_arr[i].get_right() + 0.02 ) _A = AnimationGroup( FadeOut(_UpperCAmelCase , run_time=0.5 ) , MoveToTarget(_UpperCAmelCase , run_time=0.5 ) , FadeIn(_UpperCAmelCase , run_time=0.5 ) , lag_ratio=0.2 ) self.play(_UpperCAmelCase ) model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[i] ) if i < 5: model_cpu_arr[i + 1].generate_target() model_cpu_arr[i + 1].target.move_to(gpu_rect[0] ) if i >= 1: _A = 0.7 self.play( Circumscribe(model_arr[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i] , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(model_arr[i + 1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) if i < 1: self.play( MoveToTarget(model_cpu_arr[i] ) , MoveToTarget(model_cpu_arr[i + 1] ) , ) else: self.play( MoveToTarget(model_cpu_arr[i] , run_time=0.7 ) , MoveToTarget(model_cpu_arr[i + 1] , run_time=0.7 ) , ) else: model_cpu_arr[i].generate_target() model_cpu_arr[i].target.move_to(cpu_left_col_base[-1] ) input.generate_target() input.target.next_to(model_arr[-1].get_right() , RIGHT + 0.02 , buff=0.2 ) self.play( Circumscribe(model_arr[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(cpu_left_col_base[-1] , color=_UpperCAmelCase , **_UpperCAmelCase ) , Circumscribe(gpu_rect[0] , color=_UpperCAmelCase , **_UpperCAmelCase ) , ) self.play(MoveToTarget(model_cpu_arr[i] ) ) _A = a_c _A = a_c.copy() input.generate_target() input.target.next_to(model_base[-1] , RIGHT + 0.02 , buff=0.5 ) self.play( FadeOut(_UpperCAmelCase ) , FadeOut(_UpperCAmelCase , run_time=0.5 ) , ) _A = MarkupText(F'''Inference on a model too large for GPU memory\nis successfully completed.''' , font_size=24 ) step_a.move_to([2, 2, 0] ) self.play(Write(_UpperCAmelCase , run_time=3 ) , MoveToTarget(_UpperCAmelCase ) ) self.wait()
7
0
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ShapEPipeline else: from .camera import create_pan_cameras from .pipeline_shap_e import ShapEPipeline from .pipeline_shap_e_img2img import ShapEImgaImgPipeline from .renderer import ( BoundingBoxVolume, ImportanceRaySampler, MLPNeRFModelOutput, MLPNeRSTFModel, ShapEParamsProjModel, ShapERenderer, StratifiedRaySampler, VoidNeRFModel, )
664
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
1
import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef __snake_case = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def _A ( _lowercase , _lowercase ) -> str: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) return (preds == labels).mean() def _A ( _lowercase , _lowercase ) -> Optional[int]: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) __UpperCamelCase = simple_accuracy(_lowercase , _lowercase ) __UpperCamelCase = fa_score(y_true=_lowercase , y_pred=_lowercase ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def _A ( _lowercase , _lowercase ) -> List[str]: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) __UpperCamelCase = pearsonr(_lowercase , _lowercase )[0] __UpperCamelCase = spearmanr(_lowercase , _lowercase )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def _A ( _lowercase , _lowercase , _lowercase ) -> Dict: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) assert len(_lowercase ) == len(_lowercase ), f'''Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}''' if task_name == "cola": return {"mcc": matthews_corrcoef(_lowercase , _lowercase )} elif task_name == "sst-2": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "mrpc": return acc_and_fa(_lowercase , _lowercase ) elif task_name == "sts-b": return pearson_and_spearman(_lowercase , _lowercase ) elif task_name == "qqp": return acc_and_fa(_lowercase , _lowercase ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "qnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "rte": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "wnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} elif task_name == "hans": return {"acc": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError(_lowercase ) def _A ( _lowercase , _lowercase , _lowercase ) -> Union[str, Any]: """simple docstring""" warnings.warn(_lowercase , _lowercase ) requires_backends(_lowercase , 'sklearn' ) if len(_lowercase ) != len(_lowercase ): raise ValueError(f'''Predictions and labels have mismatched lengths {len(_lowercase )} and {len(_lowercase )}''' ) if task_name == "xnli": return {"acc": simple_accuracy(_lowercase , _lowercase )} else: raise KeyError(_lowercase )
1
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time SCREAMING_SNAKE_CASE__ = Lock() def lowercase ( a , a , a , a , a , a , a ): '''simple docstring''' global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(a ) process_lock.release() # receive your right neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ :str = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left SCREAMING_SNAKE_CASE_ :int = min(a , a ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(a ) process_lock.release() # receive your left neighbor's value process_lock.acquire() SCREAMING_SNAKE_CASE_ :int = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right SCREAMING_SNAKE_CASE_ :Dict = max(a , a ) # after all swaps are performed, send the values back to main result_pipe[1].send(a ) def lowercase ( a ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :Tuple = [] SCREAMING_SNAKE_CASE_ :Union[str, Any] = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop SCREAMING_SNAKE_CASE_ :str = Pipe() SCREAMING_SNAKE_CASE_ :Optional[Any] = Pipe() process_array_.append( Process( target=a , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) SCREAMING_SNAKE_CASE_ :Optional[Any] = temp_rs SCREAMING_SNAKE_CASE_ :Any = temp_rr for i in range(1 , len(a ) - 1 ): SCREAMING_SNAKE_CASE_ :int = Pipe() SCREAMING_SNAKE_CASE_ :Dict = Pipe() process_array_.append( Process( target=a , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) SCREAMING_SNAKE_CASE_ :Union[str, Any] = temp_rs SCREAMING_SNAKE_CASE_ :int = temp_rr process_array_.append( Process( target=a , args=( len(a ) - 1, arr[len(a ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(a ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(a ) ): SCREAMING_SNAKE_CASE_ :Tuple = result_pipe[p][0].recv() process_array_[p].join() return arr def lowercase ( ): '''simple docstring''' SCREAMING_SNAKE_CASE_ :List[str] = list(range(10 , 0 , -1 ) ) print("Initial List" ) print(*a ) SCREAMING_SNAKE_CASE_ :int = odd_even_transposition(a ) print("Sorted List\n" ) print(*a ) if __name__ == "__main__": main()
631
0
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("TEST_SAGEMAKER" , "False" ) ) is not True , reason="Skipping test because should only be run when releasing minor transformers version" , ) @pytest.mark.usefixtures("sm_env" ) @parameterized_class( [ { "framework": "pytorch", "script": "run_glue_model_parallelism.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, { "framework": "pytorch", "script": "run_glue.py", "model_name_or_path": "roberta-large", "instance_type": "ml.p3dn.24xlarge", "results": {"train_runtime": 1600, "eval_accuracy": 0.3, "eval_loss": 1.2}, }, ] ) class UpperCAmelCase ( unittest.TestCase ): def _A ( self: Optional[Any] ): if self.framework == "pytorch": subprocess.run( f"cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py".split() , encoding='''utf-8''' , check=__UpperCamelCase , ) assert hasattr(self , '''env''' ) def _A ( self: Dict , __UpperCamelCase: Tuple ): # configuration for running training on smdistributed Model Parallel _a = { '''enabled''': True, '''processes_per_host''': 8, } _a = { '''enabled''': True, '''parameters''': { '''microbatches''': 4, '''placement_strategy''': '''spread''', '''pipeline''': '''interleaved''', '''optimize''': '''speed''', '''partitions''': 4, '''ddp''': True, }, } _a = {'''smdistributed''': {'''modelparallel''': smp_options}, '''mpi''': mpi_options} _a = '''trainer''' if self.script == '''run_glue.py''' else '''smtrainer''' # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=f"{self.env.base_job_name}-{instance_count}-smp-{name_extension}" , instance_count=__UpperCamelCase , instance_type=self.instance_type , debugger_hook_config=__UpperCamelCase , hyperparameters={ **self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path, '''max_steps''': 500, } , metric_definitions=self.env.metric_definitions , distribution=__UpperCamelCase , py_version='''py36''' , ) def _A ( self: Optional[Any] , __UpperCamelCase: Optional[Any] ): TrainingJobAnalytics(__UpperCamelCase ).export_csv(f"{self.env.test_path}/{job_name}_metrics.csv" ) @parameterized.expand([(1,)] ) def _A ( self: Union[str, Any] , __UpperCamelCase: List[str] ): # create estimator _a = self.create_estimator(__UpperCamelCase ) # run training estimator.fit() # result dataframe _a = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis _a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value'''] ) _a = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value'''] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping _a = ( Session().describe_training_job(estimator.latest_training_job.name ).get('''TrainingTimeInSeconds''' , 99_9999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy ) assert all(t <= self.results['''eval_loss'''] for t in eval_loss ) # dump tests result into json file to share in PR with open(f"{estimator.latest_training_job.name}.json" , '''w''' ) as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , __UpperCamelCase )
701
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset lowerCamelCase :Dict = random.Random() def __snake_case ( _UpperCamelCase , _UpperCamelCase=1.0 , _UpperCamelCase=None , _UpperCamelCase=None ) -> Optional[int]: if rng is None: _a = global_rng _a = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class UpperCAmelCase ( unittest.TestCase ): def __init__( self: Tuple , __UpperCamelCase: Dict , __UpperCamelCase: int=7 , __UpperCamelCase: Any=400 , __UpperCamelCase: List[str]=2000 , __UpperCamelCase: Union[str, Any]=2048 , __UpperCamelCase: int=128 , __UpperCamelCase: Optional[int]=1 , __UpperCamelCase: Tuple=512 , __UpperCamelCase: List[Any]=30 , __UpperCamelCase: Dict=4_4100 , ): _a = parent _a = batch_size _a = min_seq_length _a = max_seq_length _a = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _a = spectrogram_length _a = feature_size _a = num_audio_channels _a = hop_length _a = chunk_length _a = sampling_rate def _A ( self: int ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def _A ( self: List[Any] , __UpperCamelCase: List[Any]=False , __UpperCamelCase: List[str]=False ): def _flatten(__UpperCamelCase: Tuple ): return list(itertools.chain(*__UpperCamelCase ) ) if equal_length: _a = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _a = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _a = [np.asarray(__UpperCamelCase ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class UpperCAmelCase ( __snake_case , unittest.TestCase ): a: Union[str, Any] = TvltFeatureExtractor def _A ( self: Optional[Any] ): _a = TvltFeatureExtractionTester(self ) def _A ( self: Optional[Any] ): _a = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(__UpperCamelCase , '''spectrogram_length''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''feature_size''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''num_audio_channels''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''hop_length''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''chunk_length''' ) ) self.assertTrue(hasattr(__UpperCamelCase , '''sampling_rate''' ) ) def _A ( self: List[str] ): _a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = feat_extract_first.save_pretrained(__UpperCamelCase )[0] check_json_file_has_correct_format(__UpperCamelCase ) _a = self.feature_extraction_class.from_pretrained(__UpperCamelCase ) _a = feat_extract_first.to_dict() _a = feat_extract_second.to_dict() _a = dict_first.pop('''mel_filters''' ) _a = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _A ( self: List[str] ): _a = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _a = os.path.join(__UpperCamelCase , '''feat_extract.json''' ) feat_extract_first.to_json_file(__UpperCamelCase ) _a = self.feature_extraction_class.from_json_file(__UpperCamelCase ) _a = feat_extract_first.to_dict() _a = feat_extract_second.to_dict() _a = dict_first.pop('''mel_filters''' ) _a = dict_second.pop('''mel_filters''' ) self.assertTrue(np.allclose(__UpperCamelCase , __UpperCamelCase ) ) self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def _A ( self: List[str] ): # Initialize feature_extractor _a = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _a = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _a = [np.asarray(__UpperCamelCase ) for speech_input in speech_inputs] # Test not batched input _a = feature_extractor(np_speech_inputs[0] , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _a = feature_extractor(__UpperCamelCase , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _a = feature_extractor( __UpperCamelCase , return_tensors='''np''' , sampling_rate=4_4100 , mask_audio=__UpperCamelCase ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _a = [floats_list((1, x) )[0] for x in (800, 800, 800)] _a = np.asarray(__UpperCamelCase ) _a = feature_extractor(__UpperCamelCase , return_tensors='''np''' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def _A ( self: Optional[int] , __UpperCamelCase: Dict ): _a = load_dataset('''hf-internal-testing/librispeech_asr_dummy''' , '''clean''' , split='''validation''' ) # automatic decoding with librispeech _a = ds.sort('''id''' ).select(range(__UpperCamelCase ) )[:num_samples]['''audio'''] return [x["array"] for x in speech_samples] def _A ( self: Optional[Any] ): _a = self._load_datasamples(1 ) _a = TvltFeatureExtractor() _a = feature_extractor(__UpperCamelCase , return_tensors='''pt''' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _a = torch.tensor([[-0.3_0_3_2, -0.2_7_0_8], [-0.4_4_3_4, -0.4_0_0_7]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , __UpperCamelCase , atol=1E-4 ) )
346
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from math import * # noqa: F403 from sympy import diff def __lowerCamelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = 10**-10 ) -> Tuple: """simple docstring""" lowerCAmelCase_ : str = a while True: lowerCAmelCase_ : Optional[int] = Decimal(_A ) - ( Decimal(eval(_A ) ) / Decimal(eval(str(diff(_A ) ) ) ) # noqa: S307 ) # This number dictates the accuracy of the answer if abs(eval(_A ) ) < precision: # noqa: S307 return float(_A ) # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(F"""The root of sin(x) = 0 is {newton_raphson('sin(x)', 2)}""") # Find root of polynomial print(F"""The root of x**2 - 5*x + 2 = 0 is {newton_raphson('x**2 - 5*x + 2', 0.4)}""") # Find Square Root of 5 print(F"""The root of log(x) - 1 = 0 is {newton_raphson('log(x) - 1', 2)}""") # Exponential Roots print(F"""The root of exp(x) - 1 = 0 is {newton_raphson('exp(x) - 1', 0)}""")
610
import math import torch from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from .attention_processor import Attention from .embeddings import get_timestep_embedding from .modeling_utils import ModelMixin class UpperCAmelCase__ ( A__ , A__ ): """simple docstring""" @register_to_config def __init__( self : int , __lowerCamelCase : int = 128 , __lowerCamelCase : int = 256 , __lowerCamelCase : float = 2000.0 , __lowerCamelCase : int = 768 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 12 , __lowerCamelCase : int = 64 , __lowerCamelCase : int = 2048 , __lowerCamelCase : float = 0.1 , ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Sequential( nn.Linear(__lowerCamelCase , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , nn.Linear(d_model * 4 , d_model * 4 , bias=__lowerCamelCase ) , nn.SiLU() , ) SCREAMING_SNAKE_CASE__ = nn.Embedding(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(p=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.ModuleList() for lyr_num in range(__lowerCamelCase ): # FiLM conditional T5 decoder SCREAMING_SNAKE_CASE__ = DecoderLayer(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) self.decoders.append(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(p=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) def lowercase_ ( self : Dict , __lowerCamelCase : str , __lowerCamelCase : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ = torch.mul(query_input.unsqueeze(-1 ) , key_input.unsqueeze(-2 ) ) return mask.unsqueeze(-3 ) def lowercase_ ( self : int , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Dict ) -> Any: SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = decoder_input_tokens.shape assert decoder_noise_time.shape == (batch,) # decoder_noise_time is in [0, 1), so rescale to expected timing range. SCREAMING_SNAKE_CASE__ = get_timestep_embedding( decoder_noise_time * self.config.max_decoder_noise_time , embedding_dim=self.config.d_model , max_period=self.config.max_decoder_noise_time , ).to(dtype=self.dtype ) SCREAMING_SNAKE_CASE__ = self.conditioning_emb(__lowerCamelCase ).unsqueeze(1 ) assert conditioning_emb.shape == (batch, 1, self.config.d_model * 4) SCREAMING_SNAKE_CASE__ = decoder_input_tokens.shape[1] # If we want to use relative positions for audio context, we can just offset # this sequence by the length of encodings_and_masks. SCREAMING_SNAKE_CASE__ = torch.broadcast_to( torch.arange(__lowerCamelCase , device=decoder_input_tokens.device ) , (batch, seq_length) , ) SCREAMING_SNAKE_CASE__ = self.position_encoding(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.continuous_inputs_projection(__lowerCamelCase ) inputs += position_encodings SCREAMING_SNAKE_CASE__ = self.dropout(__lowerCamelCase ) # decoder: No padding present. SCREAMING_SNAKE_CASE__ = torch.ones( decoder_input_tokens.shape[:2] , device=decoder_input_tokens.device , dtype=inputs.dtype ) # Translate encoding masks to encoder-decoder masks. SCREAMING_SNAKE_CASE__ = [(x, self.encoder_decoder_mask(__lowerCamelCase , __lowerCamelCase )) for x, y in encodings_and_masks] # cross attend style: concat encodings SCREAMING_SNAKE_CASE__ = torch.cat([x[0] for x in encodings_and_encdec_masks] , dim=1 ) SCREAMING_SNAKE_CASE__ = torch.cat([x[1] for x in encodings_and_encdec_masks] , dim=-1 ) for lyr in self.decoders: SCREAMING_SNAKE_CASE__ = lyr( __lowerCamelCase , conditioning_emb=__lowerCamelCase , encoder_hidden_states=__lowerCamelCase , encoder_attention_mask=__lowerCamelCase , )[0] SCREAMING_SNAKE_CASE__ = self.decoder_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.post_dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.spec_out(__lowerCamelCase ) return spec_out class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Tuple , __lowerCamelCase : str , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[Any]=1e-6 ) -> List[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.ModuleList() # cond self attention: layer 0 self.layer.append( TaLayerSelfAttentionCond(d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase ) ) # cross attention: layer 1 self.layer.append( TaLayerCrossAttention( d_model=__lowerCamelCase , d_kv=__lowerCamelCase , num_heads=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase , ) ) # Film Cond MLP + dropout: last layer self.layer.append( TaLayerFFCond(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase , layer_norm_epsilon=__lowerCamelCase ) ) def lowercase_ ( self : Optional[int] , __lowerCamelCase : int , __lowerCamelCase : Dict=None , __lowerCamelCase : Any=None , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : int=None , ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = self.layer[0]( __lowerCamelCase , conditioning_emb=__lowerCamelCase , attention_mask=__lowerCamelCase , ) if encoder_hidden_states is not None: SCREAMING_SNAKE_CASE__ = torch.where(encoder_attention_mask > 0 , 0 , -1e10 ).to( encoder_hidden_states.dtype ) SCREAMING_SNAKE_CASE__ = self.layer[1]( __lowerCamelCase , key_value_states=__lowerCamelCase , attention_mask=__lowerCamelCase , ) # Apply Film Conditional Feed Forward layer SCREAMING_SNAKE_CASE__ = self.layer[-1](__lowerCamelCase , __lowerCamelCase ) return (hidden_states,) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Any , __lowerCamelCase : str , __lowerCamelCase : List[str] , __lowerCamelCase : str , __lowerCamelCase : List[str] ) -> Dict: super().__init__() SCREAMING_SNAKE_CASE__ = TaLayerNorm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(__lowerCamelCase ) def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : List[Any] , __lowerCamelCase : Tuple=None , __lowerCamelCase : Union[str, Any]=None , ) -> Dict: # pre_self_attention_layer_norm SCREAMING_SNAKE_CASE__ = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE__ = self.FiLMLayer(__lowerCamelCase , __lowerCamelCase ) # Self-attention block SCREAMING_SNAKE_CASE__ = self.attention(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : str , __lowerCamelCase : Dict , __lowerCamelCase : Dict , __lowerCamelCase : List[Any] ) -> int: super().__init__() SCREAMING_SNAKE_CASE__ = Attention(query_dim=__lowerCamelCase , heads=__lowerCamelCase , dim_head=__lowerCamelCase , out_bias=__lowerCamelCase , scale_qk=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(__lowerCamelCase ) def lowercase_ ( self : Tuple , __lowerCamelCase : Any , __lowerCamelCase : Dict=None , __lowerCamelCase : Tuple=None , ) -> Tuple: SCREAMING_SNAKE_CASE__ = self.layer_norm(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.attention( __lowerCamelCase , encoder_hidden_states=__lowerCamelCase , attention_mask=attention_mask.squeeze(1 ) , ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(__lowerCamelCase ) return layer_output class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any] ) -> Tuple: super().__init__() SCREAMING_SNAKE_CASE__ = TaDenseGatedActDense(d_model=__lowerCamelCase , d_ff=__lowerCamelCase , dropout_rate=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaFiLMLayer(in_features=d_model * 4 , out_features=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = TaLayerNorm(__lowerCamelCase , eps=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(__lowerCamelCase ) def lowercase_ ( self : List[Any] , __lowerCamelCase : Optional[int] , __lowerCamelCase : Any=None ) -> Dict: SCREAMING_SNAKE_CASE__ = self.layer_norm(__lowerCamelCase ) if conditioning_emb is not None: SCREAMING_SNAKE_CASE__ = self.film(__lowerCamelCase , __lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.DenseReluDense(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_states + self.dropout(__lowerCamelCase ) return hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : int , __lowerCamelCase : List[str] , __lowerCamelCase : Any , __lowerCamelCase : Union[str, Any] ) -> List[Any]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = nn.Dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = NewGELUActivation() def lowercase_ ( self : List[Any] , __lowerCamelCase : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ = self.act(self.wi_a(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = self.wi_a(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_gelu * hidden_linear SCREAMING_SNAKE_CASE__ = self.dropout(__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = self.wo(__lowerCamelCase ) return hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : List[str]=1e-6 ) -> List[str]: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Parameter(torch.ones(__lowerCamelCase ) ) SCREAMING_SNAKE_CASE__ = eps def lowercase_ ( self : Union[str, Any] , __lowerCamelCase : str ) -> List[Any]: # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://arxiv.org/abs/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 SCREAMING_SNAKE_CASE__ = hidden_states.to(torch.floataa ).pow(2 ).mean(-1 , keepdim=__lowerCamelCase ) SCREAMING_SNAKE_CASE__ = hidden_states * torch.rsqrt(variance + self.variance_epsilon ) # convert into half-precision if necessary if self.weight.dtype in [torch.floataa, torch.bfloataa]: SCREAMING_SNAKE_CASE__ = hidden_states.to(self.weight.dtype ) return self.weight * hidden_states class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def lowercase_ ( self : str , __lowerCamelCase : torch.Tensor ) -> torch.Tensor: return 0.5 * input * (1.0 + torch.tanh(math.sqrt(2.0 / math.pi ) * (input + 0.044715 * torch.pow(__lowerCamelCase , 3.0 )) )) class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self : Optional[Any] , __lowerCamelCase : Any , __lowerCamelCase : List[str] ) -> Tuple: super().__init__() SCREAMING_SNAKE_CASE__ = nn.Linear(__lowerCamelCase , out_features * 2 , bias=__lowerCamelCase ) def lowercase_ ( self : int , __lowerCamelCase : Optional[int] , __lowerCamelCase : Dict ) -> str: SCREAMING_SNAKE_CASE__ = self.scale_bias(__lowerCamelCase ) SCREAMING_SNAKE_CASE__,SCREAMING_SNAKE_CASE__ = torch.chunk(__lowerCamelCase , 2 , -1 ) SCREAMING_SNAKE_CASE__ = x * (1 + scale) + shift return x
493
0
import random import unittest import numpy as np import transformers from transformers import is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax if is_flax_available(): import os import jax.numpy as jnp from jax import jit from transformers import AutoTokenizer, FlaxAutoModelForCausalLM from transformers.modeling_flax_pytorch_utils import load_flax_weights_in_pytorch_model a_ : Union[str, Any] = '0.12' # assumed parallelism: 8 if is_torch_available(): import torch def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=None): if rng is None: SCREAMING_SNAKE_CASE = random.Random() SCREAMING_SNAKE_CASE = 1 for dim in shape: total_dims *= dim SCREAMING_SNAKE_CASE = [] for _ in range(SCREAMING_SNAKE_CASE__): values.append(rng.randint(0 , vocab_size - 1)) SCREAMING_SNAKE_CASE = np.array(SCREAMING_SNAKE_CASE__ , dtype=jnp.intaa).reshape(SCREAMING_SNAKE_CASE__) return output def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase=None): SCREAMING_SNAKE_CASE = ids_tensor(SCREAMING_SNAKE_CASE__ , vocab_size=2 , rng=SCREAMING_SNAKE_CASE__) # make sure that at least one token is attended to for each batch SCREAMING_SNAKE_CASE = 1 return attn_mask @require_flax class _snake_case : _lowercase : Optional[int] = None _lowercase : Tuple = () def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() # cut to half length & take max batch_size 3 SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = inputs["""input_ids"""].shape[-1] // 2 SCREAMING_SNAKE_CASE = inputs["""input_ids"""][:max_batch_size, :sequence_length] SCREAMING_SNAKE_CASE = jnp.ones_like(lowercase__) SCREAMING_SNAKE_CASE = attention_mask[:max_batch_size, :sequence_length] # generate max 5 tokens SCREAMING_SNAKE_CASE = input_ids.shape[-1] + 5 if config.eos_token_id is not None and config.pad_token_id is None: # hack to allow generate for models such as GPT2 as is done in `generate()` SCREAMING_SNAKE_CASE = config.eos_token_id return config, input_ids, attention_mask, max_length @is_pt_flax_cross_test def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = 0 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model_class.__name__[4:] # Skip the "Flax" at the beginning SCREAMING_SNAKE_CASE = getattr(lowercase__ , lowercase__) SCREAMING_SNAKE_CASE = pt_model_class(lowercase__).eval() SCREAMING_SNAKE_CASE = load_flax_weights_in_pytorch_model(lowercase__ , flax_model.params) SCREAMING_SNAKE_CASE = flax_model.generate(lowercase__).sequences SCREAMING_SNAKE_CASE = pt_model.generate(torch.tensor(lowercase__ , dtype=torch.long)) if flax_generation_outputs.shape[-1] > pt_generation_outputs.shape[-1]: SCREAMING_SNAKE_CASE = flax_generation_outputs[:, : pt_generation_outputs.shape[-1]] self.assertListEqual(pt_generation_outputs.numpy().tolist() , flax_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> int: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 2 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__).sequences self.assertEqual(generation_outputs.shape[0] , input_ids.shape[0] * config.num_return_sequences) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = 0.8 SCREAMING_SNAKE_CASE = 10 SCREAMING_SNAKE_CASE = 0.3 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> Any: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> Tuple: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() SCREAMING_SNAKE_CASE = max_length SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = 1 SCREAMING_SNAKE_CASE = 8 SCREAMING_SNAKE_CASE = 9 for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> List[Any]: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__ , attention_mask=lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__ , attention_mask=lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> List[str]: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__ , attention_mask=lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__ , attention_mask=lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) def SCREAMING_SNAKE_CASE__ ( self) -> Dict: SCREAMING_SNAKE_CASE = self._get_input_ids_and_config() # pad attention mask on the left SCREAMING_SNAKE_CASE = attention_mask.at[(0, 0)].set(0) SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = max_length for model_class in self.all_generative_model_classes: SCREAMING_SNAKE_CASE = model_class(lowercase__) SCREAMING_SNAKE_CASE = model.generate(lowercase__ , attention_mask=lowercase__).sequences self.assertEqual(generation_outputs.shape[-1] , lowercase__) SCREAMING_SNAKE_CASE = jit(model.generate) SCREAMING_SNAKE_CASE = jit_generate(lowercase__ , attention_mask=lowercase__).sequences self.assertListEqual(generation_outputs.tolist() , jit_generation_outputs.tolist()) @require_flax class _snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self) -> Optional[Any]: SCREAMING_SNAKE_CASE = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-bert') SCREAMING_SNAKE_CASE = FlaxAutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-bert-flax-only') SCREAMING_SNAKE_CASE = """Hello world""" SCREAMING_SNAKE_CASE = tokenizer(lowercase__ , return_tensors='np').input_ids # typos are quickly detected (the correct argument is `do_sample`) with self.assertRaisesRegex(lowercase__ , 'do_samples'): model.generate(lowercase__ , do_samples=lowercase__) # arbitrary arguments that will not be used anywhere are also not accepted with self.assertRaisesRegex(lowercase__ , 'foo'): SCREAMING_SNAKE_CASE = {"""foo""": """bar"""} model.generate(lowercase__ , **lowercase__)
704
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a_ : int = { 'configuration_speecht5': [ 'SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP', 'SpeechT5Config', 'SpeechT5HifiGanConfig', ], 'feature_extraction_speecht5': ['SpeechT5FeatureExtractor'], 'processing_speecht5': ['SpeechT5Processor'], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[Any] = ['SpeechT5Tokenizer'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ 'SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST', 'SpeechT5ForSpeechToText', 'SpeechT5ForSpeechToSpeech', 'SpeechT5ForTextToSpeech', 'SpeechT5Model', 'SpeechT5PreTrainedModel', 'SpeechT5HifiGan', ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
444
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def UpperCamelCase ( __magic_name__ : List[Any] ) -> Optional[Any]: """simple docstring""" lowercase__ = 384 if "tiny" in model_name: lowercase__ = [3, 3, 9, 3] lowercase__ = [96, 192, 384, 768] if "small" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [96, 192, 384, 768] if "base" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [128, 256, 512, 1024] lowercase__ = 512 if "large" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [192, 384, 768, 1536] lowercase__ = 768 if "xlarge" in model_name: lowercase__ = [3, 3, 27, 3] lowercase__ = [256, 512, 1024, 2048] lowercase__ = 1024 # set label information lowercase__ = 150 lowercase__ = """huggingface/label-files""" lowercase__ = """ade20k-id2label.json""" lowercase__ = json.load(open(hf_hub_download(__magic_name__ , __magic_name__ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ = {int(__magic_name__ ): v for k, v in idalabel.items()} lowercase__ = {v: k for k, v in idalabel.items()} lowercase__ = ConvNextConfig( depths=__magic_name__ , hidden_sizes=__magic_name__ , out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) lowercase__ = UperNetConfig( backbone_config=__magic_name__ , auxiliary_in_channels=__magic_name__ , num_labels=__magic_name__ , idalabel=__magic_name__ , labelaid=__magic_name__ , ) return config def UpperCamelCase ( __magic_name__ : Optional[Any] ) -> str: """simple docstring""" lowercase__ = [] # fmt: off # stem rename_keys.append(("""backbone.downsample_layers.0.0.weight""", """backbone.embeddings.patch_embeddings.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.0.bias""", """backbone.embeddings.patch_embeddings.bias""") ) rename_keys.append(("""backbone.downsample_layers.0.1.weight""", """backbone.embeddings.layernorm.weight""") ) rename_keys.append(("""backbone.downsample_layers.0.1.bias""", """backbone.embeddings.layernorm.bias""") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f'''backbone.stages.{i}.{j}.gamma''', f'''backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.depthwise_conv.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.dwconv.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.norm.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.layernorm.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv1.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.weight''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight''') ) rename_keys.append((f'''backbone.stages.{i}.{j}.pointwise_conv2.bias''', f'''backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias''') ) if i > 0: rename_keys.append((f'''backbone.downsample_layers.{i}.0.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.0.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.0.bias''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.weight''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.weight''') ) rename_keys.append((f'''backbone.downsample_layers.{i}.1.bias''', f'''backbone.encoder.stages.{i}.downsampling_layer.1.bias''') ) rename_keys.append((f'''backbone.norm{i}.weight''', f'''backbone.hidden_states_norms.stage{i+1}.weight''') ) rename_keys.append((f'''backbone.norm{i}.bias''', f'''backbone.hidden_states_norms.stage{i+1}.bias''') ) # decode head rename_keys.extend( [ ("""decode_head.conv_seg.weight""", """decode_head.classifier.weight"""), ("""decode_head.conv_seg.bias""", """decode_head.classifier.bias"""), ("""auxiliary_head.conv_seg.weight""", """auxiliary_head.classifier.weight"""), ("""auxiliary_head.conv_seg.bias""", """auxiliary_head.classifier.bias"""), ] ) # fmt: on return rename_keys def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : str , __magic_name__ : List[str] ) -> Union[str, Any]: """simple docstring""" lowercase__ = dct.pop(__magic_name__ ) lowercase__ = val def UpperCamelCase ( __magic_name__ : Optional[int] , __magic_name__ : Optional[Any] , __magic_name__ : Union[str, Any] ) -> str: """simple docstring""" lowercase__ = { """upernet-convnext-tiny""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth""", """upernet-convnext-small""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth""", """upernet-convnext-base""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth""", """upernet-convnext-large""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth""", """upernet-convnext-xlarge""": """https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth""", } lowercase__ = model_name_to_url[model_name] lowercase__ = torch.hub.load_state_dict_from_url(__magic_name__ , map_location="""cpu""" )["""state_dict"""] lowercase__ = get_upernet_config(__magic_name__ ) lowercase__ = UperNetForSemanticSegmentation(__magic_name__ ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): lowercase__ = state_dict.pop(__magic_name__ ) if "bn" in key: lowercase__ = key.replace("""bn""" , """batch_norm""" ) lowercase__ = val # rename keys lowercase__ = create_rename_keys(__magic_name__ ) for src, dest in rename_keys: rename_key(__magic_name__ , __magic_name__ , __magic_name__ ) model.load_state_dict(__magic_name__ ) # verify on image lowercase__ = """https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg""" lowercase__ = Image.open(requests.get(__magic_name__ , stream=__magic_name__ ).raw ).convert("""RGB""" ) lowercase__ = SegformerImageProcessor() lowercase__ = processor(__magic_name__ , return_tensors="""pt""" ).pixel_values with torch.no_grad(): lowercase__ = model(__magic_name__ ) if model_name == "upernet-convnext-tiny": lowercase__ = torch.tensor( [[-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.8_1_1_0, -8.8_1_1_0, -8.6_5_2_1], [-8.7_7_4_6, -8.7_7_4_6, -8.6_1_3_0]] ) elif model_name == "upernet-convnext-small": lowercase__ = torch.tensor( [[-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.8_2_3_6, -8.8_2_3_6, -8.6_7_7_1], [-8.7_6_3_8, -8.7_6_3_8, -8.6_2_4_0]] ) elif model_name == "upernet-convnext-base": lowercase__ = torch.tensor( [[-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.8_5_5_8, -8.8_5_5_8, -8.6_9_0_5], [-8.7_6_6_9, -8.7_6_6_9, -8.6_0_2_1]] ) elif model_name == "upernet-convnext-large": lowercase__ = torch.tensor( [[-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_6_6_0, -8.6_6_6_0, -8.6_2_1_0], [-8.6_3_1_0, -8.6_3_1_0, -8.5_9_6_4]] ) elif model_name == "upernet-convnext-xlarge": lowercase__ = torch.tensor( [[-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_9_8_0, -8.4_9_8_0, -8.3_9_7_7], [-8.4_3_7_9, -8.4_3_7_9, -8.3_4_1_2]] ) print("""Logits:""" , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , __magic_name__ , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(__magic_name__ ) print(f'''Saving processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(__magic_name__ ) if push_to_hub: print(f'''Pushing model and processor for {model_name} to hub''' ) model.push_to_hub(f'''openmmlab/{model_name}''' ) processor.push_to_hub(f'''openmmlab/{model_name}''' ) if __name__ == "__main__": A : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='upernet-convnext-tiny', type=str, choices=[F'upernet-convnext-{size}' for size in ['tiny', 'small', 'base', 'large', 'xlarge']], help='Name of the ConvNext UperNet model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) A : Union[str, Any] = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
15
'''simple docstring''' import inspect import tempfile import unittest from huggingface_hub import hf_hub_download from transformers import is_torch_available from transformers.testing_utils import is_flaky, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin lowercase_ = 1e-4 if is_torch_available(): import torch from transformers import AutoformerConfig, AutoformerForPrediction, AutoformerModel from transformers.models.autoformer.modeling_autoformer import AutoformerDecoder, AutoformerEncoder @require_torch class __A : '''simple docstring''' def __init__(self , A , A=16 , A=13 , A=7 , A=14 , A=10 , A=19 , A=5 , A=4 , A=True , A=16 , A=2 , A=4 , A=4 , A="gelu" , A=0.1 , A=0.1 , A=[1, 2, 3, 4, 5] , A=25 , A=5 , ) -> List[str]: """simple docstring""" _a = d_model _a = parent _a = batch_size _a = prediction_length _a = context_length _a = cardinality _a = num_time_features _a = lags_sequence _a = embedding_dimension _a = is_training _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = context_length _a = prediction_length + label_length _a = label_length _a = moving_average _a = autocorrelation_factor def a__ (self ) -> Any: """simple docstring""" return AutoformerConfig( d_model=self.d_model , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , prediction_length=self.prediction_length , context_length=self.context_length , label_length=self.label_length , lags_sequence=self.lags_sequence , num_time_features=self.num_time_features , num_static_categorical_features=1 , cardinality=[self.cardinality] , embedding_dimension=[self.embedding_dimension] , moving_average=self.moving_average , ) def a__ (self , A ) -> List[Any]: """simple docstring""" _a = config.context_length + max(config.lags_sequence ) _a = ids_tensor([self.batch_size, 1] , config.cardinality[0] ) _a = floats_tensor([self.batch_size, _past_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, _past_length] ) _a = floats_tensor([self.batch_size, _past_length] ) > 0.5 # decoder inputs _a = floats_tensor([self.batch_size, config.prediction_length, config.num_time_features] ) _a = floats_tensor([self.batch_size, config.prediction_length] ) _a = { '''past_values''': past_values, '''static_categorical_features''': static_categorical_features, '''past_time_features''': past_time_features, '''past_observed_mask''': past_observed_mask, '''future_time_features''': future_time_features, '''future_values''': future_values, } return inputs_dict def a__ (self ) -> Any: """simple docstring""" _a = self.get_config() _a = self.prepare_autoformer_inputs_dict(A ) return config, inputs_dict def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.prepare_config_and_inputs() return config, inputs_dict def a__ (self , A , A ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModel(config=A ).to(A ).eval() _a = model(**A ) _a = outputs.encoder_last_hidden_state _a = outputs.last_hidden_state with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_encoder() encoder.save_pretrained(A ) _a = AutoformerEncoder.from_pretrained(A ).to(A ) _a , _a , _a , _a , _a = model.create_network_inputs(**A ) _a , _a = model.decomposition_layer(transformer_inputs[:, : config.context_length, ...] ) _a = torch.cat( (transformer_inputs[:, : config.context_length, ...], feature[:, : config.context_length, ...]) , dim=-1 , ) _a = encoder(inputs_embeds=A )[0] self.parent.assertTrue((encoder_last_hidden_state_a - encoder_last_hidden_state).abs().max().item() < 1E-3 ) _a = ( torch.mean(transformer_inputs[:, : config.context_length, ...] , dim=1 ) .unsqueeze(1 ) .repeat(1 , config.prediction_length , 1 ) ) _a = torch.zeros( [transformer_inputs.shape[0], config.prediction_length, transformer_inputs.shape[2]] , device=enc_input.device , ) _a = torch.cat( ( torch.cat((seasonal_input[:, -config.label_length :, ...], zeros) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) _a = torch.cat( ( torch.cat((trend_input[:, -config.label_length :, ...], mean) , dim=1 ), feature[:, config.context_length - config.label_length :, ...], ) , dim=-1 , ) with tempfile.TemporaryDirectory() as tmpdirname: _a = model.get_decoder() decoder.save_pretrained(A ) _a = AutoformerDecoder.from_pretrained(A ).to(A ) _a = decoder( trend=A , inputs_embeds=A , encoder_hidden_states=A , )[0] self.parent.assertTrue((last_hidden_state_a - last_hidden_state).abs().max().item() < 1E-3 ) @require_torch class __A ( A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = (AutoformerModel, AutoformerForPrediction) if is_torch_available() else () __lowerCamelCase : Optional[Any] = (AutoformerForPrediction,) if is_torch_available() else () __lowerCamelCase : Tuple = {'feature-extraction': AutoformerModel} if is_torch_available() else {} __lowerCamelCase : Tuple = False __lowerCamelCase : Dict = False __lowerCamelCase : int = False __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : Optional[int] = False __lowerCamelCase : List[Any] = False def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = AutoformerModelTester(self ) _a = ConfigTester(self , config_class=A , has_text_modality=A ) def a__ (self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: _a = model_class(A ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(A ) _a , _a = model_class.from_pretrained(A , output_loading_info=A ) self.assertEqual(info['''missing_keys'''] , [] ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_encoder_decoder_model_standalone(*A ) @unittest.skip(reason='''Model has no tokens embeddings''' ) def a__ (self ) -> Tuple: """simple docstring""" pass def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = inspect.signature(getattr(A , '''forward''' ) ) # The main input is the name of the argument after `self` _a = list(model_signature.parameters.keys() )[1] self.assertEqual(AutoformerModel.main_input_name , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(A ) _a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = [ '''past_values''', '''past_time_features''', '''past_observed_mask''', '''static_categorical_features''', '''static_real_features''', '''future_values''', '''future_time_features''', ] if model.__class__.__name__ in ["AutoformerForPrediction"]: expected_arg_names.append('''future_observed_mask''' ) expected_arg_names.extend( [ '''decoder_attention_mask''', '''head_mask''', '''decoder_head_mask''', '''cross_attn_head_mask''', '''encoder_outputs''', '''past_key_values''', '''output_hidden_states''', '''output_attentions''', '''use_cache''', '''return_dict''', ] ) self.assertListEqual(arg_names[: len(A )] , A ) def a__ (self ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = True _a = getattr(self.model_tester , '''seq_length''' , A ) _a = getattr(self.model_tester , '''decoder_seq_length''' , A ) _a = getattr(self.model_tester , '''encoder_seq_length''' , A ) _a = getattr(self.model_tester , '''d_model''' , A ) _a = getattr(self.model_tester , '''num_attention_heads''' , A ) _a = d_model // num_attention_heads for model_class in self.all_model_classes: _a = True _a = False _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) _a = outputs.encoder_attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) _a = len(A ) _a = 7 if "last_hidden_state" in outputs: correct_outlen += 1 if "trend" in outputs: correct_outlen += 1 if "past_key_values" in outputs: correct_outlen += 1 # past_key_values have been returned if "loss" in outputs: correct_outlen += 1 if "params" in outputs: correct_outlen += 1 self.assertEqual(A , A ) # decoder attentions _a = outputs.decoder_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # cross attentions _a = outputs.cross_attentions self.assertIsInstance(A , (list, tuple) ) self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(cross_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, decoder_seq_length, dim] , ) # Check attention is always last and order is fine _a = True _a = True _a = model_class(A ) model.to(A ) model.eval() with torch.no_grad(): _a = model(**self._prepare_for_class(A , A ) ) self.assertEqual(out_len + 2 , len(A ) ) _a = outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions self.assertEqual(len(A ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, dim] , ) @is_flaky() def a__ (self ) -> Optional[Any]: """simple docstring""" super().test_retain_grad_hidden_states_attentions() def lowerCAmelCase (__A="train-batch.pt"): """simple docstring""" _a = hf_hub_download(repo_id='''hf-internal-testing/tourism-monthly-batch''' , filename=__A , repo_type='''dataset''') _a = torch.load(__A , map_location=__A) return batch @require_torch @slow class __A ( unittest.TestCase ): '''simple docstring''' def a__ (self ) -> Optional[int]: """simple docstring""" _a = AutoformerModel.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch() with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , future_values=batch['''future_values'''] , future_time_features=batch['''future_time_features'''] , )[0] _a = torch.Size( (64, model.config.prediction_length + model.config.label_length, model.config.feature_size) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[0.3593, -1.3398, 0.6330], [0.2279, 1.5396, -0.1792], [0.0450, 1.3225, -0.2335]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Any: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model( past_values=batch['''past_values'''] , past_time_features=batch['''past_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , static_categorical_features=batch['''static_categorical_features'''] , ).encoder_last_hidden_state _a = torch.Size((64, model.config.context_length, model.config.d_model) ) self.assertEqual(output.shape , A ) _a = torch.tensor( [[-0.0734, -0.9036, 0.8358], [4.7186, 2.4113, 1.9581], [1.7953, 2.3558, 1.2970]] , device=A ) self.assertTrue(torch.allclose(output[0, :3, :3] , A , atol=A ) ) def a__ (self ) -> Tuple: """simple docstring""" _a = AutoformerForPrediction.from_pretrained('''huggingface/autoformer-tourism-monthly''' ).to(A ) _a = prepare_batch('''val-batch.pt''' ) with torch.no_grad(): _a = model.generate( static_categorical_features=batch['''static_categorical_features'''] , past_time_features=batch['''past_time_features'''] , past_values=batch['''past_values'''] , future_time_features=batch['''future_time_features'''] , past_observed_mask=batch['''past_observed_mask'''] , ) _a = torch.Size((64, model.config.num_parallel_samples, model.config.prediction_length) ) self.assertEqual(outputs.sequences.shape , A ) _a = torch.tensor([3130.6763, 4056.5293, 7053.0786] , device=A ) _a = outputs.sequences.mean(dim=1 ) self.assertTrue(torch.allclose(mean_prediction[0, -3:] , A , rtol=1E-1 ) )
11
0
import tempfile import unittest import numpy as np from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionPipeline, PNDMScheduler, ) from diffusers.utils.testing_utils import is_onnx_available, nightly, require_onnxruntime, require_torch_gpu from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class __snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = 'hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline' def UpperCAmelCase__ ( self : Any , A : str=0 ): __snake_case: str = np.random.RandomState(_lowerCAmelCase ) __snake_case: Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def UpperCAmelCase__ ( self : int ): __snake_case: int = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: Optional[Any] = self.get_dummy_inputs() __snake_case: List[Any] = pipe(**_lowerCAmelCase ).images __snake_case: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: List[str] = np.array([0.6_5072, 0.5_8492, 0.4_8219, 0.5_5521, 0.5_3180, 0.5_5939, 0.5_0697, 0.3_9800, 0.4_6455] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: int = PNDMScheduler.from_config(pipe.scheduler.config , skip_prk_steps=_lowerCAmelCase ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: Tuple = self.get_dummy_inputs() __snake_case: Dict = pipe(**_lowerCAmelCase ).images __snake_case: Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Any = np.array([0.6_5863, 0.5_9425, 0.4_9326, 0.5_6313, 0.5_3875, 0.5_6627, 0.5_1065, 0.3_9777, 0.4_6330] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Optional[int] ): __snake_case: List[Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: List[Any] = LMSDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: Any = self.get_dummy_inputs() __snake_case: List[str] = pipe(**_lowerCAmelCase ).images __snake_case: str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Any = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ): __snake_case: Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: str = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: Dict = self.get_dummy_inputs() __snake_case: List[str] = pipe(**_lowerCAmelCase ).images __snake_case: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Any = np.array([0.5_3755, 0.6_0786, 0.4_7402, 0.4_9488, 0.5_1869, 0.4_9819, 0.4_7985, 0.3_8957, 0.4_4279] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Tuple ): __snake_case: Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: Tuple = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: List[Any] = self.get_dummy_inputs() __snake_case: Optional[Any] = pipe(**_lowerCAmelCase ).images __snake_case: List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Any = np.array([0.5_3817, 0.6_0812, 0.4_7384, 0.4_9530, 0.5_1894, 0.4_9814, 0.4_7984, 0.3_8958, 0.4_4271] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Union[str, Any] = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) __snake_case: List[Any] = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: Any = self.get_dummy_inputs() __snake_case: Dict = pipe(**_lowerCAmelCase ).images __snake_case: str = image[0, -3:, -3:, -1] assert image.shape == (1, 128, 128, 3) __snake_case: Optional[Any] = np.array([0.5_3895, 0.6_0808, 0.4_7933, 0.4_9608, 0.5_1886, 0.4_9950, 0.4_8053, 0.3_8957, 0.4_4200] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def UpperCAmelCase__ ( self : List[str] ): __snake_case: Any = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: int = self.get_dummy_inputs() __snake_case: Any = 3 * [inputs["""prompt"""]] # forward __snake_case: Optional[int] = pipe(**_lowerCAmelCase ) __snake_case: int = output.images[0, -3:, -3:, -1] __snake_case: List[str] = self.get_dummy_inputs() __snake_case: Any = 3 * [inputs.pop("""prompt""" )] __snake_case: List[Any] = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __snake_case: Optional[int] = text_inputs["""input_ids"""] __snake_case: Optional[int] = pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] __snake_case: Optional[Any] = prompt_embeds # forward __snake_case: str = pipe(**_lowerCAmelCase ) __snake_case: int = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 def UpperCAmelCase__ ( self : int ): __snake_case: Tuple = OnnxStableDiffusionPipeline.from_pretrained(self.hub_checkpoint , provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: str = self.get_dummy_inputs() __snake_case: Any = 3 * ["""this is a negative prompt"""] __snake_case: Optional[int] = negative_prompt __snake_case: Union[str, Any] = 3 * [inputs["""prompt"""]] # forward __snake_case: List[str] = pipe(**_lowerCAmelCase ) __snake_case: str = output.images[0, -3:, -3:, -1] __snake_case: Union[str, Any] = self.get_dummy_inputs() __snake_case: Optional[Any] = 3 * [inputs.pop("""prompt""" )] __snake_case: str = [] for p in [prompt, negative_prompt]: __snake_case: Optional[Any] = pipe.tokenizer( _lowerCAmelCase , padding="""max_length""" , max_length=pipe.tokenizer.model_max_length , truncation=_lowerCAmelCase , return_tensors="""np""" , ) __snake_case: Optional[int] = text_inputs["""input_ids"""] embeds.append(pipe.text_encoder(input_ids=text_inputs.astype(np.intaa ) )[0] ) __snake_case , __snake_case: Optional[int] = embeds # forward __snake_case: Union[str, Any] = pipe(**_lowerCAmelCase ) __snake_case: str = output.images[0, -3:, -3:, -1] assert np.abs(image_slice_a.flatten() - image_slice_a.flatten() ).max() < 1E-4 @nightly @require_onnxruntime @require_torch_gpu class __snake_case ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase__ ( self : Dict ): return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def UpperCAmelCase__ ( self : Optional[Any] ): __snake_case: Optional[Any] = ort.SessionOptions() __snake_case: Optional[int] = False return options def UpperCAmelCase__ ( self : List[Any] ): __snake_case: List[str] = OnnxStableDiffusionPipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: Tuple = """A painting of a squirrel eating a burger""" np.random.seed(0 ) __snake_case: Any = sd_pipe([prompt] , guidance_scale=6.0 , num_inference_steps=10 , output_type="""np""" ) __snake_case: Dict = output.images __snake_case: Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case: Optional[Any] = np.array([0.0452, 0.0390, 0.0087, 0.0350, 0.0617, 0.0364, 0.0544, 0.0523, 0.0720] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Tuple ): __snake_case: List[str] = DDIMScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __snake_case: Dict = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: List[Any] = """open neural network exchange""" __snake_case: Union[str, Any] = np.random.RandomState(0 ) __snake_case: Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __snake_case: int = output.images __snake_case: Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case: Any = np.array([0.2867, 0.1974, 0.1481, 0.7294, 0.7251, 0.6667, 0.4194, 0.5642, 0.6486] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : Dict ): __snake_case: List[Any] = LMSDiscreteScheduler.from_pretrained( """runwayml/stable-diffusion-v1-5""" , subfolder="""scheduler""" , revision="""onnx""" ) __snake_case: List[Any] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , scheduler=_lowerCAmelCase , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) sd_pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: Optional[int] = """open neural network exchange""" __snake_case: Tuple = np.random.RandomState(0 ) __snake_case: Any = sd_pipe([prompt] , guidance_scale=7.5 , num_inference_steps=10 , generator=_lowerCAmelCase , output_type="""np""" ) __snake_case: Optional[int] = output.images __snake_case: Tuple = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) __snake_case: List[Any] = np.array([0.2306, 0.1959, 0.1593, 0.6549, 0.6394, 0.5408, 0.5065, 0.6010, 0.6161] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def UpperCAmelCase__ ( self : str ): __snake_case: List[Any] = 0 def test_callback_fn(A : int , A : int , A : np.ndarray ) -> None: __snake_case: Union[str, Any] = True nonlocal number_of_steps number_of_steps += 1 if step == 0: assert latents.shape == (1, 4, 64, 64) __snake_case: List[Any] = latents[0, -3:, -3:, -1] __snake_case: Union[str, Any] = np.array( [-0.6772, -0.3835, -1.2456, 0.1905, -1.0974, 0.6967, -1.9353, 0.0178, 1.0167] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 elif step == 5: assert latents.shape == (1, 4, 64, 64) __snake_case: Optional[Any] = latents[0, -3:, -3:, -1] __snake_case: Optional[int] = np.array( [-0.3351, 0.2241, -0.1837, -0.2325, -0.6577, 0.3393, -0.0241, 0.5899, 1.3875] ) assert np.abs(latents_slice.flatten() - expected_slice ).max() < 1E-3 __snake_case: str = False __snake_case: int = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=_lowerCAmelCase ) __snake_case: Any = """Andromeda galaxy in a bottle""" __snake_case: List[str] = np.random.RandomState(0 ) pipe( prompt=_lowerCAmelCase , num_inference_steps=5 , guidance_scale=7.5 , generator=_lowerCAmelCase , callback=_lowerCAmelCase , callback_steps=1 , ) assert test_callback_fn.has_been_called assert number_of_steps == 6 def UpperCAmelCase__ ( self : Union[str, Any] ): __snake_case: Optional[int] = OnnxStableDiffusionPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , revision="""onnx""" , safety_checker=_lowerCAmelCase , feature_extractor=_lowerCAmelCase , provider=self.gpu_provider , sess_options=self.gpu_options , ) assert isinstance(_lowerCAmelCase , _lowerCAmelCase ) assert pipe.safety_checker is None __snake_case: List[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_lowerCAmelCase ) __snake_case: Dict = OnnxStableDiffusionPipeline.from_pretrained(_lowerCAmelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None __snake_case: int = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None
709
from math import factorial, radians def A__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 18 , SCREAMING_SNAKE_CASE__ = 10) -> float: __snake_case: Union[str, Any] = angle_in_degrees - ((angle_in_degrees // 360.0) * 360.0) # Converting from degrees to radians __snake_case: Union[str, Any] = radians(SCREAMING_SNAKE_CASE__) __snake_case: Tuple = angle_in_radians __snake_case: Tuple = 3 __snake_case: int = -1 for _ in range(SCREAMING_SNAKE_CASE__): result += (b * (angle_in_radians**a)) / factorial(SCREAMING_SNAKE_CASE__) __snake_case: Union[str, Any] = -b # One positive term and the next will be negative and so on... a += 2 # Increased by 2 for every term. return round(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__) if __name__ == "__main__": __import__("doctest").testmod()
155
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : Union[str, Any] = {'''configuration_sew''': ['''SEW_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''SEWConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : str = [ '''SEW_PRETRAINED_MODEL_ARCHIVE_LIST''', '''SEWForCTC''', '''SEWForSequenceClassification''', '''SEWModel''', '''SEWPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCamelCase__ : Optional[int] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
105
'''simple docstring''' def snake_case_ ( _lowerCAmelCase : int ) -> list: UpperCAmelCase : Union[str, Any] = int(_lowerCAmelCase ) if n_element < 1: UpperCAmelCase : int = ValueError('''a should be a positive number''' ) raise my_error UpperCAmelCase : str = [1] UpperCAmelCase , UpperCAmelCase , UpperCAmelCase : Dict = (0, 0, 0) UpperCAmelCase : Any = 1 while index < n_element: while hamming_list[i] * 2 <= hamming_list[-1]: i += 1 while hamming_list[j] * 3 <= hamming_list[-1]: j += 1 while hamming_list[k] * 5 <= hamming_list[-1]: k += 1 hamming_list.append( min(hamming_list[i] * 2 , hamming_list[j] * 3 , hamming_list[k] * 5 ) ) index += 1 return hamming_list if __name__ == "__main__": UpperCamelCase__: List[str] = input("Enter the last number (nth term) of the Hamming Number Series: ") print("Formula of Hamming Number Series => 2^i * 3^j * 5^k") UpperCamelCase__: str = hamming(int(n)) print("-----------------------------------------------------") print(F"The list with nth numbers is: {hamming_numbers}") print("-----------------------------------------------------")
127
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py __a : Dict = """src/diffusers""" # Matches is_xxx_available() __a : Dict = re.compile(R"""is\_([a-z_]*)_available\(\)""") # Matches from xxx import bla __a : Optional[Any] = re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") __a : List[str] = """ {0} = None """ __a : str = """ class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) """ __a : int = """ def {0}(*args, **kwargs): requires_backends({0}, {1}) """ def __magic_name__ ( lowercase_ ) -> Optional[int]: '''simple docstring''' UpperCamelCase = _re_backend.findall(lowercase_ ) if len(lowercase_ ) == 0: return None return "_and_".join(lowercase_ ) def __magic_name__ ( ) -> List[str]: '''simple docstring''' with open(os.path.join(lowercase_ , "__init__.py" ) , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase = f.readlines() # Get to the point we do the actual imports for type checking UpperCamelCase = 0 UpperCamelCase = {} # Go through the end of the file while line_index < len(lowercase_ ): # If the line contains is_backend_available, we grab all objects associated with the `else` block UpperCamelCase = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith("else:" ): line_index += 1 line_index += 1 UpperCamelCase = [] # Until we unindent, add backend objects to the list while line_index < len(lowercase_ ) and len(lines[line_index] ) > 1: UpperCamelCase = lines[line_index] UpperCamelCase = _re_single_line_import.search(lowercase_ ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(", " ) ) elif line.startswith(" " * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(lowercase_ ) > 0: UpperCamelCase = objects else: line_index += 1 return backend_specific_objects def __magic_name__ ( lowercase_ , lowercase_ ) -> Tuple: '''simple docstring''' if name.isupper(): return DUMMY_CONSTANT.format(lowercase_ ) elif name.islower(): return DUMMY_FUNCTION.format(lowercase_ , lowercase_ ) else: return DUMMY_CLASS.format(lowercase_ , lowercase_ ) def __magic_name__ ( lowercase_=None ) -> List[str]: '''simple docstring''' if backend_specific_objects is None: UpperCamelCase = read_init() # For special correspondence backend to module name as used in the function requires_modulename UpperCamelCase = {} for backend, objects in backend_specific_objects.items(): UpperCamelCase = "[" + ", ".join(f'''"{b}"''' for b in backend.split("_and_" ) ) + "]" UpperCamelCase = "# This file is autogenerated by the command `make fix-copies`, do not edit.\n" dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(lowercase_ , lowercase_ ) for o in objects] ) UpperCamelCase = dummy_file return dummy_files def __magic_name__ ( lowercase_=False ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py UpperCamelCase = {"torch": "pt"} # Locate actual dummy modules and read their content. UpperCamelCase = os.path.join(lowercase_ , "utils" ) UpperCamelCase = { backend: os.path.join(lowercase_ , f'''dummy_{short_names.get(lowercase_ , lowercase_ )}_objects.py''' ) for backend in dummy_files.keys() } UpperCamelCase = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(lowercase_ ): with open(lowercase_ , "r" , encoding="utf-8" , newline="\n" ) as f: UpperCamelCase = f.read() else: UpperCamelCase = "" for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( f'''Updating diffusers.utils.dummy_{short_names.get(lowercase_ , lowercase_ )}_objects.py as the main ''' "__init__ has new objects." ) with open(dummy_file_paths[backend] , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(dummy_files[backend] ) else: raise ValueError( "The main __init__ has objects that are not present in " f'''diffusers.utils.dummy_{short_names.get(lowercase_ , lowercase_ )}_objects.py. Run `make fix-copies` ''' "to fix this." ) if __name__ == "__main__": __a : Tuple = argparse.ArgumentParser() parser.add_argument("""--fix_and_overwrite""", action="""store_true""", help="""Whether to fix inconsistencies.""") __a : List[str] = parser.parse_args() check_dummies(args.fix_and_overwrite)
414
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class __UpperCAmelCase ( snake_case__ ): """simple docstring""" lowercase = """naver-clova-ix/donut-base-finetuned-docvqa""" lowercase = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) lowercase = """document_qa""" lowercase = AutoProcessor lowercase = VisionEncoderDecoderModel lowercase = ["""image""", """text"""] lowercase = ["""text"""] def __init__( self , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: """simple docstring""" UpperCamelCase = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" UpperCamelCase = task_prompt.replace("{user_input}" , SCREAMING_SNAKE_CASE ) UpperCamelCase = self.pre_processor.tokenizer( SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE , return_tensors="pt" ).input_ids UpperCamelCase = self.pre_processor(SCREAMING_SNAKE_CASE , return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ) , decoder_input_ids=inputs["decoder_input_ids"].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=SCREAMING_SNAKE_CASE , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=SCREAMING_SNAKE_CASE , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=SCREAMING_SNAKE_CASE , ).sequences def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" UpperCamelCase = self.pre_processor.batch_decode(SCREAMING_SNAKE_CASE )[0] UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.eos_token , "" ) UpperCamelCase = sequence.replace(self.pre_processor.tokenizer.pad_token , "" ) UpperCamelCase = re.sub(R"<.*?>" , "" , SCREAMING_SNAKE_CASE , count=1 ).strip() # remove first task start token UpperCamelCase = self.pre_processor.tokenajson(SCREAMING_SNAKE_CASE ) return sequence["answer"]
414
1
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import MaMaaaTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, slow, ) from transformers.utils import is_sentencepiece_available if is_sentencepiece_available(): from transformers.models.mam_aaa.tokenization_mam_aaa import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin if is_sentencepiece_available(): lowerCAmelCase_ : Any = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mam_aaa.modeling_mam_aaa import shift_tokens_right lowerCAmelCase_ : List[Any] = 12_8022 lowerCAmelCase_ : str = 12_8028 @require_sentencepiece class SCREAMING_SNAKE_CASE ( snake_case_ , unittest.TestCase ): __magic_name__ : str = MaMaaaTokenizer __magic_name__ : Union[str, Any] = False __magic_name__ : List[Any] = False __magic_name__ : Optional[Any] = True def lowercase_ ( self : Optional[int] ): '''simple docstring''' super().setUp() a_ : List[Any] = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] a_ : Union[str, Any] = dict(zip(lowercase__ , range(len(lowercase__ ) ) ) ) a_ : int = Path(self.tmpdirname ) save_json(lowercase__ , save_dir / VOCAB_FILES_NAMES["""vocab_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(lowercase__ , save_dir / VOCAB_FILES_NAMES["""spm_file"""] ) a_ : Tuple = MaMaaaTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase_ ( self : Tuple , **lowercase__ : Optional[int] ): '''simple docstring''' return MaMaaaTokenizer.from_pretrained(self.tmpdirname , **lowercase__ ) def lowercase_ ( self : Dict , lowercase__ : List[str] ): '''simple docstring''' return ( "This is a test", "This is a test", ) def lowercase_ ( self : str ): '''simple docstring''' a_ : Dict = """</s>""" a_ : Optional[Any] = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def lowercase_ ( self : Any ): '''simple docstring''' a_ : Dict = self.get_tokenizer() a_ : List[Any] = list(tokenizer.get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<s>""" ) self.assertEqual(len(lowercase__ ) , tokenizer.vocab_size + len(tokenizer.get_added_vocab() ) ) @unittest.skip("""Skip this test while all models are still to be uploaded.""" ) def lowercase_ ( self : int ): '''simple docstring''' pass def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : List[str] = self.get_tokenizer() a_ : List[str] = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowercase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [2, 3, 4, 5, 6] , ) a_ : Optional[int] = tokenizer.convert_ids_to_tokens([2, 3, 4, 5, 6] ) self.assertListEqual(lowercase__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) a_ : int = tokenizer.convert_tokens_to_string(lowercase__ ) self.assertEqual(lowercase__ , """This is a test""" ) @slow def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : List[Any] = {"""input_ids""": [[12_8022, 11_0108, 397, 11, 3_8272, 2247, 12_4811, 285, 1_8105, 1586, 207, 7, 3_9534, 4428, 397, 1019, 1_8105, 1586, 207, 7, 4_1337, 1_6786, 241, 7, 2_0214, 17, 12_5690, 1_0398, 7, 4_4378, 5_8069, 6_8342, 7798, 7343, 11, 299, 3_3310, 4, 158, 3_7350, 9_4077, 4569, 299, 3_3310, 90, 4, 5_2840, 290, 4, 3_1270, 112, 299, 682, 4, 5_2840, 3_9953, 1_4079, 193, 5_2519, 9_0894, 1_7894, 12_0697, 11, 4_0445, 551, 17, 1019, 5_2519, 9_0894, 1_7756, 963, 11, 4_0445, 480, 17, 9792, 1120, 5173, 1393, 6240, 1_6786, 241, 12_0996, 28, 1245, 1393, 11_8240, 1_1123, 1019, 9_3612, 2691, 1_0618, 9_8058, 12_0409, 1928, 279, 4, 4_0683, 367, 178, 207, 1019, 103, 10_3121, 506, 6_5296, 5, 2], [12_8022, 2_1217, 367, 117, 12_5450, 128, 719, 7, 7308, 40, 9_3612, 1_2669, 1116, 1_6704, 71, 1_7785, 3699, 1_5592, 35, 144, 9584, 241, 1_1943, 713, 950, 799, 2247, 8_8427, 150, 149, 11_8813, 12_0706, 1019, 10_6906, 8_1518, 28, 1224, 2_2799, 397, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [12_8022, 1658, 12_3311, 5155, 5578, 4722, 279, 1_4947, 2366, 1120, 1197, 14, 1348, 9232, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name="""facebook/m2m100_418M""" , revision="""c168bae485c864188cf9aa0e4108b0b6934dc91e""" , ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE ( unittest.TestCase ): __magic_name__ : str = '''facebook/m2m100_418M''' __magic_name__ : int = [ '''In my opinion, there are two levels of response from the French government.''', '''NSA Affair Emphasizes Complete Lack of Debate on Intelligence''', ] __magic_name__ : str = [ '''Selon moi, il y a deux niveaux de réponse de la part du gouvernement français.''', '''L\'affaire NSA souligne l\'absence totale de débat sur le renseignement''', ] # fmt: off __magic_name__ : str = [EN_CODE, 593, 1949, 11_5781, 4, 7_1586, 4234, 6_0633, 12_6233, 432, 12_3808, 1_5592, 1197, 11_7132, 12_0618, 5, 2] @classmethod def lowercase_ ( cls : Union[str, Any] ): '''simple docstring''' a_ : MaMaaaTokenizer = MaMaaaTokenizer.from_pretrained( cls.checkpoint_name , src_lang="""en""" , tgt_lang="""fr""" ) a_ : int = 1 return cls def lowercase_ ( self : Any ): '''simple docstring''' self.assertEqual(self.tokenizer.get_lang_id("""ar""" ) , 12_8006 ) self.assertEqual(self.tokenizer.get_lang_id("""en""" ) , 12_8022 ) self.assertEqual(self.tokenizer.get_lang_id("""ro""" ) , 12_8076 ) self.assertEqual(self.tokenizer.get_lang_id("""mr""" ) , 12_8063 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' a_ : Dict = self.tokenizer.get_vocab() self.assertEqual(len(lowercase__ ) , self.tokenizer.vocab_size ) self.assertEqual(vocab["""<unk>"""] , 3 ) self.assertIn(self.tokenizer.get_lang_token("""en""" ) , lowercase__ ) def lowercase_ ( self : Any ): '''simple docstring''' a_ : Optional[Any] = """en""" a_ : Dict = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) def lowercase_ ( self : List[Any] ): '''simple docstring''' self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) # fmt: off a_ : List[Any] = [FR_CODE, 5364, 82, 8642, 4, 294, 47, 8, 1_4028, 136, 3286, 9706, 6, 9_0797, 6, 14_4012, 162, 8_8128, 3_0061, 5, 2] # fmt: on a_ : List[str] = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) a_ : List[str] = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def lowercase_ ( self : Dict ): '''simple docstring''' a_ : List[Any] = tempfile.mkdtemp() a_ : Any = self.tokenizer.lang_token_to_id self.tokenizer.save_pretrained(lowercase__ ) a_ : str = MaMaaaTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.lang_token_to_id , lowercase__ ) @require_torch def lowercase_ ( self : Optional[int] ): '''simple docstring''' a_ : Optional[int] = """en""" a_ : Optional[Any] = """fr""" a_ : int = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase__ , return_tensors="""pt""" ) a_ : Any = shift_tokens_right( batch["""labels"""] , self.tokenizer.pad_token_id , self.tokenizer.eos_token_id ) for k in batch: a_ : Union[str, Any] = batch[k].tolist() # batch = {k: v.tolist() for k,v in batch.items()} # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 # batch.decoder_inputs_ids[0][0] == assert batch.input_ids[1][0] == EN_CODE assert batch.input_ids[1][-1] == 2 assert batch.labels[1][0] == FR_CODE assert batch.labels[1][-1] == 2 assert batch.decoder_input_ids[1][:2] == [2, FR_CODE] @require_torch def lowercase_ ( self : str ): '''simple docstring''' a_ : int = """mr""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) a_ : Tuple = """zh""" self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) @require_torch def lowercase_ ( self : List[str] ): '''simple docstring''' a_ : Optional[int] = """mr""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""mr""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) a_ : str = """zh""" self.tokenizer._switch_to_target_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id("""zh""" )] ) self.assertListEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id] ) self.tokenizer._switch_to_input_mode() self.assertListEqual(self.tokenizer.prefix_tokens , [self.tokenizer.get_lang_id(self.tokenizer.src_lang )] ) @require_torch def lowercase_ ( self : Optional[int] ): '''simple docstring''' a_ : Tuple = self.tokenizer._build_translation_inputs("""A test""" , return_tensors="""pt""" , src_lang="""en""" , tgt_lang="""ar""" ) self.assertEqual( nested_simplify(lowercase__ ) , { # en_XX, A, test, EOS """input_ids""": [[12_8022, 58, 4183, 2]], """attention_mask""": [[1, 1, 1, 1]], # ar_AR """forced_bos_token_id""": 12_8006, } , )
442
'''simple docstring''' import argparse import os import sys from unittest.mock import patch import pytorch_lightning as pl import timeout_decorator import torch from distillation import SummarizationDistiller, distill_main from finetune import SummarizationModule, main from transformers import MarianMTModel from transformers.file_utils import cached_path from transformers.testing_utils import TestCasePlus, require_torch_gpu, slow from utils import load_json lowerCAmelCase_ : List[str] = 'sshleifer/mar_enro_6_3_student' class SCREAMING_SNAKE_CASE ( snake_case_ ): def lowercase_ ( self : int ): '''simple docstring''' super().setUp() a_ : Optional[int] = cached_path( """https://cdn-datasets.huggingface.co/translation/wmt_en_ro-tr40k-va0.5k-te0.5k.tar.gz""" , extract_compressed_file=lowercase__ , ) a_ : List[Any] = F"{data_cached}/wmt_en_ro-tr40k-va0.5k-te0.5k" @slow @require_torch_gpu def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' MarianMTModel.from_pretrained(lowercase__ ) @slow @require_torch_gpu def lowercase_ ( self : Tuple ): '''simple docstring''' a_ : Union[str, Any] = { """$MAX_LEN""": 64, """$BS""": 64, """$GAS""": 1, """$ENRO_DIR""": self.data_dir, """facebook/mbart-large-cc25""": MARIAN_MODEL, # "val_check_interval=0.25": "val_check_interval=1.0", """--learning_rate=3e-5""": """--learning_rate 3e-4""", """--num_train_epochs 6""": """--num_train_epochs 1""", } # Clean up bash script a_ : Optional[int] = (self.test_file_dir / """train_mbart_cc25_enro.sh""").open().read().split("""finetune.py""" )[1].strip() a_ : List[str] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) for k, v in env_vars_to_replace.items(): a_ : Optional[Any] = bash_script.replace(lowercase__ , str(lowercase__ ) ) a_ : Union[str, Any] = self.get_auto_remove_tmp_dir() # bash_script = bash_script.replace("--fp16 ", "") a_ : List[str] = F"\n --output_dir {output_dir}\n --tokenizer_name Helsinki-NLP/opus-mt-en-ro\n --sortish_sampler\n --do_predict\n --gpus 1\n --freeze_encoder\n --n_train 40000\n --n_val 500\n --n_test 500\n --fp16_opt_level O1\n --num_sanity_val_steps 0\n --eval_beams 2\n ".split() # XXX: args.gpus > 1 : handle multi_gpu in the future a_ : Dict = ["""finetune.py"""] + bash_script.split() + args with patch.object(lowercase__ , """argv""" , lowercase__ ): a_ : List[Any] = argparse.ArgumentParser() a_ : int = pl.Trainer.add_argparse_args(lowercase__ ) a_ : Dict = SummarizationModule.add_model_specific_args(lowercase__ , os.getcwd() ) a_ : List[str] = parser.parse_args() a_ : List[Any] = main(lowercase__ ) # Check metrics a_ : List[str] = load_json(model.metrics_save_path ) a_ : Any = metrics["""val"""][0] a_ : int = metrics["""val"""][-1] self.assertEqual(len(metrics["""val"""] ) , (args.max_epochs / args.val_check_interval) ) assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , lowercase__ ) self.assertGreater(last_step_stats["""val_avg_gen_time"""] , 0.01 ) # model hanging on generate. Maybe bad config was saved. (XXX: old comment/assert?) self.assertLessEqual(last_step_stats["""val_avg_gen_time"""] , 1.0 ) # test learning requirements: # 1. BLEU improves over the course of training by more than 2 pts self.assertGreater(last_step_stats["""val_avg_bleu"""] - first_step_stats["""val_avg_bleu"""] , 2 ) # 2. BLEU finishes above 17 self.assertGreater(last_step_stats["""val_avg_bleu"""] , 17 ) # 3. test BLEU and val BLEU within ~1.1 pt. self.assertLess(abs(metrics["""val"""][-1]["""val_avg_bleu"""] - metrics["""test"""][-1]["""test_avg_bleu"""] ) , 1.1 ) # check lightning ckpt can be loaded and has a reasonable statedict a_ : Dict = os.listdir(lowercase__ ) a_ : Union[str, Any] = [x for x in contents if x.endswith(""".ckpt""" )][0] a_ : Optional[Any] = os.path.join(args.output_dir , lowercase__ ) a_ : Dict = torch.load(lowercase__ , map_location="""cpu""" ) a_ : Tuple = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: a_ : int = {os.path.basename(lowercase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1 class SCREAMING_SNAKE_CASE ( snake_case_ ): @timeout_decorator.timeout(600 ) @slow @require_torch_gpu def lowercase_ ( self : Optional[int] ): '''simple docstring''' a_ : int = F"{self.test_file_dir_str}/test_data/wmt_en_ro" a_ : Dict = { """--fp16_opt_level=O1""": """""", """$MAX_LEN""": 128, """$BS""": 16, """$GAS""": 1, """$ENRO_DIR""": data_dir, """$m""": """sshleifer/student_marian_en_ro_6_1""", """val_check_interval=0.25""": """val_check_interval=1.0""", } # Clean up bash script a_ : List[str] = ( (self.test_file_dir / """distil_marian_no_teacher.sh""").open().read().split("""distillation.py""" )[1].strip() ) a_ : List[str] = bash_script.replace("""\\\n""" , """""" ).strip().replace("""\"$@\"""" , """""" ) a_ : Tuple = bash_script.replace("""--fp16 """ , """ """ ) for k, v in env_vars_to_replace.items(): a_ : Union[str, Any] = bash_script.replace(lowercase__ , str(lowercase__ ) ) a_ : List[str] = self.get_auto_remove_tmp_dir() a_ : List[str] = bash_script.replace("""--fp16""" , """""" ) a_ : str = 6 a_ : Union[str, Any] = ( ["""distillation.py"""] + bash_script.split() + [ F"--output_dir={output_dir}", """--gpus=1""", """--learning_rate=1e-3""", F"--num_train_epochs={epochs}", """--warmup_steps=10""", """--val_check_interval=1.0""", """--do_predict""", ] ) with patch.object(lowercase__ , """argv""" , lowercase__ ): a_ : Dict = argparse.ArgumentParser() a_ : Tuple = pl.Trainer.add_argparse_args(lowercase__ ) a_ : int = SummarizationDistiller.add_model_specific_args(lowercase__ , os.getcwd() ) a_ : List[Any] = parser.parse_args() # assert args.gpus == gpus THIS BREAKS for multi_gpu a_ : Union[str, Any] = distill_main(lowercase__ ) # Check metrics a_ : Union[str, Any] = load_json(model.metrics_save_path ) a_ : List[str] = metrics["""val"""][0] a_ : Optional[Any] = metrics["""val"""][-1] assert len(metrics["""val"""] ) >= (args.max_epochs / args.val_check_interval) # +1 accounts for val_sanity_check assert last_step_stats["val_avg_gen_time"] >= 0.01 assert first_step_stats["val_avg_bleu"] < last_step_stats["val_avg_bleu"] # model learned nothing assert 1.0 >= last_step_stats["val_avg_gen_time"] # model hanging on generate. Maybe bad config was saved. assert isinstance(last_step_stats[F"val_avg_{model.val_metric}"] , lowercase__ ) # check lightning ckpt can be loaded and has a reasonable statedict a_ : Optional[int] = os.listdir(lowercase__ ) a_ : Dict = [x for x in contents if x.endswith(""".ckpt""" )][0] a_ : Optional[Any] = os.path.join(args.output_dir , lowercase__ ) a_ : Optional[Any] = torch.load(lowercase__ , map_location="""cpu""" ) a_ : List[str] = """model.model.decoder.layers.0.encoder_attn_layer_norm.weight""" assert expected_key in ckpt["state_dict"] assert ckpt["state_dict"]["model.model.decoder.layers.0.encoder_attn_layer_norm.weight"].dtype == torch.floataa # TODO: turn on args.do_predict when PL bug fixed. if args.do_predict: a_ : int = {os.path.basename(lowercase__ ) for p in contents} assert "test_generations.txt" in contents assert "test_results.txt" in contents # assert len(metrics["val"]) == desired_n_evals assert len(metrics["""test"""] ) == 1
442
1
"""simple docstring""" import pytest from datasets.parallel import ParallelBackendConfig, parallel_backend from datasets.utils.py_utils import map_nested from .utils import require_dill_gt_0_3_2, require_joblibspark, require_not_windows def lowerCamelCase ( _UpperCamelCase : Any ) -> Optional[int]: # picklable for multiprocessing '''simple docstring''' return i + 1 @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows def lowerCamelCase ( ) -> List[Any]: '''simple docstring''' with parallel_backend("""spark""" ): assert ParallelBackendConfig.backend_name == "spark" __UpperCAmelCase : Any = [1, 2, 3] with pytest.raises(_UpperCamelCase ): with parallel_backend("""unsupported backend""" ): map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=2 ) with pytest.raises(_UpperCamelCase ): with parallel_backend("""unsupported backend""" ): map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=-1 ) @require_dill_gt_0_3_2 @require_joblibspark @require_not_windows @pytest.mark.parametrize("""num_proc""" , [2, -1] ) def lowerCamelCase ( _UpperCamelCase : Any ) -> Any: '''simple docstring''' __UpperCAmelCase : List[str] = [1, 2] __UpperCAmelCase : str = {"""a""": 1, """b""": 2} __UpperCAmelCase : Union[str, Any] = {"""a""": [1, 2], """b""": [3, 4]} __UpperCAmelCase : Tuple = {"""a""": {"""1""": 1}, """b""": 2} __UpperCAmelCase : Any = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} __UpperCAmelCase : List[Any] = [2, 3] __UpperCAmelCase : Optional[int] = {"""a""": 2, """b""": 3} __UpperCAmelCase : Any = {"""a""": [2, 3], """b""": [4, 5]} __UpperCAmelCase : Optional[int] = {"""a""": {"""1""": 2}, """b""": 3} __UpperCAmelCase : str = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} with parallel_backend("""spark""" ): assert map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) == expected_map_nested_sa assert map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) == expected_map_nested_sa assert map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) == expected_map_nested_sa assert map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) == expected_map_nested_sa assert map_nested(_UpperCamelCase , _UpperCamelCase , num_proc=_UpperCamelCase ) == expected_map_nested_sa
299
"""simple docstring""" import collections import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase : Union[str, Any] = logging.get_logger(__name__) UpperCAmelCase : str = '▁' UpperCAmelCase : Optional[int] = {'vocab_file': 'prophetnet.tokenizer'} UpperCAmelCase : Optional[Any] = { 'vocab_file': { 'microsoft/xprophetnet-large-wiki100-cased': ( 'https://huggingface.co/microsoft/xprophetnet-large-wiki100-cased/resolve/main/prophetnet.tokenizer' ), } } UpperCAmelCase : List[str] = { 'microsoft/xprophetnet-large-wiki100-cased': {'do_lower_case': False}, } UpperCAmelCase : List[str] = { 'microsoft/xprophetnet-large-wiki100-cased': 512, } def lowerCamelCase ( _UpperCamelCase : Optional[Any] ) -> int: '''simple docstring''' __UpperCAmelCase : Union[str, Any] = collections.OrderedDict() with open(_UpperCamelCase , """r""" , encoding="""utf-8""" ) as reader: __UpperCAmelCase : Optional[Any] = reader.readlines() for index, token in enumerate(_UpperCamelCase ): __UpperCAmelCase : List[Any] = token.rstrip("""\n""" ) __UpperCAmelCase : Union[str, Any] = index return vocab class lowerCamelCase__ ( A ): """simple docstring""" __a = VOCAB_FILES_NAMES __a = PRETRAINED_VOCAB_FILES_MAP __a = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __a = ["""input_ids""", """attention_mask"""] def __init__( self : Optional[int] , UpperCamelCase : List[Any] , UpperCamelCase : Any="[SEP]" , UpperCamelCase : Union[str, Any]="[SEP]" , UpperCamelCase : int="[SEP]" , UpperCamelCase : int="[UNK]" , UpperCamelCase : Tuple="[PAD]" , UpperCamelCase : Optional[Any]="[CLS]" , UpperCamelCase : Dict="[MASK]" , UpperCamelCase : Optional[Dict[str, Any]] = None , **UpperCamelCase : Tuple , ): '''simple docstring''' __UpperCAmelCase : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=UpperCamelCase , eos_token=UpperCamelCase , sep_token=UpperCamelCase , unk_token=UpperCamelCase , pad_token=UpperCamelCase , cls_token=UpperCamelCase , mask_token=UpperCamelCase , sp_model_kwargs=self.sp_model_kwargs , **UpperCamelCase , ) try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise __UpperCAmelCase : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(UpperCamelCase ) ) __UpperCAmelCase : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # put special tokens and [unused] tokens into the vocab __UpperCAmelCase : Optional[Any] = {"""[PAD]""": 0, """[CLS]""": 1, """[SEP]""": 2, """[UNK]""": 3, """[MASK]""": 4} for i in range(10 ): __UpperCAmelCase : int = f'''[unused{i}]''' __UpperCAmelCase : Dict = 5 + i # The first "real" token "," has position 15 in the embedding vocab and position 3 in the spm vocab __UpperCAmelCase : List[str] = 12 __UpperCAmelCase : Dict = {v: k for k, v in self.fairseq_tokens_to_ids.items()} for k in self.fairseq_tokens_to_ids.keys(): self.unique_no_split_tokens.append(UpperCamelCase ) def __getstate__( self : Any ): '''simple docstring''' __UpperCAmelCase : Dict = self.__dict__.copy() __UpperCAmelCase : Any = None return state def __setstate__( self : Tuple , UpperCamelCase : Dict ): '''simple docstring''' __UpperCAmelCase : Dict = d try: import sentencepiece as spm except ImportError: logger.warning( """You need to install SentencePiece to use XLMRobertaTokenizer: https://github.com/google/sentencepiece""" """ pip install sentencepiece""" ) raise # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __UpperCAmelCase : Tuple = {} __UpperCAmelCase : Tuple = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCamelCase__ ( self : Union[str, Any] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None , UpperCamelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=UpperCamelCase , token_ids_a=UpperCamelCase , already_has_special_tokens=UpperCamelCase ) if token_ids_a is None: return ([0] * len(UpperCamelCase )) + [1] return ([0] * len(UpperCamelCase )) + [1] + ([0] * len(UpperCamelCase )) + [1] def lowerCamelCase__ ( self : int , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' __UpperCAmelCase : int = [self.sep_token_id] if token_ids_a is None: return len(token_ids_a + sep ) * [0] return len(token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def lowerCamelCase__ ( self : Optional[int] ): '''simple docstring''' return len(self.sp_model ) + self.fairseq_offset def lowerCamelCase__ ( self : int ): '''simple docstring''' __UpperCAmelCase : Dict = {self.convert_ids_to_tokens(UpperCamelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def lowerCamelCase__ ( self : str , UpperCamelCase : str ): '''simple docstring''' return self.sp_model.encode(UpperCamelCase , out_type=UpperCamelCase ) def lowerCamelCase__ ( self : Dict , UpperCamelCase : List[str] ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __UpperCAmelCase : str = self.sp_model.PieceToId(UpperCamelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def lowerCamelCase__ ( self : Tuple , UpperCamelCase : List[str] ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def lowerCamelCase__ ( self : str , UpperCamelCase : str ): '''simple docstring''' __UpperCAmelCase : Any = """""".join(UpperCamelCase ).replace(UpperCamelCase , """ """ ).strip() return out_string def lowerCamelCase__ ( self : Tuple , UpperCamelCase : str , UpperCamelCase : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(UpperCamelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __UpperCAmelCase : Optional[int] = os.path.join( UpperCamelCase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(UpperCamelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , UpperCamelCase ) elif not os.path.isfile(self.vocab_file ): with open(UpperCamelCase , """wb""" ) as fi: __UpperCAmelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(UpperCamelCase ) return (out_vocab_file,) def lowerCamelCase__ ( self : List[str] , UpperCamelCase : List[int] , UpperCamelCase : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return token_ids_a + [self.sep_token_id] __UpperCAmelCase : Optional[int] = [self.sep_token_id] return token_ids_a + sep + token_ids_a + sep
299
1
def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[Any] = int(_a) if decimal in (0, 1): # Exit cases for the recursion return str(_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : int = divmod(_a , 2) return binary_recursive(_a) + str(_a) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Optional[int] = str(_a).strip() if not number: raise ValueError("No input value was provided") SCREAMING_SNAKE_CASE : List[Any] = "-" if number.startswith("-") else "" SCREAMING_SNAKE_CASE : Any = number.lstrip("-") if not number.isnumeric(): raise ValueError("Input value is not an integer") return f"{negative}0b{binary_recursive(int(_a))}" if __name__ == "__main__": from doctest import testmod testmod()
25
"""simple docstring""" import unittest import numpy as np from transformers import is_flax_available from transformers.testing_utils import require_flax from ..test_modeling_flax_common import ids_tensor if is_flax_available(): import jax import jax.numpy as jnp from transformers.generation import ( FlaxForcedBOSTokenLogitsProcessor, FlaxForcedEOSTokenLogitsProcessor, FlaxLogitsProcessorList, FlaxMinLengthLogitsProcessor, FlaxTemperatureLogitsWarper, FlaxTopKLogitsWarper, FlaxTopPLogitsWarper, ) @require_flax class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def a ( self : str , a_ : int , a_ : int )-> Optional[Any]: """simple docstring""" UpperCAmelCase_ : List[Any] = jnp.ones((batch_size, length) ) / length return scores def a ( self : str )-> int: """simple docstring""" UpperCAmelCase_ : List[Any] = None UpperCAmelCase_ : int = 20 UpperCAmelCase_ : Tuple = self._get_uniform_logits(batch_size=2 , length=a_ ) # tweak scores to not be uniform anymore UpperCAmelCase_ : Any = scores.at[1, 5].set((1 / length) + 0.1 ) # peak, 1st batch UpperCAmelCase_ : List[Any] = scores.at[1, 10].set((1 / length) - 0.4 ) # valley, 1st batch # compute softmax UpperCAmelCase_ : str = jax.nn.softmax(a_ , axis=-1 ) UpperCAmelCase_ : Union[str, Any] = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ : Any = FlaxTemperatureLogitsWarper(temperature=1.3 ) UpperCAmelCase_ : Optional[Any] = jax.nn.softmax(temp_dist_warper_sharper(a_ , scores.copy() , cur_len=a_ ) , axis=-1 ) UpperCAmelCase_ : List[str] = jax.nn.softmax(temp_dist_warper_smoother(a_ , scores.copy() , cur_len=a_ ) , axis=-1 ) # uniform distribution stays uniform self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_sharp[0, :] , atol=1E-3 ) ) self.assertTrue(jnp.allclose(probs[0, :] , warped_prob_smooth[0, :] , atol=1E-3 ) ) # sharp peaks get higher, valleys get lower self.assertLess(probs[1, :].max() , warped_prob_sharp[1, :].max() ) self.assertGreater(probs[1, :].min() , warped_prob_sharp[1, :].min() ) # smooth peaks get lower, valleys get higher self.assertGreater(probs[1, :].max() , warped_prob_smooth[1, :].max() ) self.assertLess(probs[1, :].min() , warped_prob_smooth[1, :].min() ) def a ( self : Union[str, Any] )-> Tuple: """simple docstring""" UpperCAmelCase_ : Dict = None UpperCAmelCase_ : str = 10 UpperCAmelCase_ : List[Any] = 2 # create ramp distribution UpperCAmelCase_ : Optional[Any] = np.broadcast_to(np.arange(a_ )[None, :] , (batch_size, vocab_size) ).copy() UpperCAmelCase_ : Any = ramp_logits[1:, : vocab_size // 2] + vocab_size UpperCAmelCase_ : List[Any] = FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ : Tuple = top_k_warp(a_ , a_ , cur_len=a_ ) # check that correct tokens are filtered self.assertListEqual(jnp.isinf(scores[0] ).tolist() , 7 * [True] + 3 * [False] ) self.assertListEqual(jnp.isinf(scores[1] ).tolist() , 2 * [True] + 3 * [False] + 5 * [True] ) # check special case UpperCAmelCase_ : Any = 5 UpperCAmelCase_ : Optional[int] = FlaxTopKLogitsWarper(top_k=1 , filter_value=0.0 , min_tokens_to_keep=3 ) UpperCAmelCase_ : Any = np.broadcast_to(np.arange(a_ )[None, :] , (batch_size, length) ).copy() UpperCAmelCase_ : Tuple = top_k_warp_safety_check(a_ , a_ , cur_len=a_ ) # min_tokens overwrites k: 3 tokens are kept => 2 tokens are nullified self.assertListEqual((scores == 0.0).sum(axis=-1 ).tolist() , [2, 2] ) def a ( self : Dict )-> List[str]: """simple docstring""" UpperCAmelCase_ : Tuple = None UpperCAmelCase_ : List[str] = 10 UpperCAmelCase_ : List[Any] = 2 # create distribution and take log (inverse to Softmax as taken in TopPLogitsWarper) UpperCAmelCase_ : int = np.log(np.array([[0.3, 0.1, 0.1, 0.5], [0.15, 0.3, 0.3, 0.25]] ) ) UpperCAmelCase_ : str = FlaxTopPLogitsWarper(0.8 ) UpperCAmelCase_ : Union[str, Any] = np.exp(top_p_warp(a_ , a_ , cur_len=a_ ) ) # dist should be filtered to keep min num values so that sum is >= top_p # exp (-inf) => 0 UpperCAmelCase_ : List[Any] = np.array([[0.3, 0.0, 0.0, 0.5], [0.0, 0.3, 0.3, 0.25]] ) self.assertTrue(np.allclose(a_ , a_ , atol=1E-3 ) ) # check edge cases with negative and extreme logits UpperCAmelCase_ : Optional[Any] = np.broadcast_to(np.arange(a_ )[None, :] , (batch_size, vocab_size) ).copy() - ( vocab_size // 2 ) # make ramp_logits more extreme UpperCAmelCase_ : Tuple = ramp_logits[1] * 100.0 # make sure at least 2 tokens are kept UpperCAmelCase_ : Any = FlaxTopPLogitsWarper(0.9 , min_tokens_to_keep=2 , filter_value=0.0 ) UpperCAmelCase_ : Dict = top_p_warp(a_ , a_ , cur_len=a_ ) # first batch should keep three tokens, second batch would keep only 1, but due to `min_tokens_to_keep=2` keeps 2. self.assertListEqual((filtered_dist != 0.0).sum(axis=-1 ).tolist() , [3, 2] ) def a ( self : List[str] )-> Any: """simple docstring""" UpperCAmelCase_ : Dict = 20 UpperCAmelCase_ : List[str] = 4 UpperCAmelCase_ : Dict = 0 UpperCAmelCase_ : Union[str, Any] = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a_ ) # check that min length is applied at length 5 UpperCAmelCase_ : Union[str, Any] = ids_tensor((batch_size, 20) , vocab_size=20 ) UpperCAmelCase_ : str = 5 UpperCAmelCase_ : Tuple = self._get_uniform_logits(a_ , a_ ) UpperCAmelCase_ : List[Any] = min_dist_processor(a_ , a_ , cur_len=a_ ) self.assertListEqual(scores_before_min_length[:, eos_token_id].tolist() , 4 * [-float("""inf""" )] ) # check that min length is not applied anymore at length 15 UpperCAmelCase_ : str = self._get_uniform_logits(a_ , a_ ) UpperCAmelCase_ : Optional[Any] = 15 UpperCAmelCase_ : str = min_dist_processor(a_ , a_ , cur_len=a_ ) self.assertFalse(jnp.isinf(a_ ).any() ) def a ( self : List[str] )-> str: """simple docstring""" UpperCAmelCase_ : Optional[int] = 20 UpperCAmelCase_ : int = 4 UpperCAmelCase_ : str = 0 UpperCAmelCase_ : Optional[int] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a_ ) # check that all scores are -inf except the bos_token_id score UpperCAmelCase_ : List[str] = ids_tensor((batch_size, 1) , vocab_size=20 ) UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : int = self._get_uniform_logits(a_ , a_ ) UpperCAmelCase_ : int = logits_processor(a_ , a_ , cur_len=a_ ) self.assertTrue(jnp.isneginf(scores[:, bos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, bos_token_id].tolist() , 4 * [0] ) # score for bos_token_id shold be zero # check that bos_token_id is not forced if current length is greater than 1 UpperCAmelCase_ : int = 3 UpperCAmelCase_ : Tuple = self._get_uniform_logits(a_ , a_ ) UpperCAmelCase_ : Union[str, Any] = logits_processor(a_ , a_ , cur_len=a_ ) self.assertFalse(jnp.isinf(a_ ).any() ) def a ( self : str )-> List[str]: """simple docstring""" UpperCAmelCase_ : Optional[int] = 20 UpperCAmelCase_ : int = 4 UpperCAmelCase_ : Union[str, Any] = 0 UpperCAmelCase_ : Union[str, Any] = 5 UpperCAmelCase_ : Optional[Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=a_ , eos_token_id=a_ ) # check that all scores are -inf except the eos_token_id when max_length is reached UpperCAmelCase_ : str = ids_tensor((batch_size, 4) , vocab_size=20 ) UpperCAmelCase_ : int = 4 UpperCAmelCase_ : Optional[Any] = self._get_uniform_logits(a_ , a_ ) UpperCAmelCase_ : Union[str, Any] = logits_processor(a_ , a_ , cur_len=a_ ) self.assertTrue(jnp.isneginf(scores[:, eos_token_id + 1 :] ).all() ) self.assertListEqual(scores[:, eos_token_id].tolist() , 4 * [0] ) # score for eos_token_id should be zero # check that eos_token_id is not forced if max_length is not reached UpperCAmelCase_ : Any = 3 UpperCAmelCase_ : Tuple = self._get_uniform_logits(a_ , a_ ) UpperCAmelCase_ : int = logits_processor(a_ , a_ , cur_len=a_ ) self.assertFalse(jnp.isinf(a_ ).any() ) def a ( self : int )-> List[Any]: """simple docstring""" UpperCAmelCase_ : Dict = 4 UpperCAmelCase_ : List[Any] = 10 UpperCAmelCase_ : Tuple = 15 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : List[Any] = 1 UpperCAmelCase_ : Dict = 15 # dummy input_ids and scores UpperCAmelCase_ : Dict = ids_tensor((batch_size, sequence_length) , a_ ) UpperCAmelCase_ : Tuple = input_ids.copy() UpperCAmelCase_ : int = self._get_uniform_logits(a_ , a_ ) UpperCAmelCase_ : Optional[Any] = scores.copy() # instantiate all dist processors UpperCAmelCase_ : Tuple = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ : str = FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ : Tuple = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase_ : Tuple = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a_ ) UpperCAmelCase_ : Optional[Any] = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a_ ) UpperCAmelCase_ : Tuple = FlaxForcedEOSTokenLogitsProcessor(max_length=a_ , eos_token_id=a_ ) UpperCAmelCase_ : Tuple = 10 # no processor list UpperCAmelCase_ : Optional[Any] = temp_dist_warp(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : Optional[int] = top_k_warp(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : Optional[Any] = top_p_warp(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : List[Any] = min_dist_proc(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : Dict = bos_dist_proc(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : str = eos_dist_proc(a_ , a_ , cur_len=a_ ) # with processor list UpperCAmelCase_ : Tuple = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase_ : Union[str, Any] = processor(a_ , a_ , cur_len=a_ ) # scores should be equal self.assertTrue(jnp.allclose(a_ , a_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() ) def a ( self : Optional[int] )-> Any: """simple docstring""" UpperCAmelCase_ : Any = 4 UpperCAmelCase_ : List[Any] = 10 UpperCAmelCase_ : Optional[int] = 15 UpperCAmelCase_ : Optional[Any] = 2 UpperCAmelCase_ : Dict = 1 UpperCAmelCase_ : int = 15 # dummy input_ids and scores UpperCAmelCase_ : List[str] = ids_tensor((batch_size, sequence_length) , a_ ) UpperCAmelCase_ : Dict = input_ids.copy() UpperCAmelCase_ : Dict = self._get_uniform_logits(a_ , a_ ) UpperCAmelCase_ : Tuple = scores.copy() # instantiate all dist processors UpperCAmelCase_ : Dict = FlaxTemperatureLogitsWarper(temperature=0.5 ) UpperCAmelCase_ : int = FlaxTopKLogitsWarper(3 ) UpperCAmelCase_ : int = FlaxTopPLogitsWarper(0.8 ) # instantiate all logits processors UpperCAmelCase_ : str = FlaxMinLengthLogitsProcessor(min_length=10 , eos_token_id=a_ ) UpperCAmelCase_ : Dict = FlaxForcedBOSTokenLogitsProcessor(bos_token_id=a_ ) UpperCAmelCase_ : Union[str, Any] = FlaxForcedEOSTokenLogitsProcessor(max_length=a_ , eos_token_id=a_ ) UpperCAmelCase_ : Dict = 10 # no processor list def run_no_processor_list(a_ : Any , a_ : List[str] , a_ : Tuple ): UpperCAmelCase_ : List[Any] = temp_dist_warp(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : Tuple = top_k_warp(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : int = top_p_warp(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : Tuple = min_dist_proc(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : Optional[int] = bos_dist_proc(a_ , a_ , cur_len=a_ ) UpperCAmelCase_ : List[Any] = eos_dist_proc(a_ , a_ , cur_len=a_ ) return scores # with processor list def run_processor_list(a_ : List[str] , a_ : Optional[int] , a_ : Optional[int] ): UpperCAmelCase_ : List[str] = FlaxLogitsProcessorList( [temp_dist_warp, top_k_warp, top_p_warp, min_dist_proc, bos_dist_proc, eos_dist_proc] ) UpperCAmelCase_ : Optional[Any] = processor(a_ , a_ , cur_len=a_ ) return scores UpperCAmelCase_ : str = jax.jit(a_ ) UpperCAmelCase_ : Tuple = jax.jit(a_ ) UpperCAmelCase_ : Optional[int] = jitted_run_no_processor_list(a_ , a_ , a_ ) UpperCAmelCase_ : List[Any] = jitted_run_processor_list(a_ , a_ , a_ ) # scores should be equal self.assertTrue(jnp.allclose(a_ , a_ , atol=1E-3 ) ) # input_ids should never be changed self.assertListEqual(input_ids.tolist() , input_ids_comp.tolist() )
470
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase_ : List[Any] = { """configuration_roberta""": ["""ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaConfig""", """RobertaOnnxConfig"""], """tokenization_roberta""": ["""RobertaTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Union[str, Any] = ["""RobertaTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : str = [ """ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaForCausalLM""", """RobertaForMaskedLM""", """RobertaForMultipleChoice""", """RobertaForQuestionAnswering""", """RobertaForSequenceClassification""", """RobertaForTokenClassification""", """RobertaModel""", """RobertaPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ """TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaForCausalLM""", """TFRobertaForMaskedLM""", """TFRobertaForMultipleChoice""", """TFRobertaForQuestionAnswering""", """TFRobertaForSequenceClassification""", """TFRobertaForTokenClassification""", """TFRobertaMainLayer""", """TFRobertaModel""", """TFRobertaPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Any = [ """FlaxRobertaForCausalLM""", """FlaxRobertaForMaskedLM""", """FlaxRobertaForMultipleChoice""", """FlaxRobertaForQuestionAnswering""", """FlaxRobertaForSequenceClassification""", """FlaxRobertaForTokenClassification""", """FlaxRobertaModel""", """FlaxRobertaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys UpperCAmelCase_ : Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
715
import json import os from collections import Counter import torch import torchvision import torchvision.transforms as transforms from PIL import Image from torch import nn from torch.utils.data import Dataset UpperCAmelCase_ = {1: (1, 1), 2: (2, 1), 3: (3, 1), 4: (2, 2), 5: (5, 1), 6: (3, 2), 7: (7, 1), 8: (4, 2), 9: (3, 3)} class UpperCamelCase_ ( nn.Module ): def __init__( self , lowerCAmelCase_ ) -> int: super().__init__() _snake_case = torchvision.models.resnetaaa(pretrained=lowerCAmelCase_ ) _snake_case = list(model.children() )[:-2] _snake_case = nn.Sequential(*lowerCAmelCase_ ) _snake_case = nn.AdaptiveAvgPoolad(POOLING_BREAKDOWN[args.num_image_embeds] ) def lowerCAmelCase ( self , lowerCAmelCase_ ) -> str: # Bx3x224x224 -> Bx2048x7x7 -> Bx2048xN -> BxNx2048 _snake_case = self.pool(self.model(lowerCAmelCase_ ) ) _snake_case = torch.flatten(lowerCAmelCase_ , start_dim=2 ) _snake_case = out.transpose(1 , 2 ).contiguous() return out # BxNx2048 class UpperCamelCase_ ( _lowerCamelCase ): def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Optional[Any]: _snake_case = [json.loads(lowerCAmelCase_ ) for l in open(lowerCAmelCase_ )] _snake_case = os.path.dirname(lowerCAmelCase_ ) _snake_case = tokenizer _snake_case = labels _snake_case = len(lowerCAmelCase_ ) _snake_case = max_seq_length _snake_case = transforms def __len__( self ) -> Any: return len(self.data ) def __getitem__( self , lowerCAmelCase_ ) -> Optional[int]: _snake_case = torch.LongTensor(self.tokenizer.encode(self.data[index]['text'] , add_special_tokens=lowerCAmelCase_ ) ) _snake_case , _snake_case , _snake_case = sentence[0], sentence[1:-1], sentence[-1] _snake_case = sentence[: self.max_seq_length] _snake_case = torch.zeros(self.n_classes ) _snake_case = 1 _snake_case = Image.open(os.path.join(self.data_dir , self.data[index]['img'] ) ).convert('RGB' ) _snake_case = self.transforms(lowerCAmelCase_ ) return { "image_start_token": start_token, "image_end_token": end_token, "sentence": sentence, "image": image, "label": label, } def lowerCAmelCase ( self ) -> Tuple: _snake_case = Counter() for row in self.data: label_freqs.update(row['label'] ) return label_freqs def lowerCamelCase__ ( UpperCamelCase__ : str ) -> Dict: '''simple docstring''' _snake_case = [len(row['sentence'] ) for row in batch] _snake_case , _snake_case = len(UpperCamelCase__ ), max(UpperCamelCase__ ) _snake_case = torch.zeros(UpperCamelCase__ , UpperCamelCase__ , dtype=torch.long ) _snake_case = torch.zeros(UpperCamelCase__ , UpperCamelCase__ , dtype=torch.long ) for i_batch, (input_row, length) in enumerate(zip(UpperCamelCase__ , UpperCamelCase__ ) ): _snake_case = input_row['sentence'] _snake_case = 1 _snake_case = torch.stack([row['image'] for row in batch] ) _snake_case = torch.stack([row['label'] for row in batch] ) _snake_case = torch.stack([row['image_start_token'] for row in batch] ) _snake_case = torch.stack([row['image_end_token'] for row in batch] ) return text_tensor, mask_tensor, img_tensor, img_start_token, img_end_token, tgt_tensor def lowerCamelCase__ ( ) -> str: '''simple docstring''' return [ "Crime", "Drama", "Thriller", "Action", "Comedy", "Romance", "Documentary", "Short", "Mystery", "History", "Family", "Adventure", "Fantasy", "Sci-Fi", "Western", "Horror", "Sport", "War", "Music", "Musical", "Animation", "Biography", "Film-Noir", ] def lowerCamelCase__ ( ) -> Tuple: '''simple docstring''' return transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize( mean=[0.4677_7044, 0.4453_1429, 0.4066_1017] , std=[0.1222_1994, 0.1214_5835, 0.1438_0469] , ), ] )
541
0
'''simple docstring''' from typing import List, Optional, Tuple, Union import torch from torch import nn from torch.nn import CrossEntropyLoss from ... import AutoBackbone from ...modeling_outputs import SemanticSegmenterOutput from ...modeling_utils import PreTrainedModel from ...utils import add_start_docstrings, add_start_docstrings_to_model_forward, replace_return_docstrings from ...utils.backbone_utils import BackboneMixin from .configuration_upernet import UperNetConfig UpperCamelCase__ = [ '''openmmlab/upernet-convnext-tiny''', # See all UperNet models at https://huggingface.co/models?filter=upernet ] # General docstring UpperCamelCase__ = '''UperNetConfig''' class lowerCamelCase_ ( nn.Module ): def __init__( self : List[Any] , _A : int , _A : int , _A : Union[int, Tuple[int, int]] , _A : Union[int, Tuple[int, int], str] = 0 , _A : bool = False , _A : Union[int, Tuple[int, int]] = 1 , ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Union[str, Any] = nn.Convad( in_channels=_A , out_channels=_A , kernel_size=_A , padding=_A , bias=_A , dilation=_A , ) UpperCAmelCase__ : Union[str, Any] = nn.BatchNormad(_A ) UpperCAmelCase__ : List[str] = nn.ReLU() def lowercase_ ( self : int , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = self.conv(_A ) UpperCAmelCase__ : Union[str, Any] = self.batch_norm(_A ) UpperCAmelCase__ : Tuple = self.activation(_A ) return output class lowerCamelCase_ ( nn.Module ): def __init__( self : Tuple , _A : int , _A : int , _A : int ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Optional[int] = [ nn.AdaptiveAvgPoolad(_A ), UperNetConvModule(_A , _A , kernel_size=1 ), ] for i, layer in enumerate(self.layers ): self.add_module(str(_A ) , _A ) def lowercase_ ( self : Dict , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = input for layer in self.layers: UpperCAmelCase__ : Any = layer(_A ) return hidden_state class lowerCamelCase_ ( nn.Module ): def __init__( self : Optional[Any] , _A : Tuple[int, ...] , _A : int , _A : int , _A : bool ): '''simple docstring''' super().__init__() UpperCAmelCase__ : Any = pool_scales UpperCAmelCase__ : Optional[Any] = align_corners UpperCAmelCase__ : Optional[Any] = in_channels UpperCAmelCase__ : Tuple = channels UpperCAmelCase__ : Union[str, Any] = [] for i, pool_scale in enumerate(_A ): UpperCAmelCase__ : Optional[Any] = UperNetPyramidPoolingBlock(pool_scale=_A , in_channels=_A , channels=_A ) self.blocks.append(_A ) self.add_module(str(_A ) , _A ) def lowercase_ ( self : int , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : Dict = [] for ppm in self.blocks: UpperCAmelCase__ : Tuple = ppm(_A ) UpperCAmelCase__ : int = nn.functional.interpolate( _A , size=x.size()[2:] , mode='''bilinear''' , align_corners=self.align_corners ) ppm_outs.append(_A ) return ppm_outs class lowerCamelCase_ ( nn.Module ): def __init__( self : List[str] , _A : Union[str, Any] , _A : Union[str, Any] ): '''simple docstring''' super().__init__() UpperCAmelCase__ : List[str] = config UpperCAmelCase__ : int = config.pool_scales # e.g. (1, 2, 3, 6) UpperCAmelCase__ : int = in_channels UpperCAmelCase__ : Dict = config.hidden_size UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : str = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) # PSP Module UpperCAmelCase__ : Optional[Any] = UperNetPyramidPoolingModule( self.pool_scales , self.in_channels[-1] , self.channels , align_corners=self.align_corners , ) UpperCAmelCase__ : Tuple = UperNetConvModule( self.in_channels[-1] + len(self.pool_scales ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) # FPN Module UpperCAmelCase__ : int = nn.ModuleList() UpperCAmelCase__ : Union[str, Any] = nn.ModuleList() for in_channels in self.in_channels[:-1]: # skip the top layer UpperCAmelCase__ : str = UperNetConvModule(_A , self.channels , kernel_size=1 ) UpperCAmelCase__ : Optional[Any] = UperNetConvModule(self.channels , self.channels , kernel_size=3 , padding=1 ) self.lateral_convs.append(_A ) self.fpn_convs.append(_A ) UpperCAmelCase__ : List[Any] = UperNetConvModule( len(self.in_channels ) * self.channels , self.channels , kernel_size=3 , padding=1 , ) def lowercase_ ( self : List[str] ): '''simple docstring''' self.apply(self._init_weights ) def lowercase_ ( self : Dict , _A : str ): '''simple docstring''' if isinstance(_A , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase_ ( self : Any , _A : Any ): '''simple docstring''' UpperCAmelCase__ : Tuple = inputs[-1] UpperCAmelCase__ : List[str] = [x] psp_outs.extend(self.psp_modules(_A ) ) UpperCAmelCase__ : Dict = torch.cat(_A , dim=1 ) UpperCAmelCase__ : Tuple = self.bottleneck(_A ) return output def lowercase_ ( self : str , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : Tuple = [lateral_conv(encoder_hidden_states[i] ) for i, lateral_conv in enumerate(self.lateral_convs )] laterals.append(self.psp_forward(_A ) ) # build top-down path UpperCAmelCase__ : int = len(_A ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase__ : Dict = laterals[i - 1].shape[2:] UpperCAmelCase__ : List[str] = laterals[i - 1] + nn.functional.interpolate( laterals[i] , size=_A , mode='''bilinear''' , align_corners=self.align_corners ) # build outputs UpperCAmelCase__ : List[str] = [self.fpn_convs[i](laterals[i] ) for i in range(used_backbone_levels - 1 )] # append psp feature fpn_outs.append(laterals[-1] ) for i in range(used_backbone_levels - 1 , 0 , -1 ): UpperCAmelCase__ : List[str] = nn.functional.interpolate( fpn_outs[i] , size=fpn_outs[0].shape[2:] , mode='''bilinear''' , align_corners=self.align_corners ) UpperCAmelCase__ : Optional[Any] = torch.cat(_A , dim=1 ) UpperCAmelCase__ : int = self.fpn_bottleneck(_A ) UpperCAmelCase__ : List[str] = self.classifier(_A ) return output class lowerCamelCase_ ( nn.Module ): def __init__( self : str , _A : List[Any] , _A : int = 2 , _A : int = 3 , _A : Union[int, Tuple[int, int]] = 1 ): '''simple docstring''' super().__init__() UpperCAmelCase__ : int = config UpperCAmelCase__ : Union[str, Any] = config.auxiliary_in_channels UpperCAmelCase__ : Optional[int] = config.auxiliary_channels UpperCAmelCase__ : Optional[Any] = config.auxiliary_num_convs UpperCAmelCase__ : List[str] = config.auxiliary_concat_input UpperCAmelCase__ : Dict = in_index UpperCAmelCase__ : Union[str, Any] = (kernel_size // 2) * dilation UpperCAmelCase__ : Optional[int] = [] convs.append( UperNetConvModule( self.in_channels , self.channels , kernel_size=_A , padding=_A , dilation=_A ) ) for i in range(self.num_convs - 1 ): convs.append( UperNetConvModule( self.channels , self.channels , kernel_size=_A , padding=_A , dilation=_A ) ) if self.num_convs == 0: UpperCAmelCase__ : Union[str, Any] = nn.Identity() else: UpperCAmelCase__ : str = nn.Sequential(*_A ) if self.concat_input: UpperCAmelCase__ : List[Any] = UperNetConvModule( self.in_channels + self.channels , self.channels , kernel_size=_A , padding=kernel_size // 2 ) UpperCAmelCase__ : str = nn.Convad(self.channels , config.num_labels , kernel_size=1 ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' self.apply(self._init_weights ) def lowercase_ ( self : Any , _A : Dict ): '''simple docstring''' if isinstance(_A , nn.Convad ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() def lowercase_ ( self : List[str] , _A : torch.Tensor ): '''simple docstring''' UpperCAmelCase__ : List[str] = encoder_hidden_states[self.in_index] UpperCAmelCase__ : List[Any] = self.convs(_A ) if self.concat_input: UpperCAmelCase__ : Dict = self.conv_cat(torch.cat([hidden_states, output] , dim=1 ) ) UpperCAmelCase__ : List[Any] = self.classifier(_A ) return output class lowerCamelCase_ ( __a ): lowerCAmelCase__ = UperNetConfig lowerCAmelCase__ = 'pixel_values' lowerCAmelCase__ = True def lowercase_ ( self : Union[str, Any] , _A : str ): '''simple docstring''' if isinstance(_A , _A ): module.backbone.init_weights() module.decode_head.init_weights() module.auxiliary_head.init_weights() def lowercase_ ( self : str ): '''simple docstring''' self.backbone.init_weights() self.decode_head.init_weights() self.auxiliary_head.init_weights() def lowercase_ ( self : Optional[int] , _A : int , _A : Union[str, Any]=False ): '''simple docstring''' if isinstance(_A , _A ): UpperCAmelCase__ : Union[str, Any] = value UpperCamelCase__ = R''' Parameters: This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. config ([`UperNetConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' UpperCamelCase__ = R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Padding will be ignored by default should you provide it. Pixel values can be obtained using [`AutoImageProcessor`]. See [`SegformerImageProcessor.__call__`] for details. output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers in case the backbone has them. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers of the backbone. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. ''' @add_start_docstrings( 'UperNet framework leveraging any vision backbone e.g. for ADE20k, CityScapes.' , __a , ) class lowerCamelCase_ ( __a ): def __init__( self : Tuple , _A : List[Any] ): '''simple docstring''' super().__init__(_A ) UpperCAmelCase__ : int = AutoBackbone.from_config(config.backbone_config ) # Semantic segmentation head(s) UpperCAmelCase__ : List[str] = UperNetHead(_A , in_channels=self.backbone.channels ) UpperCAmelCase__ : int = UperNetFCNHead(_A ) if config.use_auxiliary_head else None # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(UPERNET_INPUTS_DOCSTRING.format('''batch_size, sequence_length''' ) ) @replace_return_docstrings(output_type=_A , config_class=_CONFIG_FOR_DOC ) def lowercase_ ( self : Union[str, Any] , _A : Optional[torch.Tensor] = None , _A : Optional[bool] = None , _A : Optional[bool] = None , _A : Optional[torch.Tensor] = None , _A : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase__ : Tuple = return_dict if return_dict is not None else self.config.use_return_dict UpperCAmelCase__ : int = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) UpperCAmelCase__ : List[Any] = output_attentions if output_attentions is not None else self.config.output_attentions UpperCAmelCase__ : Union[str, Any] = self.backbone.forward_with_filtered_kwargs( _A , output_hidden_states=_A , output_attentions=_A ) UpperCAmelCase__ : Optional[Any] = outputs.feature_maps UpperCAmelCase__ : Optional[Any] = self.decode_head(_A ) UpperCAmelCase__ : Optional[int] = nn.functional.interpolate(_A , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_A ) UpperCAmelCase__ : Optional[Any] = None if self.auxiliary_head is not None: UpperCAmelCase__ : Dict = self.auxiliary_head(_A ) UpperCAmelCase__ : List[Any] = nn.functional.interpolate( _A , size=pixel_values.shape[2:] , mode='''bilinear''' , align_corners=_A ) UpperCAmelCase__ : Tuple = None if labels is not None: if self.config.num_labels == 1: raise ValueError('''The number of labels should be greater than one''' ) else: # compute weighted loss UpperCAmelCase__ : str = CrossEntropyLoss(ignore_index=self.config.loss_ignore_index ) UpperCAmelCase__ : Optional[Any] = loss_fct(_A , _A ) UpperCAmelCase__ : Tuple = loss_fct(_A , _A ) UpperCAmelCase__ : Optional[Any] = main_loss + self.config.auxiliary_loss_weight * auxiliary_loss if not return_dict: if output_hidden_states: UpperCAmelCase__ : Optional[Any] = (logits,) + outputs[1:] else: UpperCAmelCase__ : Union[str, Any] = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return SemanticSegmenterOutput( loss=_A , logits=_A , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
75
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> np.ndarray: UpperCAmelCase__ : List[str] = cva.getAffineTransform(lowerCAmelCase__ , lowerCAmelCase__ ) return cva.warpAffine(lowerCAmelCase__ , lowerCAmelCase__ , (rows, cols) ) if __name__ == "__main__": # read original image UpperCamelCase__ = cva.imread( str(Path(__file__).resolve().parent.parent / '''image_data''' / '''lena.jpg''') ) # turn image in gray scale value UpperCamelCase__ = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape UpperCamelCase__ , UpperCamelCase__ = gray_img.shape # set different points to rotate image UpperCamelCase__ = np.array([[5_0, 5_0], [2_0_0, 5_0], [5_0, 2_0_0]], np.floataa) UpperCamelCase__ = np.array([[1_0, 1_0_0], [2_0_0, 5_0], [1_0_0, 2_5_0]], np.floataa) UpperCamelCase__ = np.array([[5_0, 5_0], [1_5_0, 5_0], [1_2_0, 2_0_0]], np.floataa) UpperCamelCase__ = np.array([[1_0, 1_0_0], [8_0, 5_0], [1_8_0, 2_5_0]], np.floataa) # add all rotated images in a list UpperCamelCase__ = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations UpperCamelCase__ = plt.figure(1) UpperCamelCase__ = ['''Original''', '''Rotation 1''', '''Rotation 2''', '''Rotation 3'''] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, '''gray''') plt.title(titles[i]) plt.axis('''off''') plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
75
1
from __future__ import annotations def lowerCAmelCase__ ( _a : list[int] , _a : int , _a : int , _a : int ): if (direction == 1 and array[indexa] > array[indexa]) or ( direction == 0 and array[indexa] < array[indexa] ): snake_case_ , snake_case_ : str = array[indexa], array[indexa] def lowerCAmelCase__ ( _a : list[int] , _a : int , _a : int , _a : int ): if length > 1: snake_case_ : Union[str, Any] = int(length / 2 ) for i in range(_a , low + middle ): comp_and_swap(_a , _a , i + middle , _a ) bitonic_merge(_a , _a , _a , _a ) bitonic_merge(_a , low + middle , _a , _a ) def lowerCAmelCase__ ( _a : list[int] , _a : int , _a : int , _a : int ): if length > 1: snake_case_ : List[Any] = int(length / 2 ) bitonic_sort(_a , _a , _a , 1 ) bitonic_sort(_a , low + middle , _a , 0 ) bitonic_merge(_a , _a , _a , _a ) if __name__ == "__main__": lowercase : List[Any] = input('''Enter numbers separated by a comma:\n''').strip() lowercase : List[Any] = [int(item.strip()) for item in user_input.split(''',''')] bitonic_sort(unsorted, 0, len(unsorted), 1) print('''\nSorted array in ascending order is: ''', end='''''') print(*unsorted, sep=''', ''') bitonic_merge(unsorted, 0, len(unsorted), 0) print('''Sorted array in descending order is: ''', end='''''') print(*unsorted, sep=''', ''')
114
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = ['image_processor', 'tokenizer'] A : List[Any] = 'ViltImageProcessor' A : Optional[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> int: snake_case_ : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _SCREAMING_SNAKE_CASE , ) snake_case_ : str = kwargs.pop("feature_extractor" ) snake_case_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : str = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: snake_case_ : List[Any] = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel_values + pixel_mask snake_case_ : str = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[Any] = self.tokenizer.model_input_names snake_case_ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def _lowerCAmelCase ( self ) -> Optional[int]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor
114
1
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int = 1_00_00_00) -> int: '''simple docstring''' _lowercase : str = limit + 1 _lowercase : int = [0] * limit for first_term in range(1 , lowerCAmelCase__): for n in range(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__): _lowercase : str = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a _lowercase : str = sum(1 for x in frequency[1:limit] if x == 10) return count if __name__ == "__main__": print(F"""{solution() = }""")
125
'''simple docstring''' import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : int , lowerCAmelCase__ : Optional[int]=7) -> Any: '''simple docstring''' _lowercase : Any = None if token is not None: _lowercase : Tuple = {'Accept': 'application/vnd.github+json', 'Authorization': F'''Bearer {token}'''} # The id of a workflow (not of a workflow run) _lowercase : int = '636036' _lowercase : str = F'''https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs''' # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += F'''?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}''' _lowercase : Tuple = requests.get(lowerCAmelCase__ , headers=lowerCAmelCase__).json() return result["workflow_runs"] def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Tuple) -> Any: '''simple docstring''' _lowercase : Any = get_daily_ci_runs(lowerCAmelCase__) _lowercase : Union[str, Any] = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": _lowercase : List[str] = workflow_run['id'] break return workflow_run_id def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int , lowerCAmelCase__ : Union[str, Any]) -> Optional[int]: '''simple docstring''' _lowercase : Any = get_last_daily_ci_runs(lowerCAmelCase__) if workflow_run_id is not None: _lowercase : Any = get_artifacts_links(worflow_run_id=lowerCAmelCase__ , token=lowerCAmelCase__) for artifact_name in artifact_names: if artifact_name in artifacts_links: _lowercase : str = artifacts_links[artifact_name] download_artifact( artifact_name=lowerCAmelCase__ , artifact_url=lowerCAmelCase__ , output_dir=lowerCAmelCase__ , token=lowerCAmelCase__) def SCREAMING_SNAKE_CASE ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str) -> List[Any]: '''simple docstring''' get_last_daily_ci_artifacts(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__) _lowercase : List[Any] = {} for artifact_name in artifact_names: _lowercase : int = os.path.join(lowerCAmelCase__ , F'''{artifact_name}.zip''') if os.path.isfile(lowerCAmelCase__): _lowercase : Union[str, Any] = {} with zipfile.ZipFile(lowerCAmelCase__) as z: for filename in z.namelist(): if not os.path.isdir(lowerCAmelCase__): # read the file with z.open(lowerCAmelCase__) as f: _lowercase : Optional[int] = f.read().decode('UTF-8') return results
125
1
"""simple docstring""" def lowercase__ ( lowercase_ ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase : List[Any] = len(lowercase_ ) for i in range(length - 1 ): _UpperCamelCase : Optional[int] = i for k in range(i + 1 ,lowercase_ ): if collection[k] < collection[least]: _UpperCamelCase : List[str] = k if least != i: _UpperCamelCase, _UpperCamelCase : Optional[Any] = (collection[i], collection[least]) return collection if __name__ == "__main__": lowerCamelCase__ = input("Enter numbers separated by a comma:\n").strip() lowerCamelCase__ = [int(item) for item in user_input.split(",")] print(selection_sort(unsorted))
51
"""simple docstring""" lowerCamelCase__ = "\n# Installazione di Transformers\n! pip install transformers datasets\n# Per installare dalla fonte invece dell'ultima versione rilasciata, commenta il comando sopra e\n# rimuovi la modalità commento al comando seguente.\n# ! pip install git+https://github.com/huggingface/transformers.git\n" lowerCamelCase__ = [{"type": "code", "content": INSTALL_CONTENT}] lowerCamelCase__ = { "{processor_class}": "FakeProcessorClass", "{model_class}": "FakeModelClass", "{object_class}": "FakeObjectClass", }
51
1
"""simple docstring""" import re def lowercase__( __SCREAMING_SNAKE_CASE : str ): lowercase_ : str = re.compile( R'^(?:0|94|\+94|0{2}94)' R'7(0|1|2|4|5|6|7|8)' R'(-| |)' R'\d{7}$' ) return bool(re.search(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE ="0094702343221" print(is_sri_lankan_phone_number(phone))
425
"""simple docstring""" import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device __SCREAMING_SNAKE_CASE =False class UpperCamelCase ( unittest.TestCase ): pass @nightly @require_torch_gpu class UpperCamelCase ( unittest.TestCase ): def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCAmelCase ( self ) -> Any: '''simple docstring''' lowercase_ : str = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : Tuple = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase_ : int = torch.manual_seed(0 ) lowercase_ : Optional[int] = pipe.dual_guided( prompt='first prompt' ,image=__UpperCamelCase ,text_to_image_strength=0.75 ,generator=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ,).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__UpperCamelCase ) lowercase_ : str = VersatileDiffusionPipeline.from_pretrained(__UpperCamelCase ,torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : List[Any] = generator.manual_seed(0 ) lowercase_ : Union[str, Any] = pipe.dual_guided( prompt='first prompt' ,image=__UpperCamelCase ,text_to_image_strength=0.75 ,generator=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ,).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def _UpperCAmelCase ( self ) -> Dict: '''simple docstring''' lowercase_ : Any = VersatileDiffusionPipeline.from_pretrained('shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(__UpperCamelCase ) pipe.set_progress_bar_config(disable=__UpperCamelCase ) lowercase_ : int = 'cyberpunk 2077' lowercase_ : Union[str, Any] = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg' ) lowercase_ : Optional[Any] = torch.manual_seed(0 ) lowercase_ : int = pipe.dual_guided( prompt=__UpperCamelCase ,image=__UpperCamelCase ,text_to_image_strength=0.75 ,generator=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ,).images lowercase_ : int = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Union[str, Any] = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowercase_ : Optional[Any] = 'A painting of a squirrel eating a burger ' lowercase_ : Optional[Any] = torch.manual_seed(0 ) lowercase_ : Dict = pipe.text_to_image( prompt=__UpperCamelCase ,generator=__UpperCamelCase ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ).images lowercase_ : Tuple = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Tuple = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 lowercase_ : Dict = pipe.image_variation(__UpperCamelCase ,generator=__UpperCamelCase ,output_type='numpy' ).images lowercase_ : Union[str, Any] = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowercase_ : Union[str, Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
425
1
import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets snake_case = """\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } """ snake_case = """\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. """ snake_case = """ Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for 'cvit-mkb-clsr' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for 'cvit-mkb-clsr' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: \"accuracy\": Accuracy \"f1\": F1 score \"precision\": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wnli') # 'wnli' or any of [\"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'wiki-ner') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0, 'f1': 1.0} >>> indic_glue_metric = datasets.load_metric('indic_glue', 'cvit-mkb-clsr') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {'precision@10': 1.0} """ def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" return float((preds == labels).mean() ) def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : str = simple_accuracy(UpperCamelCase__ , UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = float(fa_score(y_true=UpperCamelCase__ , y_pred=UpperCamelCase__ ) ) return { "accuracy": acc, "f1": fa, } def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = np.array(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : List[str] = np.array(UpperCamelCase__ ) SCREAMING_SNAKE_CASE : Any = en_sentvecs.shape[0] # mean centering SCREAMING_SNAKE_CASE : List[Any] = en_sentvecs - np.mean(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE : List[str] = in_sentvecs - np.mean(UpperCamelCase__ , axis=0 ) SCREAMING_SNAKE_CASE : Dict = cdist(UpperCamelCase__ , UpperCamelCase__ , "cosine" ) SCREAMING_SNAKE_CASE : Optional[Any] = np.array(range(UpperCamelCase__ ) ) SCREAMING_SNAKE_CASE : str = sim.argsort(axis=1 )[:, :10] SCREAMING_SNAKE_CASE : Optional[Any] = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE ( datasets.Metric ): '''simple docstring''' def _A ( self : Union[str, Any] ): if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def _A ( self : Dict , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Tuple ): if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(UpperCAmelCase_ , UpperCAmelCase_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(UpperCAmelCase_ , UpperCAmelCase_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(UpperCAmelCase_ , UpperCAmelCase_ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
720
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE ( metaclass=lowerCAmelCase ): '''simple docstring''' UpperCamelCase_ : Union[str, Any] = ['''keras_nlp'''] def __init__( self : Dict , *UpperCAmelCase_ : Optional[Any] , **UpperCAmelCase_ : Dict ): requires_backends(self , ["keras_nlp"] )
488
0
"""simple docstring""" def lowerCAmelCase_ ( lowercase_ : int ): '''simple docstring''' assert ( isinstance(lowercase_ , lowercase_ ) and number_of_steps > 0 ), F'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = 1, 1 for _ in range(number_of_steps - 1 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
674
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import YolosImageProcessor class snake_case ( unittest.TestCase ): def __init__( self :List[Any] , _lowerCamelCase :Dict , _lowerCamelCase :Tuple=7 , _lowerCamelCase :Dict=3 , _lowerCamelCase :Optional[Any]=3_0 , _lowerCamelCase :List[str]=4_0_0 , _lowerCamelCase :Union[str, Any]=True , _lowerCamelCase :Union[str, Any]=None , _lowerCamelCase :List[Any]=True , _lowerCamelCase :Any=[0.5, 0.5, 0.5] , _lowerCamelCase :Dict=[0.5, 0.5, 0.5] , _lowerCamelCase :Dict=True , _lowerCamelCase :str=1 / 2_5_5 , _lowerCamelCase :Union[str, Any]=True , ): # by setting size["longest_edge"] > max_resolution we're effectively not testing this :p __SCREAMING_SNAKE_CASE : Optional[Any] = size if size is not None else {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} __SCREAMING_SNAKE_CASE : List[str] = parent __SCREAMING_SNAKE_CASE : Dict = batch_size __SCREAMING_SNAKE_CASE : str = num_channels __SCREAMING_SNAKE_CASE : Union[str, Any] = min_resolution __SCREAMING_SNAKE_CASE : Union[str, Any] = max_resolution __SCREAMING_SNAKE_CASE : Tuple = do_resize __SCREAMING_SNAKE_CASE : Union[str, Any] = size __SCREAMING_SNAKE_CASE : int = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean __SCREAMING_SNAKE_CASE : Tuple = image_std __SCREAMING_SNAKE_CASE : Dict = do_rescale __SCREAMING_SNAKE_CASE : Optional[int] = rescale_factor __SCREAMING_SNAKE_CASE : List[Any] = do_pad def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def SCREAMING_SNAKE_CASE_ ( self :Tuple , _lowerCamelCase :Dict , _lowerCamelCase :List[Any]=False ): if not batched: __SCREAMING_SNAKE_CASE : str = image_inputs[0] if isinstance(_lowerCamelCase , Image.Image ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[int] = image.size else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = image.shape[1], image.shape[2] if w < h: __SCREAMING_SNAKE_CASE : str = int(self.size['''shortest_edge'''] * h / w ) __SCREAMING_SNAKE_CASE : int = self.size['''shortest_edge'''] elif w > h: __SCREAMING_SNAKE_CASE : Optional[Any] = self.size['''shortest_edge'''] __SCREAMING_SNAKE_CASE : int = int(self.size['''shortest_edge'''] * w / h ) else: __SCREAMING_SNAKE_CASE : List[str] = self.size['''shortest_edge'''] __SCREAMING_SNAKE_CASE : List[str] = self.size['''shortest_edge'''] else: __SCREAMING_SNAKE_CASE : Optional[Any] = [] for image in image_inputs: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) __SCREAMING_SNAKE_CASE : Optional[int] = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[0] )[0] __SCREAMING_SNAKE_CASE : int = max(_lowerCamelCase , key=lambda _lowerCamelCase : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case ( __UpperCAmelCase , unittest.TestCase ): lowerCamelCase__ = YolosImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): __SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessingTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCamelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCamelCase , '''size''' ) ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): __SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 1_8, '''longest_edge''': 1_3_3_3} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class.from_dict( self.image_processor_dict , size=4_2 , max_size=8_4 , pad_and_return_pixel_mask=_lowerCamelCase ) self.assertEqual(image_processor.size , {'''shortest_edge''': 4_2, '''longest_edge''': 8_4} ) self.assertEqual(image_processor.do_pad , _lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): pass def SCREAMING_SNAKE_CASE_ ( self :int ): # Initialize image_processing __SCREAMING_SNAKE_CASE : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images __SCREAMING_SNAKE_CASE : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , Image.Image ) # Test not batched input __SCREAMING_SNAKE_CASE : str = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Dict = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # Initialize image_processing __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors __SCREAMING_SNAKE_CASE : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , numpify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , np.ndarray ) # Test not batched input __SCREAMING_SNAKE_CASE : Dict = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE : List[Any] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self :Any ): # Initialize image_processing __SCREAMING_SNAKE_CASE : str = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : Any = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test not batched input __SCREAMING_SNAKE_CASE : List[str] = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched __SCREAMING_SNAKE_CASE : Optional[int] = image_processing(_lowerCamelCase , return_tensors='''pt''' ).pixel_values __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[Any] = self.image_processor_tester.get_expected_values(_lowerCamelCase , batched=_lowerCamelCase ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): # Initialize image_processings __SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) __SCREAMING_SNAKE_CASE : Tuple = self.image_processing_class(do_resize=_lowerCamelCase , do_normalize=_lowerCamelCase , do_rescale=_lowerCamelCase ) # create random PyTorch tensors __SCREAMING_SNAKE_CASE : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=_lowerCamelCase , torchify=_lowerCamelCase ) for image in image_inputs: self.assertIsInstance(_lowerCamelCase , torch.Tensor ) # Test whether the method "pad" and calling the image processor return the same tensors __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing_a.pad(_lowerCamelCase , return_tensors='''pt''' ) __SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing_a(_lowerCamelCase , return_tensors='''pt''' ) self.assertTrue( torch.allclose(encoded_images_with_method['''pixel_values'''] , encoded_images['''pixel_values'''] , atol=1e-4 ) ) @slow def SCREAMING_SNAKE_CASE_ ( self :int ): # prepare image and target __SCREAMING_SNAKE_CASE : Tuple = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_annotations.txt''' , '''r''' ) as f: __SCREAMING_SNAKE_CASE : Tuple = json.loads(f.read() ) __SCREAMING_SNAKE_CASE : Union[str, Any] = {'''image_id''': 3_9_7_6_9, '''annotations''': target} # encode them __SCREAMING_SNAKE_CASE : List[Any] = YolosImageProcessor.from_pretrained('''hustvl/yolos-small''' ) __SCREAMING_SNAKE_CASE : Optional[Any] = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values __SCREAMING_SNAKE_CASE : Optional[int] = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify area __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([5_8_8_7.9_6_0_0, 1_1_2_5_0.2_0_6_1, 4_8_9_3_5_3.8_4_3_8, 8_3_7_1_2_2.7_5_0_0, 1_4_7_9_6_7.5_1_5_6, 1_6_5_7_3_2.3_4_3_8] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes __SCREAMING_SNAKE_CASE : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : Any = torch.tensor([0.5_5_0_3, 0.2_7_6_5, 0.0_6_0_4, 0.2_2_1_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1e-3 ) ) # verify image_id __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd __SCREAMING_SNAKE_CASE : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels __SCREAMING_SNAKE_CASE : Dict = torch.tensor([7_5, 7_5, 6_3, 6_5, 1_7, 1_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify orig_size __SCREAMING_SNAKE_CASE : Union[str, Any] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) ) @slow def SCREAMING_SNAKE_CASE_ ( self :Optional[int] ): # prepare image, target and masks_path __SCREAMING_SNAKE_CASE : List[str] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) with open('''./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt''' , '''r''' ) as f: __SCREAMING_SNAKE_CASE : Union[str, Any] = json.loads(f.read() ) __SCREAMING_SNAKE_CASE : Dict = {'''file_name''': '''000000039769.png''', '''image_id''': 3_9_7_6_9, '''segments_info''': target} __SCREAMING_SNAKE_CASE : Optional[int] = pathlib.Path('''./tests/fixtures/tests_samples/COCO/coco_panoptic''' ) # encode them __SCREAMING_SNAKE_CASE : Any = YolosImageProcessor(format='''coco_panoptic''' ) __SCREAMING_SNAKE_CASE : Dict = image_processing(images=_lowerCamelCase , annotations=_lowerCamelCase , masks_path=_lowerCamelCase , return_tensors='''pt''' ) # verify pixel values __SCREAMING_SNAKE_CASE : str = torch.Size([1, 3, 8_0_0, 1_0_6_6] ) self.assertEqual(encoding['''pixel_values'''].shape , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : str = torch.tensor([0.2_7_9_6, 0.3_1_3_8, 0.3_4_8_1] ) self.assertTrue(torch.allclose(encoding['''pixel_values'''][0, 0, 0, :3] , _lowerCamelCase , atol=1e-4 ) ) # verify area __SCREAMING_SNAKE_CASE : Any = torch.tensor([1_4_7_9_7_9.6_8_7_5, 1_6_5_5_2_7.0_4_6_9, 4_8_4_6_3_8.5_9_3_8, 1_1_2_9_2.9_3_7_5, 5_8_7_9.6_5_6_2, 7_6_3_4.1_1_4_7] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''area'''] , _lowerCamelCase ) ) # verify boxes __SCREAMING_SNAKE_CASE : List[str] = torch.Size([6, 4] ) self.assertEqual(encoding['''labels'''][0]['''boxes'''].shape , _lowerCamelCase ) __SCREAMING_SNAKE_CASE : int = torch.tensor([0.2_6_2_5, 0.5_4_3_7, 0.4_6_8_8, 0.8_6_2_5] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''boxes'''][0] , _lowerCamelCase , atol=1e-3 ) ) # verify image_id __SCREAMING_SNAKE_CASE : Dict = torch.tensor([3_9_7_6_9] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''image_id'''] , _lowerCamelCase ) ) # verify is_crowd __SCREAMING_SNAKE_CASE : List[Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''iscrowd'''] , _lowerCamelCase ) ) # verify class_labels __SCREAMING_SNAKE_CASE : Optional[Any] = torch.tensor([1_7, 1_7, 6_3, 7_5, 7_5, 9_3] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''class_labels'''] , _lowerCamelCase ) ) # verify masks __SCREAMING_SNAKE_CASE : Optional[Any] = 8_2_2_8_7_3 self.assertEqual(encoding['''labels'''][0]['''masks'''].sum().item() , _lowerCamelCase ) # verify orig_size __SCREAMING_SNAKE_CASE : List[str] = torch.tensor([4_8_0, 6_4_0] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''orig_size'''] , _lowerCamelCase ) ) # verify size __SCREAMING_SNAKE_CASE : Any = torch.tensor([8_0_0, 1_0_6_6] ) self.assertTrue(torch.allclose(encoding['''labels'''][0]['''size'''] , _lowerCamelCase ) )
674
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { 'tanreinama/GPTSAN-2.8B-spout_is_uniform': ( 'https://huggingface.co/tanreinama/GPTSAN-2.8B-spout_is_uniform/resolve/main/config.json' ), } class __lowerCAmelCase ( SCREAMING_SNAKE_CASE ): _a = """gptsan-japanese""" _a = [ """past_key_values""", ] _a = { """hidden_size""": """d_model""", """num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers""", } def __init__( self , lowerCAmelCase=36_000 , lowerCAmelCase=1_280 , lowerCAmelCase=1_024 , lowerCAmelCase=8_192 , lowerCAmelCase=4_096 , lowerCAmelCase=128 , lowerCAmelCase=10 , lowerCAmelCase=0 , lowerCAmelCase=16 , lowerCAmelCase=16 , lowerCAmelCase=128 , lowerCAmelCase=0.0 , lowerCAmelCase=1e-5 , lowerCAmelCase=False , lowerCAmelCase=0.0 , lowerCAmelCase="float32" , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=False , lowerCAmelCase=0.002 , lowerCAmelCase=False , lowerCAmelCase=True , lowerCAmelCase=35_998 , lowerCAmelCase=35_995 , lowerCAmelCase=35_999 , **lowerCAmelCase , ) -> str: '''simple docstring''' _lowercase =vocab_size _lowercase =max_position_embeddings _lowercase =d_model _lowercase =d_ff _lowercase =d_ext _lowercase =d_spout _lowercase =num_switch_layers _lowercase =num_ext_layers _lowercase =num_switch_layers + num_ext_layers _lowercase =num_heads _lowercase =num_experts _lowercase =expert_capacity _lowercase =dropout_rate _lowercase =layer_norm_epsilon _lowercase =router_bias _lowercase =router_jitter_noise _lowercase =router_dtype _lowercase =router_ignore_padding_tokens _lowercase =output_hidden_states _lowercase =output_attentions _lowercase =initializer_factor _lowercase =output_router_logits _lowercase =use_cache super().__init__( separator_token_id=lowerCAmelCase , pad_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase , )
380
import argparse from transformers import ( TapasConfig, TapasForMaskedLM, TapasForQuestionAnswering, TapasForSequenceClassification, TapasModel, TapasTokenizer, load_tf_weights_in_tapas, ) from transformers.utils import logging logging.set_verbosity_info() def a ( A__ : Dict , A__ : Optional[Any] , A__ : Optional[Any] , A__ : Optional[int] , A__ : Union[str, Any] ) -> Optional[int]: """simple docstring""" _lowercase =TapasConfig.from_json_file(A__ ) # set absolute/relative position embeddings parameter _lowercase =reset_position_index_per_cell # set remaining parameters of TapasConfig as well as the model based on the task if task == "SQA": _lowercase =TapasForQuestionAnswering(config=A__ ) elif task == "WTQ": # run_task_main.py hparams _lowercase =4 _lowercase =True # hparam_utils.py hparams _lowercase =0.664694 _lowercase =0.207951 _lowercase =0.121194 _lowercase =True _lowercase =True _lowercase =False _lowercase =0.0352513 _lowercase =TapasForQuestionAnswering(config=A__ ) elif task == "WIKISQL_SUPERVISED": # run_task_main.py hparams _lowercase =4 _lowercase =False # hparam_utils.py hparams _lowercase =36.4519 _lowercase =0.903421 _lowercase =222.088 _lowercase =True _lowercase =True _lowercase =True _lowercase =0.763141 _lowercase =TapasForQuestionAnswering(config=A__ ) elif task == "TABFACT": _lowercase =TapasForSequenceClassification(config=A__ ) elif task == "MLM": _lowercase =TapasForMaskedLM(config=A__ ) elif task == "INTERMEDIATE_PRETRAINING": _lowercase =TapasModel(config=A__ ) else: raise ValueError(F'''Task {task} not supported.''' ) print(F'''Building PyTorch model from configuration: {config}''' ) # Load weights from tf checkpoint load_tf_weights_in_tapas(A__ , A__ , A__ ) # Save pytorch-model (weights and configuration) print(F'''Save PyTorch model to {pytorch_dump_path}''' ) model.save_pretrained(A__ ) # Save tokenizer files print(F'''Save tokenizer files to {pytorch_dump_path}''' ) _lowercase =TapasTokenizer(vocab_file=tf_checkpoint_path[:-10] + 'vocab.txt' , model_max_length=512 ) tokenizer.save_pretrained(A__ ) print('Used relative position embeddings:' , model.config.reset_position_index_per_cell ) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--task', default='SQA', type=str, help='Model task for which to convert a checkpoint. Defaults to SQA.' ) parser.add_argument( '--reset_position_index_per_cell', default=False, action='store_true', help='Whether to use relative position embeddings or not. Defaults to True.', ) parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--tapas_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained TAPAS model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) lowercase_ = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.task, args.reset_position_index_per_cell, args.tf_checkpoint_path, args.tapas_config_file, args.pytorch_dump_path, )
380
1
'''simple docstring''' import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( ): """simple docstring""" lowercase = 10 lowercase = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) lowercase = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(lowerCamelCase__ ) ), } , features=lowerCamelCase__ , ) return dataset @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=lowerCamelCase__ ) return filename # FILE_CONTENT + files __lowerCamelCase : Dict = "\\n Text data.\n Second line of data." @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """file.txt""" lowercase = FILE_CONTENT with open(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ ) return filename @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" import bza lowercase = tmp_path_factory.mktemp("data" ) / """file.txt.bz2""" lowercase = bytes(lowerCamelCase__ , "utf-8" ) with bza.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" import gzip lowercase = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) lowercase = bytes(lowerCamelCase__ , "utf-8" ) with gzip.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" if datasets.config.LZ4_AVAILABLE: import lza.frame lowercase = tmp_path_factory.mktemp("data" ) / """file.txt.lz4""" lowercase = bytes(lowerCamelCase__ , "utf-8" ) with lza.frame.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" if datasets.config.PY7ZR_AVAILABLE: import pyazr lowercase = tmp_path_factory.mktemp("data" ) / """file.txt.7z""" with pyazr.SevenZipFile(lowerCamelCase__ , "w" ) as archive: archive.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" import tarfile lowercase = tmp_path_factory.mktemp("data" ) / """file.txt.tar""" with tarfile.TarFile(lowerCamelCase__ , "w" ) as f: f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" import lzma lowercase = tmp_path_factory.mktemp("data" ) / """file.txt.xz""" lowercase = bytes(lowerCamelCase__ , "utf-8" ) with lzma.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" import zipfile lowercase = tmp_path_factory.mktemp("data" ) / """file.txt.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowercase = tmp_path_factory.mktemp("data" ) / """file.txt.zst""" lowercase = bytes(lowerCamelCase__ , "utf-8" ) with zstd.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """file.xml""" lowercase = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ ) return filename __lowerCamelCase : int = [ {"col_1": "0", "col_2": 0, "col_3": 0.0}, {"col_1": "1", "col_2": 1, "col_3": 1.0}, {"col_1": "2", "col_2": 2, "col_3": 2.0}, {"col_1": "3", "col_2": 3, "col_3": 3.0}, ] __lowerCamelCase : List[Any] = [ {"col_1": "4", "col_2": 4, "col_3": 4.0}, {"col_1": "5", "col_2": 5, "col_3": 5.0}, ] __lowerCamelCase : Tuple = { "col_1": ["0", "1", "2", "3"], "col_2": [0, 1, 2, 3], "col_3": [0.0, 1.0, 2.0, 3.0], } __lowerCamelCase : List[str] = [ {"col_3": 0.0, "col_1": "0", "col_2": 0}, {"col_3": 1.0, "col_1": "1", "col_2": 1}, ] __lowerCamelCase : List[str] = [ {"col_1": "s0", "col_2": 0, "col_3": 0.0}, {"col_1": "s1", "col_2": 1, "col_3": 1.0}, {"col_1": "s2", "col_2": 2, "col_3": 2.0}, {"col_1": "s3", "col_2": 3, "col_3": 3.0}, ] @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( ): """simple docstring""" return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = datasets.Dataset.from_dict(lowerCamelCase__ ) lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(lowerCamelCase__ ) ) as con: lowercase = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" , tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(lowerCamelCase__ , "w" , newline="" ) as f: lowercase = csv.DictWriter(lowerCamelCase__ , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(lowerCamelCase__ , "w" , newline="" ) as f: lowercase = csv.DictWriter(lowerCamelCase__ , fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" import bza lowercase = tmp_path_factory.mktemp("data" ) / """dataset.csv.bz2""" with open(lowerCamelCase__ , "rb" ) as f: lowercase = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(lowerCamelCase__ , "wb" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset.csv.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(csv_path.replace(".csv" , ".CSV" ) ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(csva_path.replace(".csv" , ".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset_with_dir.csv.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) lowercase = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(lowerCamelCase__ , "wb" ) as f: lowercase = pq.ParquetWriter(lowerCamelCase__ , schema=lowerCamelCase__ ) lowercase = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(lowerCamelCase__ ) )] for k in DATA[0]} , schema=lowerCamelCase__ ) writer.write_table(lowerCamelCase__ ) writer.close() return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) lowercase = {"""data""": DATA} with open(lowerCamelCase__ , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) lowercase = {"""data""": DATA_DICT_OF_LISTS} with open(lowerCamelCase__ , "w" ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(lowerCamelCase__ , "w" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase__ ) + "\n" ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(lowerCamelCase__ , "w" ) as f: for item in DATA: f.write(json.dumps(lowerCamelCase__ ) + "\n" ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(lowerCamelCase__ , "w" ) as f: for item in DATA_312: f.write(json.dumps(lowerCamelCase__ ) + "\n" ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(lowerCamelCase__ , "w" ) as f: for item in DATA_STR: f.write(json.dumps(lowerCamelCase__ ) + "\n" ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" import gzip lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(lowerCamelCase__ , "rb" ) as orig_file: with gzip.open(lowerCamelCase__ , "wb" ) as zipped_file: zipped_file.writelines(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" import gzip lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(lowerCamelCase__ , "rb" ) as orig_file: with gzip.open(lowerCamelCase__ , "wb" ) as zipped_file: zipped_file.writelines(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset_nested.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("nested" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset_with_dir.jsonl.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset.jsonl.tar""" with tarfile.TarFile(lowerCamelCase__ , "w" ) as f: f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.add(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset_nested.jsonl.tar""" with tarfile.TarFile(lowerCamelCase__ , "w" ) as f: f.add(lowerCamelCase__ , arcname=os.path.join("nested" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = ["""0""", """1""", """2""", """3"""] lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(lowerCamelCase__ , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = ["""0""", """1""", """2""", """3"""] lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(lowerCamelCase__ , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = ["""0""", """1""", """2""", """3"""] lowercase = tmp_path_factory.mktemp("data" ) / """dataset.abc""" with open(lowerCamelCase__ , "w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset.text.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset_with_dir.text.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) f.write(lowerCamelCase__ , arcname=os.path.join("main_dir" , os.path.basename(lowerCamelCase__ ) ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset.ext.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename("unsupported.ext" ) ) f.write(lowerCamelCase__ , arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = """\n""".join(["First", "Second\u2029with Unicode new line", "Third"] ) lowercase = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(lowerCamelCase__ , "w" , encoding="utf-8" ) as f: f.write(lowerCamelCase__ ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( ): """simple docstring""" return os.path.join("tests" , "features" , "data" , "test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( ): """simple docstring""" return os.path.join("tests" , "features" , "data" , "test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data" ) / """dataset.img.zip""" with zipfile.ZipFile(lowerCamelCase__ , "w" ) as f: f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ) ) f.write(lowerCamelCase__ , arcname=os.path.basename(lowerCamelCase__ ).replace(".jpg" , "2.jpg" ) ) return path @pytest.fixture(scope="session" ) def UpperCAmelCase_ ( lowerCAmelCase_ ): """simple docstring""" lowercase = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" , "w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" , "w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" , "w" ) as f: f.write("bar\n" * 10 ) return data_dir
310
"""simple docstring""" import argparse import pathlib import fairseq import torch from fairseq.models.roberta import RobertaModel as FairseqRobertaModel from fairseq.modules import TransformerSentenceEncoderLayer from packaging import version from transformers import XLMRobertaConfig, XLMRobertaXLForMaskedLM, XLMRobertaXLForSequenceClassification from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.models.roberta.modeling_roberta import RobertaAttention from transformers.utils import logging if version.parse(fairseq.__version__) < version.parse('1.0.0a'): raise Exception('requires fairseq >= 1.0.0a') logging.set_verbosity_info() __snake_case = logging.get_logger(__name__) __snake_case = 'Hello world! cécé herlolip' def _lowerCamelCase ( lowerCamelCase__ : str , lowerCamelCase__ : str , lowerCamelCase__ : bool ): lowercase__ : int = FairseqRobertaModel.from_pretrained(lowerCamelCase__ ) roberta.eval() # disable dropout lowercase__ : Tuple = roberta.model.encoder.sentence_encoder lowercase__ : Tuple = XLMRobertaConfig( vocab_size=roberta_sent_encoder.embed_tokens.num_embeddings , hidden_size=roberta.cfg.model.encoder_embed_dim , num_hidden_layers=roberta.cfg.model.encoder_layers , num_attention_heads=roberta.cfg.model.encoder_attention_heads , intermediate_size=roberta.cfg.model.encoder_ffn_embed_dim , max_position_embeddings=5_14 , type_vocab_size=1 , layer_norm_eps=1E-5 , ) if classification_head: lowercase__ : Any = roberta.model.classification_heads["""mnli"""].out_proj.weight.shape[0] print("""Our RoBERTa config:""" , lowerCamelCase__ ) lowercase__ : List[Any] = XLMRobertaXLForSequenceClassification(lowerCamelCase__ ) if classification_head else XLMRobertaXLForMaskedLM(lowerCamelCase__ ) model.eval() # Now let's copy all the weights. # Embeddings lowercase__ : int = roberta_sent_encoder.embed_tokens.weight lowercase__ : Union[str, Any] = roberta_sent_encoder.embed_positions.weight lowercase__ : int = torch.zeros_like( model.roberta.embeddings.token_type_embeddings.weight ) # just zero them out b/c RoBERTa doesn't use them. lowercase__ : int = roberta_sent_encoder.layer_norm.weight lowercase__ : List[Any] = roberta_sent_encoder.layer_norm.bias for i in range(config.num_hidden_layers ): # Encoder: start of layer lowercase__ : BertLayer = model.roberta.encoder.layer[i] lowercase__ : TransformerSentenceEncoderLayer = roberta_sent_encoder.layers[i] lowercase__ : RobertaAttention = layer.attention lowercase__ : str = roberta_layer.self_attn_layer_norm.weight lowercase__ : Union[str, Any] = roberta_layer.self_attn_layer_norm.bias # self attention lowercase__ : BertSelfAttention = layer.attention.self assert ( roberta_layer.self_attn.k_proj.weight.data.shape == roberta_layer.self_attn.q_proj.weight.data.shape == roberta_layer.self_attn.v_proj.weight.data.shape == torch.Size((config.hidden_size, config.hidden_size) ) ) lowercase__ : Optional[Any] = roberta_layer.self_attn.q_proj.weight lowercase__ : str = roberta_layer.self_attn.q_proj.bias lowercase__ : Optional[int] = roberta_layer.self_attn.k_proj.weight lowercase__ : Optional[int] = roberta_layer.self_attn.k_proj.bias lowercase__ : int = roberta_layer.self_attn.v_proj.weight lowercase__ : Union[str, Any] = roberta_layer.self_attn.v_proj.bias # self-attention output lowercase__ : BertSelfOutput = layer.attention.output assert self_output.dense.weight.shape == roberta_layer.self_attn.out_proj.weight.shape lowercase__ : Any = roberta_layer.self_attn.out_proj.weight lowercase__ : Optional[int] = roberta_layer.self_attn.out_proj.bias # this one is final layer norm lowercase__ : Optional[Any] = roberta_layer.final_layer_norm.weight lowercase__ : Any = roberta_layer.final_layer_norm.bias # intermediate lowercase__ : BertIntermediate = layer.intermediate assert intermediate.dense.weight.shape == roberta_layer.fca.weight.shape lowercase__ : Dict = roberta_layer.fca.weight lowercase__ : Any = roberta_layer.fca.bias # output lowercase__ : BertOutput = layer.output assert bert_output.dense.weight.shape == roberta_layer.fca.weight.shape lowercase__ : Union[str, Any] = roberta_layer.fca.weight lowercase__ : Optional[Any] = roberta_layer.fca.bias # end of layer if classification_head: lowercase__ : Optional[Any] = roberta.model.classification_heads["""mnli"""].dense.weight lowercase__ : str = roberta.model.classification_heads["""mnli"""].dense.bias lowercase__ : str = roberta.model.classification_heads["""mnli"""].out_proj.weight lowercase__ : List[str] = roberta.model.classification_heads["""mnli"""].out_proj.bias else: # LM Head lowercase__ : Tuple = roberta.model.encoder.lm_head.dense.weight lowercase__ : int = roberta.model.encoder.lm_head.dense.bias lowercase__ : Any = roberta.model.encoder.lm_head.layer_norm.weight lowercase__ : Union[str, Any] = roberta.model.encoder.lm_head.layer_norm.bias lowercase__ : Dict = roberta.model.encoder.lm_head.weight lowercase__ : List[Any] = roberta.model.encoder.lm_head.bias # Let's check that we get the same results. lowercase__ : torch.Tensor = roberta.encode(lowerCamelCase__ ).unsqueeze(0 ) # batch of size 1 lowercase__ : Any = model(lowerCamelCase__ )[0] if classification_head: lowercase__ : Optional[Any] = roberta.model.classification_heads["""mnli"""](roberta.extract_features(lowerCamelCase__ ) ) else: lowercase__ : Tuple = roberta.model(lowerCamelCase__ )[0] print(our_output.shape , their_output.shape ) lowercase__ : Tuple = torch.max(torch.abs(our_output - their_output ) ).item() print(f'''max_absolute_diff = {max_absolute_diff}''' ) # ~ 1e-7 lowercase__ : int = torch.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1E-3 ) print("""Do both models output the same tensors?""" , """🔥""" if success else """💩""" ) if not success: raise Exception("""Something went wRoNg""" ) pathlib.Path(lowerCamelCase__ ).mkdir(parents=lowerCamelCase__ , exist_ok=lowerCamelCase__ ) print(f'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( '--roberta_checkpoint_path', default=None, type=str, required=True, help='Path the official PyTorch dump.' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) parser.add_argument( '--classification_head', action='store_true', help='Whether to convert a final classification head.' ) __snake_case = parser.parse_args() convert_xlm_roberta_xl_checkpoint_to_pytorch( args.roberta_checkpoint_path, args.pytorch_dump_folder_path, args.classification_head )
200
0
import warnings warnings.warn( "memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: " "`from accelerate import find_executable_batch_size` to avoid this warning.", FutureWarning, )
677
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) UpperCamelCase = { "configuration_clip": [ "CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "CLIPConfig", "CLIPOnnxConfig", "CLIPTextConfig", "CLIPVisionConfig", ], "processing_clip": ["CLIPProcessor"], "tokenization_clip": ["CLIPTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPTokenizerFast"] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["CLIPFeatureExtractor"] UpperCamelCase = ["CLIPImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "CLIPModel", "CLIPPreTrainedModel", "CLIPTextModel", "CLIPTextModelWithProjection", "CLIPVisionModel", "CLIPVisionModelWithProjection", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "TFCLIPModel", "TFCLIPPreTrainedModel", "TFCLIPTextModel", "TFCLIPVisionModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "FlaxCLIPModel", "FlaxCLIPPreTrainedModel", "FlaxCLIPTextModel", "FlaxCLIPTextPreTrainedModel", "FlaxCLIPVisionModel", "FlaxCLIPVisionPreTrainedModel", ] if TYPE_CHECKING: from .configuration_clip import ( CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPConfig, CLIPOnnxConfig, CLIPTextConfig, CLIPVisionConfig, ) from .processing_clip import CLIPProcessor from .tokenization_clip import CLIPTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_clip_fast import CLIPTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_clip import CLIPFeatureExtractor from .image_processing_clip import CLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clip import ( CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPModel, CLIPPreTrainedModel, CLIPTextModel, CLIPTextModelWithProjection, CLIPVisionModel, CLIPVisionModelWithProjection, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_clip import ( TF_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, TFCLIPModel, TFCLIPPreTrainedModel, TFCLIPTextModel, TFCLIPVisionModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_clip import ( FlaxCLIPModel, FlaxCLIPPreTrainedModel, FlaxCLIPTextModel, FlaxCLIPTextPreTrainedModel, FlaxCLIPVisionModel, FlaxCLIPVisionPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
1
'''simple docstring''' import os def UpperCamelCase ( ) -> str: '''simple docstring''' with open(os.path.dirname(lowercase_ ) + '''/grid.txt''' ) as f: lowercase =[] # noqa: E741 for _ in range(2_0 ): l.append([int(lowercase_ ) for x in f.readline().split()] ) lowercase =0 # right for i in range(2_0 ): for j in range(1_7 ): lowercase =l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: lowercase =temp # down for i in range(1_7 ): for j in range(2_0 ): lowercase =l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: lowercase =temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): lowercase =l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: lowercase =temp # diagonal 2 for i in range(1_7 ): for j in range(3 , 2_0 ): lowercase =l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: lowercase =temp return maximum if __name__ == "__main__": print(solution())
72
'''simple docstring''' from torch import nn class A ( nn.Module ): def __init__( self , snake_case_ , snake_case_ ) -> List[Any]: super().__init__() _a = class_size _a = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) _a = nn.Linear(snake_case_ , snake_case_ ) def __lowerCAmelCase ( self , snake_case_ ) -> Tuple: # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) _a = self.mlp(snake_case_ ) return logits
131
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase: Union[str, Any] = { """configuration_mask2former""": [ """MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Mask2FormerConfig""", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: int = ["""Mask2FormerImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Optional[int] = [ """MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """Mask2FormerForUniversalSegmentation""", """Mask2FormerModel""", """Mask2FormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys UpperCAmelCase: Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
707
"""simple docstring""" import argparse import json import os import time import zipfile from get_ci_error_statistics import download_artifact, get_artifacts_links from transformers import logging UpperCAmelCase: str = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Dict = set() _lowercase : Optional[int] = [] def parse_line(__UpperCAmelCase ): for line in fp: if isinstance(__UpperCAmelCase , __UpperCAmelCase ): _lowercase : str = line.decode("""UTF-8""" ) if "warnings summary (final)" in line: continue # This means we are outside the body of a warning elif not line.startswith(""" """ ): # process a single warning and move it to `selected_warnings`. if len(__UpperCAmelCase ) > 0: _lowercase : Optional[Any] = """\n""".join(__UpperCAmelCase ) # Only keep the warnings specified in `targets` if any(F""": {x}: """ in warning for x in targets ): selected_warnings.add(__UpperCAmelCase ) buffer.clear() continue else: _lowercase : Optional[Any] = line.strip() buffer.append(__UpperCAmelCase ) if from_gh: for filename in os.listdir(__UpperCAmelCase ): _lowercase : Optional[Any] = os.path.join(__UpperCAmelCase , __UpperCAmelCase ) if not os.path.isdir(__UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with open(__UpperCAmelCase ) as fp: parse_line(__UpperCAmelCase ) else: try: with zipfile.ZipFile(__UpperCAmelCase ) as z: for filename in z.namelist(): if not os.path.isdir(__UpperCAmelCase ): # read the file if filename != "warnings.txt": continue with z.open(__UpperCAmelCase ) as fp: parse_line(__UpperCAmelCase ) except Exception: logger.warning( F"""{artifact_path} is either an invalid zip file or something else wrong. This file is skipped.""" ) return selected_warnings def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase , __UpperCAmelCase ): _lowercase : Optional[Any] = set() _lowercase : int = [os.path.join(__UpperCAmelCase , __UpperCAmelCase ) for p in os.listdir(__UpperCAmelCase ) if (p.endswith(""".zip""" ) or from_gh)] for p in paths: selected_warnings.update(extract_warnings_from_single_artifact(__UpperCAmelCase , __UpperCAmelCase ) ) return selected_warnings if __name__ == "__main__": def __SCREAMING_SNAKE_CASE ( __UpperCAmelCase ): return values.split(""",""" ) UpperCAmelCase: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument("""--workflow_run_id""", type=str, required=True, help="""A GitHub Actions workflow run id.""") parser.add_argument( """--output_dir""", type=str, required=True, help="""Where to store the downloaded artifacts and other result files.""", ) parser.add_argument("""--token""", default=None, type=str, help="""A token that has actions:read permission.""") # optional parameters parser.add_argument( """--targets""", default="""DeprecationWarning,UserWarning,FutureWarning""", type=list_str, help="""Comma-separated list of target warning(s) which we want to extract.""", ) parser.add_argument( """--from_gh""", action="""store_true""", help="""If running from a GitHub action workflow and collecting warnings from its artifacts.""", ) UpperCAmelCase: Any = parser.parse_args() UpperCAmelCase: Any = args.from_gh if from_gh: # The artifacts have to be downloaded using `actions/download-artifact@v3` pass else: os.makedirs(args.output_dir, exist_ok=True) # get download links UpperCAmelCase: str = get_artifacts_links(args.workflow_run_id, token=args.token) with open(os.path.join(args.output_dir, """artifacts.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(artifacts, fp, ensure_ascii=False, indent=4) # download artifacts for idx, (name, url) in enumerate(artifacts.items()): print(name) print(url) print("""=""" * 80) download_artifact(name, url, args.output_dir, args.token) # Be gentle to GitHub time.sleep(1) # extract warnings from artifacts UpperCAmelCase: str = extract_warnings(args.output_dir, args.targets) UpperCAmelCase: Optional[Any] = sorted(selected_warnings) with open(os.path.join(args.output_dir, """selected_warnings.json"""), """w""", encoding="""UTF-8""") as fp: json.dump(selected_warnings, fp, ensure_ascii=False, indent=4)
600
0
'''simple docstring''' from __future__ import annotations def A (__lowerCamelCase :list[int | float] , __lowerCamelCase :int , __lowerCamelCase :int ): if len(__lowerCamelCase ) == 0: raise ValueError("""find_max() arg is an empty sequence""" ) if ( left >= len(__lowerCamelCase ) or left < -len(__lowerCamelCase ) or right >= len(__lowerCamelCase ) or right < -len(__lowerCamelCase ) ): raise IndexError("""list index out of range""" ) if left == right: return nums[left] _lowerCAmelCase = (left + right) >> 1 # the middle _lowerCAmelCase = find_max(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) # find max in range[left, mid] _lowerCAmelCase = find_max(__lowerCamelCase , mid + 1 , __lowerCamelCase ) # find max in range[mid + 1, right] return left_max if left_max >= right_max else right_max if __name__ == "__main__": import doctest doctest.testmod(verbose=True)
5
def A ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) -> int: if exponent == 1: return base if exponent % 2 == 0: A__ = _modexpt(__UpperCamelCase , exponent // 2 , __UpperCamelCase ) % modulo_value return (x * x) % modulo_value else: return (base * _modexpt(__UpperCamelCase , exponent - 1 , __UpperCamelCase )) % modulo_value def A ( __UpperCamelCase = 1_777 , __UpperCamelCase = 1_855 , __UpperCamelCase = 8 ) -> int: A__ = base for _ in range(1 , __UpperCamelCase ): A__ = _modexpt(__UpperCamelCase , __UpperCamelCase , 10**digits ) return result if __name__ == "__main__": print(f'{solution() = }')
9
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _snake_case = logging.get_logger(__name__) _snake_case = { """shi-labs/nat-mini-in1k-224""": """https://huggingface.co/shi-labs/nat-mini-in1k-224/resolve/main/config.json""", # See all Nat models at https://huggingface.co/models?filter=nat } class lowerCAmelCase ( lowercase_ , lowercase_ ): __lowerCamelCase = 'nat' __lowerCamelCase = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self :Optional[int] , _lowercase :Optional[Any]=4 , _lowercase :List[Any]=3 , _lowercase :List[Any]=64 , _lowercase :Any=[3, 4, 6, 5] , _lowercase :List[str]=[2, 4, 8, 16] , _lowercase :List[Any]=7 , _lowercase :Optional[int]=3.0 , _lowercase :str=True , _lowercase :List[str]=0.0 , _lowercase :str=0.0 , _lowercase :Tuple=0.1 , _lowercase :int="gelu" , _lowercase :Union[str, Any]=0.02 , _lowercase :List[Any]=1e-5 , _lowercase :Any=0.0 , _lowercase :int=None , _lowercase :int=None , **_lowercase :int , ): '''simple docstring''' super().__init__(**_lowercase ) lowercase__ = patch_size lowercase__ = num_channels lowercase__ = embed_dim lowercase__ = depths lowercase__ = len(_lowercase ) lowercase__ = num_heads lowercase__ = kernel_size lowercase__ = mlp_ratio lowercase__ = qkv_bias lowercase__ = hidden_dropout_prob lowercase__ = attention_probs_dropout_prob lowercase__ = drop_path_rate lowercase__ = hidden_act lowercase__ = layer_norm_eps lowercase__ = initializer_range # we set the hidden_size attribute in order to make Nat work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowercase__ = int(embed_dim * 2 ** (len(_lowercase ) - 1) ) lowercase__ = layer_scale_init_value lowercase__ = ["stem"] + [f'''stage{idx}''' for idx in range(1 , len(_lowercase ) + 1 )] lowercase__ , lowercase__ = get_aligned_output_features_output_indices( out_features=_lowercase , out_indices=_lowercase , stage_names=self.stage_names )
611
import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) _snake_case = logging.get_logger(__name__) _snake_case = OrderedDict( [ ("""align""", """EfficientNetImageProcessor"""), ("""beit""", """BeitImageProcessor"""), ("""bit""", """BitImageProcessor"""), ("""blip""", """BlipImageProcessor"""), ("""blip-2""", """BlipImageProcessor"""), ("""bridgetower""", """BridgeTowerImageProcessor"""), ("""chinese_clip""", """ChineseCLIPImageProcessor"""), ("""clip""", """CLIPImageProcessor"""), ("""clipseg""", """ViTImageProcessor"""), ("""conditional_detr""", """ConditionalDetrImageProcessor"""), ("""convnext""", """ConvNextImageProcessor"""), ("""convnextv2""", """ConvNextImageProcessor"""), ("""cvt""", """ConvNextImageProcessor"""), ("""data2vec-vision""", """BeitImageProcessor"""), ("""deformable_detr""", """DeformableDetrImageProcessor"""), ("""deit""", """DeiTImageProcessor"""), ("""deta""", """DetaImageProcessor"""), ("""detr""", """DetrImageProcessor"""), ("""dinat""", """ViTImageProcessor"""), ("""donut-swin""", """DonutImageProcessor"""), ("""dpt""", """DPTImageProcessor"""), ("""efficientformer""", """EfficientFormerImageProcessor"""), ("""efficientnet""", """EfficientNetImageProcessor"""), ("""flava""", """FlavaImageProcessor"""), ("""focalnet""", """BitImageProcessor"""), ("""git""", """CLIPImageProcessor"""), ("""glpn""", """GLPNImageProcessor"""), ("""groupvit""", """CLIPImageProcessor"""), ("""imagegpt""", """ImageGPTImageProcessor"""), ("""instructblip""", """BlipImageProcessor"""), ("""layoutlmv2""", """LayoutLMv2ImageProcessor"""), ("""layoutlmv3""", """LayoutLMv3ImageProcessor"""), ("""levit""", """LevitImageProcessor"""), ("""mask2former""", """Mask2FormerImageProcessor"""), ("""maskformer""", """MaskFormerImageProcessor"""), ("""mgp-str""", """ViTImageProcessor"""), ("""mobilenet_v1""", """MobileNetV1ImageProcessor"""), ("""mobilenet_v2""", """MobileNetV2ImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevit""", """MobileViTImageProcessor"""), ("""mobilevitv2""", """MobileViTImageProcessor"""), ("""nat""", """ViTImageProcessor"""), ("""oneformer""", """OneFormerImageProcessor"""), ("""owlvit""", """OwlViTImageProcessor"""), ("""perceiver""", """PerceiverImageProcessor"""), ("""pix2struct""", """Pix2StructImageProcessor"""), ("""poolformer""", """PoolFormerImageProcessor"""), ("""regnet""", """ConvNextImageProcessor"""), ("""resnet""", """ConvNextImageProcessor"""), ("""sam""", """SamImageProcessor"""), ("""segformer""", """SegformerImageProcessor"""), ("""swiftformer""", """ViTImageProcessor"""), ("""swin""", """ViTImageProcessor"""), ("""swin2sr""", """Swin2SRImageProcessor"""), ("""swinv2""", """ViTImageProcessor"""), ("""table-transformer""", """DetrImageProcessor"""), ("""timesformer""", """VideoMAEImageProcessor"""), ("""tvlt""", """TvltImageProcessor"""), ("""upernet""", """SegformerImageProcessor"""), ("""van""", """ConvNextImageProcessor"""), ("""videomae""", """VideoMAEImageProcessor"""), ("""vilt""", """ViltImageProcessor"""), ("""vit""", """ViTImageProcessor"""), ("""vit_hybrid""", """ViTHybridImageProcessor"""), ("""vit_mae""", """ViTImageProcessor"""), ("""vit_msn""", """ViTImageProcessor"""), ("""xclip""", """CLIPImageProcessor"""), ("""yolos""", """YolosImageProcessor"""), ] ) _snake_case = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def _A ( __magic_name__ ): for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: lowercase__ = model_type_to_module_name(__magic_name__ ) lowercase__ = importlib.import_module(f'''.{module_name}''' , "transformers.models" ) try: return getattr(__magic_name__ , __magic_name__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(__magic_name__ , "__name__" , __magic_name__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. lowercase__ = importlib.import_module("transformers" ) if hasattr(__magic_name__ , __magic_name__ ): return getattr(__magic_name__ , __magic_name__ ) return None def _A ( __magic_name__ , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , **__magic_name__ , ): lowercase__ = get_file_from_repo( __magic_name__ , __magic_name__ , cache_dir=__magic_name__ , force_download=__magic_name__ , resume_download=__magic_name__ , proxies=__magic_name__ , use_auth_token=__magic_name__ , revision=__magic_name__ , local_files_only=__magic_name__ , ) if resolved_config_file is None: logger.info( "Could not locate the image processor configuration file, will try to use the model config instead." ) return {} with open(__magic_name__ , encoding="utf-8" ) as reader: return json.load(__magic_name__ ) class lowerCAmelCase : def __init__( self :List[Any] ): '''simple docstring''' raise EnvironmentError( "AutoImageProcessor is designed to be instantiated " "using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method." ) @classmethod @replace_list_option_in_docstrings(_lowercase ) def UpperCAmelCase ( cls :Tuple , _lowercase :Any , **_lowercase :Union[str, Any] ): '''simple docstring''' lowercase__ = kwargs.pop("config" , _lowercase ) lowercase__ = kwargs.pop("trust_remote_code" , _lowercase ) lowercase__ = True lowercase__ , lowercase__ = ImageProcessingMixin.get_image_processor_dict(_lowercase , **_lowercase ) lowercase__ = config_dict.get("image_processor_type" , _lowercase ) lowercase__ = None if "AutoImageProcessor" in config_dict.get("auto_map" , {} ): lowercase__ = config_dict["auto_map"]["AutoImageProcessor"] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: lowercase__ = config_dict.pop("feature_extractor_type" , _lowercase ) if feature_extractor_class is not None: logger.warning( "Could not find image processor class in the image processor config or the model config. Loading" " based on pattern matching with the model's feature extractor configuration." ) lowercase__ = feature_extractor_class.replace("FeatureExtractor" , "ImageProcessor" ) if "AutoFeatureExtractor" in config_dict.get("auto_map" , {} ): lowercase__ = config_dict["auto_map"]["AutoFeatureExtractor"] lowercase__ = feature_extractor_auto_map.replace("FeatureExtractor" , "ImageProcessor" ) logger.warning( "Could not find image processor auto map in the image processor config or the model config." " Loading based on pattern matching with the model's feature extractor configuration." ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(_lowercase , _lowercase ): lowercase__ = AutoConfig.from_pretrained(_lowercase , **_lowercase ) # It could be in `config.image_processor_type`` lowercase__ = getattr(_lowercase , "image_processor_type" , _lowercase ) if hasattr(_lowercase , "auto_map" ) and "AutoImageProcessor" in config.auto_map: lowercase__ = config.auto_map["AutoImageProcessor"] if image_processor_class is not None: lowercase__ = image_processor_class_from_name(_lowercase ) lowercase__ = image_processor_auto_map is not None lowercase__ = image_processor_class is not None or type(_lowercase ) in IMAGE_PROCESSOR_MAPPING lowercase__ = resolve_trust_remote_code( _lowercase , _lowercase , _lowercase , _lowercase ) if has_remote_code and trust_remote_code: lowercase__ = get_class_from_dynamic_module( _lowercase , _lowercase , **_lowercase ) lowercase__ = kwargs.pop("code_revision" , _lowercase ) if os.path.isdir(_lowercase ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(_lowercase , **_lowercase ) elif image_processor_class is not None: return image_processor_class.from_dict(_lowercase , **_lowercase ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(_lowercase ) in IMAGE_PROCESSOR_MAPPING: lowercase__ = IMAGE_PROCESSOR_MAPPING[type(_lowercase )] return image_processor_class.from_dict(_lowercase , **_lowercase ) raise ValueError( f'''Unrecognized image processor in {pretrained_model_name_or_path}. Should have a ''' f'''`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following ''' f'''`model_type` keys in its {CONFIG_NAME}: {', '.join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}''' ) @staticmethod def UpperCAmelCase ( _lowercase :Optional[int] , _lowercase :Dict ): '''simple docstring''' IMAGE_PROCESSOR_MAPPING.register(_lowercase , _lowercase )
611
1
'''simple docstring''' import numpy as np class UpperCamelCase_ : """simple docstring""" def __init__( self : Optional[int] ) -> Union[str, Any]: __magic_name__ = (0, 0) __magic_name__ = None __magic_name__ = 0 __magic_name__ = 0 __magic_name__ = 0 def __eq__( self : Dict , _lowerCamelCase : List[str] ) -> int: return self.position == cell.position def __A ( self : List[Any] ) -> str: print(self.position ) class UpperCamelCase_ : """simple docstring""" def __init__( self : Union[str, Any] , _lowerCamelCase : int=(5, 5) ) -> Tuple: __magic_name__ = np.zeros(lowerCamelCase_ ) __magic_name__ = world_size[0] __magic_name__ = world_size[1] def __A ( self : str ) -> int: print(self.w ) def __A ( self : Optional[Any] , _lowerCamelCase : str ) -> Optional[int]: __magic_name__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __magic_name__ = cell.position[0] __magic_name__ = cell.position[1] __magic_name__ = [] for n in neughbour_cord: __magic_name__ = current_x + n[0] __magic_name__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __magic_name__ = Cell() __magic_name__ = (x, y) __magic_name__ = cell neighbours.append(lowerCamelCase_ ) return neighbours def __snake_case ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : Tuple ): '''simple docstring''' __magic_name__ = [] __magic_name__ = [] _open.append(a_ ) while _open: __magic_name__ = np.argmin([n.f for n in _open] ) __magic_name__ = _open[min_f] _closed.append(_open.pop(a_ ) ) if current == goal: break for n in world.get_neigbours(a_ ): for c in _closed: if c == n: continue __magic_name__ = current.g + 1 __magic_name__ = n.position __magic_name__ = goal.position __magic_name__ = (ya - ya) ** 2 + (xa - xa) ** 2 __magic_name__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(a_ ) __magic_name__ = [] while current.parent is not None: path.append(current.position ) __magic_name__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __magic_name__ : Dict =Gridworld() # Start position and goal __magic_name__ : Union[str, Any] =Cell() __magic_name__ : List[Any] =(0, 0) __magic_name__ : List[str] =Cell() __magic_name__ : Optional[Any] =(4, 4) print(F'''path from {start.position} to {goal.position}''') __magic_name__ : Optional[Any] =astar(world, start, goal) # Just for visual reasons. for i in s: __magic_name__ : List[Any] =1 print(world.w)
664
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ : Tuple = logging.get_logger(__name__) lowerCamelCase__ : Any = { "bert-base-uncased": "https://huggingface.co/bert-base-uncased/resolve/main/config.json", "bert-large-uncased": "https://huggingface.co/bert-large-uncased/resolve/main/config.json", "bert-base-cased": "https://huggingface.co/bert-base-cased/resolve/main/config.json", "bert-large-cased": "https://huggingface.co/bert-large-cased/resolve/main/config.json", "bert-base-multilingual-uncased": "https://huggingface.co/bert-base-multilingual-uncased/resolve/main/config.json", "bert-base-multilingual-cased": "https://huggingface.co/bert-base-multilingual-cased/resolve/main/config.json", "bert-base-chinese": "https://huggingface.co/bert-base-chinese/resolve/main/config.json", "bert-base-german-cased": "https://huggingface.co/bert-base-german-cased/resolve/main/config.json", "bert-large-uncased-whole-word-masking": ( "https://huggingface.co/bert-large-uncased-whole-word-masking/resolve/main/config.json" ), "bert-large-cased-whole-word-masking": ( "https://huggingface.co/bert-large-cased-whole-word-masking/resolve/main/config.json" ), "bert-large-uncased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-uncased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-large-cased-whole-word-masking-finetuned-squad": ( "https://huggingface.co/bert-large-cased-whole-word-masking-finetuned-squad/resolve/main/config.json" ), "bert-base-cased-finetuned-mrpc": "https://huggingface.co/bert-base-cased-finetuned-mrpc/resolve/main/config.json", "bert-base-german-dbmdz-cased": "https://huggingface.co/bert-base-german-dbmdz-cased/resolve/main/config.json", "bert-base-german-dbmdz-uncased": "https://huggingface.co/bert-base-german-dbmdz-uncased/resolve/main/config.json", "cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/config.json", "cl-tohoku/bert-base-japanese-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/config.json" ), "cl-tohoku/bert-base-japanese-char-whole-word-masking": ( "https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-cased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-cased-v1/resolve/main/config.json" ), "TurkuNLP/bert-base-finnish-uncased-v1": ( "https://huggingface.co/TurkuNLP/bert-base-finnish-uncased-v1/resolve/main/config.json" ), "wietsedv/bert-base-dutch-cased": "https://huggingface.co/wietsedv/bert-base-dutch-cased/resolve/main/config.json", # See all BERT models at https://huggingface.co/models?filter=bert } class lowercase__( _UpperCAmelCase ): '''simple docstring''' UpperCamelCase = """bert""" def __init__( self :Any , lowerCamelCase_ :List[Any]=3_05_22 , lowerCamelCase_ :List[str]=7_68 , lowerCamelCase_ :Tuple=12 , lowerCamelCase_ :List[Any]=12 , lowerCamelCase_ :int=30_72 , lowerCamelCase_ :Dict="gelu" , lowerCamelCase_ :List[Any]=0.1 , lowerCamelCase_ :int=0.1 , lowerCamelCase_ :int=5_12 , lowerCamelCase_ :Optional[int]=2 , lowerCamelCase_ :int=0.0_2 , lowerCamelCase_ :Optional[int]=1E-12 , lowerCamelCase_ :Optional[Any]=0 , lowerCamelCase_ :int="absolute" , lowerCamelCase_ :List[Any]=True , lowerCamelCase_ :Optional[Any]=None , **lowerCamelCase_ :List[Any] , ) -> List[str]: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase_ , **lowerCamelCase_ ) SCREAMING_SNAKE_CASE : str = vocab_size SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size SCREAMING_SNAKE_CASE : int = num_hidden_layers SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE : Dict = hidden_act SCREAMING_SNAKE_CASE : Union[str, Any] = intermediate_size SCREAMING_SNAKE_CASE : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE : Union[str, Any] = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : List[Any] = max_position_embeddings SCREAMING_SNAKE_CASE : int = type_vocab_size SCREAMING_SNAKE_CASE : List[str] = initializer_range SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps SCREAMING_SNAKE_CASE : Optional[Any] = position_embedding_type SCREAMING_SNAKE_CASE : str = use_cache SCREAMING_SNAKE_CASE : Union[str, Any] = classifier_dropout class lowercase__( _UpperCAmelCase ): '''simple docstring''' @property def __lowerCAmelCase ( self :List[str] ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: SCREAMING_SNAKE_CASE : Optional[Any] = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis), ] )
698
0
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer lowercase_ = logging.get_logger(__name__) lowercase_ = {'vocab_file': 'vocab.txt'} lowercase_ = { 'vocab_file': { 'YituTech/conv-bert-base': 'https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt', 'YituTech/conv-bert-medium-small': ( 'https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt' ), 'YituTech/conv-bert-small': 'https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt', } } lowercase_ = { 'YituTech/conv-bert-base': 5_1_2, 'YituTech/conv-bert-medium-small': 5_1_2, 'YituTech/conv-bert-small': 5_1_2, } lowercase_ = { 'YituTech/conv-bert-base': {'do_lower_case': True}, 'YituTech/conv-bert-medium-small': {'do_lower_case': True}, 'YituTech/conv-bert-small': {'do_lower_case': True}, } class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = VOCAB_FILES_NAMES __snake_case = PRETRAINED_VOCAB_FILES_MAP __snake_case = PRETRAINED_INIT_CONFIGURATION __snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case = ConvBertTokenizer def __init__( self: str , a: Any=None , a: Optional[int]=None , a: Tuple=True , a: int="[UNK]" , a: Dict="[SEP]" , a: int="[PAD]" , a: List[Any]="[CLS]" , a: List[Any]="[MASK]" , a: Optional[int]=True , a: int=None , **a: int , ): super().__init__( a , tokenizer_file=a , do_lower_case=a , unk_token=a , sep_token=a , pad_token=a , cls_token=a , mask_token=a , tokenize_chinese_chars=a , strip_accents=a , **a , ) __lowerCamelCase : str = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , a ) != do_lower_case or normalizer_state.get('strip_accents' , a ) != strip_accents or normalizer_state.get('handle_chinese_chars' , a ) != tokenize_chinese_chars ): __lowerCamelCase : List[Any] = getattr(a , normalizer_state.pop('type' ) ) __lowerCamelCase : Dict = do_lower_case __lowerCamelCase : List[str] = strip_accents __lowerCamelCase : Dict = tokenize_chinese_chars __lowerCamelCase : Optional[Any] = normalizer_class(**a ) __lowerCamelCase : Union[str, Any] = do_lower_case def _snake_case ( self: List[Any] , a: Union[str, Any] , a: Optional[int]=None ): __lowerCamelCase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _snake_case ( self: Any , a: List[int] , a: Optional[List[int]] = None ): __lowerCamelCase : int = [self.sep_token_id] __lowerCamelCase : Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _snake_case ( self: List[Any] , a: str , a: Optional[str] = None ): __lowerCamelCase : str = self._tokenizer.model.save(a , name=a ) return tuple(a )
718
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = """naver-clova-ix/donut-base-finetuned-docvqa""" __snake_case = ( """This is a tool that answers a question about an document (pdf). It takes an input named `document` which """ """should be the document containing the information, as well as a `question` that is the question about the """ """document. It returns a text that contains the answer to the question.""" ) __snake_case = """document_qa""" __snake_case = AutoProcessor __snake_case = VisionEncoderDecoderModel __snake_case = ["""image""", """text"""] __snake_case = ["""text"""] def __init__( self: Dict , *a: List[Any] , **a: List[Any] ): if not is_vision_available(): raise ValueError('Pillow must be installed to use the DocumentQuestionAnsweringTool.' ) super().__init__(*a , **a ) def _snake_case ( self: str , a: "Image" , a: str ): __lowerCamelCase : str = '<s_docvqa><s_question>{user_input}</s_question><s_answer>' __lowerCamelCase : Dict = task_prompt.replace('{user_input}' , a ) __lowerCamelCase : Optional[Any] = self.pre_processor.tokenizer( a , add_special_tokens=a , return_tensors='pt' ).input_ids __lowerCamelCase : Union[str, Any] = self.pre_processor(a , return_tensors='pt' ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def _snake_case ( self: Optional[Any] , a: Tuple ): return self.model.generate( inputs['pixel_values'].to(self.device ) , decoder_input_ids=inputs['decoder_input_ids'].to(self.device ) , max_length=self.model.decoder.config.max_position_embeddings , early_stopping=a , pad_token_id=self.pre_processor.tokenizer.pad_token_id , eos_token_id=self.pre_processor.tokenizer.eos_token_id , use_cache=a , num_beams=1 , bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]] , return_dict_in_generate=a , ).sequences def _snake_case ( self: Optional[Any] , a: Any ): __lowerCamelCase : Union[str, Any] = self.pre_processor.batch_decode(a )[0] __lowerCamelCase : List[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token , '' ) __lowerCamelCase : Optional[int] = sequence.replace(self.pre_processor.tokenizer.pad_token , '' ) __lowerCamelCase : Optional[int] = re.sub(R'<.*?>' , '' , a , count=1 ).strip() # remove first task start token __lowerCamelCase : int = self.pre_processor.tokenajson(a ) return sequence["answer"]
230
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule __lowerCAmelCase = {'processing_wav2vec2_with_lm': ['Wav2Vec2ProcessorWithLM']} if TYPE_CHECKING: from .processing_wavaveca_with_lm import WavaVecaProcessorWithLM else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
585
'''simple docstring''' import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' @property def lowercase (self ) -> Optional[Any]: torch.manual_seed(0 ) _snake_case = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model def lowercase (self ) -> Dict: _snake_case = self.dummy_uncond_unet _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" ).images _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , num_inference_steps=20 , output_type="""numpy""" , return_dict=UpperCAmelCase )[0] _snake_case = image[0, -3:, -3:, -1] _snake_case = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowercase (self ) -> Optional[Any]: _snake_case = """google/ddpm-cifar10-32""" _snake_case = UNetaDModel.from_pretrained(UpperCAmelCase ) _snake_case = PNDMScheduler() _snake_case = PNDMPipeline(unet=UpperCAmelCase , scheduler=UpperCAmelCase ) pndm.to(UpperCAmelCase ) pndm.set_progress_bar_config(disable=UpperCAmelCase ) _snake_case = torch.manual_seed(0 ) _snake_case = pndm(generator=UpperCAmelCase , output_type="""numpy""" ).images _snake_case = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _snake_case = np.array([0.1564, 0.1_4645, 0.1406, 0.1_4715, 0.1_2425, 0.1_4045, 0.1_3115, 0.1_2175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
585
1
import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class A_ ( unittest.TestCase ): '''simple docstring''' def __init__( self: List[Any] , a: Tuple , a: Any=13 , a: Dict=7 , a: Optional[Any]=True , a: Any=True , a: Optional[Any]=True , a: Any=True , a: Optional[int]=99 , a: Tuple=32 , a: int=5 , a: Optional[int]=4 , a: Optional[int]=37 , a: List[str]="gelu" , a: Optional[int]=0.1 , a: List[str]=0.1 , a: Optional[int]=512 , a: Any=16 , a: Optional[int]=2 , a: Union[str, Any]=0.0_2 , a: Union[str, Any]=4 , ): __lowerCamelCase : Dict = parent __lowerCamelCase : Optional[int] = batch_size __lowerCamelCase : int = seq_length __lowerCamelCase : Optional[int] = is_training __lowerCamelCase : Optional[int] = use_attention_mask __lowerCamelCase : Union[str, Any] = use_token_type_ids __lowerCamelCase : List[Any] = use_labels __lowerCamelCase : Dict = vocab_size __lowerCamelCase : Optional[Any] = hidden_size __lowerCamelCase : Dict = num_hidden_layers __lowerCamelCase : Any = num_attention_heads __lowerCamelCase : int = intermediate_size __lowerCamelCase : Any = hidden_act __lowerCamelCase : List[Any] = hidden_dropout_prob __lowerCamelCase : int = attention_probs_dropout_prob __lowerCamelCase : Union[str, Any] = max_position_embeddings __lowerCamelCase : List[str] = type_vocab_size __lowerCamelCase : Optional[int] = type_sequence_label_size __lowerCamelCase : str = initializer_range __lowerCamelCase : Any = num_choices def _snake_case ( self: Union[str, Any] ): __lowerCamelCase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowerCamelCase : Union[str, Any] = None if self.use_attention_mask: __lowerCamelCase : Union[str, Any] = random_attention_mask([self.batch_size, self.seq_length] ) __lowerCamelCase : Optional[Any] = None if self.use_token_type_ids: __lowerCamelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowerCamelCase : Dict = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=a , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def _snake_case ( self: List[Any] ): __lowerCamelCase : Optional[Any] = self.prepare_config_and_inputs() __lowerCamelCase : Union[str, Any] = config_and_inputs __lowerCamelCase : List[Any] = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': attention_mask} return config, inputs_dict @require_flax class A_ ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' __snake_case = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def _snake_case ( self: str ): __lowerCamelCase : Tuple = FlaxAlbertModelTester(self ) @slow def _snake_case ( self: Tuple ): for model_class_name in self.all_model_classes: __lowerCamelCase : List[Any] = model_class_name.from_pretrained('albert-base-v2' ) __lowerCamelCase : List[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(a ) @require_flax class A_ ( unittest.TestCase ): '''simple docstring''' @slow def _snake_case ( self: List[Any] ): __lowerCamelCase : Any = FlaxAlbertModel.from_pretrained('albert-base-v2' ) __lowerCamelCase : List[Any] = np.array([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) __lowerCamelCase : int = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __lowerCamelCase : Tuple = model(a , attention_mask=a )[0] __lowerCamelCase : List[str] = (1, 11, 768) self.assertEqual(output.shape , a ) __lowerCamelCase : str = np.array( [[[-0.6_5_1_3, 1.5_0_3_5, -0.2_7_6_6], [-0.6_5_1_5, 1.5_0_4_6, -0.2_7_8_0], [-0.6_5_1_2, 1.5_0_4_9, -0.2_7_8_4]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , a , atol=1e-4 ) )
702
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(a - b ) for a, b in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ ): if point: if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): for item in point: if not isinstance(SCREAMING_SNAKE_CASE__ , (int, float) ): __lowerCamelCase : List[Any] = ( 'Expected a list of numbers as input, found ' f'{type(SCREAMING_SNAKE_CASE__ ).__name__}' ) raise TypeError(SCREAMING_SNAKE_CASE__ ) else: __lowerCamelCase : Tuple = f'Expected a list of numbers as input, found {type(SCREAMING_SNAKE_CASE__ ).__name__}' raise TypeError(SCREAMING_SNAKE_CASE__ ) else: raise ValueError('Missing an input' ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): _validate_point(SCREAMING_SNAKE_CASE__ ) _validate_point(SCREAMING_SNAKE_CASE__ ) if len(SCREAMING_SNAKE_CASE__ ) != len(SCREAMING_SNAKE_CASE__ ): raise ValueError('Both points must be in the same n-dimensional space' ) return float(sum(abs(x - y ) for x, y in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
230
0
"""simple docstring""" import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase__ ( unittest.TestCase ): __UpperCAmelCase = inspect.getfile(accelerate.test_utils ) __UpperCAmelCase = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) __UpperCAmelCase = ['''accelerate''', '''launch'''] __UpperCAmelCase = Path.home() / '''.cache/huggingface/accelerate''' __UpperCAmelCase = '''default_config.yaml''' __UpperCAmelCase = config_folder / config_file __UpperCAmelCase = config_folder / '''_default_config.yaml''' __UpperCAmelCase = Path('''tests/test_configs''' ) @classmethod def UpperCamelCase_ ( cls) -> List[str]: if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path) @classmethod def UpperCamelCase_ ( cls) -> Tuple: if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path) def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy()) def UpperCamelCase_ ( self) -> int: for config in sorted(self.test_config_path.glob("""**/*.yaml""")): with self.subTest(config_file=SCREAMING_SNAKE_CASE): execute_subprocess_async( self.base_cmd + ["""--config_file""", str(SCREAMING_SNAKE_CASE), self.test_file_path] , env=os.environ.copy()) def UpperCamelCase_ ( self) -> Any: execute_subprocess_async(["""accelerate""", """test"""] , env=os.environ.copy()) class lowercase__ ( unittest.TestCase ): __UpperCAmelCase = '''test-tpu''' __UpperCAmelCase = '''us-central1-a''' __UpperCAmelCase = '''ls''' __UpperCAmelCase = ['''accelerate''', '''tpu-config'''] __UpperCAmelCase = '''cd /usr/share''' __UpperCAmelCase = '''tests/test_samples/test_command_file.sh''' __UpperCAmelCase = '''Running gcloud compute tpus tpu-vm ssh''' def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Union[str, Any] = run_command( self.cmd + ["""--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> str: _lowerCamelCase : int = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command""", self.command, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=SCREAMING_SNAKE_CASE , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : Any = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> str: _lowerCamelCase : Optional[int] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all' , SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Optional[int] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--command""", self.command, """--command""", """echo \"Hello World\"""", """--debug""", ] , return_stdout=SCREAMING_SNAKE_CASE , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo "Hello World" --worker all' , SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : Union[str, Any] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--command_file""", self.command_file, """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> Dict: _lowerCamelCase : Optional[int] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/0_12_0.yaml""", """--command_file""", self.command_file, """--tpu_zone""", self.tpu_zone, """--tpu_name""", self.tpu_name, """--debug""", ] , return_stdout=SCREAMING_SNAKE_CASE , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> Optional[Any]: _lowerCamelCase : List[str] = run_command( self.cmd + ["""--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--debug"""] , return_stdout=SCREAMING_SNAKE_CASE , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , ) def UpperCamelCase_ ( self) -> int: _lowerCamelCase : Union[str, Any] = run_command( self.cmd + [ """--config_file""", """tests/test_configs/latest.yaml""", """--install_accelerate""", """--accelerate_version""", """12.0.0""", """--debug""", ] , return_stdout=SCREAMING_SNAKE_CASE , ) self.assertIn( F'{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo "hello world"; echo "this is a second command" --worker all' , SCREAMING_SNAKE_CASE , )
88
'''simple docstring''' import math import sys def _lowerCAmelCase ( __snake_case : int ) -> int: if number != int(__snake_case ): raise ValueError('the value of input must be a natural number' ) if number < 0: raise ValueError('the value of input must not be a negative number' ) if number == 0: return 1 __A : str = [-1] * (number + 1) __A : Dict = 0 for i in range(1 , number + 1 ): __A : int = sys.maxsize __A : int = int(math.sqrt(__snake_case ) ) for j in range(1 , root + 1 ): __A : str = 1 + answers[i - (j**2)] __A : Dict = min(__snake_case , __snake_case ) __A : Union[str, Any] = answer return answers[number] if __name__ == "__main__": import doctest doctest.testmod()
8
0
"""simple docstring""" from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class lowercase_ : '''simple docstring''' def __init__( self : Optional[Any] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[Any]=13 , _UpperCAmelCase : Any=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Any=True , _UpperCAmelCase : Optional[int]=True , _UpperCAmelCase : List[str]=99 , _UpperCAmelCase : Dict=32 , _UpperCAmelCase : str=2 , _UpperCAmelCase : List[str]=4 , _UpperCAmelCase : Optional[int]=37 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : Union[str, Any]=0.1 , _UpperCAmelCase : Any=0.1 , _UpperCAmelCase : Optional[Any]=512 , _UpperCAmelCase : Dict=16 , _UpperCAmelCase : List[Any]=2 , _UpperCAmelCase : List[str]=0.02 , _UpperCAmelCase : List[str]=3 , _UpperCAmelCase : Tuple=4 , _UpperCAmelCase : Any=None , ): _A = parent _A = 13 _A = 7 _A = True _A = True _A = True _A = True _A = 99 _A = 384 _A = 2 _A = 4 _A = 37 _A = 'gelu' _A = 0.1 _A = 0.1 _A = 512 _A = 16 _A = 2 _A = 0.02 _A = 3 _A = 4 _A = 128 _A = 2 _A = 9 _A = 1 _A = None def lowerCAmelCase_ ( self : Optional[Any] ): _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = ids_tensor([self.batch_size] , self.num_choices ) _A = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_UpperCAmelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict , _UpperCAmelCase : int , _UpperCAmelCase : Dict , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any ): _A = TFConvBertModel(config=_UpperCAmelCase ) _A = {'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids} _A = [input_ids, input_mask] _A = model(_UpperCAmelCase ) _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[int] ): _A = TFConvBertForMaskedLM(config=_UpperCAmelCase ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : List[str] , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : List[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Tuple , _UpperCAmelCase : int ): _A = self.num_labels _A = TFConvBertForSequenceClassification(config=_UpperCAmelCase ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Tuple , _UpperCAmelCase : Optional[Any] ): _A = self.num_choices _A = TFConvBertForMultipleChoice(config=_UpperCAmelCase ) _A = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = tf.tile(tf.expand_dims(_UpperCAmelCase , 1 ) , (1, self.num_choices, 1) ) _A = { 'input_ids': multiple_choice_inputs_ids, 'attention_mask': multiple_choice_input_mask, 'token_type_ids': multiple_choice_token_type_ids, } _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Dict , _UpperCAmelCase : Any , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : str , _UpperCAmelCase : Any , _UpperCAmelCase : Optional[Any] ): _A = self.num_labels _A = TFConvBertForTokenClassification(config=_UpperCAmelCase ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Any , _UpperCAmelCase : List[str] , _UpperCAmelCase : int , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : int ): _A = TFConvBertForQuestionAnswering(config=_UpperCAmelCase ) _A = { 'input_ids': input_ids, 'attention_mask': input_mask, 'token_type_ids': token_type_ids, } _A = model(_UpperCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCAmelCase_ ( self : Dict ): _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids, 'token_type_ids': token_type_ids, 'attention_mask': input_mask} return config, inputs_dict @require_tf class lowercase_ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase : Dict = ( { '''feature-extraction''': TFConvBertModel, '''fill-mask''': TFConvBertForMaskedLM, '''question-answering''': TFConvBertForQuestionAnswering, '''text-classification''': TFConvBertForSequenceClassification, '''token-classification''': TFConvBertForTokenClassification, '''zero-shot''': TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase : List[Any] = False UpperCAmelCase : List[Any] = False UpperCAmelCase : Optional[int] = False def lowerCAmelCase_ ( self : Optional[Any] ): _A = TFConvBertModelTester(self ) _A = ConfigTester(self , config_class=_UpperCAmelCase , hidden_size=37 ) def lowerCAmelCase_ ( self : Optional[int] ): self.config_tester.run_common_tests() def lowerCAmelCase_ ( self : int ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : List[str] ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCAmelCase ) def lowerCAmelCase_ ( self : str ): _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCAmelCase ) @slow def lowerCAmelCase_ ( self : List[str] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True _A = True if hasattr(_UpperCAmelCase , 'use_cache' ): _A = True _A = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _A = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) for model_class in self.all_model_classes: _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _A = model_class(_UpperCAmelCase ) _A = len(model(_UpperCAmelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(_UpperCAmelCase , saved_model=_UpperCAmelCase ) _A = os.path.join(_UpperCAmelCase , 'saved_model' , '1' ) _A = tf.keras.models.load_model(_UpperCAmelCase ) _A = model(_UpperCAmelCase ) if self.is_encoder_decoder: _A = outputs['encoder_hidden_states'] _A = outputs['encoder_attentions'] else: _A = outputs['hidden_states'] _A = outputs['attentions'] self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) _A = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCAmelCase ) , _UpperCAmelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCAmelCase_ ( self : int ): _A = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) self.assertIsNotNone(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() _A = True _A = getattr(self.model_tester , 'decoder_seq_length' , self.model_tester.seq_length ) _A = getattr(self.model_tester , 'encoder_seq_length' , self.model_tester.seq_length ) _A = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) _A = getattr(self.model_tester , 'key_length' , _UpperCAmelCase ) def check_decoder_attentions_output(_UpperCAmelCase : Tuple ): _A = len(_UpperCAmelCase ) self.assertEqual(out_len % 2 , 0 ) _A = outputs.decoder_attentions self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(_UpperCAmelCase : Tuple ): _A = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(_UpperCAmelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: _A = True _A = False _A = model_class(_UpperCAmelCase ) _A = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) _A = len(_UpperCAmelCase ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) if self.is_encoder_decoder: _A = model_class(_UpperCAmelCase ) _A = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_decoder_attentions_output(_UpperCAmelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] _A = True _A = model_class(_UpperCAmelCase ) _A = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) # Check attention is always last and order is fine _A = True _A = True _A = model_class(_UpperCAmelCase ) _A = model(self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(_UpperCAmelCase ) ) self.assertEqual(model.config.output_hidden_states , _UpperCAmelCase ) check_encoder_attentions_output(_UpperCAmelCase ) @require_tf class lowercase_ ( unittest.TestCase ): '''simple docstring''' @slow def lowerCAmelCase_ ( self : Optional[Any] ): _A = TFConvBertModel.from_pretrained('YituTech/conv-bert-base' ) _A = tf.constant([[0, 1, 2, 3, 4, 5]] ) _A = model(_UpperCAmelCase )[0] _A = [1, 6, 768] self.assertEqual(output.shape , _UpperCAmelCase ) _A = tf.constant( [ [ [-0.0347_5493, -0.468_6034, -0.3063_8832], [0.2263_7248, -0.2698_8646, -0.742_3424], [0.1032_4868, -0.4501_3508, -0.5828_0784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _UpperCAmelCase , atol=1E-4 )
717
"""simple docstring""" import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch a = logging.get_logger(__name__) class lowercase_ : '''simple docstring''' def __init__( self : str , _UpperCAmelCase : str = None , _UpperCAmelCase : uuid.UUID = None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Tuple=None ): if not conversation_id: _A = uuid.uuida() if past_user_inputs is None: _A = [] if generated_responses is None: _A = [] _A = conversation_id _A = past_user_inputs _A = generated_responses _A = text def __eq__( self : Union[str, Any] , _UpperCAmelCase : Optional[int] ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : str , _UpperCAmelCase : bool = False ): if self.new_user_input: if overwrite: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ''' F'''with: "{text}".''' ) _A = text else: logger.warning( F'''User input added while unprocessed input was existing: "{self.new_user_input}" new input ''' F'''ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input''' ) else: _A = text def lowerCAmelCase_ ( self : List[str] ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _A = None def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : str ): self.generated_responses.append(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Dict ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : int ): _A = F'''Conversation id: {self.uuid} \n''' for is_user, text in self.iter_texts(): _A = 'user' if is_user else 'bot' output += F'''{name} >> {text} \n''' return output @add_end_docstrings( __lowerCAmelCase , r''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' def __init__( self : Optional[int] , *_UpperCAmelCase : Optional[int] , **_UpperCAmelCase : Any ): super().__init__(*_UpperCAmelCase , **_UpperCAmelCase ) if self.tokenizer.pad_token_id is None: _A = self.tokenizer.eos_token def lowerCAmelCase_ ( self : Optional[int] , _UpperCAmelCase : Dict=None , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : Dict=None , **_UpperCAmelCase : List[Any] ): _A = {} _A = {} _A = {} if min_length_for_response is not None: _A = min_length_for_response if minimum_tokens is not None: _A = minimum_tokens if "max_length" in generate_kwargs: _A = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _A = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_UpperCAmelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : Any , _UpperCAmelCase : Union[Conversation, List[Conversation]] , _UpperCAmelCase : int=0 , **_UpperCAmelCase : str ): _A = super().__call__(_UpperCAmelCase , num_workers=_UpperCAmelCase , **_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) and len(_UpperCAmelCase ) == 1: return outputs[0] return outputs def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : Conversation , _UpperCAmelCase : int=32 ): if not isinstance(_UpperCAmelCase , _UpperCAmelCase ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'''Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ''' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _A = self.tokenizer._build_conversation_input_ids(_UpperCAmelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version _A = self._legacy_parse_and_tokenize(_UpperCAmelCase ) if self.framework == "pt": _A = torch.LongTensor([input_ids] ) elif self.framework == "tf": _A = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : Optional[int] , _UpperCAmelCase : Dict=10 , **_UpperCAmelCase : Any ): _A = generate_kwargs.get('max_length' , self.model.config.max_length ) _A = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'''Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})''' ) _A = max_length - minimum_tokens _A = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _A = model_inputs['attention_mask'][:, -trim:] _A = model_inputs.pop('conversation' ) _A = max_length _A = self.model.generate(**_UpperCAmelCase , **_UpperCAmelCase ) if self.model.config.is_encoder_decoder: _A = 1 else: _A = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Dict , _UpperCAmelCase : Dict=True ): _A = model_outputs['output_ids'] _A = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_UpperCAmelCase , clean_up_tokenization_spaces=_UpperCAmelCase , ) _A = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_UpperCAmelCase ) return conversation def lowerCAmelCase_ ( self : str , _UpperCAmelCase : Conversation ): _A = self.tokenizer.eos_token_id _A = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_UpperCAmelCase , add_special_tokens=_UpperCAmelCase ) ) if len(_UpperCAmelCase ) > self.tokenizer.model_max_length: _A = input_ids[-self.tokenizer.model_max_length :] return input_ids
505
0
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase (UpperCamelCase__ , unittest.TestCase ): """simple docstring""" _snake_case = RobertaTokenizer _snake_case = RobertaTokenizerFast _snake_case = True _snake_case = {"""cls_token""": """<s>"""} def UpperCAmelCase ( self ) -> Optional[int]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case : int = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] snake_case : List[Any] = dict(zip(A , range(len(A ) ) ) ) snake_case : Optional[int] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] snake_case : Any = {"""unk_token""": """<unk>"""} snake_case : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) snake_case : Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def UpperCAmelCase ( self , **A ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , **A ) -> Any: kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **A ) def UpperCAmelCase ( self , A ) -> str: snake_case : int = """lower newer""" snake_case : List[str] = """lower newer""" return input_text, output_text def UpperCAmelCase ( self ) -> Dict: snake_case : Any = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case : Optional[int] = """lower newer""" snake_case : Tuple = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] snake_case : List[Any] = tokenizer.tokenize(A ) # , add_prefix_space=True) self.assertListEqual(A , A ) snake_case : Tuple = tokens + [tokenizer.unk_token] snake_case : str = [0, 1, 2, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(A ) , A ) def UpperCAmelCase ( self ) -> str: snake_case : List[str] = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=A ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=A ) , [0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2] , ) @slow def UpperCAmelCase ( self ) -> Dict: snake_case : str = self.tokenizer_class.from_pretrained("""roberta-base""" ) snake_case : int = tokenizer.encode("""sequence builders""" , add_special_tokens=A ) snake_case : Optional[int] = tokenizer.encode("""multi-sequence build""" , add_special_tokens=A ) snake_case : Union[str, Any] = tokenizer.encode( """sequence builders""" , add_special_tokens=A , add_prefix_space=A ) snake_case : Union[str, Any] = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=A , add_prefix_space=A ) snake_case : Dict = tokenizer.build_inputs_with_special_tokens(A ) snake_case : str = tokenizer.build_inputs_with_special_tokens(A , A ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase ( self ) -> Optional[int]: snake_case : List[str] = self.get_tokenizer() snake_case : Any = """Encode this sequence.""" snake_case : Any = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments snake_case : Any = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) snake_case : Union[str, Any] = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(A , A ) snake_case : Union[str, Any] = tokenizer.encode(A , add_special_tokens=A , add_prefix_space=A ) snake_case : Tuple = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(A , A ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) snake_case : str = tokenizer.encode(A , add_special_tokens=A ) snake_case : Tuple = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(A , A ) # Testing spaces after special tokens snake_case : int = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(A , lstrip=A , rstrip=A )} ) # mask token has a left space snake_case : Dict = tokenizer.convert_tokens_to_ids(A ) snake_case : Optional[Any] = """Encode <mask> sequence""" snake_case : List[Any] = """Encode <mask>sequence""" snake_case : Tuple = tokenizer.encode(A ) snake_case : int = encoded.index(A ) snake_case : List[Any] = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(A , A ) snake_case : Tuple = tokenizer.encode(A ) snake_case : Tuple = encoded.index(A ) snake_case : str = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(A , A ) def UpperCAmelCase ( self ) -> int: pass def UpperCAmelCase ( self ) -> Optional[Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : List[str] = self.rust_tokenizer_class.from_pretrained(A , **A ) snake_case : Tuple = self.tokenizer_class.from_pretrained(A , **A ) snake_case : List[Any] = """A, <mask> AllenNLP sentence.""" snake_case : Union[str, Any] = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) snake_case : Optional[int] = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) snake_case : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) snake_case : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_5_0, 6, 5_0_2_6_4, 3_8_2_3, 4_8_7, 2_1_9_9_2, 3_6_4_5, 4, 2] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def UpperCAmelCase ( self ) -> List[str]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): snake_case : Union[str, Any] = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : List[Any] = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) snake_case : Dict = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""add_prefix_space"""] , A ) self.assertEqual(post_processor_state["""trim_offsets"""] , A ) def UpperCAmelCase ( self ) -> List[str]: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case : str = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` snake_case : Optional[Any] = f"""{text_of_1_token} {text_of_1_token}""" snake_case : str = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : Tuple = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) snake_case : Dict = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ) + 1, len(A ) + 1 + len(A )) , ) snake_case : Tuple = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : Optional[Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) snake_case : int = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (len(A ), len(A ) + 1 + len(A )) , ) snake_case : Any = f""" {text}""" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) snake_case : Dict = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : str = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ) + 1, 1 + len(A ) + 1 + len(A )) , ) snake_case : Optional[Any] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : Union[str, Any] = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , ) snake_case : List[str] = self.rust_tokenizer_class.from_pretrained( A , use_fast=A , add_prefix_space=A , trim_offsets=A ) snake_case : Dict = tokenizer_r(A , return_offsets_mapping=A , add_special_tokens=A ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(A )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(A ), 1 + len(A ) + 1 + len(A )) , )
587
def SCREAMING_SNAKE_CASE__ ( lowercase ) -> bool: snake_case : set[int] = set() # To detect a back edge, keep track of vertices currently in the recursion stack snake_case : set[int] = set() return any( node not in visited and depth_first_search(lowercase ,lowercase ,lowercase ,lowercase ) for node in graph ) def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase ,lowercase ) -> bool: visited.add(lowercase ) rec_stk.add(lowercase ) for node in graph[vertex]: if node not in visited: if depth_first_search(lowercase ,lowercase ,lowercase ,lowercase ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(lowercase ) return False if __name__ == "__main__": from doctest import testmod testmod()
587
1
from transformers import HfArgumentParser, TensorFlowBenchmark, TensorFlowBenchmarkArguments def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : Union[str, Any] = HfArgumentParser(UpperCAmelCase ) __lowerCamelCase : Optional[int] = parser.parse_args_into_dataclasses()[0] __lowerCamelCase : int = TensorFlowBenchmark(args=UpperCAmelCase ) try: __lowerCamelCase : Optional[Any] = parser.parse_args_into_dataclasses()[0] except ValueError as e: __lowerCamelCase : Tuple = """Arg --no_{0} is no longer used, please use --no-{0} instead.""" __lowerCamelCase : List[str] = """ """.join(str(UpperCAmelCase ).split(""" """ )[:-1] ) __lowerCamelCase : int = """""" __lowerCamelCase : Tuple = eval(str(UpperCAmelCase ).split(""" """ )[-1] ) __lowerCamelCase : Optional[int] = [] for arg in depreciated_args: # arg[2:] removes '--' if arg[2:] in TensorFlowBenchmark.deprecated_args: # arg[5:] removes '--no_' full_error_msg += arg_error_msg.format(arg[5:] ) else: wrong_args.append(UpperCAmelCase ) if len(UpperCAmelCase ) > 0: __lowerCamelCase : int = full_error_msg + begin_error_msg + str(UpperCAmelCase ) raise ValueError(UpperCAmelCase ) benchmark.run() if __name__ == "__main__": main()
458
import argparse import hashlib import os import urllib import warnings import torch from torch import nn from tqdm import tqdm from transformers import WhisperConfig, WhisperForConditionalGeneration __UpperCamelCase : Tuple = { 'tiny.en': 'https://openaipublic.azureedge.net/main/whisper/models/d3dd57d32accea0b295c96e26691aa14d8822fac7d9d27d5dc00b4ca2826dd03/tiny.en.pt', 'tiny': 'https://openaipublic.azureedge.net/main/whisper/models/65147644a518d12f04e32d6f3b26facc3f8dd46e5390956a9424a650c0ce22b9/tiny.pt', 'base.en': 'https://openaipublic.azureedge.net/main/whisper/models/25a8566e1d0c1e2231d1c762132cd20e0f96a85d16145c3a00adf5d1ac670ead/base.en.pt', 'base': 'https://openaipublic.azureedge.net/main/whisper/models/ed3a0b6b1c0edf879ad9b11b1af5a0e6ab5db9205f891f668f8b0e6c6326e34e/base.pt', 'small.en': 'https://openaipublic.azureedge.net/main/whisper/models/f953ad0fd29cacd07d5a9eda5624af0f6bcf2258be67c92b79389873d91e0872/small.en.pt', 'small': 'https://openaipublic.azureedge.net/main/whisper/models/9ecf779972d90ba49c06d968637d720dd632c55bbf19d441fb42bf17a411e794/small.pt', 'medium.en': 'https://openaipublic.azureedge.net/main/whisper/models/d7440d1dc186f76616474e0ff0b3b6b879abc9d1a4926b7adfa41db2d497ab4f/medium.en.pt', 'medium': 'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt', 'large': 'https://openaipublic.azureedge.net/main/whisper/models/e4b87e7e0bf463eb8e6956e646f1e277e901512310def2c24bf0e11bd3c28e9a/large.pt', 'large-v2': 'https://openaipublic.azureedge.net/main/whisper/models/81f7c96c852ee8fc832187b0132e569d6c3065a3252ed18e56effd0b6a73e524/large-v2.pt', } def _UpperCAmelCase ( UpperCAmelCase : Dict ): """simple docstring""" __lowerCamelCase : int = ["""layers""", """blocks"""] for k in ignore_keys: state_dict.pop(UpperCAmelCase , UpperCAmelCase ) __UpperCamelCase : str = { 'blocks': 'layers', 'mlp.0': 'fc1', 'mlp.2': 'fc2', 'mlp_ln': 'final_layer_norm', '.attn.query': '.self_attn.q_proj', '.attn.key': '.self_attn.k_proj', '.attn.value': '.self_attn.v_proj', '.attn_ln': '.self_attn_layer_norm', '.attn.out': '.self_attn.out_proj', '.cross_attn.query': '.encoder_attn.q_proj', '.cross_attn.key': '.encoder_attn.k_proj', '.cross_attn.value': '.encoder_attn.v_proj', '.cross_attn_ln': '.encoder_attn_layer_norm', '.cross_attn.out': '.encoder_attn.out_proj', 'decoder.ln.': 'decoder.layer_norm.', 'encoder.ln.': 'encoder.layer_norm.', 'token_embedding': 'embed_tokens', 'encoder.positional_embedding': 'encoder.embed_positions.weight', 'decoder.positional_embedding': 'decoder.embed_positions.weight', 'ln_post': 'layer_norm', } def _UpperCAmelCase ( UpperCAmelCase : Dict ): """simple docstring""" __lowerCamelCase : List[str] = list(s_dict.keys() ) for key in keys: __lowerCamelCase : Union[str, Any] = key for k, v in WHISPER_MAPPING.items(): if k in key: __lowerCamelCase : Optional[int] = new_key.replace(UpperCAmelCase , UpperCAmelCase ) print(f"""{key} -> {new_key}""" ) __lowerCamelCase : Dict = s_dict.pop(UpperCAmelCase ) return s_dict def _UpperCAmelCase ( UpperCAmelCase : Optional[int] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Dict = emb.weight.shape __lowerCamelCase : Tuple = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = emb.weight.data return lin_layer def _UpperCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : str ): """simple docstring""" os.makedirs(UpperCAmelCase , exist_ok=UpperCAmelCase ) __lowerCamelCase : Any = os.path.basename(UpperCAmelCase ) __lowerCamelCase : int = url.split("""/""" )[-2] __lowerCamelCase : str = os.path.join(UpperCAmelCase , UpperCAmelCase ) if os.path.exists(UpperCAmelCase ) and not os.path.isfile(UpperCAmelCase ): raise RuntimeError(f"""{download_target} exists and is not a regular file""" ) if os.path.isfile(UpperCAmelCase ): __lowerCamelCase : Any = open(UpperCAmelCase , """rb""" ).read() if hashlib.shaaaa(UpperCAmelCase ).hexdigest() == expected_shaaaa: return model_bytes else: warnings.warn(f"""{download_target} exists, but the SHA256 checksum does not match; re-downloading the file""" ) with urllib.request.urlopen(UpperCAmelCase ) as source, open(UpperCAmelCase , """wb""" ) as output: with tqdm( total=int(source.info().get("""Content-Length""" ) ) , ncols=80 , unit="""iB""" , unit_scale=UpperCAmelCase , unit_divisor=1_024 ) as loop: while True: __lowerCamelCase : Union[str, Any] = source.read(8_192 ) if not buffer: break output.write(UpperCAmelCase ) loop.update(len(UpperCAmelCase ) ) __lowerCamelCase : List[str] = open(UpperCAmelCase , """rb""" ).read() if hashlib.shaaaa(UpperCAmelCase ).hexdigest() != expected_shaaaa: raise RuntimeError( """Model has been downloaded but the SHA256 checksum does not not match. Please retry loading the model.""" ) return model_bytes def _UpperCAmelCase ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[int] ): """simple docstring""" if ".pt" not in checkpoint_path: __lowerCamelCase : Optional[int] = _download(_MODELS[checkpoint_path] ) else: __lowerCamelCase : Union[str, Any] = torch.load(UpperCAmelCase , map_location="""cpu""" ) __lowerCamelCase : Any = original_checkpoint["""dims"""] __lowerCamelCase : int = original_checkpoint["""model_state_dict"""] __lowerCamelCase : Tuple = state_dict["""decoder.token_embedding.weight"""] remove_ignore_keys_(UpperCAmelCase ) rename_keys(UpperCAmelCase ) __lowerCamelCase : int = True __lowerCamelCase : Tuple = state_dict["""decoder.layers.0.fc1.weight"""].shape[0] __lowerCamelCase : Any = WhisperConfig( vocab_size=dimensions["""n_vocab"""] , encoder_ffn_dim=UpperCAmelCase , decoder_ffn_dim=UpperCAmelCase , num_mel_bins=dimensions["""n_mels"""] , d_model=dimensions["""n_audio_state"""] , max_target_positions=dimensions["""n_text_ctx"""] , encoder_layers=dimensions["""n_audio_layer"""] , encoder_attention_heads=dimensions["""n_audio_head"""] , decoder_layers=dimensions["""n_text_layer"""] , decoder_attention_heads=dimensions["""n_text_state"""] , max_source_positions=dimensions["""n_audio_ctx"""] , ) __lowerCamelCase : List[str] = WhisperForConditionalGeneration(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : str = model.model.load_state_dict(UpperCAmelCase , strict=UpperCAmelCase ) if len(UpperCAmelCase ) > 0 and not set(UpperCAmelCase ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( """Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,""" f""" but all the following weights are missing {missing}""" ) if tie_embeds: __lowerCamelCase : Tuple = make_linear_from_emb(model.model.decoder.embed_tokens ) else: __lowerCamelCase : Tuple = proj_out_weights model.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = argparse.ArgumentParser() # # Required parameters parser.add_argument('--checkpoint_path', type=str, help='Patht to the downloaded checkpoints') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') __UpperCamelCase : Tuple = parser.parse_args() convert_openai_whisper_to_tfms(args.checkpoint_path, args.pytorch_dump_folder_path)
458
1
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration A = """facebook/wmt19-en-de""" A = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model A = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) A = FSMTForConditionalGeneration(config) print(f'''num of params {tiny_model.num_parameters()}''') # Test A = tokenizer(["""Making tiny model"""], return_tensors="""pt""") A = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save A = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(f'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
77
'''simple docstring''' import numpy as np def UpperCamelCase__ ( _lowercase : np.array ) -> np.array: return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
523
0
"""simple docstring""" from sklearn.metrics import fa_score, matthews_corrcoef import datasets from .record_evaluation import evaluate as evaluate_record _UpperCamelCase : Any = "\\n@article{wang2019superglue,\n title={SuperGLUE: A Stickier Benchmark for General-Purpose Language Understanding Systems},\n author={Wang, Alex and Pruksachatkun, Yada and Nangia, Nikita and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R},\n journal={arXiv preprint arXiv:1905.00537},\n year={2019}\n}\n" _UpperCamelCase : Any = "\\nSuperGLUE (https://super.gluebenchmark.com/) is a new benchmark styled after\nGLUE with a new set of more difficult language understanding tasks, improved\nresources, and a new public leaderboard.\n" _UpperCamelCase : Any = "\nCompute SuperGLUE evaluation metric associated to each SuperGLUE dataset.\nArgs:\n predictions: list of predictions to score. Depending on the SuperGlUE subset:\n - for 'record': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'prediction_text': the predicted answer text\n - for 'multirc': list of question-answer dictionaries with the following keys:\n - 'idx': index of the question-answer pair as specified by the dataset\n - 'prediction': the predicted answer label\n - otherwise: list of predicted labels\n references: list of reference labels. Depending on the SuperGLUE subset:\n - for 'record': list of question-answers dictionaries with the following keys:\n - 'idx': index of the question as specified by the dataset\n - 'answers': list of possible answers\n - otherwise: list of reference labels\nReturns: depending on the SuperGLUE subset:\n - for 'record':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1': F1 score\n - for 'multirc':\n - 'exact_match': Exact match between answer and gold answer\n - 'f1_m': Per-question macro-F1 score\n - 'f1_a': Average F1 score over all answers\n - for 'axb':\n 'matthews_correlation': Matthew Correlation\n - for 'cb':\n - 'accuracy': Accuracy\n - 'f1': F1 score\n - for all others:\n - 'accuracy': Accuracy\nExamples:\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'copa') # any of [\"copa\", \"rte\", \"wic\", \"wsc\", \"wsc.fixed\", \"boolq\", \"axg\"]\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'cb')\n >>> predictions = [0, 1]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'accuracy': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'record')\n >>> predictions = [{'idx': {'passage': 0, 'query': 0}, 'prediction_text': 'answer'}]\n >>> references = [{'idx': {'passage': 0, 'query': 0}, 'answers': ['answer', 'another_answer']}]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'multirc')\n >>> predictions = [{'idx': {'answer': 0, 'paragraph': 0, 'question': 0}, 'prediction': 0}, {'idx': {'answer': 1, 'paragraph': 2, 'question': 3}, 'prediction': 1}]\n >>> references = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'exact_match': 1.0, 'f1_m': 1.0, 'f1_a': 1.0}\n\n >>> super_glue_metric = datasets.load_metric('super_glue', 'axb')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = super_glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'matthews_correlation': 1.0}\n" def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[Any] ) -> str: '''simple docstring''' return float((preds == labels).mean() ) def a_ ( _lowerCAmelCase : Dict , _lowerCAmelCase : str , _lowerCAmelCase : Union[str, Any]="binary" ) -> Tuple: '''simple docstring''' lowercase__ : Any = simple_accuracy(_lowerCAmelCase , _lowerCAmelCase ) lowercase__ : str = float(fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase , average=_lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def a_ ( _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Dict ) -> Union[str, Any]: '''simple docstring''' lowercase__ : List[Any] = {} for id_pred, label in zip(_lowerCAmelCase , _lowerCAmelCase ): lowercase__ : str = f"""{id_pred["idx"]["paragraph"]}-{id_pred["idx"]["question"]}""" lowercase__ : Optional[Any] = id_pred['prediction'] if question_id in question_map: question_map[question_id].append((pred, label) ) else: lowercase__ : Optional[Any] = [(pred, label)] lowercase__ : List[Any] = [], [] for question, preds_labels in question_map.items(): lowercase__ : Dict = zip(*_lowerCAmelCase ) lowercase__ : Optional[Any] = fa_score(y_true=_lowerCAmelCase , y_pred=_lowerCAmelCase , average='macro' ) fas.append(_lowerCAmelCase ) lowercase__ : Any = int(sum(pred == label for pred, label in preds_labels ) == len(_lowerCAmelCase ) ) ems.append(_lowerCAmelCase ) lowercase__ : Union[str, Any] = float(sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) ) lowercase__ : Dict = sum(_lowerCAmelCase ) / len(_lowerCAmelCase ) lowercase__ : Tuple = float(fa_score(y_true=_lowerCAmelCase , y_pred=[id_pred['prediction'] for id_pred in ids_preds] ) ) return {"exact_match": em, "f1_m": fa_m, "f1_a": fa_a} @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION) class UpperCAmelCase_ ( datasets.Metric): def _UpperCAmelCase ( self ) -> Union[str, Any]: if self.config_name not in [ "boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg", ]: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , codebase_urls=[] , reference_urls=[] , format='numpy' if not self.config_name == 'record' and not self.config_name == 'multirc' else None , ) def _UpperCAmelCase ( self ) -> Dict: if self.config_name == "record": return { "predictions": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "prediction_text": datasets.Value('string' ), }, "references": { "idx": { "passage": datasets.Value('int64' ), "query": datasets.Value('int64' ), }, "answers": datasets.Sequence(datasets.Value('string' ) ), }, } elif self.config_name == "multirc": return { "predictions": { "idx": { "answer": datasets.Value('int64' ), "paragraph": datasets.Value('int64' ), "question": datasets.Value('int64' ), }, "prediction": datasets.Value('int64' ), }, "references": datasets.Value('int64' ), } else: return { "predictions": datasets.Value('int64' ), "references": datasets.Value('int64' ), } def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: if self.config_name == "axb": return {"matthews_correlation": matthews_corrcoef(a , a )} elif self.config_name == "cb": return acc_and_fa(a , a , fa_avg='macro' ) elif self.config_name == "record": lowercase__ : str = [ { 'qas': [ {'id': ref['idx']['query'], 'answers': [{'text': ans} for ans in ref['answers']]} for ref in references ] } ] lowercase__ : str = {pred['idx']['query']: pred['prediction_text'] for pred in predictions} return evaluate_record(a , a )[0] elif self.config_name == "multirc": return evaluate_multirc(a , a ) elif self.config_name in ["copa", "rte", "wic", "wsc", "wsc.fixed", "boolq", "axg"]: return {"accuracy": simple_accuracy(a , a )} else: raise KeyError( 'You should supply a configuration name selected in ' '["boolq", "cb", "copa", "multirc", "record", "rte", "wic", "wsc", "wsc.fixed", "axb", "axg",]' )
709
"""simple docstring""" import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class UpperCAmelCase_ ( _a): def __init__( self ) -> Any: lowercase__ : Tuple = [] def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_init_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[int]: self.events.append('on_train_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_train_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_epoch_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Optional[Any]: self.events.append('on_epoch_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_step_begin' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> str: self.events.append('on_step_end' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> int: self.events.append('on_evaluate' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Tuple: self.events.append('on_predict' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Union[str, Any]: self.events.append('on_save' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> List[str]: self.events.append('on_log' ) def _UpperCAmelCase ( self , a , a , a , **a ) -> Any: self.events.append('on_prediction_step' ) @require_torch class UpperCAmelCase_ ( unittest.TestCase): def _UpperCAmelCase ( self ) -> str: lowercase__ : str = tempfile.mkdtemp() def _UpperCAmelCase ( self ) -> Dict: shutil.rmtree(self.output_dir ) def _UpperCAmelCase ( self , a=0 , a=0 , a=6_4 , a=6_4 , a=None , a=False , **a ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. lowercase__ : str = RegressionDataset(length=a ) lowercase__ : Any = RegressionDataset(length=a ) lowercase__ : Optional[Any] = RegressionModelConfig(a=a , b=a ) lowercase__ : Union[str, Any] = RegressionPreTrainedModel(a ) lowercase__ : Tuple = TrainingArguments(self.output_dir , disable_tqdm=a , report_to=[] , **a ) return Trainer( a , a , train_dataset=a , eval_dataset=a , callbacks=a , ) def _UpperCAmelCase ( self , a , a ) -> Union[str, Any]: self.assertEqual(len(a ) , len(a ) ) # Order doesn't matter lowercase__ : Optional[int] = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) lowercase__ : Tuple = sorted(a , key=lambda a : cb.__name__ if isinstance(a , a ) else cb.__class__.__name__ ) for cba, cba in zip(a , a ): if isinstance(a , a ) and isinstance(a , a ): self.assertEqual(a , a ) elif isinstance(a , a ) and not isinstance(a , a ): self.assertEqual(a , cba.__class__ ) elif not isinstance(a , a ) and isinstance(a , a ): self.assertEqual(cba.__class__ , a ) else: self.assertEqual(a , a ) def _UpperCAmelCase ( self , a ) -> Optional[Any]: lowercase__ : Dict = ['on_init_end', 'on_train_begin'] lowercase__ : List[Any] = 0 lowercase__ : Optional[int] = len(trainer.get_eval_dataloader() ) lowercase__ : Tuple = ['on_prediction_step'] * len(trainer.get_eval_dataloader() ) + ['on_log', 'on_evaluate'] for _ in range(trainer.state.num_train_epochs ): expected_events.append('on_epoch_begin' ) for _ in range(a ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('on_log' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('on_save' ) expected_events.append('on_epoch_end' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def _UpperCAmelCase ( self ) -> Union[str, Any]: lowercase__ : int = self.get_trainer() lowercase__ : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # Callbacks passed at init are added to the default callbacks lowercase__ : str = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback lowercase__ : List[Any] = self.get_trainer(disable_tqdm=a ) lowercase__ : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Any: lowercase__ : int = DEFAULT_CALLBACKS.copy() + [ProgressCallback] lowercase__ : List[str] = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Optional[Any] = self.get_trainer() lowercase__ : List[Any] = trainer.pop_callback(a ) self.assertEqual(cb.__class__ , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) # We can also add, pop, or remove by instance lowercase__ : int = self.get_trainer() lowercase__ : List[str] = trainer.callback_handler.callbacks[0] trainer.remove_callback(a ) expected_callbacks.remove(a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) lowercase__ : Tuple = self.get_trainer() lowercase__ : Dict = trainer.callback_handler.callbacks[0] lowercase__ : Union[str, Any] = trainer.pop_callback(a ) self.assertEqual(a , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) trainer.add_callback(a ) expected_callbacks.insert(0 , a ) self.check_callbacks_equality(trainer.callback_handler.callbacks , a ) def _UpperCAmelCase ( self ) -> Tuple: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='ignore' , category=a ) lowercase__ : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # Independent log/save/eval lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() lowercase__ : int = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() lowercase__ : Union[str, Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : List[str] = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='steps' ) trainer.train() lowercase__ : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) lowercase__ : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='epoch' ) trainer.train() lowercase__ : str = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # A bit of everything lowercase__ : Any = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=1_0 , eval_steps=5 , evaluation_strategy='steps' , ) trainer.train() lowercase__ : Any = trainer.callback_handler.callbacks[-2].events self.assertEqual(a , self.get_expected_events(a ) ) # warning should be emitted for duplicated callbacks with patch('transformers.trainer_callback.logger.warning' ) as warn_mock: lowercase__ : str = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(a ) in warn_mock.call_args[0][0]
645
0
def _lowerCamelCase ( __lowerCamelCase = 200_0000 ) -> int: '''simple docstring''' UpperCAmelCase__ : int = [0 for i in range(n + 1 )] UpperCAmelCase__ : Tuple = 1 UpperCAmelCase__ : List[Any] = 1 for i in range(2 , int(n**0.5 ) + 1 ): if primality_list[i] == 0: for j in range(i * i , n + 1 , lowerCamelCase__ ): UpperCAmelCase__ : Optional[Any] = 1 UpperCAmelCase__ : str = 0 for i in range(lowerCamelCase__ ): if primality_list[i] == 0: sum_of_primes += i return sum_of_primes if __name__ == "__main__": print(f'''{solution() = }''')
79
"""simple docstring""" def _lowerCAmelCase ( lowerCamelCase__ : int ) -> int: if divisor % 5 == 0 or divisor % 2 == 0: return 0 _SCREAMING_SNAKE_CASE : int = 1 _SCREAMING_SNAKE_CASE : List[str] = 1 while repunit: _SCREAMING_SNAKE_CASE : Tuple = (1_0 * repunit + 1) % divisor repunit_index += 1 return repunit_index def _lowerCAmelCase ( lowerCamelCase__ : int = 1_0_0_0_0_0_0 ) -> int: _SCREAMING_SNAKE_CASE : Optional[Any] = limit - 1 if divisor % 2 == 0: divisor += 1 while least_divisible_repunit(lowerCamelCase__ ) <= limit: divisor += 2 return divisor if __name__ == "__main__": print(F'{solution() = }')
572
0
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _a ( UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = KandinskyVaaPriorPipeline UpperCamelCase__ = ["""prompt"""] UpperCamelCase__ = ["""prompt""", """negative_prompt"""] UpperCamelCase__ = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] UpperCamelCase__ = False @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' return 32 @property def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' return self.time_input_dim @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return self.time_input_dim * 4 @property def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' return 100 @property def UpperCAmelCase_ ( self: List[str] ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def UpperCAmelCase_ ( self: Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__: Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(__lowerCamelCase ) @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__: Any = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } UpperCamelCase__: Optional[int] = PriorTransformer(**__lowerCamelCase ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 UpperCamelCase__: List[str] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' torch.manual_seed(0 ) UpperCamelCase__: int = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) UpperCamelCase__: Any = CLIPVisionModelWithProjection(__lowerCamelCase ) return model @property def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: Optional[int] = CLIPImageProcessor( crop_size=224 , do_center_crop=__lowerCamelCase , do_normalize=__lowerCamelCase , do_resize=__lowerCamelCase , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = self.dummy_prior UpperCamelCase__: List[str] = self.dummy_image_encoder UpperCamelCase__: Union[str, Any] = self.dummy_text_encoder UpperCamelCase__: Tuple = self.dummy_tokenizer UpperCamelCase__: List[str] = self.dummy_image_processor UpperCamelCase__: Tuple = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1000 , clip_sample=__lowerCamelCase , clip_sample_range=10.0 , ) UpperCamelCase__: List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Dict=0 ): '''simple docstring''' if str(__lowerCamelCase ).startswith("mps" ): UpperCamelCase__: Dict = torch.manual_seed(__lowerCamelCase ) else: UpperCamelCase__: str = torch.Generator(device=__lowerCamelCase ).manual_seed(__lowerCamelCase ) UpperCamelCase__: Tuple = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: Dict = "cpu" UpperCamelCase__: Dict = self.get_dummy_components() UpperCamelCase__: int = self.pipeline_class(**__lowerCamelCase ) UpperCamelCase__: Dict = pipe.to(__lowerCamelCase ) pipe.set_progress_bar_config(disable=__lowerCamelCase ) UpperCamelCase__: List[Any] = pipe(**self.get_dummy_inputs(__lowerCamelCase ) ) UpperCamelCase__: Dict = output.image_embeds UpperCamelCase__: str = pipe( **self.get_dummy_inputs(__lowerCamelCase ) , return_dict=__lowerCamelCase , )[0] UpperCamelCase__: int = image[0, -10:] UpperCamelCase__: Dict = image_from_tuple[0, -10:] assert image.shape == (1, 32) UpperCamelCase__: Union[str, Any] = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: List[str] = torch_device == "cpu" UpperCamelCase__: Optional[Any] = True UpperCamelCase__: Union[str, Any] = False self._test_inference_batch_single_identical( test_max_difference=__lowerCamelCase , relax_max_difference=__lowerCamelCase , test_mean_pixel_difference=__lowerCamelCase , ) @skip_mps def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Any = torch_device == "cpu" UpperCamelCase__: List[Any] = False self._test_attention_slicing_forward_pass( test_max_difference=__lowerCamelCase , test_mean_pixel_difference=__lowerCamelCase , )
221
from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _a : """simple docstring""" def __init__( self: List[Any] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[Any]=13 , __lowerCamelCase: Optional[int]=7 , __lowerCamelCase: Union[str, Any]=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: int=True , __lowerCamelCase: Optional[Any]=True , __lowerCamelCase: List[Any]=99 , __lowerCamelCase: Optional[int]=32 , __lowerCamelCase: Optional[Any]=2 , __lowerCamelCase: Union[str, Any]=4 , __lowerCamelCase: Any=37 , __lowerCamelCase: List[str]="gelu" , __lowerCamelCase: int=0.1 , __lowerCamelCase: int=0.1 , __lowerCamelCase: int=512 , __lowerCamelCase: Union[str, Any]=16 , __lowerCamelCase: List[str]=2 , __lowerCamelCase: Optional[int]=0.02 , __lowerCamelCase: Any=3 , __lowerCamelCase: Any=4 , __lowerCamelCase: str=None , ): '''simple docstring''' UpperCamelCase__: List[Any] = parent UpperCamelCase__: Union[str, Any] = 13 UpperCamelCase__: int = 7 UpperCamelCase__: int = True UpperCamelCase__: int = True UpperCamelCase__: Union[str, Any] = True UpperCamelCase__: str = True UpperCamelCase__: Optional[Any] = 99 UpperCamelCase__: str = 384 UpperCamelCase__: Dict = 2 UpperCamelCase__: Optional[Any] = 4 UpperCamelCase__: Union[str, Any] = 37 UpperCamelCase__: str = "gelu" UpperCamelCase__: Union[str, Any] = 0.1 UpperCamelCase__: Union[str, Any] = 0.1 UpperCamelCase__: List[Any] = 512 UpperCamelCase__: Dict = 16 UpperCamelCase__: Union[str, Any] = 2 UpperCamelCase__: Optional[Any] = 0.02 UpperCamelCase__: Optional[int] = 3 UpperCamelCase__: Optional[Any] = 4 UpperCamelCase__: int = 128 UpperCamelCase__: Union[str, Any] = 2 UpperCamelCase__: Optional[int] = 9 UpperCamelCase__: Any = 1 UpperCamelCase__: Optional[Any] = None def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase__: Union[str, Any] = None if self.use_input_mask: UpperCamelCase__: int = random_attention_mask([self.batch_size, self.seq_length] ) UpperCamelCase__: str = None if self.use_token_type_ids: UpperCamelCase__: str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCamelCase__: str = None UpperCamelCase__: str = None UpperCamelCase__: Union[str, Any] = None if self.use_labels: UpperCamelCase__: str = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase__: Dict = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCamelCase__: List[Any] = ids_tensor([self.batch_size] , self.num_choices ) UpperCamelCase__: Tuple = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=__lowerCamelCase , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase_ ( self: Optional[int] , __lowerCamelCase: Optional[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: int ): '''simple docstring''' UpperCamelCase__: str = TFConvBertModel(config=__lowerCamelCase ) UpperCamelCase__: Dict = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} UpperCamelCase__: str = [input_ids, input_mask] UpperCamelCase__: str = model(__lowerCamelCase ) UpperCamelCase__: Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCAmelCase_ ( self: Dict , __lowerCamelCase: int , __lowerCamelCase: List[Any] , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] ): '''simple docstring''' UpperCamelCase__: Optional[Any] = TFConvBertForMaskedLM(config=__lowerCamelCase ) UpperCamelCase__: Tuple = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__: Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCAmelCase_ ( self: Tuple , __lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict , __lowerCamelCase: List[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: str = self.num_labels UpperCamelCase__: Any = TFConvBertForSequenceClassification(config=__lowerCamelCase ) UpperCamelCase__: Any = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__: Any = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Tuple , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[str] , __lowerCamelCase: Optional[int] ): '''simple docstring''' UpperCamelCase__: List[str] = self.num_choices UpperCamelCase__: Dict = TFConvBertForMultipleChoice(config=__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__: Optional[int] = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__: Tuple = tf.tile(tf.expand_dims(__lowerCamelCase , 1 ) , (1, self.num_choices, 1) ) UpperCamelCase__: Dict = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } UpperCamelCase__: List[Any] = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCAmelCase_ ( self: Union[str, Any] , __lowerCamelCase: str , __lowerCamelCase: Any , __lowerCamelCase: str , __lowerCamelCase: List[str] , __lowerCamelCase: Dict , __lowerCamelCase: str , __lowerCamelCase: Tuple ): '''simple docstring''' UpperCamelCase__: Optional[Any] = self.num_labels UpperCamelCase__: str = TFConvBertForTokenClassification(config=__lowerCamelCase ) UpperCamelCase__: Dict = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__: Dict = model(__lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCAmelCase_ ( self: Any , __lowerCamelCase: Any , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: List[str] , __lowerCamelCase: str , __lowerCamelCase: List[Any] , __lowerCamelCase: str ): '''simple docstring''' UpperCamelCase__: Union[str, Any] = TFConvBertForQuestionAnswering(config=__lowerCamelCase ) UpperCamelCase__: List[Any] = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } UpperCamelCase__: Tuple = model(__lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCAmelCase_ ( self: Union[str, Any] ): '''simple docstring''' UpperCamelCase__: int = self.prepare_config_and_inputs() ( ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ( UpperCamelCase__ ) , ): List[Any] = config_and_inputs UpperCamelCase__: Dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) UpperCamelCase__ = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False UpperCamelCase__ = False def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: Dict = TFConvBertModelTester(self ) UpperCamelCase__: Any = ConfigTester(self , config_class=__lowerCamelCase , hidden_size=37 ) def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__lowerCamelCase ) def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Any ): '''simple docstring''' UpperCamelCase__: Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCamelCase ) def UpperCAmelCase_ ( self: int ): '''simple docstring''' UpperCamelCase__: List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__lowerCamelCase ) def UpperCAmelCase_ ( self: Tuple ): '''simple docstring''' UpperCamelCase__: str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCamelCase ) @slow def UpperCAmelCase_ ( self: List[Any] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Dict = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__: str = True UpperCamelCase__: Union[str, Any] = True if hasattr(__lowerCamelCase , "use_cache" ): UpperCamelCase__: int = True UpperCamelCase__: List[Any] = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase__: Optional[Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) for model_class in self.all_model_classes: UpperCamelCase__: List[Any] = self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase__: List[str] = model_class(__lowerCamelCase ) UpperCamelCase__: List[str] = len(model(__lowerCamelCase ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(__lowerCamelCase , saved_model=__lowerCamelCase ) UpperCamelCase__: str = os.path.join(__lowerCamelCase , "saved_model" , "1" ) UpperCamelCase__: Optional[Any] = tf.keras.models.load_model(__lowerCamelCase ) UpperCamelCase__: Any = model(__lowerCamelCase ) if self.is_encoder_decoder: UpperCamelCase__: int = outputs["encoder_hidden_states"] UpperCamelCase__: str = outputs["encoder_attentions"] else: UpperCamelCase__: str = outputs["hidden_states"] UpperCamelCase__: Dict = outputs["attentions"] self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) UpperCamelCase__: Optional[Any] = getattr( self.model_tester , "expected_num_hidden_layers" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(__lowerCamelCase ) , __lowerCamelCase ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def UpperCAmelCase_ ( self: str ): '''simple docstring''' UpperCamelCase__: Optional[int] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) self.assertIsNotNone(__lowerCamelCase ) def UpperCAmelCase_ ( self: Optional[int] ): '''simple docstring''' UpperCamelCase__ , UpperCamelCase__: Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() UpperCamelCase__: Tuple = True UpperCamelCase__: int = getattr(self.model_tester , "decoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase__: Dict = getattr(self.model_tester , "encoder_seq_length" , self.model_tester.seq_length ) UpperCamelCase__: Union[str, Any] = getattr(self.model_tester , "key_length" , __lowerCamelCase ) UpperCamelCase__: Any = getattr(self.model_tester , "key_length" , __lowerCamelCase ) def check_decoder_attentions_output(__lowerCamelCase: List[Any] ): UpperCamelCase__: Union[str, Any] = len(__lowerCamelCase ) self.assertEqual(out_len % 2 , 0 ) UpperCamelCase__: Optional[Any] = outputs.decoder_attentions self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(__lowerCamelCase: List[str] ): UpperCamelCase__: str = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(__lowerCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: UpperCamelCase__: int = True UpperCamelCase__: Tuple = False UpperCamelCase__: Tuple = model_class(__lowerCamelCase ) UpperCamelCase__: List[Any] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) UpperCamelCase__: Optional[int] = len(__lowerCamelCase ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) if self.is_encoder_decoder: UpperCamelCase__: List[str] = model_class(__lowerCamelCase ) UpperCamelCase__: Union[str, Any] = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_decoder_attentions_output(__lowerCamelCase ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] UpperCamelCase__: List[Any] = True UpperCamelCase__: Tuple = model_class(__lowerCamelCase ) UpperCamelCase__: int = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) # Check attention is always last and order is fine UpperCamelCase__: List[Any] = True UpperCamelCase__: Any = True UpperCamelCase__: int = model_class(__lowerCamelCase ) UpperCamelCase__: Dict = model(self._prepare_for_class(__lowerCamelCase , __lowerCamelCase ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(__lowerCamelCase ) ) self.assertEqual(model.config.output_hidden_states , __lowerCamelCase ) check_encoder_attentions_output(__lowerCamelCase ) @require_tf class _a ( unittest.TestCase): """simple docstring""" @slow def UpperCAmelCase_ ( self: Dict ): '''simple docstring''' UpperCamelCase__: Optional[int] = TFConvBertModel.from_pretrained("YituTech/conv-bert-base" ) UpperCamelCase__: Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) UpperCamelCase__: Dict = model(__lowerCamelCase )[0] UpperCamelCase__: Tuple = [1, 6, 768] self.assertEqual(output.shape , __lowerCamelCase ) UpperCamelCase__: Dict = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , __lowerCamelCase , atol=1e-4 )
221
1
from __future__ import annotations def UpperCAmelCase_ ( snake_case__ , snake_case__ = None ) -> Optional[int]: """simple docstring""" lowerCAmelCase__ = word_bank or [] # create a table lowerCAmelCase__ = len(__snake_case ) + 1 lowerCAmelCase__ = [] for _ in range(__snake_case ): table.append([] ) # seed value lowerCAmelCase__ = [[]] # because empty string has empty combination # iterate through the indices for i in range(__snake_case ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(__snake_case )] == word: lowerCAmelCase__ = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(__snake_case )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(__snake_case )]: combination.reverse() return table[len(__snake_case )] if __name__ == "__main__": print(all_construct("jwajalapa", ["jwa", "j", "w", "a", "la", "lapa"])) print(all_construct("rajamati", ["s", "raj", "amat", "raja", "ma", "i", "t"])) print( all_construct( "hexagonosaurus", ["h", "ex", "hex", "ag", "ago", "ru", "auru", "rus", "go", "no", "o", "s"], ) )
193
"""simple docstring""" # limitations under the License. # NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from .pipelines import DiffusionPipeline, ImagePipelineOutput # noqa: F401 from .utils import deprecate deprecate( """pipelines_utils""", """0.22.0""", """Importing `DiffusionPipeline` or `ImagePipelineOutput` from diffusers.pipeline_utils is deprecated. Please import from diffusers.pipelines.pipeline_utils instead.""", standard_warn=False, stacklevel=3, )
88
0
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class __lowercase ( __lowerCamelCase ): snake_case_ = ["""image_processor""", """tokenizer"""] snake_case_ = """ChineseCLIPImageProcessor""" snake_case_ = ("""BertTokenizer""", """BertTokenizerFast""") def __init__( self : Optional[int] ,A : int=None ,A : str=None ,**A : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" ,A ,) UpperCAmelCase__ : Any = kwargs.pop("""feature_extractor""" ) UpperCAmelCase__ : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(A ,A ) UpperCAmelCase__ : Union[str, Any] = self.image_processor def __call__( self : Optional[Any] ,A : Union[str, Any]=None ,A : Tuple=None ,A : Any=None ,**A : int ): '''simple docstring''' if text is None and images is None: raise ValueError("""You have to specify either text or images. Both cannot be none.""" ) if text is not None: UpperCAmelCase__ : Any = self.tokenizer(A ,return_tensors=A ,**A ) if images is not None: UpperCAmelCase__ : str = self.image_processor(A ,return_tensors=A ,**A ) if text is not None and images is not None: UpperCAmelCase__ : Dict = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**A ) ,tensor_type=A ) def __lowercase ( self : Union[str, Any] ,*A : Tuple ,**A : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*A ,**A ) def __lowercase ( self : List[str] ,*A : Tuple ,**A : Optional[int] ): '''simple docstring''' return self.tokenizer.decode(*A ,**A ) @property def __lowercase ( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.tokenizer.model_input_names UpperCAmelCase__ : str = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __lowercase ( self : List[Any] ): '''simple docstring''' warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" ,A ,) return self.image_processor_class
194
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) class __lowercase ( __lowerCamelCase ): snake_case_ = """timm_backbone""" def __init__( self : List[str] ,A : Any=None ,A : List[Any]=3 ,A : Any=True ,A : Union[str, Any]=True ,A : List[Any]=None ,**A : Optional[int] ,): '''simple docstring''' super().__init__(**A ) UpperCAmelCase__ : Optional[int] = backbone UpperCAmelCase__ : Dict = num_channels UpperCAmelCase__ : Optional[int] = features_only UpperCAmelCase__ : Tuple = use_pretrained_backbone UpperCAmelCase__ : str = True UpperCAmelCase__ : List[str] = out_indices if out_indices is not None else (-1,)
194
1
"""simple docstring""" import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase__ ( a_ , unittest.TestCase): """simple docstring""" __UpperCAmelCase = DanceDiffusionPipeline __UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_PARAMS __UpperCAmelCase = PipelineTesterMixin.required_optional_params - { """callback""", """latents""", """callback_steps""", """output_type""", """num_images_per_prompt""", } __UpperCAmelCase = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS __UpperCAmelCase = False __UpperCAmelCase = False def a__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) __magic_name__ = UNetaDModel( block_out_channels=(3_2, 3_2, 6_4) , extra_in_channels=1_6 , sample_size=5_1_2 , sample_rate=1_6_0_0_0 , in_channels=2 , out_channels=2 , flip_sin_to_cos=UpperCamelCase_ , use_timestep_embedding=UpperCamelCase_ , time_embedding_type='fourier' , mid_block_type='UNetMidBlock1D' , down_block_types=('DownBlock1DNoSkip', 'DownBlock1D', 'AttnDownBlock1D') , up_block_types=('AttnUpBlock1D', 'UpBlock1D', 'UpBlock1DNoSkip') , ) __magic_name__ = IPNDMScheduler() __magic_name__ = { 'unet': unet, 'scheduler': scheduler, } return components def a__ ( self : Tuple , UpperCamelCase_ : str , UpperCamelCase_ : List[Any]=0 ): '''simple docstring''' if str(UpperCamelCase_ ).startswith('mps' ): __magic_name__ = torch.manual_seed(UpperCamelCase_ ) else: __magic_name__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) __magic_name__ = { 'batch_size': 1, 'generator': generator, 'num_inference_steps': 4, } return inputs def a__ ( self : List[Any] ): '''simple docstring''' __magic_name__ = 'cpu' # ensure determinism for the device-dependent torch.Generator __magic_name__ = self.get_dummy_components() __magic_name__ = DanceDiffusionPipeline(**UpperCamelCase_ ) __magic_name__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __magic_name__ = self.get_dummy_inputs(UpperCamelCase_ ) __magic_name__ = pipe(**UpperCamelCase_ ) __magic_name__ = output.audios __magic_name__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) __magic_name__ = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def a__ ( self : int ): '''simple docstring''' return super().test_save_load_local() @skip_mps def a__ ( self : str ): '''simple docstring''' return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3 ) @skip_mps def a__ ( self : Optional[Any] ): '''simple docstring''' return super().test_save_load_optional_components() @skip_mps def a__ ( self : Union[str, Any] ): '''simple docstring''' return super().test_attention_slicing_forward_pass() def a__ ( self : Tuple ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3e-3 ) @slow @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" def a__ ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = torch_device __magic_name__ = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' ) __magic_name__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe(generator=UpperCamelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) __magic_name__ = output.audios __magic_name__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __magic_name__ = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2 def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = torch_device __magic_name__ = DanceDiffusionPipeline.from_pretrained('harmonai/maestro-150k' , torch_dtype=torch.floataa ) __magic_name__ = pipe.to(UpperCamelCase_ ) pipe.set_progress_bar_config(disable=UpperCamelCase_ ) __magic_name__ = torch.manual_seed(0 ) __magic_name__ = pipe(generator=UpperCamelCase_ , num_inference_steps=1_0_0 , audio_length_in_s=4.096 ) __magic_name__ = output.audios __magic_name__ = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) __magic_name__ = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1e-2
545
"""simple docstring""" import os import tempfile import unittest from transformers import FlaubertConfig, is_torch_available from transformers.testing_utils import require_torch, require_torch_gpu, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( FlaubertForMultipleChoice, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertModel, FlaubertWithLMHeadModel, ) from transformers.models.flaubert.modeling_flaubert import FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase__ ( a_): """simple docstring""" def __init__( self : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[int]=1_3 , UpperCamelCase_ : Dict=7 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[Any]=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Tuple=False , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Any=False , UpperCamelCase_ : Tuple=2 , UpperCamelCase_ : List[Any]=9_9 , UpperCamelCase_ : List[Any]=0 , UpperCamelCase_ : Tuple=3_2 , UpperCamelCase_ : Any=5 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Tuple=0.1 , UpperCamelCase_ : Any=0.1 , UpperCamelCase_ : Optional[Any]=5_1_2 , UpperCamelCase_ : Union[str, Any]=1_2 , UpperCamelCase_ : List[str]=2 , UpperCamelCase_ : str=0.02 , UpperCamelCase_ : List[str]=3 , UpperCamelCase_ : Dict=4 , UpperCamelCase_ : Optional[int]="last" , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=None , ): '''simple docstring''' __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_input_lengths __magic_name__ = use_token_type_ids __magic_name__ = use_labels __magic_name__ = gelu_activation __magic_name__ = sinusoidal_embeddings __magic_name__ = causal __magic_name__ = asm __magic_name__ = n_langs __magic_name__ = vocab_size __magic_name__ = n_special __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = type_vocab_size __magic_name__ = type_sequence_label_size __magic_name__ = initializer_range __magic_name__ = num_labels __magic_name__ = num_choices __magic_name__ = summary_type __magic_name__ = use_proj __magic_name__ = scope def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ = None if self.use_input_lengths: __magic_name__ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length __magic_name__ = None if self.use_token_type_ids: __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) __magic_name__ = None __magic_name__ = None __magic_name__ = None if self.use_labels: __magic_name__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ = ids_tensor([self.batch_size] , 2 ).float() __magic_name__ = ids_tensor([self.batch_size] , self.num_choices ) __magic_name__ = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def a__ ( self : int ): '''simple docstring''' return FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , ) def a__ ( self : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[int] , ): '''simple docstring''' __magic_name__ = FlaubertModel(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , lengths=UpperCamelCase_ , langs=UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , langs=UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ ( self : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : int , UpperCamelCase_ : str , ): '''simple docstring''' __magic_name__ = FlaubertWithLMHeadModel(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ ( self : Union[str, Any] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : str , ): '''simple docstring''' __magic_name__ = FlaubertForQuestionAnsweringSimple(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a__ ( self : str , UpperCamelCase_ : int , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , ): '''simple docstring''' __magic_name__ = FlaubertForQuestionAnswering(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ ) __magic_name__ = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , p_mask=UpperCamelCase_ , ) __magic_name__ = model( UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ , cls_index=UpperCamelCase_ , is_impossible=UpperCamelCase_ , ) ((__magic_name__) , ) = result_with_labels.to_tuple() __magic_name__ = model(UpperCamelCase_ , start_positions=UpperCamelCase_ , end_positions=UpperCamelCase_ ) ((__magic_name__) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def a__ ( self : str , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : str , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : List[str] , ): '''simple docstring''' __magic_name__ = FlaubertForSequenceClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ ) __magic_name__ = model(UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def a__ ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , ): '''simple docstring''' __magic_name__ = self.num_labels __magic_name__ = FlaubertForTokenClassification(UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , labels=UpperCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a__ ( self : str , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : Tuple , ): '''simple docstring''' __magic_name__ = self.num_choices __magic_name__ = FlaubertForMultipleChoice(config=UpperCamelCase_ ) model.to(UpperCamelCase_ ) model.eval() __magic_name__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __magic_name__ = model( UpperCamelCase_ , attention_mask=UpperCamelCase_ , token_type_ids=UpperCamelCase_ , labels=UpperCamelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.prepare_config_and_inputs() ( ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ( __magic_name__ ) , ) = config_and_inputs __magic_name__ = { 'input_ids': input_ids, 'token_type_ids': token_type_ids, 'lengths': input_lengths, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCamelCase__ ( a_ , a_ , unittest.TestCase): """simple docstring""" __UpperCAmelCase = ( ( FlaubertModel, FlaubertWithLMHeadModel, FlaubertForQuestionAnswering, FlaubertForQuestionAnsweringSimple, FlaubertForSequenceClassification, FlaubertForTokenClassification, FlaubertForMultipleChoice, ) if is_torch_available() else () ) __UpperCAmelCase = ( { """feature-extraction""": FlaubertModel, """fill-mask""": FlaubertWithLMHeadModel, """question-answering""": FlaubertForQuestionAnsweringSimple, """text-classification""": FlaubertForSequenceClassification, """token-classification""": FlaubertForTokenClassification, """zero-shot""": FlaubertForSequenceClassification, } if is_torch_available() else {} ) def a__ ( self : List[str] , UpperCamelCase_ : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Dict ): '''simple docstring''' if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('Fast' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def a__ ( self : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict , UpperCamelCase_ : Optional[Any]=False ): '''simple docstring''' __magic_name__ = super()._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ , return_labels=UpperCamelCase_ ) if return_labels: if model_class.__name__ == "FlaubertForQuestionAnswering": __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) __magic_name__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=UpperCamelCase_ ) return inputs_dict def a__ ( self : List[str] ): '''simple docstring''' __magic_name__ = FlaubertModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase_ , emb_dim=3_7 ) def a__ ( self : Optional[int] ): '''simple docstring''' self.config_tester.run_common_tests() def a__ ( self : Optional[Any] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*UpperCamelCase_ ) def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*UpperCamelCase_ ) def a__ ( self : int ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_simple_qa(*UpperCamelCase_ ) def a__ ( self : int ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*UpperCamelCase_ ) def a__ ( self : Optional[int] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*UpperCamelCase_ ) def a__ ( self : str ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_token_classif(*UpperCamelCase_ ) def a__ ( self : Union[str, Any] ): '''simple docstring''' __magic_name__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_multiple_choice(*UpperCamelCase_ ) @slow def a__ ( self : Any ): '''simple docstring''' for model_name in FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __magic_name__ = FlaubertModel.from_pretrained(UpperCamelCase_ ) self.assertIsNotNone(UpperCamelCase_ ) @slow @require_torch_gpu def a__ ( self : str ): '''simple docstring''' __magic_name__ , __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: # FlauBertForMultipleChoice behaves incorrectly in JIT environments. if model_class == FlaubertForMultipleChoice: return __magic_name__ = True __magic_name__ = model_class(config=UpperCamelCase_ ) __magic_name__ = self._prepare_for_class(UpperCamelCase_ , UpperCamelCase_ ) __magic_name__ = torch.jit.trace( UpperCamelCase_ , (inputs_dict['input_ids'].to('cpu' ), inputs_dict['attention_mask'].to('cpu' )) ) with tempfile.TemporaryDirectory() as tmp: torch.jit.save(UpperCamelCase_ , os.path.join(UpperCamelCase_ , 'traced_model.pt' ) ) __magic_name__ = torch.jit.load(os.path.join(UpperCamelCase_ , 'traced_model.pt' ) , map_location=UpperCamelCase_ ) loaded(inputs_dict['input_ids'].to(UpperCamelCase_ ) , inputs_dict['attention_mask'].to(UpperCamelCase_ ) ) @require_torch class UpperCamelCase__ ( unittest.TestCase): """simple docstring""" @slow def a__ ( self : Dict ): '''simple docstring''' __magic_name__ = FlaubertModel.from_pretrained('flaubert/flaubert_base_cased' ) __magic_name__ = torch.tensor([[0, 3_4_5, 2_3_2, 3_2_8, 7_4_0, 1_4_0, 1_6_9_5, 6_9, 6_0_7_8, 1_5_8_8, 2]] ) with torch.no_grad(): __magic_name__ = model(UpperCamelCase_ )[0] __magic_name__ = torch.Size((1, 1_1, 7_6_8) ) self.assertEqual(output.shape , UpperCamelCase_ ) __magic_name__ = torch.tensor( [[[-2.6_251, -1.4_298, -0.0_227], [-2.8_510, -1.6_387, 0.2_258], [-2.8_114, -1.1_832, -0.3_066]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCamelCase_ , atol=1e-4 ) )
545
1
from dataclasses import dataclass from typing import Optional, Tuple import torch from torch import nn from transformers import RobertaPreTrainedModel, XLMRobertaConfig, XLMRobertaModel from transformers.utils import ModelOutput @dataclass class snake_case__ ( __A): '''simple docstring''' lowerCamelCase : Optional[Any] = None lowerCamelCase : Dict = None lowerCamelCase : Optional[Any] = None lowerCamelCase : Dict = None class snake_case__ ( __A): '''simple docstring''' def __init__( self , a__=1 , a__=0 , a__=2 , a__=5_12 , a__="cls" , a__=False , a__=True , **a__ , ) -> int: '''simple docstring''' super().__init__(pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , **a__ ) __snake_case :List[str] = project_dim __snake_case :int = pooler_fn __snake_case :int = learn_encoder __snake_case :List[Any] = use_attention_mask class snake_case__ ( __A): '''simple docstring''' lowerCamelCase : Tuple = [r"pooler", r"logit_scale"] lowerCamelCase : int = [r"position_ids", r"predictions.decoder.bias"] lowerCamelCase : Union[str, Any] = "roberta" lowerCamelCase : int = RobertaSeriesConfig def __init__( self , a__ ) -> Any: '''simple docstring''' super().__init__(a__ ) __snake_case :Tuple = XLMRobertaModel(a__ ) __snake_case :Optional[Any] = nn.Linear(config.hidden_size , config.project_dim ) __snake_case :Tuple = getattr(a__ , """has_pre_transformation""" , a__ ) if self.has_pre_transformation: __snake_case :Optional[int] = nn.Linear(config.hidden_size , config.project_dim ) __snake_case :List[Any] = nn.LayerNorm(config.hidden_size , eps=config.layer_norm_eps ) self.post_init() def __lowercase ( self , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , a__ = None , ) -> Optional[int]: '''simple docstring''' __snake_case :Dict = return_dict if return_dict is not None else self.config.use_return_dict __snake_case :Optional[Any] = self.base_model( input_ids=a__ , attention_mask=a__ , token_type_ids=a__ , position_ids=a__ , head_mask=a__ , inputs_embeds=a__ , encoder_hidden_states=a__ , encoder_attention_mask=a__ , output_attentions=a__ , output_hidden_states=True if self.has_pre_transformation else output_hidden_states , return_dict=a__ , ) if self.has_pre_transformation: __snake_case :Any = outputs['''hidden_states'''][-2] __snake_case :Dict = self.pre_LN(a__ ) __snake_case :str = self.transformation_pre(a__ ) return TransformationModelOutput( projection_state=a__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , ) else: __snake_case :Dict = self.transformation(outputs.last_hidden_state ) return TransformationModelOutput( projection_state=a__ , last_hidden_state=outputs.last_hidden_state , hidden_states=outputs.hidden_states , attentions=outputs.attentions , )
708
import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class snake_case__ : '''simple docstring''' def __init__( self , a__=2 , a__=3 , a__=64 , a__=None ) -> int: '''simple docstring''' __snake_case :Any = np.random.default_rng(a__ ) __snake_case :List[str] = length __snake_case :Optional[Any] = rng.normal(size=(length,) ).astype(np.floataa ) __snake_case :Optional[int] = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> str: '''simple docstring''' return self.length def __getitem__( self , a__ ) -> int: '''simple docstring''' return {"x": self.x[i], "y": self.y[i]} class snake_case__ ( torch.nn.Module): '''simple docstring''' def __init__( self , a__=0 , a__=0 , a__=False ) -> List[str]: '''simple docstring''' super().__init__() __snake_case :Any = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __snake_case :int = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) __snake_case :Dict = True def __lowercase ( self , a__=None ) -> Optional[Any]: '''simple docstring''' if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) __snake_case :Tuple = False return x * self.a[0] + self.b[0] class snake_case__ ( torch.nn.Module): '''simple docstring''' def __init__( self , a__=0 , a__=0 , a__=False ) -> List[str]: '''simple docstring''' super().__init__() __snake_case :Optional[int] = torch.nn.Parameter(torch.tensor(a__ ).float() ) __snake_case :List[str] = torch.nn.Parameter(torch.tensor(a__ ).float() ) __snake_case :str = True def __lowercase ( self , a__=None ) -> str: '''simple docstring''' if self.first_batch: print(F'''Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}''' ) __snake_case :List[Any] = False return x * self.a + self.b def UpperCamelCase ( snake_case__ : Optional[int] ,snake_case__ : int = 16 ): '''simple docstring''' from datasets import load_dataset from transformers import AutoTokenizer __snake_case :Union[str, Any] = AutoTokenizer.from_pretrained("""bert-base-cased""" ) __snake_case :Dict = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} __snake_case :Any = load_dataset("""csv""" ,data_files=snake_case__ ) __snake_case :Dict = datasets["""train"""].unique("""label""" ) __snake_case :List[Any] = {v: i for i, v in enumerate(snake_case__ )} def tokenize_function(snake_case__ : List[Any] ): # max_length=None => use the model max length (it's actually the default) __snake_case :Optional[Any] = tokenizer( examples["""sentence1"""] ,examples["""sentence2"""] ,truncation=snake_case__ ,max_length=snake_case__ ,padding="""max_length""" ) if "label" in examples: __snake_case :Dict = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __snake_case :List[str] = datasets.map( snake_case__ ,batched=snake_case__ ,remove_columns=["""sentence1""", """sentence2""", """label"""] ,) def collate_fn(snake_case__ : Optional[int] ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ ,padding="""max_length""" ,max_length=128 ,return_tensors="""pt""" ) return tokenizer.pad(snake_case__ ,padding="""longest""" ,return_tensors="""pt""" ) # Instantiate dataloaders. __snake_case :List[Any] = DataLoader(tokenized_datasets["""train"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=2 ) __snake_case :str = DataLoader(tokenized_datasets["""validation"""] ,shuffle=snake_case__ ,collate_fn=snake_case__ ,batch_size=1 ) return train_dataloader, eval_dataloader
291
0
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = [ ["attention", "attn"], ["encoder_attention", "encoder_attn"], ["q_lin", "q_proj"], ["k_lin", "k_proj"], ["v_lin", "v_proj"], ["out_lin", "out_proj"], ["norm_embeddings", "layernorm_embedding"], ["position_embeddings", "embed_positions"], ["embeddings", "embed_tokens"], ["ffn.lin", "fc"], ] def _a ( _lowerCamelCase ) -> Union[str, Any]: """simple docstring""" if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __snake_case : List[str] = k.replace(_lowerCamelCase , _lowerCamelCase ) if k.startswith("""encoder""" ): __snake_case : Optional[int] = k.replace(""".attn""" , """.self_attn""" ) __snake_case : Tuple = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : List[str] = k.replace("""norm2""" , """final_layer_norm""" ) elif k.startswith("""decoder""" ): __snake_case : List[Any] = k.replace("""norm1""" , """self_attn_layer_norm""" ) __snake_case : str = k.replace("""norm2""" , """encoder_attn_layer_norm""" ) __snake_case : Optional[int] = k.replace("""norm3""" , """final_layer_norm""" ) return k def _a ( _lowerCamelCase ) -> Any: """simple docstring""" __snake_case : Optional[int] = [ """model.encoder.layernorm_embedding.weight""", """model.encoder.layernorm_embedding.bias""", """model.decoder.layernorm_embedding.weight""", """model.decoder.layernorm_embedding.bias""", ] for k in keys: __snake_case : Optional[Any] = sd.pop(_lowerCamelCase ) __snake_case : List[str] = k.replace("""layernorm_embedding""" , """layer_norm""" ) assert new_k not in sd __snake_case : Union[str, Any] = v __UpperCamelCase = ["START"] @torch.no_grad() def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Dict: """simple docstring""" __snake_case : Optional[int] = torch.load(_lowerCamelCase , map_location="""cpu""" ) __snake_case : Dict = model["""model"""] __snake_case : Optional[int] = BlenderbotConfig.from_json_file(_lowerCamelCase ) __snake_case : Union[str, Any] = BlenderbotForConditionalGeneration(_lowerCamelCase ) __snake_case : List[Any] = m.model.state_dict().keys() __snake_case : int = [] __snake_case : Union[str, Any] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __snake_case : Optional[int] = rename_state_dict_key(_lowerCamelCase ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __snake_case : str = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(_lowerCamelCase ) m.model.load_state_dict(_lowerCamelCase , strict=_lowerCamelCase ) m.half() m.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument("--src_path", type=str, help="like blenderbot-model.bin") parser.add_argument("--save_dir", default="hf_blenderbot", type=str, help="Where to save converted model.") parser.add_argument( "--hf_config_json", default="blenderbot-3b-config.json", type=str, help="Path to config to use" ) __UpperCamelCase = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
26
'''simple docstring''' import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow __UpperCamelCase = logging.getLogger() @unittest.skip('''Temporarily disable the doc tests.''' ) @require_torch @require_tf @slow class _A ( unittest.TestCase ): def lowercase__ ( self : Optional[int] , __magic_name__ : Path , __magic_name__ : Union[str, None] = None , __magic_name__ : Union[List[str], None] = None , __magic_name__ : Union[str, List[str], None] = None , __magic_name__ : bool = True , ) -> Optional[int]: """simple docstring""" __snake_case : Union[str, Any] = [file for file in os.listdir(__magic_name__ ) if os.path.isfile(os.path.join(__magic_name__ , __magic_name__ ) )] if identifier is not None: __snake_case : List[Any] = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(__magic_name__ , __magic_name__ ): for n_ in n_identifier: __snake_case : Optional[int] = [file for file in files if n_ not in file] else: __snake_case : Tuple = [file for file in files if n_identifier not in file] __snake_case : Dict = ignore_files or [] ignore_files.append("""__init__.py""" ) __snake_case : List[str] = [file for file in files if file not in ignore_files] for file in files: # Open all files print("""Testing""" , __magic_name__ ) if only_modules: __snake_case : List[Any] = file.split(""".""" )[0] try: __snake_case : List[Any] = getattr(__magic_name__ , __magic_name__ ) __snake_case : Union[str, Any] = doctest.DocTestSuite(__magic_name__ ) __snake_case : Dict = unittest.TextTestRunner().run(__magic_name__ ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(f'''{module_identifier} is not a module.''' ) else: __snake_case : Tuple = doctest.testfile(str("""..""" / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def lowercase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[Any] = """modeling""" __snake_case : Union[str, Any] = [ """modeling_ctrl.py""", """modeling_tf_ctrl.py""", ] self.analyze_directory(__magic_name__ , identifier=__magic_name__ , ignore_files=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : Union[str, Any] = Path("""src/transformers""" ) __snake_case : Any = """tokenization""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" __snake_case : List[Any] = Path("""src/transformers""" ) __snake_case : List[str] = """configuration""" self.analyze_directory(__magic_name__ , identifier=__magic_name__ ) def lowercase__ ( self : Dict ) -> Dict: """simple docstring""" __snake_case : Tuple = Path("""src/transformers""" ) __snake_case : int = ["""configuration""", """modeling""", """tokenization"""] self.analyze_directory(__magic_name__ , n_identifier=__magic_name__ ) def lowercase__ ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" __snake_case : int = Path("""docs/source""" ) __snake_case : Optional[int] = ["""favicon.ico"""] self.analyze_directory(__magic_name__ , ignore_files=__magic_name__ , only_modules=__magic_name__ )
26
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : torch.FloatTensor _UpperCamelCase : torch.FloatTensor _UpperCamelCase : Optional[torch.FloatTensor] = None class lowerCamelCase__ ( UpperCAmelCase , UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Any = 2 @register_to_config def __init__( self , snake_case = 0.02 , snake_case = 100 , snake_case = 1.007 , snake_case = 80 , snake_case = 0.05 , snake_case = 50 , ): '''simple docstring''' UpperCamelCase__ = sigma_max # setable values UpperCamelCase__ = None UpperCamelCase__ = None UpperCamelCase__ = None # sigma(t_i) def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' return sample def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCamelCase__ = num_inference_steps UpperCamelCase__ = np.arange(0 , self.num_inference_steps )[::-1].copy() UpperCamelCase__ = torch.from_numpy(snake_case ).to(snake_case ) UpperCamelCase__ = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] UpperCamelCase__ = torch.tensor(snake_case , dtype=torch.floataa , device=snake_case ) def snake_case__ ( self , snake_case , snake_case , snake_case = None ): '''simple docstring''' if self.config.s_min <= sigma <= self.config.s_max: UpperCamelCase__ = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: UpperCamelCase__ = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCamelCase__ = self.config.s_noise * randn_tensor(sample.shape , generator=snake_case ).to(sample.device ) UpperCamelCase__ = sigma + gamma * sigma UpperCamelCase__ = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case = True , ): '''simple docstring''' UpperCamelCase__ = sample_hat + sigma_hat * model_output UpperCamelCase__ = (sample_hat - pred_original_sample) / sigma_hat UpperCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=snake_case , derivative=snake_case , pred_original_sample=snake_case ) def snake_case__ ( self , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case , snake_case = True , ): '''simple docstring''' UpperCamelCase__ = sample_prev + sigma_prev * model_output UpperCamelCase__ = (sample_prev - pred_original_sample) / sigma_prev UpperCamelCase__ = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=snake_case , derivative=snake_case , pred_original_sample=snake_case ) def snake_case__ ( self , snake_case , snake_case , snake_case ): '''simple docstring''' raise NotImplementedError()
707
from __future__ import annotations import numpy as np def UpperCamelCase_( _A :list[float] )-> Union[str, Any]: return np.maximum(0 , _A ) if __name__ == "__main__": print(np.array(relu([-1, 0, 5]))) # --> [0, 0, 5]
185
0
import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __lowercase : Dict ={ """iou_prediction_head.layers.0""": """iou_prediction_head.proj_in""", """iou_prediction_head.layers.1""": """iou_prediction_head.layers.0""", """iou_prediction_head.layers.2""": """iou_prediction_head.proj_out""", """mask_decoder.output_upscaling.0""": """mask_decoder.upscale_conv1""", """mask_decoder.output_upscaling.1""": """mask_decoder.upscale_layer_norm""", """mask_decoder.output_upscaling.3""": """mask_decoder.upscale_conv2""", """mask_downscaling.0""": """mask_embed.conv1""", """mask_downscaling.1""": """mask_embed.layer_norm1""", """mask_downscaling.3""": """mask_embed.conv2""", """mask_downscaling.4""": """mask_embed.layer_norm2""", """mask_downscaling.6""": """mask_embed.conv3""", """point_embeddings""": """point_embed""", """pe_layer.positional_encoding_gaussian_matrix""": """shared_embedding.positional_embedding""", """image_encoder""": """vision_encoder""", """neck.0""": """neck.conv1""", """neck.1""": """neck.layer_norm1""", """neck.2""": """neck.conv2""", """neck.3""": """neck.layer_norm2""", """patch_embed.proj""": """patch_embed.projection""", """.norm""": """.layer_norm""", """blocks""": """layers""", } def a__ ( lowercase__ ): '''simple docstring''' UpperCAmelCase_ ={} state_dict.pop("pixel_mean" , lowercase__ ) state_dict.pop("pixel_std" , lowercase__ ) UpperCAmelCase_ =R".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: UpperCAmelCase_ =key.replace(lowercase__ , lowercase__ ) if re.match(lowercase__ , lowercase__ ): UpperCAmelCase_ =int(re.match(lowercase__ , lowercase__ ).group(2 ) ) if layer_nb == 0: UpperCAmelCase_ =key.replace("layers.0" , "proj_in" ) elif layer_nb == 1: UpperCAmelCase_ =key.replace("layers.1" , "layers.0" ) elif layer_nb == 2: UpperCAmelCase_ =key.replace("layers.2" , "proj_out" ) UpperCAmelCase_ =value UpperCAmelCase_ =model_state_dict[ "prompt_encoder.shared_embedding.positional_embedding" ] return model_state_dict def a__ ( lowercase__ , lowercase__ , lowercase__ , lowercase__="ybelkada/segment-anything" ): '''simple docstring''' UpperCAmelCase_ =hf_hub_download(lowercase__ , F'checkpoints/{model_name}.pth' ) if "sam_vit_b" in model_name: UpperCAmelCase_ =SamConfig() elif "sam_vit_l" in model_name: UpperCAmelCase_ =SamVisionConfig( hidden_size=1_0_2_4 , num_hidden_layers=2_4 , num_attention_heads=1_6 , global_attn_indexes=[5, 1_1, 1_7, 2_3] , ) UpperCAmelCase_ =SamConfig( vision_config=lowercase__ , ) elif "sam_vit_h" in model_name: UpperCAmelCase_ =SamVisionConfig( hidden_size=1_2_8_0 , num_hidden_layers=3_2 , num_attention_heads=1_6 , global_attn_indexes=[7, 1_5, 2_3, 3_1] , ) UpperCAmelCase_ =SamConfig( vision_config=lowercase__ , ) UpperCAmelCase_ =torch.load(lowercase__ , map_location="cpu" ) UpperCAmelCase_ =replace_keys(lowercase__ ) UpperCAmelCase_ =SamImageProcessor() UpperCAmelCase_ =SamProcessor(image_processor=lowercase__ ) UpperCAmelCase_ =SamModel(lowercase__ ) hf_model.load_state_dict(lowercase__ ) UpperCAmelCase_ =hf_model.to("cuda" ) UpperCAmelCase_ ="https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png" UpperCAmelCase_ =Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("RGB" ) UpperCAmelCase_ =[[[4_0_0, 6_5_0]]] UpperCAmelCase_ =[[1]] UpperCAmelCase_ =processor(images=np.array(lowercase__ ) , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ =hf_model(**lowercase__ ) UpperCAmelCase_ =output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.579_8902_5115_9668 UpperCAmelCase_ =processor( images=np.array(lowercase__ ) , input_points=lowercase__ , input_labels=lowercase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ =hf_model(**lowercase__ ) UpperCAmelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.9712_6030_9219_3604 UpperCAmelCase_ =((7_5, 2_7_5, 1_7_2_5, 8_5_0),) UpperCAmelCase_ =processor(images=np.array(lowercase__ ) , input_boxes=lowercase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ =hf_model(**lowercase__ ) UpperCAmelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.8686_0156_0592_6514 # Test with 2 points and 1 image. UpperCAmelCase_ =[[[4_0_0, 6_5_0], [8_0_0, 6_5_0]]] UpperCAmelCase_ =[[1, 1]] UpperCAmelCase_ =processor( images=np.array(lowercase__ ) , input_points=lowercase__ , input_labels=lowercase__ , return_tensors="pt" ).to("cuda" ) with torch.no_grad(): UpperCAmelCase_ =hf_model(**lowercase__ ) UpperCAmelCase_ =output.iou_scores.squeeze() assert scores[-1].item() == 0.9936_0477_9243_4692 if __name__ == "__main__": __lowercase : Optional[Any] =argparse.ArgumentParser() __lowercase : List[Any] =["""sam_vit_b_01ec64""", """sam_vit_h_4b8939""", """sam_vit_l_0b3195"""] parser.add_argument( """--model_name""", default="""sam_vit_h_4b8939""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether to push the model and processor to the hub after converting""", ) parser.add_argument( """--model_hub_id""", default="""ybelkada/segment-anything""", choices=choices, type=str, help="""Path to hf config.json of model to convert""", ) __lowercase : List[Any] =parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
54
"""simple docstring""" import numpy as np def UpperCamelCase__ ( lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Any , lowercase__ : Dict , lowercase__ : List[str] ): snake_case : Optional[int] = int(np.ceil((x_end - xa) / h ) ) snake_case : int = np.zeros((n + 1,) ) snake_case : Optional[Any] = ya snake_case : List[Any] = xa for k in range(lowercase__ ): snake_case : Tuple = f(lowercase__ , y[k] ) snake_case : Optional[int] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) snake_case : int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) snake_case : Dict = f(x + h , y[k] + h * ka ) snake_case : str = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
134
0
import inspect import math import tempfile import unittest import numpy as np from transformers import ViTMAEConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTMAEForPreTraining, ViTMAEModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class __snake_case : '''simple docstring''' def __init__( self , a_ , a_=13 , a_=30 , a_=2 , a_=3 , a_=True , a_=True , a_=32 , a_=5 , a_=4 , a_=37 , a_="gelu" , a_=0.1 , a_=0.1 , a_=10 , a_=0.02 , a_=3 , a_=0.6 , a_=None , ): a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = mask_ratio a__ = scope # in ViTMAE, the expected sequence length = (num_patches + 1) * (1 - config.mask_ratio), rounded above # (we add 1 for the [CLS] token) a__ = (image_size // patch_size) ** 2 a__ = int(math.ceil((1 - mask_ratio) * (num_patches + 1) ) ) def _a ( self ): a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def _a ( self ): return ViTMAEConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=a_ , initializer_range=self.initializer_range , mask_ratio=self.mask_ratio , ) def _a ( self , a_ , a_ , a_ ): a__ = ViTMAEModel(config=a_ ) model.to(a_ ) model.eval() a__ = model(a_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _a ( self , a_ , a_ , a_ ): a__ = ViTMAEForPreTraining(a_ ) model.to(a_ ) model.eval() a__ = model(a_ ) a__ = (self.image_size // self.patch_size) ** 2 a__ = self.patch_size**2 * self.num_channels self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) # test greyscale images a__ = 1 a__ = ViTMAEForPreTraining(a_ ) model.to(a_ ) model.eval() a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(a_ ) a__ = self.patch_size**2 self.parent.assertEqual(result.logits.shape , (self.batch_size, num_patches, expected_num_channels) ) def _a ( self ): a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __snake_case ( SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE ,unittest.TestCase): '''simple docstring''' UpperCamelCase__ : int = (ViTMAEModel, ViTMAEForPreTraining) if is_torch_available() else () UpperCamelCase__ : int = {"""feature-extraction""": ViTMAEModel} if is_torch_available() else {} UpperCamelCase__ : Tuple = False UpperCamelCase__ : int = False UpperCamelCase__ : List[str] = False UpperCamelCase__ : List[str] = False def _a ( self ): a__ = ViTMAEModelTester(self ) a__ = ConfigTester(self , config_class=a_ , has_text_modality=a_ , hidden_size=37 ) def _a ( self ): self.config_tester.run_common_tests() @unittest.skip(reason="""ViTMAE does not use inputs_embeds""" ) def _a ( self ): pass def _a ( self ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(a_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(a_ , nn.Linear ) ) def _a ( self ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(a_ ) a__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , a_ ) def _a ( self ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*a_ ) def _a ( self ): a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*a_ ) def _a ( self , a_ , a_ , a_ ): # make masks reproducible np.random.seed(2 ) a__ = int((pt_model.config.image_size // pt_model.config.patch_size) ** 2 ) a__ = np.random.uniform(size=(self.model_tester.batch_size, num_patches) ) a__ = torch.from_numpy(a_ ) # Add `noise` argument. # PT inputs will be prepared in `super().check_pt_tf_models()` with this added `noise` argument a__ = pt_noise super().check_pt_tf_models(a_ , a_ , a_ ) def _a ( self ): a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(a_ ) model.to(a_ ) model.eval() # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): a__ = model(**self._prepare_for_class(a_ , a_ ) ) a__ = outputs[0].cpu().numpy() a__ = 0 with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(a_ ) a__ = model_class.from_pretrained(a_ ) model.to(a_ ) # make random mask reproducible torch.manual_seed(2 ) with torch.no_grad(): a__ = model(**self._prepare_for_class(a_ , a_ ) ) # Make sure we don't have nans a__ = after_outputs[0].cpu().numpy() a__ = 0 a__ = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(a_ , 1E-5 ) @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self ): pass @unittest.skip( reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load to get deterministic results.""" ) def _a ( self ): pass @unittest.skip(reason="""ViTMAE returns a random mask + ids_restore in each forward pass. See test_save_load""" ) def _a ( self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _a ( self ): pass @slow def _a ( self ): for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ = ViTMAEModel.from_pretrained(a_ ) self.assertIsNotNone(a_ ) def A_ ( ): """simple docstring""" a__ = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __snake_case ( unittest.TestCase): '''simple docstring''' @cached_property def _a ( self ): return ViTImageProcessor.from_pretrained("""facebook/vit-mae-base""" ) if is_vision_available() else None @slow def _a ( self ): # make random mask reproducible across the PT and TF model np.random.seed(2 ) a__ = ViTMAEForPreTraining.from_pretrained("""facebook/vit-mae-base""" ).to(a_ ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=a_ , return_tensors="""pt""" ).to(a_ ) # prepare a noise vector that will be also used for testing the TF model # (this way we can ensure that the PT and TF models operate on the same inputs) a__ = ViTMAEConfig() a__ = int((vit_mae_config.image_size // vit_mae_config.patch_size) ** 2 ) a__ = np.random.uniform(size=(1, num_patches) ) # forward pass with torch.no_grad(): a__ = model(**a_ , noise=torch.from_numpy(a_ ).to(device=a_ ) ) # verify the logits a__ = torch.Size((1, 196, 768) ) self.assertEqual(outputs.logits.shape , a_ ) a__ = torch.tensor( [[-0.0_548, -1.7_023, -0.9_325], [0.3_721, -0.5_670, -0.2_233], [0.8_235, -1.3_878, -0.3_524]] ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , expected_slice.to(a_ ) , atol=1E-4 ) )
351
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
351
1
"""simple docstring""" from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _lowerCamelCase ( UpperCAmelCase_ : int ) -> Optional[Any]: """simple docstring""" def is_in_circle(UpperCAmelCase_ : float, UpperCAmelCase_ : float ) -> bool: A__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle A__ = mean( int(is_in_circle(uniform(-1.0, 1.0 ), uniform(-1.0, 1.0 ) ) ) for _ in range(UpperCAmelCase_ ) ) # The ratio of the area for circle to square is pi/4. A__ = proportion * 4 print(F"""The estimated value of pi is {pi_estimate}""" ) print(F"""The numpy value of pi is {pi}""" ) print(F"""The total error is {abs(pi - pi_estimate )}""" ) def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : Callable[[float], float], UpperCAmelCase_ : float = 0.0, UpperCAmelCase_ : float = 1.0, ) -> float: """simple docstring""" return mean( function_to_integrate(uniform(UpperCAmelCase_, UpperCAmelCase_ ) ) for _ in range(UpperCAmelCase_ ) ) * (max_value - min_value) def _lowerCamelCase ( UpperCAmelCase_ : int, UpperCAmelCase_ : float = 0.0, UpperCAmelCase_ : float = 1.0 ) -> None: """simple docstring""" def identity_function(UpperCAmelCase_ : float ) -> float: return x A__ = area_under_curve_estimator( UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_, UpperCAmelCase_ ) A__ = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F"""Estimating area under y=x where x varies from {min_value} to {max_value}""" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {expected_value}""" ) print(F"""Total error is {abs(estimated_value - expected_value )}""" ) print("******************" ) def _lowerCamelCase ( UpperCAmelCase_ : int ) -> None: """simple docstring""" def function_to_integrate(UpperCAmelCase_ : float ) -> float: return sqrt(4.0 - x * x ) A__ = area_under_curve_estimator( UpperCAmelCase_, UpperCAmelCase_, 0.0, 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F"""Estimated value is {estimated_value}""" ) print(F"""Expected value is {pi}""" ) print(F"""Total error is {abs(estimated_value - pi )}""" ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
104
import json from typing import Iterator, List, Union from tokenizers import AddedToken, Regex, Tokenizer, decoders, normalizers, pre_tokenizers, trainers from tokenizers.implementations.base_tokenizer import BaseTokenizer from tokenizers.models import Unigram from tokenizers.processors import TemplateProcessing class A_ (a_ ): def __init__( self , _A = "▁" , _A = True , _A = "<unk>" , _A = "</s>" , _A = "<pad>" , ): '''simple docstring''' UpperCAmelCase = { '''pad''': {'''id''': 0, '''token''': pad_token}, '''eos''': {'''id''': 1, '''token''': eos_token}, '''unk''': {'''id''': 2, '''token''': unk_token}, } UpperCAmelCase = [None] * len(self.special_tokens ) for token_dict in self.special_tokens.values(): UpperCAmelCase = token_dict['''token'''] UpperCAmelCase = Tokenizer(Unigram() ) UpperCAmelCase = normalizers.Sequence( [ normalizers.Nmt(), normalizers.NFKC(), normalizers.Replace(Regex(''' {2,}''' ) , ''' ''' ), normalizers.Lowercase(), ] ) UpperCAmelCase = pre_tokenizers.Sequence( [ pre_tokenizers.Metaspace(replacement=_A , add_prefix_space=_A ), pre_tokenizers.Digits(individual_digits=_A ), pre_tokenizers.Punctuation(), ] ) UpperCAmelCase = decoders.Metaspace(replacement=_A , add_prefix_space=_A ) UpperCAmelCase = TemplateProcessing( single=F"""$A {self.special_tokens["eos"]["token"]}""" , special_tokens=[(self.special_tokens['''eos''']['''token'''], self.special_tokens['''eos''']['''id'''])] , ) UpperCAmelCase = { '''model''': '''SentencePieceUnigram''', '''replacement''': replacement, '''add_prefix_space''': add_prefix_space, } super().__init__(_A , _A ) def _lowercase ( self , _A , _A = 8_0_0_0 , _A = True , ): '''simple docstring''' UpperCAmelCase = trainers.UnigramTrainer( vocab_size=_A , special_tokens=self.special_tokens_list , show_progress=_A , ) if isinstance(_A , _A ): UpperCAmelCase = [files] self._tokenizer.train(_A , trainer=_A ) self.add_unk_id() def _lowercase ( self , _A , _A = 8_0_0_0 , _A = True , ): '''simple docstring''' UpperCAmelCase = trainers.UnigramTrainer( vocab_size=_A , special_tokens=self.special_tokens_list , show_progress=_A , ) self._tokenizer.train_from_iterator(_A , trainer=_A ) self.add_unk_id() def _lowercase ( self ): '''simple docstring''' UpperCAmelCase = json.loads(self._tokenizer.to_str() ) UpperCAmelCase = self.special_tokens['''unk''']['''id'''] UpperCAmelCase = Tokenizer.from_str(json.dumps(_A ) )
130
0
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Tuple , _UpperCamelCase : int , _UpperCamelCase : Optional[Any] , _UpperCamelCase : str=True , _UpperCamelCase : Optional[Any]="pt" ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {"""add_prefix_space""": True} if isinstance(_UpperCamelCase , _UpperCamelCase ) and not line.startswith(' ' ) else {} SCREAMING_SNAKE_CASE = padding_side return tokenizer( [line] , max_length=_UpperCamelCase , padding='max_length' if pad_to_max_length else None , truncation=_UpperCamelCase , return_tensors=_UpperCamelCase , add_special_tokens=_UpperCamelCase , **_UpperCamelCase , ) def __lowerCAmelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Union[str, Any] , _UpperCamelCase : List[Any]=None , ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = input_ids.ne(_UpperCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): def __init__( self : List[Any] , snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Tuple , snake_case__ : Tuple="train" , snake_case__ : Optional[int]=None , snake_case__ : Any=None , snake_case__ : int=None , snake_case__ : Union[str, Any]="" , ): """simple docstring""" super().__init__() SCREAMING_SNAKE_CASE = Path(_a ).joinpath(type_path + '.source' ) SCREAMING_SNAKE_CASE = Path(_a ).joinpath(type_path + '.target' ) SCREAMING_SNAKE_CASE = self.get_char_lens(self.src_file ) SCREAMING_SNAKE_CASE = max_source_length SCREAMING_SNAKE_CASE = max_target_length assert min(self.src_lens ) > 0, F"""found empty line in {self.src_file}""" SCREAMING_SNAKE_CASE = tokenizer SCREAMING_SNAKE_CASE = prefix if n_obs is not None: SCREAMING_SNAKE_CASE = self.src_lens[:n_obs] SCREAMING_SNAKE_CASE = src_lang SCREAMING_SNAKE_CASE = tgt_lang def __len__( self : Tuple ): """simple docstring""" return len(self.src_lens ) def __getitem__( self : List[str] , snake_case__ : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE = index + 1 # linecache starts at 1 SCREAMING_SNAKE_CASE = self.prefix + linecache.getline(str(self.src_file ) , _a ).rstrip('\n' ) SCREAMING_SNAKE_CASE = linecache.getline(str(self.tgt_file ) , _a ).rstrip('\n' ) assert source_line, F"""empty source line for index {index}""" assert tgt_line, F"""empty tgt line for index {index}""" # Need to add eos token manually for T5 if isinstance(self.tokenizer , _a ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _a ) else self.tokenizer ) SCREAMING_SNAKE_CASE = self.tokenizer.generator if isinstance(self.tokenizer , _a ) else self.tokenizer SCREAMING_SNAKE_CASE = encode_line(_a , _a , self.max_source_length , 'right' ) SCREAMING_SNAKE_CASE = encode_line(_a , _a , self.max_target_length , 'right' ) SCREAMING_SNAKE_CASE = source_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE = target_inputs["""input_ids"""].squeeze() SCREAMING_SNAKE_CASE = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def UpperCamelCase ( snake_case__ : int ): """simple docstring""" return [len(_a ) for x in Path(_a ).open().readlines()] def UpperCamelCase ( self : Optional[int] , snake_case__ : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.stack([x['input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x['attention_mask'] for x in batch] ) SCREAMING_SNAKE_CASE = torch.stack([x['decoder_input_ids'] for x in batch] ) SCREAMING_SNAKE_CASE = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _a ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _a ) else self.tokenizer.pad_token_id ) SCREAMING_SNAKE_CASE = trim_batch(_a , _a ) SCREAMING_SNAKE_CASE = trim_batch(_a , _a , attention_mask=_a ) SCREAMING_SNAKE_CASE = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch a_ : str = getLogger(__name__) def __lowerCAmelCase ( _UpperCamelCase : List[List] ) -> Any: '''simple docstring''' return list(itertools.chain.from_iterable(_UpperCamelCase ) ) def __lowerCAmelCase ( _UpperCamelCase : str ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = get_git_info() save_json(_UpperCamelCase , os.path.join(_UpperCamelCase , 'git_log.json' ) ) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[Any] , _UpperCamelCase : List[str]=4 , **_UpperCamelCase : List[str] ) -> Any: '''simple docstring''' with open(_UpperCamelCase , 'w' ) as f: json.dump(_UpperCamelCase , _UpperCamelCase , indent=_UpperCamelCase , **_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : Any ) -> List[Any]: '''simple docstring''' with open(_UpperCamelCase ) as f: return json.load(_UpperCamelCase ) def __lowerCAmelCase ( ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = git.Repo(search_parent_directories=_UpperCamelCase ) SCREAMING_SNAKE_CASE = { """repo_id""": str(_UpperCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __lowerCAmelCase ( _UpperCamelCase : Callable , _UpperCamelCase : Iterable ) -> Tuple: '''simple docstring''' return list(map(_UpperCamelCase , _UpperCamelCase ) ) def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' with open(_UpperCamelCase , 'wb' ) as f: return pickle.dump(_UpperCamelCase , _UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[str] ) -> str: '''simple docstring''' def remove_articles(_UpperCamelCase : Any ): return re.sub(R'\b(a|an|the)\b' , ' ' , _UpperCamelCase ) def white_space_fix(_UpperCamelCase : List[Any] ): return " ".join(text.split() ) def remove_punc(_UpperCamelCase : Union[str, Any] ): SCREAMING_SNAKE_CASE = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_UpperCamelCase : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_UpperCamelCase ) ) ) ) def __lowerCAmelCase ( _UpperCamelCase : int , _UpperCamelCase : int ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = normalize_answer(_UpperCamelCase ).split() SCREAMING_SNAKE_CASE = normalize_answer(_UpperCamelCase ).split() SCREAMING_SNAKE_CASE = Counter(_UpperCamelCase ) & Counter(_UpperCamelCase ) SCREAMING_SNAKE_CASE = sum(common.values() ) if num_same == 0: return 0 SCREAMING_SNAKE_CASE = 1.0 * num_same / len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 1.0 * num_same / len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = (2 * precision * recall) / (precision + recall) return fa def __lowerCAmelCase ( _UpperCamelCase : Any , _UpperCamelCase : Any ) -> Dict: '''simple docstring''' return normalize_answer(_UpperCamelCase ) == normalize_answer(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : List[str] , _UpperCamelCase : List[str] ) -> Any: '''simple docstring''' assert len(_UpperCamelCase ) == len(_UpperCamelCase ) SCREAMING_SNAKE_CASE = 0 for hypo, pred in zip(_UpperCamelCase , _UpperCamelCase ): em += exact_match_score(_UpperCamelCase , _UpperCamelCase ) if len(_UpperCamelCase ) > 0: em /= len(_UpperCamelCase ) return {"em": em} def __lowerCAmelCase ( _UpperCamelCase : Union[str, Any] ) -> Any: '''simple docstring''' return model_prefix.startswith('rag' ) def __lowerCAmelCase ( _UpperCamelCase : Optional[Any] , _UpperCamelCase : int , _UpperCamelCase : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead SCREAMING_SNAKE_CASE = """dropout_rate""" for p in extra_params: if getattr(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): if not hasattr(_UpperCamelCase , _UpperCamelCase ) and not hasattr(_UpperCamelCase , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(_UpperCamelCase ) ) delattr(_UpperCamelCase , _UpperCamelCase ) continue SCREAMING_SNAKE_CASE = p if hasattr(_UpperCamelCase , _UpperCamelCase ) else equivalent_param[p] setattr(_UpperCamelCase , _UpperCamelCase , getattr(_UpperCamelCase , _UpperCamelCase ) ) delattr(_UpperCamelCase , _UpperCamelCase ) return hparams, config
705
import gc import unittest import numpy as np import torch import torch.nn.functional as F from transformers import ( ClapTextConfig, ClapTextModelWithProjection, RobertaTokenizer, SpeechTaHifiGan, SpeechTaHifiGanConfig, ) from diffusers import ( AudioLDMPipeline, AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel, ) from diffusers.utils import is_xformers_available, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism from ..pipeline_params import TEXT_TO_AUDIO_BATCH_PARAMS, TEXT_TO_AUDIO_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( SCREAMING_SNAKE_CASE , unittest.TestCase ): __UpperCamelCase =AudioLDMPipeline __UpperCamelCase =TEXT_TO_AUDIO_PARAMS __UpperCamelCase =TEXT_TO_AUDIO_BATCH_PARAMS __UpperCamelCase =frozenset( [ "num_inference_steps", "num_waveforms_per_prompt", "generator", "latents", "output_type", "return_dict", "callback", "callback_steps", ] ) def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = UNetaDConditionModel( block_out_channels=(3_2, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=(3_2, 6_4) , class_embed_type='simple_projection' , projection_class_embeddings_input_dim=3_2 , class_embeddings_concat=snake_case__ , ) SCREAMING_SNAKE_CASE = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , clip_sample=snake_case__ , set_alpha_to_one=snake_case__ , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=1 , out_channels=1 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = ClapTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , projection_dim=3_2 , ) SCREAMING_SNAKE_CASE = ClapTextModelWithProjection(snake_case__ ) SCREAMING_SNAKE_CASE = RobertaTokenizer.from_pretrained('hf-internal-testing/tiny-random-roberta' , model_max_length=7_7 ) SCREAMING_SNAKE_CASE = SpeechTaHifiGanConfig( model_in_dim=8 , sampling_rate=1_6_0_0_0 , upsample_initial_channel=1_6 , upsample_rates=[2, 2] , upsample_kernel_sizes=[4, 4] , resblock_kernel_sizes=[3, 7] , resblock_dilation_sizes=[[1, 3, 5], [1, 3, 5]] , normalize_before=snake_case__ , ) SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ) SCREAMING_SNAKE_CASE = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'vocoder': vocoder, } return components def UpperCamelCase ( self : Optional[int] , snake_case__ : int , snake_case__ : int=0 ): """simple docstring""" if str(snake_case__ ).startswith('mps' ): SCREAMING_SNAKE_CASE = torch.manual_seed(snake_case__ ) else: SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, } return inputs def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_050, 0.0_050, -0.0_060, 0.0_033, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_033] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = prompt_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) SCREAMING_SNAKE_CASE = prompt_embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * ['this is a negative prompt'] SCREAMING_SNAKE_CASE = negative_prompt SCREAMING_SNAKE_CASE = 3 * [inputs['prompt']] # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 3 * [inputs.pop('prompt' )] SCREAMING_SNAKE_CASE = [] for p in [prompt, negative_prompt]: SCREAMING_SNAKE_CASE = audioldm_pipe.tokenizer( snake_case__ , padding='max_length' , max_length=audioldm_pipe.tokenizer.model_max_length , truncation=snake_case__ , return_tensors='pt' , ) SCREAMING_SNAKE_CASE = text_inputs['input_ids'].to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.text_encoder( snake_case__ , ) SCREAMING_SNAKE_CASE = text_embeds.text_embeds # additional L_2 normalization over each hidden-state SCREAMING_SNAKE_CASE = F.normalize(snake_case__ , dim=-1 ) embeds.append(snake_case__ ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = embeds # forward SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert np.abs(audio_a - audio_a ).max() < 1E-2 def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 'egg cracking' SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ , negative_prompt=snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 2_5_6 SCREAMING_SNAKE_CASE = audio[:1_0] SCREAMING_SNAKE_CASE = np.array( [-0.0_051, 0.0_050, -0.0_060, 0.0_034, -0.0_026, 0.0_033, -0.0_027, 0.0_033, -0.0_028, 0.0_032] ) assert np.abs(audio_slice - expected_slice ).max() < 1E-2 def UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = PNDMScheduler(skip_prk_steps=snake_case__ ) SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = 'A hammer hitting a wooden surface' # test num_waveforms_per_prompt=1 (default) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 ).audios assert audios.shape == (1, 2_5_6) # test num_waveforms_per_prompt=1 (default) for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe([prompt] * batch_size , num_inference_steps=2 ).audios assert audios.shape == (batch_size, 2_5_6) # test num_waveforms_per_prompt for single prompt SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (num_waveforms_per_prompt, 2_5_6) # test num_waveforms_per_prompt for batch of prompts SCREAMING_SNAKE_CASE = 2 SCREAMING_SNAKE_CASE = audioldm_pipe( [prompt] * batch_size , num_inference_steps=2 , num_waveforms_per_prompt=snake_case__ ).audios assert audios.shape == (batch_size * num_waveforms_per_prompt, 2_5_6) def UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = 'cpu' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config.sampling_rate SCREAMING_SNAKE_CASE = self.get_dummy_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.016 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.016 SCREAMING_SNAKE_CASE = audioldm_pipe(audio_length_in_s=0.032 , **snake_case__ ) SCREAMING_SNAKE_CASE = output.audios[0] assert audio.ndim == 1 assert len(snake_case__ ) / vocoder_sampling_rate == 0.032 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = self.get_dummy_components() SCREAMING_SNAKE_CASE = AudioLDMPipeline(**snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = ['hey'] SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape assert audio_shape == (1, 2_5_6) SCREAMING_SNAKE_CASE = audioldm_pipe.vocoder.config config.model_in_dim *= 2 SCREAMING_SNAKE_CASE = SpeechTaHifiGan(snake_case__ ).to(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(snake_case__ , num_inference_steps=1 ) SCREAMING_SNAKE_CASE = output.audios.shape # waveform shape is unchanged, we just have 2x the number of mel channels in the spectrogram assert audio_shape == (1, 2_5_6) def UpperCamelCase ( self : Tuple ): """simple docstring""" self._test_attention_slicing_forward_pass(test_mean_pixel_difference=snake_case__ ) def UpperCamelCase ( self : int ): """simple docstring""" self._test_inference_batch_single_identical(test_mean_pixel_difference=snake_case__ ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available() , reason='XFormers attention is only available with CUDA and `xformers` installed' , ) def UpperCamelCase ( self : Dict ): """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=snake_case__ ) @slow class UpperCamelCase ( unittest.TestCase ): def UpperCamelCase ( self : Any ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase ( self : int , snake_case__ : int , snake_case__ : Tuple="cpu" , snake_case__ : List[str]=torch.floataa , snake_case__ : Optional[Any]=0 ): """simple docstring""" SCREAMING_SNAKE_CASE = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) SCREAMING_SNAKE_CASE = np.random.RandomState(snake_case__ ).standard_normal((1, 8, 1_2_8, 1_6) ) SCREAMING_SNAKE_CASE = torch.from_numpy(snake_case__ ).to(device=snake_case__ , dtype=snake_case__ ) SCREAMING_SNAKE_CASE = { 'prompt': 'A hammer hitting a wooden surface', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 2.5, } return inputs def UpperCamelCase ( self : int ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = 2_5 SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[7_7_2_3_0:7_7_2_4_0] SCREAMING_SNAKE_CASE = np.array( [-0.4_884, -0.4_607, 0.0_023, 0.5_007, 0.5_896, 0.5_151, 0.3_813, -0.0_208, -0.3_687, -0.4_315] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 1E-2 def UpperCamelCase ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE = AudioLDMPipeline.from_pretrained('cvssp/audioldm' ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_config(audioldm_pipe.scheduler.config ) SCREAMING_SNAKE_CASE = audioldm_pipe.to(snake_case__ ) audioldm_pipe.set_progress_bar_config(disable=snake_case__ ) SCREAMING_SNAKE_CASE = self.get_inputs(snake_case__ ) SCREAMING_SNAKE_CASE = audioldm_pipe(**snake_case__ ).audios[0] assert audio.ndim == 1 assert len(snake_case__ ) == 8_1_9_2_0 SCREAMING_SNAKE_CASE = audio[2_7_7_8_0:2_7_7_9_0] SCREAMING_SNAKE_CASE = np.array([-0.2_131, -0.0_873, -0.0_124, -0.0_189, 0.0_569, 0.1_373, 0.1_883, 0.2_886, 0.3_297, 0.2_212] ) SCREAMING_SNAKE_CASE = np.abs(expected_slice - audio_slice ).max() assert max_diff < 3E-2
673
0