code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split _UpperCAmelCase : List[Any] = datasets.load_iris() _UpperCAmelCase : Dict = np.array(data['''data''']) _UpperCAmelCase : Union[str, Any] = np.array(data['''target''']) _UpperCAmelCase : int = data['''target_names'''] _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase : Union[str, Any] = train_test_split(X, y) def UpperCamelCase ( lowercase_ : str , lowercase_ : Optional[Any] ) -> int: '''simple docstring''' return np.linalg.norm(np.array(lowercase_ ) - np.array(lowercase_ ) ) def UpperCamelCase ( lowercase_ : Any , lowercase_ : Any , lowercase_ : int , lowercase_ : Tuple , lowercase_ : Tuple=5 ) -> List[Any]: '''simple docstring''' lowercase =zip(lowercase_ , lowercase_ ) # List of distances of all points from the point to be classified lowercase =[] for data_point in data: lowercase =euclidean_distance(data_point[0] , lowercase_ ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. lowercase =[i[1] for i in sorted(lowercase_ )[:k]] # Most commonly occurring class among them # is the class into which the point is classified lowercase =Counter(lowercase_ ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
72
def _snake_case ( __snake_case = 100 ): _UpperCamelCase = (n * (n + 1) // 2) ** 2 _UpperCamelCase = n * (n + 1) * (2 * n + 1) // 6 return sum_cubes - sum_squares if __name__ == "__main__": print(f'{solution() = }')
10
0
'''simple docstring''' from unittest import TestCase from datasets import Sequence, Value from datasets.arrow_dataset import Dataset class _lowercase ( _lowercase ): def lowerCamelCase_ ( self: int ): return [ {"col_1": 3, "col_2": "a"}, {"col_1": 2, "col_2": "b"}, {"col_1": 1, "col_2": "c"}, {"col_1": 0, "col_2": "d"}, ] def lowerCamelCase_ ( self: int ): lowerCamelCase__ : List[str] = {"""col_1""": [3, 2, 1, 0], """col_2""": ["""a""", """b""", """c""", """d"""]} return Dataset.from_dict(UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Any = self._create_example_records() lowerCamelCase__ : str = Dataset.from_list(UpperCamelCase__ ) self.assertListEqual(dset.column_names , ["""col_1""", """col_2"""] ) for i, r in enumerate(UpperCamelCase__ ): self.assertDictEqual(UpperCamelCase__ , example_records[i] ) def lowerCamelCase_ ( self: Optional[int] ): lowerCamelCase__ : Tuple = self._create_example_records() lowerCamelCase__ : List[str] = Dataset.from_list(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = Dataset.from_dict({k: [r[k] for r in example_records] for k in example_records[0]} ) self.assertEqual(dset.info , dset_from_dict.info ) def lowerCamelCase_ ( self: Optional[Any] ): # checks what happens with missing columns lowerCamelCase__ : List[Any] = [{"""col_1""": 1}, {"""col_2""": """x"""}] lowerCamelCase__ : Dict = Dataset.from_list(UpperCamelCase__ ) self.assertDictEqual(dset[0] , {"""col_1""": 1} ) self.assertDictEqual(dset[1] , {"""col_1""": None} ) # NB: first record is used for columns def lowerCamelCase_ ( self: int ): # checks if the type can be inferred from the second record lowerCamelCase__ : Dict = [{"""col_1""": []}, {"""col_1""": [1, 2]}] lowerCamelCase__ : int = Dataset.from_list(UpperCamelCase__ ) self.assertEqual(dset.info.features["""col_1"""] , Sequence(Value("""int64""" ) ) ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Dict = Dataset.from_list([] ) self.assertEqual(len(UpperCamelCase__ ) , 0 ) self.assertListEqual(dset.column_names , [] )
631
'''simple docstring''' from __future__ import annotations import os import tempfile import unittest from transformers import ConvBertConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertModel, ) class _lowercase : def __init__( self: int , UpperCamelCase__: Dict , UpperCamelCase__: List[str]=13 , UpperCamelCase__: Union[str, Any]=7 , UpperCamelCase__: Union[str, Any]=True , UpperCamelCase__: List[Any]=True , UpperCamelCase__: Optional[Any]=True , UpperCamelCase__: int=True , UpperCamelCase__: List[Any]=99 , UpperCamelCase__: Tuple=32 , UpperCamelCase__: List[str]=2 , UpperCamelCase__: Optional[Any]=4 , UpperCamelCase__: Optional[int]=37 , UpperCamelCase__: Any="gelu" , UpperCamelCase__: Any=0.1 , UpperCamelCase__: int=0.1 , UpperCamelCase__: Optional[Any]=512 , UpperCamelCase__: List[str]=16 , UpperCamelCase__: Optional[int]=2 , UpperCamelCase__: Dict=0.02 , UpperCamelCase__: Tuple=3 , UpperCamelCase__: Optional[int]=4 , UpperCamelCase__: Union[str, Any]=None , ): lowerCamelCase__ : Dict = parent lowerCamelCase__ : Union[str, Any] = 13 lowerCamelCase__ : Any = 7 lowerCamelCase__ : int = True lowerCamelCase__ : Optional[Any] = True lowerCamelCase__ : Dict = True lowerCamelCase__ : List[str] = True lowerCamelCase__ : str = 99 lowerCamelCase__ : Dict = 384 lowerCamelCase__ : Optional[Any] = 2 lowerCamelCase__ : Optional[int] = 4 lowerCamelCase__ : Optional[Any] = 37 lowerCamelCase__ : Union[str, Any] = """gelu""" lowerCamelCase__ : int = 0.1 lowerCamelCase__ : Optional[Any] = 0.1 lowerCamelCase__ : List[Any] = 512 lowerCamelCase__ : Optional[Any] = 16 lowerCamelCase__ : Any = 2 lowerCamelCase__ : Optional[Any] = 0.02 lowerCamelCase__ : int = 3 lowerCamelCase__ : List[str] = 4 lowerCamelCase__ : Any = 128 lowerCamelCase__ : List[Any] = 2 lowerCamelCase__ : Optional[Any] = 9 lowerCamelCase__ : Any = 1 lowerCamelCase__ : Optional[int] = None def lowerCamelCase_ ( self: List[Any] ): lowerCamelCase__ : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ : str = None if self.use_input_mask: lowerCamelCase__ : int = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ : List[str] = None if self.use_token_type_ids: lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCamelCase__ : int = None lowerCamelCase__ : Optional[Any] = None lowerCamelCase__ : Optional[Any] = None if self.use_labels: lowerCamelCase__ : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ : Any = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ : List[Any] = ConvBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=UpperCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase_ ( self: Optional[int] , UpperCamelCase__: Dict , UpperCamelCase__: List[str] , UpperCamelCase__: Any , UpperCamelCase__: Any , UpperCamelCase__: Any , UpperCamelCase__: str , UpperCamelCase__: Any ): lowerCamelCase__ : List[Any] = TFConvBertModel(config=UpperCamelCase__ ) lowerCamelCase__ : str = {"""input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids} lowerCamelCase__ : List[str] = [input_ids, input_mask] lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: Tuple , UpperCamelCase__: List[Any] , UpperCamelCase__: List[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: List[Any] , UpperCamelCase__: Union[str, Any] , UpperCamelCase__: Tuple ): lowerCamelCase__ : int = TFConvBertForMaskedLM(config=UpperCamelCase__ ) lowerCamelCase__ : Tuple = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase__ : int = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase_ ( self: str , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[Any] , UpperCamelCase__: Optional[int] , UpperCamelCase__: Any , UpperCamelCase__: Any , UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : int = self.num_labels lowerCamelCase__ : Dict = TFConvBertForSequenceClassification(config=UpperCamelCase__ ) lowerCamelCase__ : Dict = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase_ ( self: Optional[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] , UpperCamelCase__: List[str] , UpperCamelCase__: int , UpperCamelCase__: List[str] , UpperCamelCase__: Dict ): lowerCamelCase__ : Optional[int] = self.num_choices lowerCamelCase__ : Dict = TFConvBertForMultipleChoice(config=UpperCamelCase__ ) lowerCamelCase__ : int = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ : List[str] = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ : Any = tf.tile(tf.expand_dims(UpperCamelCase__ , 1 ) , (1, self.num_choices, 1) ) lowerCamelCase__ : Tuple = { """input_ids""": multiple_choice_inputs_ids, """attention_mask""": multiple_choice_input_mask, """token_type_ids""": multiple_choice_token_type_ids, } lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase_ ( self: str , UpperCamelCase__: Any , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] , UpperCamelCase__: Any , UpperCamelCase__: Optional[int] , UpperCamelCase__: str , UpperCamelCase__: int ): lowerCamelCase__ : List[Any] = self.num_labels lowerCamelCase__ : List[str] = TFConvBertForTokenClassification(config=UpperCamelCase__ ) lowerCamelCase__ : Optional[Any] = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase__ : Tuple = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase_ ( self: Any , UpperCamelCase__: List[Any] , UpperCamelCase__: str , UpperCamelCase__: Tuple , UpperCamelCase__: Optional[int] , UpperCamelCase__: Optional[Any] , UpperCamelCase__: List[str] , UpperCamelCase__: Optional[Any] ): lowerCamelCase__ : Optional[int] = TFConvBertForQuestionAnswering(config=UpperCamelCase__ ) lowerCamelCase__ : int = { """input_ids""": input_ids, """attention_mask""": input_mask, """token_type_ids""": token_type_ids, } lowerCamelCase__ : Optional[int] = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ : str = self.prepare_config_and_inputs() ( ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ( lowerCamelCase__ ) , ) : str = config_and_inputs lowerCamelCase__ : Optional[Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_tf class _lowercase ( _lowercase , _lowercase , unittest.TestCase ): a = ( ( TFConvBertModel, TFConvBertForMaskedLM, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertForMultipleChoice, ) if is_tf_available() else () ) a = ( { """feature-extraction""": TFConvBertModel, """fill-mask""": TFConvBertForMaskedLM, """question-answering""": TFConvBertForQuestionAnswering, """text-classification""": TFConvBertForSequenceClassification, """token-classification""": TFConvBertForTokenClassification, """zero-shot""": TFConvBertForSequenceClassification, } if is_tf_available() else {} ) a = False a = False a = False def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Dict = TFConvBertModelTester(self ) lowerCamelCase__ : Dict = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def lowerCamelCase_ ( self: List[str] ): self.config_tester.run_common_tests() def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Tuple ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Union[str, Any] ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def lowerCamelCase_ ( self: Any ): lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def lowerCamelCase_ ( self: str ): lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def lowerCamelCase_ ( self: Optional[Any] ): lowerCamelCase__ , lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Dict = True lowerCamelCase__ : Tuple = True if hasattr(UpperCamelCase__ , """use_cache""" ): lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : List[str] = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCamelCase__ : Tuple = getattr(self.model_tester , """key_length""" , UpperCamelCase__ ) for model_class in self.all_model_classes: lowerCamelCase__ : int = self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : Dict = len(model(UpperCamelCase__ ) ) with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase__ , saved_model=UpperCamelCase__ ) lowerCamelCase__ : int = os.path.join(UpperCamelCase__ , """saved_model""" , """1""" ) lowerCamelCase__ : List[Any] = tf.keras.models.load_model(UpperCamelCase__ ) lowerCamelCase__ : Any = model(UpperCamelCase__ ) if self.is_encoder_decoder: lowerCamelCase__ : Dict = outputs["""encoder_hidden_states"""] lowerCamelCase__ : Any = outputs["""encoder_attentions"""] else: lowerCamelCase__ : int = outputs["""hidden_states"""] lowerCamelCase__ : Optional[int] = outputs["""attentions"""] self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = getattr( self.model_tester , """expected_num_hidden_layers""" , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) self.assertListEqual( list(output_hidden_states[0].shape[-2:] ) , [self.model_tester.seq_length, self.model_tester.hidden_size] , ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(output_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) @slow def lowerCamelCase_ ( self: int ): lowerCamelCase__ : Union[str, Any] = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) self.assertIsNotNone(UpperCamelCase__ ) def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ , lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : int = getattr(self.model_tester , """decoder_seq_length""" , self.model_tester.seq_length ) lowerCamelCase__ : Any = getattr(self.model_tester , """encoder_seq_length""" , self.model_tester.seq_length ) lowerCamelCase__ : Optional[int] = getattr(self.model_tester , """key_length""" , UpperCamelCase__ ) lowerCamelCase__ : List[Any] = getattr(self.model_tester , """key_length""" , UpperCamelCase__ ) def check_decoder_attentions_output(UpperCamelCase__: Union[str, Any] ): lowerCamelCase__ : List[Any] = len(UpperCamelCase__ ) self.assertEqual(out_len % 2 , 0 ) lowerCamelCase__ : Any = outputs.decoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, decoder_seq_length, decoder_key_length] , ) def check_encoder_attentions_output(UpperCamelCase__: List[str] ): lowerCamelCase__ : Any = [ t.numpy() for t in (outputs.encoder_attentions if config.is_encoder_decoder else outputs.attentions) ] self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads / 2, encoder_seq_length, encoder_key_length] , ) for model_class in self.all_model_classes: lowerCamelCase__ : int = True lowerCamelCase__ : Any = False lowerCamelCase__ : Union[str, Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : List[str] = model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) lowerCamelCase__ : Optional[int] = len(UpperCamelCase__ ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) if self.is_encoder_decoder: lowerCamelCase__ : str = model_class(UpperCamelCase__ ) lowerCamelCase__ : Tuple = model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_decoder_attentions_output(UpperCamelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Dict = model_class(UpperCamelCase__ ) lowerCamelCase__ : Union[str, Any] = model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) # Check attention is always last and order is fine lowerCamelCase__ : List[Any] = True lowerCamelCase__ : int = True lowerCamelCase__ : List[Any] = model_class(UpperCamelCase__ ) lowerCamelCase__ : List[Any] = model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCamelCase__ ) ) self.assertEqual(model.config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) @require_tf class _lowercase ( unittest.TestCase ): @slow def lowerCamelCase_ ( self: List[str] ): lowerCamelCase__ : Dict = TFConvBertModel.from_pretrained("""YituTech/conv-bert-base""" ) lowerCamelCase__ : Optional[Any] = tf.constant([[0, 1, 2, 3, 4, 5]] ) lowerCamelCase__ : Optional[Any] = model(UpperCamelCase__ )[0] lowerCamelCase__ : Dict = [1, 6, 768] self.assertEqual(output.shape , UpperCamelCase__ ) lowerCamelCase__ : Dict = tf.constant( [ [ [-0.03_475_493, -0.4_686_034, -0.30_638_832], [0.22_637_248, -0.26_988_646, -0.7_423_424], [0.10_324_868, -0.45_013_508, -0.58_280_784], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1e-4 )
631
1
from __future__ import annotations from typing import Any class _a : def __init__( self: int , UpperCamelCase_: int ) -> None: """simple docstring""" lowercase__ = num_of_nodes lowercase__ = [] lowercase__ = {} def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int , UpperCamelCase_: int , UpperCamelCase_: int ) -> None: """simple docstring""" self.m_edges.append([u_node, v_node, weight] ) def lowerCamelCase_ ( self: Tuple , UpperCamelCase_: int ) -> int: """simple docstring""" if self.m_component[u_node] == u_node: return u_node return self.find_component(self.m_component[u_node] ) def lowerCamelCase_ ( self: str , UpperCamelCase_: int ) -> None: """simple docstring""" if self.m_component[u_node] != u_node: for k in self.m_component: lowercase__ = self.find_component(UpperCamelCase_ ) def lowerCamelCase_ ( self: Dict , UpperCamelCase_: list[int] , UpperCamelCase_: int , UpperCamelCase_: int ) -> None: """simple docstring""" if component_size[u_node] <= component_size[v_node]: lowercase__ = v_node component_size[v_node] += component_size[u_node] self.set_component(UpperCamelCase_ ) elif component_size[u_node] >= component_size[v_node]: lowercase__ = self.find_component(UpperCamelCase_ ) component_size[u_node] += component_size[v_node] self.set_component(UpperCamelCase_ ) def lowerCamelCase_ ( self: Tuple ) -> None: """simple docstring""" lowercase__ = [] lowercase__ = 0 lowercase__ = [-1] * self.m_num_of_nodes # A list of components (initialized to all of the nodes) for node in range(self.m_num_of_nodes ): self.m_component.update({node: node} ) component_size.append(1 ) lowercase__ = self.m_num_of_nodes while num_of_components > 1: for edge in self.m_edges: lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = self.m_component[u] lowercase__ = self.m_component[v] if u_component != v_component: for component in (u_component, v_component): if ( minimum_weight_edge[component] == -1 or minimum_weight_edge[component][2] > w ): lowercase__ = [u, v, w] for edge in minimum_weight_edge: if isinstance(UpperCamelCase_ , UpperCamelCase_ ): lowercase__ , lowercase__ , lowercase__ = edge lowercase__ = self.m_component[u] lowercase__ = self.m_component[v] if u_component != v_component: mst_weight += w self.union(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) print(f'Added edge [{u} - {v}]\nAdded weight: {w}\n' ) num_of_components -= 1 lowercase__ = [-1] * self.m_num_of_nodes print(f'The total weight of the minimal spanning tree is: {mst_weight}' ) def _a ( ): """simple docstring""" if __name__ == "__main__": import doctest doctest.testmod()
43
'''simple docstring''' from __future__ import annotations import requests def _a( UpperCamelCase__ : str ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple =f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(UpperCamelCase__ ).json() def _a( UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] ='''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' SCREAMING_SNAKE_CASE__ : str =requests.get(UpperCamelCase__ ).json()[:max_stories] return [get_hackernews_story(UpperCamelCase__ ) for story_id in story_ids] def _a( UpperCamelCase__ : int = 1_0 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int =hackernews_top_stories(UpperCamelCase__ ) return "\n".join('''* [{title}]({url})'''.format(**UpperCamelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
296
0
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCamelCase : List[str] = logging.get_logger(__name__) def A__ ( __A : Tuple ) ->Any: __A =DPTConfig() if "large" in checkpoint_url: __A =10_24 __A =40_96 __A =24 __A =16 __A =[5, 11, 17, 23] __A =[2_56, 5_12, 10_24, 10_24] __A =(1, 3_84, 3_84) if "ade" in checkpoint_url: __A =True __A =1_50 __A ='''huggingface/label-files''' __A ='''ade20k-id2label.json''' __A =json.load(open(cached_download(hf_hub_url(__A , __A , repo_type='''dataset''' ) ) , '''r''' ) ) __A ={int(__A ): v for k, v in idalabel.items()} __A =idalabel __A ={v: k for k, v in idalabel.items()} __A =[1, 1_50, 4_80, 4_80] return config, expected_shape def A__ ( __A : Any ) ->Any: __A =['''pretrained.model.head.weight''', '''pretrained.model.head.bias'''] for k in ignore_keys: state_dict.pop(__A , __A ) def A__ ( __A : Tuple ) ->Optional[Any]: if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): __A =name.replace('''pretrained.model''' , '''dpt.encoder''' ) if "pretrained.model" in name: __A =name.replace('''pretrained.model''' , '''dpt.embeddings''' ) if "patch_embed" in name: __A =name.replace('''patch_embed''' , '''patch_embeddings''' ) if "pos_embed" in name: __A =name.replace('''pos_embed''' , '''position_embeddings''' ) if "attn.proj" in name: __A =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "proj" in name and "project" not in name: __A =name.replace('''proj''' , '''projection''' ) if "blocks" in name: __A =name.replace('''blocks''' , '''layer''' ) if "mlp.fc1" in name: __A =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __A =name.replace('''mlp.fc2''' , '''output.dense''' ) if "norm1" in name: __A =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __A =name.replace('''norm2''' , '''layernorm_after''' ) if "scratch.output_conv" in name: __A =name.replace('''scratch.output_conv''' , '''head''' ) if "scratch" in name: __A =name.replace('''scratch''' , '''neck''' ) if "layer1_rn" in name: __A =name.replace('''layer1_rn''' , '''convs.0''' ) if "layer2_rn" in name: __A =name.replace('''layer2_rn''' , '''convs.1''' ) if "layer3_rn" in name: __A =name.replace('''layer3_rn''' , '''convs.2''' ) if "layer4_rn" in name: __A =name.replace('''layer4_rn''' , '''convs.3''' ) if "refinenet" in name: __A =int(name[len('''neck.refinenet''' ) : len('''neck.refinenet''' ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 __A =name.replace(F'''refinenet{layer_idx}''' , F'''fusion_stage.layers.{abs(layer_idx-4 )}''' ) if "out_conv" in name: __A =name.replace('''out_conv''' , '''projection''' ) if "resConfUnit1" in name: __A =name.replace('''resConfUnit1''' , '''residual_layer1''' ) if "resConfUnit2" in name: __A =name.replace('''resConfUnit2''' , '''residual_layer2''' ) if "conv1" in name: __A =name.replace('''conv1''' , '''convolution1''' ) if "conv2" in name: __A =name.replace('''conv2''' , '''convolution2''' ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: __A =name.replace('''pretrained.act_postprocess1.0.project.0''' , '''neck.reassemble_stage.readout_projects.0.0''' ) if "pretrained.act_postprocess2.0.project.0" in name: __A =name.replace('''pretrained.act_postprocess2.0.project.0''' , '''neck.reassemble_stage.readout_projects.1.0''' ) if "pretrained.act_postprocess3.0.project.0" in name: __A =name.replace('''pretrained.act_postprocess3.0.project.0''' , '''neck.reassemble_stage.readout_projects.2.0''' ) if "pretrained.act_postprocess4.0.project.0" in name: __A =name.replace('''pretrained.act_postprocess4.0.project.0''' , '''neck.reassemble_stage.readout_projects.3.0''' ) # resize blocks if "pretrained.act_postprocess1.3" in name: __A =name.replace('''pretrained.act_postprocess1.3''' , '''neck.reassemble_stage.layers.0.projection''' ) if "pretrained.act_postprocess1.4" in name: __A =name.replace('''pretrained.act_postprocess1.4''' , '''neck.reassemble_stage.layers.0.resize''' ) if "pretrained.act_postprocess2.3" in name: __A =name.replace('''pretrained.act_postprocess2.3''' , '''neck.reassemble_stage.layers.1.projection''' ) if "pretrained.act_postprocess2.4" in name: __A =name.replace('''pretrained.act_postprocess2.4''' , '''neck.reassemble_stage.layers.1.resize''' ) if "pretrained.act_postprocess3.3" in name: __A =name.replace('''pretrained.act_postprocess3.3''' , '''neck.reassemble_stage.layers.2.projection''' ) if "pretrained.act_postprocess4.3" in name: __A =name.replace('''pretrained.act_postprocess4.3''' , '''neck.reassemble_stage.layers.3.projection''' ) if "pretrained.act_postprocess4.4" in name: __A =name.replace('''pretrained.act_postprocess4.4''' , '''neck.reassemble_stage.layers.3.resize''' ) if "pretrained" in name: __A =name.replace('''pretrained''' , '''dpt''' ) if "bn" in name: __A =name.replace('''bn''' , '''batch_norm''' ) if "head" in name: __A =name.replace('''head''' , '''head.head''' ) if "encoder.norm" in name: __A =name.replace('''encoder.norm''' , '''layernorm''' ) if "auxlayer" in name: __A =name.replace('''auxlayer''' , '''auxiliary_head.head''' ) return name def A__ ( __A : Dict , __A : int ) ->List[Any]: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __A =state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.weight''' ) __A =state_dict.pop(F'''dpt.encoder.layer.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __A =in_proj_weight[: config.hidden_size, :] __A =in_proj_bias[: config.hidden_size] __A =in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __A =in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __A =in_proj_weight[ -config.hidden_size :, : ] __A =in_proj_bias[-config.hidden_size :] def A__ ( ) ->Dict: __A ='''http://images.cocodataset.org/val2017/000000039769.jpg''' __A =Image.open(requests.get(__A , stream=__A ).raw ) return im @torch.no_grad() def A__ ( __A : Optional[Any] , __A : Any , __A : List[Any] , __A : List[str] ) ->Union[str, Any]: __A , __A =get_dpt_config(__A ) # load original state_dict from URL __A =torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' ) # remove certain keys remove_ignore_keys_(__A ) # rename keys for key in state_dict.copy().keys(): __A =state_dict.pop(__A ) __A =val # read in qkv matrices read_in_q_k_v(__A , __A ) # load HuggingFace model __A =DPTForSemanticSegmentation(__A ) if '''ade''' in checkpoint_url else DPTForDepthEstimation(__A ) model.load_state_dict(__A ) model.eval() # Check outputs on an image __A =4_80 if '''ade''' in checkpoint_url else 3_84 __A =DPTImageProcessor(size=__A ) __A =prepare_img() __A =image_processor(__A , return_tensors='''pt''' ) # forward pass __A =model(**__A ).logits if '''ade''' in checkpoint_url else model(**__A ).predicted_depth # Assert logits __A =torch.tensor([[6.3199, 6.3629, 6.4148], [6.3850, 6.3615, 6.4166], [6.3519, 6.3176, 6.3575]] ) if "ade" in checkpoint_url: __A =torch.tensor([[4.0480, 4.2420, 4.4360], [4.3124, 4.5693, 4.8261], [4.5768, 4.8965, 5.2163]] ) assert outputs.shape == torch.Size(__A ) assert ( torch.allclose(outputs[0, 0, :3, :3] , __A , atol=1e-4 ) if "ade" in checkpoint_url else torch.allclose(outputs[0, :3, :3] , __A ) ) Path(__A ).mkdir(exist_ok=__A ) print(F'''Saving model to {pytorch_dump_folder_path}''' ) model.save_pretrained(__A ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(__A ) if push_to_hub: print('''Pushing model to hub...''' ) model.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization='''nielsr''' , commit_message='''Add model''' , use_temp_dir=__A , ) image_processor.push_to_hub( repo_path_or_name=Path(__A , __A ) , organization='''nielsr''' , commit_message='''Add image processor''' , use_temp_dir=__A , ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt''', type=str, help='''URL of the original DPT checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model directory.''', ) parser.add_argument( '''--push_to_hub''', action='''store_true''', ) parser.add_argument( '''--model_name''', default='''dpt-large''', type=str, help='''Name of the model, in case you\'re pushing to the hub.''', ) _lowerCamelCase : Any = parser.parse_args() convert_dpt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name)
516
def A__ ( __A : int , __A : float , __A : float ) ->float: return round(float(moles / volume ) * nfactor ) def A__ ( __A : float , __A : float , __A : float ) ->float: return round(float((moles * 0.0821 * temperature) / (volume) ) ) def A__ ( __A : float , __A : float , __A : float ) ->float: return round(float((moles * 0.0821 * temperature) / (pressure) ) ) def A__ ( __A : float , __A : float , __A : float ) ->float: return round(float((pressure * volume) / (0.0821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
516
1
import argparse from torch import nn # transformers_old should correspond to branch `save_old_prophetnet_model_structure` here # original prophetnet_checkpoints are saved under `patrickvonplaten/..._old` respectively from transformers_old.modeling_prophetnet import ( ProphetNetForConditionalGeneration as ProphetNetForConditionalGenerationOld, ) from transformers_old.modeling_xlm_prophetnet import ( XLMProphetNetForConditionalGeneration as XLMProphetNetForConditionalGenerationOld, ) from transformers import ProphetNetForConditionalGeneration, XLMProphetNetForConditionalGeneration, logging _snake_case : str = logging.get_logger(__name__) logging.set_verbosity_info() def lowerCAmelCase_ ( __lowerCamelCase , __lowerCamelCase ): if "xprophetnet" in prophetnet_checkpoint_path: __snake_case : Any = XLMProphetNetForConditionalGenerationOld.from_pretrained(__lowerCamelCase ) __snake_case , __snake_case : Optional[Any] = XLMProphetNetForConditionalGeneration.from_pretrained( __lowerCamelCase , output_loading_info=__lowerCamelCase ) else: __snake_case : Optional[int] = ProphetNetForConditionalGenerationOld.from_pretrained(__lowerCamelCase ) __snake_case , __snake_case : Dict = ProphetNetForConditionalGeneration.from_pretrained( __lowerCamelCase , output_loading_info=__lowerCamelCase ) __snake_case : Union[str, Any] = ["key_proj", "value_proj", "query_proj"] __snake_case : Tuple = { "self_attn": "ngram_self_attn", "cross_attn": "encoder_attn", "cross_attn_layer_norm": "encoder_attn_layer_norm", "feed_forward_layer_norm": "final_layer_norm", "feed_forward": "", "intermediate": "fc1", "output": "fc2", "key_proj": "k_proj", "query_proj": "q_proj", "value_proj": "v_proj", "word_embeddings": "embed_tokens", "embeddings_layer_norm": "emb_layer_norm", "relative_pos_embeddings": "relative_linear", "ngram_embeddings": "ngram_input_embed", "position_embeddings": "embed_positions", } for key in loading_info["missing_keys"]: __snake_case : Optional[Any] = key.split("." ) if attributes[0] == "lm_head": __snake_case : Dict = prophet __snake_case : Tuple = prophet_old else: __snake_case : str = prophet.prophetnet __snake_case : Any = prophet_old.model __snake_case : Any = False for attribute in attributes: if attribute in mapping: __snake_case : Optional[int] = mapping[attribute] if not hasattr(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) > 0: __snake_case : List[str] = attribute elif hasattr(__lowerCamelCase , __lowerCamelCase ): __snake_case : List[str] = attribute if attribute == "weight": assert old_model.weight.shape == model.weight.shape, "Shapes have to match!" __snake_case : Dict = old_model.weight logger.info(F'{attribute} is initialized.' ) __snake_case : int = True break elif attribute == "bias": assert old_model.bias.shape == model.bias.shape, "Shapes have to match!" __snake_case : int = old_model.bias logger.info(F'{attribute} is initialized' ) __snake_case : Dict = True break elif attribute in special_keys and hasattr(__lowerCamelCase , "in_proj_weight" ): __snake_case : Any = old_model.in_proj_weight.shape[0] // 3 __snake_case : Dict = getattr(__lowerCamelCase , __lowerCamelCase ) param.weight.shape == old_model.in_proj_weight[:embed_dim, :].shape, "Shapes have to match" param.bias.shape == old_model.in_proj_bias[:embed_dim].shape, "Shapes have to match" if attribute == "query_proj": __snake_case : Any = nn.Parameter(old_model.in_proj_weight[:embed_dim, :] ) __snake_case : Tuple = nn.Parameter(old_model.in_proj_bias[:embed_dim] ) elif attribute == "key_proj": __snake_case : str = nn.Parameter(old_model.in_proj_weight[embed_dim : 2 * embed_dim, :] ) __snake_case : List[Any] = nn.Parameter(old_model.in_proj_bias[embed_dim : 2 * embed_dim] ) elif attribute == "value_proj": __snake_case : List[Any] = nn.Parameter(old_model.in_proj_weight[2 * embed_dim :, :] ) __snake_case : Optional[Any] = nn.Parameter(old_model.in_proj_bias[2 * embed_dim :] ) __snake_case : int = True break elif attribute == "position_embeddings": assert ( model.position_embeddings.weight.shape[-1] == old_model.embed_positions.weight.shape[-1] ), "Hidden size has to match" assert model.position_embeddings.weight.shape[0] == 5_1_2, "We want 512 position_embeddings." __snake_case : Tuple = nn.Parameter(old_model.embed_positions.weight[:5_1_2, :] ) __snake_case : List[str] = True break if attribute.isdigit(): __snake_case : List[str] = model[int(__lowerCamelCase )] __snake_case : int = old_model[int(__lowerCamelCase )] else: __snake_case : Optional[int] = getattr(__lowerCamelCase , __lowerCamelCase ) if old_attribute == "": __snake_case : Optional[Any] = old_model else: if not hasattr(__lowerCamelCase , __lowerCamelCase ): raise ValueError(F'{old_model} does not have {old_attribute}' ) __snake_case : str = getattr(__lowerCamelCase , __lowerCamelCase ) if not is_key_init: raise ValueError(F'{key} was not correctly initialized!' ) print(F'Saving model to {pytorch_dump_folder_path}' ) prophet.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": _snake_case : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--prophetnet_checkpoint_path", default=None, type=str, required=True, help="Path the official PyTorch dump." ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) _snake_case : int = parser.parse_args() convert_prophetnet_checkpoint_to_pytorch(args.prophetnet_checkpoint_path, args.pytorch_dump_folder_path)
81
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = {'''vocab_file''': '''spiece.model'''} SCREAMING_SNAKE_CASE__ = { '''vocab_file''': { '''bert_for_seq_generation''': ( '''https://huggingface.co/google/bert_for_seq_generation_L-24_bbc_encoder/resolve/main/spiece.model''' ), } } SCREAMING_SNAKE_CASE__ = {'''bert_for_seq_generation''': 512} class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : int = VOCAB_FILES_NAMES __SCREAMING_SNAKE_CASE : List[str] = PRETRAINED_VOCAB_FILES_MAP __SCREAMING_SNAKE_CASE : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __SCREAMING_SNAKE_CASE : List[int] = [] __SCREAMING_SNAKE_CASE : int = ['''input_ids''', '''attention_mask'''] def __init__( self : str , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any]="<s>" , SCREAMING_SNAKE_CASE__ : Tuple="</s>" , SCREAMING_SNAKE_CASE__ : Any="<unk>" , SCREAMING_SNAKE_CASE__ : int="<pad>" , SCREAMING_SNAKE_CASE__ : List[str]="<::::>" , SCREAMING_SNAKE_CASE__ : Optional[Dict[str, Any]] = None , **SCREAMING_SNAKE_CASE__ : Tuple , ): '''simple docstring''' __a : Tuple = {} if sp_model_kwargs is None else sp_model_kwargs # Add extra_ids to the special token list super().__init__( bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , sp_model_kwargs=self.sp_model_kwargs , **SCREAMING_SNAKE_CASE__ , ) __a : int = vocab_file __a : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(SCREAMING_SNAKE_CASE__ ) @property def __lowerCAmelCase ( self : Optional[int] ): '''simple docstring''' return self.sp_model.get_piece_size() def __lowerCAmelCase ( self : int ): '''simple docstring''' __a : Dict = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Optional[Any] ): '''simple docstring''' __a : Union[str, Any] = self.__dict__.copy() __a : Any = None return state def __setstate__( self : int , SCREAMING_SNAKE_CASE__ : List[str] ): '''simple docstring''' __a : str = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __a : str = {} __a : List[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __lowerCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' return self.sp_model.encode(SCREAMING_SNAKE_CASE__ , out_type=SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' return self.sp_model.piece_to_id(SCREAMING_SNAKE_CASE__ ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a : int = self.sp_model.IdToPiece(SCREAMING_SNAKE_CASE__ ) return token def __lowerCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a : Optional[Any] = [] __a : Optional[int] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) + token __a : Dict = [] else: current_sub_tokens.append(SCREAMING_SNAKE_CASE__ ) out_string += self.sp_model.decode(SCREAMING_SNAKE_CASE__ ) return out_string.strip() def __lowerCAmelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return __a : Tuple = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , SCREAMING_SNAKE_CASE__ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE__ , 'wb' ) as fi: __a : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE__ ) return (out_vocab_file,)
47
0
'''simple docstring''' import unittest import numpy as np import torch from .utils_summarization import build_mask, compute_token_type_ids, process_story, truncate_or_pad class lowerCamelCase ( unittest.TestCase ): def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : List[Any] = 10 def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = [1, 2, 3, 4] _snake_case : Any = [1, 2, 3, 4, 0, 0, 0, 0, 0, 0] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Tuple = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] _snake_case : Optional[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> str: """simple docstring""" _snake_case : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] _snake_case : List[Any] = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] self.assertEqual(truncate_or_pad(UpperCamelCase_ , self.block_size , 0 ) , UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> Any: """simple docstring""" _snake_case : Optional[int] = '''It was the year of Our Lord one thousand seven hundred and seventy-five.\n\nSpiritual revelations were conceded to England at that favoured period, as at this.''' _snake_case , _snake_case : Union[str, Any] = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) def UpperCAmelCase_ ( self ) -> Union[str, Any]: """simple docstring""" _snake_case : int = '''''' _snake_case , _snake_case : Any = process_story(UpperCamelCase_ ) self.assertEqual(UpperCamelCase_ , [] ) self.assertEqual(UpperCamelCase_ , [] ) def UpperCAmelCase_ ( self ) -> Dict: """simple docstring""" _snake_case : List[str] = ( '''It was the year of Our Lord one thousand seven hundred and ''' '''seventy-five\n\nSpiritual revelations were conceded to England ''' '''at that favoured period, as at this.\n@highlight\n\nIt was the best of times''' ) _snake_case , _snake_case : Union[str, Any] = process_story(UpperCamelCase_ ) _snake_case : Any = [ '''It was the year of Our Lord one thousand seven hundred and seventy-five.''', '''Spiritual revelations were conceded to England at that favoured period, as at this.''', ] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) _snake_case : Dict = ['''It was the best of times.'''] self.assertEqual(UpperCamelCase_ , UpperCamelCase_ ) def UpperCAmelCase_ ( self ) -> Optional[Any]: """simple docstring""" _snake_case : List[str] = torch.tensor([1, 2, 3, 4] ) _snake_case : str = torch.tensor([1, 1, 1, 1] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 0 ).numpy() , expected.numpy() ) def UpperCAmelCase_ ( self ) -> List[Any]: """simple docstring""" _snake_case : Dict = torch.tensor([1, 2, 3, 4, 23, 23, 23] ) _snake_case : Tuple = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 23 ).numpy() , expected.numpy() ) def UpperCAmelCase_ ( self ) -> int: """simple docstring""" _snake_case : Union[str, Any] = torch.tensor([8, 2, 3, 4, 1, 1, 1] ) _snake_case : Optional[int] = torch.tensor([1, 1, 1, 1, 0, 0, 0] ) np.testing.assert_array_equal(build_mask(UpperCamelCase_ , 1 ).numpy() , expected.numpy() ) def UpperCAmelCase_ ( self ) -> Tuple: """simple docstring""" _snake_case : Union[str, Any] = 101 _snake_case : Optional[Any] = torch.tensor([[1, 2, 3, 4, 5, 6], [1, 2, 3, 101, 5, 6], [1, 101, 3, 4, 101, 6]] ) _snake_case : Optional[int] = torch.tensor([[1, 1, 1, 1, 1, 1], [1, 1, 1, 0, 0, 0], [1, 0, 0, 0, 1, 1]] ) _snake_case : Union[str, Any] = compute_token_type_ids(UpperCamelCase_ , UpperCamelCase_ ) np.testing.assert_array_equal(UpperCamelCase_ , UpperCamelCase_ )
713
'''simple docstring''' import os import numpy import onnx def _a ( lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : List[Any] = a.name _snake_case : List[Any] = b.name _snake_case : Tuple = '''''' _snake_case : Tuple = '''''' _snake_case : Optional[Any] = a == b _snake_case : List[Any] = name_a _snake_case : str = name_b return res def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for i, input_name in enumerate(node_proto.input ): if input_name == name: node_proto.input.insert(lowerCAmelCase_ , lowerCAmelCase_ ) node_proto.input.pop(i + 1 ) if node_proto.op_type == "If": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) _graph_replace_input_with(node_proto.attribute[1].g , lowerCAmelCase_ , lowerCAmelCase_ ) if node_proto.op_type == "Loop": _graph_replace_input_with(node_proto.attribute[0].g , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" for n in graph_proto.node: _node_replace_input_with(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): """simple docstring""" _snake_case : Optional[Any] = list(model.graph.initializer ) _snake_case : List[str] = list(model_without_ext.graph.initializer ) for i, ref_i in ind_to_replace: assert inits_with_data[i].name == inits[i].name assert inits_with_data[ref_i].name == inits[ref_i].name assert i > ref_i _snake_case : List[Any] = inits[i].name _snake_case : List[str] = inits[ref_i].name model_without_ext.graph.initializer.remove(inits[i] ) # for n in model.graph.node: _graph_replace_input_with(model_without_ext.graph , lowerCAmelCase_ , lowerCAmelCase_ ) def _a ( lowerCAmelCase_ ): """simple docstring""" _snake_case : Tuple = os.path.dirname(lowerCAmelCase_ ) _snake_case : str = os.path.basename(lowerCAmelCase_ ) _snake_case : Tuple = onnx.load(os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) ) _snake_case : Union[str, Any] = list(model.graph.initializer ) _snake_case : Union[str, Any] = set() _snake_case : Any = {} _snake_case : str = [] _snake_case : Union[str, Any] = 0 for i in range(len(lowerCAmelCase_ ) ): if i in dup_set: continue for j in range(i + 1 , len(lowerCAmelCase_ ) ): if j in dup_set: continue if _is_equal_tensor_proto(inits[i] , inits[j] ): dup_set.add(lowerCAmelCase_ ) dup_set.add(lowerCAmelCase_ ) _snake_case : List[Any] = inits[j].data_type _snake_case : Dict = numpy.prod(inits[j].dims ) if dtype == 1: mem_size *= 4 elif dtype == 6: mem_size *= 4 elif dtype == 7 or dtype == 11: mem_size *= 8 else: print('''unexpected data type: ''' , lowerCAmelCase_ ) total_reduced_size += mem_size _snake_case : Union[str, Any] = inits[i].name _snake_case : Any = inits[j].name if name_i in dup_map: dup_map[name_i].append(lowerCAmelCase_ ) else: _snake_case : Union[str, Any] = [name_j] ind_to_replace.append((j, i) ) print('''total reduced size: ''' , total_reduced_size / 1_024 / 1_024 / 1_024 , '''GB''' ) _snake_case : List[str] = sorted(lowerCAmelCase_ ) _remove_dup_initializers_from_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) _snake_case : List[str] = '''optimized_''' + model_file_name _snake_case : List[Any] = os.path.join(lowerCAmelCase_ , lowerCAmelCase_ ) onnx.save(lowerCAmelCase_ , lowerCAmelCase_ ) return new_model
47
0
import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple ) -> int: _lowercase = args.pruning_method _lowercase = args.threshold _lowercase = args.model_name_or_path.rstrip('/' ) _lowercase = args.target_model_path print(F"""Load fine-pruned model from {model_name_or_path}""" ) _lowercase = torch.load(os.path.join(snake_case__ , 'pytorch_model.bin' ) ) _lowercase = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _lowercase = tensor print(F"""Copied layer {name}""" ) elif "classifier" in name or "qa_output" in name: _lowercase = tensor print(F"""Copied layer {name}""" ) elif "bias" in name: _lowercase = tensor print(F"""Copied layer {name}""" ) else: if pruning_method == "magnitude": _lowercase = MagnitudeBinarizer.apply(inputs=snake_case__ , threshold=snake_case__ ) _lowercase = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "topK": if "mask_scores" in name: continue _lowercase = name[:-6] _lowercase = model[F"""{prefix_}mask_scores"""] _lowercase = TopKBinarizer.apply(snake_case__ , snake_case__ ) _lowercase = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _lowercase = name[:-6] _lowercase = model[F"""{prefix_}mask_scores"""] _lowercase = ThresholdBinarizer.apply(snake_case__ , snake_case__ , snake_case__ ) _lowercase = tensor * mask print(F"""Pruned layer {name}""" ) elif pruning_method == "l0": if "mask_scores" in name: continue _lowercase = name[:-6] _lowercase = model[F"""{prefix_}mask_scores"""] _lowercase , _lowercase = -0.1, 1.1 _lowercase = torch.sigmoid(snake_case__ ) _lowercase = s * (r - l) + l _lowercase = s_bar.clamp(min=0.0 , max=1.0 ) _lowercase = tensor * mask print(F"""Pruned layer {name}""" ) else: raise ValueError('Unknown pruning method' ) if target_model_path is None: _lowercase = os.path.join( os.path.dirname(snake_case__ ) , F"""bertarized_{os.path.basename(snake_case__ )}""" ) if not os.path.isdir(snake_case__ ): shutil.copytree(snake_case__ , snake_case__ ) print(F"""\nCreated folder {target_model_path}""" ) torch.save(snake_case__ , os.path.join(snake_case__ , 'pytorch_model.bin' ) ) print('\nPruned model saved! See you later!' ) if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) snake_case = parser.parse_args() main(args)
67
import argparse import json from tqdm import tqdm def _lowercase ( ): __lowerCAmelCase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--src_path''' , type=lowercase__ , default='''biencoder-nq-dev.json''' , help='''Path to raw DPR training data''' , ) parser.add_argument( '''--evaluation_set''' , type=lowercase__ , help='''where to store parsed evaluation_set file''' , ) parser.add_argument( '''--gold_data_path''' , type=lowercase__ , help='''where to store parsed gold_data_path file''' , ) __lowerCAmelCase : Any = parser.parse_args() with open(args.src_path , '''r''' ) as src_file, open(args.evaluation_set , '''w''' ) as eval_file, open( args.gold_data_path , '''w''' ) as gold_file: __lowerCAmelCase : int = json.load(lowercase__ ) for dpr_record in tqdm(lowercase__ ): __lowerCAmelCase : Optional[Any] = dpr_record['''question'''] __lowerCAmelCase : Union[str, Any] = [context['''title'''] for context in dpr_record['''positive_ctxs''']] eval_file.write(question + '''\n''' ) gold_file.write('''\t'''.join(lowercase__ ) + '''\n''' ) if __name__ == "__main__": main()
492
0
import os import sys import transformers UpperCamelCase__ = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
700
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = {"""configuration_sew""": ["""SEW_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SEWConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[str] = [ """SEW_PRETRAINED_MODEL_ARCHIVE_LIST""", """SEWForCTC""", """SEWForSequenceClassification""", """SEWModel""", """SEWPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys UpperCamelCase__ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
486
0
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __UpperCAmelCase =False __UpperCAmelCase =True __UpperCAmelCase =False if __name__ == "__main__": __UpperCAmelCase =argparse.ArgumentParser() parser.add_argument( "--repo_path", default=None, type=str, required=True, help="The config json file corresponding to the architecture.", ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") __UpperCAmelCase =parser.parse_args() __UpperCAmelCase ={ "image_size": "sample_size", "num_res_blocks": "layers_per_block", "block_channels": "block_out_channels", "down_blocks": "down_block_types", "up_blocks": "up_block_types", "downscale_freq_shift": "freq_shift", "resnet_num_groups": "norm_num_groups", "resnet_act_fn": "act_fn", "resnet_eps": "norm_eps", "num_head_channels": "attention_head_dim", } __UpperCAmelCase ={ "time_steps": "time_proj", "mid": "mid_block", "downsample_blocks": "down_blocks", "upsample_blocks": "up_blocks", } __UpperCAmelCase ="" if has_file(args.repo_path, "config.json") else "unet" with open(os.path.join(args.repo_path, subfolder, "config.json"), "r", encoding="utf-8") as reader: __UpperCAmelCase =reader.read() __UpperCAmelCase =json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, "config.json"): __UpperCAmelCase =UNetaDModel(**config) else: __UpperCAmelCase =UNetaDConditionModel if "ldm-text2im-large-256" in args.repo_path else UNetaDModel __UpperCAmelCase =class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __UpperCAmelCase =dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __UpperCAmelCase =config[key] del config[key] __UpperCAmelCase =[k.replace("UNetRes", "") for k in config["down_block_types"]] __UpperCAmelCase =[k.replace("UNetRes", "") for k in config["up_block_types"]] if do_only_weights: __UpperCAmelCase =torch.load(os.path.join(args.repo_path, subfolder, "diffusion_pytorch_model.bin")) __UpperCAmelCase ={} for param_key, param_value in state_dict.items(): if param_key.endswith(".op.bias") or param_key.endswith(".op.weight"): continue __UpperCAmelCase =False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(".")[0] == key: __UpperCAmelCase =param_value __UpperCAmelCase =True if not has_changed: __UpperCAmelCase =param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
546
'''simple docstring''' import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration __UpperCAmelCase =pytest.mark.integration __UpperCAmelCase ={"comet"} __UpperCAmelCase =importlib.util.find_spec("fairseq") is not None __UpperCAmelCase ={"code_eval"} __UpperCAmelCase =os.name == "nt" __UpperCAmelCase ={"bertscore", "frugalscore", "perplexity"} __UpperCAmelCase =importlib.util.find_spec("transformers") is not None def __lowerCAmelCase ( UpperCamelCase__ ) -> Any: @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def __lowerCAmelCase ( UpperCamelCase__ ) -> Any: @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def __lowerCAmelCase ( UpperCamelCase__ ) -> List[Any]: @wraps(UpperCamelCase__ ) def wrapper(self , UpperCamelCase__ ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , UpperCamelCase__ ) return wrapper def __lowerCAmelCase ( ) -> Any: __lowerCamelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) @local class a__ ( parameterized.TestCase ): lowerCamelCase : str ={} lowerCamelCase : Union[str, Any] =None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : List[Any] ): """simple docstring""" __lowerCamelCase = '''[...]''' __lowerCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , a ) ).module_path ) __lowerCamelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=a ) # check parameters __lowerCamelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(a , metric_module.__name__ ): with self.use_local_metrics(): try: __lowerCamelCase = doctest.testmod(a , verbose=a , raise_on_error=a ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , a : Optional[int] ): """simple docstring""" __lowerCamelCase = '''[...]''' __lowerCamelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , a ) ).module_path ) # run doctest with self.use_local_metrics(): __lowerCamelCase = doctest.testmod(a , verbose=a , raise_on_error=a ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def SCREAMING_SNAKE_CASE__ ( self : Any , a : Optional[Any] , a : Any ): """simple docstring""" if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](a ): yield else: yield @contextmanager def SCREAMING_SNAKE_CASE__ ( self : Dict ): """simple docstring""" def load_local_metric(a : List[str] , *a : Optional[int] , **a : Tuple ): return load_metric(os.path.join('''metrics''' , a ) , *a , **a ) with patch('''datasets.load_metric''' ) as mock_load_metric: __lowerCamelCase = load_local_metric yield @classmethod def SCREAMING_SNAKE_CASE__ ( cls : List[str] , a : Tuple ): """simple docstring""" def wrapper(a : List[Any] ): __lowerCamelCase = contextmanager(a ) __lowerCamelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Union[str, Any]: import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class a__ ( UpperCAmelCase__ ): def SCREAMING_SNAKE_CASE__ ( self : Tuple , a : Dict ): """simple docstring""" assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: __lowerCamelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def __lowerCAmelCase ( UpperCamelCase__ ) -> Tuple: import torch def bert_cos_score_idf(UpperCamelCase__ , UpperCamelCase__ , *UpperCamelCase__ , **UpperCamelCase__ ): return torch.tensor([[1.0, 1.0, 1.0]] * len(UpperCamelCase__ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: __lowerCamelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def __lowerCAmelCase ( UpperCamelCase__ ) -> List[str]: def load_from_checkpoint(UpperCamelCase__ ): class a__ : def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , a : str , *a : int , **a : Tuple ): """simple docstring""" assert len(a ) == 2 __lowerCamelCase = [0.19, 0.92] return scores, sum(a ) / len(a ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: __lowerCamelCase = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: __lowerCamelCase = load_from_checkpoint yield def __lowerCAmelCase ( ) -> List[Any]: __lowerCamelCase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) __lowerCamelCase = '''ERROR''' __lowerCamelCase = f"""Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}""" with pytest.raises(UpperCamelCase__ , match=re.escape(UpperCamelCase__ ) ): metric.compute(predictions=[] , references=[] , scheme=UpperCamelCase__ )
546
1
"""simple docstring""" import re from pathlib import Path from unittest import TestCase import pytest @pytest.mark.integration class SCREAMING_SNAKE_CASE_ ( _lowercase): '''simple docstring''' def UpperCAmelCase ( self , lowerCamelCase__) -> Optional[Any]: '''simple docstring''' with open(lowerCamelCase__ , encoding="utf-8") as input_file: snake_case__ : Dict = re.compile(R"(?!.*\b(?:encoding|rb|w|wb|w+|wb+|ab|ab+)\b)(?<=\s)(open)\((.*)\)") snake_case__ : Optional[int] = input_file.read() snake_case__ : str = regexp.search(lowerCamelCase__) return match def UpperCAmelCase ( self , lowerCamelCase__) -> List[Any]: '''simple docstring''' with open(lowerCamelCase__ , encoding="utf-8") as input_file: snake_case__ : str = re.compile(R"#[^\r\n]*print\(|\"[^\r\n]*print\(|\"\"\".*?print\(.*?\"\"\"|(print\()" , re.DOTALL) snake_case__ : Optional[int] = input_file.read() # use `re.finditer` to handle the case where the ignored groups would be matched first by `re.search` snake_case__ : Dict = regexp.finditer(lowerCamelCase__) snake_case__ : str = [match for match in matches if match is not None and match.group(1) is not None] return matches[0] if matches else None def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' snake_case__ : Optional[int] = Path("./datasets") snake_case__ : Any = list(dataset_paths.absolute().glob("**/*.py")) for dataset in dataset_files: if self._no_encoding_on_file_open(str(lowerCamelCase__)): raise AssertionError(f"""open(...) must use utf-8 encoding in {dataset}""") def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' snake_case__ : Dict = Path("./datasets") snake_case__ : Optional[int] = list(dataset_paths.absolute().glob("**/*.py")) for dataset in dataset_files: if self._no_print_statements(str(lowerCamelCase__)): raise AssertionError(f"""print statement found in {dataset}. Use datasets.logger/logging instead.""")
714
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase = { """configuration_convbert""": ["""CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConvBertConfig""", """ConvBertOnnxConfig"""], """tokenization_convbert""": ["""ConvBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = ["""ConvBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConvBertForMaskedLM""", """ConvBertForMultipleChoice""", """ConvBertForQuestionAnswering""", """ConvBertForSequenceClassification""", """ConvBertForTokenClassification""", """ConvBertLayer""", """ConvBertModel""", """ConvBertPreTrainedModel""", """load_tf_weights_in_convbert""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase = [ """TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFConvBertForMaskedLM""", """TFConvBertForMultipleChoice""", """TFConvBertForQuestionAnswering""", """TFConvBertForSequenceClassification""", """TFConvBertForTokenClassification""", """TFConvBertLayer""", """TFConvBertModel""", """TFConvBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_convbert import CONVBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvBertConfig, ConvBertOnnxConfig from .tokenization_convbert import ConvBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_convbert_fast import ConvBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convbert import ( CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvBertForMaskedLM, ConvBertForMultipleChoice, ConvBertForQuestionAnswering, ConvBertForSequenceClassification, ConvBertForTokenClassification, ConvBertLayer, ConvBertModel, ConvBertPreTrainedModel, load_tf_weights_in_convbert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convbert import ( TF_CONVBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFConvBertForMaskedLM, TFConvBertForMultipleChoice, TFConvBertForQuestionAnswering, TFConvBertForSequenceClassification, TFConvBertForTokenClassification, TFConvBertLayer, TFConvBertModel, TFConvBertPreTrainedModel, ) else: import sys lowercase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
150
0
from typing import Dict, List from nltk.translate import gleu_score import datasets from datasets import MetricInfo __snake_case = '''\ @misc{wu2016googles, title={Google\'s Neural Machine Translation System: Bridging the Gap between Human and Machine Translation}, author={Yonghui Wu and Mike Schuster and Zhifeng Chen and Quoc V. Le and Mohammad Norouzi and Wolfgang Macherey and Maxim Krikun and Yuan Cao and Qin Gao and Klaus Macherey and Jeff Klingner and Apurva Shah and Melvin Johnson and Xiaobing Liu and Łukasz Kaiser and Stephan Gouws and Yoshikiyo Kato and Taku Kudo and Hideto Kazawa and Keith Stevens and George Kurian and Nishant Patil and Wei Wang and Cliff Young and Jason Smith and Jason Riesa and Alex Rudnick and Oriol Vinyals and Greg Corrado and Macduff Hughes and Jeffrey Dean}, year={2016}, eprint={1609.08144}, archivePrefix={arXiv}, primaryClass={cs.CL} } ''' __snake_case = '''\ The BLEU score has some undesirable properties when used for single sentences, as it was designed to be a corpus measure. We therefore use a slightly different score for our RL experiments which we call the \'GLEU score\'. For the GLEU score, we record all sub-sequences of 1, 2, 3 or 4 tokens in output and target sequence (n-grams). We then compute a recall, which is the ratio of the number of matching n-grams to the number of total n-grams in the target (ground truth) sequence, and a precision, which is the ratio of the number of matching n-grams to the number of total n-grams in the generated output sequence. Then GLEU score is simply the minimum of recall and precision. This GLEU score\'s range is always between 0 (no matches) and 1 (all match) and it is symmetrical when switching output and target. According to our experiments, GLEU score correlates quite well with the BLEU metric on a corpus level but does not have its drawbacks for our per sentence reward objective. ''' __snake_case = '''\ Computes corpus-level Google BLEU (GLEU) score of translated segments against one or more references. Instead of averaging the sentence level GLEU scores (i.e. macro-average precision), Wu et al. (2016) sum up the matching tokens and the max of hypothesis and reference tokens for each sentence, then compute using the aggregate values. Args: predictions (list of str): list of translations to score. Each translation should be tokenized into a list of tokens. references (list of list of str): list of lists of references for each translation. Each reference should be tokenized into a list of tokens. min_len (int): The minimum order of n-gram this function should extract. Defaults to 1. max_len (int): The maximum order of n-gram this function should extract. Defaults to 4. Returns: \'google_bleu\': google_bleu score Examples: Example 1: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.44 Example 2: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references) >>> print(round(results["google_bleu"], 2)) 0.61 Example 3: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses, references=list_of_references, min_len=2) >>> print(round(results["google_bleu"], 2)) 0.53 Example 4: >>> hyp1 = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'which\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'always\', ... \'disobeys\', \'the\', \'commands\', \'of\', \'the\', \'cat\'] >>> ref1a = [\'It\', \'is\', \'the\', \'guiding\', \'principle\', \'which\', ... \'guarantees\', \'the\', \'rubber\', \'duck\', \'forces\', \'never\', ... \'being\', \'under\', \'the\', \'command\', \'of\', \'the\', \'cat\'] >>> ref1b = [\'It\', \'is\', \'a\', \'guide\', \'to\', \'action\', \'that\', ... \'ensures\', \'that\', \'the\', \'rubber\', \'duck\', \'will\', \'never\', ... \'heed\', \'the\', \'cat\', \'commands\'] >>> ref1c = [\'It\', \'is\', \'the\', \'practical\', \'guide\', \'for\', \'the\', ... \'rubber\', \'duck\', \'army\', \'never\', \'to\', \'heed\', \'the\', \'directions\', ... \'of\', \'the\', \'cat\'] >>> hyp2 = [\'he\', \'read\', \'the\', \'book\', \'because\', \'he\', \'was\', ... \'interested\', \'in\', \'world\', \'history\'] >>> ref2a = [\'he\', \'was\', \'interested\', \'in\', \'world\', \'history\', ... \'because\', \'he\', \'read\', \'the\', \'book\'] >>> list_of_references = [[ref1a, ref1b, ref1c], [ref2a]] >>> hypotheses = [hyp1, hyp2] >>> google_bleu = datasets.load_metric("google_bleu") >>> results = google_bleu.compute(predictions=hypotheses,references=list_of_references, min_len=2, max_len=6) >>> print(round(results["google_bleu"], 2)) 0.4 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __lowerCamelCase (datasets.Metric ): def snake_case_ ( self: Optional[int] ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION,citation=_CITATION,inputs_description=_KWARGS_DESCRIPTION,features=datasets.Features( { 'predictions': datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ), 'references': datasets.Sequence( datasets.Sequence(datasets.Value('string',id='token' ),id='sequence' ),id='references' ), } ),) def snake_case_ ( self: Union[str, Any],A_: List[List[List[str]]],A_: List[List[str]],A_: int = 1,A_: int = 4,): '''simple docstring''' return { "google_bleu": gleu_score.corpus_gleu( list_of_references=A_,hypotheses=A_,min_len=A_,max_len=A_ ) }
1
import importlib import math import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Tuple, Union import flax import jax.numpy as jnp from ..utils import BaseOutput UpperCAmelCase : Tuple = """scheduler_config.json""" class __lowerCAmelCase ( UpperCamelCase__): _lowercase : Optional[Any] = 1 _lowercase : List[str] = 2 _lowercase : int = 3 _lowercase : str = 4 _lowercase : Optional[Any] = 5 @dataclass class __lowerCAmelCase ( UpperCamelCase__): _lowercase : jnp.ndarray class __lowerCAmelCase : _lowercase : Optional[int] = SCHEDULER_CONFIG_NAME _lowercase : int = ["""dtype"""] _lowercase : Union[str, Any] = [] _lowercase : List[Any] = True @classmethod def _lowercase ( cls , lowerCAmelCase__ = None , lowerCAmelCase__ = None , lowerCAmelCase__=False , **lowerCAmelCase__ , ) -> Tuple: '''simple docstring''' a__ , a__ : Union[str, Any] =cls.load_config( pretrained_model_name_or_path=lowerCAmelCase__ , subfolder=lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ , ) a__ , a__ : Dict =cls.from_config(lowerCAmelCase__ , return_unused_kwargs=lowerCAmelCase__ , **lowerCAmelCase__ ) if hasattr(lowerCAmelCase__ , "create_state" ) and getattr(lowerCAmelCase__ , "has_state" , lowerCAmelCase__ ): a__ : Dict =scheduler.create_state() if return_unused_kwargs: return scheduler, state, unused_kwargs return scheduler, state def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__ = False , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' self.save_config(save_directory=lowerCAmelCase__ , push_to_hub=lowerCAmelCase__ , **lowerCAmelCase__ ) @property def _lowercase ( self ) -> str: '''simple docstring''' return self._get_compatibles() @classmethod def _lowercase ( cls ) -> List[str]: '''simple docstring''' a__ : int =list(set([cls.__name__] + cls._compatibles ) ) a__ : Dict =importlib.import_module(__name__.split("." )[0] ) a__ : str =[ getattr(lowerCAmelCase__ , lowerCAmelCase__ ) for c in compatible_classes_str if hasattr(lowerCAmelCase__ , lowerCAmelCase__ ) ] return compatible_classes def _A ( SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : Tuple[int] ): """simple docstring""" assert len(SCREAMING_SNAKE_CASE ) >= x.ndim return jnp.broadcast_to(x.reshape(x.shape + (1,) * (len(SCREAMING_SNAKE_CASE ) - x.ndim) ) , SCREAMING_SNAKE_CASE ) def _A ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Tuple=0.9_9_9 , SCREAMING_SNAKE_CASE : Dict=jnp.floataa ): """simple docstring""" def alpha_bar(SCREAMING_SNAKE_CASE : Union[str, Any] ): return math.cos((time_step + 0.0_0_8) / 1.0_0_8 * math.pi / 2 ) ** 2 a__ : Union[str, Any] =[] for i in range(SCREAMING_SNAKE_CASE ): a__ : List[str] =i / num_diffusion_timesteps a__ : Union[str, Any] =(i + 1) / num_diffusion_timesteps betas.append(min(1 - alpha_bar(SCREAMING_SNAKE_CASE ) / alpha_bar(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) ) return jnp.array(SCREAMING_SNAKE_CASE , dtype=SCREAMING_SNAKE_CASE ) @flax.struct.dataclass class __lowerCAmelCase : _lowercase : jnp.ndarray _lowercase : jnp.ndarray _lowercase : jnp.ndarray @classmethod def _lowercase ( cls , lowerCAmelCase__ ) -> str: '''simple docstring''' a__ : Tuple =scheduler.config if config.trained_betas is not None: a__ : Optional[Any] =jnp.asarray(config.trained_betas , dtype=scheduler.dtype ) elif config.beta_schedule == "linear": a__ : List[str] =jnp.linspace(config.beta_start , config.beta_end , config.num_train_timesteps , dtype=scheduler.dtype ) elif config.beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. a__ : Optional[Any] =( jnp.linspace( config.beta_start**0.5 , config.beta_end**0.5 , config.num_train_timesteps , dtype=scheduler.dtype ) ** 2 ) elif config.beta_schedule == "squaredcos_cap_v2": # Glide cosine schedule a__ : Optional[Any] =betas_for_alpha_bar(config.num_train_timesteps , dtype=scheduler.dtype ) else: raise NotImplementedError( F'''beta_schedule {config.beta_schedule} is not implemented for scheduler {scheduler.__class__.__name__}''' ) a__ : Dict =1.0 - betas a__ : Tuple =jnp.cumprod(lowerCAmelCase__ , axis=0 ) return cls( alphas=lowerCAmelCase__ , betas=lowerCAmelCase__ , alphas_cumprod=lowerCAmelCase__ , ) def _A ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ): """simple docstring""" a__ : Optional[int] =state.alphas_cumprod a__ : List[Any] =alphas_cumprod[timesteps] ** 0.5 a__ : List[Any] =sqrt_alpha_prod.flatten() a__ : str =broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) a__ : Dict =(1 - alphas_cumprod[timesteps]) ** 0.5 a__ : Any =sqrt_one_minus_alpha_prod.flatten() a__ : Optional[int] =broadcast_to_shape_from_left(SCREAMING_SNAKE_CASE , original_samples.shape ) return sqrt_alpha_prod, sqrt_one_minus_alpha_prod def _A ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ): """simple docstring""" a__ , a__ : Optional[Any] =get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : str =sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise return noisy_samples def _A ( SCREAMING_SNAKE_CASE : CommonSchedulerState , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray , SCREAMING_SNAKE_CASE : jnp.ndarray ): """simple docstring""" a__ , a__ : List[Any] =get_sqrt_alpha_prod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ : str =sqrt_alpha_prod * noise - sqrt_one_minus_alpha_prod * sample return velocity
563
0
'''simple docstring''' import numpy as np from numpy import ndarray from scipy.optimize import Bounds, LinearConstraint, minimize def _UpperCamelCase ( __A ) -> float: '''simple docstring''' return np.dot(__A , __A ) class lowercase_ : def __init__( self , *, a = np.inf , a = "linear" , a = 0.0 , ): UpperCamelCase__ = regularization UpperCamelCase__ = gamma if kernel == "linear": UpperCamelCase__ = self.__linear elif kernel == "rbf": if self.gamma == 0: raise ValueError("rbf kernel requires gamma" ) if not isinstance(self.gamma , (float, int) ): raise ValueError("gamma must be float or int" ) if not self.gamma > 0: raise ValueError("gamma must be > 0" ) UpperCamelCase__ = self.__rbf # in the future, there could be a default value like in sklearn # sklear: def_gamma = 1/(n_features * X.var()) (wiki) # previously it was 1/(n_features) else: UpperCamelCase__ = f'''Unknown kernel: {kernel}''' raise ValueError(a ) def __a ( self , a , a ): return np.dot(a , a ) def __a ( self , a , a ): return np.exp(-(self.gamma * norm_squared(vectora - vectora )) ) def __a ( self , a , a ): UpperCamelCase__ = observations UpperCamelCase__ = classes # using Wolfe's Dual to calculate w. # Primal problem: minimize 1/2*norm_squared(w) # constraint: yn(w . xn + b) >= 1 # # With l a vector # Dual problem: maximize sum_n(ln) - # 1/2 * sum_n(sum_m(ln*lm*yn*ym*xn . xm)) # constraint: self.C >= ln >= 0 # and sum_n(ln*yn) = 0 # Then we get w using w = sum_n(ln*yn*xn) # At the end we can get b ~= mean(yn - w . xn) # # Since we use kernels, we only need l_star to calculate b # and to classify observations ((UpperCamelCase__) , ) = np.shape(a ) def to_minimize(a ) -> float: UpperCamelCase__ = 0 ((UpperCamelCase__) , ) = np.shape(a ) for i in range(a ): for j in range(a ): s += ( candidate[i] * candidate[j] * classes[i] * classes[j] * self.kernel(observations[i] , observations[j] ) ) return 1 / 2 * s - sum(a ) UpperCamelCase__ = LinearConstraint(a , 0 , 0 ) UpperCamelCase__ = Bounds(0 , self.regularization ) UpperCamelCase__ = minimize( a , np.ones(a ) , bounds=a , constraints=[ly_contraint] ).x UpperCamelCase__ = l_star # calculating mean offset of separation plane to points UpperCamelCase__ = 0 for i in range(a ): for j in range(a ): s += classes[i] - classes[i] * self.optimum[i] * self.kernel( observations[i] , observations[j] ) UpperCamelCase__ = s / n def __a ( self , a ): UpperCamelCase__ = sum( self.optimum[n] * self.classes[n] * self.kernel(self.observations[n] , a ) for n in range(len(self.classes ) ) ) return 1 if s + self.offset >= 0 else -1 if __name__ == "__main__": import doctest doctest.testmod()
223
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def _UpperCamelCase ( *__A , __A = None , __A=True , __A=2 ) -> int: '''simple docstring''' from .. import __version__ UpperCamelCase__ = take_from UpperCamelCase__ = () if not isinstance(args[0] , __A ): UpperCamelCase__ = (args,) for attribute, version_name, message in args: if version.parse(version.parse(__A ).base_version ) >= version.parse(__A ): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''' ) UpperCamelCase__ = None if isinstance(__A , __A ) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(__A ),) UpperCamelCase__ = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(__A , __A ): values += (getattr(__A , __A ),) UpperCamelCase__ = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: UpperCamelCase__ = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: UpperCamelCase__ = warning + " " if standard_warn else "" warnings.warn(warning + message , __A , stacklevel=__A ) if isinstance(__A , __A ) and len(__A ) > 0: UpperCamelCase__ = inspect.getouterframes(inspect.currentframe() )[1] UpperCamelCase__ = call_frame.filename UpperCamelCase__ = call_frame.lineno UpperCamelCase__ = call_frame.function UpperCamelCase__ , UpperCamelCase__ = next(iter(deprecated_kwargs.items() ) ) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''' ) if len(__A ) == 0: return elif len(__A ) == 1: return values[0] return values
223
1
'''simple docstring''' from typing import Any, Callable, Dict, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DiffusionPipeline, LMSDiscreteScheduler, PNDMScheduler, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker UpperCamelCase_ = "CompVis/stable-diffusion-v1-1" UpperCamelCase_ = "CompVis/stable-diffusion-v1-2" UpperCamelCase_ = "CompVis/stable-diffusion-v1-3" UpperCamelCase_ = "CompVis/stable-diffusion-v1-4" class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self, A, A, A, A, A, A, A, A = True, ): '''simple docstring''' super()._init_() SCREAMING_SNAKE_CASE : Optional[int] = StableDiffusionPipeline.from_pretrained(A ) SCREAMING_SNAKE_CASE : Optional[Any] = StableDiffusionPipeline.from_pretrained(A ) SCREAMING_SNAKE_CASE : int = StableDiffusionPipeline.from_pretrained(A ) SCREAMING_SNAKE_CASE : Tuple = StableDiffusionPipeline( vae=A, text_encoder=A, tokenizer=A, unet=A, scheduler=A, safety_checker=A, feature_extractor=A, requires_safety_checker=A, ) self.register_modules(pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea, pipelinea=self.pipea ) @property def UpperCamelCase_ ( self ): '''simple docstring''' return {k: getattr(self, A ) for k in self.config.keys() if not k.startswith('_' )} def UpperCamelCase_ ( self, A = "auto" ): '''simple docstring''' if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory SCREAMING_SNAKE_CASE : List[str] = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.enable_attention_slicing(A ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' return self.pipea( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' return self.pipea( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' return self.pipea( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' return self.pipea( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) @torch.no_grad() def UpperCamelCase_ ( self, A, A = 512, A = 512, A = 50, A = 7.5, A = None, A = 1, A = 0.0, A = None, A = None, A = "pil", A = True, A = None, A = 1, **A, ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = 'cuda' if torch.cuda.is_available() else 'cpu' self.to(A ) # Checks if the height and width are divisible by 8 or not if height % 8 != 0 or width % 8 != 0: raise ValueError(F"`height` and `width` must be divisible by 8 but are {height} and {width}." ) # Get first result from Stable Diffusion Checkpoint v1.1 SCREAMING_SNAKE_CASE : Optional[Any] = self.textaimg_sda_a( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) # Get first result from Stable Diffusion Checkpoint v1.2 SCREAMING_SNAKE_CASE : List[Any] = self.textaimg_sda_a( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) # Get first result from Stable Diffusion Checkpoint v1.3 SCREAMING_SNAKE_CASE : Any = self.textaimg_sda_a( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) # Get first result from Stable Diffusion Checkpoint v1.4 SCREAMING_SNAKE_CASE : Union[str, Any] = self.textaimg_sda_a( prompt=A, height=A, width=A, num_inference_steps=A, guidance_scale=A, negative_prompt=A, num_images_per_prompt=A, eta=A, generator=A, latents=A, output_type=A, return_dict=A, callback=A, callback_steps=A, **A, ) # Get all result images into a single list and pass it via StableDiffusionPipelineOutput for final result return StableDiffusionPipelineOutput([resa[0], resa[0], resa[0], resa[0]] )
28
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Any = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
0
import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, ByTaTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): _snake_case : Optional[int] = 'pt' elif is_tf_available(): _snake_case : str = 'tf' else: _snake_case : Tuple = 'jax' class _UpperCAmelCase ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" a_ = ByTaTokenizer a_ = False def lowercase ( self : str ) -> List[Any]: super().setUp() __lowerCAmelCase = ByTaTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowercase ( self : Optional[Any] ) -> List[Any]: return ByTaTokenizer.from_pretrained('google/byt5-small' ) def lowercase ( self : List[str] , **lowerCAmelCase_ : int ) -> ByTaTokenizer: return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase_ ) def lowercase ( self : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=2_0 , lowerCAmelCase_ : Union[str, Any]=5 ) -> Tuple[str, list]: # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for ByT5 because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. __lowerCAmelCase = [] for i in range(len(lowerCAmelCase_ ) ): try: __lowerCAmelCase = tokenizer.decode([i] , clean_up_tokenization_spaces=lowerCAmelCase_ ) except UnicodeDecodeError: pass toks.append((i, tok) ) __lowerCAmelCase = list(filter(lambda lowerCAmelCase_ : re.match(R'^[ a-zA-Z]+$' , t[1] ) , lowerCAmelCase_ ) ) __lowerCAmelCase = list(filter(lambda lowerCAmelCase_ : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=lowerCAmelCase_ ) , lowerCAmelCase_ ) ) if max_length is not None and len(lowerCAmelCase_ ) > max_length: __lowerCAmelCase = toks[:max_length] if min_length is not None and len(lowerCAmelCase_ ) < min_length and len(lowerCAmelCase_ ) > 0: while len(lowerCAmelCase_ ) < min_length: __lowerCAmelCase = toks + toks # toks_str = [t[1] for t in toks] __lowerCAmelCase = [t[0] for t in toks] # Ensure consistency __lowerCAmelCase = tokenizer.decode(lowerCAmelCase_ , clean_up_tokenization_spaces=lowerCAmelCase_ ) if " " not in output_txt and len(lowerCAmelCase_ ) > 1: __lowerCAmelCase = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=lowerCAmelCase_ ) + ' ' + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=lowerCAmelCase_ ) ) if with_prefix_space: __lowerCAmelCase = ' ' + output_txt __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) return output_txt, output_ids def lowercase ( self : List[Any] ) -> Any: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = tokenizer(['hi</s>', 'I went to the gym</s>', '</s>'] ) __lowerCAmelCase = tokenizer(['hi', 'I went to the gym', ''] ) self.assertListEqual(batch_with_eos_added['input_ids'] , batch_without_eos_added['input_ids'] ) def lowercase ( self : Optional[int] ) -> Any: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = 'Unicode €.' __lowerCAmelCase = tokenizer(lowerCAmelCase_ ) __lowerCAmelCase = [8_8, 1_1_3, 1_0_8, 1_0_2, 1_1_4, 1_0_3, 1_0_4, 3_5, 2_2_9, 1_3_3, 1_7_5, 4_9, 1] self.assertEqual(encoded['input_ids'] , lowerCAmelCase_ ) # decoding __lowerCAmelCase = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , 'Unicode €.</s>' ) __lowerCAmelCase = tokenizer('e è é ê ë' ) __lowerCAmelCase = [1_0_4, 3_5, 1_9_8, 1_7_1, 3_5, 1_9_8, 1_7_2, 3_5, 1_9_8, 1_7_3, 3_5, 1_9_8, 1_7_4, 1] self.assertEqual(encoded['input_ids'] , lowerCAmelCase_ ) # decoding __lowerCAmelCase = tokenizer.decode(lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , 'e è é ê ë</s>' ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode('e è é ê ë' ) ) , 'e è é ê ë</s>' ) def lowercase ( self : Tuple ) -> str: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] # fmt: off __lowerCAmelCase = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 1, 0] # fmt: on __lowerCAmelCase = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) if FRAMEWORK != "jax": __lowerCAmelCase = list(batch.input_ids.numpy()[0] ) else: __lowerCAmelCase = list(batch.input_ids.tolist()[0] ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertEqual((2, 3_7) , batch.input_ids.shape ) self.assertEqual((2, 3_7) , batch.attention_mask.shape ) def lowercase ( self : str ) -> Any: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] __lowerCAmelCase = tokenizer(lowerCAmelCase_ , padding=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) # check if input_ids are returned and no decoder_input_ids self.assertIn('input_ids' , lowerCAmelCase_ ) self.assertIn('attention_mask' , lowerCAmelCase_ ) self.assertNotIn('decoder_input_ids' , lowerCAmelCase_ ) self.assertNotIn('decoder_attention_mask' , lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> Union[str, Any]: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = [ 'Summary of the text.', 'Another summary.', ] __lowerCAmelCase = tokenizer( text_target=lowerCAmelCase_ , max_length=3_2 , padding='max_length' , truncation=lowerCAmelCase_ , return_tensors=lowerCAmelCase_ ) self.assertEqual(3_2 , targets['input_ids'].shape[1] ) def lowercase ( self : Any ) -> Optional[int]: __lowerCAmelCase = self.ta_base_tokenizer __lowerCAmelCase = ['A long paragraph for summarization. </s>'] __lowerCAmelCase = ['Summary of the text. </s>'] # fmt: off __lowerCAmelCase = [6_8, 3_5, 1_1_1, 1_1_4, 1_1_3, 1_0_6, 3_5, 1_1_5, 1_0_0, 1_1_7, 1_0_0, 1_0_6, 1_1_7, 1_0_0, 1_1_5, 1_0_7, 3_5, 1_0_5, 1_1_4, 1_1_7, 3_5, 1_1_8, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_0_8, 1_2_5, 1_0_0, 1_1_9, 1_0_8, 1_1_4, 1_1_3, 4_9, 3_5, 1] __lowerCAmelCase = [8_6, 1_2_0, 1_1_2, 1_1_2, 1_0_0, 1_1_7, 1_2_4, 3_5, 1_1_4, 1_0_5, 3_5, 1_1_9, 1_0_7, 1_0_4, 3_5, 1_1_9, 1_0_4, 1_2_3, 1_1_9, 4_9, 3_5, 1] # fmt: on __lowerCAmelCase = tokenizer(lowerCAmelCase_ , text_target=lowerCAmelCase_ ) self.assertEqual(lowerCAmelCase_ , batch['input_ids'][0] ) self.assertEqual(lowerCAmelCase_ , batch['labels'][0] ) def lowercase ( self : List[str] ) -> int: # safety check on max_len default value so we are sure the test works __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): self.assertNotEqual(tokenizer.model_max_length , 4_2 ) # Now let's start the test __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running' __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) shutil.rmtree(lowerCAmelCase_ ) __lowerCAmelCase = self.get_tokenizers(model_max_length=4_2 ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): # Isolate this from the other tests because we save additional tokens/etc __lowerCAmelCase = tempfile.mkdtemp() __lowerCAmelCase = ' He is very happy, UNwant\u00E9d,running' tokenizer.add_tokens(['bim', 'bambam'] ) __lowerCAmelCase = tokenizer.additional_special_tokens additional_special_tokens.append('new_additional_special_token' ) tokenizer.add_special_tokens({'additional_special_tokens': additional_special_tokens} ) __lowerCAmelCase = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) tokenizer.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = after_tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) self.assertListEqual(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertIn('new_additional_special_token' , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 4_2 ) __lowerCAmelCase = tokenizer.__class__.from_pretrained(lowerCAmelCase_ , model_max_length=4_3 ) self.assertEqual(tokenizer.model_max_length , 4_3 ) shutil.rmtree(lowerCAmelCase_ ) def lowercase ( self : List[Any] ) -> List[str]: __lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , encoding='utf-8' ) as json_file: __lowerCAmelCase = json.load(lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , encoding='utf-8' ) as json_file: __lowerCAmelCase = json.load(lowerCAmelCase_ ) __lowerCAmelCase = [f"""<extra_id_{i}>""" for i in range(1_2_5 )] __lowerCAmelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] __lowerCAmelCase = added_tokens_extra_ids + [ 'an_additional_special_token' ] with open(os.path.join(lowerCAmelCase_ , 'special_tokens_map.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) with open(os.path.join(lowerCAmelCase_ , 'tokenizer_config.json' ) , 'w' , encoding='utf-8' ) as outfile: json.dump(lowerCAmelCase_ , lowerCAmelCase_ ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files __lowerCAmelCase = tokenizer_class.from_pretrained( lowerCAmelCase_ , ) self.assertIn( 'an_additional_special_token' , tokenizer_without_change_in_init.additional_special_tokens ) # self.assertIn("an_additional_special_token",tokenizer_without_change_in_init.get_vocab()) # ByT5Tokenization no vocab self.assertEqual( ['an_additional_special_token'] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(['an_additional_special_token'] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained __lowerCAmelCase = added_tokens_extra_ids + [AddedToken('a_new_additional_special_token' , lstrip=lowerCAmelCase_ )] __lowerCAmelCase = tokenizer_class.from_pretrained( lowerCAmelCase_ , additional_special_tokens=lowerCAmelCase_ , ) self.assertIn('a_new_additional_special_token' , tokenizer.additional_special_tokens ) self.assertEqual( ['a_new_additional_special_token'] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(['a_new_additional_special_token'] ) ) , ) def lowercase ( self : Dict ) -> Tuple: __lowerCAmelCase = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(lowerCAmelCase_ ) __lowerCAmelCase = tokenizer_class.from_pretrained(lowerCAmelCase_ ) self.assertTrue(tokenizer.decode([2_5_5] ) == '' ) def lowercase ( self : Optional[Any] ) -> List[Any]: pass def lowercase ( self : List[str] ) -> List[Any]: pass def lowercase ( self : Optional[int] ) -> str: pass def lowercase ( self : Union[str, Any] ) -> Any: pass def lowercase ( self : Any ) -> Dict: # The default common tokenizer tests uses invalid tokens for ByT5 that can only accept one-character strings # and special added tokens as tokens __lowerCAmelCase = self.get_tokenizers(fast=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ ) for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = ['t', 'h', 'i', 's', ' ', 'i', 's', ' ', 'a', ' ', 't', 'e', 'x', 't', '</s>'] __lowerCAmelCase = tokenizer.convert_tokens_to_string(lowerCAmelCase_ ) self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) def lowercase ( self : Dict ) -> str: __lowerCAmelCase = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f"""{tokenizer.__class__.__name__}""" ): __lowerCAmelCase = [ 'bos_token', 'eos_token', 'unk_token', 'sep_token', 'pad_token', 'cls_token', 'mask_token', ] __lowerCAmelCase = 0 __lowerCAmelCase = tokenizer.convert_ids_to_tokens( lowerCAmelCase_ , skip_special_tokens=lowerCAmelCase_ ) for attr in attributes_list: setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , attr + '_id' , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , lowerCAmelCase_ ) , lowerCAmelCase_ ) self.assertEqual(getattr(lowerCAmelCase_ , attr + '_id' ) , lowerCAmelCase_ ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [] ) setattr(lowerCAmelCase_ , 'additional_special_tokens_ids' , [token_id_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens' ) , [token_to_test_setters] ) self.assertListEqual(getattr(lowerCAmelCase_ , 'additional_special_tokens_ids' ) , [token_id_to_test_setters] )
421
import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase ( self : Union[str, Any] ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase ( self : Union[str, Any] ) -> str: __lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('sample_euler' ) __lowerCAmelCase = 'A painting of a squirrel eating a burger' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.04_47, 0.04_92, 0.04_68, 0.04_08, 0.03_83, 0.04_08, 0.03_54, 0.03_80, 0.03_39] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowercase ( self : Union[str, Any] ) -> Dict: __lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('sample_euler' ) __lowerCAmelCase = 'A painting of a squirrel eating a burger' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sd_pipe([prompt] , generator=lowerCAmelCase_ , guidance_scale=9.0 , num_inference_steps=2_0 , output_type='np' ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array([0.12_37, 0.13_20, 0.14_38, 0.13_59, 0.13_90, 0.11_32, 0.12_77, 0.11_75, 0.11_12] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5e-1 def lowercase ( self : int ) -> Dict: __lowerCAmelCase = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowerCAmelCase = sd_pipe.to(lowerCAmelCase_ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __lowerCAmelCase = 'A painting of a squirrel eating a burger' __lowerCAmelCase = torch.manual_seed(0 ) __lowerCAmelCase = sd_pipe( [prompt] , generator=lowerCAmelCase_ , guidance_scale=7.5 , num_inference_steps=1_5 , output_type='np' , use_karras_sigmas=lowerCAmelCase_ , ) __lowerCAmelCase = output.images __lowerCAmelCase = image[0, -3:, -3:, -1] assert image.shape == (1, 5_1_2, 5_1_2, 3) __lowerCAmelCase = np.array( [0.11_38_16_89, 0.12_11_29_21, 0.1_38_94_57, 0.12_54_96_06, 0.1_24_49_64, 0.10_83_15_17, 0.11_56_28_66, 0.10_86_78_16, 0.10_49_90_48] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
421
1
from copy import deepcopy class __lowercase : """simple docstring""" def __init__( self , A = None , A = None ) -> None: if arr is None and size is not None: snake_case : Union[str, Any] = size snake_case : str = [0] * size elif arr is not None: self.init(A ) else: raise ValueError("""Either arr or size must be specified""" ) def UpperCAmelCase ( self , A ) -> None: snake_case : Union[str, Any] = len(A ) snake_case : List[str] = deepcopy(A ) for i in range(1 , self.size ): snake_case : Optional[Any] = self.next_(A ) if j < self.size: self.tree[j] += self.tree[i] def UpperCAmelCase ( self ) -> list[int]: snake_case : Tuple = self.tree[:] for i in range(self.size - 1 , 0 , -1 ): snake_case : Optional[Any] = self.next_(A ) if j < self.size: arr[j] -= arr[i] return arr @staticmethod def UpperCAmelCase ( A ) -> int: return index + (index & (-index)) @staticmethod def UpperCAmelCase ( A ) -> int: return index - (index & (-index)) def UpperCAmelCase ( self , A , A ) -> None: if index == 0: self.tree[0] += value return while index < self.size: self.tree[index] += value snake_case : Optional[Any] = self.next_(A ) def UpperCAmelCase ( self , A , A ) -> None: self.add(A , value - self.get(A ) ) def UpperCAmelCase ( self , A ) -> int: if right == 0: return 0 snake_case : Union[str, Any] = self.tree[0] right -= 1 # make right inclusive while right > 0: result += self.tree[right] snake_case : Union[str, Any] = self.prev(A ) return result def UpperCAmelCase ( self , A , A ) -> int: return self.prefix(A ) - self.prefix(A ) def UpperCAmelCase ( self , A ) -> int: return self.query(A , index + 1 ) def UpperCAmelCase ( self , A ) -> int: value -= self.tree[0] if value < 0: return -1 snake_case : Union[str, Any] = 1 # Largest power of 2 <= size while j * 2 < self.size: j *= 2 snake_case : List[str] = 0 while j > 0: if i + j < self.size and self.tree[i + j] <= value: value -= self.tree[i + j] i += j j //= 2 return i if __name__ == "__main__": import doctest doctest.testmod()
587
from math import factorial def SCREAMING_SNAKE_CASE__ ( lowercase = 20 ) -> int: snake_case : Dict = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... snake_case : Dict = n // 2 return int(factorial(lowercase ) / (factorial(lowercase ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: lowerCamelCase : List[Any] = int(sys.argv[1]) print(solution(n)) except ValueError: print('Invalid entry - please enter a number.')
587
1
def UpperCAmelCase ( lowercase__ : list ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(lowercase__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) if len(lowercase__ ) == 1: return True a__ = series[1] - series[0] for index in range(len(lowercase__ ) - 1 ): if series[index + 1] - series[index] != common_diff: return False return True def UpperCAmelCase ( lowercase__ : list ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): raise ValueError("""Input series is not valid, valid series - [2, 4, 6]""" ) if len(lowercase__ ) == 0: raise ValueError("""Input list must be a non empty list""" ) a__ = 0 for val in series: answer += val return answer / len(lowercase__ ) if __name__ == "__main__": import doctest doctest.testmod()
412
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING _lowercase : int =logging.get_logger(__name__) @add_end_docstrings(A_ ) class lowerCAmelCase_ ( A_ ): '''simple docstring''' def __init__( self , *lowerCamelCase , **lowerCamelCase ): '''simple docstring''' super().__init__(*lowerCamelCase , **lowerCamelCase ) self.check_model_type(lowerCamelCase ) def _A ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None , **lowerCamelCase ): '''simple docstring''' a__ , a__ = {}, {} if padding is not None: a__ = padding if truncation is not None: a__ = truncation if top_k is not None: a__ = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCamelCase , lowerCamelCase = None , **lowerCamelCase ): '''simple docstring''' if isinstance(lowerCamelCase , (Image.Image, str) ) and isinstance(lowerCamelCase , lowerCamelCase ): a__ = {"""image""": image, """question""": question} else: a__ = image a__ = super().__call__(lowerCamelCase , **lowerCamelCase ) return results def _A ( self , lowerCamelCase , lowerCamelCase=False , lowerCamelCase=False ): '''simple docstring''' a__ = load_image(inputs["""image"""] ) a__ = self.tokenizer( inputs["""question"""] , return_tensors=self.framework , padding=lowerCamelCase , truncation=lowerCamelCase ) a__ = self.image_processor(images=lowerCamelCase , return_tensors=self.framework ) model_inputs.update(lowerCamelCase ) return model_inputs def _A ( self , lowerCamelCase ): '''simple docstring''' a__ = self.model(**lowerCamelCase ) return model_outputs def _A ( self , lowerCamelCase , lowerCamelCase=5 ): '''simple docstring''' if top_k > self.model.config.num_labels: a__ = self.model.config.num_labels if self.framework == "pt": a__ = model_outputs.logits.sigmoid()[0] a__ , a__ = probs.topk(lowerCamelCase ) else: raise ValueError(f'Unsupported framework: {self.framework}' ) a__ = scores.tolist() a__ = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
412
1
"""simple docstring""" import json import os from functools import lru_cache from typing import List, Optional, Tuple import regex as re from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt"""} _SCREAMING_SNAKE_CASE = { """vocab_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/vocab.json""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/vocab.json""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/vocab.json""" ), }, """merges_file""": { """allenai/longformer-base-4096""": """https://huggingface.co/allenai/longformer-base-4096/resolve/main/merges.txt""", """allenai/longformer-large-4096""": ( """https://huggingface.co/allenai/longformer-large-4096/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-finetuned-triviaqa""": ( """https://huggingface.co/allenai/longformer-large-4096-finetuned-triviaqa/resolve/main/merges.txt""" ), """allenai/longformer-base-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-base-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), """allenai/longformer-large-4096-extra.pos.embd.only""": ( """https://huggingface.co/allenai/longformer-large-4096-extra.pos.embd.only/resolve/main/merges.txt""" ), }, } _SCREAMING_SNAKE_CASE = { """allenai/longformer-base-4096""": 4_096, """allenai/longformer-large-4096""": 4_096, """allenai/longformer-large-4096-finetuned-triviaqa""": 4_096, """allenai/longformer-base-4096-extra.pos.embd.only""": 4_096, """allenai/longformer-large-4096-extra.pos.embd.only""": 4_096, } @lru_cache() # Copied from transformers.models.roberta.tokenization_roberta.bytes_to_unicode def __UpperCamelCase ( ) -> Tuple: """simple docstring""" __snake_case = ( list(range(ord("!" ) , ord("~" ) + 1 ) ) + list(range(ord("¡" ) , ord("¬" ) + 1 ) ) + list(range(ord("®" ) , ord("ÿ" ) + 1 ) ) ) __snake_case = bs[:] __snake_case = 0 for b in range(2**8 ): if b not in bs: bs.append(a_ ) cs.append(2**8 + n ) n += 1 __snake_case = [chr(a_ ) for n in cs] return dict(zip(a_ , a_ ) ) def __UpperCamelCase ( SCREAMING_SNAKE_CASE ) -> List[Any]: """simple docstring""" __snake_case = set() __snake_case = word[0] for char in word[1:]: pairs.add((prev_char, char) ) __snake_case = char return pairs class __magic_name__ ( lowercase__ ): _SCREAMING_SNAKE_CASE : str = VOCAB_FILES_NAMES _SCREAMING_SNAKE_CASE : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP _SCREAMING_SNAKE_CASE : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _SCREAMING_SNAKE_CASE : Optional[int] = ['''input_ids''', '''attention_mask'''] def __init__( self : Optional[int] , snake_case_ : int , snake_case_ : Dict , snake_case_ : List[str]="replace" , snake_case_ : Optional[int]="<s>" , snake_case_ : Dict="</s>" , snake_case_ : int="</s>" , snake_case_ : List[str]="<s>" , snake_case_ : Dict="<unk>" , snake_case_ : Union[str, Any]="<pad>" , snake_case_ : Tuple="<mask>" , snake_case_ : Any=False , **snake_case_ : Union[str, Any] , ): __snake_case = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else bos_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else eos_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else sep_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else cls_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else unk_token __snake_case = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else pad_token # Mask token behave like a normal word, i.e. include the space before it __snake_case = AddedToken(SCREAMING_SNAKE_CASE__ , lstrip=SCREAMING_SNAKE_CASE__ , rstrip=SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) else mask_token super().__init__( errors=SCREAMING_SNAKE_CASE__ , bos_token=SCREAMING_SNAKE_CASE__ , eos_token=SCREAMING_SNAKE_CASE__ , unk_token=SCREAMING_SNAKE_CASE__ , sep_token=SCREAMING_SNAKE_CASE__ , cls_token=SCREAMING_SNAKE_CASE__ , pad_token=SCREAMING_SNAKE_CASE__ , mask_token=SCREAMING_SNAKE_CASE__ , add_prefix_space=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , ) with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as vocab_handle: __snake_case = json.load(SCREAMING_SNAKE_CASE__ ) __snake_case = {v: k for k, v in self.encoder.items()} __snake_case = errors # how to handle errors in decoding __snake_case = bytes_to_unicode() __snake_case = {v: k for k, v in self.byte_encoder.items()} with open(SCREAMING_SNAKE_CASE__ , encoding="utf-8" ) as merges_handle: __snake_case = merges_handle.read().split("\n" )[1:-1] __snake_case = [tuple(merge.split() ) for merge in bpe_merges] __snake_case = dict(zip(SCREAMING_SNAKE_CASE__ , range(len(SCREAMING_SNAKE_CASE__ ) ) ) ) __snake_case = {} __snake_case = add_prefix_space # Should have added re.IGNORECASE so BPE merges can happen for capitalized versions of contractions __snake_case = re.compile(r"\'s|\'t|\'re|\'ve|\'m|\'ll|\'d| ?\p{L}+| ?\p{N}+| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+" ) @property def lowerCAmelCase ( self : Optional[Any] ): return len(self.encoder ) def lowerCAmelCase ( self : Union[str, Any] ): return dict(self.encoder , **self.added_tokens_encoder ) def lowerCAmelCase ( self : Any , snake_case_ : Any ): if token in self.cache: return self.cache[token] __snake_case = tuple(SCREAMING_SNAKE_CASE__ ) __snake_case = get_pairs(SCREAMING_SNAKE_CASE__ ) if not pairs: return token while True: __snake_case = min(SCREAMING_SNAKE_CASE__ , key=lambda snake_case_ : self.bpe_ranks.get(SCREAMING_SNAKE_CASE__ , float("inf" ) ) ) if bigram not in self.bpe_ranks: break __snake_case = bigram __snake_case = [] __snake_case = 0 while i < len(SCREAMING_SNAKE_CASE__ ): try: __snake_case = word.index(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) __snake_case = j if word[i] == first and i < len(SCREAMING_SNAKE_CASE__ ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 __snake_case = tuple(SCREAMING_SNAKE_CASE__ ) __snake_case = new_word if len(SCREAMING_SNAKE_CASE__ ) == 1: break else: __snake_case = get_pairs(SCREAMING_SNAKE_CASE__ ) __snake_case = ''' '''.join(SCREAMING_SNAKE_CASE__ ) __snake_case = word return word def lowerCAmelCase ( self : str , snake_case_ : List[Any] ): __snake_case = [] for token in re.findall(self.pat , SCREAMING_SNAKE_CASE__ ): __snake_case = ''''''.join( self.byte_encoder[b] for b in token.encode("utf-8" ) ) # Maps all our bytes to unicode strings, avoiding control tokens of the BPE (spaces in our case) bpe_tokens.extend(bpe_token for bpe_token in self.bpe(SCREAMING_SNAKE_CASE__ ).split(" " ) ) return bpe_tokens def lowerCAmelCase ( self : Optional[int] , snake_case_ : int ): return self.encoder.get(SCREAMING_SNAKE_CASE__ , self.encoder.get(self.unk_token ) ) def lowerCAmelCase ( self : Any , snake_case_ : Union[str, Any] ): return self.decoder.get(SCREAMING_SNAKE_CASE__ ) def lowerCAmelCase ( self : Tuple , snake_case_ : Optional[Any] ): __snake_case = ''''''.join(SCREAMING_SNAKE_CASE__ ) __snake_case = bytearray([self.byte_decoder[c] for c in text] ).decode("utf-8" , errors=self.errors ) return text def lowerCAmelCase ( self : Tuple , snake_case_ : Any , snake_case_ : Optional[Any] = None ): if not os.path.isdir(SCREAMING_SNAKE_CASE__ ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return __snake_case = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) __snake_case = os.path.join( SCREAMING_SNAKE_CASE__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["merges_file"] ) with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=SCREAMING_SNAKE_CASE__ , ensure_ascii=SCREAMING_SNAKE_CASE__ ) + "\n" ) __snake_case = 0 with open(SCREAMING_SNAKE_CASE__ , "w" , encoding="utf-8" ) as writer: writer.write("#version: 0.2\n" ) for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda snake_case_ : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merge_file}: BPE merge indices are not consecutive.''' " Please check that the tokenizer is not corrupted!" ) __snake_case = token_index writer.write(" ".join(SCREAMING_SNAKE_CASE__ ) + "\n" ) index += 1 return vocab_file, merge_file def lowerCAmelCase ( self : Any , snake_case_ : Tuple , snake_case_ : Any = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __snake_case = [self.cls_token_id] __snake_case = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def lowerCAmelCase ( self : Any , snake_case_ : Optional[int] , snake_case_ : str = None , snake_case_ : Tuple = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE__ , token_ids_a=SCREAMING_SNAKE_CASE__ , already_has_special_tokens=SCREAMING_SNAKE_CASE__ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] return [1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE__ )) + [1] def lowerCAmelCase ( self : Optional[int] , snake_case_ : Tuple , snake_case_ : int = None ): __snake_case = [self.sep_token_id] __snake_case = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def lowerCAmelCase ( self : List[str] , snake_case_ : Optional[Any] , snake_case_ : Tuple=False , **snake_case_ : Union[str, Any] ): __snake_case = kwargs.pop("add_prefix_space" , self.add_prefix_space ) if (is_split_into_words or add_prefix_space) and (len(SCREAMING_SNAKE_CASE__ ) > 0 and not text[0].isspace()): __snake_case = ''' ''' + text return (text, kwargs)
163
"""simple docstring""" from .integrations import ( is_optuna_available, is_ray_available, is_sigopt_available, is_wandb_available, run_hp_search_optuna, run_hp_search_ray, run_hp_search_sigopt, run_hp_search_wandb, ) from .trainer_utils import ( HPSearchBackend, default_hp_space_optuna, default_hp_space_ray, default_hp_space_sigopt, default_hp_space_wandb, ) from .utils import logging lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE: SCREAMING_SNAKE_CASE_ : str SCREAMING_SNAKE_CASE_ : str = None @staticmethod def _UpperCamelCase ( ) -> str: """simple docstring""" raise NotImplementedError def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" raise NotImplementedError def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" raise NotImplementedError def _UpperCamelCase ( self ) -> Any: """simple docstring""" if not self.is_available(): raise RuntimeError( f'''You picked the {self.name} backend, but it is not installed. Run {self.pip_install()}.''' ) @classmethod def _UpperCamelCase ( cls ) -> str: """simple docstring""" return f'''`pip install {cls.pip_package or cls.name}`''' class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = '''optuna''' @staticmethod def _UpperCamelCase ( ) -> Dict: """simple docstring""" return is_optuna_available() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[str]: """simple docstring""" return run_hp_search_optuna(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Union[str, Any]: """simple docstring""" return default_hp_space_optuna(SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : Tuple = '''ray''' SCREAMING_SNAKE_CASE_ : Dict = '''\'ray[tune]\'''' @staticmethod def _UpperCamelCase ( ) -> int: """simple docstring""" return is_ray_available() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Optional[Any]: """simple docstring""" return run_hp_search_ray(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return default_hp_space_ray(SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : str = '''sigopt''' @staticmethod def _UpperCamelCase ( ) -> str: """simple docstring""" return is_sigopt_available() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" return run_hp_search_sigopt(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" return default_hp_space_sigopt(SCREAMING_SNAKE_CASE__ ) class _SCREAMING_SNAKE_CASE( A ): SCREAMING_SNAKE_CASE_ : int = '''wandb''' @staticmethod def _UpperCamelCase ( ) -> Dict: """simple docstring""" return is_wandb_available() def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> Tuple: """simple docstring""" return run_hp_search_wandb(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self ,SCREAMING_SNAKE_CASE__ ) -> Optional[int]: """simple docstring""" return default_hp_space_wandb(SCREAMING_SNAKE_CASE__ ) lowerCamelCase_ = { HPSearchBackend(backend.name): backend for backend in [OptunaBackend, RayTuneBackend, SigOptBackend, WandbBackend] } def __lowerCamelCase ( ) -> str: __SCREAMING_SNAKE_CASE :Dict = [backend for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() if backend.is_available()] if len(a_ ) > 0: __SCREAMING_SNAKE_CASE :str = available_backends[0].name if len(a_ ) > 1: logger.info( f'''{len(a_ )} hyperparameter search backends available. Using {name} as the default.''' ) return name raise RuntimeError( '''No hyperparameter search backend available.\n''' + '''\n'''.join( f''' - To install {backend.name} run {backend.pip_install()}''' for backend in ALL_HYPERPARAMETER_SEARCH_BACKENDS.values() ) )
498
0
'''simple docstring''' import unittest from transformers import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device if is_torch_available(): import torch from transformers import AutoModelForImageClassification if is_vision_available(): from transformers import AutoImageProcessor @require_torch @require_vision class __lowercase ( unittest.TestCase ): @slow def UpperCamelCase__ ( self ) -> List[str]: __a = AutoImageProcessor.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) __a = AutoModelForImageClassification.from_pretrained('microsoft/dit-base-finetuned-rvlcdip' ) model.to(_UpperCAmelCase ) from datasets import load_dataset __a = load_dataset('nielsr/rvlcdip-demo' ) __a = dataset['''train'''][0]['''image'''].convert('RGB' ) __a = image_processor(_UpperCAmelCase , return_tensors='pt' ).to(_UpperCAmelCase ) # forward pass with torch.no_grad(): __a = model(**_UpperCAmelCase ) __a = outputs.logits __a = torch.Size((1, 16) ) self.assertEqual(logits.shape , _UpperCAmelCase ) __a = torch.tensor( [-0.4_158, -0.4_092, -0.4_347] , device=_UpperCAmelCase , dtype=torch.float , ) self.assertTrue(torch.allclose(logits[0, :3] , _UpperCAmelCase , atol=1e-4 ) )
713
'''simple docstring''' def SCREAMING_SNAKE_CASE ( a_ : str ): __a = '' for ch in key: if ch == " " or ch not in key_no_dups and ch.isalpha(): key_no_dups += ch return key_no_dups def SCREAMING_SNAKE_CASE ( a_ : str ): __a = [chr(i + 65 ) for i in range(26 )] # Remove duplicate characters from key __a = remove_duplicates(key.upper() ) __a = len(a_ ) # First fill cipher with key characters __a = {alphabet[i]: char for i, char in enumerate(a_ )} # Then map remaining characters in alphabet to # the alphabet from the beginning for i in range(len(a_ ) , 26 ): __a = alphabet[i - offset] # Ensure we are not mapping letters to letters previously mapped while char in key: offset -= 1 __a = alphabet[i - offset] __a = char return cipher_alphabet def SCREAMING_SNAKE_CASE ( a_ : str , a_ : dict[str, str] ): return "".join(cipher_map.get(a_ , a_ ) for ch in message.upper() ) def SCREAMING_SNAKE_CASE ( a_ : str , a_ : dict[str, str] ): __a = {v: k for k, v in cipher_map.items()} return "".join(rev_cipher_map.get(a_ , a_ ) for ch in message.upper() ) def SCREAMING_SNAKE_CASE ( ): __a = input('Enter message to encode or decode: ' ).strip() __a = input('Enter keyword: ' ).strip() __a = input('Encipher or decipher? E/D:' ).strip()[0].lower() try: __a = {'e': encipher, 'd': decipher}[option] except KeyError: raise KeyError('invalid input option' ) __a = create_cipher_map(a_ ) print(func(a_ , a_ ) ) if __name__ == "__main__": import doctest doctest.testmod() main()
490
0
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowerCamelCase_ ( __UpperCamelCase : Optional[Any] ) -> str: """simple docstring""" config.addinivalue_line( 'markers' , 'is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested' ) config.addinivalue_line( 'markers' , 'is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested' ) config.addinivalue_line('markers' , 'is_pipeline_test: mark test to run only when pipelines are tested' ) config.addinivalue_line('markers' , 'is_staging_test: mark test to run only in the staging environment' ) config.addinivalue_line('markers' , 'accelerate_tests: mark test that require accelerate' ) config.addinivalue_line('markers' , 'tool_tests: mark the tool tests that are run on their specific schedule' ) def lowerCamelCase_ ( __UpperCamelCase : Tuple ) -> List[str]: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(__UpperCamelCase ) def lowerCamelCase_ ( __UpperCamelCase : Union[str, Any] ) -> str: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main _A = terminalreporter.config.getoption('--make-reports' ) if make_reports: pytest_terminal_summary_main(__UpperCamelCase , id=__UpperCamelCase ) def lowerCamelCase_ ( __UpperCamelCase : str , __UpperCamelCase : List[str] ) -> Optional[int]: """simple docstring""" # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: _A = 0 # Doctest custom flag to ignore output. lowerCAmelCase = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase = doctest.OutputChecker class lowerCAmelCase_ ( UpperCAmelCase ): def UpperCamelCase ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase )-> Tuple: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) lowerCAmelCase = CustomOutputChecker lowerCAmelCase = HfDoctestModule lowerCAmelCase = HfDocTestParser
292
'''simple docstring''' def lowerCamelCase_ ( __UpperCamelCase : list , __UpperCamelCase : int , __UpperCamelCase : int = 0 , __UpperCamelCase : int = 0 ) -> int: """simple docstring""" _A = right or len(__UpperCamelCase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(__UpperCamelCase , __UpperCamelCase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
292
1
"""simple docstring""" from timeit import timeit def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) __magic_name__ = 0 while number: number &= number - 1 result += 1 return result def _lowerCAmelCase ( __lowerCamelCase:int ): '''simple docstring''' if number < 0: raise ValueError("the value of input must not be negative" ) __magic_name__ = 0 while number: if number % 2 == 1: result += 1 number >>= 1 return result def _lowerCAmelCase ( ): '''simple docstring''' def do_benchmark(__lowerCamelCase:int ) -> None: __magic_name__ = 'import __main__ as z' print(f'''Benchmark when {number = }:''' ) print(f'''{get_set_bits_count_using_modulo_operator(lowerCAmelCase__ ) = }''' ) __magic_name__ = timeit("z.get_set_bits_count_using_modulo_operator(25)" , setup=lowerCAmelCase__ ) print(f'''timeit() runs in {timing} seconds''' ) print(f'''{get_set_bits_count_using_brian_kernighans_algorithm(lowerCAmelCase__ ) = }''' ) __magic_name__ = timeit( "z.get_set_bits_count_using_brian_kernighans_algorithm(25)" , setup=lowerCAmelCase__ , ) print(f'''timeit() runs in {timing} seconds''' ) for number in (2_5, 3_7, 5_8, 0): do_benchmark(lowerCAmelCase__ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
709
"""simple docstring""" def _lowerCAmelCase ( __lowerCamelCase:list ): '''simple docstring''' __magic_name__ = len(__lowerCamelCase ) for i in range(1 , __lowerCamelCase ): __magic_name__ = collection[i] __magic_name__ = 0 __magic_name__ = i - 1 while low <= high: __magic_name__ = (low + high) // 2 if val < collection[mid]: __magic_name__ = mid - 1 else: __magic_name__ = mid + 1 for j in range(__lowerCamelCase , __lowerCamelCase , -1 ): __magic_name__ = collection[j - 1] __magic_name__ = val return collection if __name__ == "__main__": lowercase = input('''Enter numbers separated by a comma:\n''').strip() lowercase = [int(item) for item in user_input.split(''',''')] print(binary_insertion_sort(unsorted))
468
0
import os from shutil import copyfile from typing import List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowercase__ : Union[str, Any] = logging.get_logger(__name__) lowercase__ : Optional[int] = {"vocab_file": "sentencepiece.model"} lowercase__ : List[Any] = { "vocab_file": { "google/rembert": "https://huggingface.co/google/rembert/resolve/main/sentencepiece.model", }, } lowercase__ : Tuple = { "google/rembert": 256, } class a__ ( UpperCamelCase__ ): a : int = VOCAB_FILES_NAMES a : Tuple = PRETRAINED_VOCAB_FILES_MAP a : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A=False , A=True , A=True , A="[CLS]" , A="[SEP]" , A="[UNK]" , A="[SEP]" , A="[PAD]" , A="[CLS]" , A="[MASK]" , **A , ) -> int: '''simple docstring''' super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , **A , ) a = do_lower_case a = remove_space a = keep_accents a = vocab_file a = spm.SentencePieceProcessor() self.sp_model.Load(A ) @property def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' return len(self.sp_model ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' a = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' a = self.__dict__.copy() a = None return state def __setstate__( self , A ) -> str: '''simple docstring''' a = d a = spm.SentencePieceProcessor() self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self , A , A=False ) -> List[Any]: '''simple docstring''' a = self.sp_model.EncodeAsPieces(A ) return pieces def lowerCAmelCase_ ( self , A ) -> Dict: '''simple docstring''' return self.sp_model.PieceToId(A ) def lowerCAmelCase_ ( self , A ) -> Union[str, Any]: '''simple docstring''' return self.sp_model.IdToPiece(A ) def lowerCAmelCase_ ( self , A ) -> List[Any]: '''simple docstring''' a = self.sp_model.decode_pieces(A ) return out_string def lowerCAmelCase_ ( self , A , A = None ) -> List[int]: '''simple docstring''' a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self , A , A = None , A = False ) -> List[int]: '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def lowerCAmelCase_ ( self , A , A = None ) -> List[int]: '''simple docstring''' a = [self.sep_token_id] a = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self , A , A = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(A ): logger.error("Vocabulary path ({}) should be a directory".format(A ) ) return a = os.path.join( A , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ): copyfile(self.vocab_file , A ) return (out_vocab_file,)
515
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) lowercase__ : Dict = { "configuration_roberta": ["ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "RobertaConfig", "RobertaOnnxConfig"], "tokenization_roberta": ["RobertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = ["RobertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ "ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "RobertaForCausalLM", "RobertaForMaskedLM", "RobertaForMultipleChoice", "RobertaForQuestionAnswering", "RobertaForSequenceClassification", "RobertaForTokenClassification", "RobertaModel", "RobertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Optional[Any] = [ "TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRobertaForCausalLM", "TFRobertaForMaskedLM", "TFRobertaForMultipleChoice", "TFRobertaForQuestionAnswering", "TFRobertaForSequenceClassification", "TFRobertaForTokenClassification", "TFRobertaMainLayer", "TFRobertaModel", "TFRobertaPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ "FlaxRobertaForCausalLM", "FlaxRobertaForMaskedLM", "FlaxRobertaForMultipleChoice", "FlaxRobertaForQuestionAnswering", "FlaxRobertaForSequenceClassification", "FlaxRobertaForTokenClassification", "FlaxRobertaModel", "FlaxRobertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys lowercase__ : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
515
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel from transformers.utils import logging logging.set_verbosity_info() __UpperCamelCase : Any = logging.get_logger(__name__) def __UpperCAmelCase ( _snake_case : List[str], _snake_case : List[Any]=False ): _lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"""blocks.{i}.norm1.weight""", f"""vit.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((f"""blocks.{i}.norm1.bias""", f"""vit.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append((f"""blocks.{i}.attn.proj.weight""", f"""vit.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.attn.proj.bias""", f"""vit.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((f"""blocks.{i}.norm2.weight""", f"""vit.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((f"""blocks.{i}.norm2.bias""", f"""vit.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.weight""", f"""vit.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc1.bias""", f"""vit.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.weight""", f"""vit.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((f"""blocks.{i}.mlp.fc2.bias""", f"""vit.encoder.layer.{i}.output.dense.bias""") ) # projection layer + position embeddings rename_keys.extend( [ ("cls_token", "vit.embeddings.cls_token"), ("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" _lowercase = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __UpperCAmelCase ( _snake_case : str, _snake_case : List[Any], _snake_case : List[Any]=False ): for i in range(config.num_hidden_layers ): if base_model: _lowercase = "" else: _lowercase = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _lowercase = state_dict.pop(f"""blocks.{i}.attn.qkv.weight""" ) _lowercase = state_dict.pop(f"""blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict _lowercase = in_proj_weight[ : config.hidden_size, : ] _lowercase = in_proj_bias[: config.hidden_size] _lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _lowercase = in_proj_weight[ -config.hidden_size :, : ] _lowercase = in_proj_bias[-config.hidden_size :] def __UpperCAmelCase ( _snake_case : Optional[int] ): _lowercase = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_snake_case, _snake_case ) def __UpperCAmelCase ( _snake_case : int, _snake_case : Any, _snake_case : Any ): _lowercase = dct.pop(_snake_case ) _lowercase = val def __UpperCAmelCase ( ): _lowercase = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowercase = Image.open(requests.get(_snake_case, stream=_snake_case ).raw ) return im @torch.no_grad() def __UpperCAmelCase ( _snake_case : Optional[int], _snake_case : Union[str, Any] ): _lowercase = ViTConfig() _lowercase = False # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size if vit_name[-5:] == "in21k": _lowercase = True _lowercase = int(vit_name[-1_2:-1_0] ) _lowercase = int(vit_name[-9:-6] ) else: _lowercase = 1_0_0_0 _lowercase = "huggingface/label-files" _lowercase = "imagenet-1k-id2label.json" _lowercase = json.load(open(hf_hub_download(_snake_case, _snake_case, repo_type="dataset" ), "r" ) ) _lowercase = {int(_snake_case ): v for k, v in idalabel.items()} _lowercase = idalabel _lowercase = {v: k for k, v in idalabel.items()} _lowercase = int(vit_name[-6:-4] ) _lowercase = int(vit_name[-3:] ) # size of the architecture if "deit" in vit_name: if vit_name[9:].startswith("tiny" ): _lowercase = 1_9_2 _lowercase = 7_6_8 _lowercase = 1_2 _lowercase = 3 elif vit_name[9:].startswith("small" ): _lowercase = 3_8_4 _lowercase = 1_5_3_6 _lowercase = 1_2 _lowercase = 6 else: pass else: if vit_name[4:].startswith("small" ): _lowercase = 7_6_8 _lowercase = 2_3_0_4 _lowercase = 8 _lowercase = 8 elif vit_name[4:].startswith("base" ): pass elif vit_name[4:].startswith("large" ): _lowercase = 1_0_2_4 _lowercase = 4_0_9_6 _lowercase = 2_4 _lowercase = 1_6 elif vit_name[4:].startswith("huge" ): _lowercase = 1_2_8_0 _lowercase = 5_1_2_0 _lowercase = 3_2 _lowercase = 1_6 # load original model from timm _lowercase = timm.create_model(_snake_case, pretrained=_snake_case ) timm_model.eval() # load state_dict of original model, remove and rename some keys _lowercase = timm_model.state_dict() if base_model: remove_classification_head_(_snake_case ) _lowercase = create_rename_keys(_snake_case, _snake_case ) for src, dest in rename_keys: rename_key(_snake_case, _snake_case, _snake_case ) read_in_q_k_v(_snake_case, _snake_case, _snake_case ) # load HuggingFace model if vit_name[-5:] == "in21k": _lowercase = ViTModel(_snake_case ).eval() else: _lowercase = ViTForImageClassification(_snake_case ).eval() model.load_state_dict(_snake_case ) # Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor if "deit" in vit_name: _lowercase = DeiTImageProcessor(size=config.image_size ) else: _lowercase = ViTImageProcessor(size=config.image_size ) _lowercase = image_processor(images=prepare_img(), return_tensors="pt" ) _lowercase = encoding["pixel_values"] _lowercase = model(_snake_case ) if base_model: _lowercase = timm_model.forward_features(_snake_case ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_snake_case, outputs.pooler_output, atol=1e-3 ) else: _lowercase = timm_model(_snake_case ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_snake_case, outputs.logits, atol=1e-3 ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) print(f"""Saving model {vit_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(_snake_case ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(_snake_case ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_patch16_224", type=str, help="Name of the ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) __UpperCamelCase : Optional[int] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
227
"""simple docstring""" from __future__ import annotations __UpperCamelCase : List[Any] = 1.6021E-19 # units = C def __UpperCAmelCase ( _snake_case : float, _snake_case : float, _snake_case : float, ): if (conductivity, electron_conc, mobility).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif conductivity < 0: raise ValueError("Conductivity cannot be negative" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative" ) elif mobility < 0: raise ValueError("mobility cannot be negative" ) elif conductivity == 0: return ( "conductivity", mobility * electron_conc * ELECTRON_CHARGE, ) elif electron_conc == 0: return ( "electron_conc", conductivity / (mobility * ELECTRON_CHARGE), ) else: return ( "mobility", conductivity / (electron_conc * ELECTRON_CHARGE), ) if __name__ == "__main__": import doctest doctest.testmod()
227
1
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowerCAmelCase_ = logging.get_logger(__name__) class _A : def __init__( self : str , _A : str = None , _A : uuid.UUID = None , _A : Union[str, Any]=None , _A : List[str]=None ) -> Any: """simple docstring""" if not conversation_id: lowercase : Optional[int] = uuid.uuida() if past_user_inputs is None: lowercase : Any = [] if generated_responses is None: lowercase : Optional[Any] = [] lowercase : uuid.UUID = conversation_id lowercase : List[str] = past_user_inputs lowercase : List[str] = generated_responses lowercase : Optional[str] = text def __eq__( self : Tuple , _A : List[Any] ) -> Dict: """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def __a ( self : Optional[Any] , _A : str , _A : bool = False ) -> Union[str, Any]: """simple docstring""" if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) lowercase : Optional[Any] = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: lowercase : List[Any] = text def __a ( self : List[Any] ) -> Any: """simple docstring""" if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowercase : Any = None def __a ( self : List[str] , _A : str ) -> Any: """simple docstring""" self.generated_responses.append(__lowerCamelCase ) def __a ( self : int ) -> Union[str, Any]: """simple docstring""" for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" lowercase : Any = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): lowercase : List[Any] = '''user''' if is_user else '''bot''' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( __lowerCamelCase , R'''\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n ''' , ) class _A ( __lowerCamelCase ): def __init__( self : Optional[int] , *_A : Optional[int] , **_A : int ) -> Tuple: """simple docstring""" super().__init__(*__lowerCamelCase , **__lowerCamelCase ) if self.tokenizer.pad_token_id is None: lowercase : str = self.tokenizer.eos_token def __a ( self : Any , _A : int=None , _A : List[str]=None , _A : List[str]=None , **_A : Tuple ) -> Dict: """simple docstring""" lowercase : Optional[int] = {} lowercase : int = {} lowercase : Dict = {} if min_length_for_response is not None: lowercase : Tuple = min_length_for_response if minimum_tokens is not None: lowercase : str = minimum_tokens if "max_length" in generate_kwargs: lowercase : List[Any] = generate_kwargs['''max_length'''] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowercase : Dict = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(__lowerCamelCase ) return preprocess_params, forward_params, postprocess_params def __call__( self : int , _A : Union[Conversation, List[Conversation]] , _A : Any=0 , **_A : str ) -> List[Any]: """simple docstring""" lowercase : Any = super().__call__(__lowerCamelCase , num_workers=__lowerCamelCase , **__lowerCamelCase ) if isinstance(__lowerCamelCase , __lowerCamelCase ) and len(__lowerCamelCase ) == 1: return outputs[0] return outputs def __a ( self : Union[str, Any] , _A : Conversation , _A : int=32 ) -> Dict[str, Any]: """simple docstring""" if not isinstance(__lowerCamelCase , __lowerCamelCase ): raise ValueError('''ConversationalPipeline, expects Conversation as inputs''' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ '''Add user inputs with the conversation\'s `add_user_input` method''' ) if hasattr(self.tokenizer , '''_build_conversation_input_ids''' ): lowercase : Tuple = self.tokenizer._build_conversation_input_ids(__lowerCamelCase ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowercase : List[str] = self._legacy_parse_and_tokenize(__lowerCamelCase ) if self.framework == "pt": lowercase : int = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowercase : List[str] = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def __a ( self : Dict , _A : Any , _A : Dict=10 , **_A : Optional[Any] ) -> Tuple: """simple docstring""" lowercase : str = generate_kwargs.get('''max_length''' , self.model.config.max_length ) lowercase : List[Any] = model_inputs['''input_ids'''].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) lowercase : Tuple = max_length - minimum_tokens lowercase : List[str] = model_inputs['''input_ids'''][:, -trim:] if "attention_mask" in model_inputs: lowercase : List[Any] = model_inputs['''attention_mask'''][:, -trim:] lowercase : Union[str, Any] = model_inputs.pop('''conversation''' ) lowercase : Any = max_length lowercase : Dict = self.model.generate(**__lowerCamelCase , **__lowerCamelCase ) if self.model.config.is_encoder_decoder: lowercase : List[Any] = 1 else: lowercase : Optional[int] = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def __a ( self : Dict , _A : int , _A : Any=True ) -> List[Any]: """simple docstring""" lowercase : Optional[int] = model_outputs['''output_ids'''] lowercase : int = self.tokenizer.decode( output_ids[0] , skip_special_tokens=__lowerCamelCase , clean_up_tokenization_spaces=__lowerCamelCase , ) lowercase : Union[str, Any] = model_outputs['''conversation'''] conversation.mark_processed() conversation.append_response(__lowerCamelCase ) return conversation def __a ( self : Tuple , _A : Conversation ) -> Dict: """simple docstring""" lowercase : List[Any] = self.tokenizer.eos_token_id lowercase : Optional[Any] = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(__lowerCamelCase , add_special_tokens=__lowerCamelCase ) ) if len(__lowerCamelCase ) > self.tokenizer.model_max_length: lowercase : Optional[int] = input_ids[-self.tokenizer.model_max_length :] return input_ids
217
def _lowercase ( __lowerCamelCase : int ) -> bool: '''simple docstring''' UpperCamelCase__ : Tuple = n ** (1 / 3) return (val * val * val) == n if __name__ == "__main__": print(perfect_cube(27)) print(perfect_cube(4))
344
0
from string import ascii_lowercase, ascii_uppercase def _snake_case (_snake_case : str) -> str: if not sentence: return "" _lowercase =dict(zip(_snake_case , _snake_case)) return lower_to_upper.get(sentence[0] , sentence[0]) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
557
import itertools import random import unittest import numpy as np from transformers import ASTFeatureExtractor from transformers.testing_utils import require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin _SCREAMING_SNAKE_CASE = random.Random() if is_torch_available(): import torch def _snake_case (_snake_case : str , _snake_case : Optional[Any]=1.0 , _snake_case : int=None , _snake_case : Optional[int]=None) -> Optional[int]: if rng is None: _lowercase =global_rng _lowercase =[] for batch_idx in range(shape[0]): values.append([]) for _ in range(shape[1]): values[-1].append(rng.random() * scale) return values class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def __init__( self :int, snake_case :List[Any], snake_case :List[str]=7, snake_case :Union[str, Any]=400, snake_case :List[Any]=2000, snake_case :Union[str, Any]=1, snake_case :Tuple=0.0, snake_case :Tuple=1_6000, snake_case :Optional[Any]=True, snake_case :List[Any]=True, ): """simple docstring""" _lowercase =parent _lowercase =batch_size _lowercase =min_seq_length _lowercase =max_seq_length _lowercase =(self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowercase =feature_size _lowercase =padding_value _lowercase =sampling_rate _lowercase =return_attention_mask _lowercase =do_normalize def UpperCamelCase__ ( self :int): """simple docstring""" return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def UpperCamelCase__ ( self :Tuple, snake_case :Optional[Any]=False, snake_case :int=False): """simple docstring""" def _flatten(snake_case :Optional[int]): return list(itertools.chain(*snake_case)) if equal_length: _lowercase =floats_list((self.batch_size, self.max_seq_length)) else: # make sure that inputs increase in size _lowercase =[ _flatten(floats_list((x, self.feature_size))) for x in range(self.min_seq_length, self.max_seq_length, self.seq_length_diff) ] if numpify: _lowercase =[np.asarray(snake_case) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class SCREAMING_SNAKE_CASE_ ( _a , unittest.TestCase ): """simple docstring""" __lowerCAmelCase : Any =ASTFeatureExtractor def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =ASTFeatureExtractionTester(self) def UpperCamelCase__ ( self :int): """simple docstring""" _lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) # create three inputs of length 800, 1000, and 1200 _lowercase =[floats_list((1, x))[0] for x in range(800, 1400, 200)] _lowercase =[np.asarray(snake_case) for speech_input in speech_inputs] # Test not batched input _lowercase =feat_extract(speech_inputs[0], return_tensors='np').input_values _lowercase =feat_extract(np_speech_inputs[0], return_tensors='np').input_values self.assertTrue(np.allclose(snake_case, snake_case, atol=1e-3)) # Test batched _lowercase =feat_extract(snake_case, padding=snake_case, return_tensors='np').input_values _lowercase =feat_extract(snake_case, padding=snake_case, return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(snake_case, snake_case): self.assertTrue(np.allclose(snake_case, snake_case, atol=1e-3)) # Test 2-D numpy arrays are batched. _lowercase =[floats_list((1, x))[0] for x in (800, 800, 800)] _lowercase =np.asarray(snake_case) _lowercase =feat_extract(snake_case, return_tensors='np').input_values _lowercase =feat_extract(snake_case, return_tensors='np').input_values for enc_seq_a, enc_seq_a in zip(snake_case, snake_case): self.assertTrue(np.allclose(snake_case, snake_case, atol=1e-3)) @require_torch def UpperCamelCase__ ( self :Tuple): """simple docstring""" import torch _lowercase =self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict()) _lowercase =np.random.rand(100).astype(np.floataa) _lowercase =np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowercase =feature_extractor.pad([{'input_values': inputs}], return_tensors='np') self.assertTrue(np_processed.input_values.dtype == np.floataa) _lowercase =feature_extractor.pad([{'input_values': inputs}], return_tensors='pt') self.assertTrue(pt_processed.input_values.dtype == torch.floataa) def UpperCamelCase__ ( self :Tuple, snake_case :Any): """simple docstring""" from datasets import load_dataset _lowercase =load_dataset('hf-internal-testing/librispeech_asr_dummy', 'clean', split='validation') # automatic decoding with librispeech _lowercase =ds.sort('id').select(range(snake_case))[:num_samples]['audio'] return [x["array"] for x in speech_samples] @require_torch def UpperCamelCase__ ( self :str): """simple docstring""" _lowercase =torch.tensor( [-0.9_8_9_4, -1.2_7_7_6, -0.9_0_6_6, -1.2_7_7_6, -0.9_3_4_9, -1.2_6_0_9, -1.0_3_8_6, -1.2_7_7_6, -1.1_5_6_1, -1.2_7_7_6, -1.2_0_5_2, -1.2_7_2_3, -1.2_1_9_0, -1.2_1_3_2, -1.2_7_7_6, -1.1_1_3_3, -1.1_9_5_3, -1.1_3_4_3, -1.1_5_8_4, -1.2_2_0_3, -1.1_7_7_0, -1.2_4_7_4, -1.2_3_8_1, -1.1_9_3_6, -0.9_2_7_0, -0.8_3_1_7, -0.8_0_4_9, -0.7_7_0_6, -0.7_5_6_5, -0.7_8_6_9]) # fmt: on _lowercase =self._load_datasamples(1) _lowercase =ASTFeatureExtractor() _lowercase =feature_extractor(snake_case, return_tensors='pt').input_values self.assertEquals(input_values.shape, (1, 1024, 128)) self.assertTrue(torch.allclose(input_values[0, 0, :30], snake_case, atol=1e-4))
557
1
from cva import destroyAllWindows, imread, imshow, waitKey def lowerCamelCase_ ( _UpperCamelCase ) -> str: """simple docstring""" snake_case_ , snake_case_ : Tuple = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(_UpperCamelCase ): for j in range(_UpperCamelCase ): snake_case_ : List[str] = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowerCAmelCase_ = imread('''image_data/lena.jpg''', 1) # convert to its negative lowerCAmelCase_ = convert_to_negative(img) # show result image imshow('''negative of original image''', img) waitKey(0) destroyAllWindows()
60
from copy import deepcopy from typing import Optional, Union import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import TensorType, is_tf_available, is_torch_available if is_torch_available(): import torch if is_tf_available(): import tensorflow as tf class UpperCamelCase ( __a ): a__ :str = ['''image_processor'''] a__ :str = '''SamImageProcessor''' def __init__(self , __UpperCamelCase ) -> int: super().__init__(__UpperCamelCase ) UpperCamelCase_ : Any = self.image_processor UpperCamelCase_ : int = -10 UpperCamelCase_ : Dict = self.image_processor.size["""longest_edge"""] def __call__(self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase = None , **__UpperCamelCase , ) -> BatchEncoding: UpperCamelCase_ : int = self.image_processor( __UpperCamelCase , return_tensors=__UpperCamelCase , **__UpperCamelCase , ) # pop arguments that are not used in the foward but used nevertheless UpperCamelCase_ : Optional[int] = encoding_image_processor["""original_sizes"""] if hasattr(__UpperCamelCase , """numpy""" ): # Checks if Torch or TF tensor UpperCamelCase_ : Dict = original_sizes.numpy() UpperCamelCase_,UpperCamelCase_,UpperCamelCase_ : str = self._check_and_preprocess_points( input_points=__UpperCamelCase , input_labels=__UpperCamelCase , input_boxes=__UpperCamelCase , ) UpperCamelCase_ : List[str] = self._normalize_and_convert( __UpperCamelCase , __UpperCamelCase , input_points=__UpperCamelCase , input_labels=__UpperCamelCase , input_boxes=__UpperCamelCase , return_tensors=__UpperCamelCase , ) return encoding_image_processor def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase="pt" , ) -> Tuple: if input_points is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): UpperCamelCase_ : str = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , original_sizes[0] ) for point in input_points ] else: UpperCamelCase_ : List[str] = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , __UpperCamelCase ) for point, original_size in zip(__UpperCamelCase , __UpperCamelCase ) ] # check that all arrays have the same shape if not all(point.shape == input_points[0].shape for point in input_points ): if input_labels is not None: UpperCamelCase_,UpperCamelCase_ : Optional[Any] = self._pad_points_and_labels(__UpperCamelCase , __UpperCamelCase ) UpperCamelCase_ : Dict = np.array(__UpperCamelCase ) if input_labels is not None: UpperCamelCase_ : Optional[Any] = np.array(__UpperCamelCase ) if input_boxes is not None: if len(__UpperCamelCase ) != len(__UpperCamelCase ): UpperCamelCase_ : Tuple = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , original_sizes[0] , is_bounding_box=__UpperCamelCase ) for box in input_boxes ] else: UpperCamelCase_ : Any = [ self._normalize_coordinates(self.target_size , __UpperCamelCase , __UpperCamelCase , is_bounding_box=__UpperCamelCase ) for box, original_size in zip(__UpperCamelCase , __UpperCamelCase ) ] UpperCamelCase_ : int = np.array(__UpperCamelCase ) if input_boxes is not None: if return_tensors == "pt": UpperCamelCase_ : Union[str, Any] = torch.from_numpy(__UpperCamelCase ) # boxes batch size of 1 by default UpperCamelCase_ : Any = input_boxes.unsqueeze(1 ) if len(input_boxes.shape ) != 3 else input_boxes elif return_tensors == "tf": UpperCamelCase_ : List[str] = tf.convert_to_tensor(__UpperCamelCase ) # boxes batch size of 1 by default UpperCamelCase_ : Optional[int] = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_boxes.shape ) != 3 else input_boxes encoding_image_processor.update({"""input_boxes""": input_boxes} ) if input_points is not None: if return_tensors == "pt": UpperCamelCase_ : Optional[Any] = torch.from_numpy(__UpperCamelCase ) # point batch size of 1 by default UpperCamelCase_ : List[Any] = input_points.unsqueeze(1 ) if len(input_points.shape ) != 4 else input_points elif return_tensors == "tf": UpperCamelCase_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) # point batch size of 1 by default UpperCamelCase_ : Dict = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_points.shape ) != 4 else input_points encoding_image_processor.update({"""input_points""": input_points} ) if input_labels is not None: if return_tensors == "pt": UpperCamelCase_ : Optional[int] = torch.from_numpy(__UpperCamelCase ) # point batch size of 1 by default UpperCamelCase_ : Tuple = input_labels.unsqueeze(1 ) if len(input_labels.shape ) != 3 else input_labels elif return_tensors == "tf": UpperCamelCase_ : Optional[Any] = tf.convert_to_tensor(__UpperCamelCase ) # point batch size of 1 by default UpperCamelCase_ : Dict = tf.expand_dims(__UpperCamelCase , 1 ) if len(input_labels.shape ) != 3 else input_labels encoding_image_processor.update({"""input_labels""": input_labels} ) return encoding_image_processor def A_ (self , __UpperCamelCase , __UpperCamelCase ) -> Tuple: UpperCamelCase_ : Union[str, Any] = max([point.shape[0] for point in input_points] ) UpperCamelCase_ : Any = [] for i, point in enumerate(__UpperCamelCase ): if point.shape[0] != expected_nb_points: UpperCamelCase_ : Optional[int] = np.concatenate( [point, np.zeros((expected_nb_points - point.shape[0], 2) ) + self.point_pad_value] , axis=0 ) UpperCamelCase_ : Dict = np.append(input_labels[i] , [self.point_pad_value] ) processed_input_points.append(__UpperCamelCase ) UpperCamelCase_ : List[Any] = processed_input_points return input_points, input_labels def A_ (self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=False ) -> np.ndarray: UpperCamelCase_,UpperCamelCase_ : Optional[int] = original_size UpperCamelCase_,UpperCamelCase_ : List[str] = self.image_processor._get_preprocess_shape(__UpperCamelCase , longest_edge=__UpperCamelCase ) UpperCamelCase_ : str = deepcopy(__UpperCamelCase ).astype(__UpperCamelCase ) if is_bounding_box: UpperCamelCase_ : int = coords.reshape(-1 , 2 , 2 ) UpperCamelCase_ : Tuple = coords[..., 0] * (new_w / old_w) UpperCamelCase_ : Optional[int] = coords[..., 1] * (new_h / old_h) if is_bounding_box: UpperCamelCase_ : Optional[Any] = coords.reshape(-1 , 4 ) return coords def A_ (self , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> List[str]: if input_points is not None: if hasattr(__UpperCamelCase , """numpy""" ): # Checks for TF or Torch tensor UpperCamelCase_ : int = input_points.numpy().tolist() if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_points[0] , __UpperCamelCase ): raise ValueError("""Input points must be a list of list of floating points.""" ) UpperCamelCase_ : List[Any] = [np.array(__UpperCamelCase ) for input_point in input_points] else: UpperCamelCase_ : str = None if input_labels is not None: if hasattr(__UpperCamelCase , """numpy""" ): UpperCamelCase_ : Any = input_labels.numpy().tolist() if not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_labels[0] , __UpperCamelCase ): raise ValueError("""Input labels must be a list of list integers.""" ) UpperCamelCase_ : List[str] = [np.array(__UpperCamelCase ) for label in input_labels] else: UpperCamelCase_ : List[str] = None if input_boxes is not None: if hasattr(__UpperCamelCase , """numpy""" ): UpperCamelCase_ : Dict = input_boxes.numpy().tolist() if ( not isinstance(__UpperCamelCase , __UpperCamelCase ) or not isinstance(input_boxes[0] , __UpperCamelCase ) or not isinstance(input_boxes[0][0] , __UpperCamelCase ) ): raise ValueError("""Input boxes must be a list of list of list of floating points.""" ) UpperCamelCase_ : Tuple = [np.array(__UpperCamelCase ).astype(np.floataa ) for box in input_boxes] else: UpperCamelCase_ : List[str] = None return input_points, input_labels, input_boxes @property def A_ (self ) -> List[str]: UpperCamelCase_ : str = self.image_processor.model_input_names return list(dict.fromkeys(__UpperCamelCase ) ) def A_ (self , *__UpperCamelCase , **__UpperCamelCase ) -> Optional[Any]: return self.image_processor.post_process_masks(*__UpperCamelCase , **__UpperCamelCase )
635
0
"""simple docstring""" import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _lowerCamelCase( a , a ): __a = old_name if "patch_embed" in old_name: __a = old_name.split("." ) if layer == "0": __a = old_name.replace("0" , "convolution1" ) elif layer == "1": __a = old_name.replace("1" , "batchnorm_before" ) elif layer == "3": __a = old_name.replace("3" , "convolution2" ) else: __a = old_name.replace("4" , "batchnorm_after" ) if "network" in old_name and re.search(R"\d\.\d" , _lowerCamelCase ): __a = r"\b\d{2}\b" if bool(re.search(_lowerCamelCase , _lowerCamelCase ) ): __a = re.search(R"\d\.\d\d." , _lowerCamelCase ).group() else: __a = re.search(R"\d\.\d." , _lowerCamelCase ).group() if int(match[0] ) < 6: __a = old_name.replace(_lowerCamelCase , "" ) __a = trimmed_name.replace("network" , match[0] + ".meta4D_layers.blocks." + match[2:-1] ) __a = "intermediate_stages." + trimmed_name else: __a = old_name.replace(_lowerCamelCase , "" ) if int(match[2] ) < num_meta4D_last_stage: __a = trimmed_name.replace("network" , "meta4D_layers.blocks." + match[2] ) else: __a = str(int(match[2] ) - num_meta4D_last_stage ) __a = trimmed_name.replace("network" , "meta3D_layers.blocks." + layer_index ) if "norm1" in old_name: __a = trimmed_name.replace("norm1" , "layernorm1" ) elif "norm2" in old_name: __a = trimmed_name.replace("norm2" , "layernorm2" ) elif "fc1" in old_name: __a = trimmed_name.replace("fc1" , "linear_in" ) elif "fc2" in old_name: __a = trimmed_name.replace("fc2" , "linear_out" ) __a = "last_stage." + trimmed_name elif "network" in old_name and re.search(R".\d." , _lowerCamelCase ): __a = old_name.replace("network" , "intermediate_stages" ) if "fc" in new_name: __a = new_name.replace("fc" , "convolution" ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): __a = new_name.replace("norm1" , "batchnorm_before" ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): __a = new_name.replace("norm2" , "batchnorm_after" ) if "proj" in new_name: __a = new_name.replace("proj" , "projection" ) if "dist_head" in new_name: __a = new_name.replace("dist_head" , "distillation_classifier" ) elif "head" in new_name: __a = new_name.replace("head" , "classifier" ) elif "patch_embed" in new_name: __a = "efficientformer." + new_name elif new_name == "norm.weight" or new_name == "norm.bias": __a = new_name.replace("norm" , "layernorm" ) __a = "efficientformer." + new_name else: __a = "efficientformer.encoder." + new_name return new_name def _lowerCamelCase( a , a ): for key in checkpoint.copy().keys(): __a = checkpoint.pop(_lowerCamelCase ) __a = val return checkpoint def _lowerCamelCase( ): __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return image def _lowerCamelCase( a , a , a , a ): __a = torch.load(_lowerCamelCase , map_location="cpu" )["model"] __a = EfficientFormerConfig.from_json_file(_lowerCamelCase ) __a = EfficientFormerForImageClassificationWithTeacher(_lowerCamelCase ) __a = "_".join(checkpoint_path.split("/" )[-1].split("." )[0].split("_" )[:-1] ) __a = config.depths[-1] - config.num_metaad_blocks + 1 __a = convert_torch_checkpoint(_lowerCamelCase , _lowerCamelCase ) model.load_state_dict(_lowerCamelCase ) model.eval() __a = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } # prepare image __a = prepare_img() __a = 2_5_6 __a = 2_2_4 __a = EfficientFormerImageProcessor( size={"shortest_edge": image_size} , crop_size={"height": crop_size, "width": crop_size} , resample=pillow_resamplings["bicubic"] , ) __a = processor(images=_lowerCamelCase , return_tensors="pt" ).pixel_values # original processing pipeline __a = Compose( [ Resize(_lowerCamelCase , interpolation=pillow_resamplings["bicubic"] ), CenterCrop(_lowerCamelCase ), ToTensor(), Normalize(_lowerCamelCase , _lowerCamelCase ), ] ) __a = image_transforms(_lowerCamelCase ).unsqueeze(0 ) assert torch.allclose(_lowerCamelCase , _lowerCamelCase ) __a = model(_lowerCamelCase ) __a = outputs.logits __a = (1, 1_0_0_0) if "l1" in model_name: __a = torch.Tensor( [-0.13_12, 0.43_53, -1.04_99, -0.51_24, 0.41_83, -0.67_93, -1.37_77, -0.08_93, -0.73_58, -2.43_28] ) assert torch.allclose(logits[0, :1_0] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l3" in model_name: __a = torch.Tensor( [-1.31_50, -1.54_56, -1.25_56, -0.84_96, -0.71_27, -0.78_97, -0.97_28, -0.30_52, 0.37_51, -0.31_27] ) assert torch.allclose(logits[0, :1_0] , _lowerCamelCase , atol=1E-3 ) assert logits.shape == expected_shape elif "l7" in model_name: __a = torch.Tensor( [-1.02_83, -1.41_31, -0.56_44, -1.31_15, -0.57_85, -1.20_49, -0.75_28, 0.19_92, -0.38_22, -0.08_78] ) assert logits.shape == expected_shape else: raise ValueError( F"Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7" ) # Save Checkpoints Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) model.save_pretrained(_lowerCamelCase ) print(F"Checkpoint successfuly converted. Model saved at {pytorch_dump_path}" ) processor.save_pretrained(_lowerCamelCase ) print(F"Processor successfuly saved at {pytorch_dump_path}" ) if push_to_hub: print("Pushing model to the hub..." ) model.push_to_hub( repo_id=F"Bearnardd/{pytorch_dump_path}" , commit_message="Add model" , use_temp_dir=_lowerCamelCase , ) processor.push_to_hub( repo_id=F"Bearnardd/{pytorch_dump_path}" , commit_message="Add image processor" , use_temp_dir=_lowerCamelCase , ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--pytorch_model_path""", default=None, type=str, required=True, help="""Path to EfficientFormer pytorch checkpoint.""", ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help="""The json file for EfficientFormer model config.""", ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") parser.add_argument( """--no-push_to_hub""", dest="""push_to_hub""", action="""store_false""", help="""Do not push model and image processor to the hub""", ) parser.set_defaults(push_to_hub=True) SCREAMING_SNAKE_CASE__:List[Any] = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
704
"""simple docstring""" import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def _lowerCamelCase( a , a , a ): __a = OmegaConf.load(a ) __a = torch.load(a , map_location="cpu" )["model"] __a = list(state_dict.keys() ) # extract state_dict for VQVAE __a = {} __a = "first_stage_model." for key in keys: if key.startswith(a ): __a = state_dict[key] # extract state_dict for UNetLDM __a = {} __a = "model.diffusion_model." for key in keys: if key.startswith(a ): __a = state_dict[key] __a = config.model.params.first_stage_config.params __a = config.model.params.unet_config.params __a = VQModel(**a ).eval() vqvae.load_state_dict(a ) __a = UNetLDMModel(**a ).eval() unet.load_state_dict(a ) __a = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule="scaled_linear" , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=a , ) __a = LDMPipeline(a , a , a ) pipeline.save_pretrained(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:List[Any] = argparse.ArgumentParser() parser.add_argument("""--checkpoint_path""", type=str, required=True) parser.add_argument("""--config_path""", type=str, required=True) parser.add_argument("""--output_path""", type=str, required=True) SCREAMING_SNAKE_CASE__:Union[str, Any] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
67
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : Union[str, Any] = '''▁''' lowercase_ : int = {'''vocab_file''': '''sentencepiece.bpe.model'''} lowercase_ : Dict = { '''vocab_file''': { '''facebook/mbart-large-50-one-to-many-mmt''': ( '''https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model''' ), } } lowercase_ : List[str] = { '''facebook/mbart-large-50-one-to-many-mmt''': 1024, } # fmt: off lowercase_ : Optional[Any] = ['''ar_AR''', '''cs_CZ''', '''de_DE''', '''en_XX''', '''es_XX''', '''et_EE''', '''fi_FI''', '''fr_XX''', '''gu_IN''', '''hi_IN''', '''it_IT''', '''ja_XX''', '''kk_KZ''', '''ko_KR''', '''lt_LT''', '''lv_LV''', '''my_MM''', '''ne_NP''', '''nl_XX''', '''ro_RO''', '''ru_RU''', '''si_LK''', '''tr_TR''', '''vi_VN''', '''zh_CN''', '''af_ZA''', '''az_AZ''', '''bn_IN''', '''fa_IR''', '''he_IL''', '''hr_HR''', '''id_ID''', '''ka_GE''', '''km_KH''', '''mk_MK''', '''ml_IN''', '''mn_MN''', '''mr_IN''', '''pl_PL''', '''ps_AF''', '''pt_XX''', '''sv_SE''', '''sw_KE''', '''ta_IN''', '''te_IN''', '''th_TH''', '''tl_XX''', '''uk_UA''', '''ur_PK''', '''xh_ZA''', '''gl_ES''', '''sl_SI'''] class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Optional[Any] = ["input_ids", "attention_mask"] _UpperCamelCase : List[int] = [] _UpperCamelCase : List[int] = [] def __init__( self : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Tuple=None , lowerCamelCase_ : Optional[Any]="</s>" , lowerCamelCase_ : Dict="</s>" , lowerCamelCase_ : str="<s>" , lowerCamelCase_ : List[Any]="<unk>" , lowerCamelCase_ : Optional[Any]="<pad>" , lowerCamelCase_ : Tuple="<mask>" , lowerCamelCase_ : Optional[Dict[str, Any]] = None , **lowerCamelCase_ : Any , ): '''simple docstring''' _snake_case : Union[str, Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token _snake_case : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs _snake_case : Optional[Any] = kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase_ , tgt_lang=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) _snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) _snake_case : List[str] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token _snake_case : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _snake_case : Optional[Any] = 1 _snake_case : Optional[int] = len(self.sp_model ) _snake_case : List[Any] = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCamelCase_ ) } _snake_case : Optional[int] = {v: k for k, v in self.lang_code_to_id.items()} _snake_case : Dict = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _snake_case : Union[str, Any] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _snake_case : Optional[int] = src_lang if src_lang is not None else 'en_XX' _snake_case : Optional[Any] = self.lang_code_to_id[self._src_lang] _snake_case : Union[str, Any] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCAmelCase ( self : Optional[Any] ): '''simple docstring''' return self._src_lang @src_lang.setter def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Any ): '''simple docstring''' _snake_case : Optional[Any] = self.__dict__.copy() _snake_case : Any = None return state def __setstate__( self : List[Any] , lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case : Optional[Any] = {} _snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : str , lowerCamelCase_ : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : str ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _snake_case : Optional[int] = self.sp_model.PieceToId(lowerCamelCase_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : int ): '''simple docstring''' if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Any = [] _snake_case : int = '' _snake_case : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCamelCase_ ) + token _snake_case : Any = True _snake_case : Optional[Any] = [] else: current_sub_tokens.append(lowerCamelCase_ ) _snake_case : List[Any] = False out_string += self.sp_model.decode(lowerCamelCase_ ) return out_string.strip() def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : str = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , 'wb' ) as fi: _snake_case : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) return (out_vocab_file,) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) _snake_case : List[Any] = [1] * len(self.prefix_tokens ) _snake_case : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase_ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase_ )) + ([0] * len(lowerCamelCase_ )) + suffix_ones def __UpperCAmelCase ( self : str , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Dict , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] , lowerCamelCase_ : Optional[str] , **lowerCamelCase_ : str ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _snake_case : List[str] = src_lang _snake_case : Optional[int] = self(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : Any = self.convert_tokens_to_ids(lowerCamelCase_ ) _snake_case : List[Any] = tgt_lang_id return inputs def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[str] , lowerCamelCase_ : str = "en_XX" , lowerCamelCase_ : Optional[List[str]] = None , lowerCamelCase_ : str = "ro_RO" , **lowerCamelCase_ : str , ): '''simple docstring''' _snake_case : Optional[Any] = src_lang _snake_case : str = tgt_lang return super().prepare_seqaseq_batch(lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Optional[int] = self.lang_code_to_id[src_lang] _snake_case : Tuple = [self.cur_lang_code_id] _snake_case : Tuple = [self.eos_token_id] def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : int = self.lang_code_to_id[tgt_lang] _snake_case : Optional[int] = [self.cur_lang_code_id] _snake_case : Optional[Any] = [self.eos_token_id]
304
import os from typing import List, Optional, Union from ...tokenization_utils import PreTrainedTokenizer from ...tokenization_utils_base import AddedToken from ...utils import logging lowercase_ : List[Any] = logging.get_logger(__name__) lowercase_ : str = {'''vocab_file''': '''vocab.txt'''} lowercase_ : Union[str, Any] = { '''vocab_file''': { '''facebook/esm2_t6_8M_UR50D''': '''https://huggingface.co/facebook/esm2_t6_8M_UR50D/resolve/main/vocab.txt''', '''facebook/esm2_t12_35M_UR50D''': '''https://huggingface.co/facebook/esm2_t12_35M_UR50D/resolve/main/vocab.txt''', }, } lowercase_ : Optional[Any] = { '''facebook/esm2_t6_8M_UR50D''': 1024, '''facebook/esm2_t12_35M_UR50D''': 1024, } def A__( __lowerCAmelCase ): with open(__lowerCAmelCase , 'r' ) as f: _snake_case : List[str] = f.read().splitlines() return [l.strip() for l in lines] class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : Any = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Any = ["input_ids", "attention_mask"] def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Union[str, Any]="<unk>" , lowerCamelCase_ : int="<cls>" , lowerCamelCase_ : Tuple="<pad>" , lowerCamelCase_ : Optional[int]="<mask>" , lowerCamelCase_ : List[str]="<eos>" , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) _snake_case : List[Any] = load_vocab_file(lowerCamelCase_ ) _snake_case : Tuple = dict(enumerate(self.all_tokens ) ) _snake_case : str = {tok: ind for ind, tok in enumerate(self.all_tokens )} _snake_case : List[str] = unk_token _snake_case : Optional[int] = cls_token _snake_case : Union[str, Any] = pad_token _snake_case : str = mask_token _snake_case : Union[str, Any] = eos_token _snake_case : Optional[Any] = self.all_tokens self._create_trie(self.unique_no_split_tokens ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : int ): '''simple docstring''' return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str ): '''simple docstring''' return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Any , **lowerCamelCase_ : Any ): '''simple docstring''' return text.split() def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : Any=False ): '''simple docstring''' return len(self._id_to_token ) def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return {token: i for i, token in enumerate(self.all_tokens )} def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : str ): '''simple docstring''' return self._token_to_id.get(lowerCamelCase_ , self._token_to_id.get(self.unk_token ) ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : int ): '''simple docstring''' return self._id_to_token.get(lowerCamelCase_ , self.unk_token ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Dict = [self.cls_token_id] _snake_case : Optional[Any] = [self.eos_token_id] # No sep token in ESM vocabulary if token_ids_a is None: if self.eos_token_id is None: return cls + token_ids_a else: return cls + token_ids_a + sep elif self.eos_token_id is None: raise ValueError('Cannot tokenize multiple sequences when EOS token is not set!' ) return cls + token_ids_a + sep + token_ids_a + sep # Multiple inputs always have an EOS token def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : List , lowerCamelCase_ : Optional[List] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( 'You should not supply a second sequence if the provided sequence of ' 'ids is already formatted with special tokens for the model.' ) return [1 if token in self.all_special_ids else 0 for token in token_ids_a] _snake_case : Optional[int] = [1] + ([0] * len(lowerCamelCase_ )) + [1] if token_ids_a is not None: mask += [0] * len(lowerCamelCase_ ) + [1] return mask def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : List[Any] = os.path.join(lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + 'vocab.txt' ) with open(lowerCamelCase_ , 'w' ) as f: f.write('\n'.join(self.all_tokens ) ) return (vocab_file,) @property def __UpperCAmelCase ( self : Dict ): '''simple docstring''' return self.get_vocab_size(with_added_tokens=lowerCamelCase_ ) def __UpperCAmelCase ( self : str , lowerCamelCase_ : Union[List[str], List[AddedToken]] , lowerCamelCase_ : bool = False ): '''simple docstring''' return super()._add_tokens(lowerCamelCase_ , special_tokens=lowerCamelCase_ )
304
1
'''simple docstring''' import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL a__ : List[Any] = logging.get_logger(__name__) def _UpperCamelCase ( __A , __A , __A , __A ) -> Tuple[int, int]: '''simple docstring''' def constraint_to_multiple_of(__A , __A , __A=0 , __A=None ): UpperCamelCase__ = round(val / multiple ) * multiple if max_val is not None and x > max_val: UpperCamelCase__ = math.floor(val / multiple ) * multiple if x < min_val: UpperCamelCase__ = math.ceil(val / multiple ) * multiple return x UpperCamelCase__ = (output_size, output_size) if isinstance(__A , __A ) else output_size UpperCamelCase__ , UpperCamelCase__ = get_image_size(__A ) UpperCamelCase__ , UpperCamelCase__ = output_size # determine new height and width UpperCamelCase__ = output_height / input_height UpperCamelCase__ = output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width UpperCamelCase__ = scale_width else: # fit height UpperCamelCase__ = scale_height UpperCamelCase__ = constraint_to_multiple_of(scale_height * input_height , multiple=__A ) UpperCamelCase__ = constraint_to_multiple_of(scale_width * input_width , multiple=__A ) return (new_height, new_width) class lowercase_ ( a__ ): __UpperCAmelCase = ['pixel_values'] def __init__( self , a = True , a = None , a = PILImageResampling.BILINEAR , a = False , a = 1 , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ): super().__init__(**a ) UpperCamelCase__ = size if size is not None else {"height": 3_84, "width": 3_84} UpperCamelCase__ = get_size_dict(a ) UpperCamelCase__ = do_resize UpperCamelCase__ = size UpperCamelCase__ = keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of UpperCamelCase__ = resample UpperCamelCase__ = do_rescale UpperCamelCase__ = rescale_factor UpperCamelCase__ = do_normalize UpperCamelCase__ = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN UpperCamelCase__ = image_std if image_std is not None else IMAGENET_STANDARD_STD def __a ( self , a , a , a = False , a = 1 , a = PILImageResampling.BICUBIC , a = None , **a , ): UpperCamelCase__ = get_size_dict(a ) if "height" not in size or "width" not in size: raise ValueError(f'''The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}''' ) UpperCamelCase__ = get_resize_output_image_size( a , output_size=(size["height"], size["width"]) , keep_aspect_ratio=a , multiple=a , ) return resize(a , size=a , resample=a , data_format=a , **a ) def __a ( self , a , a , a = None , **a , ): return rescale(a , scale=a , data_format=a , **a ) def __a ( self , a , a , a , a = None , **a , ): return normalize(a , mean=a , std=a , data_format=a , **a ) def __a ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ): UpperCamelCase__ = do_resize if do_resize is not None else self.do_resize UpperCamelCase__ = size if size is not None else self.size UpperCamelCase__ = get_size_dict(a ) UpperCamelCase__ = keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio UpperCamelCase__ = ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of UpperCamelCase__ = resample if resample is not None else self.resample UpperCamelCase__ = do_rescale if do_rescale is not None else self.do_rescale UpperCamelCase__ = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCamelCase__ = do_normalize if do_normalize is not None else self.do_normalize UpperCamelCase__ = image_mean if image_mean is not None else self.image_mean UpperCamelCase__ = image_std if image_std is not None else self.image_std UpperCamelCase__ = make_list_of_images(a ) if not valid_images(a ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. UpperCamelCase__ = [to_numpy_array(a ) for image in images] if do_resize: UpperCamelCase__ = [self.resize(image=a , size=a , resample=a ) for image in images] if do_rescale: UpperCamelCase__ = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: UpperCamelCase__ = [self.normalize(image=a , mean=a , std=a ) for image in images] UpperCamelCase__ = [to_channel_dimension_format(a , a ) for image in images] UpperCamelCase__ = {"pixel_values": images} return BatchFeature(data=a , tensor_type=a ) def __a ( self , a , a = None ): UpperCamelCase__ = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(a ) != len(a ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(a ): UpperCamelCase__ = target_sizes.numpy() UpperCamelCase__ = [] for idx in range(len(a ) ): UpperCamelCase__ = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=a ) UpperCamelCase__ = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(a ) else: UpperCamelCase__ = logits.argmax(dim=1 ) UpperCamelCase__ = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
223
'''simple docstring''' from abc import ABC, abstractmethod from argparse import ArgumentParser class lowercase_ ( a__ ): @staticmethod @abstractmethod def __a ( a ): raise NotImplementedError() @abstractmethod def __a ( self ): raise NotImplementedError()
223
1
SCREAMING_SNAKE_CASE__ = '''Tobias Carryer''' from time import time class _UpperCamelCase: def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str]=int(time() ) ): # noqa: B008 '''simple docstring''' __a : Union[str, Any] = multiplier __a : List[Any] = increment __a : Dict = modulo __a : Dict = seed def __lowerCAmelCase ( self : Tuple ): '''simple docstring''' __a : Union[str, Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. SCREAMING_SNAKE_CASE__ = LinearCongruentialGenerator(166_4525, 10_1390_4223, 2 << 31) while True: print(lcg.next_number())
47
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { '''roberta-base''': '''https://huggingface.co/roberta-base/resolve/main/config.json''', '''roberta-large''': '''https://huggingface.co/roberta-large/resolve/main/config.json''', '''roberta-large-mnli''': '''https://huggingface.co/roberta-large-mnli/resolve/main/config.json''', '''distilroberta-base''': '''https://huggingface.co/distilroberta-base/resolve/main/config.json''', '''roberta-base-openai-detector''': '''https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json''', '''roberta-large-openai-detector''': '''https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json''', } class _UpperCamelCase( __lowerCamelCase ): __SCREAMING_SNAKE_CASE : Union[str, Any] = '''roberta''' def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any]=5_0_2_6_5 , SCREAMING_SNAKE_CASE__ : Optional[int]=7_6_8 , SCREAMING_SNAKE_CASE__ : str=1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=1_2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=3_0_7_2 , SCREAMING_SNAKE_CASE__ : Any="gelu" , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=5_1_2 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=2 , SCREAMING_SNAKE_CASE__ : Any=0.02 , SCREAMING_SNAKE_CASE__ : List[str]=1e-12 , SCREAMING_SNAKE_CASE__ : Optional[Any]=1 , SCREAMING_SNAKE_CASE__ : Union[str, Any]=0 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Tuple="absolute" , SCREAMING_SNAKE_CASE__ : Any=True , SCREAMING_SNAKE_CASE__ : List[str]=None , **SCREAMING_SNAKE_CASE__ : Any , ): '''simple docstring''' super().__init__(pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) __a : Optional[Any] = vocab_size __a : Tuple = hidden_size __a : List[str] = num_hidden_layers __a : List[Any] = num_attention_heads __a : str = hidden_act __a : Optional[Any] = intermediate_size __a : Dict = hidden_dropout_prob __a : List[str] = attention_probs_dropout_prob __a : Optional[Any] = max_position_embeddings __a : Dict = type_vocab_size __a : str = initializer_range __a : List[str] = layer_norm_eps __a : Optional[int] = position_embedding_type __a : Union[str, Any] = use_cache __a : str = classifier_dropout class _UpperCamelCase( __lowerCamelCase ): @property def __lowerCAmelCase ( self : Any ): '''simple docstring''' if self.task == "multiple-choice": __a : List[str] = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __a : Dict = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
47
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCAmelCase__ : Optional[int] = { """configuration_bloom""": ["""BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BloomConfig""", """BloomOnnxConfig"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : str = ["""BloomTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ : Any = [ """BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST""", """BloomForCausalLM""", """BloomModel""", """BloomPreTrainedModel""", """BloomForSequenceClassification""", """BloomForTokenClassification""", """BloomForQuestionAnswering""", ] if TYPE_CHECKING: from .configuration_bloom import BLOOM_PRETRAINED_CONFIG_ARCHIVE_MAP, BloomConfig, BloomOnnxConfig try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bloom_fast import BloomTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bloom import ( BLOOM_PRETRAINED_MODEL_ARCHIVE_LIST, BloomForCausalLM, BloomForQuestionAnswering, BloomForSequenceClassification, BloomForTokenClassification, BloomModel, BloomPreTrainedModel, ) else: import sys lowerCAmelCase__ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
702
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase__ : Dict = logging.get_logger(__name__) lowerCAmelCase__ : Tuple = {"""ctrl""": """https://huggingface.co/ctrl/resolve/main/config.json"""} class a ( SCREAMING_SNAKE_CASE ): """simple docstring""" __UpperCAmelCase = """ctrl""" __UpperCAmelCase = ["""past_key_values"""] __UpperCAmelCase = { """max_position_embeddings""": """n_positions""", """hidden_size""": """n_embd""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Tuple , snake_case_ : Dict=2_4_6_5_3_4 , snake_case_ : Optional[int]=2_5_6 , snake_case_ : Dict=1_2_8_0 , snake_case_ : Union[str, Any]=8_1_9_2 , snake_case_ : Any=4_8 , snake_case_ : List[Any]=1_6 , snake_case_ : Optional[Any]=0.1 , snake_case_ : Union[str, Any]=0.1 , snake_case_ : Optional[Any]=1e-6 , snake_case_ : List[Any]=0.0_2 , snake_case_ : Dict=True , **snake_case_ : List[Any] , ): '''simple docstring''' snake_case__ : Any = vocab_size snake_case__ : int = n_positions snake_case__ : Optional[int] = n_embd snake_case__ : str = n_layer snake_case__ : Any = n_head snake_case__ : str = dff snake_case__ : Any = resid_pdrop snake_case__ : Tuple = embd_pdrop snake_case__ : List[str] = layer_norm_epsilon snake_case__ : int = initializer_range snake_case__ : Optional[int] = use_cache super().__init__(**snake_case_ )
502
0
'''simple docstring''' import re import time from typing import Optional import IPython.display as disp from ..trainer_callback import TrainerCallback from ..trainer_utils import IntervalStrategy, has_length def lowerCAmelCase_ ( snake_case_ : List[Any] ) -> int: '''simple docstring''' UpperCAmelCase_ = int(snake_case_ ) UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = t // 36_00, (t // 60) % 60, t % 60 return f"""{h}:{m:02d}:{s:02d}""" if h != 0 else f"""{m:02d}:{s:02d}""" def lowerCAmelCase_ ( snake_case_ : Tuple , snake_case_ : Dict , snake_case_ : Optional[Any] , snake_case_ : Optional[Any] , snake_case_ : int=3_00 ) -> str: '''simple docstring''' return f""" <div> {prefix} <progress value='{value}' max='{total}' style='width:{width}px; height:20px; vertical-align: middle;'></progress> {label} </div> """ def lowerCAmelCase_ ( snake_case_ : List[str] ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase_ = "<table border=\"1\" class=\"dataframe\">\n" html_code += """ <thead>\n <tr style="text-align: left;">\n""" for i in items[0]: html_code += f""" <th>{i}</th>\n""" html_code += " </tr>\n </thead>\n <tbody>\n" for line in items[1:]: html_code += " <tr>\n" for elt in line: UpperCAmelCase_ = f"""{elt:.6f}""" if isinstance(snake_case_ , snake_case_ ) else str(snake_case_ ) html_code += f""" <td>{elt}</td>\n""" html_code += " </tr>\n" html_code += " </tbody>\n</table><p>" return html_code class __A : a__ : Dict = 5 a__ : Any = 0.2 def __init__(self : Optional[Any] , __a : int , __a : Optional[str] = None , __a : bool = True , __a : Optional["NotebookTrainingTracker"] = None , __a : int = 300 , ): UpperCAmelCase_ = total UpperCAmelCase_ = "" if prefix is None else prefix UpperCAmelCase_ = leave UpperCAmelCase_ = parent UpperCAmelCase_ = width UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = None def _lowercase (self : str , __a : int , __a : bool = False , __a : str = None ): UpperCAmelCase_ = value if comment is not None: UpperCAmelCase_ = comment if self.last_value is None: UpperCAmelCase_ = UpperCAmelCase_ = time.time() UpperCAmelCase_ = UpperCAmelCase_ = value UpperCAmelCase_ = UpperCAmelCase_ = None UpperCAmelCase_ = self.warmup UpperCAmelCase_ = 1 self.update_bar(__a ) elif value <= self.last_value and not force_update: return elif force_update or self.first_calls > 0 or value >= min(self.last_value + self.wait_for , self.total ): if self.first_calls > 0: self.first_calls -= 1 UpperCAmelCase_ = time.time() UpperCAmelCase_ = current_time - self.start_time # We could have value = self.start_value if the update is called twixe with the same start value. if value > self.start_value: UpperCAmelCase_ = self.elapsed_time / (value - self.start_value) else: UpperCAmelCase_ = None if value >= self.total: UpperCAmelCase_ = self.total UpperCAmelCase_ = None if not self.leave: self.close() elif self.average_time_per_item is not None: UpperCAmelCase_ = self.average_time_per_item * (self.total - value) self.update_bar(__a ) UpperCAmelCase_ = value UpperCAmelCase_ = current_time if self.average_time_per_item is None: UpperCAmelCase_ = 1 else: UpperCAmelCase_ = max(int(self.update_every / self.average_time_per_item ) , 1 ) def _lowercase (self : Optional[int] , __a : Tuple , __a : List[Any]=None ): UpperCAmelCase_ = " " * (len(str(self.total ) ) - len(str(__a ) )) + str(__a ) if self.elapsed_time is None: UpperCAmelCase_ = f"""[{spaced_value}/{self.total} : < :""" elif self.predicted_remaining is None: UpperCAmelCase_ = f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )}""" else: UpperCAmelCase_ = ( f"""[{spaced_value}/{self.total} {format_time(self.elapsed_time )} <""" f""" {format_time(self.predicted_remaining )}""" ) self.label += f""", {1/self.average_time_per_item:.2f} it/s""" self.label += "]" if self.comment is None or len(self.comment ) == 0 else f""", {self.comment}]""" self.display() def _lowercase (self : Dict ): UpperCAmelCase_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.parent is not None: # If this is a child bar, the parent will take care of the display. self.parent.display() return if self.output is None: UpperCAmelCase_ = disp.display(disp.HTML(self.html_code ) , display_id=__a ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase (self : Optional[Any] ): if self.parent is None and self.output is not None: self.output.update(disp.HTML("" ) ) class __A ( UpperCamelCase__ ): def __init__(self : List[Any] , __a : List[Any] , __a : Dict=None ): super().__init__(__a ) UpperCAmelCase_ = None if column_names is None else [column_names] UpperCAmelCase_ = None def _lowercase (self : str ): UpperCAmelCase_ = html_progress_bar(self.value , self.total , self.prefix , self.label , self.width ) if self.inner_table is not None: self.html_code += text_to_html_table(self.inner_table ) if self.child_bar is not None: self.html_code += self.child_bar.html_code if self.output is None: UpperCAmelCase_ = disp.display(disp.HTML(self.html_code ) , display_id=__a ) else: self.output.update(disp.HTML(self.html_code ) ) def _lowercase (self : List[str] , __a : Union[str, Any] ): if self.inner_table is None: UpperCAmelCase_ = [list(values.keys() ), list(values.values() )] else: UpperCAmelCase_ = self.inner_table[0] if len(self.inner_table ) == 1: # We give a chance to update the column names at the first iteration for key in values.keys(): if key not in columns: columns.append(__a ) UpperCAmelCase_ = columns self.inner_table.append([values[c] for c in columns] ) def _lowercase (self : Dict , __a : Optional[int] , __a : int=None , __a : int=300 ): UpperCAmelCase_ = NotebookProgressBar(__a , prefix=__a , parent=self , width=__a ) return self.child_bar def _lowercase (self : Dict ): UpperCAmelCase_ = None self.display() class __A ( UpperCamelCase__ ): def __init__(self : Dict ): UpperCAmelCase_ = None UpperCAmelCase_ = None UpperCAmelCase_ = False def _lowercase (self : int , __a : Optional[Any] , __a : Any , __a : List[str] , **__a : Union[str, Any] ): UpperCAmelCase_ = "Epoch" if args.evaluation_strategy == IntervalStrategy.EPOCH else "Step" UpperCAmelCase_ = 0 UpperCAmelCase_ = 0 UpperCAmelCase_ = [self.first_column] + ["Training Loss"] if args.evaluation_strategy != IntervalStrategy.NO: column_names.append("Validation Loss" ) UpperCAmelCase_ = NotebookTrainingTracker(state.max_steps , __a ) def _lowercase (self : Union[str, Any] , __a : str , __a : Dict , __a : Dict , **__a : List[Any] ): UpperCAmelCase_ = int(state.epoch ) if int(state.epoch ) == state.epoch else f"""{state.epoch:.2f}""" self.training_tracker.update( state.global_step + 1 , comment=f"""Epoch {epoch}/{state.num_train_epochs}""" , force_update=self._force_next_update , ) UpperCAmelCase_ = False def _lowercase (self : List[Any] , __a : str , __a : Optional[Any] , __a : Optional[int] , __a : Tuple=None , **__a : List[str] ): if not has_length(__a ): return if self.prediction_bar is None: if self.training_tracker is not None: UpperCAmelCase_ = self.training_tracker.add_child(len(__a ) ) else: UpperCAmelCase_ = NotebookProgressBar(len(__a ) ) self.prediction_bar.update(1 ) else: self.prediction_bar.update(self.prediction_bar.value + 1 ) def _lowercase (self : int , __a : List[str] , __a : Union[str, Any] , __a : Optional[int] , **__a : Tuple ): if self.prediction_bar is not None: self.prediction_bar.close() UpperCAmelCase_ = None def _lowercase (self : Union[str, Any] , __a : Optional[int] , __a : Any , __a : List[Any] , __a : Tuple=None , **__a : List[Any] ): # Only for when there is no evaluation if args.evaluation_strategy == IntervalStrategy.NO and "loss" in logs: UpperCAmelCase_ = {"Training Loss": logs["loss"]} # First column is necessarily Step sine we're not in epoch eval strategy UpperCAmelCase_ = state.global_step self.training_tracker.write_line(__a ) def _lowercase (self : Optional[int] , __a : str , __a : Tuple , __a : Optional[int] , __a : Union[str, Any]=None , **__a : List[Any] ): if self.training_tracker is not None: UpperCAmelCase_ = {"Training Loss": "No log", "Validation Loss": "No log"} for log in reversed(state.log_history ): if "loss" in log: UpperCAmelCase_ = log["loss"] break if self.first_column == "Epoch": UpperCAmelCase_ = int(state.epoch ) else: UpperCAmelCase_ = state.global_step UpperCAmelCase_ = "eval" for k in metrics: if k.endswith("_loss" ): UpperCAmelCase_ = re.sub(r"\_loss$" , "" , __a ) UpperCAmelCase_ = metrics.pop("total_flos" , __a ) UpperCAmelCase_ = metrics.pop("epoch" , __a ) UpperCAmelCase_ = metrics.pop(f"""{metric_key_prefix}_runtime""" , __a ) UpperCAmelCase_ = metrics.pop(f"""{metric_key_prefix}_samples_per_second""" , __a ) UpperCAmelCase_ = metrics.pop(f"""{metric_key_prefix}_steps_per_second""" , __a ) UpperCAmelCase_ = metrics.pop(f"""{metric_key_prefix}_jit_compilation_time""" , __a ) for k, v in metrics.items(): if k == f"""{metric_key_prefix}_loss""": UpperCAmelCase_ = v else: UpperCAmelCase_ = k.split("_" ) UpperCAmelCase_ = " ".join([part.capitalize() for part in splits[1:]] ) UpperCAmelCase_ = v self.training_tracker.write_line(__a ) self.training_tracker.remove_child() UpperCAmelCase_ = None # Evaluation takes a long time so we should force the next update. UpperCAmelCase_ = True def _lowercase (self : Dict , __a : Dict , __a : Any , __a : Optional[Any] , **__a : Union[str, Any] ): self.training_tracker.update( state.global_step , comment=f"""Epoch {int(state.epoch )}/{state.num_train_epochs}""" , force_update=__a ) UpperCAmelCase_ = None
78
import itertools import math def SCREAMING_SNAKE_CASE_ ( _snake_case :int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_snake_case ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def SCREAMING_SNAKE_CASE_ ( ) -> Dict: _A = 2 while True: if is_prime(_snake_case ): yield num num += 1 def SCREAMING_SNAKE_CASE_ ( _snake_case :int = 10_001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , _snake_case ) ) if __name__ == "__main__": print(f'{solution() = }')
2
0
"""simple docstring""" import random import unittest import torch from diffusers import IFImgaImgSuperResolutionPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = IFImgaImgSuperResolutionPipeline lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'width', 'height'} lowercase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'original_image'} ) lowercase__ = PipelineTesterMixin.required_optional_params - {'latents'} def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' return self._get_superresolution_dummy_components() def UpperCAmelCase ( self , __a , __a=0) -> Tuple: '''simple docstring''' if str(__a).startswith('''mps'''): _UpperCamelCase = torch.manual_seed(__a) else: _UpperCamelCase = torch.Generator(device=__a).manual_seed(__a) _UpperCamelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(__a)).to(__a) _UpperCamelCase = floats_tensor((1, 3, 16, 16) , rng=random.Random(__a)).to(__a) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''original_image''': original_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def UpperCAmelCase ( self) -> List[str]: '''simple docstring''' self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3) def UpperCAmelCase ( self) -> Any: '''simple docstring''' self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''') def UpperCAmelCase ( self) -> int: '''simple docstring''' # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' self._test_attention_slicing_forward_pass(expected_max_diff=1e-2) def UpperCAmelCase ( self) -> int: '''simple docstring''' self._test_save_load_local() def UpperCAmelCase ( self) -> int: '''simple docstring''' self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
78
"""simple docstring""" import unittest from transformers import AlbertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForPreTraining, AlbertForQuestionAnswering, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertModel, ) from transformers.models.albert.modeling_albert import ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST class _UpperCAmelCase: def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=16 , __a=36 , __a=6 , __a=6 , __a=6 , __a=37 , __a="gelu" , __a=0.1 , __a=0.1 , __a=5_12 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = parent _UpperCamelCase = batch_size _UpperCamelCase = seq_length _UpperCamelCase = is_training _UpperCamelCase = use_input_mask _UpperCamelCase = use_token_type_ids _UpperCamelCase = use_labels _UpperCamelCase = vocab_size _UpperCamelCase = embedding_size _UpperCamelCase = hidden_size _UpperCamelCase = num_hidden_layers _UpperCamelCase = num_hidden_groups _UpperCamelCase = num_attention_heads _UpperCamelCase = intermediate_size _UpperCamelCase = hidden_act _UpperCamelCase = hidden_dropout_prob _UpperCamelCase = attention_probs_dropout_prob _UpperCamelCase = max_position_embeddings _UpperCamelCase = type_vocab_size _UpperCamelCase = type_sequence_label_size _UpperCamelCase = initializer_range _UpperCamelCase = num_labels _UpperCamelCase = num_choices _UpperCamelCase = scope def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase = None if self.use_input_mask: _UpperCamelCase = random_attention_mask([self.batch_size, self.seq_length]) _UpperCamelCase = None if self.use_token_type_ids: _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) _UpperCamelCase = None _UpperCamelCase = None _UpperCamelCase = None if self.use_labels: _UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size) _UpperCamelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) _UpperCamelCase = ids_tensor([self.batch_size] , self.num_choices) _UpperCamelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCAmelCase ( self) -> Dict: '''simple docstring''' return AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , num_hidden_groups=self.num_hidden_groups , ) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AlbertModel(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a) _UpperCamelCase = model(__a , token_type_ids=__a) _UpperCamelCase = model(__a) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = AlbertForPreTraining(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , sentence_order_label=__a , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) self.parent.assertEqual(result.sop_logits.shape , (self.batch_size, config.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AlbertForMaskedLM(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Any: '''simple docstring''' _UpperCamelCase = AlbertForQuestionAnswering(config=__a) model.to(__a) model.eval() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length)) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = AlbertForSequenceClassification(__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> List[str]: '''simple docstring''' _UpperCamelCase = self.num_labels _UpperCamelCase = AlbertForTokenClassification(config=__a) model.to(__a) model.eval() _UpperCamelCase = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def UpperCAmelCase ( self , __a , __a , __a , __a , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.num_choices _UpperCamelCase = AlbertForMultipleChoice(config=__a) model.to(__a) model.eval() _UpperCamelCase = input_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = token_type_ids.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = input_mask.unsqueeze(1).expand(-1 , self.num_choices , -1).contiguous() _UpperCamelCase = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices)) def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) = config_and_inputs _UpperCamelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _UpperCAmelCase( lowerCamelCase , lowerCamelCase , unittest.TestCase ): lowercase__ = ( ( AlbertModel, AlbertForPreTraining, AlbertForMaskedLM, AlbertForMultipleChoice, AlbertForSequenceClassification, AlbertForTokenClassification, AlbertForQuestionAnswering, ) if is_torch_available() else () ) lowercase__ = ( { 'feature-extraction': AlbertModel, 'fill-mask': AlbertForMaskedLM, 'question-answering': AlbertForQuestionAnswering, 'text-classification': AlbertForSequenceClassification, 'token-classification': AlbertForTokenClassification, 'zero-shot': AlbertForSequenceClassification, } if is_torch_available() else {} ) lowercase__ = True def UpperCAmelCase ( self , __a , __a , __a=False) -> List[str]: '''simple docstring''' _UpperCamelCase = super()._prepare_for_class(__a , __a , return_labels=__a) if return_labels: if model_class in get_values(__a): _UpperCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__a) _UpperCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__a) return inputs_dict def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = AlbertModelTester(self) _UpperCamelCase = ConfigTester(self , config_class=__a , hidden_size=37) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*__a) def UpperCAmelCase ( self) -> Tuple: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__a) def UpperCAmelCase ( self) -> List[Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*__a) def UpperCAmelCase ( self) -> int: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__a) def UpperCAmelCase ( self) -> Any: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*__a) def UpperCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCamelCase = type self.model_tester.create_and_check_model(*__a) @slow def UpperCAmelCase ( self) -> Optional[Any]: '''simple docstring''' for model_name in ALBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase = AlbertModel.from_pretrained(__a) self.assertIsNotNone(__a) @require_torch class _UpperCAmelCase( unittest.TestCase ): @slow def UpperCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCamelCase = AlbertModel.from_pretrained('''albert-base-v2''') _UpperCamelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]]) _UpperCamelCase = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]) with torch.no_grad(): _UpperCamelCase = model(__a , attention_mask=__a)[0] _UpperCamelCase = torch.Size((1, 11, 7_68)) self.assertEqual(output.shape , __a) _UpperCamelCase = torch.tensor( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]]) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4))
78
1
'''simple docstring''' from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class _A : def __init__( self : List[Any] , __magic_name__ : Collection[float] | None = None ) -> None: """simple docstring""" if components is None: __snake_case : Tuple = [] __snake_case : List[str] = list(__magic_name__ ) def __len__( self : Optional[Any] ) -> int: """simple docstring""" return len(self.__components ) def __str__( self : str ) -> str: """simple docstring""" return "(" + ",".join(map(__magic_name__ , self.__components ) ) + ")" def __add__( self : int , __magic_name__ : Vector ) -> Vector: """simple docstring""" __snake_case : List[str] = len(self ) if size == len(__magic_name__ ): __snake_case : Any = [self.__components[i] + other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: raise Exception("""must have the same size""" ) def __sub__( self : List[Any] , __magic_name__ : Vector ) -> Vector: """simple docstring""" __snake_case : Union[str, Any] = len(self ) if size == len(__magic_name__ ): __snake_case : Dict = [self.__components[i] - other.component(__magic_name__ ) for i in range(__magic_name__ )] return Vector(__magic_name__ ) else: # error case raise Exception("""must have the same size""" ) @overload def __mul__( self : List[Any] , __magic_name__ : float ) -> Vector: """simple docstring""" ... @overload def __mul__( self : Any , __magic_name__ : Vector ) -> float: """simple docstring""" ... def __mul__( self : Dict , __magic_name__ : float | Vector ) -> float | Vector: """simple docstring""" if isinstance(__magic_name__ , (float, int) ): __snake_case : Optional[int] = [c * other for c in self.__components] return Vector(__magic_name__ ) elif isinstance(__magic_name__ , __magic_name__ ) and len(self ) == len(__magic_name__ ): __snake_case : Tuple = len(self ) __snake_case : int = [self.__components[i] * other.component(__magic_name__ ) for i in range(__magic_name__ )] return sum(__magic_name__ ) else: # error case raise Exception("""invalid operand!""" ) def lowercase__ ( self : Dict ) -> Vector: """simple docstring""" return Vector(self.__components ) def lowercase__ ( self : List[str] , __magic_name__ : int ) -> float: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception("""index out of range""" ) def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : float ) -> None: """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __snake_case : str = value def lowercase__ ( self : Any ) -> float: """simple docstring""" if len(self.__components ) == 0: raise Exception("""Vector is empty""" ) __snake_case : str = [c**2 for c in self.__components] return math.sqrt(sum(__magic_name__ ) ) def lowercase__ ( self : Tuple , __magic_name__ : Vector , __magic_name__ : bool = False ) -> float: """simple docstring""" __snake_case : Tuple = self * other __snake_case : Optional[Any] = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def _a ( _lowerCamelCase ) -> Vector: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) return Vector([0] * dimension ) def _a ( _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" assert isinstance(_lowerCamelCase , _lowerCamelCase ) and (isinstance(_lowerCamelCase , _lowerCamelCase )) __snake_case : List[Any] = [0] * dimension __snake_case : Union[str, Any] = 1 return Vector(_lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" assert ( isinstance(_lowerCamelCase , _lowerCamelCase ) and isinstance(_lowerCamelCase , _lowerCamelCase ) and (isinstance(_lowerCamelCase , (int, float) )) ) return x * scalar + y def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Vector: """simple docstring""" random.seed(_lowerCamelCase ) __snake_case : List[Any] = [random.randint(_lowerCamelCase , _lowerCamelCase ) for _ in range(_lowerCamelCase )] return Vector(_lowerCamelCase ) class _A : def __init__( self : List[Any] , __magic_name__ : list[list[float]] , __magic_name__ : int , __magic_name__ : int ) -> None: """simple docstring""" __snake_case : Tuple = matrix __snake_case : List[str] = w __snake_case : Union[str, Any] = h def __str__( self : str ) -> str: """simple docstring""" __snake_case : Optional[int] = """""" for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self : Tuple , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __snake_case : Tuple = [] for i in range(self.__height ): __snake_case : Optional[Any] = [ self.__matrix[i][j] + other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("""matrix must have the same dimension!""" ) def __sub__( self : int , __magic_name__ : Matrix ) -> Matrix: """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __snake_case : Optional[Any] = [] for i in range(self.__height ): __snake_case : Union[str, Any] = [ self.__matrix[i][j] - other.component(__magic_name__ , __magic_name__ ) for j in range(self.__width ) ] matrix.append(__magic_name__ ) return Matrix(__magic_name__ , self.__width , self.__height ) else: raise Exception("""matrices must have the same dimension!""" ) @overload def __mul__( self : int , __magic_name__ : float ) -> Matrix: """simple docstring""" ... @overload def __mul__( self : List[Any] , __magic_name__ : Vector ) -> Vector: """simple docstring""" ... def __mul__( self : Dict , __magic_name__ : float | Vector ) -> Vector | Matrix: """simple docstring""" if isinstance(__magic_name__ , __magic_name__ ): # matrix-vector if len(__magic_name__ ) == self.__width: __snake_case : Optional[int] = zero_vector(self.__height ) for i in range(self.__height ): __snake_case : List[Any] = [ self.__matrix[i][j] * other.component(__magic_name__ ) for j in range(self.__width ) ] ans.change_component(__magic_name__ , sum(__magic_name__ ) ) return ans else: raise Exception( """vector must have the same size as the """ """number of columns of the matrix!""" ) elif isinstance(__magic_name__ , (int, float) ): # matrix-scalar __snake_case : Tuple = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__magic_name__ , self.__width , self.__height ) return None def lowercase__ ( self : Union[str, Any] ) -> int: """simple docstring""" return self.__height def lowercase__ ( self : int ) -> int: """simple docstring""" return self.__width def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self : Dict , __magic_name__ : int , __magic_name__ : int , __magic_name__ : float ) -> None: """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __snake_case : Optional[Any] = value else: raise Exception("""change_component: indices out of bounds""" ) def lowercase__ ( self : str , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) __snake_case : Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__magic_name__ ) ): __snake_case : List[str] = minor[i][:y] + minor[i][y + 1 :] return Matrix(__magic_name__ , self.__width - 1 , self.__height - 1 ).determinant() def lowercase__ ( self : List[str] , __magic_name__ : int , __magic_name__ : int ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__magic_name__ , __magic_name__ ) else: raise Exception("""Indices out of bounds""" ) def lowercase__ ( self : Optional[int] ) -> float: """simple docstring""" if self.__height != self.__width: raise Exception("""Matrix is not square""" ) if self.__height < 1: raise Exception("""Matrix has no element""" ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __snake_case : Tuple = [ self.__matrix[0][y] * self.cofactor(0 , __magic_name__ ) for y in range(self.__width ) ] return sum(__magic_name__ ) def _a ( _lowerCamelCase ) -> Matrix: """simple docstring""" __snake_case : list[list[float]] = [[0] * n for _ in range(_lowerCamelCase )] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) def _a ( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> Matrix: """simple docstring""" random.seed(_lowerCamelCase ) __snake_case : list[list[float]] = [ [random.randint(_lowerCamelCase , _lowerCamelCase ) for _ in range(_lowerCamelCase )] for _ in range(_lowerCamelCase ) ] return Matrix(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase )
26
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv("""TEST_SAGEMAKER""" ,"""False""" ) ) is not True ,reason="""Skipping test because should only be run when releasing minor transformers version""" ,) @pytest.mark.usefixtures("""sm_env""" ) @parameterized_class( [ { """framework""": """pytorch""", """script""": """run_glue.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 650, """eval_accuracy""": 0.6, """eval_loss""": 0.9}, }, { """framework""": """tensorflow""", """script""": """run_tf.py""", """model_name_or_path""": """distilbert-base-cased""", """instance_type""": """ml.g4dn.xlarge""", """results""": {"""train_runtime""": 600, """eval_accuracy""": 0.3, """eval_loss""": 0.9}, }, ] ) class __A ( unittest.TestCase ): """simple docstring""" def __snake_case ( self): """simple docstring""" if self.framework == "pytorch": subprocess.run( F"""cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py""".split() , encoding='''utf-8''' , check=a__ , ) assert hasattr(self , '''env''') def __snake_case ( self , a__=1): """simple docstring""" return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=F"""{self.env.base_job_name}-single""" , instance_count=a__ , instance_type=self.instance_type , debugger_hook_config=a__ , hyperparameters={**self.env.hyperparameters, '''model_name_or_path''': self.model_name_or_path} , metric_definitions=self.env.metric_definitions , py_version='''py36''' , ) def __snake_case ( self , a__): """simple docstring""" TrainingJobAnalytics(a__).export_csv(F"""{self.env.test_path}/{job_name}_metrics.csv""") def __snake_case ( self): """simple docstring""" _lowerCamelCase : Dict = self.create_estimator() # run training estimator.fit() # result dataframe _lowerCamelCase : Tuple = TrainingJobAnalytics(estimator.latest_training_job.name).dataframe() # extract kpis _lowerCamelCase : Tuple = list(result_metrics_df[result_metrics_df.metric_name == '''eval_accuracy''']['''value''']) _lowerCamelCase : Dict = list(result_metrics_df[result_metrics_df.metric_name == '''eval_loss''']['''value''']) # get train time from SageMaker job, this includes starting, preprocessing, stopping _lowerCamelCase : Optional[Any] = ( Session().describe_training_job(estimator.latest_training_job.name).get('''TrainingTimeInSeconds''' , 99_9999) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results['''eval_accuracy'''] for t in eval_accuracy) assert all(t <= self.results['''eval_loss'''] for t in eval_loss) # dump tests result into json file to share in PR with open(F"""{estimator.latest_training_job.name}.json""" , '''w''') as outfile: json.dump({'''train_time''': train_runtime, '''eval_accuracy''': eval_accuracy, '''eval_loss''': eval_loss} , a__)
114
0
'''simple docstring''' import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): # load base model a_ : List[str] = StableDiffusionPipeline.from_pretrained(lowercase_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors a_ : Dict = load_file(lowercase_ ) a_ : List[Any] = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: a_ : Optional[Any] = key.split(""".""" )[0].split(LORA_PREFIX_TEXT_ENCODER + """_""" )[-1].split("""_""" ) a_ : str = pipeline.text_encoder else: a_ : Any = key.split(""".""" )[0].split(LORA_PREFIX_UNET + """_""" )[-1].split("""_""" ) a_ : Union[str, Any] = pipeline.unet # find the target layer a_ : List[str] = layer_infos.pop(0 ) while len(lowercase_ ) > -1: try: a_ : Optional[Any] = curr_layer.__getattr__(lowercase_ ) if len(lowercase_ ) > 0: a_ : List[str] = layer_infos.pop(0 ) elif len(lowercase_ ) == 0: break except Exception: if len(lowercase_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: a_ : Dict = layer_infos.pop(0 ) a_ : str = [] if "lora_down" in key: pair_keys.append(key.replace("""lora_down""" , """lora_up""" ) ) pair_keys.append(lowercase_ ) else: pair_keys.append(lowercase_ ) pair_keys.append(key.replace("""lora_up""" , """lora_down""" ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: a_ : List[str] = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) a_ : Optional[int] = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ).unsqueeze(2 ).unsqueeze(3 ) else: a_ : str = state_dict[pair_keys[0]].to(torch.floataa ) a_ : List[Any] = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(lowercase_ , lowercase_ ) # update visited list for item in pair_keys: visited.append(lowercase_ ) return pipeline if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() parser.add_argument( '''--base_model_path''', default=None, type=str, required=True, help='''Path to the base model in diffusers format.''' ) parser.add_argument( '''--checkpoint_path''', default=None, type=str, required=True, help='''Path to the checkpoint to convert.''' ) parser.add_argument('''--dump_path''', default=None, type=str, required=True, help='''Path to the output model.''') parser.add_argument( '''--lora_prefix_unet''', default='''lora_unet''', type=str, help='''The prefix of UNet weight in safetensors''' ) parser.add_argument( '''--lora_prefix_text_encoder''', default='''lora_te''', type=str, help='''The prefix of text encoder weight in safetensors''', ) parser.add_argument('''--alpha''', default=0.75, type=float, help='''The merging ratio in W = W0 + alpha * deltaW''') parser.add_argument( '''--to_safetensors''', action='''store_true''', help='''Whether to store pipeline in safetensors format or not.''' ) parser.add_argument('''--device''', type=str, help='''Device to use (e.g. cpu, cuda:0, cuda:1, etc.)''') __lowerCamelCase = parser.parse_args() __lowerCamelCase = args.base_model_path __lowerCamelCase = args.checkpoint_path __lowerCamelCase = args.dump_path __lowerCamelCase = args.lora_prefix_unet __lowerCamelCase = args.lora_prefix_text_encoder __lowerCamelCase = args.alpha __lowerCamelCase = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) __lowerCamelCase = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
720
import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand __lowerCamelCase = ( '''4S 3H 2C 7S 5H''', '''9D 8H 2C 6S 7H''', '''2D 6D 9D TH 7D''', '''TC 8C 2S JH 6C''', '''JH 8S TH AH QH''', '''TS KS 5S 9S AC''', '''KD 6S 9D TH AD''', '''KS 8D 4D 9S 4S''', # pair '''8C 4S KH JS 4D''', # pair '''QH 8H KD JH 8S''', # pair '''KC 4H KS 2H 8D''', # pair '''KD 4S KC 3H 8S''', # pair '''AH 8S AS KC JH''', # pair '''3H 4C 4H 3S 2H''', # 2 pairs '''5S 5D 2C KH KH''', # 2 pairs '''3C KH 5D 5S KH''', # 2 pairs '''AS 3C KH AD KH''', # 2 pairs '''7C 7S 3S 7H 5S''', # 3 of a kind '''7C 7S KH 2H 7H''', # 3 of a kind '''AC KH QH AH AS''', # 3 of a kind '''2H 4D 3C AS 5S''', # straight (low ace) '''3C 5C 4C 2C 6H''', # straight '''6S 8S 7S 5H 9H''', # straight '''JS QS 9H TS KH''', # straight '''QC KH TS JS AH''', # straight (high ace) '''8C 9C 5C 3C TC''', # flush '''3S 8S 9S 5S KS''', # flush '''4C 5C 9C 8C KC''', # flush '''JH 8H AH KH QH''', # flush '''3D 2H 3H 2C 2D''', # full house '''2H 2C 3S 3H 3D''', # full house '''KH KC 3S 3H 3D''', # full house '''JC 6H JS JD JH''', # 4 of a kind '''JC 7H JS JD JH''', # 4 of a kind '''JC KH JS JD JH''', # 4 of a kind '''2S AS 4S 5S 3S''', # straight flush (low ace) '''2D 6D 3D 4D 5D''', # straight flush '''5C 6C 3C 7C 4C''', # straight flush '''JH 9H TH KH QH''', # straight flush '''JH AH TH KH QH''', # royal flush (high ace straight flush) ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', '''KS AS TS QS JS''', '''Loss'''), ('''2H 3H 4H 5H 6H''', '''AS AD AC AH JD''', '''Win'''), ('''AS AH 2H AD AC''', '''JS JD JC JH 3D''', '''Win'''), ('''2S AH 2H AS AC''', '''JS JD JC JH AD''', '''Loss'''), ('''2S AH 2H AS AC''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''AS 3S 4S 8S 2S''', '''2H 3H 5H 6H 7H''', '''Win'''), ('''2H 3H 5H 6H 7H''', '''2S 3H 4H 5S 6C''', '''Win'''), ('''2S 3H 4H 5S 6C''', '''3D 4C 5H 6H 2S''', '''Tie'''), ('''2S 3H 4H 5S 6C''', '''AH AC 5H 6H AS''', '''Win'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H AS''', '''Loss'''), ('''2S 2H 4H 5S 4C''', '''AH AC 5H 6H 7S''', '''Win'''), ('''6S AD 7H 4S AS''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S AH 4H 5S KC''', '''AH AC 5H 6H 7S''', '''Loss'''), ('''2S 3H 6H 7S 9C''', '''7H 3C TH 6H 9S''', '''Loss'''), ('''4S 5H 6H TS AC''', '''3S 5H 6H TS AC''', '''Win'''), ('''2S AH 4H 5S 6C''', '''AD 4C 5H 6H 2C''', '''Tie'''), ('''AS AH 3H AD AC''', '''AS AH 2H AD AC''', '''Win'''), ('''AH AC 5H 5C QS''', '''AH AC 5H 5C KS''', '''Loss'''), ('''AH AC 5H 5C QS''', '''KH KC 5H 5C QS''', '''Win'''), ('''7C 7S KH 2H 7H''', '''3C 3S AH 2H 3H''', '''Win'''), ('''3C 3S AH 2H 3H''', '''7C 7S KH 2H 7H''', '''Loss'''), ('''6H 5H 4H 3H 2H''', '''5H 4H 3H 2H AH''', '''Win'''), ('''5H 4H 3H 2H AH''', '''5H 4H 3H 2H AH''', '''Tie'''), ('''5H 4H 3H 2H AH''', '''6H 5H 4H 3H 2H''', '''Loss'''), ('''AH AD KS KC AC''', '''AH KD KH AC KC''', '''Win'''), ('''2H 4D 3C AS 5S''', '''2H 4D 3C 6S 5S''', '''Loss'''), ('''2H 3S 3C 3H 2S''', '''3S 3C 2S 2H 2D''', '''Win'''), ('''4D 6D 5D 2D JH''', '''3S 8S 3H TC KH''', '''Loss'''), ('''4S 6C 8S 3S 7S''', '''AD KS 2D 7D 7C''', '''Loss'''), ('''6S 4C 7H 8C 3H''', '''5H JC AH 9D 9C''', '''Loss'''), ('''9D 9H JH TC QH''', '''3C 2S JS 5C 7H''', '''Win'''), ('''2H TC 8S AD 9S''', '''4H TS 7H 2C 5C''', '''Win'''), ('''9D 3S 2C 7S 7C''', '''JC TD 3C TC 9H''', '''Loss'''), ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', True), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', False), ('''AS 3S 4S 8S 2S''', True), ) __lowerCamelCase = ( ('''2H 3H 4H 5H 6H''', True), ('''AS AH 2H AD AC''', False), ('''2H 3H 5H 6H 7H''', False), ('''KS AS TS QS JS''', True), ('''8H 9H QS JS TH''', True), ) __lowerCamelCase = ( ('''2H 4D 3C AS 5S''', True, [5, 4, 3, 2, 14]), ('''2H 5D 3C AS 5S''', False, [14, 5, 5, 3, 2]), ('''JH QD KC AS TS''', False, [14, 13, 12, 11, 10]), ('''9D 3S 2C 7S 7C''', False, [9, 7, 7, 3, 2]), ) __lowerCamelCase = ( ('''JH AH TH KH QH''', 0), ('''JH 9H TH KH QH''', 0), ('''JC KH JS JD JH''', 7), ('''KH KC 3S 3H 3D''', 6), ('''8C 9C 5C 3C TC''', 0), ('''JS QS 9H TS KH''', 0), ('''7C 7S KH 2H 7H''', 3), ('''3C KH 5D 5S KH''', 2), ('''QH 8H KD JH 8S''', 1), ('''2D 6D 9D TH 7D''', 0), ) __lowerCamelCase = ( ('''JH AH TH KH QH''', 23), ('''JH 9H TH KH QH''', 22), ('''JC KH JS JD JH''', 21), ('''KH KC 3S 3H 3D''', 20), ('''8C 9C 5C 3C TC''', 19), ('''JS QS 9H TS KH''', 18), ('''7C 7S KH 2H 7H''', 17), ('''3C KH 5D 5S KH''', 16), ('''QH 8H KD JH 8S''', 15), ('''2D 6D 9D TH 7D''', 14), ) def _a ( ): a_ , a_ : List[Any] = randrange(len(__UpperCamelCase ) ), randrange(len(__UpperCamelCase ) ) a_ : List[Any] = ["""Loss""", """Tie""", """Win"""][(play >= oppo) + (play > oppo)] a_ , a_ : Optional[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def _a ( __UpperCamelCase = 1_0_0 ): return (generate_random_hand() for _ in range(__UpperCamelCase )) @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_flush() == expected @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_straight() == expected @pytest.mark.parametrize("""hand, expected, card_values""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): a_ : Union[str, Any] = PokerHand(__UpperCamelCase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._is_same_kind() == expected @pytest.mark.parametrize("""hand, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase )._hand_type == expected @pytest.mark.parametrize("""hand, other, expected""" , __UpperCamelCase ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase ).compare_with(PokerHand(__UpperCamelCase ) ) == expected @pytest.mark.parametrize("""hand, other, expected""" , generate_random_hands() ) def _a ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): assert PokerHand(__UpperCamelCase ).compare_with(PokerHand(__UpperCamelCase ) ) == expected def _a ( ): a_ : int = [PokerHand(__UpperCamelCase ) for hand in SORTED_HANDS] a_ : Dict = poker_hands.copy() shuffle(__UpperCamelCase ) a_ : Dict = chain(sorted(__UpperCamelCase ) ) for index, hand in enumerate(__UpperCamelCase ): assert hand == poker_hands[index] def _a ( ): # Test that five high straights are compared correctly. a_ : str = [PokerHand("""2D AC 3H 4H 5S""" ), PokerHand("""2S 3H 4H 5S 6C""" )] pokerhands.sort(reverse=__UpperCamelCase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def _a ( ): # Multiple calls to five_high_straight function should still return True # and shouldn't mutate the list in every call other than the first. a_ : List[str] = PokerHand("""2C 4S AS 3D 5C""" ) a_ : Dict = True a_ : List[Any] = [5, 4, 3, 2, 1_4] for _ in range(1_0 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def _a ( ): # Problem number 54 from Project Euler # Testing from poker_hands.txt file a_ : Tuple = 0 a_ : Optional[Any] = os.path.abspath(os.path.dirname(__UpperCamelCase ) ) a_ : Optional[int] = os.path.join(__UpperCamelCase , """poker_hands.txt""" ) with open(__UpperCamelCase ) as file_hand: for line in file_hand: a_ : Dict = line[:1_4].strip() a_ : int = line[1_5:].strip() a_ , a_ : Optional[int] = PokerHand(__UpperCamelCase ), PokerHand(__UpperCamelCase ) a_ : str = player.compare_with(__UpperCamelCase ) if output == "Win": answer += 1 assert answer == 3_7_6
478
0
# HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowerCAmelCase_ = float('nan') class _A : def __init__( self : str , _A : Tuple ) -> Any: """simple docstring""" lowercase : Optional[Any] = sys.stdout lowercase : List[Any] = open(__lowerCamelCase , '''a''' ) def __getattr__( self : Optional[int] , _A : int ) -> str: """simple docstring""" return getattr(self.stdout , __lowerCamelCase ) def __a ( self : List[str] , _A : Tuple ) -> Optional[Any]: """simple docstring""" self.stdout.write(__lowerCamelCase ) # strip tqdm codes self.file.write(re.sub(r'''^.*\r''' , '''''' , __lowerCamelCase , 0 , re.M ) ) def snake_case( __magic_name__=80 , __magic_name__=False ) -> List[Any]: '''simple docstring''' lowercase : List[Any] = [] # deal with critical env vars lowercase : Optional[int] = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: lowercase : List[str] = os.environ.get(__lowerCamelCase , __lowerCamelCase ) if val is not None: cmd.append(F"""{key}={val}""" ) # python executable (not always needed if the script is executable) lowercase : Dict = sys.executable if full_python_path else sys.executable.split('''/''' )[-1] cmd.append(__lowerCamelCase ) # now the normal args cmd += list(map(shlex.quote , sys.argv ) ) # split up into up to MAX_WIDTH lines with shell multi-line escapes lowercase : Dict = [] lowercase : Union[str, Any] = '''''' while len(__lowerCamelCase ) > 0: current_line += F"""{cmd.pop(0 )} """ if len(__lowerCamelCase ) == 0 or len(__lowerCamelCase ) + len(cmd[0] ) + 1 > max_width - 1: lines.append(__lowerCamelCase ) lowercase : Union[str, Any] = '''''' return "\\\n".join(__lowerCamelCase ) def snake_case( __magic_name__ , __magic_name__ ) -> Tuple: '''simple docstring''' lowercase : Optional[int] = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd ) # remove --output_dir if any and set our own lowercase : str = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd ) args.base_cmd += F""" --output_dir {output_dir}""" # ensure we have --overwrite_output_dir lowercase : List[Any] = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd ) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd ) def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Union[str, Any]: '''simple docstring''' if 0: import random from time import sleep sleep(0 ) return dict( {k: random.uniform(0 , 1_00 ) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22] )} , ) lowercase : int = subprocess.run(__lowerCamelCase , capture_output=__lowerCamelCase , text=__lowerCamelCase ) if verbose: print('''STDOUT''' , result.stdout ) print('''STDERR''' , result.stderr ) # save the streams lowercase : Dict = variation.replace(''' ''' , '''-''' ) with open(Path(__lowerCamelCase ) / F"""log.{prefix}.stdout.txt""" , '''w''' ) as f: f.write(result.stdout ) with open(Path(__lowerCamelCase ) / F"""log.{prefix}.stderr.txt""" , '''w''' ) as f: f.write(result.stderr ) if result.returncode != 0: if verbose: print('''failed''' ) return {target_metric_key: nan} with io.open(F"""{output_dir}/all_results.json""" , '''r''' , encoding='''utf-8''' ) as f: lowercase : Union[str, Any] = json.load(__lowerCamelCase ) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , ) -> Dict: '''simple docstring''' lowercase : List[Any] = [] lowercase : List[str] = [] lowercase : Optional[int] = F"""{id}: {variation:<{longest_variation_len}}""" lowercase : List[str] = F"""{preamble}: """ lowercase : List[str] = set(report_metric_keys + [target_metric_key] ) for i in tqdm(range(__lowerCamelCase ) , desc=__lowerCamelCase , leave=__lowerCamelCase ): lowercase : Optional[int] = process_run_single( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) lowercase : Dict = single_run_metrics[target_metric_key] if not math.isnan(__lowerCamelCase ): metrics.append(__lowerCamelCase ) results.append(__lowerCamelCase ) outcome += "✓" else: outcome += "✘" lowercase : List[str] = F"""\33[2K\r{outcome}""" if len(__lowerCamelCase ) > 0: lowercase : Optional[Any] = {k: fmean([x[k] for x in metrics] ) for k in metrics[0].keys()} lowercase : Optional[Any] = round(mean_metrics[target_metric_key] , 2 ) lowercase : str = F"""{outcome} {mean_target}""" if len(__lowerCamelCase ) > 1: results_str += F""" {tuple(round(__lowerCamelCase , 2 ) for x in results )}""" print(__lowerCamelCase ) lowercase : Optional[int] = variation return mean_metrics else: print(__lowerCamelCase ) return {variation_key: variation, target_metric_key: nan} def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : Union[str, Any] = torch.cuda.get_device_properties(torch.device('''cuda''' ) ) return F"""\nDatetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S' )}\n\nSoftware:\ntransformers: {transformers.__version__}\ntorch : {torch.__version__}\ncuda : {torch.version.cuda}\npython : {platform.python_version()}\n\nHardware:\n{torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB\n""" def snake_case( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ) -> Any: '''simple docstring''' lowercase : Any = pd.DataFrame(__lowerCamelCase ) lowercase : Any = '''variation''' lowercase : Union[str, Any] = '''diff_%''' lowercase : Union[str, Any] = nan if base_variation is not None and len(df[df[variation_key] == base_variation] ): # this may still return nan lowercase : int = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__lowerCamelCase ): # as a fallback, use the minimal value as the sentinel lowercase : Union[str, Any] = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__lowerCamelCase ): lowercase : Union[str, Any] = df.apply( lambda __magic_name__ : round(1_00 * (r[target_metric_key] - sentinel_value) / sentinel_value ) if not math.isnan(r[target_metric_key] ) else 0 , axis='''columns''' , ) # re-order columns lowercase : int = [variation_key, target_metric_key, diff_key, *report_metric_keys] lowercase : Dict = df.reindex(__lowerCamelCase , axis='''columns''' ) # reorder cols # capitalize lowercase : Union[str, Any] = df.rename(str.capitalize , axis='''columns''' ) # make the cols as narrow as possible lowercase : List[Any] = df.rename(lambda __magic_name__ : c.replace('''_''' , '''<br>''' ) , axis='''columns''' ) lowercase : Optional[int] = df.rename(lambda __magic_name__ : c.replace('''_''' , '''\n''' ) , axis='''columns''' ) lowercase : Optional[int] = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__lowerCamelCase , floatfmt='''.2f''' )] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__lowerCamelCase , floatfmt='''.2f''' )] print('''\n\n'''.join(__lowerCamelCase ) ) def snake_case( ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=__lowerCamelCase , type=__lowerCamelCase , nargs='''+''' , required=__lowerCamelCase , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=__lowerCamelCase , type=__lowerCamelCase , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=__lowerCamelCase , type=__lowerCamelCase , required=__lowerCamelCase , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=__lowerCamelCase , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=__lowerCamelCase , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=__lowerCamelCase , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=__lowerCamelCase , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) lowercase : int = parser.parse_args() lowercase : List[Any] = args.output_dir Path(__lowerCamelCase ).mkdir(exist_ok=__lowerCamelCase ) lowercase : str = get_base_command(__lowerCamelCase , __lowerCamelCase ) # split each dimension into its --foo variations lowercase : Any = [list(map(str.strip , re.split(r'''\|''' , __lowerCamelCase ) ) ) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty lowercase : Dict = list(map(str.strip , map(''' '''.join , itertools.product(*__lowerCamelCase ) ) ) ) lowercase : int = max(len(__lowerCamelCase ) for x in variations ) # split wanted keys lowercase : str = args.report_metric_keys.split() # capture prints into a log file for convenience lowercase : Any = F"""benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S' )}.txt""" print(F"""\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt""" ) print(F"""and this script\'s output is also piped into {report_fn}""" ) lowercase : str = Tee(__lowerCamelCase ) print(F"""\n*** Running {len(__lowerCamelCase )} benchmarks:""" ) print(F"""Base command: {' '.join(__lowerCamelCase )}""" ) lowercase : List[Any] = '''variation''' lowercase : Tuple = [] for id, variation in enumerate(tqdm(__lowerCamelCase , desc='''Total completion: ''' , leave=__lowerCamelCase ) ): lowercase : str = base_cmd + variation.split() results.append( process_run( id + 1 , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , args.target_metric_key , __lowerCamelCase , args.repeat_times , __lowerCamelCase , args.verbose , ) ) process_results(__lowerCamelCase , args.target_metric_key , __lowerCamelCase , args.base_variation , __lowerCamelCase ) if __name__ == "__main__": main()
217
_SCREAMING_SNAKE_CASE : str = 8.3_144_598 def _lowercase ( __lowerCamelCase : float ,__lowerCamelCase : float ) -> float: '''simple docstring''' if temperature < 0: raise Exception('''Temperature cannot be less than 0 K''' ) if molar_mass <= 0: raise Exception('''Molar mass cannot be less than or equal to 0 kg/mol''' ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example _SCREAMING_SNAKE_CASE : List[str] = 300 _SCREAMING_SNAKE_CASE : Any = 28 _SCREAMING_SNAKE_CASE : Any = rms_speed_of_molecule(temperature, molar_mass) print(F'Vrms of Nitrogen gas at 300 K is {vrms} m/s')
344
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) UpperCamelCase__ = { "configuration_mega": ["MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP", "MegaConfig", "MegaOnnxConfig"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ "MEGA_PRETRAINED_MODEL_ARCHIVE_LIST", "MegaForCausalLM", "MegaForMaskedLM", "MegaForMultipleChoice", "MegaForQuestionAnswering", "MegaForSequenceClassification", "MegaForTokenClassification", "MegaModel", "MegaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
548
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCamelCase__ = CLIPImageProcessor() UpperCamelCase__ = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCamelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
548
1
'''simple docstring''' import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : Union[str, Any] ) -> str: assert isinstance(__lowercase , __lowercase ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __A : List[str] , __A : str , __A : Tuple ) -> Dict: _SCREAMING_SNAKE_CASE = tmp_path / "cache" _SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : int , __A : Optional[int] ) -> Optional[int]: _SCREAMING_SNAKE_CASE = tmp_path / "cache" _SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader(__lowercase , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : str , __A : List[Any] ) -> Optional[Any]: _SCREAMING_SNAKE_CASE = tmp_path / "cache" _SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(__lowercase , cache_dir=__lowercase , split=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Optional[int] , __A : Tuple ) -> str: if issubclass(__lowercase , __lowercase ): _SCREAMING_SNAKE_CASE = parquet_path elif issubclass(__lowercase , __lowercase ): _SCREAMING_SNAKE_CASE = [parquet_path] _SCREAMING_SNAKE_CASE = tmp_path / "cache" _SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_dataset(__lowercase , __lowercase ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : List[Any] , __A : str=("train",) ) -> List[str]: assert isinstance(__lowercase , __lowercase ) for split in splits: _SCREAMING_SNAKE_CASE = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def SCREAMING_SNAKE_CASE_ ( __A : Tuple , __A : List[Any] , __A : str ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = tmp_path / "cache" _SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _SCREAMING_SNAKE_CASE = ParquetDatasetReader( {"train": parquet_path} , cache_dir=__lowercase , keep_in_memory=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : Any , __A : Optional[int] ) -> List[str]: _SCREAMING_SNAKE_CASE = tmp_path / "cache" _SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _SCREAMING_SNAKE_CASE = features.copy() if features else default_expected_features _SCREAMING_SNAKE_CASE = ( Features({feature: Value(__lowercase ) for feature, dtype in features.items()} ) if features is not None else None ) _SCREAMING_SNAKE_CASE = ParquetDatasetReader({"train": parquet_path} , features=__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def SCREAMING_SNAKE_CASE_ ( __A : Union[str, Any] , __A : Optional[int] , __A : List[str] ) -> Dict: if split: _SCREAMING_SNAKE_CASE = {split: parquet_path} else: _SCREAMING_SNAKE_CASE = "train" _SCREAMING_SNAKE_CASE = {"train": parquet_path, "test": parquet_path} _SCREAMING_SNAKE_CASE = tmp_path / "cache" _SCREAMING_SNAKE_CASE = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _SCREAMING_SNAKE_CASE = ParquetDatasetReader(__lowercase , cache_dir=__lowercase ).read() _check_parquet_datasetdict(__lowercase , __lowercase , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def SCREAMING_SNAKE_CASE_ ( __A : Any , __A : Any ) -> Optional[int]: _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = pq.ParquetFile(tmp_path / "foo.parquet" ) _SCREAMING_SNAKE_CASE = pf.read() assert dataset.data.table == output_table def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Union[str, Any] ) -> Union[str, Any]: _SCREAMING_SNAKE_CASE = str(shared_datadir / "test_image_rgb.jpg" ) _SCREAMING_SNAKE_CASE = {"image": [image_path]} _SCREAMING_SNAKE_CASE = Features({"image": Image()} ) _SCREAMING_SNAKE_CASE = Dataset.from_dict(__lowercase , features=__lowercase ) _SCREAMING_SNAKE_CASE = ParquetDatasetWriter(__lowercase , tmp_path / "foo.parquet" ) assert writer.write() > 0 _SCREAMING_SNAKE_CASE = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _SCREAMING_SNAKE_CASE = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=__lowercase ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def SCREAMING_SNAKE_CASE_ ( __A : Optional[int] , __A : Dict ) -> Any: assert get_writer_batch_size(__lowercase ) == expected
418
import dataclasses import re import string from typing import Any, Dict, Iterator, List, Mapping, Optional, Sequence, Tuple import numpy as np from . import residue_constants __SCREAMING_SNAKE_CASE : List[str] = Mapping[str, np.ndarray] __SCREAMING_SNAKE_CASE : List[Any] = Mapping[str, Any] # Is a nested dict. __SCREAMING_SNAKE_CASE : List[Any] = 0.01 @dataclasses.dataclass(frozen=__snake_case ) class lowercase_ : _lowerCamelCase = 42 # [num_res, num_atom_type, 3] # Amino-acid type for each residue represented as an integer between 0 and # 20, where 20 is 'X'. _lowerCamelCase = 42 # [num_res] # Binary float mask to indicate presence of a particular atom. 1.0 if an atom # is present and 0.0 if not. This should be used for loss masking. _lowerCamelCase = 42 # [num_res, num_atom_type] # Residue index as used in PDB. It is not necessarily continuous or 0-indexed. _lowerCamelCase = 42 # [num_res] # B-factors, or temperature factors, of each residue (in sq. angstroms units), # representing the displacement of the residue from its ground truth mean # value. _lowerCamelCase = 42 # [num_res, num_atom_type] # Chain indices for multi-chain predictions _lowerCamelCase = None # Optional remark about the protein. Included as a comment in output PDB # files _lowerCamelCase = None # Templates used to generate this protein (prediction-only) _lowerCamelCase = None # Chain corresponding to each parent _lowerCamelCase = None def snake_case (__lowercase ) -> Protein: '''simple docstring''' _snake_case : str = r"(\[[A-Z]+\]\n)" _snake_case : List[str] = [tag.strip() for tag in re.split(__lowercase , __lowercase ) if len(__lowercase ) > 0] _snake_case : Iterator[Tuple[str, List[str]]] = zip(tags[0::2] , [l.split("\n" ) for l in tags[1::2]] ) _snake_case : List[str] = ["N", "CA", "C"] _snake_case : Any = None _snake_case : Union[str, Any] = None _snake_case : Optional[int] = None for g in groups: if "[PRIMARY]" == g[0]: _snake_case : Tuple = g[1][0].strip() for i in range(len(__lowercase ) ): if seq[i] not in residue_constants.restypes: _snake_case : Tuple = "X" # FIXME: strings are immutable _snake_case : int = np.array( [residue_constants.restype_order.get(__lowercase , residue_constants.restype_num ) for res_symbol in seq] ) elif "[TERTIARY]" == g[0]: _snake_case : List[List[float]] = [] for axis in range(3 ): tertiary.append(list(map(__lowercase , g[1][axis].split() ) ) ) _snake_case : Dict = np.array(__lowercase ) _snake_case : Dict = np.zeros((len(tertiary[0] ) // 3, residue_constants.atom_type_num, 3) ).astype(np.floataa ) for i, atom in enumerate(__lowercase ): _snake_case : List[Any] = np.transpose(tertiary_np[:, i::3] ) atom_positions *= PICO_TO_ANGSTROM elif "[MASK]" == g[0]: _snake_case : int = np.array(list(map({"-": 0, "+": 1}.get , g[1][0].strip() ) ) ) _snake_case : Any = np.zeros( ( len(__lowercase ), residue_constants.atom_type_num, ) ).astype(np.floataa ) for i, atom in enumerate(__lowercase ): _snake_case : Dict = 1 atom_mask *= mask[..., None] assert aatype is not None return Protein( atom_positions=__lowercase , atom_mask=__lowercase , aatype=__lowercase , residue_index=np.arange(len(__lowercase ) ) , b_factors=__lowercase , ) def snake_case (__lowercase , __lowercase = 0 ) -> List[str]: '''simple docstring''' _snake_case : List[str] = [] _snake_case : Optional[Any] = prot.remark if remark is not None: pdb_headers.append(F"""REMARK {remark}""" ) _snake_case : str = prot.parents _snake_case : str = prot.parents_chain_index if parents is not None and parents_chain_index is not None: _snake_case : int = [p for i, p in zip(__lowercase , __lowercase ) if i == chain_id] if parents is None or len(__lowercase ) == 0: _snake_case : Optional[int] = ["N/A"] pdb_headers.append(F"""PARENT {' '.join(__lowercase )}""" ) return pdb_headers def snake_case (__lowercase , __lowercase ) -> str: '''simple docstring''' _snake_case : List[str] = [] _snake_case : Optional[int] = pdb_str.split("\n" ) _snake_case : List[str] = prot.remark if remark is not None: out_pdb_lines.append(F"""REMARK {remark}""" ) _snake_case : List[List[str]] if prot.parents is not None and len(prot.parents ) > 0: _snake_case : str = [] if prot.parents_chain_index is not None: _snake_case : Dict[str, List[str]] = {} for p, i in zip(prot.parents , prot.parents_chain_index ): parent_dict.setdefault(str(__lowercase ) , [] ) parent_dict[str(__lowercase )].append(__lowercase ) _snake_case : Any = max([int(__lowercase ) for chain_idx in parent_dict] ) for i in range(max_idx + 1 ): _snake_case : Tuple = parent_dict.get(str(__lowercase ) , ["N/A"] ) parents_per_chain.append(__lowercase ) else: parents_per_chain.append(list(prot.parents ) ) else: _snake_case : List[str] = [["N/A"]] def make_parent_line(__lowercase ) -> str: return F"""PARENT {' '.join(__lowercase )}""" out_pdb_lines.append(make_parent_line(parents_per_chain[0] ) ) _snake_case : int = 0 for i, l in enumerate(__lowercase ): if "PARENT" not in l and "REMARK" not in l: out_pdb_lines.append(__lowercase ) if "TER" in l and "END" not in lines[i + 1]: chain_counter += 1 if not chain_counter >= len(__lowercase ): _snake_case : Tuple = parents_per_chain[chain_counter] else: _snake_case : str = ["N/A"] out_pdb_lines.append(make_parent_line(__lowercase ) ) return "\n".join(__lowercase ) def snake_case (__lowercase ) -> str: '''simple docstring''' _snake_case : Optional[Any] = residue_constants.restypes + ["X"] def res_atoa(__lowercase ) -> str: return residue_constants.restype_atoa.get(restypes[r] , "UNK" ) _snake_case : Optional[int] = residue_constants.atom_types _snake_case : List[str] = [] _snake_case : Tuple = prot.atom_mask _snake_case : List[str] = prot.aatype _snake_case : int = prot.atom_positions _snake_case : int = prot.residue_index.astype(np.intaa ) _snake_case : List[Any] = prot.b_factors _snake_case : str = prot.chain_index if np.any(aatype > residue_constants.restype_num ): raise ValueError("Invalid aatypes." ) _snake_case : Union[str, Any] = get_pdb_headers(__lowercase ) if len(__lowercase ) > 0: pdb_lines.extend(__lowercase ) _snake_case : Optional[Any] = aatype.shape[0] _snake_case : str = 1 _snake_case : Tuple = 0 _snake_case : int = string.ascii_uppercase _snake_case : Optional[Any] = None # Add all atom sites. for i in range(__lowercase ): _snake_case : Dict = res_atoa(aatype[i] ) for atom_name, pos, mask, b_factor in zip(__lowercase , atom_positions[i] , atom_mask[i] , b_factors[i] ): if mask < 0.5: continue _snake_case : List[Any] = "ATOM" _snake_case : Union[str, Any] = atom_name if len(__lowercase ) == 4 else F""" {atom_name}""" _snake_case : str = "" _snake_case : str = "" _snake_case : Any = 1.00 _snake_case : str = atom_name[0] # Protein supports only C, N, O, S, this works. _snake_case : Dict = "" _snake_case : Any = "A" if chain_index is not None: _snake_case : List[Any] = chain_tags[chain_index[i]] # PDB is a columnar format, every space matters here! _snake_case : Optional[int] = ( F"""{record_type:<6}{atom_index:>5} {name:<4}{alt_loc:>1}""" F"""{res_name_a:>3} {chain_tag:>1}""" F"""{residue_index[i]:>4}{insertion_code:>1} """ F"""{pos[0]:>8.3f}{pos[1]:>8.3f}{pos[2]:>8.3f}""" F"""{occupancy:>6.2f}{b_factor:>6.2f} """ F"""{element:>2}{charge:>2}""" ) pdb_lines.append(__lowercase ) atom_index += 1 _snake_case : Dict = i == n - 1 if chain_index is not None: if i != n - 1 and chain_index[i + 1] != prev_chain_index: _snake_case : Optional[int] = True _snake_case : Union[str, Any] = chain_index[i + 1] if should_terminate: # Close the chain. _snake_case : List[str] = "TER" _snake_case : str = ( F"""{chain_end:<6}{atom_index:>5} {res_atoa(aatype[i] ):>3} {chain_tag:>1}{residue_index[i]:>4}""" ) pdb_lines.append(__lowercase ) atom_index += 1 if i != n - 1: # "prev" is a misnomer here. This happens at the beginning of # each new chain. pdb_lines.extend(get_pdb_headers(__lowercase , __lowercase ) ) pdb_lines.append("END" ) pdb_lines.append("" ) return "\n".join(__lowercase ) def snake_case (__lowercase ) -> np.ndarray: '''simple docstring''' return residue_constants.STANDARD_ATOM_MASK[prot.aatype] def snake_case (__lowercase , __lowercase , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , __lowercase = None , ) -> Protein: '''simple docstring''' return Protein( aatype=features["aatype"] , atom_positions=result["final_atom_positions"] , atom_mask=result["final_atom_mask"] , residue_index=features["residue_index"] + 1 , b_factors=b_factors if b_factors is not None else np.zeros_like(result["final_atom_mask"] ) , chain_index=__lowercase , remark=__lowercase , parents=__lowercase , parents_chain_index=__lowercase , )
670
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING lowercase_ : Optional[Any] = logging.get_logger(__name__) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "upernet" def __init__( self : Optional[int] , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : Union[str, Any]=5_12 , lowerCamelCase_ : List[str]=0.02 , lowerCamelCase_ : Union[str, Any]=[1, 2, 3, 6] , lowerCamelCase_ : Optional[Any]=True , lowerCamelCase_ : int=0.4 , lowerCamelCase_ : List[Any]=3_84 , lowerCamelCase_ : Optional[int]=2_56 , lowerCamelCase_ : List[Any]=1 , lowerCamelCase_ : List[str]=False , lowerCamelCase_ : List[str]=2_55 , **lowerCamelCase_ : Tuple , ): '''simple docstring''' super().__init__(**lowerCamelCase_ ) if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.' ) _snake_case : Tuple = CONFIG_MAPPING['resnet'](out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) elif isinstance(lowerCamelCase_ , lowerCamelCase_ ): _snake_case : List[Any] = backbone_config.get('model_type' ) _snake_case : Optional[Any] = CONFIG_MAPPING[backbone_model_type] _snake_case : str = config_class.from_dict(lowerCamelCase_ ) _snake_case : Optional[int] = backbone_config _snake_case : List[Any] = hidden_size _snake_case : Any = initializer_range _snake_case : List[Any] = pool_scales _snake_case : str = use_auxiliary_head _snake_case : Union[str, Any] = auxiliary_loss_weight _snake_case : Any = auxiliary_in_channels _snake_case : Union[str, Any] = auxiliary_channels _snake_case : List[str] = auxiliary_num_convs _snake_case : Dict = auxiliary_concat_input _snake_case : Optional[int] = loss_ignore_index def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' _snake_case : List[Any] = copy.deepcopy(self.__dict__ ) _snake_case : Dict = self.backbone_config.to_dict() _snake_case : Dict = self.__class__.model_type return output
652
import re from flax.core.frozen_dict import freeze from flax.traverse_util import flatten_dict, unflatten_dict from jax.experimental import PartitionSpec as P # Sentinels lowercase_ : Optional[int] = object() # For specifying empty leaf dict `{}` lowercase_ : List[Any] = object() def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = tuple((re.compile(x + '$' ) for x in qs) ) for i in range(len(__lowerCAmelCase ) - len(__lowerCAmelCase ) + 1 ): _snake_case : Tuple = [x.match(__lowerCAmelCase ) for x, y in zip(__lowerCAmelCase , ks[i:] )] if matches and all(__lowerCAmelCase ): return True return False def A__( __lowerCAmelCase ): def replace(__lowerCAmelCase , __lowerCAmelCase ): for rule, replacement in rules: if _match(__lowerCAmelCase , __lowerCAmelCase ): return replacement return val return replace def A__( ): return [ # embeddings (("transformer", "wpe", "embedding"), P('mp' , __lowerCAmelCase )), (("transformer", "wte", "embedding"), P('mp' , __lowerCAmelCase )), # atention (("attention", "(q_proj|k_proj|v_proj)", "kernel"), P(__lowerCAmelCase , 'mp' )), (("attention", "out_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("attention", "out_proj", "bias"), None), # mlp (("mlp", "c_fc", "kernel"), P(__lowerCAmelCase , 'mp' )), (("mlp", "c_fc", "bias"), P('mp' )), (("mlp", "c_proj", "kernel"), P('mp' , __lowerCAmelCase )), (("mlp", "c_proj", "bias"), None), # layer norms ((r"ln_\d+", "bias"), None), ((r"\d+", r"ln_\d+", "scale"), None), (("ln_f", "bias"), None), (("ln_f", "scale"), None), ] def A__( __lowerCAmelCase ): _snake_case : Optional[Any] = _get_partition_rules() _snake_case : Optional[Any] = _replacement_rules(__lowerCAmelCase ) _snake_case : str = {k: _unmatched for k in flatten_dict(__lowerCAmelCase )} _snake_case : str = {k: replace(__lowerCAmelCase , __lowerCAmelCase ) for k, v in initd.items()} assert _unmatched not in result.values(), "Incomplete partition spec." return freeze(unflatten_dict(__lowerCAmelCase ) )
652
1
from math import factorial def UpperCamelCase ( __magic_name__ : int , __magic_name__ : int ) -> int: """simple docstring""" if n < k or k < 0: raise ValueError("""Please enter positive integers for n and k where n >= k""" ) return factorial(__magic_name__ ) // (factorial(__magic_name__ ) * factorial(n - k )) if __name__ == "__main__": print( 'The number of five-card hands possible from a standard', F'fifty-two card deck is: {combinations(5_2, 5)}\n', ) print( 'If a class of 40 students must be arranged into groups of', F'4 for group projects, there are {combinations(4_0, 4)} ways', 'to arrange them.\n', ) print( 'If 10 teams are competing in a Formula One race, there', F'are {combinations(1_0, 3)} ways that first, second and', 'third place can be awarded.', )
15
"""simple docstring""" from collections import namedtuple lowerCAmelCase__ = namedtuple('''from_to''', '''from_ to''') lowerCAmelCase__ = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.0_0_1, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.0_0_4_5_4, 2_6_4.1_7_2), '''cubicyard''': from_to(0.7_6_4_5_5, 1.3_0_7_9_5), '''cubicfoot''': from_to(0.0_2_8, 3_5.3_1_4_7), '''cup''': from_to(0.0_0_0_2_3_6_5_8_8, 4_2_2_6.7_5), } def snake_case_ ( A_ : float, A_ : str, A_ : str ): '''simple docstring''' if from_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'from_type\' value: {from_type!r} Supported values are:\n''' + ''', '''.join(A_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F'''Invalid \'to_type\' value: {to_type!r}. Supported values are:\n''' + ''', '''.join(A_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
83
0
import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def __UpperCAmelCase ( lowerCamelCase_ : Tuple ) -> Optional[Any]: """simple docstring""" return x + 2 class lowerCAmelCase_ ( unittest.TestCase ): def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Optional[int] = 'x = 3' SCREAMING_SNAKE_CASE_ : Optional[int] = {} SCREAMING_SNAKE_CASE_ : int = evaluate(snake_case__ ,{} ,state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ ,{'x': 3} ) SCREAMING_SNAKE_CASE_ : Dict = 'x = y' SCREAMING_SNAKE_CASE_ : List[str] = {'y': 5} SCREAMING_SNAKE_CASE_ : Tuple = evaluate(snake_case__ ,{} ,state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ ,{'x': 5, 'y': 5} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = 'y = add_two(x)' SCREAMING_SNAKE_CASE_ : List[str] = {'x': 3} SCREAMING_SNAKE_CASE_ : int = evaluate(snake_case__ ,{'add_two': add_two} ,state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ ,{'x': 3, 'y': 5} ) # Won't work without the tool with CaptureStdout() as out: SCREAMING_SNAKE_CASE_ : Optional[Any] = evaluate(snake_case__ ,{} ,state=snake_case__ ) assert result is None assert "tried to execute add_two" in out.out def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Tuple = 'x = 3' SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Union[str, Any] = evaluate(snake_case__ ,{} ,state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ ,{'x': 3} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = 'test_dict = {\'x\': x, \'y\': add_two(x)}' SCREAMING_SNAKE_CASE_ : int = {'x': 3} SCREAMING_SNAKE_CASE_ : Optional[int] = evaluate(snake_case__ ,{'add_two': add_two} ,state=snake_case__ ) self.assertDictEqual(snake_case__ ,{'x': 3, 'y': 5} ) self.assertDictEqual(snake_case__ ,{'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = 'x = 3\ny = 5' SCREAMING_SNAKE_CASE_ : Union[str, Any] = {} SCREAMING_SNAKE_CASE_ : Optional[Any] = evaluate(snake_case__ ,{} ,state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ ,{'x': 3, 'y': 5} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = 'text = f\'This is x: {x}.\'' SCREAMING_SNAKE_CASE_ : Any = {'x': 3} SCREAMING_SNAKE_CASE_ : List[str] = evaluate(snake_case__ ,{} ,state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(snake_case__ ,{'x': 3, 'text': 'This is x: 3.'} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'if x <= 3:\n y = 2\nelse:\n y = 5' SCREAMING_SNAKE_CASE_ : Dict = {'x': 3} SCREAMING_SNAKE_CASE_ : Union[str, Any] = evaluate(snake_case__ ,{} ,state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(snake_case__ ,{'x': 3, 'y': 2} ) SCREAMING_SNAKE_CASE_ : Dict = {'x': 8} SCREAMING_SNAKE_CASE_ : Union[str, Any] = evaluate(snake_case__ ,{} ,state=snake_case__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(snake_case__ ,{'x': 8, 'y': 5} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Dict = 'test_list = [x, add_two(x)]' SCREAMING_SNAKE_CASE_ : Dict = {'x': 3} SCREAMING_SNAKE_CASE_ : Dict = evaluate(snake_case__ ,{'add_two': add_two} ,state=snake_case__ ) self.assertListEqual(snake_case__ ,[3, 5] ) self.assertDictEqual(snake_case__ ,{'x': 3, 'test_list': [3, 5]} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : str = 'y = x' SCREAMING_SNAKE_CASE_ : Dict = {'x': 3} SCREAMING_SNAKE_CASE_ : List[Any] = evaluate(snake_case__ ,{} ,state=snake_case__ ) assert result == 3 self.assertDictEqual(snake_case__ ,{'x': 3, 'y': 3} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'test_list = [x, add_two(x)]\ntest_list[1]' SCREAMING_SNAKE_CASE_ : Optional[Any] = {'x': 3} SCREAMING_SNAKE_CASE_ : int = evaluate(snake_case__ ,{'add_two': add_two} ,state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ ,{'x': 3, 'test_list': [3, 5]} ) SCREAMING_SNAKE_CASE_ : Tuple = 'test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']' SCREAMING_SNAKE_CASE_ : List[Any] = {'x': 3} SCREAMING_SNAKE_CASE_ : Tuple = evaluate(snake_case__ ,{'add_two': add_two} ,state=snake_case__ ) assert result == 5 self.assertDictEqual(snake_case__ ,{'x': 3, 'test_dict': {'x': 3, 'y': 5}} ) def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = 'x = 0\nfor i in range(3):\n x = i' SCREAMING_SNAKE_CASE_ : int = {} SCREAMING_SNAKE_CASE_ : Optional[int] = evaluate(snake_case__ ,{'range': range} ,state=snake_case__ ) assert result == 2 self.assertDictEqual(snake_case__ ,{'x': 2, 'i': 2} )
685
import logging import os from dataclasses import dataclass from typing import List, Optional, Union import tqdm from filelock import FileLock from transformers import ( BartTokenizer, BartTokenizerFast, DataProcessor, PreTrainedTokenizer, RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, is_tf_available, is_torch_available, ) UpperCamelCase__ : str = logging.getLogger(__name__) @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : str __a : str __a : Optional[str] = None __a : Optional[str] = None __a : Optional[str] = None @dataclass(frozen=lowerCamelCase_ ) class lowerCAmelCase_ : __a : List[int] __a : Optional[List[int]] = None __a : Optional[List[int]] = None __a : Optional[Union[int, float]] = None __a : Optional[int] = None if is_torch_available(): import torch from torch.utils.data import Dataset class lowerCAmelCase_ ( lowerCamelCase_ ): __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = None ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[Any] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( snake_case__ ,'cached_{}_{}_{}_{}'.format( 'dev' if evaluate else 'train' ,tokenizer.__class__.__name__ ,str(snake_case__ ) ,snake_case__ ,) ,) SCREAMING_SNAKE_CASE_ : Union[str, Any] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Any = label_list # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. SCREAMING_SNAKE_CASE_ : Dict = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(F'Loading features from cached file {cached_features_file}' ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.load(snake_case__ ) else: logger.info(F'Creating features from dataset file at {data_dir}' ) SCREAMING_SNAKE_CASE_ : List[Any] = ( processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) ) logger.info('Training examples: %s' ,len(snake_case__ ) ) SCREAMING_SNAKE_CASE_ : List[str] = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) logger.info('Saving features into cached file %s' ,snake_case__ ) torch.save(self.features ,snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list if is_tf_available(): import tensorflow as tf class lowerCAmelCase_ : __a : List[InputFeatures] def __init__( self ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ = 128 ,snake_case__=False ,snake_case__ = False ,): SCREAMING_SNAKE_CASE_ : Optional[int] = hans_processors[task]() SCREAMING_SNAKE_CASE_ : Optional[int] = processor.get_labels() if tokenizer.__class__ in ( RobertaTokenizer, RobertaTokenizerFast, XLMRobertaTokenizer, BartTokenizer, BartTokenizerFast, ): # HACK(label indices are swapped in RoBERTa pretrained model) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list[2], label_list[1] SCREAMING_SNAKE_CASE_ : Union[str, Any] = label_list SCREAMING_SNAKE_CASE_ : int = processor.get_dev_examples(snake_case__ ) if evaluate else processor.get_train_examples(snake_case__ ) SCREAMING_SNAKE_CASE_ : int = hans_convert_examples_to_features(snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) def gen(): for ex_index, ex in tqdm.tqdm(enumerate(self.features ) ,desc='convert examples to features' ): if ex_index % 10000 == 0: logger.info('Writing example %d of %d' % (ex_index, len(snake_case__ )) ) yield ( { "example_id": 0, "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label, ) SCREAMING_SNAKE_CASE_ : List[Any] = tf.data.Dataset.from_generator( snake_case__ ,( { 'example_id': tf.intaa, 'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa, }, tf.intaa, ) ,( { 'example_id': tf.TensorShape([] ), 'input_ids': tf.TensorShape([None, None] ), 'attention_mask': tf.TensorShape([None, None] ), 'token_type_ids': tf.TensorShape([None, None] ), }, tf.TensorShape([] ), ) ,) def snake_case ( self ): return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self ,snake_case__ ): return self.features[i] def snake_case ( self ): return self.label_list class lowerCAmelCase_ ( lowerCamelCase_ ): def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_train_set.txt' ) ) ,'train' ) def snake_case ( self ,snake_case__ ): return self._create_examples(self._read_tsv(os.path.join(snake_case__ ,'heuristics_evaluation_set.txt' ) ) ,'dev' ) def snake_case ( self ): return ["contradiction", "entailment", "neutral"] def snake_case ( self ,snake_case__ ,snake_case__ ): SCREAMING_SNAKE_CASE_ : Optional[int] = [] for i, line in enumerate(snake_case__ ): if i == 0: continue SCREAMING_SNAKE_CASE_ : List[str] = '%s-%s' % (set_type, line[0]) SCREAMING_SNAKE_CASE_ : Dict = line[5] SCREAMING_SNAKE_CASE_ : Dict = line[6] SCREAMING_SNAKE_CASE_ : Tuple = line[7][2:] if line[7].startswith('ex' ) else line[7] SCREAMING_SNAKE_CASE_ : Optional[int] = line[0] examples.append(InputExample(guid=snake_case__ ,text_a=snake_case__ ,text_b=snake_case__ ,label=snake_case__ ,pairID=snake_case__ ) ) return examples def __UpperCAmelCase ( lowerCamelCase_ : List[InputExample] , lowerCamelCase_ : List[str] , lowerCamelCase_ : int , lowerCamelCase_ : PreTrainedTokenizer , ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = {label: i for i, label in enumerate(lowerCamelCase_ )} SCREAMING_SNAKE_CASE_ : Dict = [] for ex_index, example in tqdm.tqdm(enumerate(lowerCamelCase_ ) , desc='convert examples to features' ): if ex_index % 1_00_00 == 0: logger.info('Writing example %d' % (ex_index) ) SCREAMING_SNAKE_CASE_ : Any = tokenizer( example.text_a , example.text_b , add_special_tokens=lowerCamelCase_ , max_length=lowerCamelCase_ , padding='max_length' , truncation=lowerCamelCase_ , return_overflowing_tokens=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE_ : List[Any] = label_map[example.label] if example.label in label_map else 0 SCREAMING_SNAKE_CASE_ : List[str] = int(example.pairID ) features.append(InputFeatures(**lowerCamelCase_ , label=lowerCamelCase_ , pairID=lowerCamelCase_ ) ) for i, example in enumerate(examples[:5] ): logger.info('*** Example ***' ) logger.info(F'guid: {example}' ) logger.info(F'features: {features[i]}' ) return features UpperCamelCase__ : str = { '''hans''': 3, } UpperCamelCase__ : Dict = { '''hans''': HansProcessor, }
685
1
import contextlib import importlib import io import unittest import transformers # Try to import everything from transformers to ensure every object can be loaded. from transformers import * # noqa F406 from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, require_tf, require_torch from transformers.utils import ContextManagers, find_labels, is_flax_available, is_tf_available, is_torch_available if is_torch_available(): from transformers import BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification if is_tf_available(): from transformers import TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification if is_flax_available(): from transformers import FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification _lowerCAmelCase = DUMMY_UNKNOWN_IDENTIFIER # An actual model hosted on huggingface.co _lowerCAmelCase = """main""" # Default branch name _lowerCAmelCase = """f2c752cfc5c0ab6f4bdec59acea69eefbee381c2""" # One particular commit (not the top of `main`) _lowerCAmelCase = """aaaaaaa""" # This commit does not exist, so we should 404. _lowerCAmelCase = """d9e9f15bc825e4b2c9249e9578f884bbcb5e3684""" # Sha-1 of config.json on the top of `main`, for checking purposes _lowerCAmelCase = """4b243c475af8d0a7754e87d7d096c92e5199ec2fe168a2ee7998e3b8e9bcb1d3""" @contextlib.contextmanager def lowercase ( ) -> List[str]: print("Welcome!" ) yield print("Bye!" ) @contextlib.contextmanager def lowercase ( ) -> Union[str, Any]: print("Bonjour!" ) yield print("Au revoir!" ) class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" assert transformers.__spec__ is not None assert importlib.util.find_spec("transformers" ) is not None class UpperCAmelCase__ ( unittest.TestCase ): @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def snake_case_ ( self , A__ ): """simple docstring""" with ContextManagers([] ): print("Transformers are awesome!" ) # The print statement adds a new line at the end of the output self.assertEqual(mock_stdout.getvalue() , "Transformers are awesome!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def snake_case_ ( self , A__ ): """simple docstring""" with ContextManagers([context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Welcome!\nTransformers are awesome!\nBye!\n" ) @unittest.mock.patch("sys.stdout" , new_callable=io.StringIO ) def snake_case_ ( self , A__ ): """simple docstring""" with ContextManagers([context_fr(), context_en()] ): print("Transformers are awesome!" ) # The output should be wrapped with an English and French welcome and goodbye self.assertEqual(mock_stdout.getvalue() , "Bonjour!\nWelcome!\nTransformers are awesome!\nBye!\nAu revoir!\n" ) @require_torch def snake_case_ ( self ): """simple docstring""" self.assertEqual(find_labels(A__ ) , ["labels"] ) self.assertEqual(find_labels(A__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(A__ ) , ["start_positions", "end_positions"] ) class UpperCAmelCase__ ( snake_case__ ): pass self.assertEqual(find_labels(A__ ) , ["labels"] ) @require_tf def snake_case_ ( self ): """simple docstring""" self.assertEqual(find_labels(A__ ) , ["labels"] ) self.assertEqual(find_labels(A__ ) , ["labels", "next_sentence_label"] ) self.assertEqual(find_labels(A__ ) , ["start_positions", "end_positions"] ) class UpperCAmelCase__ ( snake_case__ ): pass self.assertEqual(find_labels(A__ ) , ["labels"] ) @require_flax def snake_case_ ( self ): """simple docstring""" self.assertEqual(find_labels(A__ ) , [] ) self.assertEqual(find_labels(A__ ) , [] ) self.assertEqual(find_labels(A__ ) , [] ) class UpperCAmelCase__ ( snake_case__ ): pass self.assertEqual(find_labels(A__ ) , [] )
137
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
137
1
def UpperCamelCase ( lowercase_: int = 1000000 ) -> int: A__ : Optional[int] = set(range(3 , lowercase_ , 2 ) ) primes.add(2 ) for p in range(3 , lowercase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowercase_ , lowercase_ ) ) ) A__ : str = [float(lowercase_ ) for n in range(limit + 1 )] for p in primes: for n in range(lowercase_ , limit + 1 , lowercase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(f'''{solution() = }''')
706
def UpperCamelCase (lowercase_: int ) -> int: if not isinstance(lowercase_ , lowercase_ ): raise TypeError("""Input value must be an 'int' type""" ) A__ : int = 0 while number: position += 1 number >>= 1 return position if __name__ == "__main__": import doctest doctest.testmod()
64
0
'''simple docstring''' # Lint as: python3 import sys from collections.abc import Mapping from typing import TYPE_CHECKING, Dict, Optional import numpy as np import pyarrow as pa from .. import config from ..utils.logging import get_logger from ..utils.py_utils import map_nested from .formatting import TensorFormatter if TYPE_CHECKING: import jax import jaxlib UpperCamelCase =get_logger() UpperCamelCase =None class A ( TensorFormatter[Mapping, '''jax.Array''', Mapping] ): """simple docstring""" def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): super().__init__(features=A__ ) import jax from jaxlib.xla_client import Device if isinstance(A__ , A__ ): raise ValueError( F"Expected {device} to be a `str` not {type(A__ )}, as `jaxlib.xla_extension.Device` " """is not serializable neither with `pickle` nor with `dill`. Instead you can surround """ """the device with `str()` to get its string identifier that will be internally mapped """ """to the actual `jaxlib.xla_extension.Device`.""" ) UpperCamelCase_ : Optional[int] = device if isinstance(A__ , A__ ) else str(jax.devices()[0] ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase_ : Union[str, Any] = self._map_devices_to_str() if self.device not in list(DEVICE_MAPPING.keys() ): logger.warning( F"Device with string identifier {self.device} not listed among the available " F"devices: {list(DEVICE_MAPPING.keys() )}, so falling back to the default " F"device: {str(jax.devices()[0] )}." ) UpperCamelCase_ : List[str] = str(jax.devices()[0] ) UpperCamelCase_ : str = jnp_array_kwargs @staticmethod def _UpperCAmelCase ( ): import jax return {str(A__ ): device for device in jax.devices()} def _UpperCAmelCase ( self , __lowerCAmelCase ): import jax import jax.numpy as jnp if isinstance(A__ , A__ ) and column: if all( isinstance(A__ , jax.Array ) and x.shape == column[0].shape and x.dtype == column[0].dtype for x in column ): return jnp.stack(A__ , axis=0 ) return column def _UpperCAmelCase ( self , __lowerCAmelCase ): import jax import jax.numpy as jnp if isinstance(A__ , (str, bytes, type(A__ )) ): return value elif isinstance(A__ , (np.character, np.ndarray) ) and np.issubdtype(value.dtype , np.character ): return value.tolist() UpperCamelCase_ : Tuple = {} if isinstance(A__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.integer ): # the default int precision depends on the jax config # see https://jax.readthedocs.io/en/latest/notebooks/Common_Gotchas_in_JAX.html#double-64bit-precision if jax.config.jax_enable_xaa: UpperCamelCase_ : Any = {"dtype": jnp.intaa} else: UpperCamelCase_ : List[str] = {"dtype": jnp.intaa} elif isinstance(A__ , (np.number, np.ndarray) ) and np.issubdtype(value.dtype , np.floating ): UpperCamelCase_ : Optional[int] = {"dtype": jnp.floataa} elif config.PIL_AVAILABLE and "PIL" in sys.modules: import PIL.Image if isinstance(A__ , PIL.Image.Image ): UpperCamelCase_ : List[Any] = np.asarray(A__ ) # using global variable since `jaxlib.xla_extension.Device` is not serializable neither # with `pickle` nor with `dill`, so we need to use a global variable instead global DEVICE_MAPPING if DEVICE_MAPPING is None: UpperCamelCase_ : Union[str, Any] = self._map_devices_to_str() with jax.default_device(DEVICE_MAPPING[self.device] ): # calling jnp.array on a np.ndarray does copy the data # see https://github.com/google/jax/issues/4486 return jnp.array(A__ , **{**default_dtype, **self.jnp_array_kwargs} ) def _UpperCAmelCase ( self , __lowerCAmelCase ): import jax # support for torch, tf, jax etc. if config.TORCH_AVAILABLE and "torch" in sys.modules: import torch if isinstance(A__ , torch.Tensor ): return self._tensorize(data_struct.detach().cpu().numpy()[()] ) if hasattr(A__ , """__array__""" ) and not isinstance(A__ , jax.Array ): UpperCamelCase_ : Dict = data_struct.__array__() # support for nested types like struct of list of struct if isinstance(A__ , np.ndarray ): if data_struct.dtype == object: # jax arrays cannot be instantied from an array of objects return self._consolidate([self.recursive_tensorize(A__ ) for substruct in data_struct] ) elif isinstance(A__ , (list, tuple) ): return self._consolidate([self.recursive_tensorize(A__ ) for substruct in data_struct] ) return self._tensorize(A__ ) def _UpperCAmelCase ( self , __lowerCAmelCase ): return map_nested(self._recursive_tensorize , A__ , map_list=A__ ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = self.numpy_arrow_extractor().extract_row(A__ ) UpperCamelCase_ : List[Any] = self.python_features_decoder.decode_row(A__ ) return self.recursive_tensorize(A__ ) def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : int = self.numpy_arrow_extractor().extract_column(A__ ) UpperCamelCase_ : Any = self.python_features_decoder.decode_column(A__ , pa_table.column_names[0] ) UpperCamelCase_ : Any = self.recursive_tensorize(A__ ) UpperCamelCase_ : Any = self._consolidate(A__ ) return column def _UpperCAmelCase ( self , __lowerCAmelCase ): UpperCamelCase_ : List[Any] = self.numpy_arrow_extractor().extract_batch(A__ ) UpperCamelCase_ : List[str] = self.python_features_decoder.decode_batch(A__ ) UpperCamelCase_ : Any = self.recursive_tensorize(A__ ) for column_name in batch: UpperCamelCase_ : str = self._consolidate(batch[column_name] ) return batch
208
import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ConditionalDetrImageProcessor class snake_case__ ( unittest.TestCase ): def __init__( self : List[str] , A__ : List[Any] , A__ : int=7 , A__ : Union[str, Any]=3 , A__ : List[str]=30 , A__ : Optional[int]=4_00 , A__ : Optional[Any]=True , A__ : Optional[int]=None , A__ : Optional[Any]=True , A__ : Any=[0.5, 0.5, 0.5] , A__ : int=[0.5, 0.5, 0.5] , A__ : Any=True , A__ : int=1 / 2_55 , A__ : List[str]=True , ) -> Dict: '''simple docstring''' snake_case_ : int = size if size is not None else {"shortest_edge": 18, "longest_edge": 13_33} snake_case_ : Any = parent snake_case_ : Optional[int] = batch_size snake_case_ : List[Any] = num_channels snake_case_ : Union[str, Any] = min_resolution snake_case_ : List[Any] = max_resolution snake_case_ : Tuple = do_resize snake_case_ : Dict = size snake_case_ : Optional[Any] = do_normalize snake_case_ : int = image_mean snake_case_ : List[Any] = image_std snake_case_ : Tuple = do_rescale snake_case_ : Any = rescale_factor snake_case_ : Optional[int] = do_pad def UpperCAmelCase__ ( self : int ) -> List[str]: '''simple docstring''' return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def UpperCAmelCase__ ( self : Optional[int] , A__ : Optional[int] , A__ : Any=False ) -> Optional[Any]: '''simple docstring''' if not batched: snake_case_ : Any = image_inputs[0] if isinstance(A__ , Image.Image ): snake_case_ ,snake_case_ : Dict = image.size else: snake_case_ ,snake_case_ : int = image.shape[1], image.shape[2] if w < h: snake_case_ : Dict = int(self.size["shortest_edge"] * h / w ) snake_case_ : Optional[int] = self.size["shortest_edge"] elif w > h: snake_case_ : Optional[int] = self.size["shortest_edge"] snake_case_ : str = int(self.size["shortest_edge"] * w / h ) else: snake_case_ : Optional[int] = self.size["shortest_edge"] snake_case_ : List[Any] = self.size["shortest_edge"] else: snake_case_ : str = [] for image in image_inputs: snake_case_ ,snake_case_ : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) snake_case_ : List[Any] = max(A__ , key=lambda A__ : item[0] )[0] snake_case_ : int = max(A__ , key=lambda A__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class snake_case__ ( _UpperCamelCase , unittest.TestCase ): _SCREAMING_SNAKE_CASE : Optional[int] = ConditionalDetrImageProcessor if is_vision_available() else None def UpperCAmelCase__ ( self : Tuple ) -> Dict: '''simple docstring''' snake_case_ : List[str] = ConditionalDetrImageProcessingTester(self ) @property def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' return self.image_processor_tester.prepare_image_processor_dict() def UpperCAmelCase__ ( self : Any ) -> Tuple: '''simple docstring''' snake_case_ : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A__ , "image_mean" ) ) self.assertTrue(hasattr(A__ , "image_std" ) ) self.assertTrue(hasattr(A__ , "do_normalize" ) ) self.assertTrue(hasattr(A__ , "do_resize" ) ) self.assertTrue(hasattr(A__ , "size" ) ) def UpperCAmelCase__ ( self : List[str] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 13_33} ) self.assertEqual(image_processor.do_pad , A__ ) snake_case_ : Optional[int] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=A__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , A__ ) def UpperCAmelCase__ ( self : str ) -> Optional[int]: '''simple docstring''' pass def UpperCAmelCase__ ( self : Dict ) -> Tuple: '''simple docstring''' snake_case_ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ ) for image in image_inputs: self.assertIsInstance(A__ , Image.Image ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : Optional[Any] = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ ,snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) snake_case_ : int = image_processing(A__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : int ) -> Any: '''simple docstring''' snake_case_ : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case_ : str = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , numpify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , np.ndarray ) # Test not batched input snake_case_ : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : List[str] = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Optional[int] = image_processing(A__ , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : Dict = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def UpperCAmelCase__ ( self : Tuple ) -> str: '''simple docstring''' snake_case_ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case_ : Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=A__ , torchify=A__ ) for image in image_inputs: self.assertIsInstance(A__ , torch.Tensor ) # Test not batched input snake_case_ : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : List[Any] = self.image_processor_tester.get_expected_values(A__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched snake_case_ : Any = image_processing(A__ , return_tensors="pt" ).pixel_values snake_case_ ,snake_case_ : int = self.image_processor_tester.get_expected_values(A__ , batched=A__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def UpperCAmelCase__ ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: snake_case_ : Optional[Any] = json.loads(f.read() ) snake_case_ : int = {"image_id": 3_97_69, "annotations": target} # encode them snake_case_ : Optional[int] = ConditionalDetrImageProcessor.from_pretrained("microsoft/conditional-detr-resnet-50" ) snake_case_ : Any = image_processing(images=A__ , annotations=A__ , return_tensors="pt" ) # verify pixel values snake_case_ : List[Any] = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , A__ ) snake_case_ : List[str] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A__ , atol=1E-4 ) ) # verify area snake_case_ : Tuple = torch.tensor([5887.9600, 1_1250.2061, 48_9353.8438, 83_7122.7500, 14_7967.5156, 16_5732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A__ ) ) # verify boxes snake_case_ : Any = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A__ ) snake_case_ : str = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A__ , atol=1E-3 ) ) # verify image_id snake_case_ : List[Any] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A__ ) ) # verify is_crowd snake_case_ : Union[str, Any] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A__ ) ) # verify class_labels snake_case_ : Any = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A__ ) ) # verify orig_size snake_case_ : Any = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A__ ) ) # verify size snake_case_ : List[str] = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A__ ) ) @slow def UpperCAmelCase__ ( self : int ) -> str: '''simple docstring''' snake_case_ : Tuple = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: snake_case_ : Any = json.loads(f.read() ) snake_case_ : Optional[Any] = {"file_name": "000000039769.png", "image_id": 3_97_69, "segments_info": target} snake_case_ : int = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them snake_case_ : Union[str, Any] = ConditionalDetrImageProcessor(format="coco_panoptic" ) snake_case_ : str = image_processing(images=A__ , annotations=A__ , masks_path=A__ , return_tensors="pt" ) # verify pixel values snake_case_ : int = torch.Size([1, 3, 8_00, 10_66] ) self.assertEqual(encoding["pixel_values"].shape , A__ ) snake_case_ : str = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , A__ , atol=1E-4 ) ) # verify area snake_case_ : Optional[int] = torch.tensor([14_7979.6875, 16_5527.0469, 48_4638.5938, 1_1292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , A__ ) ) # verify boxes snake_case_ : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , A__ ) snake_case_ : str = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , A__ , atol=1E-3 ) ) # verify image_id snake_case_ : List[str] = torch.tensor([3_97_69] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , A__ ) ) # verify is_crowd snake_case_ : Optional[int] = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , A__ ) ) # verify class_labels snake_case_ : Optional[int] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , A__ ) ) # verify masks snake_case_ : Union[str, Any] = 82_28_73 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , A__ ) # verify orig_size snake_case_ : Dict = torch.tensor([4_80, 6_40] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , A__ ) ) # verify size snake_case_ : str = torch.tensor([8_00, 10_66] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , A__ ) )
666
0
'''simple docstring''' import logging import os from logging import ( CRITICAL, # NOQA DEBUG, # NOQA ERROR, # NOQA FATAL, # NOQA INFO, # NOQA NOTSET, # NOQA WARN, # NOQA WARNING, # NOQA ) from typing import Optional from tqdm import auto as tqdm_lib lowercase__ : Any = { "debug": logging.DEBUG, "info": logging.INFO, "warning": logging.WARNING, "error": logging.ERROR, "critical": logging.CRITICAL, } lowercase__ : Optional[int] = logging.WARNING def UpperCamelCase( ): UpperCAmelCase : Union[str, Any] = os.getenv('DATASETS_VERBOSITY' , lowerCamelCase__ ) if env_level_str: if env_level_str in log_levels: return log_levels[env_level_str] else: logging.getLogger().warning( F"""Unknown option DATASETS_VERBOSITY={env_level_str}, """ F"""has to be one of: { ", ".join(log_levels.keys() ) }""" ) return _default_log_level def UpperCamelCase( ): return __name__.split('.' )[0] def UpperCamelCase( ): return logging.getLogger(_get_library_name() ) def UpperCamelCase( ): UpperCAmelCase : List[str] = _get_library_root_logger() library_root_logger.setLevel(_get_default_logging_level() ) def UpperCamelCase( ): UpperCAmelCase : Dict = _get_library_root_logger() library_root_logger.setLevel(logging.NOTSET ) def UpperCamelCase( UpperCAmelCase_ = None ): if name is None: UpperCAmelCase : Union[str, Any] = _get_library_name() return logging.getLogger(lowerCamelCase__ ) def UpperCamelCase( ): return _get_library_root_logger().getEffectiveLevel() def UpperCamelCase( UpperCAmelCase_ ): _get_library_root_logger().setLevel(lowerCamelCase__ ) def UpperCamelCase( ): return set_verbosity(lowerCamelCase__ ) def UpperCamelCase( ): return set_verbosity(lowerCamelCase__ ) def UpperCamelCase( ): return set_verbosity(lowerCamelCase__ ) def UpperCamelCase( ): return set_verbosity(lowerCamelCase__ ) def UpperCamelCase( ): UpperCAmelCase : Dict = False def UpperCamelCase( ): UpperCAmelCase : Optional[Any] = True # Configure the library root logger at the module level (singleton-like) _configure_library_root_logger() class A_ : '''simple docstring''' def __init__( self : List[str] , *lowercase_ : List[Any] , **lowercase_ : Dict ) -> Union[str, Any]: # pylint: disable=unused-argument UpperCAmelCase : List[Any] = args[0] if args else None def __iter__( self : str ) -> Optional[Any]: return iter(self._iterator ) def __getattr__( self : Any , lowercase_ : Union[str, Any] ) -> int: def empty_fn(*lowercase_ : List[Any] , **lowercase_ : str ): # pylint: disable=unused-argument return return empty_fn def __enter__( self : Tuple ) -> str: return self def __exit__( self : Optional[int] , lowercase_ : Tuple , lowercase_ : List[str] , lowercase_ : int ) -> List[str]: return lowercase__ : Optional[Any] = True class A_ : '''simple docstring''' def __call__( self : Union[str, Any] , *lowercase_ : Union[str, Any] , lowercase_ : Tuple=False , **lowercase_ : List[Any] ) -> Union[str, Any]: if _tqdm_active and not disable: return tqdm_lib.tqdm(*UpperCamelCase_ , **UpperCamelCase_ ) else: return EmptyTqdm(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase_ ( self : int , *lowercase_ : Any , **lowercase_ : str ) -> int: UpperCAmelCase : Dict = None if _tqdm_active: return tqdm_lib.tqdm.set_lock(*UpperCamelCase_ , **UpperCamelCase_ ) def UpperCAmelCase_ ( self : Tuple ) -> Dict: if _tqdm_active: return tqdm_lib.tqdm.get_lock() lowercase__ : List[str] = _tqdm_cls() def UpperCamelCase( ): global _tqdm_active return bool(_tqdm_active ) def UpperCamelCase( ): global _tqdm_active UpperCAmelCase : Dict = True def UpperCamelCase( ): global _tqdm_active UpperCAmelCase : List[Any] = False
710
'''simple docstring''' def UpperCamelCase( UpperCAmelCase_ = 10_00 ): UpperCAmelCase : List[Any] = 2**power UpperCAmelCase : List[Any] = 0 while n: UpperCAmelCase , UpperCAmelCase : Optional[Any] = r + n % 10, n // 10 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
695
0
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets a_ = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' a_ = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' a_ = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = None ,lowercase__ = False ,) -> Optional[int]: '''simple docstring''' if label_map is not None: for old_id, new_id in label_map.items(): a_ = new_id # turn into Numpy arrays a_ = np.array(lowercase__ ) a_ = np.array(lowercase__ ) if reduce_labels: a_ = 255 a_ = label - 1 a_ = 255 a_ = label != ignore_index a_ = np.not_equal(lowercase__ ,lowercase__ ) a_ = pred_label[mask] a_ = np.array(lowercase__ )[mask] a_ = pred_label[pred_label == label] a_ = np.histogram(lowercase__ ,bins=lowercase__ ,range=(0, num_labels - 1) )[0] a_ = np.histogram(lowercase__ ,bins=lowercase__ ,range=(0, num_labels - 1) )[0] a_ = np.histogram(lowercase__ ,bins=lowercase__ ,range=(0, num_labels - 1) )[0] a_ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = None ,lowercase__ = False ,) -> Optional[Any]: '''simple docstring''' a_ = np.zeros((num_labels,) ,dtype=np.floataa ) a_ = np.zeros((num_labels,) ,dtype=np.floataa ) a_ = np.zeros((num_labels,) ,dtype=np.floataa ) a_ = np.zeros((num_labels,) ,dtype=np.floataa ) for result, gt_seg_map in zip(lowercase__ ,lowercase__ ): a_ , a_ , a_ , a_ = intersect_and_union( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def __UpperCAmelCase (lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ = None ,lowercase__ = None ,lowercase__ = False ,) -> Optional[int]: '''simple docstring''' a_ , a_ , a_ , a_ = total_intersect_and_union( lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ,lowercase__ ) # compute metrics a_ = {} a_ = total_area_intersect.sum() / total_area_label.sum() a_ = total_area_intersect / total_area_union a_ = total_area_intersect / total_area_label a_ = np.nanmean(lowercase__ ) a_ = np.nanmean(lowercase__ ) a_ = all_acc a_ = iou a_ = acc if nan_to_num is not None: a_ = {metric: np.nan_to_num(lowercase__ ,nan=lowercase__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def _lowerCAmelCase ( self: Dict) ->str: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), }) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def _lowerCAmelCase ( self: Dict , a: Optional[int] , a: Union[str, Any] , a: int , a: bool , a: Optional[int] = None , a: Optional[Dict[int, int]] = None , a: bool = False , ) ->str: '''simple docstring''' a_ = mean_iou( results=a , gt_seg_maps=a , num_labels=a , ignore_index=a , nan_to_num=a , label_map=a , reduce_labels=a , ) return iou_result
685
'''simple docstring''' class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ ( lowercase_ ): pass class SCREAMING_SNAKE_CASE__ : def __init__( self: Optional[Any]) ->List[str]: '''simple docstring''' a_ = [ [], [], [], ] def _lowerCAmelCase ( self: Dict , a: int , a: int) ->None: '''simple docstring''' try: if len(self.queues[priority]) >= 1_00: raise OverflowError("Maximum queue size is 100") self.queues[priority].append(a) except IndexError: raise ValueError("Valid priorities are 0, 1, and 2") def _lowerCAmelCase ( self: Union[str, Any]) ->int: '''simple docstring''' for queue in self.queues: if queue: return queue.pop(0) raise UnderFlowError("All queues are empty") def __str__( self: Dict) ->str: '''simple docstring''' return "\n".join(f"""Priority {i}: {q}""" for i, q in enumerate(self.queues)) class SCREAMING_SNAKE_CASE__ : def __init__( self: Any) ->List[str]: '''simple docstring''' a_ = [] def _lowerCAmelCase ( self: int , a: int) ->None: '''simple docstring''' if len(self.queue) == 1_00: raise OverFlowError("Maximum queue size is 100") self.queue.append(a) def _lowerCAmelCase ( self: List[str]) ->int: '''simple docstring''' if not self.queue: raise UnderFlowError("The queue is empty") else: a_ = min(self.queue) self.queue.remove(a) return data def __str__( self: Optional[int]) ->str: '''simple docstring''' return str(self.queue) def __UpperCAmelCase () -> Union[str, Any]: '''simple docstring''' a_ = FixedPriorityQueue() fpq.enqueue(0 ,10 ) fpq.enqueue(1 ,70 ) fpq.enqueue(0 ,100 ) fpq.enqueue(2 ,1 ) fpq.enqueue(2 ,5 ) fpq.enqueue(1 ,7 ) fpq.enqueue(2 ,4 ) fpq.enqueue(1 ,64 ) fpq.enqueue(0 ,128 ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(lowercase__ ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) print(fpq.dequeue() ) def __UpperCAmelCase () -> List[Any]: '''simple docstring''' a_ = ElementPriorityQueue() epq.enqueue(10 ) epq.enqueue(70 ) epq.enqueue(100 ) epq.enqueue(1 ) epq.enqueue(5 ) epq.enqueue(7 ) epq.enqueue(4 ) epq.enqueue(64 ) epq.enqueue(128 ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(lowercase__ ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) print(epq.dequeue() ) if __name__ == "__main__": fixed_priority_queue() element_priority_queue()
685
1
'''simple docstring''' # using dfs for finding eulerian path traversal def UpperCamelCase_ ( A__ : Dict , A__ : Optional[Any] , A__ : Optional[int] , A__ : Optional[int]=None ): '''simple docstring''' lowerCAmelCase_ : int = (path or []) + [u] for v in graph[u]: if visited_edge[u][v] is False: lowerCAmelCase_, lowerCAmelCase_ : Any = True, True lowerCAmelCase_ : Any = dfs(A__ , A__ , A__ , A__ ) return path def UpperCamelCase_ ( A__ : Tuple , A__ : Optional[Any] ): '''simple docstring''' lowerCAmelCase_ : str = 0 lowerCAmelCase_ : Any = -1 for i in range(A__ ): if i not in graph.keys(): continue if len(graph[i] ) % 2 == 1: odd_degree_nodes += 1 lowerCAmelCase_ : int = i if odd_degree_nodes == 0: return 1, odd_node if odd_degree_nodes == 2: return 2, odd_node return 3, odd_node def UpperCamelCase_ ( A__ : List[str] , A__ : Any ): '''simple docstring''' lowerCAmelCase_ : List[str] = [[False for _ in range(max_node + 1 )] for _ in range(max_node + 1 )] lowerCAmelCase_, lowerCAmelCase_ : Any = check_circuit_or_path(A__ , A__ ) if check == 3: print("""graph is not Eulerian""" ) print("""no path""" ) return lowerCAmelCase_ : str = 1 if check == 2: lowerCAmelCase_ : Tuple = odd_node print("""graph has a Euler path""" ) if check == 1: print("""graph has a Euler cycle""" ) lowerCAmelCase_ : List[Any] = dfs(A__ , A__ , A__ ) print(A__ ) def UpperCamelCase_ ( ): '''simple docstring''' lowerCAmelCase_ : List[Any] = {1: [2, 3, 4], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [4]} lowerCAmelCase_ : Optional[Any] = {1: [2, 3, 4, 5], 2: [1, 3], 3: [1, 2], 4: [1, 5], 5: [1, 4]} lowerCAmelCase_ : str = {1: [2, 3, 4], 2: [1, 3, 4], 3: [1, 2], 4: [1, 2, 5], 5: [4]} lowerCAmelCase_ : Optional[int] = {1: [2, 3], 2: [1, 3], 3: [1, 2]} lowerCAmelCase_ : str = { 1: [], 2: [] # all degree is zero } lowerCAmelCase_ : List[Any] = 10 check_euler(A__ , A__ ) check_euler(A__ , A__ ) check_euler(A__ , A__ ) check_euler(A__ , A__ ) check_euler(A__ , A__ ) if __name__ == "__main__": main()
398
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import FEATURE_EXTRACTOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor, ChineseCLIPProcessor @require_vision class __snake_case ( unittest.TestCase): """simple docstring""" def __lowercase ( self : int ) -> str: lowerCAmelCase_ : List[Any] = tempfile.mkdtemp() lowerCAmelCase_ : List[str] = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """的""", """价""", """格""", """是""", """15""", """便""", """alex""", """##andra""", """,""", """。""", """-""", """t""", """shirt""", ] lowerCAmelCase_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) lowerCAmelCase_ : Any = { """do_resize""": True, """size""": {"""height""": 2_24, """width""": 2_24}, """do_center_crop""": True, """crop_size""": {"""height""": 18, """width""": 18}, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], """do_convert_rgb""": True, } lowerCAmelCase_ : Any = os.path.join(self.tmpdirname , lowerCamelCase ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : List[str] , **lowerCamelCase : Optional[int] ) -> List[Any]: return BertTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __lowercase ( self : Tuple , **lowerCamelCase : str ) -> Any: return BertTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __lowercase ( self : Union[str, Any] , **lowerCamelCase : Tuple ) -> str: return ChineseCLIPImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase ) def __lowercase ( self : Union[str, Any] ) -> Optional[Any]: shutil.rmtree(self.tmpdirname ) def __lowercase ( self : Tuple ) -> int: lowerCAmelCase_ : Optional[Any] = [np.random.randint(2_55 , size=(3, 30, 4_00) , dtype=np.uinta )] lowerCAmelCase_ : Union[str, Any] = [Image.fromarray(np.moveaxis(lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowercase ( self : Optional[Any] ) -> Union[str, Any]: lowerCAmelCase_ : Any = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = self.get_rust_tokenizer() lowerCAmelCase_ : List[Any] = self.get_image_processor() lowerCAmelCase_ : List[str] = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : List[str] = ChineseCLIPProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase ) lowerCAmelCase_ : Tuple = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : int = ChineseCLIPProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase ) def __lowercase ( self : Union[str, Any] ) -> Dict: lowerCAmelCase_ : Optional[int] = ChineseCLIPProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) lowerCAmelCase_ : Union[str, Any] = self.get_tokenizer(cls_token="""(CLS)""" , sep_token="""(SEP)""" ) lowerCAmelCase_ : Union[str, Any] = self.get_image_processor(do_normalize=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = ChineseCLIPProcessor.from_pretrained( self.tmpdirname , cls_token="""(CLS)""" , sep_token="""(SEP)""" , do_normalize=lowerCamelCase ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase ) def __lowercase ( self : Optional[Any] ) -> Dict: lowerCAmelCase_ : Tuple = self.get_image_processor() lowerCAmelCase_ : Optional[Any] = self.get_tokenizer() lowerCAmelCase_ : List[Any] = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) lowerCAmelCase_ : Optional[int] = self.prepare_image_inputs() lowerCAmelCase_ : Optional[int] = image_processor(lowerCamelCase , return_tensors="""np""" ) lowerCAmelCase_ : List[Any] = processor(images=lowerCamelCase , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowercase ( self : Optional[Any] ) -> List[str]: lowerCAmelCase_ : Dict = self.get_image_processor() lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Optional[Any] = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) lowerCAmelCase_ : int = """Alexandra,T-shirt的价格是15便士。""" lowerCAmelCase_ : Optional[Any] = processor(text=lowerCamelCase ) lowerCAmelCase_ : List[str] = tokenizer(lowerCamelCase ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowercase ( self : Union[str, Any] ) -> List[str]: lowerCAmelCase_ : Dict = self.get_image_processor() lowerCAmelCase_ : List[Any] = self.get_tokenizer() lowerCAmelCase_ : Dict = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = """Alexandra,T-shirt的价格是15便士。""" lowerCAmelCase_ : int = self.prepare_image_inputs() lowerCAmelCase_ : Union[str, Any] = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """token_type_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase ): processor() def __lowercase ( self : int ) -> Optional[Any]: lowerCAmelCase_ : Optional[Any] = self.get_image_processor() lowerCAmelCase_ : int = self.get_tokenizer() lowerCAmelCase_ : Dict = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) lowerCAmelCase_ : Union[str, Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] lowerCAmelCase_ : List[Any] = processor.batch_decode(lowerCamelCase ) lowerCAmelCase_ : str = tokenizer.batch_decode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def __lowercase ( self : str ) -> List[Any]: lowerCAmelCase_ : Tuple = self.get_image_processor() lowerCAmelCase_ : Tuple = self.get_tokenizer() lowerCAmelCase_ : int = ChineseCLIPProcessor(tokenizer=lowerCamelCase , image_processor=lowerCamelCase ) lowerCAmelCase_ : int = """Alexandra,T-shirt的价格是15便士。""" lowerCAmelCase_ : str = self.prepare_image_inputs() lowerCAmelCase_ : Tuple = processor(text=lowerCamelCase , images=lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
398
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase = logging.get_logger(__name__) if is_vision_available(): import PIL class lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ = ["pixel_values"] def __init__( self : Dict , __lowercase : List[Any] = True , __lowercase : Optional[int] = None , __lowercase : List[Any] = PILImageResampling.BICUBIC , __lowercase : str = True , __lowercase : Union[str, Any] = None , __lowercase : Dict = True , __lowercase : Any = 1 / 255 , __lowercase : List[Any] = True , __lowercase : List[str] = None , __lowercase : List[Any] = None , __lowercase : Any = True , **__lowercase : int , ): """simple docstring""" super().__init__(**a__ ) __lowercase =size if size is not None else {"""shortest_edge""": 224} __lowercase =get_size_dict(a__ , default_to_square=a__ ) __lowercase =crop_size if crop_size is not None else {"""height""": 224, """width""": 224} __lowercase =get_size_dict(a__ , default_to_square=a__ , param_name='crop_size' ) __lowercase =do_resize __lowercase =size __lowercase =resample __lowercase =do_center_crop __lowercase =crop_size __lowercase =do_rescale __lowercase =rescale_factor __lowercase =do_normalize __lowercase =image_mean if image_mean is not None else OPENAI_CLIP_MEAN __lowercase =image_std if image_std is not None else OPENAI_CLIP_STD __lowercase =do_convert_rgb def snake_case ( self : Any , __lowercase : List[str] , __lowercase : Tuple , __lowercase : List[Any] = PILImageResampling.BICUBIC , __lowercase : Optional[Any] = None , **__lowercase : List[Any] , ): """simple docstring""" __lowercase =get_size_dict(a__ , default_to_square=a__ ) if "shortest_edge" not in size: raise ValueError(f'''The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}''' ) __lowercase =get_resize_output_image_size(a__ , size=size['shortest_edge'] , default_to_square=a__ ) return resize(a__ , size=a__ , resample=a__ , data_format=a__ , **a__ ) def snake_case ( self : List[Any] , __lowercase : Any , __lowercase : Dict , __lowercase : Any = None , **__lowercase : List[Any] , ): """simple docstring""" __lowercase =get_size_dict(a__ ) if "height" not in size or "width" not in size: raise ValueError(f'''The `size` parameter must contain the keys (height, width). Got {size.keys()}''' ) return center_crop(a__ , size=(size['height'], size['width']) , data_format=a__ , **a__ ) def snake_case ( self : Any , __lowercase : List[Any] , __lowercase : Tuple , __lowercase : Union[str, Any] = None , **__lowercase : Optional[Any] , ): """simple docstring""" return rescale(a__ , scale=a__ , data_format=a__ , **a__ ) def snake_case ( self : List[Any] , __lowercase : List[str] , __lowercase : Dict , __lowercase : List[Any] , __lowercase : List[Any] = None , **__lowercase : List[Any] , ): """simple docstring""" return normalize(a__ , mean=a__ , std=a__ , data_format=a__ , **a__ ) def snake_case ( self : Tuple , __lowercase : Optional[int] , __lowercase : List[Any] = None , __lowercase : Union[str, Any] = None , __lowercase : List[Any] = None , __lowercase : Optional[int] = None , __lowercase : Union[str, Any] = None , __lowercase : List[str] = None , __lowercase : Union[str, Any] = None , __lowercase : Optional[Any] = None , __lowercase : Any = None , __lowercase : Union[str, Any] = None , __lowercase : List[Any] = None , __lowercase : Any = None , __lowercase : Union[str, Any] = ChannelDimension.FIRST , **__lowercase : List[str] , ): """simple docstring""" __lowercase =do_resize if do_resize is not None else self.do_resize __lowercase =size if size is not None else self.size __lowercase =get_size_dict(a__ , param_name='size' , default_to_square=a__ ) __lowercase =resample if resample is not None else self.resample __lowercase =do_center_crop if do_center_crop is not None else self.do_center_crop __lowercase =crop_size if crop_size is not None else self.crop_size __lowercase =get_size_dict(a__ , param_name='crop_size' , default_to_square=a__ ) __lowercase =do_rescale if do_rescale is not None else self.do_rescale __lowercase =rescale_factor if rescale_factor is not None else self.rescale_factor __lowercase =do_normalize if do_normalize is not None else self.do_normalize __lowercase =image_mean if image_mean is not None else self.image_mean __lowercase =image_std if image_std is not None else self.image_std __lowercase =do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __lowercase =make_list_of_images(a__ ) if not valid_images(a__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) if do_center_crop and crop_size is None: raise ValueError('Crop size must be specified if do_center_crop is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: __lowercase =[convert_to_rgb(a__ ) for image in images] # All transformations expect numpy arrays. __lowercase =[to_numpy_array(a__ ) for image in images] if do_resize: __lowercase =[self.resize(image=a__ , size=a__ , resample=a__ ) for image in images] if do_center_crop: __lowercase =[self.center_crop(image=a__ , size=a__ ) for image in images] if do_rescale: __lowercase =[self.rescale(image=a__ , scale=a__ ) for image in images] if do_normalize: __lowercase =[self.normalize(image=a__ , mean=a__ , std=a__ ) for image in images] __lowercase =[to_channel_dimension_format(a__ , a__ ) for image in images] __lowercase ={"""pixel_values""": images} return BatchFeature(data=a__ , tensor_type=a__ )
119
"""simple docstring""" import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel from diffusers import DDIMScheduler, LDMPipeline, UNetaDModel, VQModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class __A ( unittest.TestCase ): @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("""DownBlock2D""", """AttnDownBlock2D""") , up_block_types=("""AttnUpBlock2D""", """UpBlock2D""") , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : List[Any] = VQModel( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=3 , ) return model @property def __A ( self ): torch.manual_seed(0 ) _lowerCAmelCase : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(a__ ) def __A ( self ): _lowerCAmelCase : Optional[Any] = self.dummy_uncond_unet _lowerCAmelCase : int = DDIMScheduler() _lowerCAmelCase : Any = self.dummy_vq_model _lowerCAmelCase : List[str] = LDMPipeline(unet=a__ , vqvae=a__ , scheduler=a__ ) ldm.to(a__ ) ldm.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : List[Any] = torch.manual_seed(0 ) _lowerCAmelCase : Optional[Any] = ldm(generator=a__ , num_inference_steps=2 , output_type="""numpy""" ).images _lowerCAmelCase : Any = torch.manual_seed(0 ) _lowerCAmelCase : Tuple = ldm(generator=a__ , num_inference_steps=2 , output_type="""numpy""" , return_dict=a__ )[0] _lowerCAmelCase : List[str] = image[0, -3:, -3:, -1] _lowerCAmelCase : Any = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) _lowerCAmelCase : List[Any] = np.array([0.8_5_1_2, 0.8_1_8, 0.6_4_1_1, 0.6_8_0_8, 0.4_4_6_5, 0.5_6_1_8, 0.4_6, 0.6_2_3_1, 0.5_1_7_2] ) _lowerCAmelCase : List[str] = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < tolerance @slow @require_torch class __A ( unittest.TestCase ): def __A ( self ): _lowerCAmelCase : Any = LDMPipeline.from_pretrained("""CompVis/ldm-celebahq-256""" ) ldm.to(a__ ) ldm.set_progress_bar_config(disable=a__ ) _lowerCAmelCase : int = torch.manual_seed(0 ) _lowerCAmelCase : List[str] = ldm(generator=a__ , num_inference_steps=5 , output_type="""numpy""" ).images _lowerCAmelCase : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _lowerCAmelCase : Union[str, Any] = np.array([0.4_3_9_9, 0.4_4_9_7_5, 0.4_6_8_2_5, 0.4_7_4, 0.4_3_5_9, 0.4_5_8_1, 0.4_5_0_9_5, 0.4_3_4_1, 0.4_4_4_7] ) _lowerCAmelCase : str = 1e-2 if torch_device != """mps""" else 3e-2 assert np.abs(image_slice.flatten() - expected_slice ).max() < tolerance
213
0
def a (lowerCAmelCase__ = 1_000 ): __a = 3 __a = 0 while a < n: if a % 3 == 0 or a % 5 == 0: result += a elif a % 15 == 0: result -= a a += 1 return result if __name__ == "__main__": print(f'''{solution() = }''')
209
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __UpperCAmelCase ( __A ): """simple docstring""" _lowerCamelCase = ["""image_processor""", """tokenizer"""] _lowerCamelCase = """LayoutLMv2ImageProcessor""" _lowerCamelCase = ("""LayoutXLMTokenizer""", """LayoutXLMTokenizerFast""") def __init__( self , __A=None , __A=None , **__A ): if "feature_extractor" in kwargs: warnings.warn( """The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`""" """ instead.""" , __A , ) __a = kwargs.pop("""feature_extractor""" ) __a = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("""You need to specify an `image_processor`.""" ) if tokenizer is None: raise ValueError("""You need to specify a `tokenizer`.""" ) super().__init__(__A , __A ) def __call__( self , __A , __A = None , __A = None , __A = None , __A = None , __A = True , __A = False , __A = None , __A = None , __A = 0 , __A = None , __A = None , __A = None , __A = False , __A = False , __A = False , __A = False , __A = True , __A = None , **__A , ): # verify input if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( """You cannot provide bounding boxes """ """if you initialized the image processor with apply_ocr set to True.""" ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( """You cannot provide word labels if you initialized the image processor with apply_ocr set to True.""" ) if return_overflowing_tokens is True and return_offsets_mapping is False: raise ValueError("""You cannot return overflowing tokens without returning the offsets mapping.""" ) # first, apply the image processor __a = self.image_processor(images=__A , return_tensors=__A ) # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(__A , __A ): __a = [text] # add batch dimension (as the image processor always adds a batch dimension) __a = features["""words"""] __a = self.tokenizer( text=text if text is not None else features["""words"""] , text_pair=text_pair if text_pair is not None else None , boxes=boxes if boxes is not None else features["""boxes"""] , word_labels=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) # add pixel values __a = features.pop("""pixel_values""" ) if return_overflowing_tokens is True: __a = self.get_overflowing_images(__A , encoded_inputs["""overflow_to_sample_mapping"""] ) __a = images return encoded_inputs def snake_case_ ( self , __A , __A ): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image __a = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx] ) if len(__A ) != len(__A ): raise ValueError( """Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got""" f''' {len(__A )} and {len(__A )}''' ) return images_with_overflow def snake_case_ ( self , *__A , **__A ): return self.tokenizer.batch_decode(*__A , **__A ) def snake_case_ ( self , *__A , **__A ): return self.tokenizer.decode(*__A , **__A ) @property def snake_case_ ( self ): return ["input_ids", "bbox", "attention_mask", "image"] @property def snake_case_ ( self ): warnings.warn( """`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.""" , __A , ) return self.image_processor_class @property def snake_case_ ( self ): warnings.warn( """`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.""" , __A , ) return self.image_processor
209
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_tf_available, is_torch_available, ) lowerCAmelCase__ :str = { '''configuration_speech_to_text''': ['''SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''Speech2TextConfig'''], '''processing_speech_to_text''': ['''Speech2TextProcessor'''], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Optional[Any] = ['''Speech2TextTokenizer'''] try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Union[str, Any] = ['''Speech2TextFeatureExtractor'''] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :Dict = [ '''TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFSpeech2TextForConditionalGeneration''', '''TFSpeech2TextModel''', '''TFSpeech2TextPreTrainedModel''', ] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ :str = [ '''SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''Speech2TextForConditionalGeneration''', '''Speech2TextModel''', '''Speech2TextPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_speech_to_text import SPEECH_TO_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, SpeechaTextConfig from .processing_speech_to_text import SpeechaTextProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speech_to_text import SpeechaTextTokenizer try: if not is_speech_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_speech_to_text import SpeechaTextFeatureExtractor try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_speech_to_text import ( TF_SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, TFSpeechaTextForConditionalGeneration, TFSpeechaTextModel, TFSpeechaTextPreTrainedModel, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_to_text import ( SPEECH_TO_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechaTextForConditionalGeneration, SpeechaTextModel, SpeechaTextPreTrainedModel, ) else: import sys lowerCAmelCase__ :List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
618
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowercase( lowercase__ ): '''simple docstring''' __a : List[Any] = ['image_processor', 'tokenizer'] __a : List[Any] = 'BlipImageProcessor' __a : str = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , __a , __a ): __lowerCamelCase : str = False super().__init__(__a , __a ) __lowerCamelCase : Union[str, Any] = self.image_processor def __call__( self , __a = None , __a = None , __a = True , __a = False , __a = None , __a = None , __a = 0 , __a = None , __a = None , __a = False , __a = False , __a = False , __a = False , __a = False , __a = True , __a = None , **__a , ): if images is None and text is None: raise ValueError('You have to specify either images or text.' ) # Get only text if images is None: __lowerCamelCase : List[Any] = self.tokenizer __lowerCamelCase : List[str] = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) return text_encoding # add pixel_values __lowerCamelCase : Any = self.image_processor(__a , return_tensors=__a ) if text is not None: __lowerCamelCase : Tuple = self.tokenizer( text=__a , add_special_tokens=__a , padding=__a , truncation=__a , max_length=__a , stride=__a , pad_to_multiple_of=__a , return_attention_mask=__a , return_overflowing_tokens=__a , return_special_tokens_mask=__a , return_offsets_mapping=__a , return_token_type_ids=__a , return_length=__a , verbose=__a , return_tensors=__a , **__a , ) else: __lowerCamelCase : Union[str, Any] = None if text_encoding is not None: encoding_image_processor.update(__a ) return encoding_image_processor def snake_case_ ( self , *__a , **__a ): return self.tokenizer.batch_decode(*__a , **__a ) def snake_case_ ( self , *__a , **__a ): return self.tokenizer.decode(*__a , **__a ) @property def snake_case_ ( self ): __lowerCamelCase : Dict = self.tokenizer.model_input_names __lowerCamelCase : Optional[int] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
594
0
from typing import Optional from .. import Features, NamedSplit from ..packaged_modules.text.text import Text from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader class lowerCAmelCase__ ( __magic_name__ ): '''simple docstring''' def __init__( self , lowercase__ , lowercase__ = None , lowercase__ = None , lowercase__ = None , lowercase__ = False , lowercase__ = False , lowercase__ = None , **lowercase__ , ): '''simple docstring''' super().__init__( lowercase__ , split=lowercase__ , features=lowercase__ , cache_dir=lowercase__ , keep_in_memory=lowercase__ , streaming=lowercase__ , num_proc=lowercase__ , **lowercase__ , ) __A =path_or_paths if isinstance(lowercase__ , lowercase__ ) else {self.split: path_or_paths} __A =Text( cache_dir=lowercase__ , data_files=lowercase__ , features=lowercase__ , **lowercase__ , ) def __UpperCamelCase ( self ): '''simple docstring''' if self.streaming: __A =self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __A =None __A =None __A =None __A =None self.builder.download_and_prepare( download_config=lowercase__ , download_mode=lowercase__ , verification_mode=lowercase__ , base_path=lowercase__ , num_proc=self.num_proc , ) __A =self.builder.as_dataset( split=self.split , verification_mode=lowercase__ , in_memory=self.keep_in_memory ) return dataset
516
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() _lowerCamelCase : Any = logging.get_logger(__name__) _lowerCamelCase : str = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } _lowerCamelCase : List[str] = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def A__ ( __A : Optional[int] , __A : Tuple , __A : Union[str, Any] , __A : List[str] , __A : Union[str, Any] ) ->str: for attribute in key.split('''.''' ): __A =getattr(__A , __A ) if weight_type is not None: __A =getattr(__A , __A ).shape else: __A =hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": __A =value elif weight_type == "weight_g": __A =value elif weight_type == "weight_v": __A =value elif weight_type == "bias": __A =value else: __A =value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def A__ ( __A : int , __A : str ) ->List[str]: __A =[] __A =fairseq_model.state_dict() __A =hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight __A =None for name, value in fairseq_dict.items(): __A =False if "conv_layers" in name: load_conv_layer( __A , __A , __A , __A , hf_model.config.feat_extract_norm == '''group''' , ) __A =True elif name.split('''.''' )[0] == "proj": __A =fairseq_model.proj __A =True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __A =True if "*" in mapped_key: __A =name.split(__A )[0].split('''.''' )[-2] __A =mapped_key.replace('''*''' , __A ) if "weight_g" in name: __A ='''weight_g''' elif "weight_v" in name: __A ='''weight_v''' elif "bias" in name: __A ='''bias''' elif "weight" in name: __A ='''weight''' else: __A =None set_recursively(__A , __A , __A , __A , __A ) continue if not is_used: unused_weights.append(__A ) logger.warning(F'''Unused weights: {unused_weights}''' ) return proj_weight def A__ ( __A : str , __A : List[Any] , __A : Union[str, Any] , __A : Union[str, Any] , __A : str ) ->Optional[Any]: __A =full_name.split('''conv_layers.''' )[-1] __A =name.split('''.''' ) __A =int(items[0] ) __A =int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) __A =value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(__A ) def A__ ( __A : Optional[Any] ) ->List[Any]: __A , __A =emb.weight.shape __A =nn.Linear(__A , __A , bias=__A ) __A =emb.weight.data return lin_layer def A__ ( __A : Dict ) ->Optional[int]: with open(__A , '''r''' , encoding='''utf-8''' ) as f: __A =f.readlines() __A =[line.split(''' ''' )[0] for line in lines] __A =len(__A ) __A ={ '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(__A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def A__ ( __A : List[Any] , __A : Optional[Any] , __A : Tuple , __A : int , __A : str , __A : str , __A : Dict , ) ->Tuple: __A =WavaVecaConfig.from_pretrained(__A ) __A =SpeechaTextaConfig.from_pretrained( __A , vocab_size=__A , decoder_layers=__A , do_stable_layer_norm=__A ) __A =WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=__A , return_attention_mask=__A , ) __A , __A , __A =fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) __A =model[0].eval() # set weights for wav2vec2 encoder __A =WavaVecaModel(__A ) __A =recursively_load_weights_wavaveca(model.encoder , __A ) __A =SpeechaTextaForCausalLM(__A ) __A , __A =hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=__A ) # set output linear layer unexpected_keys.remove('''embed_out''' ) __A =nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(F'''The following keys are missing when loading the decoder weights: {missing_keys}''' ) logger.warning(F'''The following keys are unexpected when loading the decoder weights: {unexpected_keys}''' ) __A =SpeechEncoderDecoderModel(encoder=__A , decoder=__A ) __A =False # add projection layer __A =nn.Parameter(projection_layer.weight ) __A =nn.Parameter(projection_layer.bias ) __A =create_vocab_dict(__A ) with open(os.path.join(__A , '''vocab.json''' ) , '''w''' ) as fp: json.dump(__A , __A ) __A =SpeechaTextaTokenizer(os.path.join(__A , '''vocab.json''' ) ) tokenizer.save_pretrained(__A ) __A =hf_wavavec.config.to_dict() __A =tokenizer.pad_token_id __A =tokenizer.bos_token_id __A =tokenizer.eos_token_id __A ='''speech_to_text_2''' __A ='''wav2vec2''' __A =SpeechEncoderDecoderConfig.from_dict(__A ) hf_wavavec.save_pretrained(__A ) feature_extractor.save_pretrained(__A ) if __name__ == "__main__": _lowerCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=1_0224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') _lowerCamelCase : Tuple = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
516
1
from math import pi def lowerCamelCase__ ( __A :Union[str, Any] ,__A :List[str] ): """simple docstring""" return 2 * pi * radius * (angle / 3_6_0) if __name__ == "__main__": print(arc_length(90, 10))
268
_SCREAMING_SNAKE_CASE = [ 9_9_9, 8_0_0, 7_9_9, 6_0_0, 5_9_9, 5_0_0, 4_0_0, 3_9_9, 3_7_7, 3_5_5, 3_3_3, 3_1_1, 2_8_8, 2_6_6, 2_4_4, 2_2_2, 2_0_0, 1_9_9, 1_7_7, 1_5_5, 1_3_3, 1_1_1, 8_8, 6_6, 4_4, 2_2, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_7_6, 9_5_2, 9_2_8, 9_0_5, 8_8_2, 8_5_8, 8_5_7, 8_1_0, 7_6_2, 7_1_5, 7_1_4, 5_7_2, 4_2_9, 4_2_8, 2_8_6, 2_8_5, 2_3_8, 1_9_0, 1_4_3, 1_4_2, 1_1_8, 9_5, 7_1, 4_7, 2_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_8_8, 9_7_7, 9_6_6, 9_5_5, 9_4_4, 9_3_3, 9_2_2, 9_1_1, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_5_0, 3_0_0, 2_9_9, 2_6_6, 2_3_3, 2_0_0, 1_9_9, 1_7_9, 1_5_9, 1_4_0, 1_2_0, 1_0_0, 9_9, 8_8, 7_7, 6_6, 5_5, 4_4, 3_3, 2_2, 1_1, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_5, 9_9_2, 9_8_9, 9_8_5, 9_8_1, 9_7_8, 9_7_5, 9_7_1, 9_6_7, 9_6_4, 9_6_1, 9_5_7, 9_5_6, 9_5_1, 9_4_7, 9_4_2, 9_3_7, 9_3_3, 9_2_8, 9_2_3, 9_1_9, 9_1_4, 9_1_3, 9_0_8, 9_0_3, 8_9_7, 8_9_2, 8_8_7, 8_8_1, 8_7_6, 8_7_1, 8_7_0, 8_6_4, 8_5_8, 8_5_2, 8_4_6, 8_4_0, 8_3_4, 8_2_8, 8_2_7, 8_2_0, 8_1_3, 8_0_6, 7_9_9, 7_9_2, 7_8_5, 7_8_4, 7_7_7, 7_7_0, 7_6_3, 7_5_6, 7_4_9, 7_4_2, 7_4_1, 7_3_3, 7_2_4, 7_1_6, 7_0_7, 6_9_9, 6_9_8, 6_8_8, 6_7_7, 6_6_6, 6_5_6, 6_5_5, 6_4_5, 6_3_4, 6_2_3, 6_1_3, 6_1_2, 5_9_8, 5_8_4, 5_7_0, 5_6_9, 5_5_5, 5_4_1, 5_2_7, 5_2_6, 5_0_5, 4_8_4, 4_8_3, 4_6_2, 4_4_0, 4_3_9, 3_9_6, 3_9_5, 3_5_2, 3_5_1, 3_0_8, 3_0_7, 2_6_4, 2_6_3, 2_2_0, 2_1_9, 1_7_6, 1_3_2, 8_8, 4_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_7, 9_9_5, 9_9_2, 9_9_0, 9_8_8, 9_8_6, 9_8_4, 9_8_1, 9_7_9, 9_7_7, 9_7_5, 9_7_2, 9_7_0, 9_6_8, 9_6_6, 9_6_4, 9_6_1, 9_5_9, 9_5_7, 9_5_6, 9_5_4, 9_5_1, 9_4_9, 9_4_6, 9_4_4, 9_4_1, 9_3_9, 9_3_6, 9_3_4, 9_3_1, 9_2_9, 9_2_6, 9_2_4, 9_2_1, 9_1_9, 9_1_6, 9_1_4, 9_1_3, 9_1_0, 9_0_7, 9_0_5, 9_0_2, 8_9_9, 8_9_6, 8_9_3, 8_9_1, 8_8_8, 8_8_5, 8_8_2, 8_7_9, 8_7_7, 8_7_4, 8_7_1, 8_7_0, 8_6_7, 8_6_4, 8_6_1, 8_5_8, 8_5_5, 8_5_2, 8_4_9, 8_4_6, 8_4_3, 8_4_0, 8_3_7, 8_3_4, 8_3_1, 8_2_8, 8_2_7, 8_2_4, 8_2_1, 8_1_7, 8_1_4, 8_1_1, 8_0_8, 8_0_4, 8_0_1, 7_9_8, 7_9_5, 7_9_1, 7_8_8, 7_8_5, 7_8_4, 7_8_0, 7_7_7, 7_7_4, 7_7_0, 7_6_6, 7_6_3, 7_6_0, 7_5_6, 7_5_2, 7_4_9, 7_4_6, 7_4_2, 7_4_1, 7_3_7, 7_3_3, 7_3_0, 7_2_6, 7_2_2, 7_1_8, 7_1_4, 7_1_0, 7_0_7, 7_0_3, 6_9_9, 6_9_8, 6_9_4, 6_9_0, 6_8_5, 6_8_1, 6_7_7, 6_7_3, 6_6_9, 6_6_4, 6_6_0, 6_5_6, 6_5_5, 6_5_0, 6_4_6, 6_4_1, 6_3_6, 6_3_2, 6_2_7, 6_2_2, 6_1_8, 6_1_3, 6_1_2, 6_0_7, 6_0_2, 5_9_6, 5_9_1, 5_8_6, 5_8_0, 5_7_5, 5_7_0, 5_6_9, 5_6_3, 5_5_7, 5_5_1, 5_4_5, 5_3_9, 5_3_3, 5_2_7, 5_2_6, 5_1_9, 5_1_2, 5_0_5, 4_9_8, 4_9_1, 4_8_4, 4_8_3, 4_7_4, 4_6_6, 4_5_7, 4_4_9, 4_4_0, 4_3_9, 4_2_8, 4_1_8, 4_0_7, 3_9_6, 3_9_5, 3_8_1, 3_6_6, 3_5_2, 3_5_1, 3_3_0, 3_0_8, 3_0_7, 2_8_6, 2_6_4, 2_6_3, 2_4_2, 2_2_0, 2_1_9, 1_7_6, 1_7_5, 1_3_2, 1_3_1, 8_8, 4_4, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_1, 9_8_2, 9_7_4, 9_6_6, 9_5_8, 9_5_0, 9_4_1, 9_3_3, 9_2_5, 9_1_6, 9_0_8, 9_0_0, 8_9_9, 8_7_4, 8_5_0, 8_2_5, 8_0_0, 7_9_9, 7_0_0, 6_0_0, 5_0_0, 4_0_0, 3_0_0, 2_0_0, 1_0_0, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_2, 9_8_5, 9_7_8, 9_7_1, 9_6_4, 9_5_7, 9_4_9, 9_4_2, 9_3_5, 9_2_8, 9_2_1, 9_1_4, 9_0_7, 9_0_0, 8_9_9, 8_7_9, 8_5_9, 8_4_0, 8_2_0, 8_0_0, 7_9_9, 7_6_6, 7_3_3, 7_0_0, 6_9_9, 6_5_0, 6_0_0, 5_9_9, 5_0_0, 4_9_9, 4_0_0, 3_9_9, 3_0_0, 2_9_9, 2_0_0, 1_9_9, 1_0_0, 9_9, 0, ] _SCREAMING_SNAKE_CASE = [ 9_9_9, 9_9_6, 9_9_2, 9_8_9, 9_8_5, 9_8_2, 9_7_9, 9_7_5, 9_7_2, 9_6_8, 9_6_5, 9_6_1, 9_5_8, 9_5_5, 9_5_1, 9_4_8, 9_4_4, 9_4_1, 9_3_8, 9_3_4, 9_3_1, 9_2_7, 9_2_4, 9_2_0, 9_1_7, 9_1_4, 9_1_0, 9_0_7, 9_0_3, 9_0_0, 8_9_9, 8_9_1, 8_8_4, 8_7_6, 8_6_9, 8_6_1, 8_5_3, 8_4_6, 8_3_8, 8_3_0, 8_2_3, 8_1_5, 8_0_8, 8_0_0, 7_9_9, 7_8_8, 7_7_7, 7_6_6, 7_5_5, 7_4_4, 7_3_3, 7_2_2, 7_1_1, 7_0_0, 6_9_9, 6_8_8, 6_7_7, 6_6_6, 6_5_5, 6_4_4, 6_3_3, 6_2_2, 6_1_1, 6_0_0, 5_9_9, 5_8_5, 5_7_1, 5_5_7, 5_4_2, 5_2_8, 5_1_4, 5_0_0, 4_9_9, 4_8_5, 4_7_1, 4_5_7, 4_4_2, 4_2_8, 4_1_4, 4_0_0, 3_9_9, 3_7_9, 3_5_9, 3_4_0, 3_2_0, 3_0_0, 2_9_9, 2_7_9, 2_5_9, 2_4_0, 2_2_0, 2_0_0, 1_9_9, 1_6_6, 1_3_3, 1_0_0, 9_9, 6_6, 3_3, 0, ]
537
0
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase = logging.get_logger(__name__) lowerCamelCase = { """junnyu/roformer_chinese_small""": """https://huggingface.co/junnyu/roformer_chinese_small/resolve/main/config.json""", """junnyu/roformer_chinese_base""": """https://huggingface.co/junnyu/roformer_chinese_base/resolve/main/config.json""", """junnyu/roformer_chinese_char_small""": ( """https://huggingface.co/junnyu/roformer_chinese_char_small/resolve/main/config.json""" ), """junnyu/roformer_chinese_char_base""": ( """https://huggingface.co/junnyu/roformer_chinese_char_base/resolve/main/config.json""" ), """junnyu/roformer_small_discriminator""": ( """https://huggingface.co/junnyu/roformer_small_discriminator/resolve/main/config.json""" ), """junnyu/roformer_small_generator""": ( """https://huggingface.co/junnyu/roformer_small_generator/resolve/main/config.json""" ), # See all RoFormer models at https://huggingface.co/models?filter=roformer } class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A :str = "roformer" def __init__( self , __UpperCAmelCase=5_0000 , __UpperCAmelCase=None , __UpperCAmelCase=768 , __UpperCAmelCase=12 , __UpperCAmelCase=12 , __UpperCAmelCase=3072 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=1536 , __UpperCAmelCase=2 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=1E-12 , __UpperCAmelCase=0 , __UpperCAmelCase=False , __UpperCAmelCase=True , **__UpperCAmelCase , ): """simple docstring""" super().__init__(pad_token_id=__UpperCAmelCase , **__UpperCAmelCase ) a__ : Any = vocab_size a__ : List[Any] = hidden_size if embedding_size is None else embedding_size a__ : Union[str, Any] = hidden_size a__ : List[str] = num_hidden_layers a__ : int = num_attention_heads a__ : str = hidden_act a__ : Any = intermediate_size a__ : int = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : str = max_position_embeddings a__ : Union[str, Any] = type_vocab_size a__ : List[str] = initializer_range a__ : Tuple = layer_norm_eps a__ : Optional[int] = rotary_value a__ : str = use_cache class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def _A ( self ): """simple docstring""" if self.task == "multiple-choice": a__ : Union[str, Any] = {0: "batch", 1: "choice", 2: "sequence"} else: a__ : List[str] = {0: "batch", 1: "sequence"} a__ : int = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ("token_type_ids", dynamic_axis), ] )
207
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCamelCase = { """configuration_vision_encoder_decoder""": ["""VisionEncoderDecoderConfig""", """VisionEncoderDecoderOnnxConfig"""] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""VisionEncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""TFVisionEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = ["""FlaxVisionEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_vision_encoder_decoder import VisionEncoderDecoderConfig, VisionEncoderDecoderOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vision_encoder_decoder import VisionEncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vision_encoder_decoder import TFVisionEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vision_encoder_decoder import FlaxVisionEncoderDecoderModel else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
207
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { 'google/pegasus-large': 'https://huggingface.co/google/pegasus-large/resolve/main/config.json', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class _UpperCAmelCase ( SCREAMING_SNAKE_CASE_ ): __lowerCamelCase: int = 'pegasus' __lowerCamelCase: Any = ['past_key_values'] __lowerCamelCase: Optional[Any] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__( self : List[Any] , a : int=5_0_2_6_5 , a : Any=1_0_2_4 , a : Union[str, Any]=1_2 , a : Optional[int]=4_0_9_6 , a : str=1_6 , a : Any=1_2 , a : Tuple=4_0_9_6 , a : Optional[int]=1_6 , a : Optional[Any]=0.0 , a : Union[str, Any]=0.0 , a : int=True , a : List[str]=True , a : Union[str, Any]="gelu" , a : Union[str, Any]=1_0_2_4 , a : Any=0.1 , a : List[Any]=0.0 , a : Any=0.0 , a : Tuple=0.02 , a : Optional[Any]=0 , a : Dict=False , a : Optional[Any]=0 , a : Tuple=1 , a : Any=1 , **a : Optional[int] , ): '''simple docstring''' lowercase_ : Union[str, Any] = vocab_size lowercase_ : Tuple = max_position_embeddings lowercase_ : Optional[Any] = d_model lowercase_ : List[Any] = encoder_ffn_dim lowercase_ : int = encoder_layers lowercase_ : Optional[Any] = encoder_attention_heads lowercase_ : List[str] = decoder_ffn_dim lowercase_ : List[Any] = decoder_layers lowercase_ : int = decoder_attention_heads lowercase_ : Tuple = dropout lowercase_ : Tuple = attention_dropout lowercase_ : List[str] = activation_dropout lowercase_ : List[str] = activation_function lowercase_ : List[str] = init_std lowercase_ : List[str] = encoder_layerdrop lowercase_ : Tuple = decoder_layerdrop lowercase_ : str = use_cache lowercase_ : List[str] = encoder_layers lowercase_ : Optional[int] = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=snake_case__ , eos_token_id=snake_case__ , is_encoder_decoder=snake_case__ , decoder_start_token_id=snake_case__ , forced_eos_token_id=snake_case__ , **snake_case__ , ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' return self.encoder_attention_heads @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return self.d_model
620
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , snake_case__ : int , snake_case__ : List[str]=2 , snake_case__ : List[str]=3 , snake_case__ : Tuple=4 , snake_case__ : Optional[Any]=2 , snake_case__ : int=7 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : Optional[Any]=9_9 , snake_case__ : Optional[Any]=3_6 , snake_case__ : Tuple=3 , snake_case__ : int=4 , snake_case__ : Tuple=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : Optional[int]=1_6 , snake_case__ : Dict=2 , snake_case__ : Dict=0.02 , snake_case__ : List[Any]=6 , snake_case__ : int=6 , snake_case__ : Tuple=3 , snake_case__ : List[Any]=4 , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=1_0_0_0 , ) -> Optional[int]: _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = text_seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = coordinate_size _lowerCamelCase = shape_size _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope _lowerCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCamelCase = text_seq_length _lowerCamelCase = (image_size // patch_size) ** 2 + 1 _lowerCamelCase = self.text_seq_length + self.image_seq_length def _snake_case ( self : int ) -> Any: _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCamelCase = bbox[i, j, 3] _lowerCamelCase = bbox[i, j, 1] _lowerCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCamelCase = bbox[i, j, 2] _lowerCamelCase = bbox[i, j, 0] _lowerCamelCase = t _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Optional[Any] ) -> Any: _lowerCamelCase = LayoutLMvaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # text + image _lowerCamelCase = model(snake_case__ , pixel_values=snake_case__ ) _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) _lowerCamelCase = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , token_type_ids=snake_case__ ) _lowerCamelCase = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCamelCase = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCamelCase = model(pixel_values=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : str , snake_case__ : int ) -> List[Any]: _lowerCamelCase = self.num_labels _lowerCamelCase = LayoutLMvaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Dict , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Dict ) -> Optional[Any]: _lowerCamelCase = self.num_labels _lowerCamelCase = LayoutLMvaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : str , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Any ) -> Dict: _lowerCamelCase = LayoutLMvaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : str ) -> List[str]: _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _snake_case ( self : str ) -> Any: _lowerCamelCase = LayoutLMvaModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def _snake_case ( self : List[str] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Dict=False ) -> str: _lowerCamelCase = copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): _lowerCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(snake_case__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): _lowerCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in get_values(snake_case__ ): _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: _lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=snake_case__ , ) return inputs_dict def _snake_case ( self : Any ) -> List[str]: self.config_tester.run_common_tests() def _snake_case ( self : int ) -> Optional[int]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _snake_case ( self : int ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase = type self.model_tester.create_and_check_model(*snake_case__ ) def _snake_case ( self : int ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _snake_case ( self : Any ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def _snake_case ( self : int ) -> List[Any]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def _snake_case ( self : Optional[int] ) -> List[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = LayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase ( ) -> List[Any]: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : int ) -> Any: return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def _snake_case ( self : List[str] ) -> Tuple: _lowerCamelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(snake_case__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) _lowerCamelCase = torch.tensor([[1, 2]] ) _lowerCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCamelCase = model( input_ids=input_ids.to(snake_case__ ) , bbox=bbox.to(snake_case__ ) , pixel_values=pixel_values.to(snake_case__ ) , ) # verify the logits _lowerCamelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , snake_case__ ) _lowerCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ) )
544
0
'''simple docstring''' def lowercase_ ( __A : int , __A : int , __A : int ) -> float: """simple docstring""" lowercase : Union[str, Any] =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def lowercase_ ( ) -> Union[str, Any]: """simple docstring""" print(sum_of_series(1 , 1 , 1_0 ) ) if __name__ == "__main__": import doctest doctest.testmod()
721
'''simple docstring''' from __future__ import annotations from collections.abc import Generator import requests from bsa import BeautifulSoup SCREAMING_SNAKE_CASE = 'https://www.indeed.co.in/jobs?q=mobile+app+development&l=' def lowercase_ ( __A : str = "mumbai" ) -> Generator[tuple[str, str], None, None]: """simple docstring""" lowercase : List[Any] =BeautifulSoup(requests.get(url + location ).content , '''html.parser''' ) # This attribute finds out all the specifics listed in a job for job in soup.find_all('''div''' , attrs={'''data-tn-component''': '''organicJob'''} ): lowercase : List[str] =job.find('''a''' , attrs={'''data-tn-element''': '''jobTitle'''} ).text.strip() lowercase : Union[str, Any] =job.find('''span''' , {'''class''': '''company'''} ).text.strip() yield job_title, company_name if __name__ == "__main__": for i, job in enumerate(fetch_jobs('Bangalore'), 1): print(f"""Job {i:>2} is {job[0]} at {job[1]}""")
8
0
import bza import gzip import lzma import os import shutil import struct import tarfile import warnings import zipfile from abc import ABC, abstractmethod from pathlib import Path from typing import Dict, List, Optional, Type, Union from .. import config from .filelock import FileLock from .logging import get_logger A_ : List[Any] = get_logger(__name__) class _lowerCAmelCase: """simple docstring""" def __init__( self , _lowerCamelCase = None ): UpperCamelCase_: str = ( os.path.join(_UpperCamelCase , config.EXTRACTED_DATASETS_DIR ) if cache_dir else config.EXTRACTED_DATASETS_PATH ) UpperCamelCase_: Tuple = Extractor def _a ( self , _lowerCamelCase ): from .file_utils import hash_url_to_filename # Path where we extract compressed archives # We extract in the cache dir, and get the extracted path name by hashing the original path" UpperCamelCase_: Optional[Any] = os.path.abspath(_UpperCamelCase ) return os.path.join(self.extract_dir , hash_url_to_filename(_UpperCamelCase ) ) def _a ( self , _lowerCamelCase , _lowerCamelCase ): return force_extract or ( not os.path.isfile(_UpperCamelCase ) and not (os.path.isdir(_UpperCamelCase ) and os.listdir(_UpperCamelCase )) ) def _a ( self , _lowerCamelCase , _lowerCamelCase = False ): UpperCamelCase_: int = self.extractor.infer_extractor_format(_UpperCamelCase ) if not extractor_format: return input_path UpperCamelCase_: Optional[Any] = self._get_output_path(_UpperCamelCase ) if self._do_extract(_UpperCamelCase , _UpperCamelCase ): self.extractor.extract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) return output_path class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @classmethod @abstractmethod def _a ( cls , _lowerCamelCase , **_lowerCamelCase ): ... @staticmethod @abstractmethod def _a ( _lowerCamelCase , _lowerCamelCase ): ... class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ ): """simple docstring""" a : List[bytes] =[] @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): with open(_UpperCamelCase , 'rb' ) as f: return f.read(_UpperCamelCase ) @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase = b"" ): if not magic_number: UpperCamelCase_: Tuple = max(len(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) try: UpperCamelCase_: str = cls.read_magic_number(_UpperCamelCase , _UpperCamelCase ) except OSError: return False return any(magic_number.startswith(_UpperCamelCase ) for cls_magic_number in cls.magic_numbers ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" @classmethod def _a ( cls , _lowerCamelCase , **_lowerCamelCase ): return tarfile.is_tarfile(_UpperCamelCase ) @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): def resolved(_lowerCamelCase ) -> str: return os.path.realpath(os.path.abspath(_UpperCamelCase ) ) def badpath(_lowerCamelCase , _lowerCamelCase ) -> bool: # joinpath will ignore base if path is absolute return not resolved(os.path.join(_UpperCamelCase , _UpperCamelCase ) ).startswith(_UpperCamelCase ) def badlink(_lowerCamelCase , _lowerCamelCase ) -> bool: # Links are interpreted relative to the directory containing the link UpperCamelCase_: Optional[int] = resolved(os.path.join(_UpperCamelCase , os.path.dirname(info.name ) ) ) return badpath(info.linkname , base=_UpperCamelCase ) UpperCamelCase_: Union[str, Any] = resolved(_UpperCamelCase ) for finfo in members: if badpath(finfo.name , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked (illegal path)''' ) elif finfo.issym() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Symlink to {finfo.linkname}''' ) elif finfo.islnk() and badlink(_UpperCamelCase , _UpperCamelCase ): logger.error(f'''Extraction of {finfo.name} is blocked: Hard link to {finfo.linkname}''' ) else: yield finfo @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCamelCase_: List[Any] = tarfile.open(_UpperCamelCase ) tar_file.extractall(_UpperCamelCase , members=TarExtractor.safemembers(_UpperCamelCase , _UpperCamelCase ) ) tar_file.close() class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Tuple =[B"""\x1F\x8B"""] @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): with gzip.open(_UpperCamelCase , 'rb' ) as gzip_file: with open(_UpperCamelCase , 'wb' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict =[ B"""PK\x03\x04""", B"""PK\x05\x06""", # empty archive B"""PK\x07\x08""", # spanned archive ] @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase = b"" ): if super().is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return True try: # Alternative version of zipfile.is_zipfile that has less false positives, but misses executable zip archives. # From: https://github.com/python/cpython/pull/5053 from zipfile import ( _CD_SIGNATURE, _ECD_DISK_NUMBER, _ECD_DISK_START, _ECD_ENTRIES_TOTAL, _ECD_OFFSET, _ECD_SIZE, _EndRecData, sizeCentralDir, stringCentralDir, structCentralDir, ) with open(_UpperCamelCase , 'rb' ) as fp: UpperCamelCase_: Any = _EndRecData(_UpperCamelCase ) if endrec: if endrec[_ECD_ENTRIES_TOTAL] == 0 and endrec[_ECD_SIZE] == 0 and endrec[_ECD_OFFSET] == 0: return True # Empty zipfiles are still zipfiles elif endrec[_ECD_DISK_NUMBER] == endrec[_ECD_DISK_START]: fp.seek(endrec[_ECD_OFFSET] ) # Central directory is on the same disk if fp.tell() == endrec[_ECD_OFFSET] and endrec[_ECD_SIZE] >= sizeCentralDir: UpperCamelCase_: int = fp.read(_UpperCamelCase ) # CD is where we expect it to be if len(_UpperCamelCase ) == sizeCentralDir: UpperCamelCase_: List[str] = struct.unpack(_UpperCamelCase , _UpperCamelCase ) # CD is the right size if centdir[_CD_SIGNATURE] == stringCentralDir: return True # First central directory entry has correct magic number return False except Exception: # catch all errors in case future python versions change the zipfile internals return False @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with zipfile.ZipFile(_UpperCamelCase , 'r' ) as zip_file: zip_file.extractall(_UpperCamelCase ) zip_file.close() class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Dict =[B"""\xFD\x37\x7A\x58\x5A\x00"""] @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): with lzma.open(_UpperCamelCase ) as compressed_file: with open(_UpperCamelCase , 'wb' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : List[str] =[B"""Rar!\x1a\x07\x00""", B"""Rar!\x1a\x07\x01\x00"""] # RAR_ID # RAR5_ID @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): if not config.RARFILE_AVAILABLE: raise ImportError('Please pip install rarfile' ) import rarfile os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) UpperCamelCase_: str = rarfile.RarFile(_UpperCamelCase ) rf.extractall(_UpperCamelCase ) rf.close() class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : List[str] =[B"""\x28\xb5\x2F\xFD"""] @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): if not config.ZSTANDARD_AVAILABLE: raise ImportError('Please pip install zstandard' ) import zstandard as zstd UpperCamelCase_: int = zstd.ZstdDecompressor() with open(_UpperCamelCase , 'rb' ) as ifh, open(_UpperCamelCase , 'wb' ) as ofh: dctx.copy_stream(_UpperCamelCase , _UpperCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[str, Any] =[B"""\x42\x5A\x68"""] @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): with bza.open(_UpperCamelCase , 'rb' ) as compressed_file: with open(_UpperCamelCase , 'wb' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : int =[B"""\x37\x7A\xBC\xAF\x27\x1C"""] @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): if not config.PY7ZR_AVAILABLE: raise ImportError('Please pip install py7zr' ) import pyazr os.makedirs(_UpperCamelCase , exist_ok=_UpperCamelCase ) with pyazr.SevenZipFile(_UpperCamelCase , 'r' ) as archive: archive.extractall(_UpperCamelCase ) class _lowerCAmelCase( UpperCAmelCase_ ): """simple docstring""" a : Union[str, Any] =[B"""\x04\x22\x4D\x18"""] @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): if not config.LZ4_AVAILABLE: raise ImportError('Please pip install lz4' ) import lza.frame with lza.frame.open(_UpperCamelCase , 'rb' ) as compressed_file: with open(_UpperCamelCase , 'wb' ) as extracted_file: shutil.copyfileobj(_UpperCamelCase , _UpperCamelCase ) class _lowerCAmelCase: """simple docstring""" a : Dict[str, Type[BaseExtractor]] ={ "tar": TarExtractor, "gzip": GzipExtractor, "zip": ZipExtractor, "xz": XzExtractor, "rar": RarExtractor, "zstd": ZstdExtractor, "bz2": BzipaExtractor, "7z": SevenZipExtractor, # <Added version="2.4.0"/> "lz4": LzaExtractor, # <Added version="2.4.0"/> } @classmethod def _a ( cls ): return max( len(_UpperCamelCase ) for extractor in cls.extractors.values() if issubclass(_UpperCamelCase , _UpperCamelCase ) for extractor_magic_number in extractor.magic_numbers ) @staticmethod def _a ( _lowerCamelCase , _lowerCamelCase ): try: return MagicNumberBaseExtractor.read_magic_number(_UpperCamelCase , magic_number_length=_UpperCamelCase ) except OSError: return b"" @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase = False ): warnings.warn( 'Method \'is_extractable\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'infer_extractor_format\' instead.' , category=_UpperCamelCase , ) UpperCamelCase_: Optional[Any] = cls.infer_extractor_format(_UpperCamelCase ) if extractor_format: return True if not return_extractor else (True, cls.extractors[extractor_format]) return False if not return_extractor else (False, None) @classmethod def _a ( cls , _lowerCamelCase ): # <Added version="2.4.0"/> UpperCamelCase_: List[Any] = cls._get_magic_number_max_length() UpperCamelCase_: Any = cls._read_magic_number(_UpperCamelCase , _UpperCamelCase ) for extractor_format, extractor in cls.extractors.items(): if extractor.is_extractable(_UpperCamelCase , magic_number=_UpperCamelCase ): return extractor_format @classmethod def _a ( cls , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = "deprecated" , ): os.makedirs(os.path.dirname(_UpperCamelCase ) , exist_ok=_UpperCamelCase ) # Prevent parallel extractions UpperCamelCase_: Dict = str(Path(_UpperCamelCase ).with_suffix('.lock' ) ) with FileLock(_UpperCamelCase ): shutil.rmtree(_UpperCamelCase , ignore_errors=_UpperCamelCase ) if extractor_format or extractor != "deprecated": if extractor != "deprecated" or not isinstance(_UpperCamelCase , _UpperCamelCase ): # passed as positional arg warnings.warn( 'Parameter \'extractor\' was deprecated in version 2.4.0 and will be removed in 3.0.0. ' 'Use \'extractor_format\' instead.' , category=_UpperCamelCase , ) UpperCamelCase_: Union[str, Any] = extractor if extractor != 'deprecated' else extractor_format else: UpperCamelCase_: List[Any] = cls.extractors[extractor_format] return extractor.extract(_UpperCamelCase , _UpperCamelCase ) else: warnings.warn( 'Parameter \'extractor_format\' was made required in version 2.4.0 and not passing it will raise an ' 'exception in 3.0.0.' , category=_UpperCamelCase , ) for extractor in cls.extractors.values(): if extractor.is_extractable(_UpperCamelCase ): return extractor.extract(_UpperCamelCase , _UpperCamelCase )
57
_lowerCamelCase : Optional[Any] = '''0.18.2''' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
403
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) A : Optional[int] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[Any] = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : int = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys A : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
356
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() A : Optional[Any] = logging.get_logger(__name__) A : List[Any] = torch.device("cpu") def a__ ( ): SCREAMING_SNAKE_CASE_ = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE_ = Image.open(requests.get(__UpperCamelCase , stream=__UpperCamelCase ).raw ) return im def a__ ( __UpperCamelCase ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703E00, 2.1_107E00, -2.0_811E00, 8.8_685E-01, 2.4_360E-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636E-01, 2.3_478E-01, -1.6_963E00, -1.7_381E00, -8.6_337E-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768E-01, -4.7_429E-01, -1.0_897E00, -1.0_248E00, 3.5_523E-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330E-01, 2.4_211E-01, -6.0_185E-01, -8.2_789E-01, -6.0_446E-02] ) def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = dct.pop(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = val def a__ ( __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = [] for k in state_dict.keys(): SCREAMING_SNAKE_CASE_ = k if ".pwconv" in k: SCREAMING_SNAKE_CASE_ = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: SCREAMING_SNAKE_CASE_ = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: SCREAMING_SNAKE_CASE_ = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: SCREAMING_SNAKE_CASE_ = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: SCREAMING_SNAKE_CASE_ = k_new.split("." ) if ls[2].isdigit(): SCREAMING_SNAKE_CASE_ = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: SCREAMING_SNAKE_CASE_ = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def a__ ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): SCREAMING_SNAKE_CASE_ = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size SCREAMING_SNAKE_CASE_ = 1_0_0_0 SCREAMING_SNAKE_CASE_ = "huggingface/label-files" SCREAMING_SNAKE_CASE_ = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE_ = json.load(open(hf_hub_download(__UpperCamelCase , __UpperCamelCase , repo_type="dataset" ) , "r" ) ) SCREAMING_SNAKE_CASE_ = {int(__UpperCamelCase ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE_ = idalabel SCREAMING_SNAKE_CASE_ = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": SCREAMING_SNAKE_CASE_ = [3, 3, 6, 4] SCREAMING_SNAKE_CASE_ = [4_8, 5_6, 1_1_2, 2_2_0] elif swiftformer_name == "swiftformer_s": SCREAMING_SNAKE_CASE_ = [3, 3, 9, 6] SCREAMING_SNAKE_CASE_ = [4_8, 6_4, 1_6_8, 2_2_4] elif swiftformer_name == "swiftformer_l1": SCREAMING_SNAKE_CASE_ = [4, 3, 1_0, 5] SCREAMING_SNAKE_CASE_ = [4_8, 9_6, 1_9_2, 3_8_4] elif swiftformer_name == "swiftformer_l3": SCREAMING_SNAKE_CASE_ = [4, 4, 1_2, 6] SCREAMING_SNAKE_CASE_ = [6_4, 1_2_8, 3_2_0, 5_1_2] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): SCREAMING_SNAKE_CASE_ = torch.hub.load_state_dict_from_url(__UpperCamelCase , map_location="cpu" , check_hash=__UpperCamelCase ) else: SCREAMING_SNAKE_CASE_ = torch.load(__UpperCamelCase , map_location="cpu" ) SCREAMING_SNAKE_CASE_ = checkpoint SCREAMING_SNAKE_CASE_ = create_rename_keys(__UpperCamelCase ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # load HuggingFace model SCREAMING_SNAKE_CASE_ = SwiftFormerForImageClassification(__UpperCamelCase ).eval() hf_model.load_state_dict(__UpperCamelCase ) # prepare test inputs SCREAMING_SNAKE_CASE_ = prepare_img() SCREAMING_SNAKE_CASE_ = ViTImageProcessor.from_pretrained("preprocessor_config" ) SCREAMING_SNAKE_CASE_ = processor(images=__UpperCamelCase , return_tensors="pt" ) # compare outputs from both models SCREAMING_SNAKE_CASE_ = get_expected_output(__UpperCamelCase ) SCREAMING_SNAKE_CASE_ = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 1_0_0_0] ) assert torch.allclose(hf_logits[0, 0:5] , __UpperCamelCase , atol=1E-3 ) Path(__UpperCamelCase ).mkdir(exist_ok=__UpperCamelCase ) print(F'''Saving model {swiftformer_name} to {pytorch_dump_folder_path}''' ) hf_model.save_pretrained(__UpperCamelCase ) if __name__ == "__main__": A : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") A : List[Any] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
356
1
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow if is_tf_available(): import tensorflow as tf from transformers import AutoTokenizer, TFAutoModelForSeqaSeqLM @require_tf @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def _lowerCamelCase ( self ): UpperCamelCase__ = TFAutoModelForSeqaSeqLM.from_pretrained("""google/mt5-small""" ) UpperCamelCase__ = AutoTokenizer.from_pretrained("""google/mt5-small""" ) UpperCamelCase__ = tokenizer("""Hello there""" , return_tensors="""tf""" ).input_ids UpperCamelCase__ = tokenizer("""Hi I am""" , return_tensors="""tf""" ).input_ids UpperCamelCase__ = model(_lowerCamelCase , labels=_lowerCamelCase ).loss UpperCamelCase__ = -tf.math.reduce_mean(_lowerCamelCase ).numpy() UpperCamelCase__ = -21.22_8168 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 2E-4 )
619
"""simple docstring""" from __future__ import annotations import math class lowerCamelCase : '''simple docstring''' def __init__(self , _lowerCamelCase ): """simple docstring""" UpperCAmelCase__ : List[str] = size # approximate the overall size of segment tree with given value UpperCAmelCase__ : Tuple = [0 for i in range(0 , 4 * size )] # create array to store lazy update UpperCAmelCase__ : int = [0 for i in range(0 , 4 * size )] UpperCAmelCase__ : Tuple = [0 for i in range(0 , 4 * size )] # flag for lazy update def _a (self , _lowerCamelCase ): """simple docstring""" return idx * 2 def _a (self , _lowerCamelCase ): """simple docstring""" return idx * 2 + 1 def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if left_element == right_element: UpperCAmelCase__ : Union[str, Any] = a[left_element - 1] else: UpperCAmelCase__ : List[str] = (left_element + right_element) // 2 self.build(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.build(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : int = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if self.flag[idx] is True: UpperCAmelCase__ : Union[str, Any] = self.lazy[idx] UpperCAmelCase__ : Dict = False if left_element != right_element: UpperCAmelCase__ : Optional[Any] = self.lazy[idx] UpperCAmelCase__ : Optional[int] = self.lazy[idx] UpperCAmelCase__ : Tuple = True UpperCAmelCase__ : str = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: UpperCAmelCase__ : Union[str, Any] = val if left_element != right_element: UpperCAmelCase__ : Union[str, Any] = val UpperCAmelCase__ : List[Any] = val UpperCAmelCase__ : Union[str, Any] = True UpperCAmelCase__ : List[Any] = True return True UpperCAmelCase__ : Tuple = (left_element + right_element) // 2 self.update(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) self.update(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : Dict = max( self.segment_tree[self.left(_lowerCamelCase )] , self.segment_tree[self.right(_lowerCamelCase )] ) return True def _a (self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): """simple docstring""" if self.flag[idx] is True: UpperCAmelCase__ : List[Any] = self.lazy[idx] UpperCAmelCase__ : Optional[Any] = False if left_element != right_element: UpperCAmelCase__ : Tuple = self.lazy[idx] UpperCAmelCase__ : Union[str, Any] = self.lazy[idx] UpperCAmelCase__ : List[str] = True UpperCAmelCase__ : str = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] UpperCAmelCase__ : Union[str, Any] = (left_element + right_element) // 2 UpperCAmelCase__ : Tuple = self.query(self.left(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) UpperCAmelCase__ : List[Any] = self.query(self.right(_lowerCamelCase ) , mid + 1 , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return max(_lowerCamelCase , _lowerCamelCase ) def __str__(self ): """simple docstring""" return str([self.query(1 , 1 , self.size , _lowerCamelCase , _lowerCamelCase ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": _A = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] _A = 15 _A = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 1_11) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 2_35) print(segt)
182
0
'''simple docstring''' from manim import * class lowerCamelCase__ ( snake_case_ ): """simple docstring""" def _lowerCamelCase ( self ) -> List[Any]: _A : List[str] = Rectangle(height=0.5 , width=0.5 ) _A : Any = Rectangle(height=0.2_5 , width=0.2_5 ) _A : Dict = Rectangle(height=0.4_6 , width=0.4_6 ).set_stroke(width=0 ) _A : Optional[Any] = [mem.copy() for i in range(6 )] _A : int = [mem.copy() for i in range(6 )] _A : Union[str, Any] = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : Optional[Any] = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : List[str] = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : List[Any] = Text('''CPU''' , font_size=2_4 ) _A : Union[str, Any] = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) cpu.move_to([-2.5, -0.5, 0] ) self.add(UpperCAmelCase__ ) _A : Any = [mem.copy() for i in range(4 )] _A : Optional[Any] = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : str = Text('''GPU''' , font_size=2_4 ) _A : str = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) gpu.move_to([-1, -1, 0] ) self.add(UpperCAmelCase__ ) _A : Any = [mem.copy() for i in range(6 )] _A : Dict = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : Optional[Any] = Text('''Model''' , font_size=2_4 ) _A : Dict = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) model.move_to([3, -1.0, 0] ) self.add(UpperCAmelCase__ ) _A : Optional[Any] = [] _A : List[Any] = [] _A : List[str] = [] for i, rect in enumerate(UpperCAmelCase__ ): rect.set_stroke(UpperCAmelCase__ ) _A : List[Any] = Rectangle(height=0.4_6 / 4 , width=0.4_6 / 3 ).set_stroke(width=0.0 ).set_fill(UpperCAmelCase__ , opacity=0.7 ) if i == 0: cpu_target.next_to(cpu_left_col_base[0].get_corner(DOWN + LEFT ) , buff=0.0_2 , direction=UpperCAmelCase__ ) cpu_target.set_x(cpu_target.get_x() + 0.1 ) elif i == 3: cpu_target.next_to(model_cpu_arr[0] , direction=UpperCAmelCase__ , buff=0.0 ) else: cpu_target.next_to(model_cpu_arr[i - 1] , direction=UpperCAmelCase__ , buff=0.0 ) self.add(UpperCAmelCase__ ) model_cpu_arr.append(UpperCAmelCase__ ) self.add(*UpperCAmelCase__ , *UpperCAmelCase__ , *UpperCAmelCase__ ) _A : Dict = [mem.copy() for i in range(6 )] _A : Any = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : List[Any] = Text('''Loaded Checkpoint''' , font_size=2_4 ) _A : Dict = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) checkpoint.move_to([3, 0.5, 0] ) self.add(UpperCAmelCase__ ) _A : Optional[int] = [] _A : Optional[int] = [] for i, rect in enumerate(UpperCAmelCase__ ): _A : Tuple = fill.copy().set_fill(UpperCAmelCase__ , opacity=0.7 ) target.move_to(UpperCAmelCase__ ) ckpt_arr.append(UpperCAmelCase__ ) _A : Optional[int] = target.copy() if i < 5: cpu_target.move_to(cpu_left_col_base[i + 1] ) else: cpu_target.move_to(cpu_right_col_base[i - 5] ) ckpt_cpu_arr.append(UpperCAmelCase__ ) self.add(*UpperCAmelCase__ , *UpperCAmelCase__ ) _A : List[Any] = Square(side_length=2.2 ) key.move_to([-5, 2, 0] ) _A : Union[str, Any] = MarkupText( F"""<b>Key:</b>\n\n<span fgcolor='{YELLOW}'>●</span> Empty Model""" , font_size=1_8 , ) key_text.move_to([-5, 2.4, 0] ) self.add(UpperCAmelCase__ , UpperCAmelCase__ ) _A : Union[str, Any] = MarkupText( F"""<span fgcolor='{BLUE}'>●</span> Checkpoint""" , font_size=1_8 , ) blue_text.next_to(UpperCAmelCase__ , DOWN * 2.4 , aligned_edge=key_text.get_left() ) self.add(UpperCAmelCase__ ) _A : List[Any] = MarkupText( F"""Based on the passed in configuration, weights are stored in\na variety of np.memmaps on disk or to a particular device.""" , font_size=2_4 , ) step_a.move_to([2, 2, 0] ) _A : Optional[int] = [meta_mem.copy() for i in range(6 )] _A : Optional[int] = [meta_mem.copy() for i in range(6 )] _A : str = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : Optional[Any] = VGroup(*UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : Optional[int] = VGroup(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0 ) _A : Any = Text('''Disk''' , font_size=2_4 ) _A : str = Group(UpperCAmelCase__ , UpperCAmelCase__ ).arrange(UpperCAmelCase__ , buff=0.5 , aligned_edge=UpperCAmelCase__ ) disk.move_to([-4.0, -1.2_5, 0] ) self.play(Write(UpperCAmelCase__ , run_time=3 ) , Write(UpperCAmelCase__ , run_time=1 ) , Create(UpperCAmelCase__ , run_time=1 ) ) _A : Union[str, Any] = [] for i, rect in enumerate(UpperCAmelCase__ ): _A : Any = rect.copy() target.generate_target() target.target.move_to(disk_left_col_base[i] ).scale(0.5 ) animations.append(MoveToTarget(UpperCAmelCase__ , run_time=1.5 ) ) self.play(*UpperCAmelCase__ ) self.play(FadeOut(UpperCAmelCase__ ) ) _A : List[str] = MarkupText(F"""Then, the checkpoint is removed from memory\nthrough garbage collection.""" , font_size=2_4 ) step_a.move_to([2, 2, 0] ) self.play(Write(UpperCAmelCase__ , run_time=3 ) ) self.play( FadeOut(UpperCAmelCase__ , UpperCAmelCase__ , *UpperCAmelCase__ , *UpperCAmelCase__ ) , ) self.wait()
417
'''simple docstring''' from __future__ import annotations import matplotlib.pyplot as plt # type: ignore import numpy # initial triangle of Koch snowflake __UpperCamelCase : Any = numpy.array([0, 0]) __UpperCamelCase : Optional[int] = numpy.array([0.5, 0.8_660_254]) __UpperCamelCase : int = numpy.array([1, 0]) __UpperCamelCase : Dict = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1] def lowercase ( lowerCAmelCase : list[numpy.ndarray] , lowerCAmelCase : int): """simple docstring""" _A : str = initial_vectors for _ in range(lowerCAmelCase): _A : Any = iteration_step(lowerCAmelCase) return vectors def lowercase ( lowerCAmelCase : list[numpy.ndarray]): """simple docstring""" _A : Any = [] for i, start_vector in enumerate(vectors[:-1]): _A : List[Any] = vectors[i + 1] new_vectors.append(lowerCAmelCase) _A : Optional[Any] = end_vector - start_vector new_vectors.append(start_vector + difference_vector / 3) new_vectors.append( start_vector + difference_vector / 3 + rotate(difference_vector / 3 , 60)) new_vectors.append(start_vector + difference_vector * 2 / 3) new_vectors.append(vectors[-1]) return new_vectors def lowercase ( lowerCAmelCase : numpy.ndarray , lowerCAmelCase : float): """simple docstring""" _A : Any = numpy.radians(lowerCAmelCase) _A , _A : str = numpy.cos(lowerCAmelCase), numpy.sin(lowerCAmelCase) _A : Dict = numpy.array(((c, -s), (s, c))) return numpy.dot(lowerCAmelCase , lowerCAmelCase) def lowercase ( lowerCAmelCase : list[numpy.ndarray]): """simple docstring""" _A : Tuple = plt.gca() axes.set_aspect('''equal''') # matplotlib.pyplot.plot takes a list of all x-coordinates and a list of all # y-coordinates as inputs, which are constructed from the vector-list using # zip() _A , _A : Any = zip(*lowerCAmelCase) plt.plot(lowerCAmelCase , lowerCAmelCase) plt.show() if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase : Optional[int] = iterate(INITIAL_VECTORS, 5) plot(processed_vectors)
417
1
from pathlib import Path from typing import List from transformers import is_torch_available, is_vision_available from transformers.testing_utils import get_tests_dir, is_tool_test from transformers.tools.agent_types import AGENT_TYPE_MAPPING, AgentAudio, AgentImage, AgentText if is_torch_available(): import torch if is_vision_available(): from PIL import Image a_ = ['text', 'image', 'audio'] def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[str] = [] for input_type in input_types: if input_type == "text": inputs.append("Text input") elif input_type == "image": inputs.append( Image.open(Path(get_tests_dir("fixtures/tests_samples/COCO")) / "000000039769.png").resize((512, 512))) elif input_type == "audio": inputs.append(torch.ones(3000)) elif isinstance(_a , _a): inputs.append(create_inputs(_a)) else: raise ValueError(f"Invalid type requested: {input_type}") return inputs def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : List[Any] = [] for output in outputs: if isinstance(_a , (str, AgentText)): output_types.append("text") elif isinstance(_a , (Image.Image, AgentImage)): output_types.append("image") elif isinstance(_a , (torch.Tensor, AgentAudio)): output_types.append("audio") else: raise ValueError(f"Invalid output: {output}") return output_types @is_tool_test class _UpperCamelCase : '''simple docstring''' def __UpperCamelCase ( self : Dict ) -> List[Any]: """simple docstring""" self.assertTrue(hasattr(self.tool , "inputs" ) ) self.assertTrue(hasattr(self.tool , "outputs" ) ) SCREAMING_SNAKE_CASE : List[str] = self.tool.inputs for _input in inputs: if isinstance(_input , a ): for __input in _input: self.assertTrue(__input in authorized_types ) else: self.assertTrue(_input in authorized_types ) SCREAMING_SNAKE_CASE : Optional[Any] = self.tool.outputs for _output in outputs: self.assertTrue(_output in authorized_types ) def __UpperCamelCase ( self : List[str] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : Dict = self.tool(*a ) # There is a single output if len(self.tool.outputs ) == 1: SCREAMING_SNAKE_CASE : Union[str, Any] = [outputs] self.assertListEqual(output_types(a ) , self.tool.outputs ) def __UpperCamelCase ( self : List[str] ) -> int: """simple docstring""" self.assertTrue(hasattr(self.tool , "description" ) ) self.assertTrue(hasattr(self.tool , "default_checkpoint" ) ) self.assertTrue(self.tool.description.startswith("This is a tool that" ) ) def __UpperCamelCase ( self : str ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : Any = self.tool(*a ) if not isinstance(a , a ): SCREAMING_SNAKE_CASE : Dict = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) ) for output, output_type in zip(a , self.tool.outputs ): SCREAMING_SNAKE_CASE : Any = AGENT_TYPE_MAPPING[output_type] self.assertTrue(isinstance(a , a ) ) def __UpperCamelCase ( self : List[str] ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = create_inputs(self.tool.inputs ) SCREAMING_SNAKE_CASE : List[Any] = [] for _input, input_type in zip(a , self.tool.inputs ): if isinstance(a , a ): _inputs.append([AGENT_TYPE_MAPPING[_input_type](_input ) for _input_type in input_type] ) else: _inputs.append(AGENT_TYPE_MAPPING[input_type](_input ) ) # Should not raise an error SCREAMING_SNAKE_CASE : Tuple = self.tool(*a ) if not isinstance(a , a ): SCREAMING_SNAKE_CASE : List[str] = [outputs] self.assertEqual(len(a ) , len(self.tool.outputs ) )
25
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCamelCase__ ( _a): return getitem, k def lowerCamelCase__ ( _a , _a): return setitem, k, v def lowerCamelCase__ ( _a): return delitem, k def lowerCamelCase__ ( _a , _a , *_a): try: return fun(_a , *_a), None except Exception as e: return None, e a_ = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) a_ = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] a_ = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] a_ = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] a_ = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( "operations" , ( pytest.param(_add_items , id="add items"), pytest.param(_overwrite_items , id="overwrite items"), pytest.param(_delete_items , id="delete items"), pytest.param(_access_absent_items , id="access absent items"), pytest.param(_add_with_resize_up , id="add with resize up"), pytest.param(_add_with_resize_down , id="add with resize down"), ) , ) def lowerCamelCase__ ( _a): SCREAMING_SNAKE_CASE : Dict = HashMap(initial_block_size=4) SCREAMING_SNAKE_CASE : List[str] = {} for _, (fun, *args) in enumerate(_a): SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : Union[str, Any] = _run_operation(_a , _a , *_a) SCREAMING_SNAKE_CASE ,SCREAMING_SNAKE_CASE : List[Any] = _run_operation(_a , _a , *_a) assert my_res == py_res assert str(_a) == str(_a) assert set(_a) == set(_a) assert len(_a) == len(_a) assert set(my.items()) == set(py.items()) def lowerCamelCase__ ( ): def is_public(_a) -> bool: return not name.startswith("_") SCREAMING_SNAKE_CASE : List[str] = {name for name in dir({}) if is_public(_a)} SCREAMING_SNAKE_CASE : Union[str, Any] = {name for name in dir(HashMap()) if is_public(_a)} assert dict_public_names > hash_public_names
25
1
from __future__ import annotations __lowerCamelCase : List[Any] = { '''A''': ['''B''', '''C''', '''E'''], '''B''': ['''A''', '''D''', '''E'''], '''C''': ['''A''', '''F''', '''G'''], '''D''': ['''B'''], '''E''': ['''A''', '''B''', '''D'''], '''F''': ['''C'''], '''G''': ['''C'''], } class lowerCamelCase : '''simple docstring''' def __init__( self : List[Any] , lowerCamelCase_ : dict[str, list[str]] , lowerCamelCase_ : str ) -> Dict: __magic_name__ : List[Any] = graph # mapping node to its parent in resulting breadth first tree __magic_name__ : List[Any] = {} __magic_name__ : Dict = source_vertex def UpperCAmelCase__ ( self : Tuple ) -> List[str]: __magic_name__ : Dict = {self.source_vertex} __magic_name__ : Optional[int] = None __magic_name__ : Any = [self.source_vertex] # first in first out queue while queue: __magic_name__ : List[Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_snake_case ) __magic_name__ : Tuple = vertex queue.append(_snake_case ) def UpperCAmelCase__ ( self : str , lowerCamelCase_ : str ) -> Dict: if target_vertex == self.source_vertex: return self.source_vertex __magic_name__ : Union[str, Any] = self.parent.get(_snake_case ) if target_vertex_parent is None: __magic_name__ : Tuple = ( F'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(_snake_case ) return self.shortest_path(_snake_case ) + F'''->{target_vertex}''' if __name__ == "__main__": __lowerCamelCase : Optional[int] = Graph(graph, '''G''') g.breath_first_search() print(g.shortest_path('''D''')) print(g.shortest_path('''G''')) print(g.shortest_path('''Foo'''))
708
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : List[str] = { '''configuration_roberta_prelayernorm''': [ '''ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaPreLayerNormConfig''', '''RobertaPreLayerNormOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Dict = [ '''ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaPreLayerNormForCausalLM''', '''RobertaPreLayerNormForMaskedLM''', '''RobertaPreLayerNormForMultipleChoice''', '''RobertaPreLayerNormForQuestionAnswering''', '''RobertaPreLayerNormForSequenceClassification''', '''RobertaPreLayerNormForTokenClassification''', '''RobertaPreLayerNormModel''', '''RobertaPreLayerNormPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaPreLayerNormForCausalLM''', '''TFRobertaPreLayerNormForMaskedLM''', '''TFRobertaPreLayerNormForMultipleChoice''', '''TFRobertaPreLayerNormForQuestionAnswering''', '''TFRobertaPreLayerNormForSequenceClassification''', '''TFRobertaPreLayerNormForTokenClassification''', '''TFRobertaPreLayerNormMainLayer''', '''TFRobertaPreLayerNormModel''', '''TFRobertaPreLayerNormPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[Any] = [ '''FlaxRobertaPreLayerNormForCausalLM''', '''FlaxRobertaPreLayerNormForMaskedLM''', '''FlaxRobertaPreLayerNormForMultipleChoice''', '''FlaxRobertaPreLayerNormForQuestionAnswering''', '''FlaxRobertaPreLayerNormForSequenceClassification''', '''FlaxRobertaPreLayerNormForTokenClassification''', '''FlaxRobertaPreLayerNormModel''', '''FlaxRobertaPreLayerNormPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys __lowerCamelCase : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
501
0
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class A: """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__=13 , SCREAMING_SNAKE_CASE__=30 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=3 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=5 , SCREAMING_SNAKE_CASE__=4 , SCREAMING_SNAKE_CASE__=37 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0.0_2 , SCREAMING_SNAKE_CASE__=None , SCREAMING_SNAKE_CASE__=2 , ) -> List[str]: """simple docstring""" _UpperCamelCase :Dict = parent _UpperCamelCase :Any = batch_size _UpperCamelCase :str = image_size _UpperCamelCase :int = patch_size _UpperCamelCase :int = num_channels _UpperCamelCase :int = is_training _UpperCamelCase :List[str] = use_labels _UpperCamelCase :int = hidden_size _UpperCamelCase :Tuple = num_hidden_layers _UpperCamelCase :Optional[int] = num_attention_heads _UpperCamelCase :Optional[int] = intermediate_size _UpperCamelCase :Tuple = hidden_act _UpperCamelCase :int = hidden_dropout_prob _UpperCamelCase :int = attention_probs_dropout_prob _UpperCamelCase :Any = type_sequence_label_size _UpperCamelCase :List[str] = initializer_range _UpperCamelCase :Optional[Any] = scope _UpperCamelCase :Union[str, Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCamelCase :Union[str, Any] = (image_size // patch_size) ** 2 _UpperCamelCase :List[str] = num_patches + 1 def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCamelCase :str = None if self.use_labels: _UpperCamelCase :Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCamelCase :List[Any] = self.get_config() return config, pixel_values, labels def _UpperCamelCase( self ) -> List[str]: """simple docstring""" return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=SCREAMING_SNAKE_CASE__ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> List[Any]: """simple docstring""" _UpperCamelCase :Any = ViTModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() _UpperCamelCase :int = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" _UpperCamelCase :Union[str, Any] = ViTForMaskedImageModeling(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() _UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images _UpperCamelCase :Any = 1 _UpperCamelCase :List[Any] = ViTForMaskedImageModeling(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() _UpperCamelCase :Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase :str = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _UpperCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) -> Dict: """simple docstring""" _UpperCamelCase :str = self.type_sequence_label_size _UpperCamelCase :str = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() _UpperCamelCase :Optional[int] = model(SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCamelCase :str = 1 _UpperCamelCase :List[str] = ViTForImageClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() _UpperCamelCase :List[str] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCamelCase :str = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Any = self.prepare_config_and_inputs() ( ( _UpperCamelCase ) , ( _UpperCamelCase ) , ( _UpperCamelCase ) , ) :Dict = config_and_inputs _UpperCamelCase :Optional[Any] = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): """simple docstring""" A = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) A = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) A = True A = False A = False A = False def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :int = ViTModelTester(self ) _UpperCamelCase :Tuple = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , has_text_modality=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase( self ) -> List[Any]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''' ) def _UpperCamelCase( self ) -> Any: """simple docstring""" pass def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase , _UpperCamelCase :str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase :Optional[int] = model_class(SCREAMING_SNAKE_CASE__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _UpperCamelCase :Union[str, Any] = model.get_output_embeddings() self.assertTrue(x is None or isinstance(SCREAMING_SNAKE_CASE__ , nn.Linear ) ) def _UpperCamelCase( self ) -> Any: """simple docstring""" _UpperCamelCase , _UpperCamelCase :List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCamelCase :Dict = model_class(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Union[str, Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCamelCase :Optional[int] = [*signature.parameters.keys()] _UpperCamelCase :Any = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self ) -> List[str]: """simple docstring""" _UpperCamelCase :Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE__ ) @slow def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCamelCase :List[Any] = ViTModel.from_pretrained(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ ) def A_ ( ) -> Optional[int]: _UpperCamelCase :int = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A( unittest.TestCase ): """simple docstring""" @cached_property def _UpperCamelCase( self ) -> str: """simple docstring""" return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''' ) if is_vision_available() else None @slow def _UpperCamelCase( self ) -> Any: """simple docstring""" _UpperCamelCase :List[str] = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''' ).to(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Optional[Any] = self.default_image_processor _UpperCamelCase :str = prepare_img() _UpperCamelCase :List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ).to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): _UpperCamelCase :str = model(**SCREAMING_SNAKE_CASE__ ) # verify the logits _UpperCamelCase :Dict = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :Dict = torch.tensor([-0.2_7_4_4, 0.8_2_1_5, -0.0_8_3_6] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow def _UpperCamelCase( self ) -> str: """simple docstring""" _UpperCamelCase :Tuple = ViTModel.from_pretrained('''facebook/dino-vits8''' ).to(SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :str = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=4_80 ) _UpperCamelCase :List[str] = prepare_img() _UpperCamelCase :List[Any] = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) _UpperCamelCase :List[Any] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass with torch.no_grad(): _UpperCamelCase :Tuple = model(SCREAMING_SNAKE_CASE__ , interpolate_pos_encoding=SCREAMING_SNAKE_CASE__ ) # verify the logits _UpperCamelCase :Optional[Any] = torch.Size((1, 36_01, 3_84) ) self.assertEqual(outputs.last_hidden_state.shape , SCREAMING_SNAKE_CASE__ ) _UpperCamelCase :List[Any] = torch.tensor( [[4.2_3_4_0, 4.3_9_0_6, -6.6_6_9_2], [4.5_4_6_3, 1.8_9_2_8, -6.7_2_5_7], [4.4_4_2_9, 0.8_4_9_6, -5.8_5_8_5]] ).to(SCREAMING_SNAKE_CASE__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1E-4 ) ) @slow @require_accelerate @require_torch_gpu def _UpperCamelCase( self ) -> Dict: """simple docstring""" _UpperCamelCase :List[Any] = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''' ) _UpperCamelCase :Tuple = self.default_image_processor _UpperCamelCase :Union[str, Any] = prepare_img() _UpperCamelCase :Tuple = image_processor(images=SCREAMING_SNAKE_CASE__ , return_tensors='''pt''' ) _UpperCamelCase :List[Any] = inputs.pixel_values.to(SCREAMING_SNAKE_CASE__ ) # forward pass to make sure inference works in fp16 with torch.no_grad(): _UpperCamelCase :Optional[Any] = model(SCREAMING_SNAKE_CASE__ )
355
"""simple docstring""" import os import sys UpperCamelCase__ :Union[str, Any] = os.path.join(os.path.dirname(__file__), """src""") sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) UpperCamelCase__ :List[Any] = [ """torch""", """numpy""", """tokenizers""", """filelock""", """requests""", """tqdm""", """regex""", """sentencepiece""", """sacremoses""", """importlib_metadata""", """huggingface_hub""", ] @add_start_docstrings(AutoConfig.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> int: return AutoConfig.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoTokenizer.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> int: return AutoTokenizer.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModel.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModel.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForCausalLM.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForMaskedLM.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Dict: return AutoModelForSequenceClassification.from_pretrained(*snake_case__ , **snake_case__ ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def A_ ( *snake_case__ , **snake_case__ ) -> Union[str, Any]: return AutoModelForQuestionAnswering.from_pretrained(*snake_case__ , **snake_case__ )
355
1
'''simple docstring''' import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / 'utils')) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class a_ ( unittest.TestCase ): def A__ ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = 0 def A__ ( self ) -> Union[str, Any]: """simple docstring""" UpperCamelCase = AutoImageProcessor.from_pretrained("""openai/clip-vit-base-patch32""" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """preprocessor_config.json""" UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) ) UpperCamelCase = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Tuple: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """preprocessor_config.json""" UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) ) UpperCamelCase = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Any: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = CLIPConfig() # Create a dummy config file with image_proceesor_type UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """preprocessor_config.json""" UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) ) # remove image_processor_type to make sure config.json alone is enough to load image processor locally UpperCamelCase = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ).to_dict() config_dict.pop("""image_processor_type""" ) UpperCamelCase = CLIPImageProcessor(**_SCREAMING_SNAKE_CASE ) # save in new folder model_config.save_pretrained(_SCREAMING_SNAKE_CASE ) config.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) # make sure private variable is not incorrectly saved UpperCamelCase = json.loads(config.to_json_string() ) self.assertTrue("""_processor_class""" not in dict_as_saved ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> str: """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """preprocessor_config.json""" json.dump( {"""image_processor_type""": """CLIPImageProcessor""", """processor_class""": """CLIPProcessor"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) , ) UpperCamelCase = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def A__ ( self ) -> Dict: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """clip-base is not a local folder and is not a valid model identifier""" ): UpperCamelCase = AutoImageProcessor.from_pretrained("""clip-base""" ) def A__ ( self ) -> Dict: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , R"""aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)""" ): UpperCamelCase = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE , revision="""aaaaaa""" ) def A__ ( self ) -> int: """simple docstring""" with self.assertRaisesRegex( _SCREAMING_SNAKE_CASE , """hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.""" , ): UpperCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/config-no-model""" ) def A__ ( self ) -> str: """simple docstring""" with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) # If remote code is disabled, we can't load this config. with self.assertRaises(_SCREAMING_SNAKE_CASE ): UpperCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) UpperCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(reloaded_image_processor.__class__.__name__ , """NewImageProcessor""" ) def A__ ( self ) -> Tuple: """simple docstring""" try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(_SCREAMING_SNAKE_CASE ): AutoImageProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """preprocessor_config.json""" UpperCamelCase = Path(_SCREAMING_SNAKE_CASE ) / """config.json""" json.dump( {"""feature_extractor_type""": """CLIPFeatureExtractor""", """processor_class""": """CLIPProcessor"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) , ) json.dump({"""model_type""": """clip"""} , open(_SCREAMING_SNAKE_CASE , """w""" ) ) UpperCamelCase = CustomImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(_SCREAMING_SNAKE_CASE ) UpperCamelCase = AutoImageProcessor.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def A__ ( self ) -> Union[str, Any]: """simple docstring""" class a_ ( lowerCamelCase ): lowercase = True try: AutoConfig.register("""custom""" , _SCREAMING_SNAKE_CASE ) AutoImageProcessor.register(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) # If remote code is not set, the default is to use local UpperCamelCase = AutoImageProcessor.from_pretrained("""hf-internal-testing/test_dynamic_image_processor""" ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote code is disabled, we load the local one. UpperCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(image_processor.is_local ) # If remote is enabled, we load from the Hub UpperCamelCase = AutoImageProcessor.from_pretrained( """hf-internal-testing/test_dynamic_image_processor""" , trust_remote_code=_SCREAMING_SNAKE_CASE ) self.assertEqual(image_processor.__class__.__name__ , """NewImageProcessor""" ) self.assertTrue(not hasattr(_SCREAMING_SNAKE_CASE , """is_local""" ) ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
708
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import _LazyModule SCREAMING_SNAKE_CASE__ = {'tokenization_wav2vec2_phoneme': ['Wav2Vec2PhonemeCTCTokenizer']} if TYPE_CHECKING: from .tokenization_wavaveca_phoneme import WavaVecaPhonemeCTCTokenizer else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
35
0
import argparse import os import torch from transformers import FlavaConfig, FlavaForPreTraining from transformers.models.flava.convert_dalle_to_flava_codebook import convert_dalle_checkpoint def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): # encoder.embeddings are double copied in original FLAVA return sum(param.float().sum() if 'encoder.embeddings' not in key else 0 for key, param in state_dict.items() ) def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ): lowerCamelCase_ : Optional[int] = {} for key, value in state_dict.items(): if "text_encoder.embeddings" in key or "image_encoder.embeddings" in key: continue lowerCamelCase_ : Optional[Any] = key.replace('heads.cmd.mim_head.cls.predictions' ,'mmm_image_head' ) lowerCamelCase_ : List[Any] = key.replace('heads.cmd.mlm_head.cls.predictions' ,'mmm_text_head' ) lowerCamelCase_ : List[str] = key.replace('heads.cmd.itm_head.cls' ,'itm_head' ) lowerCamelCase_ : List[Any] = key.replace('heads.cmd.itm_head.pooler' ,'itm_head.pooler' ) lowerCamelCase_ : List[str] = key.replace('heads.cmd.clip_head.logit_scale' ,'flava.logit_scale' ) lowerCamelCase_ : List[Any] = key.replace('heads.fairseq_mlm.cls.predictions' ,'mlm_head' ) lowerCamelCase_ : str = key.replace('heads.imagenet.mim_head.cls.predictions' ,'mim_head' ) lowerCamelCase_ : Any = key.replace('mm_text_projection' ,'flava.text_to_mm_projection' ) lowerCamelCase_ : List[Any] = key.replace('mm_image_projection' ,'flava.image_to_mm_projection' ) lowerCamelCase_ : List[Any] = key.replace('image_encoder.module' ,'flava.image_model' ) lowerCamelCase_ : Dict = key.replace('text_encoder.module' ,'flava.text_model' ) lowerCamelCase_ : str = key.replace('mm_encoder.module.encoder.cls_token' ,'flava.multimodal_model.cls_token' ) lowerCamelCase_ : str = key.replace('mm_encoder.module' ,'flava.multimodal_model' ) lowerCamelCase_ : int = key.replace('text_projection' ,'flava.text_projection' ) lowerCamelCase_ : str = key.replace('image_projection' ,'flava.image_projection' ) lowerCamelCase_ : str = value.float() for key, value in codebook_state_dict.items(): lowerCamelCase_ : Optional[Any] = value return upgrade @torch.no_grad() def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__=None ): if config_path is not None: lowerCamelCase_ : List[str] = FlavaConfig.from_pretrained(lowerCAmelCase__ ) else: lowerCamelCase_ : Optional[int] = FlavaConfig() lowerCamelCase_ : Union[str, Any] = FlavaForPreTraining(lowerCAmelCase__ ).eval() lowerCamelCase_ : List[Any] = convert_dalle_checkpoint(lowerCAmelCase__ ,lowerCAmelCase__ ,save_checkpoint=lowerCAmelCase__ ) if os.path.exists(lowerCAmelCase__ ): lowerCamelCase_ : Any = torch.load(lowerCAmelCase__ ,map_location='cpu' ) else: lowerCamelCase_ : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCAmelCase__ ,map_location='cpu' ) lowerCamelCase_ : List[str] = upgrade_state_dict(lowerCAmelCase__ ,lowerCAmelCase__ ) hf_model.load_state_dict(lowerCAmelCase__ ) lowerCamelCase_ : Union[str, Any] = hf_model.state_dict() lowerCamelCase_ : Dict = count_parameters(lowerCAmelCase__ ) lowerCamelCase_ : Dict = count_parameters(lowerCAmelCase__ ) + count_parameters(lowerCAmelCase__ ) assert torch.allclose(lowerCAmelCase__ ,lowerCAmelCase__ ,atol=1e-3 ) hf_model.save_pretrained(lowerCAmelCase__ ) if __name__ == "__main__": _lowercase : Dict =argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to flava checkpoint""") parser.add_argument("""--codebook_path""", default=None, type=str, help="""Path to flava codebook checkpoint""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") _lowercase : Optional[Any] =parser.parse_args() convert_flava_checkpoint(args.checkpoint_path, args.codebook_path, args.pytorch_dump_folder_path, args.config_path)
364
def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Union[str, Any] = [] lowerCamelCase_ : Tuple = [] lowerCamelCase_ : Dict = { '^': 3, '*': 2, '/': 2, '%': 2, '+': 1, '-': 1, } # Priority of each operator lowerCamelCase_ : Optional[int] = len(lowerCAmelCase__ ) if (len(lowerCAmelCase__ ) > 7) else 7 # Print table header for output print( 'Symbol'.center(8 ) ,'Stack'.center(lowerCAmelCase__ ) ,'Postfix'.center(lowerCAmelCase__ ) ,sep=' | ' ,) print('-' * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(lowerCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(lowerCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(lowerCAmelCase__ ) == 0: stack.append(lowerCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(lowerCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(lowerCAmelCase__ ) # push x to stack print( x.center(8 ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,sep=' | ' ,) # Output in tabular format while len(lowerCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( ' '.center(8 ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,(''.join(lowerCAmelCase__ )).ljust(lowerCAmelCase__ ) ,sep=' | ' ,) # Output in tabular format return "".join(lowerCAmelCase__ ) # return Postfix as str def _SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): lowerCamelCase_ : Dict = list(infix[::-1] ) # reverse the infix equation for i in range(len(lowerCAmelCase__ ) ): if infix[i] == "(": lowerCamelCase_ : str = ')' # change "(" to ")" elif infix[i] == ")": lowerCamelCase_ : Optional[Any] = '(' # change ")" to "(" return (infix_2_postfix(''.join(lowerCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": _lowercase : int =input("""\nEnter an Infix Equation = """) # Input an Infix equation _lowercase : Optional[Any] ="""""".join(Infix.split()) # Remove spaces from the input print("""\n\t""", Infix, """(Infix) -> """, infix_2_prefix(Infix), """(Prefix)""")
364
1
import os import re import sys import traceback import warnings from pathlib import Path from typing import Dict, Optional, Union from uuid import uuida from huggingface_hub import HfFolder, ModelCard, ModelCardData, hf_hub_download, whoami from huggingface_hub.file_download import REGEX_COMMIT_HASH from huggingface_hub.utils import ( EntryNotFoundError, RepositoryNotFoundError, RevisionNotFoundError, is_jinja_available, ) from packaging import version from requests import HTTPError from .. import __version__ from .constants import ( DEPRECATED_REVISION_ARGS, DIFFUSERS_CACHE, HUGGINGFACE_CO_RESOLVE_ENDPOINT, SAFETENSORS_WEIGHTS_NAME, WEIGHTS_NAME, ) from .import_utils import ( ENV_VARS_TRUE_VALUES, _flax_version, _jax_version, _onnxruntime_version, _torch_version, is_flax_available, is_onnx_available, is_torch_available, ) from .logging import get_logger UpperCAmelCase_ : Dict = get_logger(__name__) UpperCAmelCase_ : Any = Path(__file__).parent / """model_card_template.md""" UpperCAmelCase_ : int = uuida().hex UpperCAmelCase_ : List[str] = os.getenv('HF_HUB_OFFLINE', '').upper() in ENV_VARS_TRUE_VALUES UpperCAmelCase_ : List[Any] = os.getenv('DISABLE_TELEMETRY', '').upper() in ENV_VARS_TRUE_VALUES UpperCAmelCase_ : Tuple = HUGGINGFACE_CO_RESOLVE_ENDPOINT + """/api/telemetry/""" def SCREAMING_SNAKE_CASE_ ( __A : Any = None ) -> str: """simple docstring""" a_ : List[str] = F"""diffusers/{__version__}; python/{sys.version.split()[0]}; session_id/{SESSION_ID}""" if DISABLE_TELEMETRY or HF_HUB_OFFLINE: return ua + "; telemetry/off" if is_torch_available(): ua += F"""; torch/{_torch_version}""" if is_flax_available(): ua += F"""; jax/{_jax_version}""" ua += F"""; flax/{_flax_version}""" if is_onnx_available(): ua += F"""; onnxruntime/{_onnxruntime_version}""" # CI will set this value to True if os.environ.get('DIFFUSERS_IS_CI' , '' ).upper() in ENV_VARS_TRUE_VALUES: ua += "; is_ci/true" if isinstance(__A , __A ): ua += "; " + "; ".join(F"""{k}/{v}""" for k, v in user_agent.items() ) elif isinstance(__A , __A ): ua += "; " + user_agent return ua def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Optional[int] = None , __A : Tuple = None ) -> Union[str, Any]: """simple docstring""" if token is None: a_ : List[Any] = HfFolder.get_token() if organization is None: a_ : int = whoami(__A )['name'] return F"""{username}/{model_id}""" else: return F"""{organization}/{model_id}""" def SCREAMING_SNAKE_CASE_ ( __A : int , __A : List[str] ) -> Any: """simple docstring""" if not is_jinja_available(): raise ValueError( 'Modelcard rendering is based on Jinja templates.' ' Please make sure to have `jinja` installed before using `create_model_card`.' ' To install it, please run `pip install Jinja2`.' ) if hasattr(__A , 'local_rank' ) and args.local_rank not in [-1, 0]: return a_ : Optional[int] = args.hub_token if hasattr(__A , 'hub_token' ) else None a_ : str = get_full_repo_name(__A , token=__A ) a_ : List[str] = ModelCard.from_template( card_data=ModelCardData( # Card metadata object that will be converted to YAML block language='en' , license='apache-2.0' , library_name='diffusers' , tags=[] , datasets=args.dataset_name , metrics=[] , ) , template_path=__A , model_name=__A , repo_name=__A , dataset_name=args.dataset_name if hasattr(__A , 'dataset_name' ) else None , learning_rate=args.learning_rate , train_batch_size=args.train_batch_size , eval_batch_size=args.eval_batch_size , gradient_accumulation_steps=( args.gradient_accumulation_steps if hasattr(__A , 'gradient_accumulation_steps' ) else None ) , adam_betaa=args.adam_betaa if hasattr(__A , 'adam_beta1' ) else None , adam_betaa=args.adam_betaa if hasattr(__A , 'adam_beta2' ) else None , adam_weight_decay=args.adam_weight_decay if hasattr(__A , 'adam_weight_decay' ) else None , adam_epsilon=args.adam_epsilon if hasattr(__A , 'adam_epsilon' ) else None , lr_scheduler=args.lr_scheduler if hasattr(__A , 'lr_scheduler' ) else None , lr_warmup_steps=args.lr_warmup_steps if hasattr(__A , 'lr_warmup_steps' ) else None , ema_inv_gamma=args.ema_inv_gamma if hasattr(__A , 'ema_inv_gamma' ) else None , ema_power=args.ema_power if hasattr(__A , 'ema_power' ) else None , ema_max_decay=args.ema_max_decay if hasattr(__A , 'ema_max_decay' ) else None , mixed_precision=args.mixed_precision , ) a_ : Optional[int] = os.path.join(args.output_dir , 'README.md' ) model_card.save(__A ) def SCREAMING_SNAKE_CASE_ ( __A : List[Any] , __A : Dict = None ) -> str: """simple docstring""" if resolved_file is None or commit_hash is not None: return commit_hash a_ : int = str(Path(__A ).as_posix() ) a_ : Any = re.search(R'snapshots/([^/]+)/' , __A ) if search is None: return None a_ : Dict = search.groups()[0] return commit_hash if REGEX_COMMIT_HASH.match(__A ) else None # Old default cache path, potentially to be migrated. # This logic was more or less taken from `transformers`, with the following differences: # - Diffusers doesn't use custom environment variables to specify the cache path. # - There is no need to migrate the cache format, just move the files to the new location. UpperCAmelCase_ : List[str] = os.path.expanduser( os.getenv('HF_HOME', os.path.join(os.getenv('XDG_CACHE_HOME', '~/.cache'), 'huggingface')) ) UpperCAmelCase_ : Optional[Any] = os.path.join(hf_cache_home, 'diffusers') def SCREAMING_SNAKE_CASE_ ( __A : int = None , __A : Optional[Any] = None ) -> None: """simple docstring""" if new_cache_dir is None: a_ : Optional[Any] = DIFFUSERS_CACHE if old_cache_dir is None: a_ : Tuple = old_diffusers_cache a_ : Any = Path(__A ).expanduser() a_ : Any = Path(__A ).expanduser() for old_blob_path in old_cache_dir.glob('**/blobs/*' ): if old_blob_path.is_file() and not old_blob_path.is_symlink(): a_ : Optional[Any] = new_cache_dir / old_blob_path.relative_to(__A ) new_blob_path.parent.mkdir(parents=__A , exist_ok=__A ) os.replace(__A , __A ) try: os.symlink(__A , __A ) except OSError: logger.warning( 'Could not create symlink between old cache and new cache. If you use an older version of diffusers again, files will be re-downloaded.' ) # At this point, old_cache_dir contains symlinks to the new cache (it can still be used). UpperCAmelCase_ : str = os.path.join(DIFFUSERS_CACHE, 'version_diffusers_cache.txt') if not os.path.isfile(cache_version_file): UpperCAmelCase_ : Any = 0 else: with open(cache_version_file) as f: try: UpperCAmelCase_ : Optional[int] = int(f.read()) except ValueError: UpperCAmelCase_ : Optional[Any] = 0 if cache_version < 1: UpperCAmelCase_ : Union[str, Any] = os.path.isdir(old_diffusers_cache) and len(os.listdir(old_diffusers_cache)) > 0 if old_cache_is_not_empty: logger.warning( 'The cache for model files in Diffusers v0.14.0 has moved to a new location. Moving your ' 'existing cached models. This is a one-time operation, you can interrupt it or run it ' 'later by calling `diffusers.utils.hub_utils.move_cache()`.' ) try: move_cache() except Exception as e: UpperCAmelCase_ : Optional[Any] = """\n""".join(traceback.format_tb(e.__traceback__)) logger.error( F'There was a problem when trying to move your cache:\n\n{trace}\n{e.__class__.__name__}: {e}\n\nPlease ' 'file an issue at https://github.com/huggingface/diffusers/issues/new/choose, copy paste this whole ' 'message and we will do our best to help.' ) if cache_version < 1: try: os.makedirs(DIFFUSERS_CACHE, exist_ok=True) with open(cache_version_file, 'w') as f: f.write('1') except Exception: logger.warning( F'There was a problem when trying to write in your cache folder ({DIFFUSERS_CACHE}). Please, ensure ' 'the directory exists and can be written to.' ) def SCREAMING_SNAKE_CASE_ ( __A : str , __A : Any = None ) -> str: """simple docstring""" if variant is not None: a_ : Dict = weights_name.split('.' ) a_ : int = splits[:-1] + [variant] + splits[-1:] a_ : List[Any] = '.'.join(__A ) return weights_name def SCREAMING_SNAKE_CASE_ ( __A : int , *, __A : str , __A : Union[str, Any] , __A : str , __A : List[Any] , __A : List[str] , __A : Dict , __A : Optional[int] , __A : Any , __A : Tuple , __A : Any , __A : Tuple=None , ) -> Optional[Any]: """simple docstring""" a_ : Optional[Any] = str(__A ) if os.path.isfile(__A ): return pretrained_model_name_or_path elif os.path.isdir(__A ): if os.path.isfile(os.path.join(__A , __A ) ): # Load from a PyTorch checkpoint a_ : Any = os.path.join(__A , __A ) return model_file elif subfolder is not None and os.path.isfile( os.path.join(__A , __A , __A ) ): a_ : Any = os.path.join(__A , __A , __A ) return model_file else: raise EnvironmentError( F"""Error no file named {weights_name} found in directory {pretrained_model_name_or_path}.""" ) else: # 1. First check if deprecated way of loading from branches is used if ( revision in DEPRECATED_REVISION_ARGS and (weights_name == WEIGHTS_NAME or weights_name == SAFETENSORS_WEIGHTS_NAME) and version.parse(version.parse(__A ).base_version ) >= version.parse('0.20.0' ) ): try: a_ : List[Any] = hf_hub_download( __A , filename=_add_variant(__A , __A ) , cache_dir=__A , force_download=__A , proxies=__A , resume_download=__A , local_files_only=__A , use_auth_token=__A , user_agent=__A , subfolder=__A , revision=revision or commit_hash , ) warnings.warn( F"""Loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'` is deprecated. Loading instead from `revision=\'main\'` with `variant={revision}`. Loading model variants via `revision=\'{revision}\'` will be removed in diffusers v1. Please use `variant=\'{revision}\'` instead.""" , __A , ) return model_file except: # noqa: E722 warnings.warn( F"""You are loading the variant {revision} from {pretrained_model_name_or_path} via `revision=\'{revision}\'`. This behavior is deprecated and will be removed in diffusers v1. One should use `variant=\'{revision}\'` instead. However, it appears that {pretrained_model_name_or_path} currently does not have a {_add_variant(__A , __A )} file in the \'main\' branch of {pretrained_model_name_or_path}. \n The Diffusers team and community would be very grateful if you could open an issue: https://github.com/huggingface/diffusers/issues/new with the title \'{pretrained_model_name_or_path} is missing {_add_variant(__A , __A )}\' so that the correct variant file can be added.""" , __A , ) try: # 2. Load model file as usual a_ : List[Any] = hf_hub_download( __A , filename=__A , cache_dir=__A , force_download=__A , proxies=__A , resume_download=__A , local_files_only=__A , use_auth_token=__A , user_agent=__A , subfolder=__A , revision=revision or commit_hash , ) return model_file except RepositoryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} is not a local folder and is not a valid model identifier """ 'listed on \'https://huggingface.co/models\'\nIf this is a private repository, make sure to pass a ' 'token having permission to this repo with `use_auth_token` or log in with `huggingface-cli ' 'login`.' ) except RevisionNotFoundError: raise EnvironmentError( F"""{revision} is not a valid git identifier (branch name, tag name or commit id) that exists for """ 'this model name. Check the model page at ' F"""\'https://huggingface.co/{pretrained_model_name_or_path}\' for available revisions.""" ) except EntryNotFoundError: raise EnvironmentError( F"""{pretrained_model_name_or_path} does not appear to have a file named {weights_name}.""" ) except HTTPError as err: raise EnvironmentError( F"""There was a specific connection error when trying to load {pretrained_model_name_or_path}:\n{err}""" ) except ValueError: raise EnvironmentError( F"""We couldn\'t connect to \'{HUGGINGFACE_CO_RESOLVE_ENDPOINT}\' to load this model, couldn\'t find it""" F""" in the cached files and it looks like {pretrained_model_name_or_path} is not the path to a""" F""" directory containing a file named {weights_name} or""" ' \nCheckout your internet connection or see how to run the library in' ' offline mode at \'https://huggingface.co/docs/diffusers/installation#offline-mode\'.' ) except EnvironmentError: raise EnvironmentError( F"""Can\'t load the model for \'{pretrained_model_name_or_path}\'. If you were trying to load it from """ '\'https://huggingface.co/models\', make sure you don\'t have a local directory with the same name. ' F"""Otherwise, make sure \'{pretrained_model_name_or_path}\' is the correct path to a directory """ F"""containing a file named {weights_name}""" )
720
import random class SCREAMING_SNAKE_CASE__ : @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : str ) -> tuple[list[int], list[int]]: a_ : int = [ord(SCREAMING_SNAKE_CASE__ ) for i in text] a_ : Any = [] a_ : Optional[int] = [] for i in plain: a_ : Tuple = random.randint(1 , 3_0_0 ) a_ : Optional[int] = (i + k) * k cipher.append(SCREAMING_SNAKE_CASE__ ) key.append(SCREAMING_SNAKE_CASE__ ) return cipher, key @staticmethod def SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE__ : list[int] , SCREAMING_SNAKE_CASE__ : list[int] ) -> str: a_ : List[Any] = [] for i in range(len(SCREAMING_SNAKE_CASE__ ) ): a_ : str = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(SCREAMING_SNAKE_CASE__ ) ) return "".join(SCREAMING_SNAKE_CASE__ ) if __name__ == "__main__": UpperCAmelCase_ , UpperCAmelCase_ : Any = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
443
0
from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : str =logging.get_logger(__name__) _UpperCamelCase : int ={ 's-JoL/Open-Llama-V1': 'https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json', } class UpperCAmelCase__ ( __snake_case ): __snake_case : str = "open-llama" def __init__( self ,A__=100000 ,A__=4096 ,A__=11008 ,A__=32 ,A__=32 ,A__="silu" ,A__=2048 ,A__=0.02 ,A__=1E-6 ,A__=True ,A__=0 ,A__=1 ,A__=2 ,A__=False ,A__=True ,A__=0.1 ,A__=0.1 ,A__=True ,A__=True ,A__=None ,**A__ ,): _A : Optional[Any] = vocab_size _A : List[Any] = max_position_embeddings _A : Dict = hidden_size _A : str = intermediate_size _A : Any = num_hidden_layers _A : Tuple = num_attention_heads _A : Union[str, Any] = hidden_act _A : List[str] = initializer_range _A : Optional[int] = rms_norm_eps _A : List[str] = use_cache _A : str = kwargs.pop( '''use_memorry_efficient_attention''' ,A__ ) _A : str = hidden_dropout_prob _A : Dict = attention_dropout_prob _A : Optional[int] = use_stable_embedding _A : Any = shared_input_output_embedding _A : Optional[int] = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=A__ ,bos_token_id=A__ ,eos_token_id=A__ ,tie_word_embeddings=A__ ,**A__ ,) def A__ ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,A__ ) or len(self.rope_scaling ) != 2: raise ValueError( '''`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ''' f"""got {self.rope_scaling}""" ) _A : Tuple = self.rope_scaling.get('''type''' ,A__ ) _A : Tuple = self.rope_scaling.get('''factor''' ,A__ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(A__ ,A__ ) or rope_scaling_factor <= 1.0: raise ValueError(f"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
206
def a__ (__lowercase :int , __lowercase :int ) -> int: return abs(__lowercase ) if a == 0 else greatest_common_divisor(b % a , __lowercase ) def a__ (__lowercase :int , __lowercase :int ) -> int: while y: # --> when y=0 then loop will terminate and return x as final GCD. _A , _A : Union[str, Any] = y, x % y return abs(__lowercase ) def a__ () -> Optional[Any]: try: _A : Optional[Any] = input('''Enter two integers separated by comma (,): ''' ).split(''',''' ) _A : List[Any] = int(nums[0] ) _A : Optional[int] = int(nums[1] ) print( f"""greatest_common_divisor({num_a}, {num_a}) = """ f"""{greatest_common_divisor(__lowercase , __lowercase )}""" ) print(f"""By iterative gcd({num_a}, {num_a}) = {gcd_by_iterative(__lowercase , __lowercase )}""" ) except (IndexError, UnboundLocalError, ValueError): print('''Wrong input''' ) if __name__ == "__main__": main()
206
1
'''simple docstring''' import random import torch from huggingface_hub import HfApi from diffusers import UNetaDModel lowerCamelCase__ = HfApi() lowerCamelCase__ = {} # fmt: off lowerCamelCase__ = torch.tensor([ -0.7_515, -1.6_883, 0.2_420, 0.0_300, 0.6_347, 1.3_433, -1.1_743, -3.7_467, 1.2_342, -2.2_485, 0.4_636, 0.8_076, -0.7_991, 0.3_969, 0.8_498, 0.9_189, -1.8_887, -3.3_522, 0.7_639, 0.2_040, 0.6_271, -2.7_148, -1.6_316, 3.0_839, 0.3_186, 0.2_721, -0.9_759, -1.2_461, 2.6_257, 1.3_557 ]) lowerCamelCase__ = torch.tensor([ -2.3_639, -2.5_344, 0.0_054, -0.6_674, 1.5_990, 1.0_158, 0.3_124, -2.1_436, 1.8_795, -2.5_429, -0.1_566, -0.3_973, 1.2_490, 2.6_447, 1.2_283, -0.5_208, -2.8_154, -3.5_119, 2.3_838, 1.2_033, 1.7_201, -2.1_256, -1.4_576, 2.7_948, 2.4_204, -0.9_752, -1.2_546, 0.8_027, 3.2_758, 3.1_365 ]) lowerCamelCase__ = torch.tensor([ -0.6_531, -0.6_891, -0.3_172, -0.5_375, -0.9_140, -0.5_367, -0.1_175, -0.7_869, -0.3_808, -0.4_513, -0.2_098, -0.0_083, 0.3_183, 0.5_140, 0.2_247, -0.1_304, -0.1_302, -0.2_802, -0.2_084, -0.2_025, -0.4_967, -0.4_873, -0.0_861, 0.6_925, 0.0_250, 0.1_290, -0.1_543, 0.6_316, 1.0_460, 1.4_943 ]) lowerCamelCase__ = torch.tensor([ 0.0_911, 0.1_107, 0.0_182, 0.0_435, -0.0_805, -0.0_608, 0.0_381, 0.2_172, -0.0_280, 0.1_327, -0.0_299, -0.0_255, -0.0_050, -0.1_170, -0.1_046, 0.0_309, 0.1_367, 0.1_728, -0.0_533, -0.0_748, -0.0_534, 0.1_624, 0.0_384, -0.1_805, -0.0_707, 0.0_642, 0.0_220, -0.0_134, -0.1_333, -0.1_505 ]) lowerCamelCase__ = torch.tensor([ 0.1_321, 0.1_337, 0.0_440, 0.0_622, -0.0_591, -0.0_370, 0.0_503, 0.2_133, -0.0_177, 0.1_415, -0.0_116, -0.0_112, 0.0_044, -0.0_980, -0.0_789, 0.0_395, 0.1_502, 0.1_785, -0.0_488, -0.0_514, -0.0_404, 0.1_539, 0.0_454, -0.1_559, -0.0_665, 0.0_659, 0.0_383, -0.0_005, -0.1_266, -0.1_386 ]) lowerCamelCase__ = torch.tensor([ 0.1_154, 0.1_218, 0.0_307, 0.0_526, -0.0_711, -0.0_541, 0.0_366, 0.2_078, -0.0_267, 0.1_317, -0.0_226, -0.0_193, -0.0_014, -0.1_055, -0.0_902, 0.0_330, 0.1_391, 0.1_709, -0.0_562, -0.0_693, -0.0_560, 0.1_482, 0.0_381, -0.1_683, -0.0_681, 0.0_661, 0.0_331, -0.0_046, -0.1_268, -0.1_431 ]) lowerCamelCase__ = torch.tensor([ 0.1_192, 0.1_240, 0.0_414, 0.0_606, -0.0_557, -0.0_412, 0.0_430, 0.2_042, -0.0_200, 0.1_385, -0.0_115, -0.0_132, 0.0_017, -0.0_965, -0.0_802, 0.0_398, 0.1_433, 0.1_747, -0.0_458, -0.0_533, -0.0_407, 0.1_545, 0.0_419, -0.1_574, -0.0_645, 0.0_626, 0.0_341, -0.0_010, -0.1_199, -0.1_390 ]) lowerCamelCase__ = torch.tensor([ 0.1_075, 0.1_074, 0.0_205, 0.0_431, -0.0_774, -0.0_607, 0.0_298, 0.2_042, -0.0_320, 0.1_267, -0.0_281, -0.0_250, -0.0_064, -0.1_091, -0.0_946, 0.0_290, 0.1_328, 0.1_650, -0.0_580, -0.0_738, -0.0_586, 0.1_440, 0.0_337, -0.1_746, -0.0_712, 0.0_605, 0.0_250, -0.0_099, -0.1_316, -0.1_473 ]) lowerCamelCase__ = torch.tensor([ -1.4_572, -2.0_481, -0.0_414, -0.6_005, 1.4_136, 0.5_848, 0.4_028, -2.7_330, 1.2_212, -2.1_228, 0.2_155, 0.4_039, 0.7_662, 2.0_535, 0.7_477, -0.3_243, -2.1_758, -2.7_648, 1.6_947, 0.7_026, 1.2_338, -1.6_078, -0.8_682, 2.2_810, 1.8_574, -0.5_718, -0.5_586, -0.0_186, 2.3_415, 2.1_251]) lowerCamelCase__ = torch.tensor([ -1.3_690, -1.9_720, -0.4_090, -0.6_966, 1.4_660, 0.9_938, -0.1_385, -2.7_324, 0.7_736, -1.8_917, 0.2_923, 0.4_293, 0.1_693, 1.4_112, 1.1_887, -0.3_181, -2.2_160, -2.6_381, 1.3_170, 0.8_163, 0.9_240, -1.6_544, -0.6_099, 2.5_259, 1.6_430, -0.9_090, -0.9_392, -0.0_126, 2.4_268, 2.3_266 ]) lowerCamelCase__ = torch.tensor([ -1.3_525, -1.9_628, -0.3_956, -0.6_860, 1.4_664, 1.0_014, -0.1_259, -2.7_212, 0.7_772, -1.8_811, 0.2_996, 0.4_388, 0.1_704, 1.4_029, 1.1_701, -0.3_027, -2.2_053, -2.6_287, 1.3_350, 0.8_131, 0.9_274, -1.6_292, -0.6_098, 2.5_131, 1.6_505, -0.8_958, -0.9_298, -0.0_151, 2.4_257, 2.3_355 ]) lowerCamelCase__ = torch.tensor([ -2.0_585, -2.7_897, -0.2_850, -0.8_940, 1.9_052, 0.5_702, 0.6_345, -3.8_959, 1.5_932, -3.2_319, 0.1_974, 0.0_287, 1.7_566, 2.6_543, 0.8_387, -0.5_351, -3.2_736, -4.3_375, 2.9_029, 1.6_390, 1.4_640, -2.1_701, -1.9_013, 2.9_341, 3.4_981, -0.6_255, -1.1_644, -0.1_591, 3.7_097, 3.2_066 ]) lowerCamelCase__ = torch.tensor([ -2.3_139, -2.5_594, -0.0_197, -0.6_785, 1.7_001, 1.1_606, 0.3_075, -2.1_740, 1.8_071, -2.5_630, -0.0_926, -0.3_811, 1.2_116, 2.6_246, 1.2_731, -0.5_398, -2.8_153, -3.6_140, 2.3_893, 1.3_262, 1.6_258, -2.1_856, -1.3_267, 2.8_395, 2.3_779, -1.0_623, -1.2_468, 0.8_959, 3.3_367, 3.2_243 ]) lowerCamelCase__ = torch.tensor([ -2.0_628, -2.7_667, -0.2_089, -0.8_263, 2.0_539, 0.5_992, 0.6_495, -3.8_336, 1.6_025, -3.2_817, 0.1_721, -0.0_633, 1.7_516, 2.7_039, 0.8_100, -0.5_908, -3.2_113, -4.4_343, 2.9_257, 1.3_632, 1.5_562, -2.1_489, -1.9_894, 3.0_560, 3.3_396, -0.7_328, -1.0_417, 0.0_383, 3.7_093, 3.2_343 ]) lowerCamelCase__ = torch.tensor([ -1.4_574, -2.0_569, -0.0_473, -0.6_117, 1.4_018, 0.5_769, 0.4_129, -2.7_344, 1.2_241, -2.1_397, 0.2_000, 0.3_937, 0.7_616, 2.0_453, 0.7_324, -0.3_391, -2.1_746, -2.7_744, 1.6_963, 0.6_921, 1.2_187, -1.6_172, -0.8_877, 2.2_439, 1.8_471, -0.5_839, -0.5_605, -0.0_464, 2.3_250, 2.1_219 ]) # fmt: on lowerCamelCase__ = api.list_models(filter='diffusers') for mod in models: if "google" in mod.author or mod.modelId == "CompVis/ldm-celebahq-256": lowerCamelCase__ = '/home/patrick/google_checkpoints/' + mod.modelId.split('/')[-1] print(F'''Started running {mod.modelId}!!!''') if mod.modelId.startswith('CompVis'): lowerCamelCase__ = UNetaDModel.from_pretrained(local_checkpoint, subfolder='unet') else: lowerCamelCase__ = UNetaDModel.from_pretrained(local_checkpoint) torch.manual_seed(0) random.seed(0) lowerCamelCase__ = torch.randn(1, model.config.in_channels, model.config.sample_size, model.config.sample_size) lowerCamelCase__ = torch.tensor([10] * noise.shape[0]) with torch.no_grad(): lowerCamelCase__ = model(noise, time_step).sample assert torch.allclose( logits[0, 0, 0, :30], results['_'.join('_'.join(mod.modelId.split('/')).split('-'))], atol=1e-3 ) print(F'''{mod.modelId} has passed successfully!!!''')
708
'''simple docstring''' import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') lowerCamelCase__ = parser.parse_args() if args.model_type == "bert": lowerCamelCase__ = BertForMaskedLM.from_pretrained(args.model_name) lowerCamelCase__ = 'bert' else: raise ValueError('args.model_type should be "bert".') lowerCamelCase__ = model.state_dict() lowerCamelCase__ = {} for w in ["word_embeddings", "position_embeddings"]: lowerCamelCase__ = state_dict[F'''{prefix}.embeddings.{w}.weight'''] for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[F'''{prefix}.embeddings.LayerNorm.{w}'''] lowerCamelCase__ = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}''' ] lowerCamelCase__ = state_dict[ F'''{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}''' ] std_idx += 1 lowerCamelCase__ = state_dict['cls.predictions.decoder.weight'] lowerCamelCase__ = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: lowerCamelCase__ = state_dict[F'''cls.predictions.transform.dense.{w}'''] lowerCamelCase__ = state_dict[F'''cls.predictions.transform.LayerNorm.{w}'''] print(F'''N layers selected for distillation: {std_idx}''') print(F'''Number of params transferred for distillation: {len(compressed_sd.keys())}''') print(F'''Save transferred checkpoint to {args.dump_checkpoint}.''') torch.save(compressed_sd, args.dump_checkpoint)
40
0
from sklearn.metrics import fa_score import datasets SCREAMING_SNAKE_CASE :Optional[int] = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' SCREAMING_SNAKE_CASE :int = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' SCREAMING_SNAKE_CASE :List[str] = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase ( datasets.Metric ): '''simple docstring''' def UpperCamelCase_ ( self : str ): return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( { "predictions": datasets.Sequence(datasets.Value("int32" ) ), "references": datasets.Sequence(datasets.Value("int32" ) ), } if self.config_name == "multilabel" else { "predictions": datasets.Value("int32" ), "references": datasets.Value("int32" ), } ) ,reference_urls=["https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"] ,) def UpperCamelCase_ ( self : Dict ,A : Dict ,A : str ,A : str=None ,A : Tuple=1 ,A : Any="binary" ,A : List[Any]=None ): __A = fa_score( A ,A ,labels=A ,pos_label=A ,average=A ,sample_weight=A ) return {"f1": float(A ) if score.size == 1 else score}
55
import requests SCREAMING_SNAKE_CASE :List[str] = 'YOUR API KEY' def UpperCAmelCase ( a_ , a_ = giphy_api_key ) -> list: """simple docstring""" __A = "+".join(query.split() ) __A = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' __A = requests.get(a_ ).json()["data"] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
55
1
import io import json import unittest from parameterized import parameterized from transformers import FSMTForConditionalGeneration, FSMTTokenizer from transformers.testing_utils import get_tests_dir, require_torch, slow, torch_device from utils import calculate_bleu SCREAMING_SNAKE_CASE_:List[Any] = get_tests_dir() + """/test_data/fsmt/fsmt_val_data.json""" with io.open(filename, """r""", encoding="""utf-8""") as f: SCREAMING_SNAKE_CASE_:Any = json.load(f) @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def _lowerCAmelCase ( self, lowerCamelCase__ ): return FSMTTokenizer.from_pretrained(lowerCamelCase__ ) def _lowerCAmelCase ( self, lowerCamelCase__ ): A : Optional[Any] = FSMTForConditionalGeneration.from_pretrained(lowerCamelCase__ ).to(lowerCamelCase__ ) if torch_device == "cuda": model.half() return model @parameterized.expand( [ ["""en-ru""", 26.0], ["""ru-en""", 22.0], ["""en-de""", 22.0], ["""de-en""", 29.0], ] ) @slow def _lowerCAmelCase ( self, lowerCamelCase__, lowerCamelCase__ ): # note: this test is not testing the best performance since it only evals a small batch # but it should be enough to detect a regression in the output quality A : Optional[Any] = f'''facebook/wmt19-{pair}''' A : Dict = self.get_tokenizer(lowerCamelCase__ ) A : int = self.get_model(lowerCamelCase__ ) A : Any = bleu_data[pair]["""src"""] A : int = bleu_data[pair]["""tgt"""] A : Any = tokenizer(lowerCamelCase__, return_tensors="""pt""", truncation=lowerCamelCase__, padding="""longest""" ).to(lowerCamelCase__ ) A : str = model.generate( input_ids=batch.input_ids, num_beams=8, ) A : List[Any] = tokenizer.batch_decode( lowerCamelCase__, skip_special_tokens=lowerCamelCase__, clean_up_tokenization_spaces=lowerCamelCase__ ) A : Optional[Any] = calculate_bleu(lowerCamelCase__, lowerCamelCase__ ) print(lowerCamelCase__ ) self.assertGreaterEqual(scores["""bleu"""], lowerCamelCase__ )
520
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE_:Dict = """▁""" SCREAMING_SNAKE_CASE_:Any = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE__ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Dict = BigBirdTokenizer __lowerCamelCase : int = BigBirdTokenizerFast __lowerCamelCase : int = True __lowerCamelCase : List[Any] = True def _lowerCAmelCase ( self ): super().setUp() A : Optional[int] = self.tokenizer_class(lowerCamelCase__, keep_accents=lowerCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ): A : Optional[int] = """<s>""" A : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase__ ), lowerCamelCase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase__ ), lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], """<unk>""" ) self.assertEqual(vocab_keys[1], """<s>""" ) self.assertEqual(vocab_keys[-1], """[MASK]""" ) self.assertEqual(len(lowerCamelCase__ ), 1004 ) def _lowerCAmelCase ( self ): self.assertEqual(self.get_tokenizer().vocab_size, 1000 ) def _lowerCAmelCase ( self ): if not self.test_rust_tokenizer: return A : Tuple = self.get_tokenizer() A : Optional[int] = self.get_rust_tokenizer() A : Tuple = """I was born in 92000, and this is falsé.""" A : Optional[Any] = tokenizer.tokenize(lowerCamelCase__ ) A : int = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) A : Tuple = tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) A : List[str] = rust_tokenizer.encode(lowerCamelCase__, add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) A : Union[str, Any] = self.get_rust_tokenizer() A : Tuple = tokenizer.encode(lowerCamelCase__ ) A : int = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__, lowerCamelCase__ ) def _lowerCAmelCase ( self ): A : int = BigBirdTokenizer(lowerCamelCase__, keep_accents=lowerCamelCase__ ) A : Any = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(lowerCamelCase__, ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase__ ), [285, 46, 10, 170, 382], ) A : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( lowerCamelCase__, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ], ) A : Any = tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__, [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4], ) A : List[str] = tokenizer.convert_ids_to_tokens(lowerCamelCase__ ) self.assertListEqual( lowerCamelCase__, [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ], ) @cached_property def _lowerCAmelCase ( self ): return BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) @slow def _lowerCAmelCase ( self ): A : Union[str, Any] = """Hello World!""" A : Union[str, Any] = [65, 1_8536, 2260, 101, 66] self.assertListEqual(lowerCamelCase__, self.big_tokenizer.encode(lowerCamelCase__ ) ) @slow def _lowerCAmelCase ( self ): A : int = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) # fmt: off A : Dict = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(lowerCamelCase__, self.big_tokenizer.encode(lowerCamelCase__ ) ) @require_torch @slow def _lowerCAmelCase ( self ): import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence A : Dict = list(self.big_tokenizer.get_vocab().keys() )[:10] A : Optional[Any] = """ """.join(lowerCamelCase__ ) A : int = self.big_tokenizer.encode_plus(lowerCamelCase__, return_tensors="""pt""", return_token_type_ids=lowerCamelCase__ ) A : int = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence], return_tensors="""pt""", return_token_type_ids=lowerCamelCase__ ) A : Tuple = BigBirdConfig(attention_type="""original_full""" ) A : List[str] = BigBirdModel(lowerCamelCase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase__ ) model(**lowerCamelCase__ ) @slow def _lowerCAmelCase ( self ): A : List[Any] = BigBirdTokenizer.from_pretrained("""google/bigbird-roberta-base""" ) A : Optional[Any] = tokenizer.decode(tokenizer("""Paris is the [MASK].""" ).input_ids ) self.assertTrue(decoded_text == """[CLS] Paris is the[MASK].[SEP]""" ) @slow def _lowerCAmelCase ( self ): # fmt: off A : Any = {"""input_ids""": [[65, 3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114, 66], [65, 448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase__, model_name="""google/bigbird-roberta-base""", revision="""215c99f1600e06f83acce68422f2035b2b5c3510""", )
520
1
def __UpperCAmelCase ( lowerCamelCase_ : list ) -> list: """simple docstring""" if len(lowerCamelCase_ ) <= 1: return [tuple(lowerCamelCase_ )] SCREAMING_SNAKE_CASE_ : Optional[int] = [] def generate(lowerCamelCase_ : int , lowerCamelCase_ : list ): SCREAMING_SNAKE_CASE_ : Any = [0] * n res.append(tuple(lowerCamelCase_ ) ) SCREAMING_SNAKE_CASE_ : Dict = 0 while i < n: if c[i] < i: if i % 2 == 0: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[str] = arr[i], arr[0] else: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : List[Any] = arr[i], arr[c[i]] res.append(tuple(lowerCamelCase_ ) ) c[i] += 1 SCREAMING_SNAKE_CASE_ : int = 0 else: SCREAMING_SNAKE_CASE_ : str = 0 i += 1 generate(len(lowerCamelCase_ ) , lowerCamelCase_ ) return res if __name__ == "__main__": UpperCamelCase__ : Any = input('''Enter numbers separated by a comma:\n''').strip() UpperCamelCase__ : List[Any] = [int(item) for item in user_input.split(''',''')] print(heaps(arr))
105
"""simple docstring""" from __future__ import annotations def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> tuple[int, int]: '''simple docstring''' if b == 0: return (1, 0) ((a__) , (a__)) : List[Any] = extended_euclid(lowerCAmelCase__ , a % b ) a__ : str = a // b return (y, x - k * y) def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Tuple = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : List[str] = na * na a__ : Union[str, Any] = ra * x * na + ra * y * na return (n % m + m) % m def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' ((a__) , (a__)) : Optional[Any] = extended_euclid(lowerCAmelCase__ , lowerCAmelCase__ ) if b < 0: a__ : Optional[int] = (b % n + n) % n return b def lowercase__ ( lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int , lowerCAmelCase__ : int ) -> int: '''simple docstring''' a__ , a__ : List[Any] = invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ), invert_modulo(lowerCAmelCase__ , lowerCAmelCase__ ) a__ : Dict = na * na a__ : Any = ra * x * na + ra * y * na return (n % m + m) % m if __name__ == "__main__": from doctest import testmod testmod(name='''chinese_remainder_theorem''', verbose=True) testmod(name='''chinese_remainder_theorem2''', verbose=True) testmod(name='''invert_modulo''', verbose=True) testmod(name='''extended_euclid''', verbose=True)
642
0
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class __magic_name__ : '''simple docstring''' def __init__( self:str , _a:List[str] , _a:Dict=2 , _a:int=3 , _a:int=4 , _a:List[str]=2 , _a:int=7 , _a:int=True , _a:Union[str, Any]=True , _a:List[Any]=True , _a:Union[str, Any]=True , _a:Union[str, Any]=99 , _a:Tuple=36 , _a:Tuple=3 , _a:Any=4 , _a:str=37 , _a:List[Any]="gelu" , _a:List[Any]=0.1 , _a:Tuple=0.1 , _a:List[Any]=5_12 , _a:str=16 , _a:Tuple=2 , _a:Any=0.02 , _a:List[Any]=6 , _a:Union[str, Any]=6 , _a:Optional[int]=3 , _a:Optional[Any]=4 , _a:Union[str, Any]=None , _a:Dict=10_00 , ): snake_case__ = parent snake_case__ = batch_size snake_case__ = num_channels snake_case__ = image_size snake_case__ = patch_size snake_case__ = text_seq_length snake_case__ = is_training snake_case__ = use_input_mask snake_case__ = use_token_type_ids snake_case__ = use_labels snake_case__ = vocab_size snake_case__ = hidden_size snake_case__ = num_hidden_layers snake_case__ = num_attention_heads snake_case__ = intermediate_size snake_case__ = hidden_act snake_case__ = hidden_dropout_prob snake_case__ = attention_probs_dropout_prob snake_case__ = max_position_embeddings snake_case__ = type_vocab_size snake_case__ = type_sequence_label_size snake_case__ = initializer_range snake_case__ = coordinate_size snake_case__ = shape_size snake_case__ = num_labels snake_case__ = num_choices snake_case__ = scope snake_case__ = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) snake_case__ = text_seq_length snake_case__ = (image_size // patch_size) ** 2 + 1 snake_case__ = self.text_seq_length + self.image_seq_length def SCREAMING_SNAKE_CASE__ ( self:Optional[int] ): snake_case__ = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) snake_case__ = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: snake_case__ = bbox[i, j, 3] snake_case__ = bbox[i, j, 1] snake_case__ = t if bbox[i, j, 2] < bbox[i, j, 0]: snake_case__ = bbox[i, j, 2] snake_case__ = bbox[i, j, 0] snake_case__ = t snake_case__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case__ = None if self.use_input_mask: snake_case__ = random_attention_mask([self.batch_size, self.text_seq_length] ) snake_case__ = None if self.use_token_type_ids: snake_case__ = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) snake_case__ = None snake_case__ = None if self.use_labels: snake_case__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) snake_case__ = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:Any , _a:Optional[Any] , _a:Tuple , _a:int , _a:Dict , _a:Union[str, Any] , _a:Optional[Any] , _a:Tuple ): snake_case__ = LayoutLMvaModel(config=_A ) model.to(_A ) model.eval() # text + image snake_case__ = model(_A , pixel_values=_A ) snake_case__ = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A ) snake_case__ = model(_A , bbox=_A , pixel_values=_A , token_type_ids=_A ) snake_case__ = model(_A , bbox=_A , pixel_values=_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only snake_case__ = model(_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only snake_case__ = model(pixel_values=_A ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:Union[str, Any] , _a:Dict , _a:Optional[Any] , _a:Dict , _a:Union[str, Any] , _a:Union[str, Any] , _a:Any , _a:Optional[int] ): snake_case__ = self.num_labels snake_case__ = LayoutLMvaForSequenceClassification(_A ) model.to(_A ) model.eval() snake_case__ = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:Tuple , _a:List[str] , _a:Tuple , _a:Tuple , _a:Optional[int] , _a:int , _a:Dict , _a:Union[str, Any] ): snake_case__ = self.num_labels snake_case__ = LayoutLMvaForTokenClassification(config=_A ) model.to(_A ) model.eval() snake_case__ = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , labels=_A , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[str] , _a:int , _a:Any , _a:Tuple , _a:List[str] , _a:List[str] , _a:Optional[Any] , _a:Tuple ): snake_case__ = LayoutLMvaForQuestionAnswering(config=_A ) model.to(_A ) model.eval() snake_case__ = model( _A , bbox=_A , pixel_values=_A , attention_mask=_A , token_type_ids=_A , start_positions=_A , end_positions=_A , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.prepare_config_and_inputs() ( snake_case__ ) = config_and_inputs snake_case__ = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class __magic_name__ (a__ ,a__ ,unittest.TestCase ): '''simple docstring''' __lowercase : List[str] = False __lowercase : List[str] = False __lowercase : Optional[int] = False __lowercase : Any = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) __lowercase : List[str] = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int , _a:List[str] , _a:int , _a:int , _a:Optional[int] ): return True def SCREAMING_SNAKE_CASE__ ( self:Tuple ): snake_case__ = LayoutLMvaModelTester(self ) snake_case__ = ConfigTester(self , config_class=_A , hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self:int , _a:int , _a:Tuple , _a:List[Any]=False ): snake_case__ = copy.deepcopy(_A ) if model_class in get_values(_A ): snake_case__ = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(_A , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(_A ): snake_case__ = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in get_values(_A ): snake_case__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) snake_case__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in [ *get_values(_A ), ]: snake_case__ = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) elif model_class in [ *get_values(_A ), ]: snake_case__ = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=_A , ) return inputs_dict def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: snake_case__ = type self.model_tester.create_and_check_model(*_A ) def SCREAMING_SNAKE_CASE__ ( self:List[str] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) def SCREAMING_SNAKE_CASE__ ( self:List[Any] ): snake_case__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) @slow def SCREAMING_SNAKE_CASE__ ( self:Any ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ = LayoutLMvaModel.from_pretrained(_A ) self.assertIsNotNone(_A ) def SCREAMING_SNAKE_CASE ( ) -> Dict: snake_case__ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch class __magic_name__ (unittest.TestCase ): '''simple docstring''' @cached_property def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] ): return LayoutLMvaImageProcessor(apply_ocr=_A ) if is_vision_available() else None @slow def SCREAMING_SNAKE_CASE__ ( self:int ): snake_case__ = LayoutLMvaModel.from_pretrained('''microsoft/layoutlmv3-base''' ).to(_A ) snake_case__ = self.default_image_processor snake_case__ = prepare_img() snake_case__ = image_processor(images=_A , return_tensors='''pt''' ).pixel_values.to(_A ) snake_case__ = torch.tensor([[1, 2]] ) snake_case__ = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass snake_case__ = model( input_ids=input_ids.to(_A ) , bbox=bbox.to(_A ) , pixel_values=pixel_values.to(_A ) , ) # verify the logits snake_case__ = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape , _A ) snake_case__ = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(_A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , _A , atol=1e-4 ) )
716
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging lowerCamelCase__ : int = logging.get_logger(__name__) if is_vision_available(): import PIL class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : int = ['pixel_values'] def __init__( self:List[str] , _a:bool = True , _a:Dict[str, int] = None , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:bool = True , _a:Dict[str, int] = None , _a:bool = True , _a:Union[int, float] = 1 / 2_55 , _a:bool = True , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:bool = True , **_a:Union[str, Any] , ): super().__init__(**_a ) snake_case__ = size if size is not None else {'''shortest_edge''': 2_24} snake_case__ = get_size_dict(_a , default_to_square=_a ) snake_case__ = crop_size if crop_size is not None else {'''height''': 2_24, '''width''': 2_24} snake_case__ = get_size_dict(_a , default_to_square=_a , param_name='''crop_size''' ) snake_case__ = do_resize snake_case__ = size snake_case__ = resample snake_case__ = do_center_crop snake_case__ = crop_size snake_case__ = do_rescale snake_case__ = rescale_factor snake_case__ = do_normalize snake_case__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN snake_case__ = image_std if image_std is not None else OPENAI_CLIP_STD snake_case__ = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self:str , _a:np.ndarray , _a:Dict[str, int] , _a:PILImageResampling = PILImageResampling.BICUBIC , _a:Optional[Union[str, ChannelDimension]] = None , **_a:str , ): snake_case__ = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) snake_case__ = get_resize_output_image_size(_a , size=size['''shortest_edge'''] , default_to_square=_a ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:np.ndarray , _a:Dict[str, int] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Any , ): snake_case__ = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(_a , size=(size['''height'''], size['''width''']) , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:np.ndarray , _a:Union[int, float] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:List[Any] , ): return rescale(_a , scale=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Tuple , _a:np.ndarray , _a:Union[float, List[float]] , _a:Union[float, List[float]] , _a:Optional[Union[str, ChannelDimension]] = None , **_a:Tuple , ): return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:ImageInput , _a:bool = None , _a:Dict[str, int] = None , _a:PILImageResampling = None , _a:bool = None , _a:int = None , _a:bool = None , _a:float = None , _a:bool = None , _a:Optional[Union[float, List[float]]] = None , _a:Optional[Union[float, List[float]]] = None , _a:bool = None , _a:Optional[Union[str, TensorType]] = None , _a:Optional[ChannelDimension] = ChannelDimension.FIRST , **_a:Any , ): snake_case__ = do_resize if do_resize is not None else self.do_resize snake_case__ = size if size is not None else self.size snake_case__ = get_size_dict(_a , param_name='''size''' , default_to_square=_a ) snake_case__ = resample if resample is not None else self.resample snake_case__ = do_center_crop if do_center_crop is not None else self.do_center_crop snake_case__ = crop_size if crop_size is not None else self.crop_size snake_case__ = get_size_dict(_a , param_name='''crop_size''' , default_to_square=_a ) snake_case__ = do_rescale if do_rescale is not None else self.do_rescale snake_case__ = rescale_factor if rescale_factor is not None else self.rescale_factor snake_case__ = do_normalize if do_normalize is not None else self.do_normalize snake_case__ = image_mean if image_mean is not None else self.image_mean snake_case__ = image_std if image_std is not None else self.image_std snake_case__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb snake_case__ = make_list_of_images(_a ) if not valid_images(_a ): raise ValueError( '''Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ''' '''torch.Tensor, tf.Tensor or jax.ndarray.''' ) if do_resize and size is None: raise ValueError('''Size must be specified if do_resize is True.''' ) if do_center_crop and crop_size is None: raise ValueError('''Crop size must be specified if do_center_crop is True.''' ) if do_rescale and rescale_factor is None: raise ValueError('''Rescale factor must be specified if do_rescale is True.''' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('''Image mean and std must be specified if do_normalize is True.''' ) # PIL RGBA images are converted to RGB if do_convert_rgb: snake_case__ = [convert_to_rgb(_a ) for image in images] # All transformations expect numpy arrays. snake_case__ = [to_numpy_array(_a ) for image in images] if do_resize: snake_case__ = [self.resize(image=_a , size=_a , resample=_a ) for image in images] if do_center_crop: snake_case__ = [self.center_crop(image=_a , size=_a ) for image in images] if do_rescale: snake_case__ = [self.rescale(image=_a , scale=_a ) for image in images] if do_normalize: snake_case__ = [self.normalize(image=_a , mean=_a , std=_a ) for image in images] snake_case__ = [to_channel_dimension_format(_a , _a ) for image in images] snake_case__ = {'''pixel_values''': images} return BatchFeature(data=_a , tensor_type=_a )
208
0
"""simple docstring""" def __lowerCAmelCase ( __UpperCamelCase : int = 1_0_0_0 ): '''simple docstring''' snake_case_ : List[str] = 2**power snake_case_ : List[Any] = 0 while n: snake_case_ , snake_case_ : str = r + n % 1_0, n // 1_0 return r if __name__ == "__main__": print(solution(int(str(input()).strip())))
58
import os from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE, hf_cache_home lowercase : Any = HUGGINGFACE_HUB_CACHE lowercase : Any = "config.json" lowercase : Any = "diffusion_pytorch_model.bin" lowercase : Optional[Any] = "diffusion_flax_model.msgpack" lowercase : Optional[Any] = "model.onnx" lowercase : List[str] = "diffusion_pytorch_model.safetensors" lowercase : Any = "weights.pb" lowercase : Tuple = "https://huggingface.co" lowercase : int = default_cache_path lowercase : List[str] = "diffusers_modules" lowercase : Tuple = os.getenv("HF_MODULES_CACHE", os.path.join(hf_cache_home, "modules")) lowercase : Tuple = ["fp16", "non-ema"] lowercase : str = ".self_attn"
327
0
'''simple docstring''' def UpperCamelCase_ ( A__ , A__ ): while b: a_ , a_ = b, a % b return a def UpperCamelCase_ ( A__ , A__ ): return a if b == 0 else euclidean_gcd_recursive(A__ , a % b ) def UpperCamelCase_ ( ): print(F'''euclidean_gcd(3, 5) = {euclidean_gcd(3 , 5 )}''' ) print(F'''euclidean_gcd(5, 3) = {euclidean_gcd(5 , 3 )}''' ) print(F'''euclidean_gcd(1, 3) = {euclidean_gcd(1 , 3 )}''' ) print(F'''euclidean_gcd(3, 6) = {euclidean_gcd(3 , 6 )}''' ) print(F'''euclidean_gcd(6, 3) = {euclidean_gcd(6 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 5) = {euclidean_gcd_recursive(3 , 5 )}''' ) print(F'''euclidean_gcd_recursive(5, 3) = {euclidean_gcd_recursive(5 , 3 )}''' ) print(F'''euclidean_gcd_recursive(1, 3) = {euclidean_gcd_recursive(1 , 3 )}''' ) print(F'''euclidean_gcd_recursive(3, 6) = {euclidean_gcd_recursive(3 , 6 )}''' ) print(F'''euclidean_gcd_recursive(6, 3) = {euclidean_gcd_recursive(6 , 3 )}''' ) if __name__ == "__main__": main()
511
'''simple docstring''' import json import os import re import shutil import tempfile import unittest from typing import Tuple from transformers import AddedToken, BatchEncoding, PerceiverTokenizer from transformers.utils import cached_property, is_tf_available, is_torch_available from ...test_tokenization_common import TokenizerTesterMixin if is_torch_available(): lowercase__ ='pt' elif is_tf_available(): lowercase__ ='tf' else: lowercase__ ='jax' class a_ ( UpperCamelCase__ , unittest.TestCase ): lowerCamelCase__ : int = PerceiverTokenizer lowerCamelCase__ : Optional[int] = False def lowerCAmelCase__ ( self ): super().setUp() a_ = PerceiverTokenizer() tokenizer.save_pretrained(self.tmpdirname ) @cached_property def lowerCAmelCase__ ( self ): return PerceiverTokenizer.from_pretrained("""deepmind/language-perceiver""" ) def lowerCAmelCase__ ( self , **UpperCAmelCase ): return self.tokenizer_class.from_pretrained(self.tmpdirname , **UpperCAmelCase ) def lowerCAmelCase__ ( self , UpperCAmelCase , UpperCAmelCase=False , UpperCAmelCase=20 , UpperCAmelCase=5 ): # XXX The default common tokenizer tests assume that every ID is decodable on its own. # This assumption is invalid for Perceiver because single bytes might not be # valid utf-8 (byte 128 for instance). # Here we're overriding the smallest possible method to provide # a clean sequence without making the same assumption. a_ = [] for i in range(len(UpperCAmelCase ) ): try: a_ = tokenizer.decode([i] , clean_up_tokenization_spaces=UpperCAmelCase ) except UnicodeDecodeError: pass toks.append((i, tok) ) a_ = list(filter(lambda UpperCAmelCase : re.match(R"""^[ a-zA-Z]+$""" , t[1] ) , UpperCAmelCase ) ) a_ = list(filter(lambda UpperCAmelCase : [t[0]] == tokenizer.encode(t[1] , add_special_tokens=UpperCAmelCase ) , UpperCAmelCase ) ) if max_length is not None and len(UpperCAmelCase ) > max_length: a_ = toks[:max_length] if min_length is not None and len(UpperCAmelCase ) < min_length and len(UpperCAmelCase ) > 0: while len(UpperCAmelCase ) < min_length: a_ = toks + toks # toks_str = [t[1] for t in toks] a_ = [t[0] for t in toks] # Ensure consistency a_ = tokenizer.decode(UpperCAmelCase , clean_up_tokenization_spaces=UpperCAmelCase ) if " " not in output_txt and len(UpperCAmelCase ) > 1: a_ = ( tokenizer.decode([toks_ids[0]] , clean_up_tokenization_spaces=UpperCAmelCase ) + """ """ + tokenizer.decode(toks_ids[1:] , clean_up_tokenization_spaces=UpperCAmelCase ) ) if with_prefix_space: a_ = """ """ + output_txt a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) return output_txt, output_ids def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = """Unicode €.""" a_ = tokenizer(UpperCAmelCase ) a_ = [4, 91, 1_16, 1_11, 1_05, 1_17, 1_06, 1_07, 38, 2_32, 1_36, 1_78, 52, 5] self.assertEqual(encoded["""input_ids"""] , UpperCAmelCase ) # decoding a_ = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , """[CLS]Unicode €.[SEP]""" ) a_ = tokenizer("""e è é ê ë""" ) a_ = [4, 1_07, 38, 2_01, 1_74, 38, 2_01, 1_75, 38, 2_01, 1_76, 38, 2_01, 1_77, 5] self.assertEqual(encoded["""input_ids"""] , UpperCAmelCase ) # decoding a_ = tokenizer.decode(UpperCAmelCase ) self.assertEqual(UpperCAmelCase , """[CLS]e è é ê ë[SEP]""" ) # encode/decode, but with `encode` instead of `__call__` self.assertEqual(tokenizer.decode(tokenizer.encode("""e è é ê ë""" ) ) , """[CLS]e è é ê ë[SEP]""" ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] # fmt: off a_ = [4, 71, 38, 1_14, 1_17, 1_16, 1_09, 38, 1_18, 1_03, 1_20, 1_03, 1_09, 1_20, 1_03, 1_18, 1_10, 38, 1_08, 1_17, 1_20, 38, 1_21, 1_23, 1_15, 1_15, 1_03, 1_20, 1_11, 1_28, 1_03, 1_22, 1_11, 1_17, 1_16, 52, 5, 0] # fmt: on a_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase ) if FRAMEWORK != "jax": a_ = list(batch.input_ids.numpy()[0] ) else: a_ = list(batch.input_ids.tolist()[0] ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual((2, 38) , batch.input_ids.shape ) self.assertEqual((2, 38) , batch.attention_mask.shape ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] a_ = tokenizer(UpperCAmelCase , padding=UpperCAmelCase , return_tensors=UpperCAmelCase ) # check if input_ids are returned and no decoder_input_ids self.assertIn("""input_ids""" , UpperCAmelCase ) self.assertIn("""attention_mask""" , UpperCAmelCase ) self.assertNotIn("""decoder_input_ids""" , UpperCAmelCase ) self.assertNotIn("""decoder_attention_mask""" , UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer a_ = [ """Summary of the text.""", """Another summary.""", ] a_ = tokenizer( text_target=UpperCAmelCase , max_length=32 , padding="""max_length""" , truncation=UpperCAmelCase , return_tensors=UpperCAmelCase ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) def lowerCAmelCase__ ( self ): # safety check on max_len default value so we are sure the test works a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): self.assertNotEqual(tokenizer.model_max_length , 42 ) # Now let's start the test a_ = self.get_tokenizers() for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a_ = tempfile.mkdtemp() a_ = """ He is very happy, UNwant\u00E9d,running""" a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase ) a_ = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) shutil.rmtree(UpperCAmelCase ) a_ = self.get_tokenizers(model_max_length=42 ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): # Isolate this from the other tests because we save additional tokens/etc a_ = tempfile.mkdtemp() a_ = """ He is very happy, UNwant\u00E9d,running""" tokenizer.add_tokens(["""bim""", """bambam"""] ) a_ = tokenizer.additional_special_tokens additional_special_tokens.append("""new_additional_special_token""" ) tokenizer.add_special_tokens({"""additional_special_tokens""": additional_special_tokens} ) a_ = tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase ) a_ = after_tokenizer.encode(UpperCAmelCase , add_special_tokens=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , UpperCAmelCase ) self.assertIn("""new_additional_special_token""" , after_tokenizer.additional_special_tokens ) self.assertEqual(after_tokenizer.model_max_length , 42 ) a_ = tokenizer.__class__.from_pretrained(UpperCAmelCase , model_max_length=43 ) self.assertEqual(tokenizer.model_max_length , 43 ) shutil.rmtree(UpperCAmelCase ) def lowerCAmelCase__ ( self ): a_ = [] if self.test_slow_tokenizer: tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()) ) if self.test_rust_tokenizer: tokenizer_list.append((self.rust_tokenizer_class, self.get_rust_tokenizer()) ) for tokenizer_class, tokenizer_utils in tokenizer_list: with tempfile.TemporaryDirectory() as tmp_dir: tokenizer_utils.save_pretrained(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """special_tokens_map.json""" ) , encoding="""utf-8""" ) as json_file: a_ = json.load(UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """tokenizer_config.json""" ) , encoding="""utf-8""" ) as json_file: a_ = json.load(UpperCAmelCase ) a_ = [f'''<extra_id_{i}>''' for i in range(1_25 )] a_ = added_tokens_extra_ids + [ """an_additional_special_token""" ] a_ = added_tokens_extra_ids + [ """an_additional_special_token""" ] with open(os.path.join(UpperCAmelCase , """special_tokens_map.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) with open(os.path.join(UpperCAmelCase , """tokenizer_config.json""" ) , """w""" , encoding="""utf-8""" ) as outfile: json.dump(UpperCAmelCase , UpperCAmelCase ) # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and # "special_tokens_map.json" files a_ = tokenizer_class.from_pretrained( UpperCAmelCase , ) self.assertIn( """an_additional_special_token""" , tokenizer_without_change_in_init.additional_special_tokens ) self.assertEqual( ["""an_additional_special_token"""] , tokenizer_without_change_in_init.convert_ids_to_tokens( tokenizer_without_change_in_init.convert_tokens_to_ids(["""an_additional_special_token"""] ) ) , ) # Now we test that we can change the value of additional_special_tokens in the from_pretrained a_ = added_tokens_extra_ids + [AddedToken("""a_new_additional_special_token""" , lstrip=UpperCAmelCase )] a_ = tokenizer_class.from_pretrained( UpperCAmelCase , additional_special_tokens=UpperCAmelCase , ) self.assertIn("""a_new_additional_special_token""" , tokenizer.additional_special_tokens ) self.assertEqual( ["""a_new_additional_special_token"""] , tokenizer.convert_ids_to_tokens( tokenizer.convert_tokens_to_ids(["""a_new_additional_special_token"""] ) ) , ) def lowerCAmelCase__ ( self ): a_ = self.perceiver_tokenizer self.assertEqual(tokenizer.decode([1_78] ) , """�""" ) def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): pass def lowerCAmelCase__ ( self ): # The default common tokenizer tests uses invalid tokens for Perceiver that can only accept one-character # strings and special added tokens as tokens a_ = self.get_tokenizers(fast=UpperCAmelCase , do_lower_case=UpperCAmelCase ) for tokenizer in tokenizers: with self.subTest(f'''{tokenizer.__class__.__name__}''' ): a_ = ["""[CLS]""", """t""", """h""", """i""", """s""", """ """, """i""", """s""", """ """, """a""", """ """, """t""", """e""", """s""", """t""", """[SEP]"""] a_ = tokenizer.convert_tokens_to_string(UpperCAmelCase ) self.assertIsInstance(UpperCAmelCase , UpperCAmelCase )
511
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[Any] = logging.get_logger(__name__) a_ : int = { """unc-nlp/lxmert-base-uncased""": """https://huggingface.co/unc-nlp/lxmert-base-uncased/resolve/main/config.json""", } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "lxmert" _lowerCamelCase = {} def __init__( self , UpperCamelCase=3_0522 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=9500 , UpperCamelCase=1600 , UpperCamelCase=400 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=512 , UpperCamelCase=2 , UpperCamelCase=0.02 , UpperCamelCase=1e-12 , UpperCamelCase=9 , UpperCamelCase=5 , UpperCamelCase=5 , UpperCamelCase=2048 , UpperCamelCase=4 , UpperCamelCase=6.67 , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , UpperCamelCase=True , **UpperCamelCase , ): """simple docstring""" lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_act lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = type_vocab_size lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = num_qa_labels lowerCamelCase_ = num_object_labels lowerCamelCase_ = num_attr_labels lowerCamelCase_ = l_layers lowerCamelCase_ = x_layers lowerCamelCase_ = r_layers lowerCamelCase_ = visual_feat_dim lowerCamelCase_ = visual_pos_dim lowerCamelCase_ = visual_loss_normalizer lowerCamelCase_ = task_matched lowerCamelCase_ = task_mask_lm lowerCamelCase_ = task_obj_predict lowerCamelCase_ = task_qa lowerCamelCase_ = visual_obj_loss lowerCamelCase_ = visual_attr_loss lowerCamelCase_ = visual_feat_loss lowerCamelCase_ = {"vision": r_layers, "cross_encoder": x_layers, "language": l_layers} super().__init__(**UpperCamelCase )
675
'''simple docstring''' import warnings from typing import List import numpy as np from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding from ...utils import is_flax_available, is_tf_available, is_torch_available class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = ["image_processor", "tokenizer"] _lowerCamelCase = "OwlViTImageProcessor" _lowerCamelCase = ("CLIPTokenizer", "CLIPTokenizerFast") def __init__( self , UpperCamelCase=None , UpperCamelCase=None , **UpperCamelCase ): """simple docstring""" lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase , ) lowerCamelCase_ = kwargs.pop("feature_extractor" ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(UpperCamelCase , UpperCamelCase ) def __call__( self , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase=None , UpperCamelCase="max_length" , UpperCamelCase="np" , **UpperCamelCase ): """simple docstring""" if text is None and query_images is None and images is None: raise ValueError( "You have to specify at least one text or query image or image. All three cannot be none." ) if text is not None: if isinstance(UpperCamelCase , UpperCamelCase ) or (isinstance(UpperCamelCase , UpperCamelCase ) and not isinstance(text[0] , UpperCamelCase )): lowerCamelCase_ = [self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase )] elif isinstance(UpperCamelCase , UpperCamelCase ) and isinstance(text[0] , UpperCamelCase ): lowerCamelCase_ = [] # Maximum number of queries across batch lowerCamelCase_ = max([len(UpperCamelCase ) for t in text] ) # Pad all batch samples to max number of text queries for t in text: if len(UpperCamelCase ) != max_num_queries: lowerCamelCase_ = t + [" "] * (max_num_queries - len(UpperCamelCase )) lowerCamelCase_ = self.tokenizer(UpperCamelCase , padding=UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) encodings.append(UpperCamelCase ) else: raise TypeError("Input text should be a string, a list of strings or a nested list of strings" ) if return_tensors == "np": lowerCamelCase_ = np.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = np.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "jax" and is_flax_available(): import jax.numpy as jnp lowerCamelCase_ = jnp.concatenate([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = jnp.concatenate([encoding["attention_mask"] for encoding in encodings] , axis=0 ) elif return_tensors == "pt" and is_torch_available(): import torch lowerCamelCase_ = torch.cat([encoding["input_ids"] for encoding in encodings] , dim=0 ) lowerCamelCase_ = torch.cat([encoding["attention_mask"] for encoding in encodings] , dim=0 ) elif return_tensors == "tf" and is_tf_available(): import tensorflow as tf lowerCamelCase_ = tf.stack([encoding["input_ids"] for encoding in encodings] , axis=0 ) lowerCamelCase_ = tf.stack([encoding["attention_mask"] for encoding in encodings] , axis=0 ) else: raise ValueError("Target return tensor type could not be returned" ) lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = input_ids lowerCamelCase_ = attention_mask if query_images is not None: lowerCamelCase_ = BatchEncoding() lowerCamelCase_ = self.image_processor( UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ).pixel_values lowerCamelCase_ = query_pixel_values if images is not None: lowerCamelCase_ = self.image_processor(UpperCamelCase , return_tensors=UpperCamelCase , **UpperCamelCase ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif query_images is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None or query_images is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase ) , tensor_type=UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_object_detection(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.image_processor.post_process_image_guided_detection(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase , **UpperCamelCase ) def snake_case ( self , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase , **UpperCamelCase ) @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase , ) return self.image_processor_class @property def snake_case ( self ): """simple docstring""" warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , UpperCamelCase , ) return self.image_processor
675
1
from scipy.stats import spearmanr import datasets _a: Optional[Any] = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' _a: int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' _a: List[Any] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __UpperCamelCase ( datasets.Metric ): def __A ( self : str ): '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def __A ( self : Dict , lowerCAmelCase : Dict , lowerCAmelCase : Tuple , lowerCAmelCase : Dict=False ): '''simple docstring''' UpperCAmelCase_ = spearmanr(_lowercase , _lowercase ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
721
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _a: List[Any] = logging.get_logger(__name__) _a: List[str] = """▁""" _a: Union[str, Any] = { """vocab_file""": """vocab.json""", """spm_file""": """sentencepiece.bpe.model""", } _a: Tuple = { """vocab_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json""" ), }, """spm_file""": { """facebook/s2t-small-librispeech-asr""": ( """https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model""" ) }, } _a: Optional[int] = { """facebook/s2t-small-librispeech-asr""": 1024, } _a: List[Any] = ["""pt""", """fr""", """ru""", """nl""", """ro""", """it""", """es""", """de"""] _a: Tuple = {"""mustc""": MUSTC_LANGS} class __UpperCamelCase ( lowercase ): SCREAMING_SNAKE_CASE__ = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE__ = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE__ = MAX_MODEL_INPUT_SIZES SCREAMING_SNAKE_CASE__ = ['input_ids', 'attention_mask'] SCREAMING_SNAKE_CASE__ = [] def __init__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Tuple , lowerCAmelCase : Tuple="<s>" , lowerCAmelCase : Optional[int]="</s>" , lowerCAmelCase : Any="<pad>" , lowerCAmelCase : Union[str, Any]="<unk>" , lowerCAmelCase : Tuple=False , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : List[str]=None , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : Any , ): '''simple docstring''' UpperCAmelCase_ = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , pad_token=lowerCAmelCase , do_upper_case=lowerCAmelCase , do_lower_case=lowerCAmelCase , tgt_lang=lowerCAmelCase , lang_codes=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase_ = do_upper_case UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = load_json(lowerCAmelCase ) UpperCAmelCase_ = {v: k for k, v in self.encoder.items()} UpperCAmelCase_ = spm_file UpperCAmelCase_ = load_spm(lowerCAmelCase , self.sp_model_kwargs ) if lang_codes is not None: UpperCAmelCase_ = lang_codes UpperCAmelCase_ = LANGUAGES[lang_codes] UpperCAmelCase_ = [F"<lang:{lang}>" for lang in self.langs] UpperCAmelCase_ = {lang: self.sp_model.PieceToId(F"<lang:{lang}>" ) for lang in self.langs} UpperCAmelCase_ = self.lang_tokens UpperCAmelCase_ = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCAmelCase_ = {} @property def __A ( self : List[Any] ): '''simple docstring''' return len(self.encoder ) @property def __A ( self : Any ): '''simple docstring''' return self._tgt_lang @tgt_lang.setter def __A ( self : int , lowerCAmelCase : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = new_tgt_lang self.set_tgt_lang_special_tokens(lowerCAmelCase ) def __A ( self : List[Any] , lowerCAmelCase : str ): '''simple docstring''' UpperCAmelCase_ = self.lang_code_to_id[tgt_lang] UpperCAmelCase_ = [lang_code_id] def __A ( self : List[str] , lowerCAmelCase : str ): '''simple docstring''' return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def __A ( self : str , lowerCAmelCase : int ): '''simple docstring''' return self.encoder.get(lowerCAmelCase , self.encoder[self.unk_token] ) def __A ( self : Optional[Any] , lowerCAmelCase : int ): '''simple docstring''' return self.decoder.get(lowerCAmelCase , self.unk_token ) def __A ( self : Dict , lowerCAmelCase : List[str] ): '''simple docstring''' UpperCAmelCase_ = [] UpperCAmelCase_ = "" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCAmelCase_ = self.sp_model.decode(lowerCAmelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCAmelCase_ = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase_ = self.sp_model.decode(lowerCAmelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def __A ( self : Optional[Any] , lowerCAmelCase : List[Any] , lowerCAmelCase : Optional[int]=None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def __A ( self : Any , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase_ = [1] * len(self.prefix_tokens ) UpperCAmelCase_ = [1] if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def __A ( self : Optional[Any] ): '''simple docstring''' UpperCAmelCase_ = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase_ = self.__dict__.copy() UpperCAmelCase_ = None return state def __setstate__( self : Tuple , lowerCAmelCase : Dict ): '''simple docstring''' UpperCAmelCase_ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase_ = {} UpperCAmelCase_ = load_spm(self.spm_file , self.sp_model_kwargs ) def __A ( self : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None ): '''simple docstring''' UpperCAmelCase_ = Path(lowerCAmelCase ) assert save_dir.is_dir(), F"{save_directory} should be a directory" UpperCAmelCase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["vocab_file"] ) UpperCAmelCase_ = save_dir / ( (filename_prefix + "-" if filename_prefix else "") + self.vocab_files_names["spm_file"] ) save_json(self.encoder , lowerCAmelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , lowerCAmelCase ) elif not os.path.isfile(self.spm_file ): with open(lowerCAmelCase , "wb" ) as fi: UpperCAmelCase_ = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (str(lowerCAmelCase ), str(lowerCAmelCase )) def __lowerCAmelCase ( A , A ): UpperCAmelCase_ = sentencepiece.SentencePieceProcessor(**A ) spm.Load(str(A ) ) return spm def __lowerCAmelCase ( A ): with open(A , "r" ) as f: return json.load(A ) def __lowerCAmelCase ( A , A ): with open(A , "w" ) as f: json.dump(A , A , indent=2 )
268
0
'''simple docstring''' import subprocess import sys from transformers import BertConfig, BertModel, BertTokenizer, pipeline from transformers.testing_utils import TestCasePlus, require_torch class __A ( A ): '''simple docstring''' @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise RuntimeError("Offline mode is enabled, we shouldn\'t access internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task='''fill-mask''' , model=A ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Dict: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer, pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) BertTokenizer.from_pretrained(mname) pipe = pipeline(task="fill-mask", model=mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Faking flaky internet") socket.socket = offline_socket ''' # Force fetching the files so that we can use the cache _a = '''hf-internal-testing/tiny-random-bert''' BertConfig.from_pretrained(A ) BertModel.from_pretrained(A ) BertTokenizer.from_pretrained(A ) pipeline(task='''fill-mask''' , model=A ) # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run, mock] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import BertConfig, BertModel, BertTokenizer ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert-sharded" BertConfig.from_pretrained(mname) BertModel.from_pretrained(mname) print("success") ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise ValueError("Offline mode is enabled") socket.socket = offline_socket ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # next emulate no network _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] # Doesn't fail anymore since the model is in the cache due to other tests, so commenting this. # env["TRANSFORMERS_OFFLINE"] = "0" # result = subprocess.run(cmd, env=env, check=False, capture_output=True) # self.assertEqual(result.returncode, 1, result.stderr) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) @require_torch def a__ (self ) -> Optional[Any]: """simple docstring""" _a = ''' from transformers import pipeline ''' _a = ''' mname = "hf-internal-testing/tiny-random-bert" pipe = pipeline(model=mname) ''' _a = ''' import socket def offline_socket(*args, **kwargs): raise socket.error("Offline mode is enabled") socket.socket = offline_socket ''' _a = self.get_env() _a = '''1''' _a = [sys.executable, '''-c''', '''\n'''.join([load, mock, run] )] _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 1 , result.stderr ) self.assertIn( '''You cannot infer task automatically within `pipeline` when using offline mode''' , result.stderr.decode().replace('''\n''' , '''''' ) , ) @require_torch def a__ (self ) -> Optional[int]: """simple docstring""" _a = ''' from transformers import AutoModel ''' _a = ''' mname = "hf-internal-testing/test_dynamic_model" AutoModel.from_pretrained(mname, trust_remote_code=True) print("success") ''' # baseline - just load from_pretrained with normal network _a = [sys.executable, '''-c''', '''\n'''.join([load, run] )] # should succeed _a = self.get_env() _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() ) # should succeed as TRANSFORMERS_OFFLINE=1 tells it to use local files _a = '''1''' _a = subprocess.run(A , env=A , check=A , capture_output=A ) self.assertEqual(result.returncode , 0 , result.stderr ) self.assertIn('''success''' , result.stdout.decode() )
11
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
390
0
def _A ( __snake_case :str ) -> bool: """simple docstring""" if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) __SCREAMING_SNAKE_CASE = sorted(string.lower() ) return len(__snake_case ) == len(set(__snake_case ) ) if __name__ == "__main__": _snake_case : Any = input('Enter a string ').strip() _snake_case : Dict = is_isogram(input_str) print(F"""{input_str} is {'an' if isogram else 'not an'} isogram.""")
214
def _A ( __snake_case :int ) -> bool: """simple docstring""" if not isinstance(__snake_case , __snake_case ): raise ValueError("check_bouncy() accepts only integer arguments" ) __SCREAMING_SNAKE_CASE = str(__snake_case ) __SCREAMING_SNAKE_CASE = "".join(sorted(__snake_case ) ) return sorted_str_n != str_n and sorted_str_n[::-1] != str_n def _A ( __snake_case :float = 99 ) -> int: """simple docstring""" if not 0 < percent < 100: raise ValueError("solution() only accepts values from 0 to 100" ) __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 while True: if check_bouncy(__snake_case ): bouncy_num += 1 if (bouncy_num / num) * 100 >= percent: return num num += 1 if __name__ == "__main__": from doctest import testmod testmod() print(F"""{solution(99)}""")
214
1
from ...processing_utils import ProcessorMixin class A__ ( __snake_case ): '''simple docstring''' snake_case__ = """WhisperFeatureExtractor""" snake_case__ = """WhisperTokenizer""" def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase = self.feature_extractor UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Union[str, Any]=None , _SCREAMING_SNAKE_CASE : Dict=None , _SCREAMING_SNAKE_CASE : List[str]=True ): """simple docstring""" return self.tokenizer.get_decoder_prompt_ids(task=_SCREAMING_SNAKE_CASE , language=_SCREAMING_SNAKE_CASE , no_timestamps=_SCREAMING_SNAKE_CASE ) def __call__( self : List[Any] , *_SCREAMING_SNAKE_CASE : List[Any] , **_SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" if self._in_target_context_manager: return self.current_processor(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop('audio' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop('sampling_rate' , _SCREAMING_SNAKE_CASE ) UpperCamelCase = kwargs.pop('text' , _SCREAMING_SNAKE_CASE ) if len(_SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase = args[0] UpperCamelCase = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: UpperCamelCase = self.feature_extractor(_SCREAMING_SNAKE_CASE , *_SCREAMING_SNAKE_CASE , sampling_rate=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is not None: UpperCamelCase = self.tokenizer(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: UpperCamelCase = encodings['input_ids'] return inputs def _SCREAMING_SNAKE_CASE ( self : Dict , *_SCREAMING_SNAKE_CASE : Tuple , **_SCREAMING_SNAKE_CASE : Dict ): """simple docstring""" return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Dict , *_SCREAMING_SNAKE_CASE : Dict , **_SCREAMING_SNAKE_CASE : str ): """simple docstring""" return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any]="np" ): """simple docstring""" return self.tokenizer.get_prompt_ids(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE )
280
from collections.abc import Sequence def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> float: """simple docstring""" return sum(c * (x**i) for i, c in enumerate(_UpperCamelCase)) def lowercase__ ( _UpperCamelCase , _UpperCamelCase) -> float: """simple docstring""" UpperCamelCase = 0.0 for coeff in reversed(_UpperCamelCase): UpperCamelCase = result * x + coeff return result if __name__ == "__main__": __magic_name__ : Union[str, Any] = (0.0, 0.0, 5.0, 9.3, 7.0) __magic_name__ : List[str] = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
280
1
"""simple docstring""" def UpperCamelCase ( _lowerCAmelCase : int , _lowerCAmelCase : int ): return int((input_a, input_a).count(0 ) != 0 ) def UpperCamelCase ( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
705
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class a ( ctypes.Structure ): # _fields is a specific attr expected by ctypes A_ : Dict = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def UpperCamelCase ( ): if os.name == "nt": __a = CursorInfo() __a = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowerCAmelCase , ctypes.byref(_lowerCAmelCase ) ) __a = False ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowerCAmelCase , ctypes.byref(_lowerCAmelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25l""" ) sys.stdout.flush() def UpperCamelCase ( ): if os.name == "nt": __a = CursorInfo() __a = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(_lowerCAmelCase , ctypes.byref(_lowerCAmelCase ) ) __a = True ctypes.windll.kernelaa.SetConsoleCursorInfo(_lowerCAmelCase , ctypes.byref(_lowerCAmelCase ) ) elif os.name == "posix": sys.stdout.write("""\033[?25h""" ) sys.stdout.flush() @contextmanager def UpperCamelCase ( ): try: hide_cursor() yield finally: show_cursor()
173
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) __lowerCamelCase : Optional[int] = { """configuration_wav2vec2""": ["""WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Wav2Vec2Config"""], """feature_extraction_wav2vec2""": ["""Wav2Vec2FeatureExtractor"""], """processing_wav2vec2""": ["""Wav2Vec2Processor"""], """tokenization_wav2vec2""": ["""Wav2Vec2CTCTokenizer""", """Wav2Vec2Tokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Wav2Vec2ForAudioFrameClassification""", """Wav2Vec2ForCTC""", """Wav2Vec2ForMaskedLM""", """Wav2Vec2ForPreTraining""", """Wav2Vec2ForSequenceClassification""", """Wav2Vec2ForXVector""", """Wav2Vec2Model""", """Wav2Vec2PreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : int = [ """TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFWav2Vec2ForCTC""", """TFWav2Vec2Model""", """TFWav2Vec2PreTrainedModel""", """TFWav2Vec2ForSequenceClassification""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Union[str, Any] = [ """FlaxWav2Vec2ForCTC""", """FlaxWav2Vec2ForPreTraining""", """FlaxWav2Vec2Model""", """FlaxWav2Vec2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys __lowerCamelCase : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
629
__lowerCamelCase : Any = 9.8_0_6_6_5 def A_ ( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase = g ) -> float: if fluid_density <= 0: raise ValueError("Impossible fluid density" ) if volume < 0: raise ValueError("Impossible Object volume" ) if gravity <= 0: raise ValueError("Impossible Gravity" ) return fluid_density * gravity * volume if __name__ == "__main__": import doctest # run doctest doctest.testmod()
629
1
'''simple docstring''' import warnings from ..trainer import Trainer from ..utils import logging _UpperCamelCase = logging.get_logger(__name__) class lowerCamelCase__ ( _A ): '''simple docstring''' def __init__( self : Dict , __A : Optional[int]=None , **__A : Optional[int] ) -> Optional[int]: '''simple docstring''' warnings.warn( """`SageMakerTrainer` is deprecated and will be removed in v5 of Transformers. You can use `Trainer` """ """instead.""" , __A , ) super().__init__(args=__A , **__A )
211
'''simple docstring''' import argparse import datetime def _lowerCAmelCase( UpperCAmelCase_ : str ) -> str: lowerCAmelCase__ = { """0""": """Sunday""", """1""": """Monday""", """2""": """Tuesday""", """3""": """Wednesday""", """4""": """Thursday""", """5""": """Friday""", """6""": """Saturday""", } lowerCAmelCase__ = {0: 1, 1: 2, 2: 3, 3: 4, 4: 5, 5: 6, 6: 0} # Validate if not 0 < len(UpperCAmelCase_ ) < 11: raise ValueError("""Must be 10 characters long""" ) # Get month lowerCAmelCase__ = int(date_input[0] + date_input[1] ) # Validate if not 0 < m < 13: raise ValueError("""Month must be between 1 - 12""" ) lowerCAmelCase__ = date_input[2] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get day lowerCAmelCase__ = int(date_input[3] + date_input[4] ) # Validate if not 0 < d < 32: raise ValueError("""Date must be between 1 - 31""" ) # Get second separator lowerCAmelCase__ = date_input[5] # Validate if sep_a not in ["-", "/"]: raise ValueError("""Date separator must be '-' or '/'""" ) # Get year lowerCAmelCase__ = int(date_input[6] + date_input[7] + date_input[8] + date_input[9] ) # Arbitrary year range if not 45 < y < 8500: raise ValueError( """Year out of range. There has to be some sort of limit...right?""" ) # Get datetime obj for validation lowerCAmelCase__ = datetime.date(int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) , int(UpperCAmelCase_ ) ) # Start math if m <= 2: lowerCAmelCase__ = y - 1 lowerCAmelCase__ = m + 12 # maths var lowerCAmelCase__ = int(str(UpperCAmelCase_ )[:2] ) lowerCAmelCase__ = int(str(UpperCAmelCase_ )[2:] ) lowerCAmelCase__ = int(2.6 * m - 5.39 ) lowerCAmelCase__ = int(c / 4 ) lowerCAmelCase__ = int(k / 4 ) lowerCAmelCase__ = int(d + k ) lowerCAmelCase__ = int(t + u + v + x ) lowerCAmelCase__ = int(z - (2 * c) ) lowerCAmelCase__ = round(w % 7 ) # End math # Validate math if f != convert_datetime_days[dt_ck.weekday()]: raise AssertionError("""The date was evaluated incorrectly. Contact developer.""" ) # Response lowerCAmelCase__ = F'''Your date {date_input}, is a {days[str(UpperCAmelCase_ )]}!''' return response if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = argparse.ArgumentParser( description=( """Find out what day of the week nearly any date is or was. Enter """ """date as a string in the mm-dd-yyyy or mm/dd/yyyy format""" ) ) parser.add_argument( """date_input""", type=str, help="""Date as a string (mm-dd-yyyy or mm/dd/yyyy)""" ) _UpperCamelCase = parser.parse_args() zeller(args.date_input)
211
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _UpperCAmelCase ( _lowerCamelCase , unittest.TestCase ): a = KandinskyImgaImgPipeline a = ['''prompt''', '''image_embeds''', '''negative_image_embeds''', '''image'''] a = [ '''prompt''', '''negative_prompt''', '''image_embeds''', '''negative_image_embeds''', '''image''', ] a = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''negative_prompt''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] a = False @property def _lowerCamelCase ( self ): return 32 @property def _lowerCamelCase ( self ): return 32 @property def _lowerCamelCase ( self ): return self.time_input_dim @property def _lowerCamelCase ( self ): return self.time_input_dim * 4 @property def _lowerCamelCase ( self ): return 100 @property def _lowerCamelCase ( self ): A_ : Any = XLMRobertaTokenizerFast.from_pretrained("""YiYiXu/tiny-random-mclip-base""" ) return tokenizer @property def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : List[Any] = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=1005 , ) A_ : Any = MultilingualCLIP(a__ ) A_ : Union[str, Any] = text_encoder.eval() return text_encoder @property def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Union[str, Any] = { """in_channels""": 4, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """text_image""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """text_image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } A_ : Tuple = UNetaDConditionModel(**a__ ) return model @property def _lowerCamelCase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowerCamelCase ( self ): torch.manual_seed(0 ) A_ : Optional[int] = VQModel(**self.dummy_movq_kwargs ) return model def _lowerCamelCase ( self ): A_ : Any = self.dummy_text_encoder A_ : List[str] = self.dummy_tokenizer A_ : Dict = self.dummy_unet A_ : Union[str, Any] = self.dummy_movq A_ : Tuple = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.0_0085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } A_ : Tuple = DDIMScheduler(**a__ ) A_ : Dict = { """text_encoder""": text_encoder, """tokenizer""": tokenizer, """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def _lowerCamelCase ( self , a__ , a__=0 ): A_ : Tuple = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(a__ ) ).to(a__ ) A_ : str = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(a__ ) # create init_image A_ : Dict = floats_tensor((1, 3, 64, 64) , rng=random.Random(a__ ) ).to(a__ ) A_ : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] A_ : str = Image.fromarray(np.uinta(a__ ) ).convert("""RGB""" ).resize((256, 256) ) if str(a__ ).startswith("""mps""" ): A_ : int = torch.manual_seed(a__ ) else: A_ : List[str] = torch.Generator(device=a__ ).manual_seed(a__ ) A_ : Optional[int] = { """prompt""": """horse""", """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def _lowerCamelCase ( self ): A_ : Dict = """cpu""" A_ : List[Any] = self.get_dummy_components() A_ : Any = self.pipeline_class(**a__ ) A_ : Union[str, Any] = pipe.to(a__ ) pipe.set_progress_bar_config(disable=a__ ) A_ : List[str] = pipe(**self.get_dummy_inputs(a__ ) ) A_ : Any = output.images A_ : Any = pipe( **self.get_dummy_inputs(a__ ) , return_dict=a__ , )[0] A_ : str = image[0, -3:, -3:, -1] A_ : Optional[int] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) A_ : Optional[int] = np.array( [0.6147_4943, 0.607_3539, 0.4330_8544, 0.592_8269, 0.4749_3595, 0.4675_5973, 0.461_3838, 0.4536_8797, 0.5011_9233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class _UpperCAmelCase ( unittest.TestCase ): def _lowerCamelCase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self ): A_ : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/kandinsky_img2img_frog.npy""" ) A_ : Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) A_ : Any = """A red cartoon frog, 4k""" A_ : List[Any] = KandinskyPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(a__ ) A_ : Optional[int] = KandinskyImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-1""" , torch_dtype=torch.floataa ) A_ : int = pipeline.to(a__ ) pipeline.set_progress_bar_config(disable=a__ ) A_ : Dict = torch.Generator(device="""cpu""" ).manual_seed(0 ) A_ , A_ : str = pipe_prior( a__ , generator=a__ , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() A_ : Optional[Any] = pipeline( a__ , image=a__ , image_embeds=a__ , negative_image_embeds=a__ , generator=a__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type="""np""" , ) A_ : Dict = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(a__ , a__ )
569
from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = TypeVar("""DatasetType""", Dataset, IterableDataset) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = "first_exhausted" ,): '''simple docstring''' from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError("""Unable to interleave an empty list of datasets.""" ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase ,(Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: A_ , A_ : Optional[int] = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f"""{stopping_strategy} is not supported. Please enter a valid stopping_strategy.""" ) if dataset_type is Dataset: return _interleave_map_style_datasets( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,stopping_strategy=_lowerCAmelCase ) else: return _interleave_iterable_datasets( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,stopping_strategy=_lowerCAmelCase ) def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = None ,_lowerCAmelCase = None ,_lowerCAmelCase = 0 ,): '''simple docstring''' if not dsets: raise ValueError("""Unable to concatenate an empty list of datasets.""" ) for i, dataset in enumerate(_lowerCAmelCase ): if not isinstance(_lowerCAmelCase ,(Dataset, IterableDataset) ): if isinstance(_lowerCAmelCase ,(DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} """ """is an empty dataset dictionary.""" ) raise ValueError( f"""Dataset at position {i} has at least one split: {list(_lowerCAmelCase )}\n""" f"""Please pick one to interleave with the other datasets, for example: dataset['{next(iter(_lowerCAmelCase ) )}']""" ) raise ValueError( f"""Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(_lowerCAmelCase ).__name__}.""" ) if i == 0: A_ , A_ : Dict = ( (Dataset, IterableDataset) if isinstance(_lowerCAmelCase ,_lowerCAmelCase ) else (IterableDataset, Dataset) ) elif not isinstance(_lowerCAmelCase ,_lowerCAmelCase ): raise ValueError( f"""Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.""" ) if dataset_type is Dataset: return _concatenate_map_style_datasets(_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,axis=_lowerCAmelCase ) else: return _concatenate_iterable_datasets(_lowerCAmelCase ,info=_lowerCAmelCase ,split=_lowerCAmelCase ,axis=_lowerCAmelCase )
569
1
import numpy as np from cva import destroyAllWindows, imread, imshow, waitKey class lowerCamelCase : '''simple docstring''' def __init__( self : Dict , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[int] ) ->List[Any]: if dst_width < 0 or dst_height < 0: raise ValueError('''Destination width/height should be > 0''' ) UpperCAmelCase_ = img UpperCAmelCase_ = img.shape[1] UpperCAmelCase_ = img.shape[0] UpperCAmelCase_ = dst_width UpperCAmelCase_ = dst_height UpperCAmelCase_ = self.src_w / self.dst_w UpperCAmelCase_ = self.src_h / self.dst_h UpperCAmelCase_ = ( np.ones((self.dst_h, self.dst_w, 3) , np.uinta ) * 255 ) def lowerCAmelCase__ ( self : List[str] ) ->Dict: for i in range(self.dst_h ): for j in range(self.dst_w ): UpperCAmelCase_ = self.img[self.get_y(lowerCAmelCase__ )][self.get_x(lowerCAmelCase__ )] def lowerCAmelCase__ ( self : Tuple , UpperCAmelCase__ : Tuple ) ->int: return int(self.ratio_x * x ) def lowerCAmelCase__ ( self : List[Any] , UpperCAmelCase__ : List[str] ) ->int: return int(self.ratio_y * y ) if __name__ == "__main__": lowercase__ : Any = 800, 600 lowercase__ : Union[str, Any] = imread("image_data/lena.jpg", 1) lowercase__ : List[Any] = NearestNeighbour(im, dst_w, dst_h) n.process() imshow( F'''Image resized from: {im.shape[1]}x{im.shape[0]} to {dst_w}x{dst_h}''', n.output ) waitKey(0) destroyAllWindows()
709
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotConfig, is_flax_available from transformers.testing_utils import jax_device, require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html lowercase__ : Optional[Any] = "platform" import jax import jax.numpy as jnp from transformers import BlenderbotTokenizer from transformers.models.blenderbot.modeling_flax_blenderbot import ( FlaxBlenderbotForConditionalGeneration, FlaxBlenderbotModel, shift_tokens_right, ) def __lowerCamelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : Any , _UpperCamelCase : Optional[int]=None , _UpperCamelCase : Any=None , _UpperCamelCase : int=None , _UpperCamelCase : int=None , _UpperCamelCase : Union[str, Any]=None , _UpperCamelCase : Any=None , ): '''simple docstring''' if attention_mask is None: UpperCAmelCase_ = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: UpperCAmelCase_ = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: UpperCAmelCase_ = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCAmelCase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCAmelCase_ = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowerCamelCase : '''simple docstring''' def __init__( self : Any , UpperCAmelCase__ : Tuple , UpperCAmelCase__ : Tuple=13 , UpperCAmelCase__ : Tuple=7 , UpperCAmelCase__ : Any=True , UpperCAmelCase__ : Union[str, Any]=False , UpperCAmelCase__ : Optional[int]=99 , UpperCAmelCase__ : Dict=16 , UpperCAmelCase__ : Any=2 , UpperCAmelCase__ : Dict=4 , UpperCAmelCase__ : str=4 , UpperCAmelCase__ : int="gelu" , UpperCAmelCase__ : Tuple=0.1 , UpperCAmelCase__ : List[str]=0.1 , UpperCAmelCase__ : List[Any]=32 , UpperCAmelCase__ : Union[str, Any]=2 , UpperCAmelCase__ : Dict=1 , UpperCAmelCase__ : Optional[int]=0 , UpperCAmelCase__ : Union[str, Any]=0.02 , ) ->Optional[int]: UpperCAmelCase_ = parent UpperCAmelCase_ = batch_size UpperCAmelCase_ = seq_length UpperCAmelCase_ = is_training UpperCAmelCase_ = use_labels UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_act UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = eos_token_id UpperCAmelCase_ = pad_token_id UpperCAmelCase_ = bos_token_id UpperCAmelCase_ = initializer_range def lowerCAmelCase__ ( self : int ) ->Any: UpperCAmelCase_ = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) UpperCAmelCase_ = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) UpperCAmelCase_ = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) UpperCAmelCase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=UpperCAmelCase__ , ) UpperCAmelCase_ = prepare_blenderbot_inputs_dict(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return config, inputs_dict def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[str]: UpperCAmelCase_ , UpperCAmelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase__ ( self : Optional[int] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Tuple ) ->Tuple: UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(UpperCAmelCase__ ) UpperCAmelCase_ = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase_ , UpperCAmelCase_ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='''i4''' ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) UpperCAmelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase_ = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=UpperCAmelCase__ , ) UpperCAmelCase_ = model.decode(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def lowerCAmelCase__ ( self : List[str] , UpperCAmelCase__ : Any , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : Any ) ->Union[str, Any]: UpperCAmelCase_ = 20 UpperCAmelCase_ = model_class_name(UpperCAmelCase__ ) UpperCAmelCase_ = model.encode(inputs_dict['''input_ids'''] ) UpperCAmelCase_ , UpperCAmelCase_ = ( inputs_dict['''decoder_input_ids'''], inputs_dict['''decoder_attention_mask'''], ) UpperCAmelCase_ = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) UpperCAmelCase_ = model.init_cache(decoder_input_ids.shape[0] , UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) UpperCAmelCase_ = model.decode( decoder_input_ids[:, :-1] , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , past_key_values=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) UpperCAmelCase_ = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='''i4''' ) UpperCAmelCase_ = model.decode( decoder_input_ids[:, -1:] , UpperCAmelCase__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=UpperCAmelCase__ , decoder_position_ids=UpperCAmelCase__ , ) UpperCAmelCase_ = model.decode(UpperCAmelCase__ , UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ ) UpperCAmelCase_ = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class lowerCamelCase ( unittest.TestCase ): '''simple docstring''' lowerCAmelCase__ = 99 def lowerCAmelCase__ ( self : List[str] ) ->Optional[Any]: UpperCAmelCase_ = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) UpperCAmelCase_ = input_ids.shape[0] UpperCAmelCase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase__ ( self : Any ) ->str: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = self._get_config_and_data() UpperCAmelCase_ = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase__ ) UpperCAmelCase_ = lm_model(input_ids=UpperCAmelCase__ ) UpperCAmelCase_ = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__ ) def lowerCAmelCase__ ( self : str ) ->int: UpperCAmelCase_ = BlenderbotConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) UpperCAmelCase_ = FlaxBlenderbotForConditionalGeneration(UpperCAmelCase__ ) UpperCAmelCase_ = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) UpperCAmelCase_ = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) UpperCAmelCase_ = lm_model(input_ids=UpperCAmelCase__ , decoder_input_ids=UpperCAmelCase__ ) UpperCAmelCase_ = (*summary.shape, config.vocab_size) self.assertEqual(outputs['''logits'''].shape , UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Union[str, Any] ) ->List[Any]: UpperCAmelCase_ = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) UpperCAmelCase_ = shift_tokens_right(UpperCAmelCase__ , 1 , 2 ) UpperCAmelCase_ = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() UpperCAmelCase_ = np.equal(UpperCAmelCase__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(UpperCAmelCase__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowerCamelCase ( lowerCamelCase , unittest.TestCase , lowerCamelCase ): '''simple docstring''' lowerCAmelCase__ = True lowerCAmelCase__ = ( ( FlaxBlenderbotModel, FlaxBlenderbotForConditionalGeneration, ) if is_flax_available() else () ) lowerCAmelCase__ = (FlaxBlenderbotForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase__ ( self : Optional[int] ) ->List[Any]: UpperCAmelCase_ = FlaxBlenderbotModelTester(self ) def lowerCAmelCase__ ( self : str ) ->Tuple: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Tuple ) ->str: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def lowerCAmelCase__ ( self : Dict ) ->Tuple: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = self._prepare_for_class(UpperCAmelCase__ , UpperCAmelCase__ ) UpperCAmelCase_ = model_class(UpperCAmelCase__ ) @jax.jit def encode_jitted(UpperCAmelCase__ : List[str] , UpperCAmelCase__ : Optional[Any]=None , **UpperCAmelCase__ : Union[str, Any] ): return model.encode(input_ids=UpperCAmelCase__ , attention_mask=UpperCAmelCase__ ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ = encode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ = encode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase__ ( self : str ) ->str: UpperCAmelCase_ , UpperCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): UpperCAmelCase_ = model_class(UpperCAmelCase__ ) UpperCAmelCase_ = model.encode(inputs_dict['''input_ids'''] , inputs_dict['''attention_mask'''] ) UpperCAmelCase_ = { '''decoder_input_ids''': inputs_dict['''decoder_input_ids'''], '''decoder_attention_mask''': inputs_dict['''decoder_attention_mask'''], '''encoder_outputs''': encoder_outputs, } @jax.jit def decode_jitted(UpperCAmelCase__ : Optional[int] , UpperCAmelCase__ : List[Any] , UpperCAmelCase__ : int ): return model.decode( decoder_input_ids=UpperCAmelCase__ , decoder_attention_mask=UpperCAmelCase__ , encoder_outputs=UpperCAmelCase__ , ) with self.subTest('''JIT Enabled''' ): UpperCAmelCase_ = decode_jitted(**UpperCAmelCase__ ).to_tuple() with self.subTest('''JIT Disabled''' ): with jax.disable_jit(): UpperCAmelCase_ = decode_jitted(**UpperCAmelCase__ ).to_tuple() self.assertEqual(len(UpperCAmelCase__ ) , len(UpperCAmelCase__ ) ) for jitted_output, output in zip(UpperCAmelCase__ , UpperCAmelCase__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase__ ( self : int ) ->int: for model_class_name in self.all_model_classes: UpperCAmelCase_ = model_class_name.from_pretrained('''facebook/blenderbot-400M-distill''' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids UpperCAmelCase_ = np.ones((1, 1) ) * model.config.eos_token_id UpperCAmelCase_ = model(UpperCAmelCase__ ) self.assertIsNotNone(UpperCAmelCase__ ) @unittest.skipUnless(jax_device != '''cpu''' , '''3B test too slow on CPU.''' ) @slow def lowerCAmelCase__ ( self : Dict ) ->Optional[Any]: UpperCAmelCase_ = {'''num_beams''': 1, '''early_stopping''': True, '''min_length''': 15, '''max_length''': 25} UpperCAmelCase_ = {'''skip_special_tokens''': True, '''clean_up_tokenization_spaces''': True} UpperCAmelCase_ = FlaxBlenderbotForConditionalGeneration.from_pretrained('''facebook/blenderbot-3B''' , from_pt=UpperCAmelCase__ ) UpperCAmelCase_ = BlenderbotTokenizer.from_pretrained('''facebook/blenderbot-3B''' ) UpperCAmelCase_ = ['''Sam'''] UpperCAmelCase_ = tokenizer(UpperCAmelCase__ , return_tensors='''jax''' ) UpperCAmelCase_ = model.generate(**UpperCAmelCase__ , **UpperCAmelCase__ ) UpperCAmelCase_ = '''Sam is a great name. It means "sun" in Gaelic.''' UpperCAmelCase_ = tokenizer.batch_decode(UpperCAmelCase__ , **UpperCAmelCase__ ) assert generated_txt[0].strip() == tgt_text
43
0
"""simple docstring""" def __A ( a_ : int = 10 , a_ : str = 10_00 , a_ : Optional[int] = True )-> Optional[int]: '''simple docstring''' assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and isinstance(a__ , a__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('''Invalid value for min_val or max_val (min_value < max_value)''' ) return min_val if option else max_val def __A ( a_ : Any , a_ : List[Any] )-> Union[str, Any]: '''simple docstring''' return int((number_a + number_a) / 2 ) def __A ( a_ : Optional[Any] , a_ : Optional[Any] , a_ : Optional[int] )-> Optional[Any]: '''simple docstring''' assert ( isinstance(a__ , a__ ) and isinstance(a__ , a__ ) and isinstance(a__ , a__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('''argument value for lower and higher must be(lower > higher)''' ) if not lower < to_guess < higher: raise ValueError( '''guess value must be within the range of lower and higher value''' ) def answer(a_ : Tuple ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('''started...''' ) SCREAMING_SNAKE_CASE : str = lower SCREAMING_SNAKE_CASE : List[Any] = higher SCREAMING_SNAKE_CASE : List[Any] = [] while True: SCREAMING_SNAKE_CASE : Tuple = get_avg(a__ , a__ ) last_numbers.append(a__ ) if answer(a__ ) == "low": SCREAMING_SNAKE_CASE : str = number elif answer(a__ ) == "high": SCREAMING_SNAKE_CASE : Optional[int] = number else: break print(F"guess the number : {last_numbers[-1]}" ) print(F"details : {last_numbers!s}" ) def __A ( )-> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE : List[Any] = int(input('''Enter lower value : ''' ).strip() ) SCREAMING_SNAKE_CASE : Union[str, Any] = int(input('''Enter high value : ''' ).strip() ) SCREAMING_SNAKE_CASE : int = int(input('''Enter value to guess : ''' ).strip() ) guess_the_number(a__ , a__ , a__ ) if __name__ == "__main__": main()
698
import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class A__: """simple docstring""" def __init__( self , _lowercase , _lowercase=13 , _lowercase=7 , _lowercase=True , _lowercase=True , _lowercase=False , _lowercase=True , _lowercase=99 , _lowercase=32 , _lowercase=5 , _lowercase=4 , _lowercase=37 , _lowercase="gelu" , _lowercase=0.1 , _lowercase=0.1 , _lowercase=512 , _lowercase=16 , _lowercase=2 , _lowercase=0.0_2 , _lowercase=3 , _lowercase=4 , _lowercase=None , ) -> Tuple: a_ : Union[str, Any] = parent a_ : int = batch_size a_ : int = seq_length a_ : int = is_training a_ : List[Any] = use_input_mask a_ : str = use_token_type_ids a_ : List[str] = use_labels a_ : List[Any] = vocab_size a_ : Dict = hidden_size a_ : List[Any] = num_hidden_layers a_ : str = num_attention_heads a_ : str = intermediate_size a_ : Optional[int] = hidden_act a_ : Optional[int] = hidden_dropout_prob a_ : int = attention_probs_dropout_prob a_ : List[str] = max_position_embeddings a_ : Optional[Any] = type_vocab_size a_ : Any = type_sequence_label_size a_ : List[Any] = initializer_range a_ : List[str] = num_labels a_ : Union[str, Any] = num_choices a_ : Dict = scope def UpperCamelCase__ ( self ) -> Any: a_ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ : Union[str, Any] = None if self.use_input_mask: a_ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) a_ : List[Any] = None if self.use_token_type_ids: a_ : Any = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ : Union[str, Any] = None a_ : Dict = None a_ : Any = None if self.use_labels: a_ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a_ : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a_ : int = ids_tensor([self.batch_size] , self.num_choices ) a_ : Optional[int] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase__ ( self ) -> Any: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowercase , initializer_range=self.initializer_range , use_stable_embedding=_lowercase , ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ) -> Dict: a_ : Optional[Any] = OpenLlamaModel(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : List[Any] = model(_lowercase , attention_mask=_lowercase ) a_ : Optional[Any] = model(_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Union[str, Any]: a_ : int = True a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) model.to(_lowercase ) model.eval() a_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , ) a_ : Any = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , ) a_ : Optional[int] = model(_lowercase , attention_mask=_lowercase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> Any: a_ : Dict = OpenLlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() a_ : int = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , ) -> List[str]: a_ : Dict = True a_ : Optional[int] = True a_ : Dict = OpenLlamaForCausalLM(config=_lowercase ) model.to(_lowercase ) model.eval() # first forward pass a_ : List[str] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , use_cache=_lowercase , ) a_ : Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids a_ : Optional[Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) a_ : Union[str, Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and a_ : Any = torch.cat([input_ids, next_tokens] , dim=-1 ) a_ : Any = torch.cat([input_mask, next_mask] , dim=-1 ) a_ : Optional[int] = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] a_ : Dict = model( _lowercase , attention_mask=_lowercase , encoder_hidden_states=_lowercase , encoder_attention_mask=_lowercase , past_key_values=_lowercase , output_hidden_states=_lowercase , )["""hidden_states"""][0] # select random slice a_ : Optional[int] = ids_tensor((1,) , output_from_past.shape[-1] ).item() a_ : Dict = output_from_no_past[:, -3:, random_slice_idx].detach() a_ : Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-3 ) ) def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Any = self.prepare_config_and_inputs() ( ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ( a_ ) , ) : Union[str, Any] = config_and_inputs a_ : Tuple = {"""input_ids""": input_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class A__(a_, a_, a_, unittest.TestCase ): """simple docstring""" _A : Tuple = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) _A : int = (OpenLlamaForCausalLM,) if is_torch_available() else () _A : Optional[int] = ( { '''feature-extraction''': OpenLlamaModel, '''text-classification''': OpenLlamaForSequenceClassification, '''text-generation''': OpenLlamaForCausalLM, '''zero-shot''': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) _A : Tuple = False _A : Any = False def UpperCamelCase__ ( self ) -> List[str]: a_ : Optional[int] = OpenLlamaModelTester(self ) a_ : Optional[int] = ConfigTester(self , config_class=_lowercase , hidden_size=37 ) def UpperCamelCase__ ( self ) -> Any: self.config_tester.run_common_tests() def UpperCamelCase__ ( self ) -> Optional[Any]: a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> Tuple: a_ : Any = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: a_ : Dict = type self.model_tester.create_and_check_model(*_lowercase ) def UpperCamelCase__ ( self ) -> Union[str, Any]: a_ , a_ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() a_ : Any = 3 a_ : List[str] = input_dict["""input_ids"""] a_ : List[str] = input_ids.ne(1 ).to(_lowercase ) a_ : int = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a_ : int = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : Tuple = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) -> Optional[Any]: a_ , a_ : Any = self.model_tester.prepare_config_and_inputs_for_common() a_ : Union[str, Any] = 3 a_ : List[Any] = """single_label_classification""" a_ : Dict = input_dict["""input_ids"""] a_ : int = input_ids.ne(1 ).to(_lowercase ) a_ : List[str] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) a_ : Any = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : Any = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def UpperCamelCase__ ( self ) -> Tuple: a_ , a_ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() a_ : Any = 3 a_ : List[str] = """multi_label_classification""" a_ : Dict = input_dict["""input_ids"""] a_ : Any = input_ids.ne(1 ).to(_lowercase ) a_ : List[Any] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) a_ : Optional[int] = OpenLlamaForSequenceClassification(_lowercase ) model.to(_lowercase ) model.eval() a_ : int = model(_lowercase , attention_mask=_lowercase , labels=_lowercase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip("""Open-Llama buffers include complex numbers, which breaks this test""" ) def UpperCamelCase__ ( self ) -> Tuple: pass @parameterized.expand([("""linear""",), ("""dynamic""",)] ) def UpperCamelCase__ ( self , _lowercase ) -> str: a_ , a_ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a_ : List[Any] = ids_tensor([1, 10] , config.vocab_size ) a_ : str = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) original_model.to(_lowercase ) original_model.eval() a_ : Union[str, Any] = original_model(_lowercase ).last_hidden_state a_ : str = original_model(_lowercase ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights a_ : int = {"""type""": scaling_type, """factor""": 1_0.0} a_ : Union[str, Any] = OpenLlamaModel(_lowercase ) scaled_model.to(_lowercase ) scaled_model.eval() a_ : Optional[int] = scaled_model(_lowercase ).last_hidden_state a_ : Tuple = scaled_model(_lowercase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(_lowercase , _lowercase , atol=1e-5 ) )
540
0
import fire from utils import calculate_rouge, save_json def _lowerCAmelCase ( _a : Union[str, Any] , _a : str , _a : Optional[Any]=None , **_a : int ) -> int: lowerCAmelCase_ : Union[str, Any] = [x.strip() for x in open(_lowerCAmelCase ).readlines()] lowerCAmelCase_ : str = [x.strip() for x in open(_lowerCAmelCase ).readlines()][: len(_lowerCAmelCase )] lowerCAmelCase_ : Dict = calculate_rouge(_lowerCAmelCase , _lowerCAmelCase , **_lowerCAmelCase ) if save_path is not None: save_json(_lowerCAmelCase , _lowerCAmelCase , indent=_lowerCAmelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
701
from __future__ import annotations def _lowerCAmelCase ( _a : list[int] ) -> list[int]: # This function is recursive lowerCAmelCase_ : List[Any] = len(_a ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase_ : Union[str, Any] = array[0] lowerCAmelCase_ : str = False lowerCAmelCase_ : Optional[int] = 1 lowerCAmelCase_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase_ : Optional[Any] = True lowerCAmelCase_ : Tuple = [element for element in array[i:] if element >= array[i]] lowerCAmelCase_ : Any = longest_subsequence(_a ) if len(_a ) > len(_a ): lowerCAmelCase_ : List[Any] = temp_array else: i += 1 lowerCAmelCase_ : Tuple = [element for element in array[1:] if element >= pivot] lowerCAmelCase_ : List[Any] = [pivot, *longest_subsequence(_a )] if len(_a ) > len(_a ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
440
0
import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class __UpperCamelCase : def __init__( self , _UpperCamelCase , _UpperCamelCase=13 , _UpperCamelCase=7 , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=True , _UpperCamelCase=99 , _UpperCamelCase=32 , _UpperCamelCase=5 , _UpperCamelCase=4 , _UpperCamelCase=37 , _UpperCamelCase="gelu" , _UpperCamelCase=0.1 , _UpperCamelCase=0.1 , _UpperCamelCase=512 , _UpperCamelCase=16 , _UpperCamelCase=2 , _UpperCamelCase=0.02 , _UpperCamelCase=3 , _UpperCamelCase=4 , _UpperCamelCase=None , ): _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def UpperCamelCase( self ): _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase( self ): return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = NystromformerModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase , token_type_ids=_UpperCamelCase ) _UpperCAmelCase = model(_UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = NystromformerForMaskedLM(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = NystromformerForQuestionAnswering(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , start_positions=_UpperCamelCase , end_positions=_UpperCamelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForSequenceClassification(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_labels _UpperCAmelCase = NystromformerForTokenClassification(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = model(_UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ): _UpperCAmelCase = self.num_choices _UpperCAmelCase = NystromformerForMultipleChoice(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() _UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase = model( _UpperCamelCase , attention_mask=_UpperCamelCase , token_type_ids=_UpperCamelCase , labels=_UpperCamelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase( self ): _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( A__ , A__ , unittest.TestCase ): __A : Tuple = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) __A : Optional[Any] = ( { """feature-extraction""": NystromformerModel, """fill-mask""": NystromformerForMaskedLM, """question-answering""": NystromformerForQuestionAnswering, """text-classification""": NystromformerForSequenceClassification, """token-classification""": NystromformerForTokenClassification, """zero-shot""": NystromformerForSequenceClassification, } if is_torch_available() else {} ) __A : Any = False __A : Optional[Any] = False def UpperCamelCase( self ): _UpperCAmelCase = NystromformerModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_UpperCamelCase , hidden_size=37 ) def UpperCamelCase( self ): self.config_tester.run_common_tests() def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_UpperCamelCase ) def UpperCamelCase( self ): _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_UpperCamelCase ) @slow def UpperCamelCase( self ): for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _UpperCAmelCase = NystromformerModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) @require_torch class __UpperCamelCase ( unittest.TestCase ): @slow def UpperCamelCase( self ): _UpperCAmelCase = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): _UpperCAmelCase = model(_UpperCamelCase )[0] _UpperCAmelCase = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , _UpperCamelCase ) _UpperCAmelCase = torch.tensor( [[[-0.4532, -0.0936, 0.5137], [-0.2676, 0.0628, 0.6186], [-0.3629, -0.1726, 0.4716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) @slow def UpperCamelCase( self ): _UpperCAmelCase = '''the [MASK] of Belgium is Brussels''' _UpperCAmelCase = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) _UpperCAmelCase = tokenizer(_UpperCamelCase , return_tensors='''pt''' ) with torch.no_grad(): _UpperCAmelCase = model(encoding.input_ids ).logits _UpperCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(_UpperCamelCase ) , '''capital''' )
32
"""simple docstring""" from collections import OrderedDict from typing import List, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __lowerCamelCase = logging.get_logger(__name__) __lowerCamelCase = { 'google/efficientnet-b7': 'https://huggingface.co/google/efficientnet-b7/resolve/main/config.json', } class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = "efficientnet" def __init__( self : Optional[Any] , __snake_case : int = 3 , __snake_case : int = 6_0_0 , __snake_case : float = 2.0 , __snake_case : float = 3.1 , __snake_case : int = 8 , __snake_case : List[int] = [3, 3, 5, 3, 5, 5, 3] , __snake_case : List[int] = [3_2, 1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2] , __snake_case : List[int] = [1_6, 2_4, 4_0, 8_0, 1_1_2, 1_9_2, 3_2_0] , __snake_case : List[int] = [] , __snake_case : List[int] = [1, 2, 2, 2, 1, 2, 1] , __snake_case : List[int] = [1, 2, 2, 3, 3, 4, 1] , __snake_case : List[int] = [1, 6, 6, 6, 6, 6, 6] , __snake_case : float = 0.25 , __snake_case : str = "swish" , __snake_case : int = 2_5_6_0 , __snake_case : str = "mean" , __snake_case : float = 0.02 , __snake_case : float = 0.001 , __snake_case : float = 0.99 , __snake_case : float = 0.5 , __snake_case : float = 0.2 , **__snake_case : List[Any] , ) -> List[Any]: super().__init__(**__snake_case ) __magic_name__: str = num_channels __magic_name__: List[str] = image_size __magic_name__: List[str] = width_coefficient __magic_name__: Optional[Any] = depth_coefficient __magic_name__: Tuple = depth_divisor __magic_name__: Dict = kernel_sizes __magic_name__: int = in_channels __magic_name__: str = out_channels __magic_name__: Dict = depthwise_padding __magic_name__: Union[str, Any] = strides __magic_name__: Dict = num_block_repeats __magic_name__: Tuple = expand_ratios __magic_name__: List[str] = squeeze_expansion_ratio __magic_name__: Any = hidden_act __magic_name__: Tuple = hidden_dim __magic_name__: int = pooling_type __magic_name__: int = initializer_range __magic_name__: List[str] = batch_norm_eps __magic_name__: str = batch_norm_momentum __magic_name__: List[str] = dropout_rate __magic_name__: Dict = drop_connect_rate __magic_name__: Optional[Any] = sum(__snake_case ) * 4 class __A ( SCREAMING_SNAKE_CASE_ ): UpperCAmelCase__ = version.parse("1.11" ) @property def lowerCamelCase__ ( self : List[str] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""pixel_values""", {0: """batch""", 1: """num_channels""", 2: """height""", 3: """width"""}), ] ) @property def lowerCamelCase__ ( self : List[Any] ) -> float: return 1E-5
96
0
from typing import TYPE_CHECKING from ...utils import _LazyModule _UpperCAmelCase : Optional[int] = {"tokenization_byt5": ["ByT5Tokenizer"]} if TYPE_CHECKING: from .tokenization_byta import ByTaTokenizer else: import sys _UpperCAmelCase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
453
import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort _UpperCAmelCase : Dict = logging.get_logger(__name__) _UpperCAmelCase : List[Any] = { "tensor(bool)": np.bool_, "tensor(int8)": np.inta, "tensor(uint8)": np.uinta, "tensor(int16)": np.intaa, "tensor(uint16)": np.uintaa, "tensor(int32)": np.intaa, "tensor(uint32)": np.uintaa, "tensor(int64)": np.intaa, "tensor(uint64)": np.uintaa, "tensor(float16)": np.floataa, "tensor(float)": np.floataa, "tensor(double)": np.floataa, } class __lowerCAmelCase : def __init__( self: Dict , _lowerCAmelCase: Union[str, Any]=None , **_lowerCAmelCase: Any ): logger.info("`diffusers.OnnxRuntimeModel` is experimental and might change in the future." ) lowercase :str = model lowercase :Any = kwargs.get("model_save_dir" , _lowerCAmelCase ) lowercase :Dict = kwargs.get("latest_model_name" , _lowerCAmelCase ) def __call__( self: Optional[Any] , **_lowerCAmelCase: List[Any] ): lowercase :List[str] = {k: np.array(_lowerCAmelCase ) for k, v in kwargs.items()} return self.model.run(_lowerCAmelCase , _lowerCAmelCase ) @staticmethod def SCREAMING_SNAKE_CASE ( _lowerCAmelCase: Union[str, Path] , _lowerCAmelCase: List[Any]=None , _lowerCAmelCase: List[Any]=None ): if provider is None: logger.info("No onnxruntime provider specified, using CPUExecutionProvider" ) lowercase :int = "CPUExecutionProvider" return ort.InferenceSession(_lowerCAmelCase , providers=[provider] , sess_options=_lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self: List[Any] , _lowerCAmelCase: Union[str, Path] , _lowerCAmelCase: Optional[str] = None , **_lowerCAmelCase: Any ): lowercase :Optional[int] = file_name if file_name is not None else ONNX_WEIGHTS_NAME lowercase :Tuple = self.model_save_dir.joinpath(self.latest_model_name ) lowercase :Optional[int] = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass # copy external weights (for models >2GB) lowercase :Tuple = self.model_save_dir.joinpath(_lowerCAmelCase ) if src_path.exists(): lowercase :Dict = Path(_lowerCAmelCase ).joinpath(_lowerCAmelCase ) try: shutil.copyfile(_lowerCAmelCase , _lowerCAmelCase ) except shutil.SameFileError: pass def SCREAMING_SNAKE_CASE ( self: Optional[Any] , _lowerCAmelCase: Union[str, os.PathLike] , **_lowerCAmelCase: int , ): if os.path.isfile(_lowerCAmelCase ): logger.error(F"Provided path ({save_directory}) should be a directory, not a file" ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) # saving model weights/files self._save_pretrained(_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls: Dict , _lowerCAmelCase: Union[str, Path] , _lowerCAmelCase: Optional[Union[bool, str, None]] = None , _lowerCAmelCase: Optional[Union[str, None]] = None , _lowerCAmelCase: bool = False , _lowerCAmelCase: Optional[str] = None , _lowerCAmelCase: Optional[str] = None , _lowerCAmelCase: Optional[str] = None , _lowerCAmelCase: Optional["ort.SessionOptions"] = None , **_lowerCAmelCase: Optional[int] , ): lowercase :List[str] = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(_lowerCAmelCase ): lowercase :Union[str, Any] = OnnxRuntimeModel.load_model( os.path.join(_lowerCAmelCase , _lowerCAmelCase ) , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) lowercase :Optional[Any] = Path(_lowerCAmelCase ) # load model from hub else: # download model lowercase :str = hf_hub_download( repo_id=_lowerCAmelCase , filename=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , ) lowercase :Optional[int] = Path(_lowerCAmelCase ).parent lowercase :Tuple = Path(_lowerCAmelCase ).name lowercase :Tuple = OnnxRuntimeModel.load_model(_lowerCAmelCase , provider=_lowerCAmelCase , sess_options=_lowerCAmelCase ) return cls(model=_lowerCAmelCase , **_lowerCAmelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls: str , _lowerCAmelCase: Union[str, Path] , _lowerCAmelCase: bool = True , _lowerCAmelCase: Optional[str] = None , _lowerCAmelCase: Optional[str] = None , **_lowerCAmelCase: Any , ): lowercase :List[str] = None if len(str(_lowerCAmelCase ).split("@" ) ) == 2: lowercase , lowercase :Tuple = model_id.split("@" ) return cls._from_pretrained( model_id=_lowerCAmelCase , revision=_lowerCAmelCase , cache_dir=_lowerCAmelCase , force_download=_lowerCAmelCase , use_auth_token=_lowerCAmelCase , **_lowerCAmelCase , )
453
1
import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class lowercase_ (SCREAMING_SNAKE_CASE__ , unittest.TestCase ): lowerCAmelCase__ =ProphetNetTokenizer lowerCAmelCase__ =False def __a ( self : str ): """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE_ = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] SCREAMING_SNAKE_CASE_ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as vocab_writer: vocab_writer.write(''.join([x + '\n' for x in vocab_tokens] ) ) def __a ( self : Union[str, Any] , snake_case__ : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = "UNwant\u00E9d,running" SCREAMING_SNAKE_CASE_ = "unwanted, running" return input_text, output_text def __a ( self : Tuple ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer_class(self.vocab_file ) SCREAMING_SNAKE_CASE_ = tokenizer.tokenize('UNwant\u00E9d,running' ) self.assertListEqual(__a , ['un', '##want', '##ed', ',', 'runn', '##ing'] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [9, 6, 7, 12, 10, 11] ) def __a ( self : Union[str, Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('ah\u535A\u63A8zz' ) , ['ah', '\u535A', '\u63A8', 'zz'] ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['hello', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hällo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['h\u00E9llo'] ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['hallo', '!', 'how', 'are', 'you', '?'] ) self.assertListEqual(tokenizer.tokenize('H\u00E9llo' ) , ['hello'] ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__a ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? ' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HäLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__a , strip_accents=__a ) self.assertListEqual( tokenizer.tokenize(' \tHäLLo!how \n Are yoU? ' ) , ['HaLLo', '!', 'how', 'Are', 'yoU', '?'] ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = BasicTokenizer(do_lower_case=__a , never_split=['[UNK]'] ) self.assertListEqual( tokenizer.tokenize(' \tHeLLo!how \n Are yoU? [UNK]' ) , ['HeLLo', '!', 'how', 'Are', 'yoU', '?', '[UNK]'] ) def __a ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] SCREAMING_SNAKE_CASE_ = {} for i, token in enumerate(__a ): SCREAMING_SNAKE_CASE_ = i SCREAMING_SNAKE_CASE_ = WordpieceTokenizer(vocab=__a , unk_token='[UNK]' ) self.assertListEqual(tokenizer.tokenize('' ) , [] ) self.assertListEqual(tokenizer.tokenize('unwanted running' ) , ['un', '##want', '##ed', 'runn', '##ing'] ) self.assertListEqual(tokenizer.tokenize('unwantedX running' ) , ['[UNK]', 'runn', '##ing'] ) @require_torch def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) SCREAMING_SNAKE_CASE_ = ["A long paragraph for summarization.", "Another paragraph for summarization."] SCREAMING_SNAKE_CASE_ = [10_37, 21_46, 2_04_23, 20_05, 76_80, 78_49, 39_89, 10_12, 1_02] SCREAMING_SNAKE_CASE_ = tokenizer(__a , padding=__a , return_tensors='pt' ) self.assertIsInstance(__a , __a ) SCREAMING_SNAKE_CASE_ = list(batch.input_ids.numpy()[0] ) self.assertListEqual(__a , __a ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __a ( self : int ): """simple docstring""" self.assertTrue(_is_whitespace(' ' ) ) self.assertTrue(_is_whitespace('\t' ) ) self.assertTrue(_is_whitespace('\r' ) ) self.assertTrue(_is_whitespace('\n' ) ) self.assertTrue(_is_whitespace('\u00A0' ) ) self.assertFalse(_is_whitespace('A' ) ) self.assertFalse(_is_whitespace('-' ) ) def __a ( self : Optional[int] ): """simple docstring""" self.assertTrue(_is_control('\u0005' ) ) self.assertFalse(_is_control('A' ) ) self.assertFalse(_is_control(' ' ) ) self.assertFalse(_is_control('\t' ) ) self.assertFalse(_is_control('\r' ) ) def __a ( self : List[str] ): """simple docstring""" self.assertTrue(_is_punctuation('-' ) ) self.assertTrue(_is_punctuation('$' ) ) self.assertTrue(_is_punctuation('`' ) ) self.assertTrue(_is_punctuation('.' ) ) self.assertFalse(_is_punctuation('A' ) ) self.assertFalse(_is_punctuation(' ' ) ) @slow def __a ( self : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = self.tokenizer_class.from_pretrained('microsoft/prophetnet-large-uncased' ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('sequence builders' , add_special_tokens=__a ) SCREAMING_SNAKE_CASE_ = tokenizer.encode('multi-sequence build' , add_special_tokens=__a ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__a ) SCREAMING_SNAKE_CASE_ = tokenizer.build_inputs_with_special_tokens(__a , __a ) assert encoded_sentence == text + [1_02] assert encoded_pair == text + [1_02] + text_a + [1_02]
360
import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import numpy as np import pandas as pd from datasets import load_dataset import transformers from transformers import ( AutoConfig, BartForSequenceClassification, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, TapexTokenizer, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.17.0.dev0") require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt") _snake_case = logging.getLogger(__name__) @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default='tab_fact' , metadata={'help': 'The name of the dataset to use (via the datasets library).'}) lowerCamelCase__ = field( default='tab_fact' , metadata={'help': 'The configuration name of the dataset to use (via the datasets library).'} , ) lowerCamelCase__ = field( default=1024 , metadata={ 'help': ( 'The maximum total input sequence length after tokenization. Sequences longer ' 'than this will be truncated, sequences shorter will be padded.' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Overwrite the cached preprocessed datasets or not.'}) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Whether to pad all samples to `max_seq_length`. ' 'If False, will pad the samples dynamically when batching to the maximum length in the batch.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of training examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of evaluation examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'For debugging purposes or quicker training, truncate the number of prediction examples to this ' 'value if set.' ) } , ) lowerCamelCase__ = field( default=a , metadata={'help': 'A csv or a json file containing the training data.'}) lowerCamelCase__ = field( default=a , metadata={'help': 'A csv or a json file containing the validation data.'}) lowerCamelCase__ = field(default=a , metadata={'help': 'A csv or a json file containing the test data.'}) def snake_case__ ( self): '''simple docstring''' if self.dataset_name is not None: pass elif self.train_file is None or self.validation_file is None: raise ValueError("Need either a GLUE task, a training/validation file or a dataset name.") else: _lowerCAmelCase : List[Any] = self.train_file.split(".")[-1] assert train_extension in ["csv", "json"], "`train_file` should be a csv or a json file." _lowerCAmelCase : Optional[Any] = self.validation_file.split(".")[-1] assert ( validation_extension == train_extension ), "`validation_file` should have the same extension (csv or json) as `train_file`." @dataclass class UpperCAmelCase_ : lowerCamelCase__ = field( default=a , metadata={'help': 'Path to pretrained model or model identifier from huggingface.co/models'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained config name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Pretrained tokenizer name or path if not the same as model_name'}) lowerCamelCase__ = field( default=a , metadata={'help': 'Where do you want to store the pretrained models downloaded from huggingface.co'} , ) lowerCamelCase__ = field( default=a , metadata={'help': 'Whether to use one of the fast tokenizer (backed by the tokenizers library) or not.'} , ) lowerCamelCase__ = field( default='main' , metadata={'help': 'The specific model version to use (can be a branch name, tag name or commit id).'} , ) lowerCamelCase__ = field( default=a , metadata={ 'help': ( 'Will use the token generated when running `huggingface-cli login` (necessary to use this script ' 'with private models).' ) } , ) def A ( ): '''simple docstring''' _lowerCAmelCase : Optional[Any] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(".json" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Dict = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" , datefmt="%m/%d/%Y %H:%M:%S" , handlers=[logging.StreamHandler(sys.stdout )] , ) _lowerCAmelCase : Dict = training_args.get_process_log_level() logger.setLevel(_lowerCamelCase ) datasets.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.set_verbosity(_lowerCamelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}" + F"distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}" ) logger.info(F"Training/evaluation parameters {training_args}" ) # Detecting last checkpoint. _lowerCAmelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _lowerCAmelCase : Optional[Any] = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F"Output directory ({training_args.output_dir}) already exists and is not empty. " "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change " "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below) # or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub). # # For JSON files, this script will use the `question` column for the input question and `table` column for the corresponding table. # # If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this # single column. You can easily tweak this behavior (see below) # # In distributed training, the load_dataset function guarantee that only one local process can concurrently # download the dataset. if data_args.dataset_name is not None: # Downloading and loading a dataset from the hub. _lowerCAmelCase : str = load_dataset( data_args.dataset_name , data_args.dataset_config_name , cache_dir=model_args.cache_dir ) else: # Loading a dataset from your local files. # CSV/JSON training and evaluation files are needed. _lowerCAmelCase : List[str] = {"train": data_args.train_file, "validation": data_args.validation_file} # Get the test dataset: you can provide your own CSV/JSON test file (see below) # when you use `do_predict` without specifying a GLUE benchmark task. if training_args.do_predict: if data_args.test_file is not None: _lowerCAmelCase : Optional[Any] = data_args.train_file.split("." )[-1] _lowerCAmelCase : Optional[Any] = data_args.test_file.split("." )[-1] assert ( test_extension == train_extension ), "`test_file` should have the same extension (csv or json) as `train_file`." _lowerCAmelCase : Optional[Any] = data_args.test_file else: raise ValueError("Need either a GLUE task or a test file for `do_predict`." ) for key in data_files.keys(): logger.info(F"load a local file for {key}: {data_files[key]}" ) if data_args.train_file.endswith(".csv" ): # Loading a dataset from local csv files _lowerCAmelCase : str = load_dataset("csv" , data_files=_lowerCamelCase , cache_dir=model_args.cache_dir ) else: # Loading a dataset from local json files _lowerCAmelCase : Tuple = load_dataset("json" , data_files=_lowerCamelCase , cache_dir=model_args.cache_dir ) # See more about loading any type of standard or custom dataset at # https://huggingface.co/docs/datasets/loading_datasets.html. # Labels _lowerCAmelCase : List[Any] = raw_datasets["train"].features["label"].names _lowerCAmelCase : str = len(_lowerCamelCase ) # Load pretrained model and tokenizer # # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. _lowerCAmelCase : Optional[Any] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # load tapex tokenizer _lowerCAmelCase : int = TapexTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast_tokenizer , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , add_prefix_space=_lowerCamelCase , ) _lowerCAmelCase : Tuple = BartForSequenceClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(".ckpt" in model_args.model_name_or_path ) , config=_lowerCamelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # Padding strategy if data_args.pad_to_max_length: _lowerCAmelCase : Optional[Any] = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch _lowerCAmelCase : List[str] = False # Some models have set the order of the labels to use, so let's make sure we do use it. _lowerCAmelCase : List[str] = {"Refused": 0, "Entailed": 1} _lowerCAmelCase : List[str] = {0: "Refused", 1: "Entailed"} if data_args.max_seq_length > tokenizer.model_max_length: logger.warning( F"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the" F"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}." ) _lowerCAmelCase : Tuple = min(data_args.max_seq_length , tokenizer.model_max_length ) def preprocess_tabfact_function(_lowerCamelCase ): # Tokenize the texts def _convert_table_text_to_pandas(_lowerCamelCase ): _lowerCAmelCase : Tuple = [_table_row.split("#" ) for _table_row in _table_text.strip("\n" ).split("\n" )] _lowerCAmelCase : Any = pd.DataFrame.from_records(_table_content[1:] , columns=_table_content[0] ) return _table_pd _lowerCAmelCase : str = examples["statement"] _lowerCAmelCase : List[Any] = list(map(_convert_table_text_to_pandas , examples["table_text"] ) ) _lowerCAmelCase : List[Any] = tokenizer(_lowerCamelCase , _lowerCamelCase , padding=_lowerCamelCase , max_length=_lowerCamelCase , truncation=_lowerCamelCase ) _lowerCAmelCase : Optional[int] = examples["label"] return result with training_args.main_process_first(desc="dataset map pre-processing" ): _lowerCAmelCase : Tuple = raw_datasets.map( _lowerCamelCase , batched=_lowerCamelCase , load_from_cache_file=not data_args.overwrite_cache , desc="Running tokenizer on dataset" , ) if training_args.do_train: if "train" not in raw_datasets: raise ValueError("--do_train requires a train dataset" ) _lowerCAmelCase : Optional[int] = raw_datasets["train"] if data_args.max_train_samples is not None: _lowerCAmelCase : str = train_dataset.select(range(data_args.max_train_samples ) ) if training_args.do_eval: if "validation" not in raw_datasets and "validation_matched" not in raw_datasets: raise ValueError("--do_eval requires a validation dataset" ) _lowerCAmelCase : Dict = raw_datasets["validation"] if data_args.max_eval_samples is not None: _lowerCAmelCase : Dict = eval_dataset.select(range(data_args.max_eval_samples ) ) if training_args.do_predict or data_args.test_file is not None: if "test" not in raw_datasets and "test_matched" not in raw_datasets: raise ValueError("--do_predict requires a test dataset" ) _lowerCAmelCase : List[Any] = raw_datasets["test"] if data_args.max_predict_samples is not None: _lowerCAmelCase : Tuple = predict_dataset.select(range(data_args.max_predict_samples ) ) # Log a few random samples from the training set: if training_args.do_train: for index in random.sample(range(len(_lowerCamelCase ) ) , 3 ): logger.info(F"Sample {index} of the training set: {train_dataset[index]}." ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(_lowerCamelCase ): _lowerCAmelCase : Any = p.predictions[0] if isinstance(p.predictions , _lowerCamelCase ) else p.predictions _lowerCAmelCase : List[Any] = np.argmax(_lowerCamelCase , axis=1 ) return {"accuracy": (preds == p.label_ids).astype(np.floataa ).mean().item()} # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: _lowerCAmelCase : Any = default_data_collator elif training_args.fpaa: _lowerCAmelCase : Any = DataCollatorWithPadding(_lowerCamelCase , pad_to_multiple_of=8 ) else: _lowerCAmelCase : Union[str, Any] = None # Initialize our Trainer _lowerCAmelCase : Optional[Any] = Trainer( model=_lowerCamelCase , args=_lowerCamelCase , train_dataset=train_dataset if training_args.do_train else None , eval_dataset=eval_dataset if training_args.do_eval else None , compute_metrics=_lowerCamelCase , tokenizer=_lowerCamelCase , data_collator=_lowerCamelCase , ) # Training if training_args.do_train: _lowerCAmelCase : Dict = None if training_args.resume_from_checkpoint is not None: _lowerCAmelCase : str = training_args.resume_from_checkpoint elif last_checkpoint is not None: _lowerCAmelCase : str = last_checkpoint _lowerCAmelCase : List[Any] = trainer.train(resume_from_checkpoint=_lowerCamelCase ) _lowerCAmelCase : Union[str, Any] = train_result.metrics _lowerCAmelCase : str = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(_lowerCamelCase ) ) _lowerCAmelCase : Union[str, Any] = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" , _lowerCamelCase ) trainer.save_metrics("train" , _lowerCamelCase ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) _lowerCAmelCase : Optional[int] = trainer.evaluate(eval_dataset=_lowerCamelCase ) _lowerCAmelCase : Dict = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(_lowerCamelCase ) _lowerCAmelCase : List[Any] = min(_lowerCamelCase , len(_lowerCamelCase ) ) trainer.log_metrics("eval" , _lowerCamelCase ) trainer.save_metrics("eval" , _lowerCamelCase ) if training_args.do_predict: logger.info("*** Predict ***" ) # Removing the `label` columns because it contains -1 and Trainer won't like that. _lowerCAmelCase : Optional[int] = predict_dataset.remove_columns("label" ) _lowerCAmelCase : Optional[Any] = trainer.predict(_lowerCamelCase , metric_key_prefix="predict" ).predictions _lowerCAmelCase : Tuple = np.argmax(_lowerCamelCase , axis=1 ) _lowerCAmelCase : Union[str, Any] = os.path.join(training_args.output_dir , "predict_results_tabfact.txt" ) if trainer.is_world_process_zero(): with open(_lowerCamelCase , "w" ) as writer: logger.info("***** Predict Results *****" ) writer.write("index\tprediction\n" ) for index, item in enumerate(_lowerCamelCase ): _lowerCAmelCase : List[Any] = label_list[item] writer.write(F"{index}\t{item}\n" ) _lowerCAmelCase : Optional[Any] = {"finetuned_from": model_args.model_name_or_path, "tasks": "text-classification"} if training_args.push_to_hub: trainer.push_to_hub(**_lowerCamelCase ) else: trainer.create_model_card(**_lowerCamelCase ) def A ( _lowerCamelCase ): '''simple docstring''' main() if __name__ == "__main__": main()
500
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A_ : int = logging.get_logger(__name__) A_ : str = { '''tiiuae/falcon-40b''': '''https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json''', '''tiiuae/falcon-7b''': '''https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json''', } class _lowercase ( UpperCAmelCase__ ): _UpperCAmelCase = '''falcon''' _UpperCAmelCase = ['''past_key_values'''] def __init__( self : int , __lowerCAmelCase : Tuple=6_5024 , __lowerCAmelCase : int=4544 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Union[str, Any]=71 , __lowerCAmelCase : Any=1E-5 , __lowerCAmelCase : Union[str, Any]=0.0_2 , __lowerCAmelCase : List[Any]=True , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Any=0.0 , __lowerCAmelCase : Optional[int]=None , __lowerCAmelCase : Dict=False , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : int=True , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : List[str]=False , __lowerCAmelCase : Dict=11 , __lowerCAmelCase : Any=11 , **__lowerCAmelCase : Any , ) -> int: """simple docstring""" a = vocab_size # Backward compatibility with n_embed kwarg a = kwargs.pop("n_embed" , __lowerCAmelCase ) a = hidden_size if n_embed is None else n_embed a = num_hidden_layers a = num_attention_heads a = layer_norm_epsilon a = initializer_range a = use_cache a = hidden_dropout a = attention_dropout a = bos_token_id a = eos_token_id a = num_attention_heads if num_kv_heads is None else num_kv_heads a = alibi a = new_decoder_architecture a = multi_query # Ignored when new_decoder_architecture is True a = parallel_attn a = bias super().__init__(bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase ) @property def A ( self : List[str] ) -> Optional[Any]: """simple docstring""" return self.hidden_size // self.num_attention_heads @property def A ( self : Dict ) -> Tuple: """simple docstring""" return not self.alibi
708
import unittest from transformers import MobileBertConfig, is_torch_available from transformers.models.auto import get_values from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_PRETRAINING_MAPPING, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertModel, ) class _lowercase : def __init__( self : List[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=13 , __lowerCAmelCase : Any=7 , __lowerCAmelCase : int=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : Any=True , __lowerCAmelCase : Union[str, Any]=True , __lowerCAmelCase : str=99 , __lowerCAmelCase : List[str]=64 , __lowerCAmelCase : Optional[Any]=32 , __lowerCAmelCase : Dict=5 , __lowerCAmelCase : int=4 , __lowerCAmelCase : Optional[Any]=37 , __lowerCAmelCase : Union[str, Any]="gelu" , __lowerCAmelCase : Union[str, Any]=0.1 , __lowerCAmelCase : List[str]=0.1 , __lowerCAmelCase : List[str]=512 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Union[str, Any]=2 , __lowerCAmelCase : Optional[Any]=0.0_2 , __lowerCAmelCase : Dict=3 , __lowerCAmelCase : Optional[int]=4 , __lowerCAmelCase : Union[str, Any]=None , ) -> List[str]: """simple docstring""" a = parent a = batch_size a = seq_length a = is_training a = use_input_mask a = use_token_type_ids a = use_labels a = vocab_size a = hidden_size a = embedding_size a = num_hidden_layers a = num_attention_heads a = intermediate_size a = hidden_act a = hidden_dropout_prob a = attention_probs_dropout_prob a = max_position_embeddings a = type_vocab_size a = type_sequence_label_size a = initializer_range a = num_labels a = num_choices a = scope def A ( self : Optional[int] ) -> Optional[int]: """simple docstring""" a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a = None if self.use_input_mask: a = random_attention_mask([self.batch_size, self.seq_length] ) a = None if self.use_token_type_ids: a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a = None a = None a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) a = ids_tensor([self.batch_size] , self.num_choices ) a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A ( self : int ) -> List[str]: """simple docstring""" return MobileBertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , embedding_size=self.embedding_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def A ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" a = MobileBertModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) a = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) a = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def A ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Any , __lowerCAmelCase : Any ) -> str: """simple docstring""" a = MobileBertForMaskedLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self : List[Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] ) -> List[str]: """simple docstring""" a = MobileBertForNextSentencePrediction(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 2) ) def A ( self : List[str] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Dict , __lowerCAmelCase : List[str] ) -> List[Any]: """simple docstring""" a = MobileBertForPreTraining(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , next_sentence_label=__lowerCAmelCase , ) self.parent.assertEqual(result.prediction_logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertEqual(result.seq_relationship_logits.shape , (self.batch_size, 2) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str] ) -> Any: """simple docstring""" a = MobileBertForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def A ( self : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] ) -> Optional[int]: """simple docstring""" a = self.num_labels a = MobileBertForSequenceClassification(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def A ( self : Tuple , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Any ) -> Optional[Any]: """simple docstring""" a = self.num_labels a = MobileBertForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def A ( self : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Optional[int] ) -> List[str]: """simple docstring""" a = self.num_choices a = MobileBertForMultipleChoice(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() a = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def A ( self : List[Any] ) -> Dict: """simple docstring""" a = self.prepare_config_and_inputs() ( ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ( a ) , ) = config_and_inputs a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class _lowercase ( UpperCAmelCase__, UpperCAmelCase__, unittest.TestCase ): _UpperCAmelCase = ( ( MobileBertModel, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, ) if is_torch_available() else () ) _UpperCAmelCase = ( { '''feature-extraction''': MobileBertModel, '''fill-mask''': MobileBertForMaskedLM, '''question-answering''': MobileBertForQuestionAnswering, '''text-classification''': MobileBertForSequenceClassification, '''token-classification''': MobileBertForTokenClassification, '''zero-shot''': MobileBertForSequenceClassification, } if is_torch_available() else {} ) _UpperCAmelCase = True def A ( self : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any=False ) -> Any: """simple docstring""" a = super()._prepare_for_class(__lowerCAmelCase , __lowerCAmelCase , return_labels=__lowerCAmelCase ) if return_labels: if model_class in get_values(__lowerCAmelCase ): a = torch.zeros( (self.model_tester.batch_size, self.model_tester.seq_length) , dtype=torch.long , device=__lowerCAmelCase ) a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=__lowerCAmelCase ) return inputs_dict def A ( self : Optional[int] ) -> List[Any]: """simple docstring""" a = MobileBertModelTester(self ) a = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def A ( self : int ) -> Tuple: """simple docstring""" self.config_tester.run_common_tests() def A ( self : str ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_model(*__lowerCAmelCase ) def A ( self : str ) -> str: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_masked_lm(*__lowerCAmelCase ) def A ( self : List[str] ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_multiple_choice(*__lowerCAmelCase ) def A ( self : int ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_next_sequence_prediction(*__lowerCAmelCase ) def A ( self : List[Any] ) -> int: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_pretraining(*__lowerCAmelCase ) def A ( self : List[Any] ) -> Dict: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_question_answering(*__lowerCAmelCase ) def A ( self : List[Any] ) -> Optional[int]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_sequence_classification(*__lowerCAmelCase ) def A ( self : int ) -> Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mobilebert_for_token_classification(*__lowerCAmelCase ) def UpperCAmelCase__ ( UpperCAmelCase__ :Dict ): '''simple docstring''' return torch.tensor( UpperCAmelCase__ , dtype=torch.long , device=UpperCAmelCase__ , ) A_ : Dict = 1E-3 @require_torch @require_sentencepiece @require_tokenizers class _lowercase ( unittest.TestCase ): @slow def A ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" a = MobileBertModel.from_pretrained("google/mobilebert-uncased" ).to(__lowerCAmelCase ) a = _long_tensor([[101, 7110, 1005, 1056, 2023, 1_1333, 1_7413, 1029, 102]] ) with torch.no_grad(): a = model(__lowerCAmelCase )[0] a = torch.Size((1, 9, 512) ) self.assertEqual(output.shape , __lowerCAmelCase ) a = torch.tensor( [ [ [-2.4_73_65_26E07, 8.2_69_16_56E04, 1.6_52_18_38E05], [-5.7_54_17_04E-01, 3.9_05_60_22E00, 4.4_01_15_07E00], [2.6_04_73_59E00, 1.5_67_76_52E00, -1.7_32_41_88E-01], ] ] , device=__lowerCAmelCase , ) # MobileBERT results range from 10e0 to 10e8. Even a 0.0000001% difference with a value of 10e8 results in a # ~1 difference, it's therefore not a good idea to measure using addition. # Here, we instead divide the expected result with the result in order to obtain ~1. We then check that the # result is held between bounds: 1 - TOLERANCE < expected_result / result < 1 + TOLERANCE a = torch.all((expected_slice / output[..., :3, :3]) >= 1 - TOLERANCE ) a = torch.all((expected_slice / output[..., :3, :3]) <= 1 + TOLERANCE ) self.assertTrue(lower_bound and upper_bound )
32
0
import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class lowerCAmelCase_ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any , _A : str ): _UpperCamelCase = 3 _UpperCamelCase = 250 _UpperCamelCase = ids_tensor((batch_size, length) , _A ) _UpperCamelCase = torch.ones((batch_size, length) , device=_A , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase_ ( self : Any ): _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) _UpperCamelCase = StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : List[str] ): _UpperCamelCase = MaxLengthCriteria(max_length=10 ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : Optional[int] ): _UpperCamelCase = MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(9 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase , _UpperCamelCase = self._get_tensors(10 ) self.assertTrue(criteria(_A , _A ) ) _UpperCamelCase = StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCamelCase_ ( self : Any ): _UpperCamelCase , _UpperCamelCase = self._get_tensors(5 ) _UpperCamelCase = MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(_A , _A ) ) _UpperCamelCase = MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(_A , _A ) ) def UpperCamelCase_ ( self : Any ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(_A ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _UpperCamelCase = validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(_A ) , 1 )
10
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = "trocr" UpperCAmelCase = ["past_key_values"] UpperCAmelCase = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : List[str] , _A : Optional[Any]=5_0265 , _A : Optional[Any]=1024 , _A : Optional[Any]=12 , _A : Any=16 , _A : Any=4096 , _A : Optional[Any]="gelu" , _A : Union[str, Any]=512 , _A : Dict=0.1 , _A : List[str]=0.0 , _A : Optional[Any]=0.0 , _A : Union[str, Any]=2 , _A : Any=0.02 , _A : List[str]=0.0 , _A : List[str]=True , _A : str=False , _A : List[str]=True , _A : Optional[Any]=True , _A : Optional[int]=1 , _A : int=0 , _A : Any=2 , **_A : Optional[int] , ): _UpperCamelCase = vocab_size _UpperCamelCase = d_model _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = activation_function _UpperCamelCase = max_position_embeddings _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = init_std _UpperCamelCase = decoder_layerdrop _UpperCamelCase = use_cache _UpperCamelCase = scale_embedding _UpperCamelCase = use_learned_position_embeddings _UpperCamelCase = layernorm_embedding super().__init__( pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , decoder_start_token_id=_A , **_A , )
10
1
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class UpperCAmelCase_ ( unittest.TestCase): def __init__( self, __a, __a=13, __a=30, __a=2, __a=3, __a=True, __a=True, __a=32, __a=5, __a=4, __a=37, __a="gelu", __a=0.1, __a=0.1, __a=10, __a=0.02, ): '''simple docstring''' _lowerCAmelCase : Dict = parent _lowerCAmelCase : Tuple = batch_size _lowerCAmelCase : Dict = image_size _lowerCAmelCase : List[str] = patch_size _lowerCAmelCase : Any = num_channels _lowerCAmelCase : Any = is_training _lowerCAmelCase : int = use_labels _lowerCAmelCase : Tuple = hidden_size _lowerCAmelCase : str = num_hidden_layers _lowerCAmelCase : List[str] = num_attention_heads _lowerCAmelCase : Union[str, Any] = intermediate_size _lowerCAmelCase : Optional[Any] = hidden_act _lowerCAmelCase : List[Any] = hidden_dropout_prob _lowerCAmelCase : List[str] = attention_probs_dropout_prob _lowerCAmelCase : Any = type_sequence_label_size _lowerCAmelCase : Optional[int] = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Dict = (image_size // patch_size) ** 2 _lowerCAmelCase : List[Any] = num_patches + 1 def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) _lowerCAmelCase : List[Any] = ViTConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=__a, initializer_range=self.initializer_range, ) return config, pixel_values def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[Any] = FlaxViTModel(config=__a) _lowerCAmelCase : Dict = model(__a) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _lowerCAmelCase : Optional[int] = (self.image_size, self.image_size) _lowerCAmelCase : Any = (self.patch_size, self.patch_size) _lowerCAmelCase : Tuple = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, num_patches + 1, self.hidden_size)) def snake_case__ ( self, __a, __a): '''simple docstring''' _lowerCAmelCase : List[str] = self.type_sequence_label_size _lowerCAmelCase : Optional[Any] = FlaxViTForImageClassification(config=__a) _lowerCAmelCase : Union[str, Any] = model(__a) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.type_sequence_label_size)) # test greyscale images _lowerCAmelCase : Any = 1 _lowerCAmelCase : List[str] = FlaxViTForImageClassification(__a) _lowerCAmelCase : Dict = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) _lowerCAmelCase : str = model(__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) : Optional[int] = config_and_inputs _lowerCAmelCase : Any = {"pixel_values": pixel_values} return config, inputs_dict @require_flax class UpperCAmelCase_ ( a , unittest.TestCase): lowerCamelCase__ = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Tuple = FlaxViTModelTester(self) _lowerCAmelCase : Union[str, Any] = ConfigTester(self, config_class=__a, has_text_modality=__a, hidden_size=37) def snake_case__ ( self): '''simple docstring''' self.config_tester.run_common_tests() def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCAmelCase : Tuple = model_class(__a) _lowerCAmelCase : Optional[Any] = inspect.signature(model.__call__) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCAmelCase : Any = [*signature.parameters.keys()] _lowerCAmelCase : List[str] = ["pixel_values"] self.assertListEqual(arg_names[:1], __a) def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase , _lowerCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__): _lowerCAmelCase : int = self._prepare_for_class(__a, __a) _lowerCAmelCase : Union[str, Any] = model_class(__a) @jax.jit def model_jitted(__a, **__a): return model(pixel_values=__a, **__a) with self.subTest("JIT Enabled"): _lowerCAmelCase : str = model_jitted(**__a).to_tuple() with self.subTest("JIT Disabled"): with jax.disable_jit(): _lowerCAmelCase : Union[str, Any] = model_jitted(**__a).to_tuple() self.assertEqual(len(__a), len(__a)) for jitted_output, output in zip(__a, __a): self.assertEqual(jitted_output.shape, output.shape) @slow def snake_case__ ( self): '''simple docstring''' for model_class_name in self.all_model_classes: _lowerCAmelCase : Optional[int] = model_class_name.from_pretrained("google/vit-base-patch16-224") _lowerCAmelCase : Union[str, Any] = model(np.ones((1, 3, 224, 224))) self.assertIsNotNone(__a)
658
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING _snake_case = logging.get_logger(__name__) class UpperCAmelCase_ ( a): lowerCamelCase__ = 'upernet' def __init__( self, __a=None, __a=512, __a=0.02, __a=[1, 2, 3, 6], __a=True, __a=0.4, __a=384, __a=256, __a=1, __a=False, __a=255, **__a, ): '''simple docstring''' super().__init__(**__a) if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") _lowerCAmelCase : List[str] = CONFIG_MAPPING["resnet"](out_features=["stage1", "stage2", "stage3", "stage4"]) elif isinstance(__a, __a): _lowerCAmelCase : List[Any] = backbone_config.get("model_type") _lowerCAmelCase : Dict = CONFIG_MAPPING[backbone_model_type] _lowerCAmelCase : Optional[Any] = config_class.from_dict(__a) _lowerCAmelCase : Tuple = backbone_config _lowerCAmelCase : List[Any] = hidden_size _lowerCAmelCase : Union[str, Any] = initializer_range _lowerCAmelCase : str = pool_scales _lowerCAmelCase : List[str] = use_auxiliary_head _lowerCAmelCase : Dict = auxiliary_loss_weight _lowerCAmelCase : Tuple = auxiliary_in_channels _lowerCAmelCase : Optional[Any] = auxiliary_channels _lowerCAmelCase : str = auxiliary_num_convs _lowerCAmelCase : Union[str, Any] = auxiliary_concat_input _lowerCAmelCase : Dict = loss_ignore_index def snake_case__ ( self): '''simple docstring''' _lowerCAmelCase : Any = copy.deepcopy(self.__dict__) _lowerCAmelCase : List[Any] = self.backbone_config.to_dict() _lowerCAmelCase : Optional[Any] = self.__class__.model_type return output
658
1
'''simple docstring''' from math import factorial def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE__ = 20 ): __a : Optional[Any] = 2 * n # middle entry of odd rows starting at row 3 is the solution for n = 1, # 2, 3,... __a : int = n // 2 return int(factorial(SCREAMING_SNAKE_CASE__ ) / (factorial(SCREAMING_SNAKE_CASE__ ) * factorial(n - k )) ) if __name__ == "__main__": import sys if len(sys.argv) == 1: print(solution(2_0)) else: try: SCREAMING_SNAKE_CASE_ = int(sys.argv[1]) print(solution(n)) except ValueError: print("Invalid entry - please enter a number.")
597
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE_ = {"configuration_beit": ["BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "BeitConfig", "BeitOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = ["BeitFeatureExtractor"] SCREAMING_SNAKE_CASE_ = ["BeitImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ "BEIT_PRETRAINED_MODEL_ARCHIVE_LIST", "BeitForImageClassification", "BeitForMaskedImageModeling", "BeitForSemanticSegmentation", "BeitModel", "BeitPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_ = [ "FlaxBeitForImageClassification", "FlaxBeitForMaskedImageModeling", "FlaxBeitModel", "FlaxBeitPreTrainedModel", ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
597
1
import random def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: _lowercase : Tuple = num - 1 _lowercase : Tuple = 0 while s % 2 == 0: _lowercase : Tuple = s // 2 t += 1 for _ in range(5 ): _lowercase : Dict = random.randrange(2 , num - 1 ) _lowercase : List[Any] = pow(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if v != 1: _lowercase : List[str] = 0 while v != (num - 1): if i == t - 1: return False else: _lowercase : Tuple = i + 1 _lowercase : Any = (v**2) % num return True def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> bool: if num < 2: return False _lowercase : Union[str, Any] = [ 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 269, 271, 277, 281, 283, 293, 307, 311, 313, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 397, 401, 409, 419, 421, 431, 433, 439, 443, 449, 457, 461, 463, 467, 479, 487, 491, 499, 503, 509, 521, 523, 541, 547, 557, 563, 569, 571, 577, 587, 593, 599, 601, 607, 613, 617, 619, 631, 641, 643, 647, 653, 659, 661, 673, 677, 683, 691, 701, 709, 719, 727, 733, 739, 743, 751, 757, 761, 769, 773, 787, 797, 809, 811, 821, 823, 827, 829, 839, 853, 857, 859, 863, 877, 881, 883, 887, 907, 911, 919, 929, 937, 941, 947, 953, 967, 971, 977, 983, 991, 997, ] if num in low_primes: return True for prime in low_primes: if (num % prime) == 0: return False return rabin_miller(__UpperCamelCase ) def __magic_name__ ( SCREAMING_SNAKE_CASE = 1_024 ) -> int: while True: _lowercase : Optional[Any] = random.randrange(2 ** (keysize - 1) , 2 ** (keysize) ) if is_prime_low_num(__UpperCamelCase ): return num if __name__ == "__main__": UpperCamelCase = generate_large_prime() print(("Prime number:", num)) print(("is_prime_low_num:", is_prime_low_num(num)))
713
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { "configuration_swinv2": ["SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP", "Swinv2Config"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST", "Swinv2ForImageClassification", "Swinv2ForMaskedImageModeling", "Swinv2Model", "Swinv2PreTrainedModel", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
677
0
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __UpperCamelCase : int = logging.get_logger(__name__) __UpperCamelCase : Optional[int] = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' for attribute in key.split(""".""" ): __lowercase = getattr(lowerCamelCase , lowerCamelCase ) if weight_type is not None: __lowercase = getattr(lowerCamelCase , lowerCamelCase ).shape else: __lowercase = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": __lowercase = value elif weight_type == "weight_g": __lowercase = value elif weight_type == "weight_v": __lowercase = value elif weight_type == "bias": __lowercase = value else: __lowercase = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = [] __lowercase = fairseq_model.state_dict() __lowercase = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): __lowercase = False if "conv_layers" in name: load_conv_layer( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , hf_model.config.feat_extract_norm == """group""" , ) __lowercase = True else: for key, mapped_key in MAPPING.items(): __lowercase = """sew.""" + mapped_key if (is_finetuned and mapped_key != """lm_head""") else mapped_key if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowercase = True if "*" in mapped_key: __lowercase = name.split(lowerCamelCase )[0].split(""".""" )[-2] __lowercase = mapped_key.replace("""*""" , lowerCamelCase ) if "weight_g" in name: __lowercase = """weight_g""" elif "weight_v" in name: __lowercase = """weight_v""" elif "weight" in name: __lowercase = """weight""" elif "bias" in name: __lowercase = """bias""" else: __lowercase = None set_recursively(lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ) continue if not is_used: unused_weights.append(lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = full_name.split("""conv_layers.""" )[-1] __lowercase = name.split(""".""" ) __lowercase = int(items[0] ) __lowercase = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) __lowercase = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(lowerCamelCase ) def snake_case ( lowerCamelCase , lowerCamelCase ): '''simple docstring''' __lowercase = SEWConfig() if is_finetuned: __lowercase = model.wav_encoder.wav_model.cfg else: __lowercase = model.cfg __lowercase = fs_config.conv_bias __lowercase = eval(fs_config.conv_feature_layers ) __lowercase = [x[0] for x in conv_layers] __lowercase = [x[1] for x in conv_layers] __lowercase = [x[2] for x in conv_layers] __lowercase = """gelu""" __lowercase = """layer""" if fs_config.extractor_mode == """layer_norm""" else """group""" __lowercase = 0.0 __lowercase = fs_config.activation_fn.name __lowercase = fs_config.encoder_embed_dim __lowercase = 0.02 __lowercase = fs_config.encoder_ffn_embed_dim __lowercase = 1e-5 __lowercase = fs_config.encoder_layerdrop __lowercase = fs_config.encoder_attention_heads __lowercase = fs_config.conv_pos_groups __lowercase = fs_config.conv_pos __lowercase = len(lowerCamelCase ) __lowercase = fs_config.encoder_layers __lowercase = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: __lowercase = model.cfg __lowercase = fs_config.final_dropout __lowercase = fs_config.layerdrop __lowercase = fs_config.activation_dropout __lowercase = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 __lowercase = fs_config.attention_dropout __lowercase = fs_config.dropout_input __lowercase = fs_config.dropout __lowercase = fs_config.mask_channel_length __lowercase = fs_config.mask_channel_prob __lowercase = fs_config.mask_length __lowercase = fs_config.mask_prob __lowercase = """Wav2Vec2FeatureExtractor""" __lowercase = """Wav2Vec2CTCTokenizer""" return config @torch.no_grad() def snake_case ( lowerCamelCase , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=True ): '''simple docstring''' if is_finetuned: __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"""data""": """/""".join(dict_path.split("""/""" )[:-1] )} ) else: __lowercase , __lowercase , __lowercase = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: __lowercase = SEWConfig.from_pretrained(lowerCamelCase ) else: __lowercase = convert_config(model[0] , lowerCamelCase ) __lowercase = model[0].eval() __lowercase = True if config.feat_extract_norm == """layer""" else False __lowercase = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=lowerCamelCase , return_attention_mask=lowerCamelCase , ) if is_finetuned: if dict_path: __lowercase = Dictionary.load(lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __lowercase = target_dict.pad_index __lowercase = target_dict.bos_index __lowercase = target_dict.pad_index __lowercase = target_dict.bos_index __lowercase = target_dict.eos_index __lowercase = len(target_dict.symbols ) __lowercase = os.path.join(lowerCamelCase , """vocab.json""" ) if not os.path.isdir(lowerCamelCase ): logger.error("""--pytorch_dump_folder_path ({}) should be a directory""".format(lowerCamelCase ) ) return os.makedirs(lowerCamelCase , exist_ok=lowerCamelCase ) with open(lowerCamelCase , """w""" , encoding="""utf-8""" ) as vocab_handle: json.dump(target_dict.indices , lowerCamelCase ) __lowercase = WavaVecaCTCTokenizer( lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="""|""" , do_lower_case=lowerCamelCase , ) __lowercase = WavaVecaProcessor(feature_extractor=lowerCamelCase , tokenizer=lowerCamelCase ) processor.save_pretrained(lowerCamelCase ) __lowercase = SEWForCTC(lowerCamelCase ) else: __lowercase = SEWModel(lowerCamelCase ) feature_extractor.save_pretrained(lowerCamelCase ) recursively_load_weights(lowerCamelCase , lowerCamelCase , lowerCamelCase ) hf_model.save_pretrained(lowerCamelCase ) if __name__ == "__main__": __UpperCamelCase : str = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) __UpperCamelCase : Union[str, Any] = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
80
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __A ( unittest.TestCase ): '''simple docstring''' def __init__(self , A , A=7 , A=3 , A=18 , A=30 , A=400 , A=True , A=None , A=True , A=[0.5, 0.5, 0.5] , A=[0.5, 0.5, 0.5] , ) -> str: """simple docstring""" _a = size if size is not None else {'''height''': 18, '''width''': 18} _a = parent _a = batch_size _a = num_channels _a = image_size _a = min_resolution _a = max_resolution _a = do_resize _a = size _a = do_normalize _a = image_mean _a = image_std def a__ (self ) -> Union[str, Any]: """simple docstring""" return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __A ( A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : str = DPTImageProcessor if is_vision_available() else None def a__ (self ) -> Optional[Any]: """simple docstring""" _a = DPTImageProcessingTester(self ) @property def a__ (self ) -> int: """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def a__ (self ) -> Dict: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(A , '''image_mean''' ) ) self.assertTrue(hasattr(A , '''image_std''' ) ) self.assertTrue(hasattr(A , '''do_normalize''' ) ) self.assertTrue(hasattr(A , '''do_resize''' ) ) self.assertTrue(hasattr(A , '''size''' ) ) def a__ (self ) -> Any: """simple docstring""" _a = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''height''': 18, '''width''': 18} ) _a = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'''height''': 42, '''width''': 42} ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A ) for image in image_inputs: self.assertIsInstance(A , Image.Image ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> str: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , numpify=A ) for image in image_inputs: self.assertIsInstance(A , np.ndarray ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) def a__ (self ) -> Optional[int]: """simple docstring""" _a = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _a = prepare_image_inputs(self.image_processor_tester , equal_resolution=A , torchify=A ) for image in image_inputs: self.assertIsInstance(A , torch.Tensor ) # Test not batched input _a = image_processing(image_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , ) # Test batched _a = image_processing(A , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['''height'''], self.image_processor_tester.size['''width'''], ) , )
11
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, PNDMScheduler, StableDiffusionInpaintPipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow from ..pipeline_params import TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class SCREAMING_SNAKE_CASE( __A , __A , __A , unittest.TestCase ): snake_case_ : Dict = StableDiffusionInpaintPipeline snake_case_ : Dict = TEXT_GUIDED_IMAGE_INPAINTING_PARAMS snake_case_ : Optional[int] = TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS snake_case_ : List[Any] = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess snake_case_ : Optional[int] = frozenset([] ) def snake_case__ ( self ) -> Optional[int]: """simple docstring""" torch.manual_seed(0 ) __lowercase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=9 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=lowerCamelCase__ , ) __lowercase = PNDMScheduler(skip_prk_steps=lowerCamelCase__ ) torch.manual_seed(0 ) __lowercase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0 ) __lowercase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) __lowercase = CLIPTextModel(lowerCamelCase__ ) __lowercase = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def snake_case__ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: """simple docstring""" __lowercase = floats_tensor((1, 3, 32, 32) , rng=random.Random(lowerCamelCase__ ) ).to(lowerCamelCase__ ) __lowercase = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase = Image.fromarray(np.uinta(lowerCamelCase__ ) ).convert("""RGB""" ).resize((64, 64) ) __lowercase = Image.fromarray(np.uinta(image + 4 ) ).convert("""RGB""" ).resize((64, 64) ) if str(lowerCamelCase__ ).startswith("""mps""" ): __lowercase = torch.manual_seed(lowerCamelCase__ ) else: __lowercase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowercase = { """prompt""": """A painting of a squirrel eating a burger""", """image""": init_image, """mask_image""": mask_image, """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", } return inputs def snake_case__ ( self ) -> Any: """simple docstring""" __lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator __lowercase = self.get_dummy_components() __lowercase = StableDiffusionInpaintPipeline(**lowerCamelCase__ ) __lowercase = sd_pipe.to(lowerCamelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowercase = self.get_dummy_inputs(lowerCamelCase__ ) __lowercase = sd_pipe(**lowerCamelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __lowercase = np.array([0.47_27, 0.57_35, 0.39_41, 0.54_46, 0.59_26, 0.43_94, 0.50_62, 0.46_54, 0.44_76] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case__ ( self ) -> str: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class SCREAMING_SNAKE_CASE( unittest.TestCase ): def snake_case__ ( self ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ) -> Tuple: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench.npy""" ) __lowercase = """stabilityai/stable-diffusion-2-inpainting""" __lowercase = StableDiffusionInpaintPipeline.from_pretrained(lowerCamelCase__ , safety_checker=lowerCamelCase__ ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __lowercase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 9E-3 def snake_case__ ( self ) -> Union[str, Any]: """simple docstring""" __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowercase = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint""" """/yellow_cat_sitting_on_a_park_bench_fp16.npy""" ) __lowercase = """stabilityai/stable-diffusion-2-inpainting""" __lowercase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase__ , torch_dtype=torch.floataa , safety_checker=lowerCamelCase__ , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() __lowercase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""np""" , ) __lowercase = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def snake_case__ ( self ) -> str: """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-inpaint/init_image.png""" ) __lowercase = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-inpaint/mask.png""" ) __lowercase = """stabilityai/stable-diffusion-2-inpainting""" __lowercase = PNDMScheduler.from_pretrained(lowerCamelCase__ , subfolder="""scheduler""" ) __lowercase = StableDiffusionInpaintPipeline.from_pretrained( lowerCamelCase__ , safety_checker=lowerCamelCase__ , scheduler=lowerCamelCase__ , torch_dtype=torch.floataa , ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() __lowercase = """Face of a yellow cat, high resolution, sitting on a park bench""" __lowercase = torch.manual_seed(0 ) __lowercase = pipe( prompt=lowerCamelCase__ , image=lowerCamelCase__ , mask_image=lowerCamelCase__ , generator=lowerCamelCase__ , num_inference_steps=2 , output_type="""np""" , ) __lowercase = torch.cuda.max_memory_allocated() # make sure that less than 2.65 GB is allocated assert mem_bytes < 2.65 * 10**9
709
'''simple docstring''' import argparse import os import gluonnlp as nlp import mxnet as mx import numpy as np import torch from gluonnlp.base import get_home_dir from gluonnlp.model.bert import BERTEncoder from gluonnlp.model.utils import _load_vocab from gluonnlp.vocab import Vocab from packaging import version from torch import nn from transformers import BertConfig, BertForMaskedLM, BertModel, RobertaTokenizer from transformers.models.bert.modeling_bert import ( BertIntermediate, BertLayer, BertOutput, BertSelfAttention, BertSelfOutput, ) from transformers.utils import logging if version.parse(nlp.__version__) != version.parse("""0.8.3"""): raise Exception("""requires gluonnlp == 0.8.3""") if version.parse(mx.__version__) != version.parse("""1.5.0"""): raise Exception("""requires mxnet == 1.5.0""") logging.set_verbosity_info() A : List[Any] = logging.get_logger(__name__) A : str = """The Nymphenburg Palace is a beautiful palace in Munich!""" def snake_case_ ( a__ : str ,a__ : str ): """simple docstring""" __lowercase = { """attention_cell""": """multi_head""", """num_layers""": 4, """units""": 10_24, """hidden_size""": 7_68, """max_length""": 5_12, """num_heads""": 8, """scaled""": True, """dropout""": 0.1, """use_residual""": True, """embed_size""": 10_24, """embed_dropout""": 0.1, """word_embed""": None, """layer_norm_eps""": 1e-5, """token_type_vocab_size""": 2, } __lowercase = bort_4_8_768_1024_hparams # Let's construct the original Bort model here # Taken from official BERT implementation, see: # https://github.com/alexa/bort/blob/master/bort/bort.py __lowercase = BERTEncoder( attention_cell=predefined_args["""attention_cell"""] ,num_layers=predefined_args["""num_layers"""] ,units=predefined_args["""units"""] ,hidden_size=predefined_args["""hidden_size"""] ,max_length=predefined_args["""max_length"""] ,num_heads=predefined_args["""num_heads"""] ,scaled=predefined_args["""scaled"""] ,dropout=predefined_args["""dropout"""] ,output_attention=a__ ,output_all_encodings=a__ ,use_residual=predefined_args["""use_residual"""] ,activation=predefined_args.get("""activation""" ,"""gelu""" ) ,layer_norm_eps=predefined_args.get("""layer_norm_eps""" ,a__ ) ,) # Vocab information needs to be fetched first # It's the same as RoBERTa, so RobertaTokenizer can be used later __lowercase = """openwebtext_ccnews_stories_books_cased""" # Specify download folder to Gluonnlp's vocab __lowercase = os.path.join(get_home_dir() ,"""models""" ) __lowercase = _load_vocab(a__ ,a__ ,a__ ,cls=a__ ) __lowercase = nlp.model.BERTModel( a__ ,len(a__ ) ,units=predefined_args["""units"""] ,embed_size=predefined_args["""embed_size"""] ,embed_dropout=predefined_args["""embed_dropout"""] ,word_embed=predefined_args["""word_embed"""] ,use_pooler=a__ ,use_token_type_embed=a__ ,token_type_vocab_size=predefined_args["""token_type_vocab_size"""] ,use_classifier=a__ ,use_decoder=a__ ,) original_bort.load_parameters(a__ ,cast_dtype=a__ ,ignore_extra=a__ ) __lowercase = original_bort._collect_params_with_prefix() # Build our config 🤗 __lowercase = { """architectures""": ["""BertForMaskedLM"""], """attention_probs_dropout_prob""": predefined_args["""dropout"""], """hidden_act""": """gelu""", """hidden_dropout_prob""": predefined_args["""dropout"""], """hidden_size""": predefined_args["""embed_size"""], """initializer_range""": 0.0_2, """intermediate_size""": predefined_args["""hidden_size"""], """layer_norm_eps""": predefined_args["""layer_norm_eps"""], """max_position_embeddings""": predefined_args["""max_length"""], """model_type""": """bort""", """num_attention_heads""": predefined_args["""num_heads"""], """num_hidden_layers""": predefined_args["""num_layers"""], """pad_token_id""": 1, # 2 = BERT, 1 = RoBERTa """type_vocab_size""": 1, # 2 = BERT, 1 = RoBERTa """vocab_size""": len(a__ ), } __lowercase = BertConfig.from_dict(a__ ) __lowercase = BertForMaskedLM(a__ ) hf_bort_model.eval() # Parameter mapping table (Gluonnlp to Transformers) # * denotes layer index # # | Gluon Parameter | Transformers Parameter # | -------------------------------------------------------------- | ---------------------- # | `encoder.layer_norm.beta` | `bert.embeddings.LayerNorm.bias` # | `encoder.layer_norm.gamma` | `bert.embeddings.LayerNorm.weight` # | `encoder.position_weight` | `bert.embeddings.position_embeddings.weight` # | `word_embed.0.weight` | `bert.embeddings.word_embeddings.weight` # | `encoder.transformer_cells.*.attention_cell.proj_key.bias` | `bert.encoder.layer.*.attention.self.key.bias` # | `encoder.transformer_cells.*.attention_cell.proj_key.weight` | `bert.encoder.layer.*.attention.self.key.weight` # | `encoder.transformer_cells.*.attention_cell.proj_query.bias` | `bert.encoder.layer.*.attention.self.query.bias` # | `encoder.transformer_cells.*.attention_cell.proj_query.weight` | `bert.encoder.layer.*.attention.self.query.weight` # | `encoder.transformer_cells.*.attention_cell.proj_value.bias` | `bert.encoder.layer.*.attention.self.value.bias` # | `encoder.transformer_cells.*.attention_cell.proj_value.weight` | `bert.encoder.layer.*.attention.self.value.weight` # | `encoder.transformer_cells.*.ffn.ffn_2.bias` | `bert.encoder.layer.*.attention.output.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_2.weight` | `bert.encoder.layer.*.attention.output.dense.weight` # | `encoder.transformer_cells.*.layer_norm.beta` | `bert.encoder.layer.*.attention.output.LayerNorm.bias` # | `encoder.transformer_cells.*.layer_norm.gamma` | `bert.encoder.layer.*.attention.output.LayerNorm.weight` # | `encoder.transformer_cells.*.ffn.ffn_1.bias` | `bert.encoder.layer.*.intermediate.dense.bias` # | `encoder.transformer_cells.*.ffn.ffn_1.weight` | `bert.encoder.layer.*.intermediate.dense.weight` # | `encoder.transformer_cells.*.ffn.layer_norm.beta` | `bert.encoder.layer.*.output.LayerNorm.bias` # | `encoder.transformer_cells.*.ffn.layer_norm.gamma` | `bert.encoder.layer.*.output.LayerNorm.weight` # | `encoder.transformer_cells.*.proj.bias` | `bert.encoder.layer.*.output.dense.bias` # | `encoder.transformer_cells.*.proj.weight` | `bert.encoder.layer.*.output.dense.weight` # Helper function to convert MXNET Arrays to PyTorch def to_torch(a__ : Union[str, Any] ) -> nn.Parameter: return nn.Parameter(torch.FloatTensor(mx_array.data().asnumpy() ) ) # Check param shapes and map new HF param back def check_and_map_params(a__ : List[str] ,a__ : Union[str, Any] ): __lowercase = hf_param.shape __lowercase = to_torch(params[gluon_param] ) __lowercase = gluon_param.shape assert ( shape_hf == shape_gluon ), f'The gluon parameter {gluon_param} has shape {shape_gluon}, but expects shape {shape_hf} for Transformers' return gluon_param __lowercase = check_and_map_params( hf_bort_model.bert.embeddings.word_embeddings.weight ,"""word_embed.0.weight""" ) __lowercase = check_and_map_params( hf_bort_model.bert.embeddings.position_embeddings.weight ,"""encoder.position_weight""" ) __lowercase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.bias ,"""encoder.layer_norm.beta""" ) __lowercase = check_and_map_params( hf_bort_model.bert.embeddings.LayerNorm.weight ,"""encoder.layer_norm.gamma""" ) # Inspired by RoBERTa conversion script, we just zero them out (Bort does not use them) __lowercase = torch.zeros_like( hf_bort_model.bert.embeddings.token_type_embeddings.weight.data ) for i in range(hf_bort_config.num_hidden_layers ): __lowercase = hf_bort_model.bert.encoder.layer[i] # self attention __lowercase = layer.attention.self __lowercase = check_and_map_params( self_attn.key.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_key.bias' ) __lowercase = check_and_map_params( self_attn.key.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_key.weight' ) __lowercase = check_and_map_params( self_attn.query.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_query.bias' ) __lowercase = check_and_map_params( self_attn.query.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_query.weight' ) __lowercase = check_and_map_params( self_attn.value.bias.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_value.bias' ) __lowercase = check_and_map_params( self_attn.value.weight.data ,f'encoder.transformer_cells.{i}.attention_cell.proj_value.weight' ) # self attention output __lowercase = layer.attention.output __lowercase = check_and_map_params( self_output.dense.bias ,f'encoder.transformer_cells.{i}.proj.bias' ) __lowercase = check_and_map_params( self_output.dense.weight ,f'encoder.transformer_cells.{i}.proj.weight' ) __lowercase = check_and_map_params( self_output.LayerNorm.bias ,f'encoder.transformer_cells.{i}.layer_norm.beta' ) __lowercase = check_and_map_params( self_output.LayerNorm.weight ,f'encoder.transformer_cells.{i}.layer_norm.gamma' ) # intermediate __lowercase = layer.intermediate __lowercase = check_and_map_params( intermediate.dense.bias ,f'encoder.transformer_cells.{i}.ffn.ffn_1.bias' ) __lowercase = check_and_map_params( intermediate.dense.weight ,f'encoder.transformer_cells.{i}.ffn.ffn_1.weight' ) # output __lowercase = layer.output __lowercase = check_and_map_params( bert_output.dense.bias ,f'encoder.transformer_cells.{i}.ffn.ffn_2.bias' ) __lowercase = check_and_map_params( bert_output.dense.weight ,f'encoder.transformer_cells.{i}.ffn.ffn_2.weight' ) __lowercase = check_and_map_params( bert_output.LayerNorm.bias ,f'encoder.transformer_cells.{i}.ffn.layer_norm.beta' ) __lowercase = check_and_map_params( bert_output.LayerNorm.weight ,f'encoder.transformer_cells.{i}.ffn.layer_norm.gamma' ) # Save space and energy 🎄 hf_bort_model.half() # Compare output of both models __lowercase = RobertaTokenizer.from_pretrained("""roberta-base""" ) __lowercase = tokenizer.encode_plus(a__ )["""input_ids"""] # Get gluon output __lowercase = mx.nd.array([input_ids] ) __lowercase = original_bort(inputs=a__ ,token_types=[] ) # Get Transformer output (save and reload model again) hf_bort_model.save_pretrained(a__ ) __lowercase = BertModel.from_pretrained(a__ ) hf_bort_model.eval() __lowercase = tokenizer.encode_plus(a__ ,return_tensors="""pt""" ) __lowercase = hf_bort_model(**a__ )[0] __lowercase = output_gluon[0].asnumpy() __lowercase = output_hf[0].detach().numpy() __lowercase = np.max(np.abs(hf_layer - gluon_layer ) ).item() __lowercase = np.allclose(a__ ,a__ ,atol=1e-3 ) if success: print("""✔️ Both model do output the same tensors""" ) else: print("""❌ Both model do **NOT** output the same tensors""" ) print("""Absolute difference is:""" ,a__ ) if __name__ == "__main__": A : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--bort_checkpoint_path""", default=None, type=str, required=True, help="""Path the official Bort params file.""" ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) A : Any = parser.parse_args() convert_bort_checkpoint_to_pytorch(args.bort_checkpoint_path, args.pytorch_dump_folder_path)
163
0
from __future__ import annotations from random import random from typing import Generic, TypeVar _A : Any = TypeVar("""KT""") _A : Any = TypeVar("""VT""") class __snake_case ( Generic[KT, VT] ): '''simple docstring''' def __init__( self , A_ = "root" , A_ = None ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = key SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = [] def __repr__( self ): '''simple docstring''' return f'''Node({self.key}: {self.value})''' @property def lowercase_ ( self ): '''simple docstring''' return len(self.forward ) class __snake_case ( Generic[KT, VT] ): '''simple docstring''' def __init__( self , A_ = 0.5 , A_ = 16 ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = Node[KT, VT]() SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = p SCREAMING_SNAKE_CASE__ = max_level def __str__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = list(self ) if len(A_ ) == 0: return f'''SkipList(level={self.level})''' SCREAMING_SNAKE_CASE__ = max((len(str(A_ ) ) for item in items) , default=4 ) SCREAMING_SNAKE_CASE__ = max(A_ , 4 ) + 4 SCREAMING_SNAKE_CASE__ = self.head SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = node.forward.copy() lines.append(f'''[{node.key}]'''.ljust(A_ , '''-''' ) + '''* ''' * len(A_ ) ) lines.append(''' ''' * label_size + '''| ''' * len(A_ ) ) while len(node.forward ) != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] lines.append( f'''[{node.key}]'''.ljust(A_ , '''-''' ) + ''' '''.join(str(n.key ) if n.key == node.key else '''|''' for n in forwards ) ) lines.append(''' ''' * label_size + '''| ''' * len(A_ ) ) SCREAMING_SNAKE_CASE__ = node.forward lines.append('''None'''.ljust(A_ ) + '''* ''' * len(A_ ) ) return f'''SkipList(level={self.level})\n''' + "\n".join(A_ ) def __iter__( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.head while len(node.forward ) != 0: yield node.forward[0].key SCREAMING_SNAKE_CASE__ = node.forward[0] def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = 1 while random() < self.p and level < self.max_level: level += 1 return level def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = self.head for i in reversed(range(self.level ) ): # i < node.level - When node level is lesser than `i` decrement `i`. # node.forward[i].key < key - Jumping to node with key value higher # or equal to searched key would result # in skipping searched key. while i < node.level and node.forward[i].key < key: SCREAMING_SNAKE_CASE__ = node.forward[i] # Each leftmost node (relative to searched node) will potentially have to # be updated. update_vector.append(A_ ) update_vector.reverse() # Note that we were inserting values in reverse order. # len(node.forward) != 0 - If current node doesn't contain any further # references then searched key is not present. # node.forward[0].key == key - Next node key should be equal to search key # if key is present. if len(node.forward ) != 0 and node.forward[0].key == key: return node.forward[0], update_vector else: return None, update_vector def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(A_ ) if node is not None: for i, update_node in enumerate(A_ ): # Remove or replace all references to removed node. if update_node.level > i and update_node.forward[i].key == key: if node.level > i: SCREAMING_SNAKE_CASE__ = node.forward[i] else: SCREAMING_SNAKE_CASE__ = update_node.forward[:i] def lowercase_ ( self , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(A_ ) if node is not None: SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = self.random_level() if level > self.level: # After level increase we have to add additional nodes to head. for _ in range(self.level - 1 , A_ ): update_vector.append(self.head ) SCREAMING_SNAKE_CASE__ = level SCREAMING_SNAKE_CASE__ = Node(A_ , A_ ) for i, update_node in enumerate(update_vector[:level] ): # Change references to pass through new node. if update_node.level > i: new_node.forward.append(update_node.forward[i] ) if update_node.level < i + 1: update_node.forward.append(A_ ) else: SCREAMING_SNAKE_CASE__ = new_node def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._locate_node(A_ ) if node is not None: return node.value return None def __snake_case ( ) -> str: SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert('''Key1''' , 3 ) skip_list.insert('''Key2''' , 1_2 ) skip_list.insert('''Key3''' , 4_1 ) skip_list.insert('''Key4''' , -1_9 ) SCREAMING_SNAKE_CASE__ = skip_list.head SCREAMING_SNAKE_CASE__ = {} while node.level != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] SCREAMING_SNAKE_CASE__ = node.value assert len(lowerCAmelCase_ ) == 4 assert all_values["Key1"] == 3 assert all_values["Key2"] == 1_2 assert all_values["Key3"] == 4_1 assert all_values["Key4"] == -1_9 def __snake_case ( ) -> str: SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert('''Key1''' , 1_0 ) skip_list.insert('''Key1''' , 1_2 ) skip_list.insert('''Key5''' , 7 ) skip_list.insert('''Key7''' , 1_0 ) skip_list.insert('''Key10''' , 5 ) skip_list.insert('''Key7''' , 7 ) skip_list.insert('''Key5''' , 5 ) skip_list.insert('''Key10''' , 1_0 ) SCREAMING_SNAKE_CASE__ = skip_list.head SCREAMING_SNAKE_CASE__ = {} while node.level != 0: SCREAMING_SNAKE_CASE__ = node.forward[0] SCREAMING_SNAKE_CASE__ = node.value if len(lowerCAmelCase_ ) != 4: print() assert len(lowerCAmelCase_ ) == 4 assert all_values["Key1"] == 1_2 assert all_values["Key7"] == 7 assert all_values["Key5"] == 5 assert all_values["Key10"] == 1_0 def __snake_case ( ) -> Dict: SCREAMING_SNAKE_CASE__ = SkipList() assert skip_list.find('''Some key''' ) is None def __snake_case ( ) -> Tuple: SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert('''Key2''' , 2_0 ) assert skip_list.find('''Key2''' ) == 2_0 skip_list.insert('''Some Key''' , 1_0 ) skip_list.insert('''Key2''' , 8 ) skip_list.insert('''V''' , 1_3 ) assert skip_list.find('''Y''' ) is None assert skip_list.find('''Key2''' ) == 8 assert skip_list.find('''Some Key''' ) == 1_0 assert skip_list.find('''V''' ) == 1_3 def __snake_case ( ) -> Tuple: SCREAMING_SNAKE_CASE__ = SkipList() skip_list.delete('''Some key''' ) assert len(skip_list.head.forward ) == 0 def __snake_case ( ) -> List[Any]: SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert('''Key1''' , 1_2 ) skip_list.insert('''V''' , 1_3 ) skip_list.insert('''X''' , 1_4 ) skip_list.insert('''Key2''' , 1_5 ) skip_list.delete('''V''' ) skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''Key2''' ) is None def __snake_case ( ) -> List[str]: SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert('''Key1''' , 1_2 ) skip_list.insert('''V''' , 1_3 ) skip_list.insert('''X''' , 1_4 ) skip_list.insert('''Key2''' , 1_5 ) skip_list.delete('''V''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) == 1_4 assert skip_list.find('''Key1''' ) == 1_2 assert skip_list.find('''Key2''' ) == 1_5 skip_list.delete('''X''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) == 1_2 assert skip_list.find('''Key2''' ) == 1_5 skip_list.delete('''Key1''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) == 1_5 skip_list.delete('''Key2''' ) assert skip_list.find('''V''' ) is None assert skip_list.find('''X''' ) is None assert skip_list.find('''Key1''' ) is None assert skip_list.find('''Key2''' ) is None def __snake_case ( ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert('''Key1''' , 1_2 ) skip_list.insert('''V''' , 1_3 ) skip_list.insert('''X''' , 1_4_2 ) skip_list.insert('''Key2''' , 1_5 ) skip_list.delete('''X''' ) def traverse_keys(lowerCAmelCase_ ): yield node.key for forward_node in node.forward: yield from traverse_keys(lowerCAmelCase_ ) assert len(set(traverse_keys(skip_list.head ) ) ) == 4 def __snake_case ( ) -> Any: def is_sorted(lowerCAmelCase_ ): return all(next_item >= item for item, next_item in zip(lowerCAmelCase_ , lst[1:] ) ) SCREAMING_SNAKE_CASE__ = SkipList() for i in range(1_0 ): skip_list.insert(lowerCAmelCase_ , lowerCAmelCase_ ) assert is_sorted(list(lowerCAmelCase_ ) ) skip_list.delete(5 ) skip_list.delete(8 ) skip_list.delete(2 ) assert is_sorted(list(lowerCAmelCase_ ) ) skip_list.insert(-1_2 , -1_2 ) skip_list.insert(7_7 , 7_7 ) assert is_sorted(list(lowerCAmelCase_ ) ) def __snake_case ( ) -> Dict: for _ in range(1_0_0 ): # Repeat test 100 times due to the probabilistic nature of skip list # random values == random bugs test_insert() test_insert_overrides_existing_value() test_searching_empty_list_returns_none() test_search() test_deleting_item_from_empty_list_do_nothing() test_deleted_items_are_not_founded_by_find_method() test_delete_removes_only_given_key() test_delete_doesnt_leave_dead_nodes() test_iter_always_yields_sorted_values() def __snake_case ( ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ = SkipList() skip_list.insert(2 , '''2''' ) skip_list.insert(4 , '''4''' ) skip_list.insert(6 , '''4''' ) skip_list.insert(4 , '''5''' ) skip_list.insert(8 , '''4''' ) skip_list.insert(9 , '''4''' ) skip_list.delete(4 ) print(lowerCAmelCase_ ) if __name__ == "__main__": import doctest doctest.testmod() main()
100
'''simple docstring''' import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def A__ ( A_ ) -> List[str]: # This defines a "chinese character" as anything in the CJK Unicode block: # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) # # Note that the CJK Unicode block is NOT all Japanese and Korean characters, # despite its name. The modern Korean Hangul alphabet is a different block, # as is Japanese Hiragana and Katakana. Those alphabets are used to write # space-separated words, so they are not treated specially and handled # like the all of the other languages. if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False def A__ ( A_ ) -> str: # word like '180' or '身高' or '神' for char in word: _lowercase = ord(A_ ) if not _is_chinese_char(A_ ): return 0 return 1 def A__ ( A_ ) -> int: _lowercase = set() for token in tokens: _lowercase = len(A_ ) > 1 and is_chinese(A_ ) if chinese_word: word_set.add(A_ ) _lowercase = list(A_ ) return word_list def A__ ( A_ , A_ ) -> Optional[int]: if not chinese_word_set: return bert_tokens _lowercase = max([len(A_ ) for w in chinese_word_set] ) _lowercase = bert_tokens _lowercase , _lowercase = 0, len(A_ ) while start < end: _lowercase = True if is_chinese(bert_word[start] ): _lowercase = min(end - start , A_ ) for i in range(A_ , 1 , -1 ): _lowercase = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): _lowercase = "##" + bert_word[j] _lowercase = start + i _lowercase = False break if single_word: start += 1 return bert_word def A__ ( A_ , A_ , A_ ) -> Dict: _lowercase = [] for i in range(0 , len(A_ ) , 100 ): _lowercase = ltp_tokenizer.seg(lines[i : i + 100] )[0] _lowercase = [get_chinese_word(A_ ) for r in res] ltp_res.extend(A_ ) assert len(A_ ) == len(A_ ) _lowercase = [] for i in range(0 , len(A_ ) , 100 ): _lowercase = bert_tokenizer(lines[i : i + 100] , add_special_tokens=A_ , truncation=A_ , max_length=512 ) bert_res.extend(res["input_ids"] ) assert len(A_ ) == len(A_ ) _lowercase = [] for input_ids, chinese_word in zip(A_ , A_ ): _lowercase = [] for id in input_ids: _lowercase = bert_tokenizer._convert_id_to_token(A_ ) input_tokens.append(A_ ) _lowercase = add_sub_symbol(A_ , A_ ) _lowercase = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(A_ ): if token[:2] == "##": _lowercase = token[2:] # save chinese tokens' pos if len(A_ ) == 1 and _is_chinese_char(ord(A_ ) ): ref_id.append(A_ ) ref_ids.append(A_ ) assert len(A_ ) == len(A_ ) return ref_ids def A__ ( A_ ) -> str: # For Chinese (Ro)Bert, the best result is from : RoBERTa-wwm-ext (https://github.com/ymcui/Chinese-BERT-wwm) # If we want to fine-tune these model, we have to use same tokenizer : LTP (https://github.com/HIT-SCIR/ltp) with open(args.file_name , "r" , encoding="utf-8" ) as f: _lowercase = f.readlines() _lowercase = [line.strip() for line in data if len(A_ ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' _lowercase = LTP(args.ltp ) # faster in GPU device _lowercase = BertTokenizer.from_pretrained(args.bert ) _lowercase = prepare_ref(A_ , A_ , A_ ) with open(args.save_path , "w" , encoding="utf-8" ) as f: _lowercase = [json.dumps(A_ ) + "\n" for ref in ref_ids] f.writelines(A_ ) if __name__ == "__main__": __magic_name__ : Optional[Any] = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') __magic_name__ : Dict = parser.parse_args() main(args)
497
0
"""simple docstring""" def _lowerCAmelCase ( UpperCamelCase_ = 100_0000 ): __SCREAMING_SNAKE_CASE = set(range(3 , UpperCamelCase_ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCamelCase_ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCamelCase_ , UpperCamelCase_ ) ) ) __SCREAMING_SNAKE_CASE = [float(UpperCamelCase_ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCamelCase_ , limit + 1 , UpperCamelCase_ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F"""{solution() = }""")
248
"""simple docstring""" import baseaa def _lowerCAmelCase ( UpperCamelCase_ ): return baseaa.baaencode(string.encode("""utf-8""" ) ) def _lowerCAmelCase ( UpperCamelCase_ ): return baseaa.baadecode(UpperCamelCase_ ).decode("""utf-8""" ) if __name__ == "__main__": __magic_name__ = "Hello World!" __magic_name__ = baseaa_encode(test) print(encoded) __magic_name__ = baseaa_decode(encoded) print(decoded)
248
1
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def _UpperCAmelCase (UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : List[Any]=None ): return field(default_factory=lambda: default , metadata=UpperCamelCase__ ) @dataclass class lowerCAmelCase__ : '''simple docstring''' __SCREAMING_SNAKE_CASE = field( metadata={"help": "The csv file to plot."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Disable logarithmic scale when plotting"} , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) __SCREAMING_SNAKE_CASE = field( default=a , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) __SCREAMING_SNAKE_CASE = list_field( default=a , metadata={"help": "List of model names that are used instead of the ones in the csv file."}) def _UpperCAmelCase (UpperCamelCase__ : List[str] ): try: int(UpperCamelCase__ ) return True except ValueError: return False def _UpperCAmelCase (UpperCamelCase__ : int ): try: float(UpperCamelCase__ ) return True except ValueError: return False class lowerCAmelCase__ : '''simple docstring''' def __init__( self , __lowerCamelCase) -> Dict: _A : int = args _A : Union[str, Any] = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}}) with open(self.args.csv_file , newline="") as csv_file: _A : Union[str, Any] = csv.DictReader(__lowerCamelCase) for row in reader: _A : List[str] = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"])) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"])) if can_convert_to_int(row["result"]): # value is not None _A : Union[str, Any] = int(row["result"]) elif can_convert_to_float(row["result"]): # value is not None _A : Dict = float(row["result"]) def _lowerCamelCase ( self) -> Dict: _A , _A : Any = plt.subplots() _A : Tuple = "Time usage" if self.args.is_time else "Memory usage" _A : int = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log") ax.set_yscale("log") for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter()) for model_name_idx, model_name in enumerate(self.result_dict.keys()): _A : Optional[int] = sorted(set(self.result_dict[model_name]["bsz"])) _A : List[str] = sorted(set(self.result_dict[model_name]["seq_len"])) _A : int = self.result_dict[model_name]["result"] ((_A) , (_A)) : Optional[Any] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) _A : Tuple = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: _A : Tuple = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__lowerCamelCase , ) else: _A : Dict = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((_A) , (_A)) : Optional[Any] = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) _A : Union[str, Any] = np.asarray(__lowerCamelCase , __lowerCamelCase)[: len(__lowerCamelCase)] plt.scatter( __lowerCamelCase , __lowerCamelCase , label=F"{label_model_name} - {inner_loop_label}: {inner_loop_value}") plt.plot(__lowerCamelCase , __lowerCamelCase , "--") title_str += F" {label_model_name} vs." _A : int = title_str[:-4] _A : Dict = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__lowerCamelCase) plt.xlabel(__lowerCamelCase) plt.ylabel(__lowerCamelCase) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file) else: plt.show() def _UpperCAmelCase (): _A : Optional[Any] = HfArgumentParser(UpperCamelCase__ ) _A : str = parser.parse_args_into_dataclasses()[0] _A : Optional[Any] = Plot(args=UpperCamelCase__ ) plot.plot() if __name__ == "__main__": main()
503
import pyarrow.parquet as pq import pytest from datasets import Audio, Dataset, DatasetDict, Features, NamedSplit, Sequence, Value, config from datasets.features.image import Image from datasets.io.parquet import ParquetDatasetReader, ParquetDatasetWriter, get_writer_batch_size from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : str ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _UpperCAmelCase (UpperCamelCase__ : str , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict ): _A : Any = tmp_path / "cache" _A : int = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A : List[str] = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[int] ): _A : Dict = tmp_path / "cache" _A : List[str] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : Optional[Any] = features.copy() if features else default_expected_features _A : Union[str, Any] = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _A : int = ParquetDatasetReader(UpperCamelCase__ , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _UpperCAmelCase (UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : List[str] ): _A : Any = tmp_path / "cache" _A : Tuple = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : List[str] = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ , split=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) assert dataset.split == split if split else "train" @pytest.mark.parametrize("path_type" , [str, list] ) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : Union[str, Any] , UpperCamelCase__ : Any ): if issubclass(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[int] = parquet_path elif issubclass(UpperCamelCase__ , UpperCamelCase__ ): _A : Optional[int] = [parquet_path] _A : Dict = tmp_path / "cache" _A : Union[str, Any] = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : Tuple = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_dataset(UpperCamelCase__ , UpperCamelCase__ ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : str , UpperCamelCase__ : Union[str, Any]=("train",) ): assert isinstance(UpperCamelCase__ , UpperCamelCase__ ) for split in splits: _A : List[Any] = dataset_dict[split] assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @pytest.mark.parametrize("keep_in_memory" , [False, True] ) def _UpperCAmelCase (UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): _A : Tuple = tmp_path / "cache" _A : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): _A : List[str] = ParquetDatasetReader( {"train": parquet_path} , cache_dir=UpperCamelCase__ , keep_in_memory=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize( "features" , [ None, {"col_1": "string", "col_2": "int64", "col_3": "float64"}, {"col_1": "string", "col_2": "string", "col_3": "string"}, {"col_1": "int32", "col_2": "int32", "col_3": "int32"}, {"col_1": "float32", "col_2": "float32", "col_3": "float32"}, ] , ) def _UpperCAmelCase (UpperCamelCase__ : List[Any] , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[int] ): _A : Optional[int] = tmp_path / "cache" _A : Any = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : str = features.copy() if features else default_expected_features _A : Any = ( Features({feature: Value(UpperCamelCase__ ) for feature, dtype in features.items()} ) if features is not None else None ) _A : int = ParquetDatasetReader({"train": parquet_path} , features=UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ ) @pytest.mark.parametrize("split" , [None, NamedSplit("train" ), "train", "test"] ) def _UpperCAmelCase (UpperCamelCase__ : List[str] , UpperCamelCase__ : int , UpperCamelCase__ : int ): if split: _A : Any = {split: parquet_path} else: _A : Optional[Any] = "train" _A : int = {"train": parquet_path, "test": parquet_path} _A : Any = tmp_path / "cache" _A : str = {"col_1": "string", "col_2": "int64", "col_3": "float64"} _A : Dict = ParquetDatasetReader(UpperCamelCase__ , cache_dir=UpperCamelCase__ ).read() _check_parquet_datasetdict(UpperCamelCase__ , UpperCamelCase__ , splits=list(path.keys() ) ) assert all(dataset[split].split == split for split in path.keys() ) def _UpperCAmelCase (UpperCamelCase__ : Dict , UpperCamelCase__ : List[str] ): _A : Union[str, Any] = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / "foo.parquet" ) assert writer.write() > 0 _A : List[Any] = pq.ParquetFile(tmp_path / "foo.parquet" ) _A : List[str] = pf.read() assert dataset.data.table == output_table def _UpperCAmelCase (UpperCamelCase__ : Tuple , UpperCamelCase__ : Optional[Any] ): _A : Any = str(shared_datadir / "test_image_rgb.jpg" ) _A : Dict = {"image": [image_path]} _A : Union[str, Any] = Features({"image": Image()} ) _A : List[Any] = Dataset.from_dict(UpperCamelCase__ , features=UpperCamelCase__ ) _A : Any = ParquetDatasetWriter(UpperCamelCase__ , tmp_path / "foo.parquet" ) assert writer.write() > 0 _A : Optional[int] = Dataset.from_parquet(str(tmp_path / "foo.parquet" ) ) assert dataset.features == reloaded_dataset.features _A : Union[str, Any] = ParquetDatasetReader(str(tmp_path / "foo.parquet" ) , streaming=UpperCamelCase__ ).read() assert dataset.features == reloaded_iterable_dataset.features @pytest.mark.parametrize( "feature, expected" , [ (Features({"foo": Value("int32" )} ), None), (Features({"image": Image(), "foo": Value("int32" )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS), (Features({"nested": Sequence(Audio() )} ), config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS), ] , ) def _UpperCAmelCase (UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ): assert get_writer_batch_size(UpperCamelCase__ ) == expected
503
1
"""simple docstring""" def UpperCAmelCase ( UpperCamelCase__ = 1_000_000 ): """simple docstring""" A__ = set(range(3 , UpperCamelCase__ , 2 ) ) primes.add(2 ) for p in range(3 , UpperCamelCase__ , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , UpperCamelCase__ , UpperCamelCase__ ) ) ) A__ = [float(UpperCamelCase__ ) for n in range(limit + 1 )] for p in primes: for n in range(UpperCamelCase__ , limit + 1 , UpperCamelCase__ ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
710
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets __lowerCamelCase = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" __lowerCamelCase = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" __lowerCamelCase = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False , ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): A__ = new_id # turn into Numpy arrays A__ = np.array(UpperCamelCase__ ) A__ = np.array(UpperCamelCase__ ) if reduce_labels: A__ = 255 A__ = label - 1 A__ = 255 A__ = label != ignore_index A__ = np.not_equal(UpperCamelCase__ , UpperCamelCase__ ) A__ = pred_label[mask] A__ = np.array(UpperCamelCase__ )[mask] A__ = pred_label[pred_label == label] A__ = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] A__ = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] A__ = np.histogram(UpperCamelCase__ , bins=UpperCamelCase__ , range=(0, num_labels - 1) )[0] A__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = False , ): """simple docstring""" A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCamelCase__ , UpperCamelCase__ ): A__ , A__ , A__ , A__ = intersect_and_union( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCAmelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = None , UpperCamelCase__ = None , UpperCamelCase__ = False , ): """simple docstring""" A__ , A__ , A__ , A__ = total_intersect_and_union( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # compute metrics A__ = {} A__ = total_area_intersect.sum() / total_area_label.sum() A__ = total_area_intersect / total_area_union A__ = total_area_intersect / total_area_label A__ = np.nanmean(UpperCamelCase__ ) A__ = np.nanmean(UpperCamelCase__ ) A__ = all_acc A__ = iou A__ = acc if nan_to_num is not None: A__ = {metric: np.nan_to_num(UpperCamelCase__ , nan=UpperCamelCase__ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCamelCase__( datasets.Metric ): def snake_case__ ( self ) -> str: return datasets.MetricInfo( description=_DESCRIPTION ,citation=_CITATION ,inputs_description=_KWARGS_DESCRIPTION ,features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { 'predictions': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), 'references': datasets.Sequence(datasets.Sequence(datasets.Value('uint16' ) ) ), } ) ,reference_urls=[ 'https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py' ] ,) def snake_case__ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = False ,) -> Tuple: A__ = mean_iou( results=__UpperCAmelCase ,gt_seg_maps=__UpperCAmelCase ,num_labels=__UpperCAmelCase ,ignore_index=__UpperCAmelCase ,nan_to_num=__UpperCAmelCase ,label_map=__UpperCAmelCase ,reduce_labels=__UpperCAmelCase ,) return iou_result
536
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE : Tuple =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : List[str] ={ '''microsoft/biogpt''': '''https://huggingface.co/microsoft/biogpt/resolve/main/config.json''', # See all BioGPT models at https://huggingface.co/models?filter=biogpt } class A_ ( a__ ): _A :List[Any] = "biogpt" def __init__( self : List[Any] , snake_case__ : Dict=4_23_84 , snake_case__ : int=10_24 , snake_case__ : Any=24 , snake_case__ : Optional[int]=16 , snake_case__ : int=40_96 , snake_case__ : Tuple="gelu" , snake_case__ : str=0.1 , snake_case__ : List[Any]=0.1 , snake_case__ : Dict=10_24 , snake_case__ : Union[str, Any]=0.02 , snake_case__ : str=1E-12 , snake_case__ : Dict=True , snake_case__ : Optional[Any]=True , snake_case__ : str=0.0 , snake_case__ : List[Any]=0.0 , snake_case__ : Tuple=1 , snake_case__ : List[str]=0 , snake_case__ : List[Any]=2 , **snake_case__ : Optional[Any] , ): lowercase = vocab_size lowercase = max_position_embeddings lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = scale_embedding lowercase = use_cache lowercase = layerdrop lowercase = activation_dropout super().__init__(pad_token_id=SCREAMING_SNAKE_CASE_ , bos_token_id=SCREAMING_SNAKE_CASE_ , eos_token_id=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ )
428
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = '''▁''' __UpperCAmelCase = {'''vocab_file''': '''sentencepiece.bpe.model'''} __UpperCAmelCase = { '''vocab_file''': { '''facebook/xglm-564M''': '''https://huggingface.co/facebook/xglm-564M/resolve/main/sentencepiece.bpe.model''', } } __UpperCAmelCase = { '''facebook/xglm-564M''': 2_048, } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : int = VOCAB_FILES_NAMES UpperCAmelCase__ : List[str] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="</s>", SCREAMING_SNAKE_CASE_="<s>", SCREAMING_SNAKE_CASE_="<unk>", SCREAMING_SNAKE_CASE_="<pad>", SCREAMING_SNAKE_CASE_ = None, **SCREAMING_SNAKE_CASE_, ) -> None: UpperCamelCase : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs # Compatibility with the original tokenizer UpperCamelCase : Any = 7 UpperCamelCase : Optional[int] = [F"""<madeupword{i}>""" for i in range(self.num_madeup_words )] UpperCamelCase : Dict = kwargs.get('additional_special_tokens', [] ) kwargs["additional_special_tokens"] += [ word for word in madeup_words if word not in kwargs["additional_special_tokens"] ] super().__init__( bos_token=SCREAMING_SNAKE_CASE_, eos_token=SCREAMING_SNAKE_CASE_, unk_token=SCREAMING_SNAKE_CASE_, sep_token=SCREAMING_SNAKE_CASE_, cls_token=SCREAMING_SNAKE_CASE_, pad_token=SCREAMING_SNAKE_CASE_, sp_model_kwargs=self.sp_model_kwargs, **SCREAMING_SNAKE_CASE_, ) UpperCamelCase : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(SCREAMING_SNAKE_CASE_ ) ) UpperCamelCase : Optional[Any] = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCamelCase : int = 1 # Mimic fairseq token-to-id alignment for the first 4 token UpperCamelCase : Dict = {'<s>': 0, '<pad>': 1, '</s>': 2, '<unk>': 3} UpperCamelCase : Optional[int] = len(self.sp_model ) UpperCamelCase : Any = {F"""<madeupword{i}>""": sp_size + i + self.fairseq_offset for i in range(self.num_madeup_words )} self.fairseq_tokens_to_ids.update(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> List[Any]: UpperCamelCase : int = self.__dict__.copy() UpperCamelCase : Union[str, Any] = None UpperCamelCase : int = self.sp_model.serialized_model_proto() return state def __setstate__( self, SCREAMING_SNAKE_CASE_ ) -> str: UpperCamelCase : Any = d # for backward compatibility if not hasattr(self, 'sp_model_kwargs' ): UpperCamelCase : Any = {} UpperCamelCase : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: if token_ids_a is None: return [self.sep_token_id] + token_ids_a UpperCamelCase : Optional[int] = [self.sep_token_id] return sep + token_ids_a + sep + sep + token_ids_a def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=SCREAMING_SNAKE_CASE_, token_ids_a=SCREAMING_SNAKE_CASE_, already_has_special_tokens=SCREAMING_SNAKE_CASE_ ) if token_ids_a is None: return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) return [1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) + [1, 1] + ([0] * len(SCREAMING_SNAKE_CASE_ )) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> List[int]: UpperCamelCase : str = [self.sep_token_id] if token_ids_a is None: return len(sep + token_ids_a ) * [0] return len(sep + token_ids_a + sep + sep + token_ids_a ) * [0] @property def snake_case_ ( self ) -> int: return len(self.sp_model ) + self.fairseq_offset + self.num_madeup_words def snake_case_ ( self ) -> int: UpperCamelCase : List[str] = {self.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.sp_model.encode(SCREAMING_SNAKE_CASE_, out_type=SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCamelCase : Union[str, Any] = self.sp_model.PieceToId(SCREAMING_SNAKE_CASE_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: UpperCamelCase : Dict = ''.join(SCREAMING_SNAKE_CASE_ ).replace(SCREAMING_SNAKE_CASE_, ' ' ).strip() return out_string def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None ) -> Tuple[str]: if not os.path.isdir(SCREAMING_SNAKE_CASE_ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCamelCase : Optional[int] = os.path.join( SCREAMING_SNAKE_CASE_, (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(SCREAMING_SNAKE_CASE_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file, SCREAMING_SNAKE_CASE_ ) elif not os.path.isfile(self.vocab_file ): with open(SCREAMING_SNAKE_CASE_, 'wb' ) as fi: UpperCamelCase : List[str] = self.sp_model.serialized_model_proto() fi.write(SCREAMING_SNAKE_CASE_ ) return (out_vocab_file,)
40
0
from __future__ import annotations import unittest from transformers import BlenderbotSmallConfig, BlenderbotSmallTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel @require_tf class lowercase : """simple docstring""" a__ = BlenderbotSmallConfig a__ = {} a__ = "gelu" def __init__( self , __snake_case , __snake_case=13 , __snake_case=7 , __snake_case=True , __snake_case=False , __snake_case=99 , __snake_case=32 , __snake_case=2 , __snake_case=4 , __snake_case=37 , __snake_case=0.1 , __snake_case=0.1 , __snake_case=20 , __snake_case=2 , __snake_case=1 , __snake_case=0 , ): _UpperCamelCase : List[str] = parent _UpperCamelCase : List[Any] = batch_size _UpperCamelCase : Any = seq_length _UpperCamelCase : Tuple = is_training _UpperCamelCase : List[str] = use_labels _UpperCamelCase : Dict = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Any = num_hidden_layers _UpperCamelCase : Optional[Any] = num_attention_heads _UpperCamelCase : Union[str, Any] = intermediate_size _UpperCamelCase : List[str] = hidden_dropout_prob _UpperCamelCase : Union[str, Any] = attention_probs_dropout_prob _UpperCamelCase : int = max_position_embeddings _UpperCamelCase : Optional[int] = eos_token_id _UpperCamelCase : List[Any] = pad_token_id _UpperCamelCase : Optional[Any] = bos_token_id def A__ ( self): _UpperCamelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size) _UpperCamelCase : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size) , 1) _UpperCamelCase : List[Any] = tf.concat([input_ids, eos_tensor] , axis=1) _UpperCamelCase : Dict = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) _UpperCamelCase : int = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCamelCase : Any = prepare_blenderbot_small_inputs_dict(__snake_case , __snake_case , __snake_case) return config, inputs_dict def A__ ( self , __snake_case , __snake_case): _UpperCamelCase : Tuple = TFBlenderbotSmallModel(config=__snake_case).get_decoder() _UpperCamelCase : Dict = inputs_dict['input_ids'] _UpperCamelCase : Optional[int] = input_ids[:1, :] _UpperCamelCase : List[Any] = inputs_dict['attention_mask'][:1, :] _UpperCamelCase : Union[str, Any] = inputs_dict['head_mask'] _UpperCamelCase : Tuple = 1 # first forward pass _UpperCamelCase : Tuple = model(__snake_case , attention_mask=__snake_case , head_mask=__snake_case , use_cache=__snake_case) _UpperCamelCase : Optional[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids _UpperCamelCase : List[str] = ids_tensor((self.batch_size, 3) , config.vocab_size) _UpperCamelCase : Tuple = tf.cast(ids_tensor((self.batch_size, 3) , 2) , tf.inta) # append to next input_ids and _UpperCamelCase : Any = tf.concat([input_ids, next_tokens] , axis=-1) _UpperCamelCase : List[Any] = tf.concat([attention_mask, next_attn_mask] , axis=-1) _UpperCamelCase : Union[str, Any] = model(__snake_case , attention_mask=__snake_case)[0] _UpperCamelCase : Union[str, Any] = model(__snake_case , attention_mask=__snake_case , past_key_values=__snake_case)[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1]) # select random slice _UpperCamelCase : Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1])) _UpperCamelCase : int = output_from_no_past[:, -3:, random_slice_idx] _UpperCamelCase : Optional[int] = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__snake_case , __snake_case , rtol=1e-3) def lowerCamelCase_ ( UpperCAmelCase_ : int , UpperCAmelCase_ : Any , UpperCAmelCase_ : int , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : List[str]=None , UpperCAmelCase_ : Dict=None , UpperCAmelCase_ : Dict=None , ) -> Any: '''simple docstring''' if attention_mask is None: _UpperCamelCase : Optional[int] = tf.cast(tf.math.not_equal(UpperCAmelCase_ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: _UpperCamelCase : List[Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: _UpperCamelCase : Any = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _UpperCamelCase : str = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _UpperCamelCase : Optional[int] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class lowercase ( _lowercase , _lowercase , unittest.TestCase ): """simple docstring""" a__ = ( (TFBlenderbotSmallForConditionalGeneration, TFBlenderbotSmallModel) if is_tf_available() else () ) a__ = (TFBlenderbotSmallForConditionalGeneration,) if is_tf_available() else () a__ = ( { "conversational": TFBlenderbotSmallForConditionalGeneration, "feature-extraction": TFBlenderbotSmallModel, "summarization": TFBlenderbotSmallForConditionalGeneration, "text2text-generation": TFBlenderbotSmallForConditionalGeneration, "translation": TFBlenderbotSmallForConditionalGeneration, } if is_tf_available() else {} ) a__ = True a__ = False a__ = False def A__ ( self): _UpperCamelCase : Tuple = TFBlenderbotSmallModelTester(self) _UpperCamelCase : Any = ConfigTester(self , config_class=__snake_case) def A__ ( self): self.config_tester.run_common_tests() def A__ ( self): _UpperCamelCase : List[str] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__snake_case) @require_tokenizers @require_tf class lowercase ( unittest.TestCase ): """simple docstring""" a__ = [ "Social anxiety\nWow, I am never shy. Do you have anxiety?\nYes. I end up sweating and blushing and feel like " " i'm going to throw up.\nand why is that?" ] a__ = "facebook/blenderbot_small-90M" @cached_property def A__ ( self): # use "old" tokenizer here because of bug when downloading new tokenizer return BlenderbotSmallTokenizer.from_pretrained('facebook/blenderbot-90M') @cached_property def A__ ( self): _UpperCamelCase : str = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name) return model @slow def A__ ( self): _UpperCamelCase : Optional[int] = self.tokenizer(self.src_text , return_tensors='tf') _UpperCamelCase : List[str] = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=__snake_case , ) _UpperCamelCase : Dict = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=__snake_case)[0] assert generated_words in ( "i don't know. i just feel like i'm going to throw up. it's not fun.", "i'm not sure. i just feel like i've been feeling like i have to be in a certain place", "i'm not sure. i just feel like i've been in a bad situation.", )
700
import unittest from pathlib import Path from shutil import copyfile from transformers import SPIECE_UNDERLINE, is_sentencepiece_available from transformers.models.speech_to_text import SpeechaTextTokenizer from transformers.models.speech_to_text.tokenization_speech_to_text import VOCAB_FILES_NAMES, save_json from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase__ = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_sentencepiece_available(): import sentencepiece as sp lowerCAmelCase__ = 5 lowerCAmelCase__ = 1_0 @require_sentencepiece @require_tokenizers class lowercase ( _lowercase , unittest.TestCase ): """simple docstring""" a__ = SpeechaTextTokenizer a__ = False a__ = True def A__ ( self): super().setUp() _UpperCamelCase : Any = sp.SentencePieceProcessor() spm_model.Load(__snake_case) _UpperCamelCase : List[str] = ['<s>', '<pad>', '</s>', '<unk>'] vocab += [spm_model.IdToPiece(id_) for id_ in range(len(__snake_case))] _UpperCamelCase : Dict = dict(zip(__snake_case , range(len(__snake_case)))) _UpperCamelCase : Tuple = Path(self.tmpdirname) save_json(__snake_case , save_dir / VOCAB_FILES_NAMES['vocab_file']) if not (save_dir / VOCAB_FILES_NAMES["spm_file"]).exists(): copyfile(__snake_case , save_dir / VOCAB_FILES_NAMES['spm_file']) _UpperCamelCase : int = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) tokenizer.save_pretrained(self.tmpdirname) def A__ ( self): _UpperCamelCase : str = '<pad>' _UpperCamelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__snake_case) , __snake_case) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__snake_case) , __snake_case) def A__ ( self): _UpperCamelCase : Optional[Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '<s>') self.assertEqual(vocab_keys[1] , '<pad>') self.assertEqual(vocab_keys[-1] , 'j') self.assertEqual(len(__snake_case) , 10_01) def A__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 10_01) def A__ ( self): _UpperCamelCase : Any = SpeechaTextTokenizer.from_pretrained(self.tmpdirname) _UpperCamelCase : List[str] = tokenizer.tokenize('This is a test') self.assertListEqual(__snake_case , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(__snake_case) , [2_89, 50, 14, 1_74, 3_86] , ) _UpperCamelCase : int = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.'] , ) _UpperCamelCase : int = tokenizer.convert_tokens_to_ids(__snake_case) self.assertListEqual(__snake_case , [12, 25, 88, 59, 28, 23, 11, 4, 6_06, 3_51, 3_51, 3_51, 7, 16, 70, 50, 76, 84, 10, 4, 8]) _UpperCamelCase : Tuple = tokenizer.convert_ids_to_tokens(__snake_case) self.assertListEqual( __snake_case , [SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.'] , ) @slow def A__ ( self): # fmt: off _UpperCamelCase : Optional[int] = {'input_ids': [[37_91, 7_97, 31, 11, 64, 7_97, 31, 24_29, 4_33, 12, 11_76, 12, 20, 7_86, 9_15, 1_42, 24_13, 2_40, 37, 32_38, 7_97, 31, 11, 35, 93, 9_15, 1_42, 24_13, 2_40, 37, 55_40, 5_67, 12_76, 93, 37, 6_10, 40, 62, 4_55, 6_57, 10_42, 1_23, 7_80, 1_77, 37, 3_09, 2_41, 12_98, 5_14, 20, 2_92, 27_37, 1_14, 24_69, 2_41, 85, 64, 3_02, 5_48, 5_28, 4_23, 4, 5_09, 4_06, 4_23, 37, 6_01, 4, 7_77, 3_02, 5_48, 5_28, 4_23, 2_84, 4, 33_88, 5_11, 4_59, 4, 35_55, 40, 3_21, 3_02, 7_05, 4, 33_88, 5_11, 5_83, 3_26, 5, 5, 5, 62, 33_10, 5_60, 1_77, 26_80, 2_17, 15_08, 32, 31, 8_53, 4_18, 64, 5_83, 5_11, 16_05, 62, 35, 93, 5_60, 1_77, 26_80, 2_17, 15_08, 15_21, 64, 5_83, 5_11, 5_19, 62, 20, 15_15, 7_64, 20, 1_49, 2_61, 56_25, 79_72, 20, 55_40, 5_67, 12_76, 93, 39_25, 16_75, 11, 15, 8_02, 79_72, 5_76, 2_17, 15_08, 11, 35, 93, 12_53, 24_41, 15, 2_89, 6_52, 31, 4_16, 3_21, 38_42, 1_15, 40, 9_11, 8, 4_76, 6_19, 4, 3_80, 1_42, 4_23, 3_35, 2_40, 35, 93, 2_64, 8, 11, 3_35, 5_69, 4_20, 1_63, 5, 2], [2_60, 5_48, 5_28, 4_23, 20, 4_51, 20, 26_81, 11_53, 34_34, 20, 55_40, 37, 5_67, 1_26, 12_53, 24_41, 33_76, 4_49, 2_10, 4_31, 15_63, 1_77, 7_67, 55_40, 11, 12_03, 4_72, 11, 29_53, 6_85, 2_85, 3_64, 7_06, 11_53, 20, 67_99, 20, 28_69, 20, 44_64, 1_26, 40, 24_29, 20, 10_40, 8_66, 26_64, 4_18, 20, 3_18, 20, 17_26, 1_86, 20, 2_65, 5_22, 35, 93, 21_91, 46_34, 20, 10_40, 12, 67_99, 15, 2_28, 23_56, 1_42, 31, 11, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [25_75, 26_66, 6_84, 15_82, 11_76, 12, 6_27, 1_49, 6_19, 20, 49_02, 5_63, 11, 20, 1_49, 2_61, 34_20, 23_56, 1_74, 1_42, 47_14, 1_31, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__snake_case , model_name='facebook/s2t-small-mustc-en-de-st' , revision='a14f04cf0776c02f62a8cb800cf7909e15ea23ad' , ) @require_sentencepiece class lowercase ( unittest.TestCase ): """simple docstring""" a__ = "valhalla/s2t_mustc_multilinguial_medium" a__ = "C'est trop cool" a__ = "Esto es genial" @classmethod def A__ ( cls): _UpperCamelCase : SpeechaTextTokenizer = SpeechaTextTokenizer.from_pretrained(cls.checkpoint_name) return cls def A__ ( self): self.assertEqual(self.tokenizer.lang_code_to_id['pt'] , 4) self.assertEqual(self.tokenizer.lang_code_to_id['ru'] , 6) self.assertEqual(self.tokenizer.lang_code_to_id['it'] , 9) self.assertEqual(self.tokenizer.lang_code_to_id['de'] , 11) def A__ ( self): self.assertEqual(self.tokenizer.vocab_size , 1_00_00) def A__ ( self): self.assertIn(__snake_case , self.tokenizer.all_special_ids) _UpperCamelCase : Optional[int] = [ES_CODE, 4, 16_01, 47, 76_47, 2] _UpperCamelCase : Tuple = self.tokenizer.decode(__snake_case , skip_special_tokens=__snake_case) _UpperCamelCase : Dict = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=__snake_case) self.assertEqual(__snake_case , __snake_case) self.assertNotIn(self.tokenizer.eos_token , __snake_case) def A__ ( self): _UpperCamelCase : Any = 'fr' _UpperCamelCase : List[Any] = self.tokenizer(self.french_text).input_ids self.assertEqual(encoded[0] , __snake_case) self.assertEqual(encoded[-1] , self.tokenizer.eos_token_id) def A__ ( self): _UpperCamelCase : Union[str, Any] = 'fr' self.assertListEqual(self.tokenizer.prefix_tokens , [FR_CODE]) _UpperCamelCase : List[str] = 'es' self.assertListEqual(self.tokenizer.prefix_tokens , [ES_CODE])
648
0