code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : """simple docstring""" def __init__( self : Tuple , lowercase__ : Optional[Any] , lowercase__ : Optional[Any]=1_3 , lowercase__ : List[Any]=3_2 , lowercase__ : List[str]=3 , lowercase__ : List[str]=4 , lowercase__ : Dict=[1_0, 2_0, 3_0, 4_0] , lowercase__ : List[str]=[2, 2, 3, 2] , lowercase__ : List[str]=True , lowercase__ : Optional[int]=True , lowercase__ : Optional[int]=3_7 , lowercase__ : Union[str, Any]="gelu" , lowercase__ : Optional[int]=1_0 , lowercase__ : Dict=0.0_2 , lowercase__ : Dict=["stage2", "stage3", "stage4"] , lowercase__ : List[str]=[2, 3, 4] , lowercase__ : Optional[int]=None , ): __lowercase : List[str] = parent __lowercase : int = batch_size __lowercase : int = image_size __lowercase : Optional[int] = num_channels __lowercase : Optional[int] = num_stages __lowercase : List[Any] = hidden_sizes __lowercase : Optional[Any] = depths __lowercase : int = is_training __lowercase : int = use_labels __lowercase : Optional[int] = intermediate_size __lowercase : Optional[Any] = hidden_act __lowercase : Any = num_labels __lowercase : str = initializer_range __lowercase : List[str] = out_features __lowercase : Tuple = out_indices __lowercase : List[str] = scope def snake_case ( self : Optional[int] ): __lowercase : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __lowercase : Optional[Any] = None if self.use_labels: __lowercase : str = ids_tensor([self.batch_size] , self.num_labels ) __lowercase : Dict = self.get_config() return config, pixel_values, labels def snake_case ( self : List[str] ): return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=lowercase__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def snake_case ( self : List[str] , lowercase__ : Optional[Any] , lowercase__ : int , lowercase__ : Union[str, Any] ): __lowercase : Optional[int] = ConvNextVaModel(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : List[Any] = model(lowercase__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def snake_case ( self : List[str] , lowercase__ : Optional[Any] , lowercase__ : List[Any] , lowercase__ : Union[str, Any] ): __lowercase : Any = ConvNextVaForImageClassification(lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : Tuple = model(lowercase__ , labels=lowercase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case ( self : Optional[int] , lowercase__ : Optional[int] , lowercase__ : Union[str, Any] , lowercase__ : Union[str, Any] ): __lowercase : List[Any] = ConvNextVaBackbone(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : Any = model(lowercase__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None __lowercase : Optional[Any] = None __lowercase : Dict = ConvNextVaBackbone(config=lowercase__ ) model.to(lowercase__ ) model.eval() __lowercase : List[Any] = model(lowercase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case ( self : Any ): __lowercase : Union[str, Any] = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase : int = config_and_inputs __lowercase : int = {"pixel_values": pixel_values} return config, inputs_dict def snake_case ( self : int ): __lowercase : str = self.prepare_config_and_inputs() __lowercase ,__lowercase ,__lowercase : int = config_and_inputs __lowercase : List[str] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class lowerCAmelCase__ ( lowerCAmelCase_ , lowerCAmelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) __UpperCAmelCase : Tuple = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : List[str] = False __UpperCAmelCase : Optional[Any] = False def snake_case ( self : Optional[int] ): __lowercase : Union[str, Any] = ConvNextVaModelTester(self ) __lowercase : Dict = ConfigTester(self , config_class=lowercase__ , has_text_modality=lowercase__ , hidden_size=3_7 ) def snake_case ( self : Optional[Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case ( self : List[Any] ): return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def snake_case ( self : List[Any] ): pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def snake_case ( self : Optional[Any] ): pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def snake_case ( self : int ): pass def snake_case ( self : Any ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase ,__lowercase : Dict = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase : Any = True if model_class.__name__ in [ *get_values(lowercase__ ), *get_values(lowercase__ ), ]: continue __lowercase : Tuple = model_class(lowercase__ ) model.to(lowercase__ ) model.train() __lowercase : List[Any] = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) __lowercase : Any = model(**lowercase__ ).loss loss.backward() def snake_case ( self : Any ): if not self.model_tester.is_training: return for model_class in self.all_model_classes: __lowercase ,__lowercase : List[Any] = self.model_tester.prepare_config_and_inputs_with_labels() __lowercase : Optional[Any] = False __lowercase : Union[str, Any] = True if ( model_class.__name__ in [*get_values(lowercase__ ), *get_values(lowercase__ )] or not model_class.supports_gradient_checkpointing ): continue __lowercase : Tuple = model_class(lowercase__ ) model.to(lowercase__ ) model.gradient_checkpointing_enable() model.train() __lowercase : Optional[int] = self._prepare_for_class(lowercase__ , lowercase__ , return_labels=lowercase__ ) __lowercase : List[str] = model(**lowercase__ ).loss loss.backward() def snake_case ( self : Optional[int] ): __lowercase ,__lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Optional[int] = model_class(lowercase__ ) __lowercase : str = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __lowercase : Dict = [*signature.parameters.keys()] __lowercase : Union[str, Any] = ["pixel_values"] self.assertListEqual(arg_names[:1] , lowercase__ ) def snake_case ( self : Union[str, Any] ): __lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__ ) def snake_case ( self : Dict ): def check_hidden_states_output(lowercase__ : Optional[int] , lowercase__ : List[str] , lowercase__ : Optional[Any] ): __lowercase : List[Any] = model_class(lowercase__ ) model.to(lowercase__ ) model.eval() with torch.no_grad(): __lowercase : int = model(**self._prepare_for_class(lowercase__ , lowercase__ ) ) __lowercase : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states __lowercase : List[Any] = self.model_tester.num_stages self.assertEqual(len(lowercase__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) __lowercase ,__lowercase : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __lowercase : Tuple = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __lowercase : Optional[Any] = True check_hidden_states_output(lowercase__ , lowercase__ , lowercase__ ) def snake_case ( self : Dict ): __lowercase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase__ ) @slow def snake_case ( self : Any ): for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase : List[str] = ConvNextVaModel.from_pretrained(lowercase__ ) self.assertIsNotNone(lowercase__ ) def snake_case__ ( ) ->Optional[int]: """simple docstring""" __lowercase : Optional[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def snake_case ( self : Dict ): return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def snake_case ( self : int ): __lowercase : int = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(lowercase__ ) __lowercase : List[str] = self.default_image_processor __lowercase : Dict = prepare_img() __lowercase : Union[str, Any] = preprocessor(images=lowercase__ , return_tensors="pt" ).to(lowercase__ ) # forward pass with torch.no_grad(): __lowercase : Dict = model(**lowercase__ ) # verify the logits __lowercase : Tuple = torch.Size((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , lowercase__ ) __lowercase : Union[str, Any] = torch.tensor([0.9_9_9_6, 0.1_9_6_6, -0.4_3_8_6] ).to(lowercase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase__ , atol=1e-4 ) )
575
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case__ ( _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase, _lowerCamelCase ) ->np.ndarray: """simple docstring""" if (ksize % 2) == 0: __lowercase : Union[str, Any] = ksize + 1 __lowercase : Union[str, Any] = np.zeros((ksize, ksize), dtype=np.floataa ) # each value for y in range(_lowerCamelCase ): for x in range(_lowerCamelCase ): # distance from center __lowercase : Union[str, Any] = x - ksize // 2 __lowercase : List[Any] = y - ksize // 2 # degree to radiant __lowercase : int = theta / 1_80 * np.pi __lowercase : int = np.cos(_theta ) __lowercase : List[str] = np.sin(_theta ) # get kernel x __lowercase : Dict = cos_theta * px + sin_theta * py # get kernel y __lowercase : Any = -sin_theta * px + cos_theta * py # fill kernel __lowercase : List[str] = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image __A : List[Any] = imread('../image_data/lena.jpg') # turn image in gray scale value __A : List[str] = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges __A : int = np.zeros(gray.shape[:2]) for theta in [0, 3_0, 6_0, 9_0, 1_2_0, 1_5_0]: __A : Dict = gabor_filter_kernel(1_0, 8, theta, 1_0, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) __A : str = out / out.max() * 2_5_5 __A : Dict = out.astype(np.uinta) imshow('Original', gray) imshow('Gabor filter with 20x20 mask and 6 directions', out) waitKey(0)
575
1
def UpperCamelCase ( ) -> list[list[int]]: '''simple docstring''' return [list(range(10_00 - i , -10_00 - i , -1 ) ) for i in range(10_00 )] UpperCAmelCase_ = generate_large_matrix() UpperCAmelCase_ = ( [[4, 3, 2, -1], [3, 2, 1, -1], [1, 1, -1, -2], [-1, -1, -2, -3]], [[3, 2], [1, 0]], [[7, 7, 6]], [[7, 7, 6], [-1, -2, -3]], grid, ) def UpperCamelCase ( lowerCAmelCase_ ) -> None: '''simple docstring''' assert all(row == sorted(lowerCAmelCase_ , reverse=lowerCAmelCase_ ) for row in grid ) assert all(list(lowerCAmelCase_ ) == sorted(lowerCAmelCase_ , reverse=lowerCAmelCase_ ) for col in zip(*lowerCAmelCase_ ) ) def UpperCamelCase ( lowerCAmelCase_ ) -> int: '''simple docstring''' _A= 0 _A= len(lowerCAmelCase_ ) - 1 # Edge cases such as no values or all numbers are negative. if not array or array[0] < 0: return 0 while right + 1 > left: _A= (left + right) // 2 _A= array[mid] # Num must be negative and the index must be greater than or equal to 0. if num < 0 and array[mid - 1] >= 0: return mid if num >= 0: _A= mid + 1 else: _A= mid - 1 # No negative numbers so return the last index of the array + 1 which is the length. return len(lowerCAmelCase_ ) def UpperCamelCase ( lowerCAmelCase_ ) -> int: '''simple docstring''' _A= 0 _A= len(grid[0] ) for i in range(len(lowerCAmelCase_ ) ): _A= find_negative_index(grid[i][:bound] ) total += bound return (len(lowerCAmelCase_ ) * len(grid[0] )) - total def UpperCamelCase ( lowerCAmelCase_ ) -> int: '''simple docstring''' return len([number for row in grid for number in row if number < 0] ) def UpperCamelCase ( lowerCAmelCase_ ) -> int: '''simple docstring''' _A= 0 for row in grid: for i, number in enumerate(lowerCAmelCase_ ): if number < 0: total += len(lowerCAmelCase_ ) - i break return total def UpperCamelCase ( ) -> None: '''simple docstring''' from timeit import timeit print('Running benchmarks' ) _A= ( 'from __main__ import count_negatives_binary_search, ' 'count_negatives_brute_force, count_negatives_brute_force_with_break, grid' ) for func in ( "count_negatives_binary_search", # took 0.7727 seconds "count_negatives_brute_force_with_break", # took 4.6505 seconds "count_negatives_brute_force", # took 12.8160 seconds ): _A= timeit(F"{func}(grid=grid)" , setup=lowerCAmelCase_ , number=5_00 ) print(F"{func}() took {time:0.4f} seconds" ) if __name__ == "__main__": import doctest doctest.testmod() benchmark()
476
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tensorflow_text_available, is_torch_available UpperCAmelCase_ = { '''configuration_ernie''': ['''ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''ErnieConfig''', '''ErnieOnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ '''ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''ErnieForCausalLM''', '''ErnieForMaskedLM''', '''ErnieForMultipleChoice''', '''ErnieForNextSentencePrediction''', '''ErnieForPreTraining''', '''ErnieForQuestionAnswering''', '''ErnieForSequenceClassification''', '''ErnieForTokenClassification''', '''ErnieModel''', '''ErniePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_ernie import ERNIE_PRETRAINED_CONFIG_ARCHIVE_MAP, ErnieConfig, ErnieOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ernie import ( ERNIE_PRETRAINED_MODEL_ARCHIVE_LIST, ErnieForCausalLM, ErnieForMaskedLM, ErnieForMultipleChoice, ErnieForNextSentencePrediction, ErnieForPreTraining, ErnieForQuestionAnswering, ErnieForSequenceClassification, ErnieForTokenClassification, ErnieModel, ErniePreTrainedModel, ) else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
476
1
'''simple docstring''' import unittest from transformers import EsmConfig, is_torch_available from transformers.testing_utils import TestCasePlus, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers.models.esm.modeling_esmfold import EsmForProteinFolding class lowercase_ : """simple docstring""" def __init__( self : List[str], UpperCamelCase__ : Dict, UpperCamelCase__ : Dict=13, UpperCamelCase__ : Union[str, Any]=7, UpperCamelCase__ : List[str]=False, UpperCamelCase__ : List[Any]=True, UpperCamelCase__ : str=False, UpperCamelCase__ : Tuple=False, UpperCamelCase__ : str=19, UpperCamelCase__ : Tuple=32, UpperCamelCase__ : Optional[Any]=5, UpperCamelCase__ : int=4, UpperCamelCase__ : str=37, UpperCamelCase__ : List[str]="gelu", UpperCamelCase__ : Union[str, Any]=0.1, UpperCamelCase__ : List[Any]=0.1, UpperCamelCase__ : int=5_12, UpperCamelCase__ : int=16, UpperCamelCase__ : str=2, UpperCamelCase__ : Any=0.02, UpperCamelCase__ : Any=3, UpperCamelCase__ : Any=4, UpperCamelCase__ : Union[str, Any]=None, ) -> Tuple: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = num_choices _A = scope def __UpperCAmelCase ( self : Tuple ) -> List[Any]: _A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) _A = None if self.use_input_mask: _A = random_attention_mask([self.batch_size, self.seq_length] ) _A = None _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size], self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) _A = ids_tensor([self.batch_size], self.num_choices ) _A = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __UpperCAmelCase ( self : str ) -> Dict: _A = EsmConfig( vocab_size=33, hidden_size=self.hidden_size, pad_token_id=1, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, initializer_range=self.initializer_range, is_folding_model=UpperCamelCase__, esmfold_config={'trunk': {'num_blocks': 2}, 'fp16_esm': False}, ) return config def __UpperCAmelCase ( self : Dict, UpperCamelCase__ : Union[str, Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : str, UpperCamelCase__ : Dict, UpperCamelCase__ : List[Any], UpperCamelCase__ : int ) -> List[str]: _A = EsmForProteinFolding(config=UpperCamelCase__ ).float() model.to(UpperCamelCase__ ) model.eval() _A = model(UpperCamelCase__, attention_mask=UpperCamelCase__ ) _A = model(UpperCamelCase__ ) _A = model(UpperCamelCase__ ) self.parent.assertEqual(result.positions.shape, (8, self.batch_size, self.seq_length, 14, 3) ) self.parent.assertEqual(result.angles.shape, (8, self.batch_size, self.seq_length, 7, 2) ) def __UpperCAmelCase ( self : Any ) -> Optional[int]: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = False __lowerCAmelCase = (EsmForProteinFolding,) if is_torch_available() else () __lowerCAmelCase = () __lowerCAmelCase = {} if is_torch_available() else {} __lowerCAmelCase = False def __UpperCAmelCase ( self : List[str] ) -> Dict: _A = EsmFoldModelTester(self ) _A = ConfigTester(self, config_class=UpperCamelCase__, hidden_size=37 ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Optional[int] ) -> str: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) @unittest.skip('Does not support attention outputs' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: pass @unittest.skip def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip('Esm does not support embedding resizing' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Any: pass @unittest.skip('Esm does not support embedding resizing' ) def __UpperCAmelCase ( self : str ) -> Any: pass @unittest.skip('ESMFold does not support passing input embeds!' ) def __UpperCAmelCase ( self : Tuple ) -> Tuple: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : str ) -> Optional[Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : Any ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : str ) -> Optional[int]: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : Dict ) -> int: pass @unittest.skip('ESMFold does not support head pruning.' ) def __UpperCAmelCase ( self : Dict ) -> Optional[int]: pass @unittest.skip('ESMFold does not output hidden states in the normal way.' ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip('ESMfold does not output hidden states in the normal way.' ) def __UpperCAmelCase ( self : Tuple ) -> Optional[Any]: pass @unittest.skip('ESMFold only has one output format.' ) def __UpperCAmelCase ( self : Tuple ) -> Any: pass @unittest.skip('This test doesn\'t work for ESMFold and doesn\'t test core functionality' ) def __UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: pass @unittest.skip('ESMFold does not support input chunking.' ) def __UpperCAmelCase ( self : int ) -> int: pass @unittest.skip('ESMFold doesn\'t respect you and it certainly doesn\'t respect your initialization arguments.' ) def __UpperCAmelCase ( self : Optional[int] ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __UpperCAmelCase ( self : str ) -> str: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __UpperCAmelCase ( self : str ) -> Tuple: pass @unittest.skip('ESMFold doesn\'t support torchscript compilation.' ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: pass @unittest.skip('ESMFold doesn\'t support data parallel.' ) def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : Union[str, Any] ) -> List[Any]: pass @require_torch class lowercase_ ( _UpperCamelCase ): """simple docstring""" @slow def __UpperCAmelCase ( self : Union[str, Any] ) -> str: _A = EsmForProteinFolding.from_pretrained('facebook/esmfold_v1' ).float() model.eval() _A = torch.tensor([[0, 6, 4, 13, 5, 4, 16, 12, 11, 7, 2]] ) _A = model(UpperCamelCase__ )['positions'] _A = torch.tensor([2.5_828, 0.7_993, -10.9_334], dtype=torch.floataa ) self.assertTrue(torch.allclose(position_outputs[0, 0, 0, 0], UpperCamelCase__, atol=1e-4 ) )
107
"""simple docstring""" import unittest import numpy as np from transformers import AlbertConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.albert.modeling_flax_albert import ( FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForPreTraining, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertModel, ) class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" def __init__( self : Optional[Any] , UpperCamelCase : Any , UpperCamelCase : Tuple=13 , UpperCamelCase : List[Any]=7 , UpperCamelCase : Optional[int]=True , UpperCamelCase : List[str]=True , UpperCamelCase : int=True , UpperCamelCase : Union[str, Any]=True , UpperCamelCase : Optional[int]=99 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Union[str, Any]=5 , UpperCamelCase : Dict=4 , UpperCamelCase : int=37 , UpperCamelCase : Optional[int]="gelu" , UpperCamelCase : int=0.1 , UpperCamelCase : Dict=0.1 , UpperCamelCase : Optional[Any]=512 , UpperCamelCase : int=16 , UpperCamelCase : Union[str, Any]=2 , UpperCamelCase : Optional[Any]=0.02 , UpperCamelCase : Tuple=4 , ): '''simple docstring''' __UpperCAmelCase : int = parent __UpperCAmelCase : Any = batch_size __UpperCAmelCase : Optional[int] = seq_length __UpperCAmelCase : str = is_training __UpperCAmelCase : Any = use_attention_mask __UpperCAmelCase : Dict = use_token_type_ids __UpperCAmelCase : Any = use_labels __UpperCAmelCase : int = vocab_size __UpperCAmelCase : str = hidden_size __UpperCAmelCase : int = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : List[Any] = intermediate_size __UpperCAmelCase : int = hidden_act __UpperCAmelCase : List[str] = hidden_dropout_prob __UpperCAmelCase : int = attention_probs_dropout_prob __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : str = type_vocab_size __UpperCAmelCase : Optional[Any] = type_sequence_label_size __UpperCAmelCase : List[str] = initializer_range __UpperCAmelCase : Tuple = num_choices def lowerCamelCase__ ( self : List[str] ): '''simple docstring''' __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : int = None if self.use_attention_mask: __UpperCAmelCase : List[str] = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[int] = None if self.use_token_type_ids: __UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : List[str] = AlbertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=UpperCamelCase , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' __UpperCAmelCase : Any = self.prepare_config_and_inputs() __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase : Any = config_and_inputs __UpperCAmelCase : Union[str, Any] = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict @require_flax class lowerCamelCase__ ( A , unittest.TestCase ): """simple docstring""" __a = ( ( FlaxAlbertModel, FlaxAlbertForPreTraining, FlaxAlbertForMaskedLM, FlaxAlbertForMultipleChoice, FlaxAlbertForQuestionAnswering, FlaxAlbertForSequenceClassification, FlaxAlbertForTokenClassification, FlaxAlbertForQuestionAnswering, ) if is_flax_available() else () ) def lowerCamelCase__ ( self : Union[str, Any] ): '''simple docstring''' __UpperCAmelCase : Dict = FlaxAlbertModelTester(self ) @slow def lowerCamelCase__ ( self : List[Any] ): '''simple docstring''' for model_class_name in self.all_model_classes: __UpperCAmelCase : Optional[Any] = model_class_name.from_pretrained("""albert-base-v2""" ) __UpperCAmelCase : Optional[Any] = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase ) @require_flax class lowerCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : Dict ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = FlaxAlbertModel.from_pretrained("""albert-base-v2""" ) __UpperCAmelCase : Tuple = np.array([[0, 345, 232, 328, 740, 140, 1_695, 69, 6_078, 1_588, 2]] ) __UpperCAmelCase : List[Any] = np.array([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) __UpperCAmelCase : List[Any] = model(UpperCamelCase , attention_mask=UpperCamelCase )[0] __UpperCAmelCase : Tuple = (1, 11, 768) self.assertEqual(output.shape , UpperCamelCase ) __UpperCAmelCase : Optional[Any] = np.array( [[[-0.6513, 1.5035, -0.2766], [-0.6515, 1.5046, -0.2780], [-0.6512, 1.5049, -0.2784]]] ) self.assertTrue(jnp.allclose(output[:, 1:4, 1:4] , UpperCamelCase , atol=1e-4 ) )
139
0
"""simple docstring""" import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, PLBartTokenizer, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __lowercase : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") if is_torch_available(): from transformers.models.plbart.modeling_plbart import shift_tokens_right __lowercase : Optional[Any] = 5_0_0_0_3 __lowercase : List[str] = 5_0_0_0_2 @require_sentencepiece @require_tokenizers class lowerCAmelCase ( a , unittest.TestCase ): """simple docstring""" __lowercase :Any = PLBartTokenizer __lowercase :List[Any] = None __lowercase :Tuple = False def _lowerCAmelCase ( self ) -> str: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing lowerCamelCase_ = PLBartTokenizer(UpperCamelCase__ , language_codes='''base''' , keep_accents=UpperCamelCase__ ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = PLBartTokenizer(UpperCamelCase__ , language_codes='''base''' , keep_accents=UpperCamelCase__ ) lowerCamelCase_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowerCamelCase_ = tokenizer.vocab_size lowerCamelCase_ = [tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) for x in range(end - 4 , UpperCamelCase__ )] self.assertListEqual(UpperCamelCase__ , ['''__java__''', '''__python__''', '''__en_XX__''', '''<mask>'''] ) lowerCamelCase_ = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowerCamelCase_ = tokenizer(UpperCamelCase__ ).input_ids self.assertEqual( tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) , UpperCamelCase__ , ) def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' lowerCamelCase_ = PLBartTokenizer(UpperCamelCase__ , language_codes='''multi''' , keep_accents=UpperCamelCase__ ) lowerCamelCase_ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(UpperCamelCase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowerCamelCase_ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCamelCase_ = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] ] , ) lowerCamelCase_ = tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) self.assertListEqual( UpperCamelCase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) lowerCamelCase_ = tokenizer.vocab_size lowerCamelCase_ = [tokenizer.convert_ids_to_tokens(UpperCamelCase__ ) for x in range(end - 7 , UpperCamelCase__ )] self.assertListEqual( UpperCamelCase__ , ['''__java__''', '''__python__''', '''__en_XX__''', '''__javascript__''', '''__php__''', '''__ruby__''', '''__go__'''] ) lowerCamelCase_ = '''java.lang.Exception, python.lang.Exception, javascript, php, ruby, go''' lowerCamelCase_ = tokenizer(UpperCamelCase__ ).input_ids self.assertEqual( tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ , clean_up_tokenization_spaces=UpperCamelCase__ ) , UpperCamelCase__ , ) @require_torch @require_sentencepiece @require_tokenizers class lowerCAmelCase ( unittest.TestCase ): """simple docstring""" __lowercase :Optional[int] = "uclanlp/plbart-python-en_XX" __lowercase :Dict = [ "def maximum(a,b,c):NEW_LINE_INDENTreturn max([a,b,c])", "def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])", ] __lowercase :int = [ "Returns the maximum value of a b c.", "Sums the values of a b c.", ] __lowercase :Union[str, Any] = [ 1_34, 54_52, 3_34_60, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 9_88, 20, 3_34_56, 19, 3_34_56, 7_71, 39, 42_58, 8_89, 33_18, 3_34_41, 3_34_63, 3_34_65, 3_34_63, 3_34_49, 24_71, 2, PYTHON_CODE, ] @classmethod def _lowerCAmelCase ( cls ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = PLBartTokenizer.from_pretrained( cls.checkpoint_name , language_codes='''base''' , src_lang='''python''' , tgt_lang='''en_XX''' ) lowerCamelCase_ = 1 return cls def _lowerCAmelCase ( self ) -> int: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__java__'''] , 50_001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__python__'''] , 50_002 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''__en_XX__'''] , 50_003 ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' self.assertIn(UpperCamelCase__ , self.tokenizer.all_special_ids ) lowerCamelCase_ = [EN_CODE, 9_037, 33_442, 57, 752, 153, 14, 56, 18, 9, 2] lowerCamelCase_ = self.tokenizer.decode(UpperCamelCase__ , skip_special_tokens=UpperCamelCase__ ) lowerCamelCase_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertNotIn(self.tokenizer.eos_token , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Any: '''simple docstring''' lowerCamelCase_ = ['''def sum(a,b,c):NEW_LINE_INDENTreturn sum([a,b,c])''' * 20] self.assertIsInstance(src_text[0] , UpperCamelCase__ ) lowerCamelCase_ = 10 lowerCamelCase_ = self.tokenizer(UpperCamelCase__ , max_length=UpperCamelCase__ , truncation=UpperCamelCase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , UpperCamelCase__ ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) def _lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''__java__'''] ) , [50_004, 50_001] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = tempfile.mkdtemp() lowerCamelCase_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(UpperCamelCase__ ) lowerCamelCase_ = PLBartTokenizer.from_pretrained(UpperCamelCase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , UpperCamelCase__ ) @require_torch def _lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , return_tensors='''pt''' ) lowerCamelCase_ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 self.assertEqual(batch.input_ids[1][-2:].tolist() , [2, PYTHON_CODE] ) self.assertEqual(batch.decoder_input_ids[1][0] , UpperCamelCase__ ) self.assertEqual(batch.decoder_input_ids[1][-1] , 2 ) self.assertEqual(batch.labels[1][-2:].tolist() , [2, EN_CODE] ) @require_torch def _lowerCAmelCase ( self ) -> int: '''simple docstring''' lowerCamelCase_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) lowerCamelCase_ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(UpperCamelCase__ , UpperCamelCase__ ) self.assertEqual((2, 26) , batch.input_ids.shape ) self.assertEqual((2, 26) , batch.attention_mask.shape ) lowerCamelCase_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , UpperCamelCase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, PYTHON_CODE] ) def _lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer(self.src_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=3 , return_tensors='''pt''' ) lowerCamelCase_ = self.tokenizer( text_target=self.tgt_text , padding=UpperCamelCase__ , truncation=UpperCamelCase__ , max_length=10 , return_tensors='''pt''' ) lowerCamelCase_ = targets['''input_ids'''] lowerCamelCase_ = shift_tokens_right(UpperCamelCase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''java''' ) self.assertEqual( nested_simplify(UpperCamelCase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[150, 242, 2, 50_003]], '''attention_mask''': [[1, 1, 1, 1]], # java '''forced_bos_token_id''': 50_001, } , )
66
"""simple docstring""" import argparse import os import re __lowercase : Optional[int] = """src/diffusers""" # Pattern that looks at the indentation in a line. __lowercase : Dict = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. __lowercase : int = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. __lowercase : Optional[Any] = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. __lowercase : List[str] = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. __lowercase : Any = re.compile(r"""\[([^\]]+)\]""") def lowerCamelCase_ ( _lowerCamelCase : List[str] ): lowerCamelCase_ = _re_indent.search(_lowerCamelCase ) return "" if search is None else search.groups()[0] def lowerCamelCase_ ( _lowerCamelCase : int , _lowerCamelCase : List[str]="" , _lowerCamelCase : Dict=None , _lowerCamelCase : int=None ): lowerCamelCase_ = 0 lowerCamelCase_ = code.split('''\n''' ) if start_prompt is not None: while not lines[index].startswith(_lowerCamelCase ): index += 1 lowerCamelCase_ = ['''\n'''.join(lines[:index] )] else: lowerCamelCase_ = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). lowerCamelCase_ = [lines[index]] index += 1 while index < len(_lowerCamelCase ) and (end_prompt is None or not lines[index].startswith(_lowerCamelCase )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(_lowerCamelCase ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + ''' ''' ): current_block.append(lines[index] ) blocks.append('''\n'''.join(_lowerCamelCase ) ) if index < len(_lowerCamelCase ) - 1: lowerCamelCase_ = [lines[index + 1]] index += 1 else: lowerCamelCase_ = [] else: blocks.append('''\n'''.join(_lowerCamelCase ) ) lowerCamelCase_ = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(_lowerCamelCase ) > 0: blocks.append('''\n'''.join(_lowerCamelCase ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(_lowerCamelCase ): blocks.append('''\n'''.join(lines[index:] ) ) return blocks def lowerCamelCase_ ( _lowerCamelCase : int ): def _inner(_lowerCamelCase : List[Any] ): return key(_lowerCamelCase ).lower().replace('''_''' , '''''' ) return _inner def lowerCamelCase_ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=None ): # If no key is provided, we use a noop. def noop(_lowerCamelCase : Union[str, Any] ): return x if key is None: lowerCamelCase_ = noop # Constants are all uppercase, they go first. lowerCamelCase_ = [obj for obj in objects if key(_lowerCamelCase ).isupper()] # Classes are not all uppercase but start with a capital, they go second. lowerCamelCase_ = [obj for obj in objects if key(_lowerCamelCase )[0].isupper() and not key(_lowerCamelCase ).isupper()] # Functions begin with a lowercase, they go last. lowerCamelCase_ = [obj for obj in objects if not key(_lowerCamelCase )[0].isupper()] lowerCamelCase_ = ignore_underscore(_lowerCamelCase ) return sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) + sorted(_lowerCamelCase , key=_lowerCamelCase ) def lowerCamelCase_ ( _lowerCamelCase : Any ): # This inner function sort imports between [ ]. def _replace(_lowerCamelCase : List[Any] ): lowerCamelCase_ = match.groups()[0] if "," not in imports: return F"""[{imports}]""" lowerCamelCase_ = [part.strip().replace('''"''' , '''''' ) for part in imports.split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ = keys[:-1] return "[" + ", ".join([F"""\"{k}\"""" for k in sort_objects(_lowerCamelCase )] ) + "]" lowerCamelCase_ = import_statement.split('''\n''' ) if len(_lowerCamelCase ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. lowerCamelCase_ = 2 if lines[1].strip() == '''[''' else 1 lowerCamelCase_ = [(i, _re_strip_line.search(_lowerCamelCase ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] lowerCamelCase_ = sort_objects(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] ) lowerCamelCase_ = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(_lowerCamelCase ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: lowerCamelCase_ = _re_bracket_content.sub(_replace , lines[1] ) else: lowerCamelCase_ = [part.strip().replace('''"''' , '''''' ) for part in lines[1].split(''',''' )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: lowerCamelCase_ = keys[:-1] lowerCamelCase_ = get_indent(lines[1] ) + ''', '''.join([F"""\"{k}\"""" for k in sort_objects(_lowerCamelCase )] ) return "\n".join(_lowerCamelCase ) else: # Finally we have to deal with imports fitting on one line lowerCamelCase_ = _re_bracket_content.sub(_replace , _lowerCamelCase ) return import_statement def lowerCamelCase_ ( _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any]=True ): with open(_lowerCamelCase , '''r''' ) as f: lowerCamelCase_ = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 lowerCamelCase_ = split_code_in_indented_blocks( _lowerCamelCase , start_prompt='''_import_structure = {''' , end_prompt='''if TYPE_CHECKING:''' ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(_lowerCamelCase ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. lowerCamelCase_ = main_blocks[block_idx] lowerCamelCase_ = block.split('''\n''' ) # Get to the start of the imports. lowerCamelCase_ = 0 while line_idx < len(_lowerCamelCase ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: lowerCamelCase_ = len(_lowerCamelCase ) else: line_idx += 1 if line_idx >= len(_lowerCamelCase ): continue # Ignore beginning and last line: they don't contain anything. lowerCamelCase_ = '''\n'''.join(block_lines[line_idx:-1] ) lowerCamelCase_ = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. lowerCamelCase_ = split_code_in_indented_blocks(_lowerCamelCase , indent_level=_lowerCamelCase ) # We have two categories of import key: list or _import_structure[key].append/extend lowerCamelCase_ = _re_direct_key if '''_import_structure''' in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. lowerCamelCase_ = [(pattern.search(_lowerCamelCase ).groups()[0] if pattern.search(_lowerCamelCase ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. lowerCamelCase_ = [(i, key) for i, key in enumerate(_lowerCamelCase ) if key is not None] lowerCamelCase_ = [x[0] for x in sorted(_lowerCamelCase , key=lambda _lowerCamelCase : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. lowerCamelCase_ = 0 lowerCamelCase_ = [] for i in range(len(_lowerCamelCase ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: lowerCamelCase_ = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(_lowerCamelCase ) count += 1 # And we put our main block back together with its first and last line. lowerCamelCase_ = '''\n'''.join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(_lowerCamelCase ): if check_only: return True else: print(F"""Overwriting {file}.""" ) with open(_lowerCamelCase , '''w''' ) as f: f.write('''\n'''.join(_lowerCamelCase ) ) def lowerCamelCase_ ( _lowerCamelCase : Tuple=True ): lowerCamelCase_ = [] for root, _, files in os.walk(_lowerCamelCase ): if "__init__.py" in files: lowerCamelCase_ = sort_imports(os.path.join(_lowerCamelCase , '''__init__.py''' ) , check_only=_lowerCamelCase ) if result: lowerCamelCase_ = [os.path.join(_lowerCamelCase , '''__init__.py''' )] if len(_lowerCamelCase ) > 0: raise ValueError(F"""Would overwrite {len(_lowerCamelCase )} files, run `make style`.""" ) if __name__ == "__main__": __lowercase : Any = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") __lowercase : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
66
1
'''simple docstring''' import jax.numpy as jnp from ...utils import logging from ..ta.modeling_flax_ta import FlaxTaEncoderModel, FlaxTaForConditionalGeneration, FlaxTaModel from .configuration_mta import MTaConfig _a : List[str] = logging.get_logger(__name__) _a : Tuple = "T5Config" def _a (lowercase__ : jnp.array , lowercase__ : int , lowercase__ : int ) -> jnp.ndarray: """simple docstring""" __snake_case = jnp.zeros_like(lowercase__ ) __snake_case = shifted_input_ids.at[:, 1:].set(input_ids[:, :-1] ) __snake_case = shifted_input_ids.at[:, 0].set(lowercase__ ) __snake_case = jnp.where(shifted_input_ids == -1_0_0 , lowercase__ , lowercase__ ) return shifted_input_ids class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : str = "mt5" _SCREAMING_SNAKE_CASE : str = MTaConfig class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : List[str] = "mt5" _SCREAMING_SNAKE_CASE : int = MTaConfig class _lowercase ( __lowercase ): _SCREAMING_SNAKE_CASE : Union[str, Any] = "mt5" _SCREAMING_SNAKE_CASE : Dict = MTaConfig
56
from ..utils import DummyObject, requires_backends class lowerCamelCase__ ( metaclass=UpperCAmelCase_): """simple docstring""" _A = ['transformers', 'torch', 'note_seq'] def __init__(self , *__a , **__a ): '''simple docstring''' requires_backends(self , ["transformers", "torch", "note_seq"] ) @classmethod def _a (cls , *__a , **__a ): '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] ) @classmethod def _a (cls , *__a , **__a ): '''simple docstring''' requires_backends(cls , ["transformers", "torch", "note_seq"] )
623
0
from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { """microsoft/cvt-13""": """https://huggingface.co/microsoft/cvt-13/resolve/main/config.json""", # See all Cvt models at https://huggingface.co/models?filter=cvt } class UpperCAmelCase__ ( snake_case ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = 'cvt' def __init__( self: Union[str, Any] , __lowerCAmelCase: Union[str, Any]=3 , __lowerCAmelCase: Dict=[7, 3, 3] , __lowerCAmelCase: List[str]=[4, 2, 2] , __lowerCAmelCase: Union[str, Any]=[2, 1, 1] , __lowerCAmelCase: Optional[Any]=[64, 192, 384] , __lowerCAmelCase: Optional[int]=[1, 3, 6] , __lowerCAmelCase: Any=[1, 2, 10] , __lowerCAmelCase: List[Any]=[4.0, 4.0, 4.0] , __lowerCAmelCase: List[Any]=[0.0, 0.0, 0.0] , __lowerCAmelCase: Optional[Any]=[0.0, 0.0, 0.0] , __lowerCAmelCase: Optional[int]=[0.0, 0.0, 0.1] , __lowerCAmelCase: Tuple=[True, True, True] , __lowerCAmelCase: Optional[Any]=[False, False, True] , __lowerCAmelCase: Tuple=["dw_bn", "dw_bn", "dw_bn"] , __lowerCAmelCase: Optional[int]=[3, 3, 3] , __lowerCAmelCase: Optional[int]=[1, 1, 1] , __lowerCAmelCase: Optional[Any]=[2, 2, 2] , __lowerCAmelCase: Optional[Any]=[1, 1, 1] , __lowerCAmelCase: str=[1, 1, 1] , __lowerCAmelCase: Optional[Any]=0.02 , __lowerCAmelCase: List[str]=1E-12 , **__lowerCAmelCase: Any , ) -> int: '''simple docstring''' super().__init__(**__lowerCAmelCase ) __UpperCAmelCase = num_channels __UpperCAmelCase = patch_sizes __UpperCAmelCase = patch_stride __UpperCAmelCase = patch_padding __UpperCAmelCase = embed_dim __UpperCAmelCase = num_heads __UpperCAmelCase = depth __UpperCAmelCase = mlp_ratio __UpperCAmelCase = attention_drop_rate __UpperCAmelCase = drop_rate __UpperCAmelCase = drop_path_rate __UpperCAmelCase = qkv_bias __UpperCAmelCase = cls_token __UpperCAmelCase = qkv_projection_method __UpperCAmelCase = kernel_qkv __UpperCAmelCase = padding_kv __UpperCAmelCase = stride_kv __UpperCAmelCase = padding_q __UpperCAmelCase = stride_q __UpperCAmelCase = initializer_range __UpperCAmelCase = layer_norm_eps
286
import torch from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.bert.modeling_bert import ( BERT_INPUTS_DOCSTRING, BERT_START_DOCSTRING, BertEmbeddings, BertLayer, BertPooler, BertPreTrainedModel, ) def __lowerCAmelCase ( A_ : Optional[Any] ) -> List[str]: __UpperCAmelCase = torch.exp(A_ ) __UpperCAmelCase = torch.sum(A_ , dim=1 ) # sum of exp(x_i) __UpperCAmelCase = torch.sum(x * exp_x , dim=1 ) # sum of x_i * exp(x_i) return torch.log(A_ ) - B / A class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self: Optional[Any] , __lowerCAmelCase: int ) -> List[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase = config.output_attentions __UpperCAmelCase = config.output_hidden_states __UpperCAmelCase = nn.ModuleList([BertLayer(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCAmelCase = nn.ModuleList([BertHighway(__lowerCAmelCase ) for _ in range(config.num_hidden_layers )] ) __UpperCAmelCase = [-1 for _ in range(config.num_hidden_layers )] def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: List[str] ) -> Optional[Any]: '''simple docstring''' if (type(__lowerCAmelCase ) is float) or (type(__lowerCAmelCase ) is int): for i in range(len(self.early_exit_entropy ) ): __UpperCAmelCase = x else: __UpperCAmelCase = x def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: Optional[int] ) -> Optional[Any]: '''simple docstring''' __UpperCAmelCase = pooler.state_dict() for highway in self.highway: for name, param in highway.pooler.state_dict().items(): param.copy_(loaded_model[name] ) def _UpperCAmelCase ( self: Dict , __lowerCAmelCase: Optional[int] , __lowerCAmelCase: Union[str, Any]=None , __lowerCAmelCase: Any=None , __lowerCAmelCase: Optional[int]=None , __lowerCAmelCase: Optional[Any]=None , ) -> List[str]: '''simple docstring''' __UpperCAmelCase = () __UpperCAmelCase = () __UpperCAmelCase = () for i, layer_module in enumerate(self.layer ): if self.output_hidden_states: __UpperCAmelCase = all_hidden_states + (hidden_states,) __UpperCAmelCase = layer_module( __lowerCAmelCase , __lowerCAmelCase , head_mask[i] , __lowerCAmelCase , __lowerCAmelCase ) __UpperCAmelCase = layer_outputs[0] if self.output_attentions: __UpperCAmelCase = all_attentions + (layer_outputs[1],) __UpperCAmelCase = (hidden_states,) if self.output_hidden_states: __UpperCAmelCase = current_outputs + (all_hidden_states,) if self.output_attentions: __UpperCAmelCase = current_outputs + (all_attentions,) __UpperCAmelCase = self.highway[i](__lowerCAmelCase ) # logits, pooled_output if not self.training: __UpperCAmelCase = highway_exit[0] __UpperCAmelCase = entropy(__lowerCAmelCase ) __UpperCAmelCase = highway_exit + (highway_entropy,) # logits, hidden_states(?), entropy __UpperCAmelCase = all_highway_exits + (highway_exit,) if highway_entropy < self.early_exit_entropy[i]: __UpperCAmelCase = (highway_logits,) + current_outputs[1:] + (all_highway_exits,) raise HighwayException(__lowerCAmelCase , i + 1 ) else: __UpperCAmelCase = all_highway_exits + (highway_exit,) # Add last layer if self.output_hidden_states: __UpperCAmelCase = all_hidden_states + (hidden_states,) __UpperCAmelCase = (hidden_states,) if self.output_hidden_states: __UpperCAmelCase = outputs + (all_hidden_states,) if self.output_attentions: __UpperCAmelCase = outputs + (all_attentions,) __UpperCAmelCase = outputs + (all_highway_exits,) return outputs # last-layer hidden state, (all hidden states), (all attentions), all highway exits @add_start_docstrings( 'The Bert Model transformer with early exiting (DeeBERT). ' , snake_case , ) class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Union[str, Any] , __lowerCAmelCase: Optional[Any] ) -> int: '''simple docstring''' super().__init__(__lowerCAmelCase ) __UpperCAmelCase = config __UpperCAmelCase = BertEmbeddings(__lowerCAmelCase ) __UpperCAmelCase = DeeBertEncoder(__lowerCAmelCase ) __UpperCAmelCase = BertPooler(__lowerCAmelCase ) self.init_weights() def _UpperCAmelCase ( self: Any ) -> Optional[Any]: '''simple docstring''' self.encoder.init_highway_pooler(self.pooler ) def _UpperCAmelCase ( self: List[str] ) -> Tuple: '''simple docstring''' return self.embeddings.word_embeddings def _UpperCAmelCase ( self: Optional[Any] , __lowerCAmelCase: List[str] ) -> Dict: '''simple docstring''' __UpperCAmelCase = value def _UpperCAmelCase ( self: Union[str, Any] , __lowerCAmelCase: Optional[int] ) -> Any: '''simple docstring''' for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(__lowerCAmelCase ) @add_start_docstrings_to_model_forward(__lowerCAmelCase ) def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: Dict=None , __lowerCAmelCase: Tuple=None , __lowerCAmelCase: List[str]=None , __lowerCAmelCase: Union[str, Any]=None , __lowerCAmelCase: str=None , __lowerCAmelCase: Dict=None , __lowerCAmelCase: Optional[int]=None , __lowerCAmelCase: Tuple=None , ) -> List[str]: '''simple docstring''' if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time" ) elif input_ids is not None: __UpperCAmelCase = input_ids.size() elif inputs_embeds is not None: __UpperCAmelCase = inputs_embeds.size()[:-1] else: raise ValueError("You have to specify either input_ids or inputs_embeds" ) __UpperCAmelCase = input_ids.device if input_ids is not None else inputs_embeds.device if attention_mask is None: __UpperCAmelCase = torch.ones(__lowerCAmelCase , device=__lowerCAmelCase ) if encoder_attention_mask is None: __UpperCAmelCase = torch.ones(__lowerCAmelCase , device=__lowerCAmelCase ) if token_type_ids is None: __UpperCAmelCase = torch.zeros(__lowerCAmelCase , dtype=torch.long , device=__lowerCAmelCase ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. __UpperCAmelCase = self.get_extended_attention_mask(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # If a 2D ou 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if encoder_attention_mask.dim() == 3: __UpperCAmelCase = encoder_attention_mask[:, None, :, :] if encoder_attention_mask.dim() == 2: __UpperCAmelCase = encoder_attention_mask[:, None, None, :] __UpperCAmelCase = encoder_extended_attention_mask.to( dtype=next(self.parameters() ).dtype ) # fp16 compatibility __UpperCAmelCase = (1.0 - encoder_extended_attention_mask) * -10000.0 # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length] __UpperCAmelCase = self.get_head_mask(__lowerCAmelCase , self.config.num_hidden_layers ) __UpperCAmelCase = self.embeddings( input_ids=__lowerCAmelCase , position_ids=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , inputs_embeds=__lowerCAmelCase ) __UpperCAmelCase = self.encoder( __lowerCAmelCase , attention_mask=__lowerCAmelCase , head_mask=__lowerCAmelCase , encoder_hidden_states=__lowerCAmelCase , encoder_attention_mask=__lowerCAmelCase , ) __UpperCAmelCase = encoder_outputs[0] __UpperCAmelCase = self.pooler(__lowerCAmelCase ) __UpperCAmelCase = ( sequence_output, pooled_output, ) + encoder_outputs[ 1: ] # add hidden_states and attentions if they are here return outputs # sequence_output, pooled_output, (hidden_states), (attentions), highway exits class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Dict , __lowerCAmelCase: Dict , __lowerCAmelCase: List[str] ) -> Any: '''simple docstring''' __UpperCAmelCase = message __UpperCAmelCase = exit_layer # start from 1! class UpperCAmelCase__ ( nn.Module ): """simple docstring""" def __init__( self: Union[str, Any] , __lowerCAmelCase: int ) -> Optional[Any]: '''simple docstring''' super().__init__() __UpperCAmelCase = BertPooler(__lowerCAmelCase ) __UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCAmelCase = nn.Linear(config.hidden_size , config.num_labels ) def _UpperCAmelCase ( self: Optional[int] , __lowerCAmelCase: Any ) -> Tuple: '''simple docstring''' __UpperCAmelCase = encoder_outputs[0] __UpperCAmelCase = self.pooler(__lowerCAmelCase ) # "return" pooler_output # BertModel __UpperCAmelCase = (pooler_input, pooler_output) + encoder_outputs[1:] # "return" bmodel_output # Dropout and classification __UpperCAmelCase = bmodel_output[1] __UpperCAmelCase = self.dropout(__lowerCAmelCase ) __UpperCAmelCase = self.classifier(__lowerCAmelCase ) return logits, pooled_output @add_start_docstrings( 'Bert Model (with early exiting - DeeBERT) with a classifier on top,\n also takes care of multi-layer training. ' , snake_case , ) class UpperCAmelCase__ ( snake_case ): """simple docstring""" def __init__( self: Optional[Any] , __lowerCAmelCase: List[str] ) -> str: '''simple docstring''' super().__init__(__lowerCAmelCase ) __UpperCAmelCase = config.num_labels __UpperCAmelCase = config.num_hidden_layers __UpperCAmelCase = DeeBertModel(__lowerCAmelCase ) __UpperCAmelCase = nn.Dropout(config.hidden_dropout_prob ) __UpperCAmelCase = nn.Linear(config.hidden_size , self.config.num_labels ) self.init_weights() @add_start_docstrings_to_model_forward(__lowerCAmelCase ) def _UpperCAmelCase ( self: Any , __lowerCAmelCase: Any=None , __lowerCAmelCase: Optional[int]=None , __lowerCAmelCase: Optional[int]=None , __lowerCAmelCase: List[str]=None , __lowerCAmelCase: Dict=None , __lowerCAmelCase: int=None , __lowerCAmelCase: str=None , __lowerCAmelCase: Optional[Any]=-1 , __lowerCAmelCase: str=False , ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase = self.num_layers try: __UpperCAmelCase = self.bert( __lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , position_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase , inputs_embeds=__lowerCAmelCase , ) # sequence_output, pooled_output, (hidden_states), (attentions), highway exits __UpperCAmelCase = outputs[1] __UpperCAmelCase = self.dropout(__lowerCAmelCase ) __UpperCAmelCase = self.classifier(__lowerCAmelCase ) __UpperCAmelCase = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCAmelCase = e.message __UpperCAmelCase = e.exit_layer __UpperCAmelCase = outputs[0] if not self.training: __UpperCAmelCase = entropy(__lowerCAmelCase ) __UpperCAmelCase = [] __UpperCAmelCase = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCAmelCase = MSELoss() __UpperCAmelCase = loss_fct(logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCAmelCase = CrossEntropyLoss() __UpperCAmelCase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) # work with highway exits __UpperCAmelCase = [] for highway_exit in outputs[-1]: __UpperCAmelCase = highway_exit[0] if not self.training: highway_logits_all.append(__lowerCAmelCase ) highway_entropy.append(highway_exit[2] ) if self.num_labels == 1: # We are doing regression __UpperCAmelCase = MSELoss() __UpperCAmelCase = loss_fct(highway_logits.view(-1 ) , labels.view(-1 ) ) else: __UpperCAmelCase = CrossEntropyLoss() __UpperCAmelCase = loss_fct(highway_logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) highway_losses.append(__lowerCAmelCase ) if train_highway: __UpperCAmelCase = (sum(highway_losses[:-1] ),) + outputs # exclude the final highway, of course else: __UpperCAmelCase = (loss,) + outputs if not self.training: __UpperCAmelCase = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCAmelCase = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), (highway_exits)
286
1
import unittest from transformers import LiltConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( LiltForQuestionAnswering, LiltForSequenceClassification, LiltForTokenClassification, LiltModel, ) from transformers.models.lilt.modeling_lilt import LILT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase__ : """simple docstring""" def __init__( self : Union[str, Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=13 , __lowerCAmelCase : int=7 , __lowerCAmelCase : Any=True , __lowerCAmelCase : Tuple=True , __lowerCAmelCase : Dict=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Tuple=99 , __lowerCAmelCase : Any=24 , __lowerCAmelCase : Tuple=2 , __lowerCAmelCase : str=6 , __lowerCAmelCase : Optional[Any]=37 , __lowerCAmelCase : Optional[Any]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : int=5_12 , __lowerCAmelCase : List[Any]=16 , __lowerCAmelCase : Any=2 , __lowerCAmelCase : List[Any]=0.02 , __lowerCAmelCase : Optional[Any]=3 , __lowerCAmelCase : Dict=None , __lowerCAmelCase : Any=10_00 , ) -> Tuple: _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_input_mask _A = use_token_type_ids _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = type_sequence_label_size _A = initializer_range _A = num_labels _A = scope _A = range_bbox def snake_case_ ( self : int ) -> str: _A = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _A = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _A = bbox[i, j, 3] _A = bbox[i, j, 1] _A = t if bbox[i, j, 2] < bbox[i, j, 0]: _A = bbox[i, j, 2] _A = bbox[i, j, 0] _A = t _A = None if self.use_input_mask: _A = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) _A = None if self.use_token_type_ids: _A = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _A = None _A = None if self.use_labels: _A = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _A = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _A = self.get_config() return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels def snake_case_ ( self : str ) -> Union[str, Any]: return LiltConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) def snake_case_ ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : str , __lowerCAmelCase : Any , __lowerCAmelCase : int , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : List[str] , ) -> Dict: _A = LiltModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model(__lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _A = model(__lowerCAmelCase , bbox=__lowerCAmelCase , token_type_ids=__lowerCAmelCase ) _A = model(__lowerCAmelCase , bbox=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str , ) -> Tuple: _A = self.num_labels _A = LiltForTokenClassification(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model( __lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def snake_case_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : List[Any] , __lowerCAmelCase : List[str] , __lowerCAmelCase : List[str] , __lowerCAmelCase : Optional[Any] , ) -> int: _A = LiltForQuestionAnswering(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() _A = model( __lowerCAmelCase , bbox=__lowerCAmelCase , attention_mask=__lowerCAmelCase , token_type_ids=__lowerCAmelCase , start_positions=__lowerCAmelCase , end_positions=__lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def snake_case_ ( self : Dict ) -> Dict: _A = self.prepare_config_and_inputs() ( ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ( _A ) , ) = config_and_inputs _A = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_torch class lowerCamelCase__ ( _A , _A , _A , unittest.TestCase): """simple docstring""" a__ : Tuple = ( ( LiltModel, LiltForSequenceClassification, LiltForTokenClassification, LiltForQuestionAnswering, ) if is_torch_available() else () ) a__ : Optional[Any] = ( { "feature-extraction": LiltModel, "question-answering": LiltForQuestionAnswering, "text-classification": LiltForSequenceClassification, "token-classification": LiltForTokenClassification, "zero-shot": LiltForSequenceClassification, } if is_torch_available() else {} ) a__ : Optional[int] = False a__ : Any = False def snake_case_ ( self : Any , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Any , __lowerCAmelCase : List[str] , __lowerCAmelCase : str , __lowerCAmelCase : str ) -> Optional[int]: return True def snake_case_ ( self : Tuple ) -> Optional[int]: _A = LiltModelTester(self ) _A = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=37 ) def snake_case_ ( self : Union[str, Any] ) -> str: self.config_tester.run_common_tests() def snake_case_ ( self : Optional[Any] ) -> Dict: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowerCAmelCase ) def snake_case_ ( self : Any ) -> Tuple: _A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _A = type self.model_tester.create_and_check_model(*__lowerCAmelCase ) def snake_case_ ( self : Optional[int] ) -> Optional[Any]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*__lowerCAmelCase ) def snake_case_ ( self : int ) -> Any: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*__lowerCAmelCase ) @slow def snake_case_ ( self : Optional[int] ) -> List[Any]: for model_name in LILT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _A = LiltModel.from_pretrained(__lowerCAmelCase ) self.assertIsNotNone(__lowerCAmelCase ) @require_torch @slow class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" def snake_case_ ( self : str ) -> Tuple: _A = LiltModel.from_pretrained('''SCUT-DLVCLab/lilt-roberta-en-base''' ).to(__lowerCAmelCase ) _A = torch.tensor([[1, 2]] , device=__lowerCAmelCase ) _A = torch.tensor([[[1, 2, 3, 4], [5, 6, 7, 8]]] , device=__lowerCAmelCase ) # forward pass with torch.no_grad(): _A = model(input_ids=__lowerCAmelCase , bbox=__lowerCAmelCase ) _A = torch.Size([1, 2, 7_68] ) _A = torch.tensor( [[-0.0653, 0.0950, -0.0061], [-0.0545, 0.0926, -0.0324]] , device=__lowerCAmelCase , ) self.assertTrue(outputs.last_hidden_state.shape , __lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :, :3] , __lowerCAmelCase , atol=1E-3 ) )
2
'''simple docstring''' import argparse import math import os from copy import deepcopy import torch from audio_diffusion.models import DiffusionAttnUnetaD from diffusion import sampling from torch import nn from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel lowercase__ : int = { "gwf-440k": { "url": "https://model-server.zqevans2.workers.dev/gwf-440k.ckpt", "sample_rate": 4_8000, "sample_size": 6_5536, }, "jmann-small-190k": { "url": "https://model-server.zqevans2.workers.dev/jmann-small-190k.ckpt", "sample_rate": 4_8000, "sample_size": 6_5536, }, "jmann-large-580k": { "url": "https://model-server.zqevans2.workers.dev/jmann-large-580k.ckpt", "sample_rate": 4_8000, "sample_size": 13_1072, }, "maestro-uncond-150k": { "url": "https://model-server.zqevans2.workers.dev/maestro-uncond-150k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, "unlocked-uncond-250k": { "url": "https://model-server.zqevans2.workers.dev/unlocked-uncond-250k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, "honk-140k": { "url": "https://model-server.zqevans2.workers.dev/honk-140k.ckpt", "sample_rate": 1_6000, "sample_size": 6_5536, }, } def __lowerCamelCase ( _UpperCamelCase : List[Any] , _UpperCamelCase : Optional[Any] ): '''simple docstring''' return torch.atana(_UpperCamelCase , _UpperCamelCase ) / math.pi * 2 def __lowerCamelCase ( _UpperCamelCase : List[str] ): '''simple docstring''' UpperCAmelCase_ = torch.sin(t * math.pi / 2 ) ** 2 UpperCAmelCase_ = (1 - sigma**2) ** 0.5 return alpha_sigma_to_t(_UpperCamelCase , _UpperCamelCase ) class lowerCamelCase ( lowerCamelCase ): '''simple docstring''' pass class lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCAmelCase__ : Tuple ) ->Optional[Any]: super().__init__() UpperCAmelCase_ = DiffusionAttnUnetaD(UpperCAmelCase__ , n_attn_layers=4 ) UpperCAmelCase_ = deepcopy(self.diffusion ) UpperCAmelCase_ = torch.quasirandom.SobolEngine(1 , scramble=UpperCAmelCase__ ) def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ = MODELS_MAP[model_name]['''url'''] os.system(F"""wget {url} ./""" ) return F"""./{model_name}.ckpt""" lowercase__ : str = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", } lowercase__ : Any = { "8": "resnets.0", "9": "attentions.0", "10": "resnets.1", "11": "attentions.1", "12": "resnets.2", "13": "attentions.2", } lowercase__ : Optional[Any] = { "1": "resnets.0", "2": "attentions.0", "3": "resnets.1", "4": "attentions.1", "5": "resnets.2", "6": "attentions.2", "8": "resnets.3", "9": "attentions.3", "10": "resnets.4", "11": "attentions.4", "12": "resnets.5", "13": "attentions.5", } lowercase__ : Optional[Any] = { "0": "resnets.0", "1": "resnets.1", "2": "resnets.2", "4": "resnets.0", "5": "resnets.1", "6": "resnets.2", } lowercase__ : str = { "skip": "conv_skip", "main.0": "conv_1", "main.1": "group_norm_1", "main.3": "conv_2", "main.4": "group_norm_2", } lowercase__ : Optional[int] = { "norm": "group_norm", "qkv_proj": ["query", "key", "value"], "out_proj": ["proj_attn"], } def __lowerCamelCase ( _UpperCamelCase : List[Any] ): '''simple docstring''' if name.startswith('''skip''' ): return name.replace('''skip''' , RES_CONV_MAP['''skip'''] ) # name has to be of format main.{digit} if not name.startswith('''main.''' ): raise ValueError(F"""ResConvBlock error with {name}""" ) return name.replace(name[:6] , RES_CONV_MAP[name[:6]] ) def __lowerCamelCase ( _UpperCamelCase : Any ): '''simple docstring''' for key, value in ATTN_MAP.items(): if name.startswith(_UpperCamelCase ) and not isinstance(_UpperCamelCase , _UpperCamelCase ): return name.replace(_UpperCamelCase , _UpperCamelCase ) elif name.startswith(_UpperCamelCase ): return [name.replace(_UpperCamelCase , _UpperCamelCase ) for v in value] raise ValueError(F"""Attn error with {name}""" ) def __lowerCamelCase ( _UpperCamelCase : Union[str, Any] , _UpperCamelCase : Any=13 ): '''simple docstring''' UpperCAmelCase_ = input_string if string.split('''.''' )[0] == "timestep_embed": return string.replace('''timestep_embed''' , '''time_proj''' ) UpperCAmelCase_ = 0 if string.startswith('''net.3.''' ): depth += 1 UpperCAmelCase_ = string[6:] elif string.startswith('''net.''' ): UpperCAmelCase_ = string[4:] while string.startswith('''main.7.''' ): depth += 1 UpperCAmelCase_ = string[7:] if string.startswith('''main.''' ): UpperCAmelCase_ = string[5:] # mid block if string[:2].isdigit(): UpperCAmelCase_ = string[:2] UpperCAmelCase_ = string[2:] else: UpperCAmelCase_ = string[0] UpperCAmelCase_ = string[1:] if depth == max_depth: UpperCAmelCase_ = MID_NUM_TO_LAYER[layer_num] UpperCAmelCase_ = '''mid_block''' elif depth > 0 and int(_UpperCamelCase ) < 7: UpperCAmelCase_ = DOWN_NUM_TO_LAYER[layer_num] UpperCAmelCase_ = F"""down_blocks.{depth}""" elif depth > 0 and int(_UpperCamelCase ) > 7: UpperCAmelCase_ = UP_NUM_TO_LAYER[layer_num] UpperCAmelCase_ = F"""up_blocks.{max_depth - depth - 1}""" elif depth == 0: UpperCAmelCase_ = DEPTH_0_TO_LAYER[layer_num] UpperCAmelCase_ = F"""up_blocks.{max_depth - 1}""" if int(_UpperCamelCase ) > 3 else '''down_blocks.0''' if not string_left.startswith('''.''' ): raise ValueError(F"""Naming error with {input_string} and string_left: {string_left}.""" ) UpperCAmelCase_ = string_left[1:] if "resnets" in new_layer: UpperCAmelCase_ = convert_resconv_naming(_UpperCamelCase ) elif "attentions" in new_layer: UpperCAmelCase_ = convert_attn_naming(_UpperCamelCase ) UpperCAmelCase_ = new_string_left if not isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ = prefix + '''.''' + new_layer + '''.''' + string_left else: UpperCAmelCase_ = [prefix + '''.''' + new_layer + '''.''' + s for s in string_left] return new_string def __lowerCamelCase ( _UpperCamelCase : int ): '''simple docstring''' UpperCAmelCase_ = {} for k, v in state_dict.items(): if k.endswith('''kernel''' ): # up- and downsample layers, don't have trainable weights continue UpperCAmelCase_ = rename(_UpperCamelCase ) # check if we need to transform from Conv => Linear for attention if isinstance(_UpperCamelCase , _UpperCamelCase ): UpperCAmelCase_ = transform_conv_attns(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) else: UpperCAmelCase_ = v return new_state_dict def __lowerCamelCase ( _UpperCamelCase : Optional[int] , _UpperCamelCase : Tuple , _UpperCamelCase : List[Any] ): '''simple docstring''' if len(_UpperCamelCase ) == 1: if len(v.shape ) == 3: # weight UpperCAmelCase_ = v[:, :, 0] else: # bias UpperCAmelCase_ = v else: # qkv matrices UpperCAmelCase_ = v.shape[0] UpperCAmelCase_ = trippled_shape // 3 for i in range(3 ): if len(v.shape ) == 3: UpperCAmelCase_ = v[i * single_shape : (i + 1) * single_shape, :, 0] else: UpperCAmelCase_ = v[i * single_shape : (i + 1) * single_shape] return new_state_dict def __lowerCamelCase ( _UpperCamelCase : List[Any] ): '''simple docstring''' UpperCAmelCase_ = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) UpperCAmelCase_ = args.model_path.split('''/''' )[-1].split('''.''' )[0] if not os.path.isfile(args.model_path ): assert ( model_name == args.model_path ), F"""Make sure to provide one of the official model names {MODELS_MAP.keys()}""" UpperCAmelCase_ = download(_UpperCamelCase ) UpperCAmelCase_ = MODELS_MAP[model_name]['''sample_rate'''] UpperCAmelCase_ = MODELS_MAP[model_name]['''sample_size'''] UpperCAmelCase_ = Object() UpperCAmelCase_ = sample_size UpperCAmelCase_ = sample_rate UpperCAmelCase_ = 0 UpperCAmelCase_ = UNetaDModel(sample_size=_UpperCamelCase , sample_rate=_UpperCamelCase ) UpperCAmelCase_ = diffusers_model.state_dict() UpperCAmelCase_ = DiffusionUncond(_UpperCamelCase ) orig_model.load_state_dict(torch.load(args.model_path , map_location=_UpperCamelCase )['''state_dict'''] ) UpperCAmelCase_ = orig_model.diffusion_ema.eval() UpperCAmelCase_ = orig_model.state_dict() UpperCAmelCase_ = rename_orig_weights(_UpperCamelCase ) UpperCAmelCase_ = set(renamed_state_dict.keys() ) - set(diffusers_state_dict.keys() ) UpperCAmelCase_ = set(diffusers_state_dict.keys() ) - set(renamed_state_dict.keys() ) assert len(_UpperCamelCase ) == 0, F"""Problem with {renamed_minus_diffusers}""" assert all(k.endswith('''kernel''' ) for k in list(_UpperCamelCase ) ), F"""Problem with {diffusers_minus_renamed}""" for key, value in renamed_state_dict.items(): assert ( diffusers_state_dict[key].squeeze().shape == value.squeeze().shape ), F"""Shape for {key} doesn't match. Diffusers: {diffusers_state_dict[key].shape} vs. {value.shape}""" if key == "time_proj.weight": UpperCAmelCase_ = value.squeeze() UpperCAmelCase_ = value diffusers_model.load_state_dict(_UpperCamelCase ) UpperCAmelCase_ = 100 UpperCAmelCase_ = 33 UpperCAmelCase_ = IPNDMScheduler(num_train_timesteps=_UpperCamelCase ) UpperCAmelCase_ = torch.manual_seed(_UpperCamelCase ) UpperCAmelCase_ = torch.randn([1, 2, config.sample_size] , generator=_UpperCamelCase ).to(_UpperCamelCase ) UpperCAmelCase_ = torch.linspace(1 , 0 , steps + 1 , device=_UpperCamelCase )[:-1] UpperCAmelCase_ = get_crash_schedule(_UpperCamelCase ) UpperCAmelCase_ = DanceDiffusionPipeline(unet=_UpperCamelCase , scheduler=_UpperCamelCase ) UpperCAmelCase_ = torch.manual_seed(33 ) UpperCAmelCase_ = pipe(num_inference_steps=_UpperCamelCase , generator=_UpperCamelCase ).audios UpperCAmelCase_ = sampling.iplms_sample(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , {} ) UpperCAmelCase_ = generated.clamp(-1 , 1 ) UpperCAmelCase_ = (generated - audio).abs().sum() UpperCAmelCase_ = (generated - audio).abs().max() if args.save: pipe.save_pretrained(args.checkpoint_path ) print('''Diff sum''' , _UpperCamelCase ) print('''Diff max''' , _UpperCamelCase ) assert diff_max < 1E-3, F"""Diff max: {diff_max} is too much :-/""" print(F"""Conversion for {model_name} successful!""" ) if __name__ == "__main__": lowercase__ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--model_path", default=None, type=str, required=True, help="Path to the model to convert.") parser.add_argument( "--save", default=True, type=bool, required=False, help="Whether to save the converted model or not." ) parser.add_argument("--checkpoint_path", default=None, type=str, required=True, help="Path to the output model.") lowercase__ : Any = parser.parse_args() main(args)
390
0
"""simple docstring""" import importlib import json import os from collections import OrderedDict from typing import Dict, Optional, Union # Build the list of all image processors from ...configuration_utils import PretrainedConfig from ...dynamic_module_utils import get_class_from_dynamic_module, resolve_trust_remote_code from ...image_processing_utils import ImageProcessingMixin from ...utils import CONFIG_NAME, IMAGE_PROCESSOR_NAME, get_file_from_repo, logging from .auto_factory import _LazyAutoMapping from .configuration_auto import ( CONFIG_MAPPING_NAMES, AutoConfig, model_type_to_module_name, replace_list_option_in_docstrings, ) lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = OrderedDict( [ ('''align''', '''EfficientNetImageProcessor'''), ('''beit''', '''BeitImageProcessor'''), ('''bit''', '''BitImageProcessor'''), ('''blip''', '''BlipImageProcessor'''), ('''blip-2''', '''BlipImageProcessor'''), ('''bridgetower''', '''BridgeTowerImageProcessor'''), ('''chinese_clip''', '''ChineseCLIPImageProcessor'''), ('''clip''', '''CLIPImageProcessor'''), ('''clipseg''', '''ViTImageProcessor'''), ('''conditional_detr''', '''ConditionalDetrImageProcessor'''), ('''convnext''', '''ConvNextImageProcessor'''), ('''convnextv2''', '''ConvNextImageProcessor'''), ('''cvt''', '''ConvNextImageProcessor'''), ('''data2vec-vision''', '''BeitImageProcessor'''), ('''deformable_detr''', '''DeformableDetrImageProcessor'''), ('''deit''', '''DeiTImageProcessor'''), ('''deta''', '''DetaImageProcessor'''), ('''detr''', '''DetrImageProcessor'''), ('''dinat''', '''ViTImageProcessor'''), ('''donut-swin''', '''DonutImageProcessor'''), ('''dpt''', '''DPTImageProcessor'''), ('''efficientformer''', '''EfficientFormerImageProcessor'''), ('''efficientnet''', '''EfficientNetImageProcessor'''), ('''flava''', '''FlavaImageProcessor'''), ('''focalnet''', '''BitImageProcessor'''), ('''git''', '''CLIPImageProcessor'''), ('''glpn''', '''GLPNImageProcessor'''), ('''groupvit''', '''CLIPImageProcessor'''), ('''imagegpt''', '''ImageGPTImageProcessor'''), ('''instructblip''', '''BlipImageProcessor'''), ('''layoutlmv2''', '''LayoutLMv2ImageProcessor'''), ('''layoutlmv3''', '''LayoutLMv3ImageProcessor'''), ('''levit''', '''LevitImageProcessor'''), ('''mask2former''', '''Mask2FormerImageProcessor'''), ('''maskformer''', '''MaskFormerImageProcessor'''), ('''mgp-str''', '''ViTImageProcessor'''), ('''mobilenet_v1''', '''MobileNetV1ImageProcessor'''), ('''mobilenet_v2''', '''MobileNetV2ImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevit''', '''MobileViTImageProcessor'''), ('''mobilevitv2''', '''MobileViTImageProcessor'''), ('''nat''', '''ViTImageProcessor'''), ('''oneformer''', '''OneFormerImageProcessor'''), ('''owlvit''', '''OwlViTImageProcessor'''), ('''perceiver''', '''PerceiverImageProcessor'''), ('''pix2struct''', '''Pix2StructImageProcessor'''), ('''poolformer''', '''PoolFormerImageProcessor'''), ('''regnet''', '''ConvNextImageProcessor'''), ('''resnet''', '''ConvNextImageProcessor'''), ('''sam''', '''SamImageProcessor'''), ('''segformer''', '''SegformerImageProcessor'''), ('''swiftformer''', '''ViTImageProcessor'''), ('''swin''', '''ViTImageProcessor'''), ('''swin2sr''', '''Swin2SRImageProcessor'''), ('''swinv2''', '''ViTImageProcessor'''), ('''table-transformer''', '''DetrImageProcessor'''), ('''timesformer''', '''VideoMAEImageProcessor'''), ('''tvlt''', '''TvltImageProcessor'''), ('''upernet''', '''SegformerImageProcessor'''), ('''van''', '''ConvNextImageProcessor'''), ('''videomae''', '''VideoMAEImageProcessor'''), ('''vilt''', '''ViltImageProcessor'''), ('''vit''', '''ViTImageProcessor'''), ('''vit_hybrid''', '''ViTHybridImageProcessor'''), ('''vit_mae''', '''ViTImageProcessor'''), ('''vit_msn''', '''ViTImageProcessor'''), ('''xclip''', '''CLIPImageProcessor'''), ('''yolos''', '''YolosImageProcessor'''), ] ) lowerCAmelCase_ = _LazyAutoMapping(CONFIG_MAPPING_NAMES, IMAGE_PROCESSOR_MAPPING_NAMES) def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" for module_name, extractors in IMAGE_PROCESSOR_MAPPING_NAMES.items(): if class_name in extractors: _UpperCAmelCase = model_type_to_module_name(lowercase__ ) _UpperCAmelCase = importlib.import_module(F""".{module_name}""",'transformers.models' ) try: return getattr(lowercase__,lowercase__ ) except AttributeError: continue for _, extractor in IMAGE_PROCESSOR_MAPPING._extra_content.items(): if getattr(lowercase__,'__name__',lowercase__ ) == class_name: return extractor # We did not fine the class, but maybe it's because a dep is missing. In that case, the class will be in the main # init and we return the proper dummy to get an appropriate error message. _UpperCAmelCase = importlib.import_module('transformers' ) if hasattr(lowercase__,lowercase__ ): return getattr(lowercase__,lowercase__ ) return None def __lowerCamelCase ( SCREAMING_SNAKE_CASE,SCREAMING_SNAKE_CASE = None,SCREAMING_SNAKE_CASE = False,SCREAMING_SNAKE_CASE = False,SCREAMING_SNAKE_CASE = None,SCREAMING_SNAKE_CASE = None,SCREAMING_SNAKE_CASE = None,SCREAMING_SNAKE_CASE = False,**SCREAMING_SNAKE_CASE,) -> str: """simple docstring""" _UpperCAmelCase = get_file_from_repo( lowercase__,lowercase__,cache_dir=lowercase__,force_download=lowercase__,resume_download=lowercase__,proxies=lowercase__,use_auth_token=lowercase__,revision=lowercase__,local_files_only=lowercase__,) if resolved_config_file is None: logger.info( 'Could not locate the image processor configuration file, will try to use the model config instead.' ) return {} with open(lowercase__,encoding='utf-8' ) as reader: return json.load(lowercase__ ) class lowerCAmelCase : def __init__( self ): raise EnvironmentError( 'AutoImageProcessor is designed to be instantiated ' 'using the `AutoImageProcessor.from_pretrained(pretrained_model_name_or_path)` method.' ) @classmethod @replace_list_option_in_docstrings(lowerCAmelCase_ ) def __A ( cls , a__ , **a__ ): _UpperCAmelCase = kwargs.pop('config' , lowerCAmelCase_ ) _UpperCAmelCase = kwargs.pop('trust_remote_code' , lowerCAmelCase_ ) _UpperCAmelCase = True _UpperCAmelCase , _UpperCAmelCase = ImageProcessingMixin.get_image_processor_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) _UpperCAmelCase = config_dict.get('image_processor_type' , lowerCAmelCase_ ) _UpperCAmelCase = None if "AutoImageProcessor" in config_dict.get('auto_map' , {} ): _UpperCAmelCase = config_dict['auto_map']['AutoImageProcessor'] # If we still don't have the image processor class, check if we're loading from a previous feature extractor config # and if so, infer the image processor class from there. if image_processor_class is None and image_processor_auto_map is None: _UpperCAmelCase = config_dict.pop('feature_extractor_type' , lowerCAmelCase_ ) if feature_extractor_class is not None: logger.warning( 'Could not find image processor class in the image processor config or the model config. Loading' ' based on pattern matching with the model\'s feature extractor configuration.' ) _UpperCAmelCase = feature_extractor_class.replace('FeatureExtractor' , 'ImageProcessor' ) if "AutoFeatureExtractor" in config_dict.get('auto_map' , {} ): _UpperCAmelCase = config_dict['auto_map']['AutoFeatureExtractor'] _UpperCAmelCase = feature_extractor_auto_map.replace('FeatureExtractor' , 'ImageProcessor' ) logger.warning( 'Could not find image processor auto map in the image processor config or the model config.' ' Loading based on pattern matching with the model\'s feature extractor configuration.' ) # If we don't find the image processor class in the image processor config, let's try the model config. if image_processor_class is None and image_processor_auto_map is None: if not isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _UpperCAmelCase = AutoConfig.from_pretrained(lowerCAmelCase_ , **lowerCAmelCase_ ) # It could be in `config.image_processor_type`` _UpperCAmelCase = getattr(lowerCAmelCase_ , 'image_processor_type' , lowerCAmelCase_ ) if hasattr(lowerCAmelCase_ , 'auto_map' ) and "AutoImageProcessor" in config.auto_map: _UpperCAmelCase = config.auto_map['AutoImageProcessor'] if image_processor_class is not None: _UpperCAmelCase = image_processor_class_from_name(lowerCAmelCase_ ) _UpperCAmelCase = image_processor_auto_map is not None _UpperCAmelCase = image_processor_class is not None or type(lowerCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING _UpperCAmelCase = resolve_trust_remote_code( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) if has_remote_code and trust_remote_code: _UpperCAmelCase = get_class_from_dynamic_module( lowerCAmelCase_ , lowerCAmelCase_ , **lowerCAmelCase_ ) _UpperCAmelCase = kwargs.pop('code_revision' , lowerCAmelCase_ ) if os.path.isdir(lowerCAmelCase_ ): image_processor_class.register_for_auto_class() return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) elif image_processor_class is not None: return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) # Last try: we use the IMAGE_PROCESSOR_MAPPING. elif type(lowerCAmelCase_ ) in IMAGE_PROCESSOR_MAPPING: _UpperCAmelCase = IMAGE_PROCESSOR_MAPPING[type(lowerCAmelCase_ )] return image_processor_class.from_dict(lowerCAmelCase_ , **lowerCAmelCase_ ) raise ValueError( f"""Unrecognized image processor in {pretrained_model_name_or_path}. Should have a """ f"""`image_processor_type` key in its {IMAGE_PROCESSOR_NAME} of {CONFIG_NAME}, or one of the following """ f"""`model_type` keys in its {CONFIG_NAME}: {", ".join(c for c in IMAGE_PROCESSOR_MAPPING_NAMES.keys() )}""" ) @staticmethod def __A ( a__ , a__ ): IMAGE_PROCESSOR_MAPPING.register(lowerCAmelCase_ , lowerCAmelCase_ )
719
"""simple docstring""" def __lowerCamelCase ( SCREAMING_SNAKE_CASE ) -> list: """simple docstring""" _UpperCAmelCase = False while is_sorted is False: # Until all the indices are traversed keep looping _UpperCAmelCase = True for i in range(0,len(SCREAMING_SNAKE_CASE ) - 1,2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False for i in range(1,len(SCREAMING_SNAKE_CASE ) - 1,2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: _UpperCAmelCase , _UpperCAmelCase = input_list[i + 1], input_list[i] # swapping if elements not in order _UpperCAmelCase = False return input_list if __name__ == "__main__": print('''Enter list to be sorted''') lowerCAmelCase_ = [int(x) for x in input().split()] # inputing elements of the list in one line lowerCAmelCase_ = odd_even_sort(input_list) print('''The sorted list is''') print(sorted_list)
494
0
def __A ( _A ): """simple docstring""" if not isinstance(_A , _A ): raise ValueError("multiplicative_persistence() only accepts integral values" ) if num < 0: raise ValueError("multiplicative_persistence() does not accept negative values" ) __a = 0 __a = str(_A ) while len(_A ) != 1: __a = [int(_A ) for i in num_string] __a = 1 for i in range(0 , len(_A ) ): total *= numbers[i] __a = str(_A ) steps += 1 return steps def __A ( _A ): """simple docstring""" if not isinstance(_A , _A ): raise ValueError("additive_persistence() only accepts integral values" ) if num < 0: raise ValueError("additive_persistence() does not accept negative values" ) __a = 0 __a = str(_A ) while len(_A ) != 1: __a = [int(_A ) for i in num_string] __a = 0 for i in range(0 , len(_A ) ): total += numbers[i] __a = str(_A ) steps += 1 return steps if __name__ == "__main__": import doctest doctest.testmod()
197
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE : Union[str, Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") SCREAMING_SNAKE_CASE : List[Any] = get_tests_dir("""fixtures/test_sentencepiece_bpe.model""") SCREAMING_SNAKE_CASE : Any = """pt""" if is_torch_available() else """tf""" @require_sentencepiece @require_tokenizers class A_ ( a_ , unittest.TestCase ): _SCREAMING_SNAKE_CASE = CamembertTokenizer _SCREAMING_SNAKE_CASE = CamembertTokenizerFast _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = True def _UpperCAmelCase ( self : Optional[int] ): super().setUp() # We have a SentencePiece fixture for testing __a = CamembertTokenizer(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self : Any ): __a = "<pad>" __a = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__SCREAMING_SNAKE_CASE ) , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : Any ): __a = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<s>NOTUSED" ) self.assertEqual(vocab_keys[1] , "<pad>" ) self.assertEqual(vocab_keys[-1] , "<mask>" ) self.assertEqual(len(__SCREAMING_SNAKE_CASE ) , 10_04 ) def _UpperCAmelCase ( self : Optional[int] ): self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def _UpperCAmelCase ( self : int ): __a = CamembertTokenizer(__SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(self.tmpdirname ) __a = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) __a = "I was born in 92000, and this is falsé." __a = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) __a = tokenizer.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self : List[Any] ): if not self.test_rust_tokenizer: return __a = self.get_tokenizer() __a = self.get_rust_tokenizer() __a = "I was born in 92000, and this is falsé." __a = tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.tokenize(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __a = self.get_rust_tokenizer() __a = tokenizer.encode(__SCREAMING_SNAKE_CASE ) __a = rust_tokenizer.encode(__SCREAMING_SNAKE_CASE ) self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) @slow def _UpperCAmelCase ( self : str ): # fmt: off __a = {"input_ids": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. __a = [ "Le transformeur est un modèle d'apprentissage profond introduit en 2017, " "utilisé principalement dans le domaine du traitement automatique des langues (TAL).", "À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus " "pour gérer des données séquentielles, telles que le langage naturel, pour des tâches " "telles que la traduction et la synthèse de texte.", ] self.tokenizer_integration_test_util( expected_encoding=__SCREAMING_SNAKE_CASE , model_name="camembert-base" , revision="3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf" , sequences=__SCREAMING_SNAKE_CASE , )
197
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) SCREAMING_SNAKE_CASE = { 'configuration_gpt_bigcode': ['GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GPTBigCodeConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST', 'GPTBigCodeForSequenceClassification', 'GPTBigCodeForTokenClassification', 'GPTBigCodeForCausalLM', 'GPTBigCodeModel', 'GPTBigCodePreTrainedModel', ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
"""simple docstring""" from __future__ import annotations def __lowerCAmelCase( __UpperCAmelCase ): """simple docstring""" _lowercase : Any = [True] * limit _lowercase : Union[str, Any] = False _lowercase : Any = False _lowercase : List[Any] = True for i in range(3 ,int(limit**0.5 + 1 ) ,2 ): _lowercase : Optional[Any] = i * 2 while index < limit: _lowercase : int = False _lowercase : Tuple = index + i _lowercase : Optional[Any] = [2] for i in range(3 ,__UpperCAmelCase ,2 ): if is_prime[i]: primes.append(__UpperCAmelCase ) return primes def __lowerCAmelCase( __UpperCAmelCase = 1_000_000 ): """simple docstring""" _lowercase : Optional[Any] = prime_sieve(__UpperCAmelCase ) _lowercase : int = 0 _lowercase : List[Any] = 0 for i in range(len(__UpperCAmelCase ) ): for j in range(i + length ,len(__UpperCAmelCase ) ): _lowercase : List[Any] = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: _lowercase : Optional[int] = j - i _lowercase : Tuple = sol return largest if __name__ == "__main__": print(f"""{solution() = }""")
283
1
import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel UpperCAmelCase_ = False UpperCAmelCase_ = True UpperCAmelCase_ = False if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } UpperCAmelCase_ = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } UpperCAmelCase_ = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: UpperCAmelCase_ = reader.read() UpperCAmelCase_ = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): UpperCAmelCase_ = UNetaDModel(**config) else: UpperCAmelCase_ = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel UpperCAmelCase_ = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) UpperCAmelCase_ = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: UpperCAmelCase_ = config[key] del config[key] UpperCAmelCase_ = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] UpperCAmelCase_ = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: UpperCAmelCase_ = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) UpperCAmelCase_ = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue UpperCAmelCase_ = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: UpperCAmelCase_ = param_value UpperCAmelCase_ = True if not has_changed: UpperCAmelCase_ = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
2
"""simple docstring""" import contextlib import copy import random from typing import Any, Dict, Iterable, Optional, Union import numpy as np import torch from .utils import deprecate, is_transformers_available if is_transformers_available(): import transformers def lowerCamelCase (a_ :int) -> List[str]: random.seed(a_) np.random.seed(a_) torch.manual_seed(a_) torch.cuda.manual_seed_all(a_) # ^^ safe to call this function even if cuda is not available class __magic_name__ : def __init__( self : Optional[Any] , snake_case__ : Iterable[torch.nn.Parameter] , snake_case__ : float = 0.99_99 , snake_case__ : float = 0.0 , snake_case__ : int = 0 , snake_case__ : bool = False , snake_case__ : Union[float, int] = 1.0 , snake_case__ : Union[float, int] = 2 / 3 , snake_case__ : Optional[Any] = None , snake_case__ : Dict[str, Any] = None , **snake_case__ : Tuple , ): '''simple docstring''' if isinstance(snake_case__ , torch.nn.Module ): lowercase :int = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage`''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ , ) lowercase :Dict = parameters.parameters() # set use_ema_warmup to True if a torch.nn.Module is passed for backwards compatibility lowercase :Optional[Any] = True if kwargs.get('''max_value''' , snake_case__ ) is not None: lowercase :Optional[Any] = '''The `max_value` argument is deprecated. Please use `decay` instead.''' deprecate('''max_value''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) lowercase :Optional[int] = kwargs['''max_value'''] if kwargs.get('''min_value''' , snake_case__ ) is not None: lowercase :List[Any] = '''The `min_value` argument is deprecated. Please use `min_decay` instead.''' deprecate('''min_value''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) lowercase :str = kwargs['''min_value'''] lowercase :Any = list(snake_case__ ) lowercase :Optional[Any] = [p.clone().detach() for p in parameters] if kwargs.get('''device''' , snake_case__ ) is not None: lowercase :str = '''The `device` argument is deprecated. Please use `to` instead.''' deprecate('''device''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ ) self.to(device=kwargs['''device'''] ) lowercase :int = None lowercase :int = decay lowercase :Union[str, Any] = min_decay lowercase :List[Any] = update_after_step lowercase :Union[str, Any] = use_ema_warmup lowercase :Any = inv_gamma lowercase :Any = power lowercase :str = 0 lowercase :int = None # set in `step()` lowercase :List[str] = model_cls lowercase :Any = model_config @classmethod def __snake_case ( cls : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] ): '''simple docstring''' lowercase , lowercase :int = model_cls.load_config(snake_case__ , return_unused_kwargs=snake_case__ ) lowercase :List[Any] = model_cls.from_pretrained(snake_case__ ) lowercase :Optional[int] = cls(model.parameters() , model_cls=snake_case__ , model_config=model.config ) ema_model.load_state_dict(snake_case__ ) return ema_model def __snake_case ( self : int , snake_case__ : Union[str, Any] ): '''simple docstring''' if self.model_cls is None: raise ValueError('''`save_pretrained` can only be used if `model_cls` was defined at __init__.''' ) if self.model_config is None: raise ValueError('''`save_pretrained` can only be used if `model_config` was defined at __init__.''' ) lowercase :Dict = self.model_cls.from_config(self.model_config ) lowercase :Tuple = self.state_dict() state_dict.pop('''shadow_params''' , snake_case__ ) model.register_to_config(**snake_case__ ) self.copy_to(model.parameters() ) model.save_pretrained(snake_case__ ) def __snake_case ( self : int , snake_case__ : int ): '''simple docstring''' lowercase :Union[str, Any] = max(0 , optimization_step - self.update_after_step - 1 ) if step <= 0: return 0.0 if self.use_ema_warmup: lowercase :int = 1 - (1 + step / self.inv_gamma) ** -self.power else: lowercase :Dict = (1 + step) / (1_0 + step) lowercase :Optional[int] = min(snake_case__ , self.decay ) # make sure decay is not smaller than min_decay lowercase :Optional[int] = max(snake_case__ , self.min_decay ) return cur_decay_value @torch.no_grad() def __snake_case ( self : Any , snake_case__ : Iterable[torch.nn.Parameter] ): '''simple docstring''' if isinstance(snake_case__ , torch.nn.Module ): lowercase :Tuple = ( '''Passing a `torch.nn.Module` to `ExponentialMovingAverage.step` is deprecated. ''' '''Please pass the parameters of the module instead.''' ) deprecate( '''passing a `torch.nn.Module` to `ExponentialMovingAverage.step`''' , '''1.0.0''' , snake_case__ , standard_warn=snake_case__ , ) lowercase :Union[str, Any] = parameters.parameters() lowercase :Optional[Any] = list(snake_case__ ) self.optimization_step += 1 # Compute the decay factor for the exponential moving average. lowercase :List[Any] = self.get_decay(self.optimization_step ) lowercase :Optional[Any] = decay lowercase :List[Any] = 1 - decay lowercase :List[str] = contextlib.nullcontext if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): import deepspeed for s_param, param in zip(self.shadow_params , snake_case__ ): if is_transformers_available() and transformers.deepspeed.is_deepspeed_zeroa_enabled(): lowercase :Union[str, Any] = deepspeed.zero.GatheredParameters(snake_case__ , modifier_rank=snake_case__ ) with context_manager(): if param.requires_grad: s_param.sub_(one_minus_decay * (s_param - param) ) else: s_param.copy_(snake_case__ ) def __snake_case ( self : str , snake_case__ : Iterable[torch.nn.Parameter] ): '''simple docstring''' lowercase :Optional[Any] = list(snake_case__ ) for s_param, param in zip(self.shadow_params , snake_case__ ): param.data.copy_(s_param.to(param.device ).data ) def __snake_case ( self : Optional[int] , snake_case__ : Dict=None , snake_case__ : Dict=None ): '''simple docstring''' lowercase :str = [ p.to(device=snake_case__ , dtype=snake_case__ ) if p.is_floating_point() else p.to(device=snake_case__ ) for p in self.shadow_params ] def __snake_case ( self : Dict ): '''simple docstring''' return { "decay": self.decay, "min_decay": self.min_decay, "optimization_step": self.optimization_step, "update_after_step": self.update_after_step, "use_ema_warmup": self.use_ema_warmup, "inv_gamma": self.inv_gamma, "power": self.power, "shadow_params": self.shadow_params, } def __snake_case ( self : Optional[int] , snake_case__ : Iterable[torch.nn.Parameter] ): '''simple docstring''' lowercase :str = [param.detach().cpu().clone() for param in parameters] def __snake_case ( self : List[Any] , snake_case__ : Iterable[torch.nn.Parameter] ): '''simple docstring''' if self.temp_stored_params is None: raise RuntimeError('''This ExponentialMovingAverage has no `store()`ed weights ''' '''to `restore()`''' ) for c_param, param in zip(self.temp_stored_params , snake_case__ ): param.data.copy_(c_param.data ) # Better memory-wise. lowercase :Dict = None def __snake_case ( self : Union[str, Any] , snake_case__ : dict ): '''simple docstring''' lowercase :List[str] = copy.deepcopy(snake_case__ ) lowercase :Any = state_dict.get('''decay''' , self.decay ) if self.decay < 0.0 or self.decay > 1.0: raise ValueError('''Decay must be between 0 and 1''' ) lowercase :int = state_dict.get('''min_decay''' , self.min_decay ) if not isinstance(self.min_decay , snake_case__ ): raise ValueError('''Invalid min_decay''' ) lowercase :List[Any] = state_dict.get('''optimization_step''' , self.optimization_step ) if not isinstance(self.optimization_step , snake_case__ ): raise ValueError('''Invalid optimization_step''' ) lowercase :int = state_dict.get('''update_after_step''' , self.update_after_step ) if not isinstance(self.update_after_step , snake_case__ ): raise ValueError('''Invalid update_after_step''' ) lowercase :Optional[int] = state_dict.get('''use_ema_warmup''' , self.use_ema_warmup ) if not isinstance(self.use_ema_warmup , snake_case__ ): raise ValueError('''Invalid use_ema_warmup''' ) lowercase :Any = state_dict.get('''inv_gamma''' , self.inv_gamma ) if not isinstance(self.inv_gamma , (float, int) ): raise ValueError('''Invalid inv_gamma''' ) lowercase :Dict = state_dict.get('''power''' , self.power ) if not isinstance(self.power , (float, int) ): raise ValueError('''Invalid power''' ) lowercase :Optional[int] = state_dict.get('''shadow_params''' , snake_case__ ) if shadow_params is not None: lowercase :List[Any] = shadow_params if not isinstance(self.shadow_params , snake_case__ ): raise ValueError('''shadow_params must be a list''' ) if not all(isinstance(snake_case__ , torch.Tensor ) for p in self.shadow_params ): raise ValueError('''shadow_params must all be Tensors''' )
677
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class UpperCAmelCase : '''simple docstring''' def __init__( self : Dict , __lowercase : Union[str, Any] , __lowercase : Optional[int]=3 , __lowercase : Any=32 , __lowercase : List[str]=3 , __lowercase : Tuple=10 , __lowercase : Dict=[8, 16, 32, 64] , __lowercase : int=[1, 1, 2, 1] , __lowercase : Any=True , __lowercase : Dict=True , __lowercase : Optional[int]="relu" , __lowercase : Any=3 , __lowercase : int=None , __lowercase : Tuple=["stage2", "stage3", "stage4"] , __lowercase : List[str]=[2, 3, 4] , __lowercase : Tuple=1 , ): """simple docstring""" snake_case_ = parent snake_case_ = batch_size snake_case_ = image_size snake_case_ = num_channels snake_case_ = embeddings_size snake_case_ = hidden_sizes snake_case_ = depths snake_case_ = is_training snake_case_ = use_labels snake_case_ = hidden_act snake_case_ = num_labels snake_case_ = scope snake_case_ = len(__lowercase ) snake_case_ = out_features snake_case_ = out_indices snake_case_ = num_groups def snake_case__ ( self : int ): """simple docstring""" snake_case_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case_ = None if self.use_labels: snake_case_ = ids_tensor([self.batch_size] , self.num_labels ) snake_case_ = self.get_config() return config, pixel_values, labels def snake_case__ ( self : str ): """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def snake_case__ ( self : Dict , __lowercase : Dict , __lowercase : List[Any] , __lowercase : int ): """simple docstring""" snake_case_ = BitModel(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def snake_case__ ( self : Tuple , __lowercase : List[str] , __lowercase : List[Any] , __lowercase : Tuple ): """simple docstring""" snake_case_ = self.num_labels snake_case_ = BitForImageClassification(__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase , labels=__lowercase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : Optional[Any] , __lowercase : Optional[Any] , __lowercase : Union[str, Any] , __lowercase : Tuple ): """simple docstring""" snake_case_ = BitBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case_ = None snake_case_ = BitBackbone(config=__lowercase ) model.to(__lowercase ) model.eval() snake_case_ = model(__lowercase ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def snake_case__ ( self : Optional[int] ): """simple docstring""" snake_case_ = self.prepare_config_and_inputs() snake_case_ , snake_case_ , snake_case_ = config_and_inputs snake_case_ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () lowerCAmelCase_ = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def snake_case__ ( self : str ): """simple docstring""" snake_case_ = BitModelTester(self ) snake_case_ = ConfigTester(self , config_class=__lowercase , has_text_modality=__lowercase ) def snake_case__ ( self : Optional[int] ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def snake_case__ ( self : List[Any] ): """simple docstring""" return @unittest.skip(reason="Bit does not output attentions" ) def snake_case__ ( self : str ): """simple docstring""" pass @unittest.skip(reason="Bit does not use inputs_embeds" ) def snake_case__ ( self : Dict ): """simple docstring""" pass @unittest.skip(reason="Bit does not support input and output embeddings" ) def snake_case__ ( self : Tuple ): """simple docstring""" pass def snake_case__ ( self : List[Any] ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(__lowercase ) snake_case_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case_ = [*signature.parameters.keys()] snake_case_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , __lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__lowercase ) def snake_case__ ( self : Dict ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*__lowercase ) def snake_case__ ( self : Any ): """simple docstring""" snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case_ = model_class(config=__lowercase ) for name, module in model.named_modules(): if isinstance(__lowercase , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=f"Parameter {name} of model {model_class} seems not properly initialized" , ) def snake_case__ ( self : Union[str, Any] ): """simple docstring""" def check_hidden_states_output(__lowercase : int , __lowercase : Optional[int] , __lowercase : Union[str, Any] ): snake_case_ = model_class(__lowercase ) model.to(__lowercase ) model.eval() with torch.no_grad(): snake_case_ = model(**self._prepare_for_class(__lowercase , __lowercase ) ) snake_case_ = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case_ = self.model_tester.num_stages self.assertEqual(len(__lowercase ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case_ , snake_case_ = self.model_tester.prepare_config_and_inputs_for_common() snake_case_ = ["preactivation", "bottleneck"] for model_class in self.all_model_classes: for layer_type in layers_type: snake_case_ = layer_type snake_case_ = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case_ = True check_hidden_states_output(__lowercase , __lowercase , __lowercase ) @unittest.skip(reason="Bit does not use feedforward chunking" ) def snake_case__ ( self : str ): """simple docstring""" pass def snake_case__ ( self : List[str] ): """simple docstring""" snake_case_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__lowercase ) @slow def snake_case__ ( self : Dict ): """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case_ = BitModel.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def snake_case__ ( self : List[str] ): """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def snake_case__ ( self : int ): """simple docstring""" snake_case_ = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(__lowercase ) snake_case_ = self.default_image_processor snake_case_ = prepare_img() snake_case_ = image_processor(images=__lowercase , return_tensors="pt" ).to(__lowercase ) # forward pass with torch.no_grad(): snake_case_ = model(**__lowercase ) # verify the logits snake_case_ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __lowercase ) snake_case_ = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(__lowercase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __lowercase , atol=1E-4 ) ) @require_torch class UpperCAmelCase ( UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = (BitBackbone,) if is_torch_available() else () lowerCAmelCase_ = BitConfig lowerCAmelCase_ = False def snake_case__ ( self : Tuple ): """simple docstring""" snake_case_ = BitModelTester(self )
706
import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from timm.data import resolve_data_config from timm.data.transforms_factory import create_transform from transformers import ( BitConfig, ViTHybridConfig, ViTHybridForImageClassification, ViTHybridImageProcessor, ViTHybridModel, ) from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Optional[Any] = logging.get_logger(__name__) def lowerCamelCase__ ( _A , _A=False ): '''simple docstring''' snake_case_ = [] # fmt: off # stem: rename_keys.append(("cls_token", "vit.embeddings.cls_token") ) rename_keys.append(("pos_embed", "vit.embeddings.position_embeddings") ) rename_keys.append(("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias") ) # backbone rename_keys.append(("patch_embed.backbone.stem.conv.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.convolution.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.weight", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.weight") ) rename_keys.append(("patch_embed.backbone.stem.norm.bias", "vit.embeddings.patch_embeddings.backbone.bit.embedder.norm.bias") ) for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm1.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm1.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm2.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm2.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.conv3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.conv3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.{layer_idx}.norm3.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.{layer_idx}.norm3.bias") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.conv.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.conv.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.weight", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.weight") ) rename_keys.append((f"patch_embed.backbone.stages.{stage_idx}.blocks.0.downsample.norm.bias", f"vit.embeddings.patch_embeddings.backbone.bit.encoder.stages.{stage_idx}.layers.0.downsample.norm.bias") ) # transformer encoder for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) if base_model: # layernorm + pooler rename_keys.extend( [ ("norm.weight", "layernorm.weight"), ("norm.bias", "layernorm.bias"), ("pre_logits.fc.weight", "pooler.dense.weight"), ("pre_logits.fc.bias", "pooler.dense.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" snake_case_ = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) # fmt: on return rename_keys def lowerCamelCase__ ( _A , _A , _A=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: snake_case_ = "" else: snake_case_ = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case_ = state_dict.pop(f"blocks.{i}.attn.qkv.weight" ) snake_case_ = state_dict.pop(f"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case_ = in_proj_weight[ : config.hidden_size, : ] snake_case_ = in_proj_bias[: config.hidden_size] snake_case_ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case_ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case_ = in_proj_weight[ -config.hidden_size :, : ] snake_case_ = in_proj_bias[-config.hidden_size :] def lowerCamelCase__ ( _A ): '''simple docstring''' snake_case_ = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(_A , _A ) def lowerCamelCase__ ( _A , _A , _A ): '''simple docstring''' snake_case_ = dct.pop(_A ) snake_case_ = val def lowerCamelCase__ ( ): '''simple docstring''' snake_case_ = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case_ = Image.open(requests.get(_A , stream=_A ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( _A , _A , _A=False ): '''simple docstring''' snake_case_ = BitConfig( global_padding="same" , layer_type="bottleneck" , depths=(3, 4, 9) , out_features=["stage3"] , embedding_dynamic_padding=_A , ) snake_case_ = ViTHybridConfig(backbone_config=_A , image_size=384 , num_labels=1000 ) snake_case_ = False # load original model from timm snake_case_ = timm.create_model(_A , pretrained=_A ) timm_model.eval() # load state_dict of original model, remove and rename some keys snake_case_ = timm_model.state_dict() if base_model: remove_classification_head_(_A ) snake_case_ = create_rename_keys(_A , _A ) for src, dest in rename_keys: rename_key(_A , _A , _A ) read_in_q_k_v(_A , _A , _A ) snake_case_ = "huggingface/label-files" snake_case_ = "imagenet-1k-id2label.json" snake_case_ = json.load(open(hf_hub_download(_A , _A , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(_A ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} # load HuggingFace model if vit_name[-5:] == "in21k": snake_case_ = ViTHybridModel(_A ).eval() else: snake_case_ = ViTHybridForImageClassification(_A ).eval() model.load_state_dict(_A ) # create image processor snake_case_ = create_transform(**resolve_data_config({} , model=_A ) ) snake_case_ = transform.transforms snake_case_ = { "bilinear": PILImageResampling.BILINEAR, "bicubic": PILImageResampling.BICUBIC, "nearest": PILImageResampling.NEAREST, } snake_case_ = ViTHybridImageProcessor( do_resize=_A , size={"shortest_edge": timm_transforms[0].size} , resample=pillow_resamplings[timm_transforms[0].interpolation.value] , do_center_crop=_A , crop_size={"height": timm_transforms[1].size[0], "width": timm_transforms[1].size[1]} , do_normalize=_A , image_mean=timm_transforms[-1].mean.tolist() , image_std=timm_transforms[-1].std.tolist() , ) snake_case_ = prepare_img() snake_case_ = transform(_A ).unsqueeze(0 ) snake_case_ = processor(_A , return_tensors="pt" ).pixel_values # verify pixel values assert torch.allclose(_A , _A ) # verify logits with torch.no_grad(): snake_case_ = model(_A ) snake_case_ = outputs.logits print("Predicted class:" , logits.argmax(-1 ).item() ) if base_model: snake_case_ = timm_model.forward_features(_A ) assert timm_pooled_output.shape == outputs.pooler_output.shape assert torch.allclose(_A , outputs.pooler_output , atol=1E-3 ) else: snake_case_ = timm_model(_A ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_A , outputs.logits , atol=1E-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(_A ).mkdir(exist_ok=_A ) print(f"Saving model {vit_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_A ) print(f"Saving processor to {pytorch_dump_folder_path}" ) processor.save_pretrained(_A ) if push_to_hub: print(f"Pushing model and processor to the hub {vit_name}" ) model.push_to_hub(f"ybelkada/{vit_name}" ) processor.push_to_hub(f"ybelkada/{vit_name}" ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--vit_name", default="vit_base_r50_s16_384", type=str, help="Name of the hybrid ViT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to upload the model to the HuggingFace hub." ) lowercase__ : List[Any] = parser.parse_args() convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path, args.push_to_hub)
139
0
'''simple docstring''' def __a ( lowerCAmelCase__ : int ): if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : List[Any] = F'Input value of [number={number}] must be an integer' raise TypeError(lowerCAmelCase__ ) if number < 1: a__ : Any = F'Input value of [number={number}] must be > 0' raise ValueError(lowerCAmelCase__ ) a__ : List[Any] = 1 for i in range(1 , lowerCAmelCase__ ): current_number *= 4 * i - 2 current_number //= i + 1 return current_number if __name__ == "__main__": import doctest doctest.testmod()
688
'''simple docstring''' # This is the module that test_patching.py uses to test patch_submodule() import os # noqa: this is just for tests import os as renamed_os # noqa: this is just for tests from os import path # noqa: this is just for tests from os import path as renamed_path # noqa: this is just for tests from os.path import join # noqa: this is just for tests from os.path import join as renamed_join # noqa: this is just for tests __SCREAMING_SNAKE_CASE = open # noqa: we just need to have a builtin inside this module to test it properly
688
1
'''simple docstring''' from __future__ import annotations snake_case_ = list[tuple[int, int]] snake_case_ = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] snake_case_ = ([-1, 0], [0, -1], [1, 0], [0, 1]) # up, left, down, right class a__ : def __init__(self : List[Any], __UpperCAmelCase : int, __UpperCAmelCase : int, __UpperCAmelCase : int, __UpperCAmelCase : int, __UpperCAmelCase : float, __UpperCAmelCase : Node | None, ) -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = pos_x SCREAMING_SNAKE_CASE : Optional[int] = pos_y SCREAMING_SNAKE_CASE : Dict = (pos_y, pos_x) SCREAMING_SNAKE_CASE : List[str] = goal_x SCREAMING_SNAKE_CASE : List[Any] = goal_y SCREAMING_SNAKE_CASE : str = g_cost SCREAMING_SNAKE_CASE : int = parent SCREAMING_SNAKE_CASE : int = self.calculate_heuristic() def lowercase__ (self : int ) -> float: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = abs(self.pos_x - self.goal_x ) SCREAMING_SNAKE_CASE : int = abs(self.pos_y - self.goal_y ) return dx + dy def __lt__(self : List[str], __UpperCAmelCase : Any ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class a__ : def __init__(self : Tuple, __UpperCAmelCase : tuple[int, int], __UpperCAmelCase : tuple[int, int] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE : Any = Node(start[1], start[0], goal[1], goal[0], 0, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = Node(goal[1], goal[0], goal[1], goal[0], 99999, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : Optional[Any] = [self.start] SCREAMING_SNAKE_CASE : list[Node] = [] SCREAMING_SNAKE_CASE : int = False def lowercase__ (self : Union[str, Any] ) -> Path | None: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() SCREAMING_SNAKE_CASE : Union[str, Any] = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: SCREAMING_SNAKE_CASE : int = True return self.retrace_path(__UpperCAmelCase ) self.closed_nodes.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : List[str] = self.get_successors(__UpperCAmelCase ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(__UpperCAmelCase ) else: # retrieve the best current path SCREAMING_SNAKE_CASE : Tuple = self.open_nodes.pop(self.open_nodes.index(__UpperCAmelCase ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(__UpperCAmelCase ) else: self.open_nodes.append(__UpperCAmelCase ) if not self.reached: return [self.start.pos] return None def lowercase__ (self : Tuple, __UpperCAmelCase : Node ) -> list[Node]: """simple docstring""" SCREAMING_SNAKE_CASE : Any = [] for action in delta: SCREAMING_SNAKE_CASE : Dict = parent.pos_x + action[1] SCREAMING_SNAKE_CASE : str = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(__UpperCAmelCase ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( __UpperCAmelCase, __UpperCAmelCase, self.target.pos_y, self.target.pos_x, parent.g_cost + 1, __UpperCAmelCase, ) ) return successors def lowercase__ (self : Optional[int], __UpperCAmelCase : Node | None ) -> Path: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = node SCREAMING_SNAKE_CASE : Optional[int] = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) SCREAMING_SNAKE_CASE : Any = current_node.parent path.reverse() return path if __name__ == "__main__": snake_case_ = (0, 0) snake_case_ = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) print("""------""") snake_case_ = GreedyBestFirst(init, goal) snake_case_ = greedy_bf.search() if path: for pos_x, pos_y in path: snake_case_ = 2 for elem in grid: print(elem)
717
'''simple docstring''' def __lowercase (_SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : Tuple = 1 for i in range(1 , num + 1 ): fact *= i return fact def __lowercase (_SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : List[Any] = 0 while number > 0: SCREAMING_SNAKE_CASE : List[str] = number % 10 sum_of_digits += last_digit SCREAMING_SNAKE_CASE : List[str] = number // 10 # Removing the last_digit from the given number return sum_of_digits def __lowercase (_SCREAMING_SNAKE_CASE :int = 1_00 ): SCREAMING_SNAKE_CASE : List[Any] = factorial(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE : List[str] = split_and_add(_SCREAMING_SNAKE_CASE ) return result if __name__ == "__main__": print(solution(int(input("""Enter the Number: """).strip())))
355
0
def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' return number | (1 << position) def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' return number & ~(1 << position) def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' return number ^ (1 << position) def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' return ((number >> position) & 1) == 1 def lowercase__ ( __snake_case : int , __snake_case : int ): '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
406
'''simple docstring''' import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": snake_case_ : Tuple = '%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') snake_case_ : Union[str, Any] = F'''https://www.google.com/search?q={query}&num=100''' snake_case_ : Optional[int] = requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: snake_case_ : int = ( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: snake_case_ : List[str] = parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
212
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING a__ : Dict = logging.get_logger(__name__) a__ : Union[str, Any] = { "SenseTime/deformable-detr": "https://huggingface.co/sensetime/deformable-detr/resolve/main/config.json", # See all Deformable DETR models at https://huggingface.co/models?filter=deformable-detr } class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : Optional[int] = "deformable_detr" A : str = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self : List[Any] , lowerCAmelCase : Any=True , lowerCAmelCase : Tuple=None , lowerCAmelCase : Any=3 , lowerCAmelCase : Any=3_00 , lowerCAmelCase : Tuple=10_24 , lowerCAmelCase : str=6 , lowerCAmelCase : Tuple=10_24 , lowerCAmelCase : List[str]=8 , lowerCAmelCase : List[str]=6 , lowerCAmelCase : Any=10_24 , lowerCAmelCase : List[str]=8 , lowerCAmelCase : Optional[int]=0.0 , lowerCAmelCase : Any=True , lowerCAmelCase : int="relu" , lowerCAmelCase : List[Any]=2_56 , lowerCAmelCase : str=0.1 , lowerCAmelCase : List[Any]=0.0 , lowerCAmelCase : Union[str, Any]=0.0 , lowerCAmelCase : List[str]=0.02 , lowerCAmelCase : List[str]=1.0 , lowerCAmelCase : Optional[Any]=True , lowerCAmelCase : List[Any]=False , lowerCAmelCase : int="sine" , lowerCAmelCase : int="resnet50" , lowerCAmelCase : Dict=True , lowerCAmelCase : Tuple=False , lowerCAmelCase : Dict=4 , lowerCAmelCase : Tuple=4 , lowerCAmelCase : Union[str, Any]=4 , lowerCAmelCase : Any=False , lowerCAmelCase : Tuple=3_00 , lowerCAmelCase : List[Any]=False , lowerCAmelCase : Union[str, Any]=1 , lowerCAmelCase : int=5 , lowerCAmelCase : str=2 , lowerCAmelCase : List[str]=1 , lowerCAmelCase : Dict=1 , lowerCAmelCase : Optional[int]=5 , lowerCAmelCase : Any=2 , lowerCAmelCase : Any=0.1 , lowerCAmelCase : int=0.25 , lowerCAmelCase : Optional[Any]=False , **lowerCAmelCase : str , ) -> str: """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('You can\'t specify both `backbone_config` and `use_timm_backbone`.') if not use_timm_backbone: if backbone_config is None: logger.info('`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.') lowercase__ = CONFIG_MAPPING['resnet'](out_features=['stage4']) elif isinstance(lowerCAmelCase , lowerCAmelCase): lowercase__ = backbone_config.get('model_type') lowercase__ = CONFIG_MAPPING[backbone_model_type] lowercase__ = config_class.from_dict(lowerCAmelCase) lowercase__ = use_timm_backbone lowercase__ = backbone_config lowercase__ = num_channels lowercase__ = num_queries lowercase__ = max_position_embeddings lowercase__ = d_model lowercase__ = encoder_ffn_dim lowercase__ = encoder_layers lowercase__ = encoder_attention_heads lowercase__ = decoder_ffn_dim lowercase__ = decoder_layers lowercase__ = decoder_attention_heads lowercase__ = dropout lowercase__ = attention_dropout lowercase__ = activation_dropout lowercase__ = activation_function lowercase__ = init_std lowercase__ = init_xavier_std lowercase__ = encoder_layerdrop lowercase__ = auxiliary_loss lowercase__ = position_embedding_type lowercase__ = backbone lowercase__ = use_pretrained_backbone lowercase__ = dilation # deformable attributes lowercase__ = num_feature_levels lowercase__ = encoder_n_points lowercase__ = decoder_n_points lowercase__ = two_stage lowercase__ = two_stage_num_proposals lowercase__ = with_box_refine if two_stage is True and with_box_refine is False: raise ValueError('If two_stage is True, with_box_refine must be True.') # Hungarian matcher lowercase__ = class_cost lowercase__ = bbox_cost lowercase__ = giou_cost # Loss coefficients lowercase__ = mask_loss_coefficient lowercase__ = dice_loss_coefficient lowercase__ = bbox_loss_coefficient lowercase__ = giou_loss_coefficient lowercase__ = eos_coefficient lowercase__ = focal_alpha lowercase__ = disable_custom_kernels super().__init__(is_encoder_decoder=lowerCAmelCase , **lowerCAmelCase) @property def UpperCAmelCase ( self : int) -> int: """simple docstring""" return self.encoder_attention_heads @property def UpperCAmelCase ( self : str) -> int: """simple docstring""" return self.d_model def UpperCAmelCase ( self : Optional[Any]) -> List[str]: """simple docstring""" lowercase__ = copy.deepcopy(self.__dict__) if self.backbone_config is not None: lowercase__ = self.backbone_config.to_dict() lowercase__ = self.__class__.model_type return output
703
import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class UpperCAmelCase__( lowerCamelCase ): '''simple docstring''' A : List[Any] = None A : Optional[int] = None @property def UpperCAmelCase ( self : str) -> Union[str, Any]: """simple docstring""" return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self : int) -> Any: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) self.assertTrue(hasattr(lowerCAmelCase , 'feature_size')) self.assertTrue(hasattr(lowerCAmelCase , 'sampling_rate')) self.assertTrue(hasattr(lowerCAmelCase , 'padding_value')) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) self.assertTrue(all(len(lowerCAmelCase) == len(lowerCAmelCase) for x, y in zip(lowerCAmelCase , processed_features[input_name]))) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='np') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_torch def UpperCAmelCase ( self : Dict) -> int: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='pt') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) @require_tf def UpperCAmelCase ( self : Optional[Any]) -> Optional[int]: """simple docstring""" lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCAmelCase) lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs} , tensor_type='tf') lowercase__ = processed_features[input_name] if len(batch_features_input.shape) < 3: lowercase__ = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0]), self.feat_extract_tester.feature_size)) def UpperCAmelCase ( self : str , lowerCAmelCase : str=False) -> Union[str, Any]: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : Optional[Any] , lowerCAmelCase : Tuple): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = self.feat_extract_tester.seq_length_diff lowercase__ = self.feat_extract_tester.max_seq_length + pad_diff lowercase__ = self.feat_extract_tester.min_seq_length lowercase__ = self.feat_extract_tester.batch_size lowercase__ = self.feat_extract_tester.feature_size # test padding for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , padding=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest') lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[-1])) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') lowercase__ = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length')[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , return_tensors='np') lowercase__ = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) self.assertTrue(len(input_a[0]) == pad_min_length) self.assertTrue(len(input_a[1]) == pad_min_length + pad_diff) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0]))) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size) # test padding for `pad_to_multiple_of` for List[int] + numpy lowercase__ = feat_extract.pad(lowerCAmelCase , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , pad_to_multiple_of=10) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , pad_to_multiple_of=10 , max_length=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] self.assertTrue(all(len(lowerCAmelCase) % 10 == 0 for x in input_a)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) lowercase__ = pad_max_length if pad_max_length % 10 == 0 else (pad_max_length // 10 + 1) * 10 self.assertTrue(all(len(lowerCAmelCase) == expected_mult_pad_length for x in input_a)) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length)) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size) # Check padding value is correct lowercase__ = (np.ones(self.feat_extract_tester.feature_size) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0])[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[1])[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff)) < 1E-3) self.assertTrue( abs( np.asarray(input_a[2])[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length)) < 1E-3) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length)) < 1E-3) def UpperCAmelCase ( self : Tuple , lowerCAmelCase : Dict=False) -> str: """simple docstring""" def _inputs_have_equal_length(lowerCAmelCase : int): lowercase__ = len(input[0]) for input_slice in input[1:]: if len(lowerCAmelCase) != length: return False return True def _inputs_are_equal(lowerCAmelCase : str , lowerCAmelCase : Optional[Any]): if len(lowerCAmelCase) != len(lowerCAmelCase): return False for input_slice_a, input_slice_a in zip(lowerCAmelCase , lowerCAmelCase): if not np.allclose(np.asarray(lowerCAmelCase) , np.asarray(lowerCAmelCase) , atol=1E-3): return False return True lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCAmelCase) lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) # truncate to smallest lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0])) lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to smallest with np lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np' , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(input_a.shape[1] == len(speech_inputs[0])) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) # truncate to middle lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase , return_tensors='np' , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , truncation=lowerCAmelCase) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[1]) , return_tensors='np') lowercase__ = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1])) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(_inputs_are_equal(lowerCAmelCase , lowerCAmelCase)) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) self.assertTrue(len(input_a[-1]) == len(speech_inputs[-1])) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='longest' , truncation=lowerCAmelCase)[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCAmelCase): feat_extract.pad(lowerCAmelCase , padding='max_length' , truncation=lowerCAmelCase)[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy lowercase__ = 12 lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , truncation=lowerCAmelCase , ) lowercase__ = input_a[input_name] lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=len(speech_inputs[0]) , pad_to_multiple_of=lowerCAmelCase , ) lowercase__ = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of lowercase__ = len(speech_inputs[0]) if expected_length % pad_to_multiple_of != 0: lowercase__ = ((len(speech_inputs[0]) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0]) == expected_length) self.assertTrue(_inputs_have_equal_length(lowerCAmelCase)) self.assertFalse(_inputs_have_equal_length(lowerCAmelCase)) def UpperCAmelCase ( self : List[str]) -> List[str]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Any) -> Optional[Any]: """simple docstring""" self._check_padding(numpify=lowerCAmelCase) def UpperCAmelCase ( self : List[Any]) -> int: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) def UpperCAmelCase ( self : Union[str, Any]) -> Dict: """simple docstring""" self._check_truncation(numpify=lowerCAmelCase) @require_torch def UpperCAmelCase ( self : Dict) -> List[str]: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='pt')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_pt.numpy().astype(np.floataa).sum()) < 1E-2) @require_tf def UpperCAmelCase ( self : str) -> str: """simple docstring""" lowercase__ = self.feature_extraction_class(**self.feat_extract_dict) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np')[input_name] lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='tf')[input_name] self.assertTrue(abs(input_np.astype(np.floataa).sum() - input_tf.numpy().astype(np.floataa).sum()) < 1E-2) def UpperCAmelCase ( self : Optional[Any]) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = feat_extract.pad(lowerCAmelCase , padding='longest' , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual(list(processed.attention_mask.shape) , list(processed[input_name].shape[:2])) self.assertListEqual(processed.attention_mask.sum(-1).tolist() , lowerCAmelCase) def UpperCAmelCase ( self : str) -> Tuple: """simple docstring""" lowercase__ = self.feat_extract_dict lowercase__ = True lowercase__ = self.feature_extraction_class(**lowerCAmelCase) lowercase__ = self.feat_extract_tester.prepare_inputs_for_common() lowercase__ = [len(lowerCAmelCase) for x in speech_inputs] lowercase__ = feat_extract.model_input_names[0] lowercase__ = BatchFeature({input_name: speech_inputs}) lowercase__ = min(lowerCAmelCase) lowercase__ = feat_extract.pad( lowerCAmelCase , padding='max_length' , max_length=lowerCAmelCase , truncation=lowerCAmelCase , return_tensors='np') self.assertIn('attention_mask' , lowerCAmelCase) self.assertListEqual( list(processed_pad.attention_mask.shape) , [processed_pad[input_name].shape[0], max_length]) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1).tolist() , [max_length for x in speech_inputs])
642
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowerCAmelCase : List[Any] = { """configuration_conditional_detr""": [ """CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """ConditionalDetrConfig""", """ConditionalDetrOnnxConfig""", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Union[str, Any] = ["""ConditionalDetrFeatureExtractor"""] _lowerCAmelCase : int = ["""ConditionalDetrImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase : Optional[Any] = [ """CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST""", """ConditionalDetrForObjectDetection""", """ConditionalDetrForSegmentation""", """ConditionalDetrModel""", """ConditionalDetrPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys _lowerCAmelCase : Optional[int] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
438
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Tuple = { """uw-madison/mra-base-512-4""": """https://huggingface.co/uw-madison/mra-base-512-4/resolve/main/config.json""", } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ ='''mra''' def __init__( self : Any , snake_case__ : List[str]=5_0_2_6_5 , snake_case__ : Any=7_6_8 , snake_case__ : Union[str, Any]=1_2 , snake_case__ : Optional[Any]=1_2 , snake_case__ : Tuple=3_0_7_2 , snake_case__ : str="gelu" , snake_case__ : Any=0.1 , snake_case__ : Tuple=0.1 , snake_case__ : Tuple=5_1_2 , snake_case__ : Union[str, Any]=1 , snake_case__ : List[Any]=0.02 , snake_case__ : str=1e-5 , snake_case__ : List[Any]="absolute" , snake_case__ : str=4 , snake_case__ : List[str]="full" , snake_case__ : Tuple=0 , snake_case__ : Any=0 , snake_case__ : Union[str, Any]=1 , snake_case__ : int=0 , snake_case__ : int=2 , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__(pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , **snake_case__ ) UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : str = max_position_embeddings UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : str = num_attention_heads UpperCAmelCase__ : int = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : List[str] = hidden_dropout_prob UpperCAmelCase__ : List[str] = attention_probs_dropout_prob UpperCAmelCase__ : Any = initializer_range UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Dict = layer_norm_eps UpperCAmelCase__ : Tuple = position_embedding_type UpperCAmelCase__ : List[str] = block_per_row UpperCAmelCase__ : Optional[Any] = approx_mode UpperCAmelCase__ : Any = initial_prior_first_n_blocks UpperCAmelCase__ : List[Any] = initial_prior_diagonal_n_blocks
438
1
from collections import defaultdict from math import gcd def a__ (__lowercase :int = 150_0000 ) -> int: _A : defaultdict = defaultdict(__lowercase ) _A : Dict = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 , __lowercase , 2 ): if gcd(__lowercase , __lowercase ) > 1: continue _A : List[Any] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__lowercase , limit + 1 , __lowercase ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
332
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) _UpperCamelCase : Any ={'configuration_vit': ['VIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ViTConfig', 'ViTOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Union[str, Any] =['ViTFeatureExtractor'] _UpperCamelCase : Any =['ViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Any =[ 'VIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ViTForImageClassification', 'ViTForMaskedImageModeling', 'ViTModel', 'ViTPreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : int =[ 'TFViTForImageClassification', 'TFViTModel', 'TFViTPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[Any] =[ 'FlaxViTForImageClassification', 'FlaxViTModel', 'FlaxViTPreTrainedModel', ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys _UpperCamelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
332
1
from typing import TYPE_CHECKING from ...file_utils import _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available from ...utils import OptionalDependencyNotAvailable UpperCamelCase = {"configuration_dpt": ["DPT_PRETRAINED_CONFIG_ARCHIVE_MAP", "DPTConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = ["DPTFeatureExtractor"] UpperCamelCase = ["DPTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ "DPT_PRETRAINED_MODEL_ARCHIVE_LIST", "DPTForDepthEstimation", "DPTForSemanticSegmentation", "DPTModel", "DPTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_dpt import DPT_PRETRAINED_CONFIG_ARCHIVE_MAP, DPTConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_dpt import DPTFeatureExtractor from .image_processing_dpt import DPTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dpt import ( DPT_PRETRAINED_MODEL_ARCHIVE_LIST, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTModel, DPTPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
66
import itertools import os import random import tempfile import unittest import numpy as np from transformers import TvltFeatureExtractor, is_datasets_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_torch_available(): import torch if is_datasets_available(): from datasets import load_dataset __A : str = random.Random() def __lowerCAmelCase( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=1.0 , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ) -> Union[str, Any]: """simple docstring""" if rng is None: _A = global_rng _A = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase( unittest.TestCase ): '''simple docstring''' def __init__( self , snake_case_ , snake_case_=7 , snake_case_=400 , snake_case_=2000 , snake_case_=2048 , snake_case_=128 , snake_case_=1 , snake_case_=512 , snake_case_=30 , snake_case_=4_4100 , ): _A = parent _A = batch_size _A = min_seq_length _A = max_seq_length _A = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _A = spectrogram_length _A = feature_size _A = num_audio_channels _A = hop_length _A = chunk_length _A = sampling_rate def lowerCAmelCase__ ( self ): return { "spectrogram_length": self.spectrogram_length, "feature_size": self.feature_size, "num_audio_channels": self.num_audio_channels, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "sampling_rate": self.sampling_rate, } def lowerCAmelCase__ ( self , snake_case_=False , snake_case_=False ): def _flatten(snake_case_ ): return list(itertools.chain(*snake_case_ ) ) if equal_length: _A = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _A = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _A = [np.asarray(snake_case_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class lowerCamelCase( __snake_case , unittest.TestCase ): '''simple docstring''' __magic_name__ = TvltFeatureExtractor def lowerCAmelCase__ ( self ): _A = TvltFeatureExtractionTester(self ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(snake_case_ , 'spectrogram_length' ) ) self.assertTrue(hasattr(snake_case_ , 'feature_size' ) ) self.assertTrue(hasattr(snake_case_ , 'num_audio_channels' ) ) self.assertTrue(hasattr(snake_case_ , 'hop_length' ) ) self.assertTrue(hasattr(snake_case_ , 'chunk_length' ) ) self.assertTrue(hasattr(snake_case_ , 'sampling_rate' ) ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = feat_extract_first.save_pretrained(snake_case_ )[0] check_json_file_has_correct_format(snake_case_ ) _A = self.feature_extraction_class.from_pretrained(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): _A = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _A = os.path.join(snake_case_ , 'feat_extract.json' ) feat_extract_first.to_json_file(snake_case_ ) _A = self.feature_extraction_class.from_json_file(snake_case_ ) _A = feat_extract_first.to_dict() _A = feat_extract_second.to_dict() _A = dict_first.pop('mel_filters' ) _A = dict_second.pop('mel_filters' ) self.assertTrue(np.allclose(snake_case_ , snake_case_ ) ) self.assertEqual(snake_case_ , snake_case_ ) def lowerCAmelCase__ ( self ): # Initialize feature_extractor _A = self.feature_extraction_class(**self.feat_extract_dict ) # create three inputs of length 800, 1000, and 1200 _A = [floats_list((1, x) )[0] for x in range(800 , 1400 , 200 )] _A = [np.asarray(snake_case_ ) for speech_input in speech_inputs] # Test not batched input _A = feature_extractor(np_speech_inputs[0] , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test batched _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test audio masking _A = feature_extractor( snake_case_ , return_tensors='np' , sampling_rate=4_4100 , mask_audio=snake_case_ ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) # Test 2-D numpy arrays are batched. _A = [floats_list((1, x) )[0] for x in (800, 800, 800)] _A = np.asarray(snake_case_ ) _A = feature_extractor(snake_case_ , return_tensors='np' , sampling_rate=4_4100 ).audio_values self.assertTrue(encoded_audios.ndim == 4 ) self.assertTrue(encoded_audios.shape[-1] == feature_extractor.feature_size ) self.assertTrue(encoded_audios.shape[-2] <= feature_extractor.spectrogram_length ) self.assertTrue(encoded_audios.shape[-3] == feature_extractor.num_channels ) def lowerCAmelCase__ ( self , snake_case_ ): _A = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _A = ds.sort('id' ).select(range(snake_case_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def lowerCAmelCase__ ( self ): _A = self._load_datasamples(1 ) _A = TvltFeatureExtractor() _A = feature_extractor(snake_case_ , return_tensors='pt' ).audio_values self.assertEquals(audio_values.shape , (1, 1, 192, 128) ) _A = torch.tensor([[-0.3032, -0.2708], [-0.4434, -0.4007]] ) self.assertTrue(torch.allclose(audio_values[0, 0, :2, :2] , snake_case_ , atol=1E-4 ) )
27
0
def UpperCamelCase ( _A : list , _A : list )-> float: """simple docstring""" _validate_point(_A ) _validate_point(_A ) if len(_A ) != len(_A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(a - b ) for a, b in zip(_A , _A ) ) ) def UpperCamelCase ( _A : list[float] )-> None: """simple docstring""" if point: if isinstance(_A , _A ): for item in point: if not isinstance(_A , (int, float) ): A__ = ( "Expected a list of numbers as input, found " f"""{type(_A ).__name__}""" ) raise TypeError(_A ) else: A__ = f"""Expected a list of numbers as input, found {type(_A ).__name__}""" raise TypeError(_A ) else: raise ValueError("Missing an input" ) def UpperCamelCase ( _A : list , _A : list )-> float: """simple docstring""" _validate_point(_A ) _validate_point(_A ) if len(_A ) != len(_A ): raise ValueError("Both points must be in the same n-dimensional space" ) return float(sum(abs(x - y ) for x, y in zip(_A , _A ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
232
UpperCAmelCase_ : int = "ABCDEFGHIJKLMNOPQRSTUVWXYZ" def UpperCamelCase ( )-> None: """simple docstring""" A__ = input("Enter message: " ) A__ = input("Enter key [alphanumeric]: " ) A__ = input("Encrypt/Decrypt [e/d]: " ) if mode.lower().startswith("e" ): A__ = "encrypt" A__ = encrypt_message(_A , _A ) elif mode.lower().startswith("d" ): A__ = "decrypt" A__ = decrypt_message(_A , _A ) print(f"""\n{mode.title()}ed message:""" ) print(_A ) def UpperCamelCase ( _A : str , _A : str )-> str: """simple docstring""" return translate_message(_A , _A , "encrypt" ) def UpperCamelCase ( _A : str , _A : str )-> str: """simple docstring""" return translate_message(_A , _A , "decrypt" ) def UpperCamelCase ( _A : str , _A : str , _A : str )-> str: """simple docstring""" A__ = [] A__ = 0 A__ = key.upper() for symbol in message: A__ = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(_A ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(_A ): A__ = 0 else: translated.append(_A ) return "".join(_A ) if __name__ == "__main__": main()
232
1
import unittest from transformers import load_tool from transformers.utils import is_torch_available if is_torch_available(): import torch from transformers.testing_utils import require_torch from .test_tools_common import ToolTesterMixin @require_torch class lowerCamelCase (unittest.TestCase , __lowerCamelCase ): """simple docstring""" def A_ ( self : int ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE__ : Dict = load_tool("text-to-speech" ) self.tool.setup() def A_ ( self : Union[str, Any] ) -> Dict: """simple docstring""" # SpeechT5 isn't deterministic torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = self.tool("hey" ) SCREAMING_SNAKE_CASE__ : Optional[int] = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ), ) ) def A_ ( self : int ) -> Dict: """simple docstring""" # SpeechT5 isn't deterministic torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : List[str] = self.tool("hey" ) SCREAMING_SNAKE_CASE__ : Tuple = result.to_raw() self.assertTrue( torch.allclose( resulting_tensor[:3], torch.tensor([-0.0005966668832115829, -0.0003657640190795064, -0.00013439502799883485] ), ) )
663
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __init__( self :Any , lowerCamelCase__ :Dict , lowerCamelCase__ :Optional[Any]=7 , lowerCamelCase__ :str=3 , lowerCamelCase__ :Optional[Any]=18 , lowerCamelCase__ :List[str]=30 , lowerCamelCase__ :str=4_00 , lowerCamelCase__ :Optional[int]=True , lowerCamelCase__ :Union[str, Any]=32 , lowerCamelCase__ :int=True , ): UpperCamelCase__ :List[Any] = parent UpperCamelCase__ :List[Any] = batch_size UpperCamelCase__ :Any = num_channels UpperCamelCase__ :List[str] = image_size UpperCamelCase__ :Dict = min_resolution UpperCamelCase__ :List[str] = max_resolution UpperCamelCase__ :str = do_resize UpperCamelCase__ :int = size_divisor UpperCamelCase__ :Optional[int] = do_rescale def __a ( self :str ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class lowerCAmelCase_ ( lowercase , unittest.TestCase ): """simple docstring""" _snake_case : Optional[int] = GLPNImageProcessor if is_vision_available() else None def __a ( self :Dict ): UpperCamelCase__ :Dict = GLPNImageProcessingTester(self ) @property def __a ( self :List[str] ): return self.image_processor_tester.prepare_image_processor_dict() def __a ( self :Optional[int] ): UpperCamelCase__ :Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCamelCase__ , """do_resize""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """size_divisor""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """resample""" ) ) self.assertTrue(hasattr(lowerCamelCase__ , """do_rescale""" ) ) def __a ( self :Optional[int] ): pass def __a ( self :Tuple ): # Initialize image_processing UpperCamelCase__ :int = self.image_processing_class(**self.image_processor_dict ) # create random PIL images UpperCamelCase__ :str = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :Tuple = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :str ): # Initialize image_processing UpperCamelCase__ :str = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors UpperCamelCase__ :Optional[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , numpify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def __a ( self :Any ): # Initialize image_processing UpperCamelCase__ :List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors UpperCamelCase__ :Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCamelCase__ , torchify=lowerCamelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCamelCase__ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) UpperCamelCase__ :List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
45
0
import gc import unittest import numpy as np import torch from diffusers import DanceDiffusionPipeline, IPNDMScheduler, UNetaDModel from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS, UNCONDITIONAL_AUDIO_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A_ ( __a , unittest.TestCase ): _A :Union[str, Any] = DanceDiffusionPipeline _A :Optional[int] = UNCONDITIONAL_AUDIO_GENERATION_PARAMS _A :Dict = PipelineTesterMixin.required_optional_params - { '''callback''', '''latents''', '''callback_steps''', '''output_type''', '''num_images_per_prompt''', } _A :Any = UNCONDITIONAL_AUDIO_GENERATION_BATCH_PARAMS _A :List[Any] = False _A :List[Any] = False def SCREAMING_SNAKE_CASE__ ( self : Any ): torch.manual_seed(0 ) lowercase = UNetaDModel( block_out_channels=(32, 32, 64) , extra_in_channels=16 , sample_size=5_12 , sample_rate=1_60_00 , in_channels=2 , out_channels=2 , flip_sin_to_cos=snake_case__ , use_timestep_embedding=snake_case__ , time_embedding_type="""fourier""" , mid_block_type="""UNetMidBlock1D""" , down_block_types=("""DownBlock1DNoSkip""", """DownBlock1D""", """AttnDownBlock1D""") , up_block_types=("""AttnUpBlock1D""", """UpBlock1D""", """UpBlock1DNoSkip""") , ) lowercase = IPNDMScheduler() lowercase = { """unet""": unet, """scheduler""": scheduler, } return components def SCREAMING_SNAKE_CASE__ ( self : List[Any] , snake_case__ : Tuple , snake_case__ : Optional[Any]=0 ): if str(snake_case__ ).startswith("""mps""" ): lowercase = torch.manual_seed(snake_case__ ) else: lowercase = torch.Generator(device=snake_case__ ).manual_seed(snake_case__ ) lowercase = { """batch_size""": 1, """generator""": generator, """num_inference_steps""": 4, } return inputs def SCREAMING_SNAKE_CASE__ ( self : Tuple ): lowercase = """cpu""" # ensure determinism for the device-dependent torch.Generator lowercase = self.get_dummy_components() lowercase = DanceDiffusionPipeline(**snake_case__ ) lowercase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = self.get_dummy_inputs(snake_case__ ) lowercase = pipe(**snake_case__ ) lowercase = output.audios lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, components["unet"].sample_size) lowercase = np.array([-0.7_265, 1.0_000, -0.8_388, 0.1_175, 0.9_498, -1.0_000] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 @skip_mps def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return super().test_save_load_local() @skip_mps def SCREAMING_SNAKE_CASE__ ( self : str ): return super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) @skip_mps def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return super().test_save_load_optional_components() @skip_mps def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return super().test_attention_slicing_forward_pass() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class A_ ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : str ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = torch_device lowercase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" ) lowercase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = torch.manual_seed(0 ) lowercase = pipe(generator=snake_case__ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowercase = output.audios lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase = np.array([-0.0_192, -0.0_231, -0.0_318, -0.0_059, 0.0_002, -0.0_020] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self : int ): lowercase = torch_device lowercase = DanceDiffusionPipeline.from_pretrained("""harmonai/maestro-150k""" , torch_dtype=torch.floataa ) lowercase = pipe.to(snake_case__ ) pipe.set_progress_bar_config(disable=snake_case__ ) lowercase = torch.manual_seed(0 ) lowercase = pipe(generator=snake_case__ , num_inference_steps=1_00 , audio_length_in_s=4.096 ) lowercase = output.audios lowercase = audio[0, -3:, -3:] assert audio.shape == (1, 2, pipe.unet.sample_size) lowercase = np.array([-0.0_367, -0.0_488, -0.0_771, -0.0_525, -0.0_444, -0.0_341] ) assert np.abs(audio_slice.flatten() - expected_slice ).max() < 1E-2
700
import collections.abc from typing import Optional, Tuple, Union import torch import torch.utils.checkpoint from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...modeling_outputs import BaseModelOutputWithNoAttention, ImageClassifierOutputWithNoAttention from ...modeling_utils import PreTrainedModel from ...utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, logging from .configuration_poolformer import PoolFormerConfig __SCREAMING_SNAKE_CASE : Any =logging.get_logger(__name__) # General docstring __SCREAMING_SNAKE_CASE : Union[str, Any] ='''PoolFormerConfig''' # Base docstring __SCREAMING_SNAKE_CASE : List[Any] ='''sail/poolformer_s12''' __SCREAMING_SNAKE_CASE : Union[str, Any] =[1, 512, 7, 7] # Image classification docstring __SCREAMING_SNAKE_CASE : Any ='''sail/poolformer_s12''' __SCREAMING_SNAKE_CASE : Union[str, Any] ='''tabby, tabby cat''' __SCREAMING_SNAKE_CASE : Tuple =[ '''sail/poolformer_s12''', # See all PoolFormer models at https://huggingface.co/models?filter=poolformer ] def UpperCamelCase__ ( lowerCAmelCase__ ,lowerCAmelCase__ = 0.0 ,lowerCAmelCase__ = False ): if drop_prob == 0.0 or not training: return input lowercase = 1 - drop_prob lowercase = (input.shape[0],) + (1,) * (input.ndim - 1) # work with diff dim tensors, not just 2D ConvNets lowercase = keep_prob + torch.rand(lowerCAmelCase__ ,dtype=input.dtype ,device=input.device ) random_tensor.floor_() # binarize lowercase = input.div(lowerCAmelCase__ ) * random_tensor return output class A_ ( nn.Module ): def __init__( self : Union[str, Any] , snake_case__ : Optional[float] = None ): super().__init__() lowercase = drop_prob def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : torch.Tensor ): return drop_path(snake_case__ , self.drop_prob , self.training ) def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return "p={}".format(self.drop_prob ) class A_ ( nn.Module ): def __init__( self : int , snake_case__ : List[str] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : str , snake_case__ : List[str]=None ): super().__init__() lowercase = patch_size if isinstance(snake_case__ , collections.abc.Iterable ) else (patch_size, patch_size) lowercase = stride if isinstance(snake_case__ , collections.abc.Iterable ) else (stride, stride) lowercase = padding if isinstance(snake_case__ , collections.abc.Iterable ) else (padding, padding) lowercase = nn.Convad(snake_case__ , snake_case__ , kernel_size=snake_case__ , stride=snake_case__ , padding=snake_case__ ) lowercase = norm_layer(snake_case__ ) if norm_layer else nn.Identity() def SCREAMING_SNAKE_CASE__ ( self : Any , snake_case__ : List[Any] ): lowercase = self.projection(snake_case__ ) lowercase = self.norm(snake_case__ ) return embeddings class A_ ( nn.GroupNorm ): def __init__( self : Union[str, Any] , snake_case__ : Dict , **snake_case__ : List[str] ): super().__init__(1 , snake_case__ , **snake_case__ ) class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Any ): super().__init__() lowercase = nn.AvgPoolad(snake_case__ , stride=1 , padding=pool_size // 2 , count_include_pad=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : Union[str, Any] ): return self.pool(snake_case__ ) - hidden_states class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Any , snake_case__ : str , snake_case__ : List[str] , snake_case__ : Dict ): super().__init__() lowercase = nn.Convad(snake_case__ , snake_case__ , 1 ) lowercase = nn.Convad(snake_case__ , snake_case__ , 1 ) lowercase = PoolFormerDropPath(snake_case__ ) if isinstance(config.hidden_act , snake_case__ ): lowercase = ACTaFN[config.hidden_act] else: lowercase = config.hidden_act def SCREAMING_SNAKE_CASE__ ( self : int , snake_case__ : Dict ): lowercase = self.conva(snake_case__ ) lowercase = self.act_fn(snake_case__ ) lowercase = self.drop(snake_case__ ) lowercase = self.conva(snake_case__ ) lowercase = self.drop(snake_case__ ) return hidden_states class A_ ( nn.Module ): def __init__( self : int , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : int , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : List[str] ): super().__init__() lowercase = PoolFormerPooling(snake_case__ ) lowercase = PoolFormerOutput(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) lowercase = PoolFormerGroupNorm(snake_case__ ) lowercase = PoolFormerGroupNorm(snake_case__ ) # Useful for training neural nets lowercase = PoolFormerDropPath(snake_case__ ) if drop_path > 0.0 else nn.Identity() lowercase = config.use_layer_scale if config.use_layer_scale: lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case__) ) , requires_grad=snake_case__ ) lowercase = nn.Parameter( config.layer_scale_init_value * torch.ones((snake_case__) ) , requires_grad=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : List[str] ): if self.use_layer_scale: lowercase = self.pooling(self.before_norm(snake_case__ ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * pooling_output # First residual connection lowercase = hidden_states + self.drop_path(snake_case__ ) lowercase = () lowercase = self.output(self.after_norm(snake_case__ ) ) lowercase = self.layer_scale_a.unsqueeze(-1 ).unsqueeze(-1 ) * layer_output # Second residual connection lowercase = hidden_states + self.drop_path(snake_case__ ) lowercase = (output,) + outputs return outputs else: lowercase = self.drop_path(self.pooling(self.before_norm(snake_case__ ) ) ) # First residual connection lowercase = pooling_output + hidden_states lowercase = () # Second residual connection inside the PoolFormerOutput block lowercase = self.drop_path(self.output(self.after_norm(snake_case__ ) ) ) lowercase = hidden_states + layer_output lowercase = (output,) + outputs return outputs class A_ ( nn.Module ): def __init__( self : List[str] , snake_case__ : Optional[Any] ): super().__init__() lowercase = config # stochastic depth decay rule lowercase = [x.item() for x in torch.linspace(0 , config.drop_path_rate , sum(config.depths ) )] # patch embeddings lowercase = [] for i in range(config.num_encoder_blocks ): embeddings.append( PoolFormerEmbeddings( patch_size=config.patch_sizes[i] , stride=config.strides[i] , padding=config.padding[i] , num_channels=config.num_channels if i == 0 else config.hidden_sizes[i - 1] , hidden_size=config.hidden_sizes[i] , ) ) lowercase = nn.ModuleList(snake_case__ ) # Transformer blocks lowercase = [] lowercase = 0 for i in range(config.num_encoder_blocks ): # each block consists of layers lowercase = [] if i != 0: cur += config.depths[i - 1] for j in range(config.depths[i] ): layers.append( PoolFormerLayer( snake_case__ , num_channels=config.hidden_sizes[i] , pool_size=config.pool_size , hidden_size=config.hidden_sizes[i] , intermediate_size=int(config.hidden_sizes[i] * config.mlp_ratio ) , drop_path=dpr[cur + j] , ) ) blocks.append(nn.ModuleList(snake_case__ ) ) lowercase = nn.ModuleList(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , snake_case__ : str , snake_case__ : Optional[Any]=False , snake_case__ : Optional[int]=True ): lowercase = () if output_hidden_states else None lowercase = pixel_values for idx, layers in enumerate(zip(self.patch_embeddings , self.block ) ): lowercase , lowercase = layers # Get patch embeddings from hidden_states lowercase = embedding_layer(snake_case__ ) # Send the embeddings through the blocks for _, blk in enumerate(snake_case__ ): lowercase = blk(snake_case__ ) lowercase = layer_outputs[0] if output_hidden_states: lowercase = all_hidden_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, all_hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=snake_case__ , hidden_states=snake_case__ ) class A_ ( __a ): _A :Any = PoolFormerConfig _A :int = '''poolformer''' _A :Union[str, Any] = '''pixel_values''' _A :str = True def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Union[str, Any] ): if isinstance(snake_case__ , (nn.Linear, nn.Convad) ): module.weight.data.normal_(mean=0.0 , std=self.config.initializer_range ) if module.bias is not None: module.bias.data.zero_() elif isinstance(snake_case__ , nn.LayerNorm ): module.bias.data.zero_() module.weight.data.fill_(1.0 ) def SCREAMING_SNAKE_CASE__ ( self : Tuple , snake_case__ : Any , snake_case__ : Optional[int]=False ): if isinstance(snake_case__ , snake_case__ ): lowercase = value __SCREAMING_SNAKE_CASE : Optional[Any] =R''' This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) sub-class. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior. Parameters: config ([`PoolFormerConfig`]): Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights. ''' __SCREAMING_SNAKE_CASE : str =R''' Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`): Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See [`PoolFormerImageProcessor.__call__`] for details. ''' @add_start_docstrings( '''The bare PoolFormer Model transformer outputting raw hidden-states without any specific head on top.''' , __a , ) class A_ ( __a ): def __init__( self : Union[str, Any] , snake_case__ : int ): super().__init__(snake_case__ ) lowercase = config lowercase = PoolFormerEncoder(snake_case__ ) # Initialize weights and apply final processing self.post_init() def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): return self.embeddings.patch_embeddings @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , modality="""vision""" , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def SCREAMING_SNAKE_CASE__ ( self : str , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , ): lowercase = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase = return_dict if return_dict is not None else self.config.use_return_dict if pixel_values is None: raise ValueError("""You have to specify pixel_values""" ) lowercase = self.encoder( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , ) lowercase = encoder_outputs[0] if not return_dict: return (sequence_output, None) + encoder_outputs[1:] return BaseModelOutputWithNoAttention( last_hidden_state=snake_case__ , hidden_states=encoder_outputs.hidden_states , ) class A_ ( nn.Module ): def __init__( self : List[str] , snake_case__ : Optional[int] ): super().__init__() lowercase = nn.Linear(config.hidden_size , config.hidden_size ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , snake_case__ : str ): lowercase = self.dense(snake_case__ ) return output @add_start_docstrings( ''' PoolFormer Model transformer with an image classification head on top ''' , __a , ) class A_ ( __a ): def __init__( self : Dict , snake_case__ : Any ): super().__init__(snake_case__ ) lowercase = config.num_labels lowercase = PoolFormerModel(snake_case__ ) # Final norm lowercase = PoolFormerGroupNorm(config.hidden_sizes[-1] ) # Classifier head lowercase = ( nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(snake_case__ ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=snake_case__ , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def SCREAMING_SNAKE_CASE__ ( self : List[str] , snake_case__ : Optional[torch.FloatTensor] = None , snake_case__ : Optional[torch.LongTensor] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[bool] = None , ): lowercase = return_dict if return_dict is not None else self.config.use_return_dict lowercase = self.poolformer( snake_case__ , output_hidden_states=snake_case__ , return_dict=snake_case__ , ) lowercase = outputs[0] lowercase = self.classifier(self.norm(snake_case__ ).mean([-2, -1] ) ) lowercase = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase = """regression""" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase = """single_label_classification""" else: lowercase = """multi_label_classification""" if self.config.problem_type == "regression": lowercase = MSELoss() if self.num_labels == 1: lowercase = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase = loss_fct(snake_case__ , snake_case__ ) elif self.config.problem_type == "single_label_classification": lowercase = CrossEntropyLoss() lowercase = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase = BCEWithLogitsLoss() lowercase = loss_fct(snake_case__ , snake_case__ ) if not return_dict: lowercase = (logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=snake_case__ , logits=snake_case__ , hidden_states=outputs.hidden_states )
72
0
'''simple docstring''' import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, PNDMScheduler, StableDiffusionLDMaDPipeline, UNetaDConditionModel, ) from diffusers.utils import nightly, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS enable_full_determinism() class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" _snake_case : Tuple = StableDiffusionLDMaDPipeline _snake_case : str = TEXT_TO_IMAGE_PARAMS _snake_case : List[Any] = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : List[str] = TEXT_TO_IMAGE_IMAGE_PARAMS def snake_case__ ( self : List[str] ) -> Any: '''simple docstring''' torch.manual_seed(0 ) _UpperCamelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) _UpperCamelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) _UpperCamelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=6 , out_channels=6 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) _UpperCamelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) _UpperCamelCase = CLIPTextModel(lowerCAmelCase__ ) _UpperCamelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _UpperCamelCase = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def snake_case__ ( self : Optional[Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str]=0 ) -> Tuple: '''simple docstring''' if str(lowerCAmelCase__ ).startswith('''mps''' ): _UpperCamelCase = torch.manual_seed(lowerCAmelCase__ ) else: _UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) _UpperCamelCase = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase = ldmad_pipe(**lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = output.rgb, output.depth _UpperCamelCase = rgb[0, -3:, -3:, -1] _UpperCamelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCamelCase = np.array( [0.37338176, 0.70247, 0.74203193, 0.51643604, 0.58256793, 0.60932136, 0.4181095, 0.48355877, 0.46535262] ) _UpperCamelCase = np.array([103.46727, 85.812004, 87.849236] ) assert np.abs(image_slice_rgb.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(image_slice_depth.flatten() - expected_slice_depth ).max() < 1e-2 def snake_case__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) _UpperCamelCase = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase = 3 * [inputs['''prompt''']] # forward _UpperCamelCase = ldmad_pipe(**lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = output.rgb, output.depth _UpperCamelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCamelCase = depth_slice_a[0, -3:, -1] _UpperCamelCase = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase = 3 * [inputs.pop('''prompt''' )] _UpperCamelCase = ldmad_pipe.tokenizer( lowerCAmelCase__ , padding='''max_length''' , max_length=ldmad_pipe.tokenizer.model_max_length , truncation=lowerCAmelCase__ , return_tensors='''pt''' , ) _UpperCamelCase = text_inputs['''input_ids'''].to(lowerCAmelCase__ ) _UpperCamelCase = ldmad_pipe.text_encoder(lowerCAmelCase__ )[0] _UpperCamelCase = prompt_embeds # forward _UpperCamelCase = ldmad_pipe(**lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = output.rgb, output.depth _UpperCamelCase = rgb_slice_a[0, -3:, -3:, -1] _UpperCamelCase = depth_slice_a[0, -3:, -1] assert np.abs(rgb_slice_a.flatten() - rgb_slice_a.flatten() ).max() < 1e-4 assert np.abs(depth_slice_a.flatten() - depth_slice_a.flatten() ).max() < 1e-4 def snake_case__ ( self : Union[str, Any] ) -> Optional[int]: '''simple docstring''' _UpperCamelCase = '''cpu''' # ensure determinism for the device-dependent torch.Generator _UpperCamelCase = self.get_dummy_components() _UpperCamelCase = PNDMScheduler(skip_prk_steps=lowerCAmelCase__ ) _UpperCamelCase = StableDiffusionLDMaDPipeline(**lowerCAmelCase__ ) _UpperCamelCase = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_dummy_inputs(lowerCAmelCase__ ) _UpperCamelCase = '''french fries''' _UpperCamelCase = ldmad_pipe(**lowerCAmelCase__ , negative_prompt=lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = output.rgb, output.depth _UpperCamelCase = rgb[0, -3:, -3:, -1] _UpperCamelCase = depth[0, -3:, -1] assert rgb.shape == (1, 64, 64, 3) assert depth.shape == (1, 64, 64) _UpperCamelCase = np.array( [0.37044, 0.71811503, 0.7223251, 0.48603675, 0.5638391, 0.6364948, 0.42833704, 0.4901315, 0.47926217] ) _UpperCamelCase = np.array([107.84738, 84.62802, 89.962135] ) assert np.abs(rgb_slice.flatten() - expected_slice_rgb ).max() < 1e-2 assert np.abs(depth_slice.flatten() - expected_slice_depth ).max() < 1e-2 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : Any ) -> Any: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : Dict , lowerCAmelCase__ : str , lowerCAmelCase__ : Any="cpu" , lowerCAmelCase__ : int=torch.floataa , lowerCAmelCase__ : Any=0 ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _UpperCamelCase = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) _UpperCamelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 3, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Dict ) -> Tuple: '''simple docstring''' _UpperCamelCase = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ) _UpperCamelCase = ldmad_pipe.to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_inputs(lowerCAmelCase__ ) _UpperCamelCase = ldmad_pipe(**lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = output.rgb, output.depth _UpperCamelCase = rgb[0, -3:, -3:, -1].flatten() _UpperCamelCase = rgb[0, -3:, -1].flatten() assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512) _UpperCamelCase = np.array( [0.53805465, 0.56707305, 0.5486515, 0.57012236, 0.5814511, 0.56253487, 0.54843014, 0.55092263, 0.6459706] ) _UpperCamelCase = np.array( [0.9263781, 0.6678672, 0.5486515, 0.92202145, 0.67831135, 0.56253487, 0.9241694, 0.7551478, 0.6459706] ) assert np.abs(rgb_slice - expected_slice_rgb ).max() < 3e-3 assert np.abs(depth_slice - expected_slice_depth ).max() < 3e-3 @nightly @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self : str ) -> Tuple: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case__ ( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any="cpu" , lowerCAmelCase__ : Dict=torch.floataa , lowerCAmelCase__ : Any=0 ) -> List[str]: '''simple docstring''' _UpperCamelCase = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) _UpperCamelCase = np.random.RandomState(lowerCAmelCase__ ).standard_normal((1, 4, 64, 64) ) _UpperCamelCase = torch.from_numpy(lowerCAmelCase__ ).to(device=lowerCAmelCase__ , dtype=lowerCAmelCase__ ) _UpperCamelCase = { '''prompt''': '''a photograph of an astronaut riding a horse''', '''latents''': latents, '''generator''': generator, '''num_inference_steps''': 50, '''guidance_scale''': 7.5, '''output_type''': '''numpy''', } return inputs def snake_case__ ( self : Optional[int] ) -> int: '''simple docstring''' _UpperCamelCase = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d''' ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_inputs(lowerCAmelCase__ ) _UpperCamelCase = ldmad_pipe(**lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = output.rgb, output.depth _UpperCamelCase = 0.495586 _UpperCamelCase = 0.33795515 _UpperCamelCase = 112.48518 _UpperCamelCase = 98.489746 assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3 def snake_case__ ( self : Dict ) -> Any: '''simple docstring''' _UpperCamelCase = StableDiffusionLDMaDPipeline.from_pretrained('''Intel/ldm3d-4c''' ).to(lowerCAmelCase__ ) ldmad_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) _UpperCamelCase = self.get_inputs(lowerCAmelCase__ ) _UpperCamelCase = ldmad_pipe(**lowerCAmelCase__ ) _UpperCamelCase , _UpperCamelCase = output.rgb, output.depth _UpperCamelCase = 0.4194127 _UpperCamelCase = 0.35375586 _UpperCamelCase = 0.5638502 _UpperCamelCase = 0.34686103 assert rgb.shape == (1, 512, 512, 3) assert depth.shape == (1, 512, 512, 1) assert np.abs(expected_rgb_mean - rgb.mean() ) < 1e-3 assert np.abs(expected_rgb_std - rgb.std() ) < 1e-3 assert np.abs(expected_depth_mean - depth.mean() ) < 1e-3 assert np.abs(expected_depth_std - depth.std() ) < 1e-3
98
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> str: """simple docstring""" lowerCAmelCase = tmp_path / """file.csv""" lowerCAmelCase = textwrap.dedent( """\ header1,header2 1,2 10,20 """ ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = tmp_path / """malformed_file.csv""" lowerCAmelCase = textwrap.dedent( """\ header1,header2 1,2 10,20, """ ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = tmp_path / """csv_with_image.csv""" lowerCAmelCase = textwrap.dedent( f'\\n image\n {image_file}\n ' ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def _snake_case ( _SCREAMING_SNAKE_CASE : int ) -> Any: """simple docstring""" lowerCAmelCase = tmp_path / """csv_with_label.csv""" lowerCAmelCase = textwrap.dedent( """\ label good bad good """ ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) @pytest.fixture def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[int] ) -> Optional[Any]: """simple docstring""" lowerCAmelCase = tmp_path / """csv_with_int_list.csv""" lowerCAmelCase = textwrap.dedent( """\ int_list 1 2 3 4 5 6 7 8 9 """ ) with open(_SCREAMING_SNAKE_CASE , """w""" ) as f: f.write(_SCREAMING_SNAKE_CASE ) return str(_SCREAMING_SNAKE_CASE ) def _snake_case ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : List[str] ) -> List[Any]: """simple docstring""" lowerCAmelCase = Csv() lowerCAmelCase = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_SCREAMING_SNAKE_CASE , match="""Error tokenizing data""" ): for _ in generator: pass assert any( record.levelname == """ERROR""" and """Failed to read file""" in record.message and os.path.basename(_SCREAMING_SNAKE_CASE ) in record.message for record in caplog.records ) @require_pil def _snake_case ( _SCREAMING_SNAKE_CASE : Dict ) -> Tuple: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: lowerCAmelCase = f.read().splitlines()[1] lowerCAmelCase = Csv(encoding="""utf-8""" , features=Features({"""image""": Image()} ) ) lowerCAmelCase = csv._generate_tables([[csv_file_with_image]] ) lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""image""" ).type == Image()() lowerCAmelCase = pa_table.to_pydict()["""image"""] assert generated_content == [{"path": image_file, "bytes": None}] def _snake_case ( _SCREAMING_SNAKE_CASE : List[str] ) -> Union[str, Any]: """simple docstring""" with open(_SCREAMING_SNAKE_CASE , encoding="""utf-8""" ) as f: lowerCAmelCase = f.read().splitlines()[1:] lowerCAmelCase = Csv(encoding="""utf-8""" , features=Features({"""label""": ClassLabel(names=["""good""", """bad"""] )} ) ) lowerCAmelCase = csv._generate_tables([[csv_file_with_label]] ) lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("""label""" ).type == ClassLabel(names=["""good""", """bad"""] )() lowerCAmelCase = pa_table.to_pydict()["""label"""] assert generated_content == [ClassLabel(names=["""good""", """bad"""] ).straint(_SCREAMING_SNAKE_CASE ) for label in labels] def _snake_case ( _SCREAMING_SNAKE_CASE : Optional[Any] ) -> Tuple: """simple docstring""" lowerCAmelCase = Csv(encoding="""utf-8""" , sep=""",""" , converters={"""int_list""": lambda _SCREAMING_SNAKE_CASE : [int(_SCREAMING_SNAKE_CASE ) for i in x.split()]} ) lowerCAmelCase = csv._generate_tables([[csv_file_with_int_list]] ) lowerCAmelCase = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("""int_list""" ).type ) lowerCAmelCase = pa_table.to_pydict()["""int_list"""] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
433
0
import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): '''simple docstring''' A : Union[str, Any] = LEDTokenizer A : Optional[Any] = LEDTokenizerFast A : Union[str, Any] = True def _lowerCAmelCase ( self ) -> Tuple: super().setUp() snake_case_ : Union[str, Any] = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] snake_case_ : Tuple = dict(zip(_SCREAMING_SNAKE_CASE , range(len(_SCREAMING_SNAKE_CASE ) ) ) ) snake_case_ : Dict = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] snake_case_ : List[str] = {"unk_token": "<unk>"} snake_case_ : int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) snake_case_ : List[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(_SCREAMING_SNAKE_CASE ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(_SCREAMING_SNAKE_CASE ) ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> List[str]: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , **_SCREAMING_SNAKE_CASE ) -> Optional[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: return "lower newer", "lower newer" @cached_property def _lowerCAmelCase ( self ) -> Optional[Any]: return LEDTokenizer.from_pretrained("allenai/led-base-16384" ) @cached_property def _lowerCAmelCase ( self ) -> Optional[int]: return LEDTokenizerFast.from_pretrained("allenai/led-base-16384" ) @require_torch def _lowerCAmelCase ( self ) -> Union[str, Any]: snake_case_ : Any = ["A long paragraph for summarization.", "Another paragraph for summarization."] snake_case_ : Tuple = [0, 250, 251, 1_7818, 13, 3_9186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ : Tuple = tokenizer(_SCREAMING_SNAKE_CASE , max_length=len(_SCREAMING_SNAKE_CASE ) , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) snake_case_ : Dict = batch.input_ids.tolist()[0] self.assertListEqual(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) @require_torch def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : int = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ : Union[str, Any] = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIn("input_ids" , _SCREAMING_SNAKE_CASE ) self.assertIn("attention_mask" , _SCREAMING_SNAKE_CASE ) self.assertNotIn("labels" , _SCREAMING_SNAKE_CASE ) self.assertNotIn("decoder_attention_mask" , _SCREAMING_SNAKE_CASE ) @require_torch def _lowerCAmelCase ( self ) -> Optional[int]: snake_case_ : Any = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ : str = tokenizer(text_target=_SCREAMING_SNAKE_CASE , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def _lowerCAmelCase ( self ) -> int: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ : Tuple = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) self.assertIsInstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) self.assertEqual(batch.input_ids.shape , (2, 5122) ) @require_torch def _lowerCAmelCase ( self ) -> List[str]: snake_case_ : Optional[Any] = ["A long paragraph for summarization."] snake_case_ : Any = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ : int = tokenizer(_SCREAMING_SNAKE_CASE , return_tensors="pt" ) snake_case_ : Optional[int] = tokenizer(text_target=_SCREAMING_SNAKE_CASE , return_tensors="pt" ) snake_case_ : str = inputs["input_ids"] snake_case_ : int = targets["input_ids"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def _lowerCAmelCase ( self ) -> Tuple: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: snake_case_ : int = ["Summary of the text.", "Another summary."] snake_case_ : Dict = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] snake_case_ : str = tokenizer(_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = [[0] * len(_SCREAMING_SNAKE_CASE ) for x in encoded_output["input_ids"]] snake_case_ : Optional[int] = tokenizer.pad(_SCREAMING_SNAKE_CASE ) self.assertSequenceEqual(outputs["global_attention_mask"] , _SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self ) -> Optional[Any]: pass def _lowerCAmelCase ( self ) -> Any: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): snake_case_ : int = self.rust_tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = self.tokenizer_class.from_pretrained(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[int] = "A, <mask> AllenNLP sentence." snake_case_ : int = tokenizer_r.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) snake_case_ : Union[str, Any] = tokenizer_p.encode_plus(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE ) self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) snake_case_ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) snake_case_ : Optional[int] = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 5_0264, 3823, 487, 2_1992, 3645, 4, 2] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( _SCREAMING_SNAKE_CASE , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
704
import warnings from typing import List, Optional, Union from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' A : Tuple = ['image_processor', 'tokenizer'] A : List[Any] = 'ViltImageProcessor' A : Optional[Any] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ) -> int: snake_case_ : str = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , _SCREAMING_SNAKE_CASE , ) snake_case_ : str = kwargs.pop("feature_extractor" ) snake_case_ : Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) snake_case_ : str = self.image_processor def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = 0 , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = False , _SCREAMING_SNAKE_CASE = True , _SCREAMING_SNAKE_CASE = None , **_SCREAMING_SNAKE_CASE , ) -> BatchEncoding: snake_case_ : List[Any] = self.tokenizer( text=_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE , padding=_SCREAMING_SNAKE_CASE , truncation=_SCREAMING_SNAKE_CASE , max_length=_SCREAMING_SNAKE_CASE , stride=_SCREAMING_SNAKE_CASE , pad_to_multiple_of=_SCREAMING_SNAKE_CASE , return_token_type_ids=_SCREAMING_SNAKE_CASE , return_attention_mask=_SCREAMING_SNAKE_CASE , return_overflowing_tokens=_SCREAMING_SNAKE_CASE , return_special_tokens_mask=_SCREAMING_SNAKE_CASE , return_offsets_mapping=_SCREAMING_SNAKE_CASE , return_length=_SCREAMING_SNAKE_CASE , verbose=_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) # add pixel_values + pixel_mask snake_case_ : str = self.image_processor(_SCREAMING_SNAKE_CASE , return_tensors=_SCREAMING_SNAKE_CASE ) encoding.update(_SCREAMING_SNAKE_CASE ) return encoding def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> List[str]: return self.tokenizer.batch_decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) def _lowerCAmelCase ( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) -> Dict: return self.tokenizer.decode(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) @property def _lowerCAmelCase ( self ) -> Tuple: snake_case_ : List[Any] = self.tokenizer.model_input_names snake_case_ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ) -> Optional[Any]: warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor_class @property def _lowerCAmelCase ( self ) -> Optional[int]: warnings.warn( "`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead." , _SCREAMING_SNAKE_CASE , ) return self.image_processor
114
0
'''simple docstring''' def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) __UpperCAmelCase : Optional[int] = str(bin(lowerCamelCase__ ) ) binary_number += "0" * shift_amount return binary_number def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" if number < 0 or shift_amount < 0: raise ValueError("both inputs must be positive integers" ) __UpperCAmelCase : Dict = str(bin(lowerCamelCase__ ) )[2:] if shift_amount >= len(lowerCamelCase__ ): return "0b0" __UpperCAmelCase : Optional[int] = binary_number[: len(lowerCamelCase__ ) - shift_amount] return "0b" + shifted_binary_number def _lowercase ( lowerCamelCase__ , lowerCamelCase__ ) -> str: """simple docstring""" if number >= 0: # Get binary representation of positive number __UpperCAmelCase : Optional[Any] = "0" + str(bin(lowerCamelCase__ ) ).strip("-" )[2:] else: # Get binary (2's complement) representation of negative number __UpperCAmelCase : List[str] = len(bin(lowerCamelCase__ )[3:] ) # Find 2's complement of number __UpperCAmelCase : List[str] = bin(abs(lowerCamelCase__ ) - (1 << binary_number_length) )[3:] __UpperCAmelCase : List[str] = ( "1" + "0" * (binary_number_length - len(lowerCamelCase__ )) + binary_number ) if shift_amount >= len(lowerCamelCase__ ): return "0b" + binary_number[0] * len(lowerCamelCase__ ) return ( "0b" + binary_number[0] * shift_amount + binary_number[: len(lowerCamelCase__ ) - shift_amount] ) if __name__ == "__main__": import doctest doctest.testmod()
168
'''simple docstring''' from __future__ import annotations def _lowercase ( lowerCamelCase__ ) -> float: """simple docstring""" __UpperCAmelCase : Any = 0.00 __UpperCAmelCase : Union[str, Any] = 0 for resistor in resistors: if resistor <= 0: __UpperCAmelCase : Tuple = f"""Resistor at index {index} has a negative or zero value!""" raise ValueError(lowerCamelCase__ ) first_sum += 1 / float(lowerCamelCase__ ) index += 1 return 1 / first_sum def _lowercase ( lowerCamelCase__ ) -> float: """simple docstring""" __UpperCAmelCase : int = 0.00 __UpperCAmelCase : List[str] = 0 for resistor in resistors: sum_r += resistor if resistor < 0: __UpperCAmelCase : Tuple = f"""Resistor at index {index} has a negative value!""" raise ValueError(lowerCamelCase__ ) index += 1 return sum_r if __name__ == "__main__": import doctest doctest.testmod()
168
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...file_utils import TensorType, is_torch_available from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import logging lowerCamelCase : List[Any] = logging.get_logger(__name__) lowerCamelCase : Union[str, Any] = { '''facebook/blenderbot_small-90M''': '''https://huggingface.co/facebook/blenderbot_small-90M/resolve/main/config.json''', # See all BlenderbotSmall models at https://huggingface.co/models?filter=blenderbot_small } class _UpperCamelCase (a_ ): snake_case_ = """blenderbot-small""" snake_case_ = ["""past_key_values"""] snake_case_ = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self , __UpperCamelCase=5_0_2_6_5 , __UpperCamelCase=5_1_2 , __UpperCamelCase=8 , __UpperCamelCase=2_0_4_8 , __UpperCamelCase=1_6 , __UpperCamelCase=8 , __UpperCamelCase=2_0_4_8 , __UpperCamelCase=1_6 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=True , __UpperCamelCase=True , __UpperCamelCase="gelu" , __UpperCamelCase=5_1_2 , __UpperCamelCase=0.1 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.0_2 , __UpperCamelCase=1 , __UpperCamelCase=False , __UpperCamelCase=0 , __UpperCamelCase=1 , __UpperCamelCase=2 , __UpperCamelCase=2 , **__UpperCamelCase , )-> Any: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = use_cache __lowerCAmelCase = encoder_layers __lowerCAmelCase = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=__UpperCamelCase , bos_token_id=__UpperCamelCase , eos_token_id=__UpperCamelCase , is_encoder_decoder=__UpperCamelCase , decoder_start_token_id=__UpperCamelCase , forced_eos_token_id=__UpperCamelCase , **__UpperCamelCase , ) class _UpperCamelCase (a_ ): @property def __UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __lowerCAmelCase = {0: "batch"} __lowerCAmelCase = {0: "batch", 1: "past_decoder_sequence + sequence"} else: __lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} __lowerCAmelCase = {0: "batch", 1: "decoder_sequence"} if self.use_past: self.fill_with_past_key_values_(__UpperCamelCase , direction="inputs" ) elif self.task == "causal-lm": # TODO: figure this case out. __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ] ) if self.use_past: __lowerCAmelCase , __lowerCAmelCase = self.num_layers for i in range(__UpperCamelCase ): __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} else: __lowerCAmelCase = OrderedDict( [ ("input_ids", {0: "batch", 1: "encoder_sequence"}), ("attention_mask", {0: "batch", 1: "encoder_sequence"}), ("decoder_input_ids", {0: "batch", 1: "decoder_sequence"}), ("decoder_attention_mask", {0: "batch", 1: "decoder_sequence"}), ] ) return common_inputs @property def __UpperCAmelCase ( self )-> Mapping[str, Mapping[int, str]]: if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = super().outputs else: __lowerCAmelCase = super(__UpperCamelCase , self ).outputs if self.use_past: __lowerCAmelCase , __lowerCAmelCase = self.num_layers for i in range(__UpperCamelCase ): __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} __lowerCAmelCase = {0: "batch", 2: "past_sequence + sequence"} return common_outputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: __lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Generate decoder inputs __lowerCAmelCase = seq_length if not self.use_past else 1 __lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = {F"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __lowerCAmelCase = dict(**__UpperCamelCase , **__UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["input_ids"].shape __lowerCAmelCase = common_inputs["decoder_input_ids"].shape[1] __lowerCAmelCase , __lowerCAmelCase = self.num_attention_heads __lowerCAmelCase = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCAmelCase = decoder_seq_length + 3 __lowerCAmelCase = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowerCAmelCase = torch.cat( [common_inputs["decoder_attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase )] , dim=1 ) __lowerCAmelCase = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowerCAmelCase , __lowerCAmelCase = self.num_layers __lowerCAmelCase = min(__UpperCamelCase , __UpperCamelCase ) __lowerCAmelCase = max(__UpperCamelCase , __UpperCamelCase ) - min_num_layers __lowerCAmelCase = "encoder" if num_encoder_layers > num_decoder_layers else "decoder" for _ in range(__UpperCamelCase ): common_inputs["past_key_values"].append( ( torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase ), ) ) # TODO: test this. __lowerCAmelCase = encoder_shape if remaining_side_name == "encoder" else decoder_shape for _ in range(__UpperCamelCase , __UpperCamelCase ): common_inputs["past_key_values"].append((torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) ) return common_inputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: __lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) if self.use_past: if not is_torch_available(): raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed." ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs["input_ids"].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase , __lowerCAmelCase = self.num_layers __lowerCAmelCase , __lowerCAmelCase = self.num_attention_heads __lowerCAmelCase = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCAmelCase = common_inputs["attention_mask"].dtype __lowerCAmelCase = torch.cat( [common_inputs["attention_mask"], torch.ones(__UpperCamelCase , __UpperCamelCase , dtype=__UpperCamelCase )] , dim=1 ) __lowerCAmelCase = [ (torch.zeros(__UpperCamelCase ), torch.zeros(__UpperCamelCase )) for _ in range(__UpperCamelCase ) ] return common_inputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCAmelCase = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCAmelCase = tokenizer.num_special_tokens_to_add(__UpperCamelCase ) __lowerCAmelCase = compute_effective_axis_dimension( __UpperCamelCase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__UpperCamelCase ) # Generate dummy inputs according to compute batch and sequence __lowerCAmelCase = [" ".join([tokenizer.unk_token] ) * seq_length] * batch_size __lowerCAmelCase = dict(tokenizer(__UpperCamelCase , return_tensors=__UpperCamelCase ) ) return common_inputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase = -1 , __UpperCamelCase = -1 , __UpperCamelCase = False , __UpperCamelCase = None , )-> Mapping[str, Any]: if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = self._generate_dummy_inputs_for_default_and_seqaseq_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) elif self.task == "causal-lm": __lowerCAmelCase = self._generate_dummy_inputs_for_causal_lm( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) else: __lowerCAmelCase = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( __UpperCamelCase , batch_size=__UpperCamelCase , seq_length=__UpperCamelCase , is_pair=__UpperCamelCase , framework=__UpperCamelCase ) return common_inputs def __UpperCAmelCase ( self , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )-> List[Any]: if self.task in ["default", "seq2seq-lm"]: __lowerCAmelCase = super()._flatten_past_key_values_(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) else: __lowerCAmelCase = super(__UpperCamelCase , self )._flatten_past_key_values_( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase )
290
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase : str = logging.get_logger(__name__) def __lowerCAmelCase ( __snake_case ): # initialize config if "resnet-50" in model_name: __lowerCAmelCase = ResNetConfig.from_pretrained("microsoft/resnet-50" ) elif "resnet-101" in model_name: __lowerCAmelCase = ResNetConfig.from_pretrained("microsoft/resnet-101" ) else: raise ValueError("Model name should include either resnet50 or resnet101" ) __lowerCAmelCase = DetrConfig(use_timm_backbone=__snake_case , backbone_config=__snake_case ) # set label attributes __lowerCAmelCase = "panoptic" in model_name if is_panoptic: __lowerCAmelCase = 250 else: __lowerCAmelCase = 91 __lowerCAmelCase = "huggingface/label-files" __lowerCAmelCase = "coco-detection-id2label.json" __lowerCAmelCase = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) __lowerCAmelCase = {int(__snake_case ): v for k, v in idalabel.items()} __lowerCAmelCase = idalabel __lowerCAmelCase = {v: k for k, v in idalabel.items()} return config, is_panoptic def __lowerCAmelCase ( __snake_case ): # here we list all keys to be renamed (original name on the left, our name on the right) __lowerCAmelCase = [] # stem # fmt: off rename_keys.append(("backbone.0.body.conv1.weight", "backbone.conv_encoder.model.embedder.embedder.convolution.weight") ) rename_keys.append(("backbone.0.body.bn1.weight", "backbone.conv_encoder.model.embedder.embedder.normalization.weight") ) rename_keys.append(("backbone.0.body.bn1.bias", "backbone.conv_encoder.model.embedder.embedder.normalization.bias") ) rename_keys.append(("backbone.0.body.bn1.running_mean", "backbone.conv_encoder.model.embedder.embedder.normalization.running_mean") ) rename_keys.append(("backbone.0.body.bn1.running_var", "backbone.conv_encoder.model.embedder.embedder.normalization.running_var") ) # stages for stage_idx in range(len(config.backbone_config.depths ) ): for layer_idx in range(config.backbone_config.depths[stage_idx] ): # shortcut if layer_idx == 0: rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var""", ) ) # 3 convs for i in range(3 ): rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean""", ) ) rename_keys.append( ( F"""backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var""", F"""backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var""", ) ) # fmt: on for i in range(config.encoder_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F"""transformer.encoder.layers.{i}.self_attn.out_proj.weight""", F"""encoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.encoder.layers.{i}.self_attn.out_proj.bias""", F"""encoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.weight""", F"""encoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear1.bias""", F"""encoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.weight""", F"""encoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.linear2.bias""", F"""encoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.weight""", F"""encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm1.bias""", F"""encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.encoder.layers.{i}.norm2.weight""", F"""encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.encoder.layers.{i}.norm2.bias""", F"""encoder.layers.{i}.final_layer_norm.bias""") ) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", F"""decoder.layers.{i}.self_attn.out_proj.weight""", ) ) rename_keys.append( (F"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", F"""decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.weight""", F"""decoder.layers.{i}.encoder_attn.out_proj.weight""", ) ) rename_keys.append( ( F"""transformer.decoder.layers.{i}.multihead_attn.out_proj.bias""", F"""decoder.layers.{i}.encoder_attn.out_proj.bias""", ) ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.weight""", F"""decoder.layers.{i}.fc1.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear1.bias""", F"""decoder.layers.{i}.fc1.bias""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.weight""", F"""decoder.layers.{i}.fc2.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.linear2.bias""", F"""decoder.layers.{i}.fc2.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.weight""", F"""decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm1.bias""", F"""decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.weight""", F"""decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm2.bias""", F"""decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append( (F"""transformer.decoder.layers.{i}.norm3.weight""", F"""decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((F"""transformer.decoder.layers.{i}.norm3.bias""", F"""decoder.layers.{i}.final_layer_norm.bias""") ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ("input_proj.weight", "input_projection.weight"), ("input_proj.bias", "input_projection.bias"), ("query_embed.weight", "query_position_embeddings.weight"), ("transformer.decoder.norm.weight", "decoder.layernorm.weight"), ("transformer.decoder.norm.bias", "decoder.layernorm.bias"), ("class_embed.weight", "class_labels_classifier.weight"), ("class_embed.bias", "class_labels_classifier.bias"), ("bbox_embed.layers.0.weight", "bbox_predictor.layers.0.weight"), ("bbox_embed.layers.0.bias", "bbox_predictor.layers.0.bias"), ("bbox_embed.layers.1.weight", "bbox_predictor.layers.1.weight"), ("bbox_embed.layers.1.bias", "bbox_predictor.layers.1.bias"), ("bbox_embed.layers.2.weight", "bbox_predictor.layers.2.weight"), ("bbox_embed.layers.2.bias", "bbox_predictor.layers.2.bias"), ] ) return rename_keys def __lowerCAmelCase ( __snake_case , __snake_case , __snake_case ): __lowerCAmelCase = state_dict.pop(__snake_case ) __lowerCAmelCase = val def __lowerCAmelCase ( __snake_case , __snake_case=False ): __lowerCAmelCase = "" if is_panoptic: __lowerCAmelCase = "detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:256, :] __lowerCAmelCase = in_proj_bias[:256] __lowerCAmelCase = in_proj_weight[256:512, :] __lowerCAmelCase = in_proj_bias[256:512] __lowerCAmelCase = in_proj_weight[-256:, :] __lowerCAmelCase = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6 ): # read in weights + bias of input projection layer of self-attention __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict __lowerCAmelCase = in_proj_weight[:256, :] __lowerCAmelCase = in_proj_bias[:256] __lowerCAmelCase = in_proj_weight[256:512, :] __lowerCAmelCase = in_proj_bias[256:512] __lowerCAmelCase = in_proj_weight[-256:, :] __lowerCAmelCase = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention __lowerCAmelCase = state_dict.pop( F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight""" ) __lowerCAmelCase = state_dict.pop(F"""{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) of cross-attention to the state dict __lowerCAmelCase = in_proj_weight_cross_attn[:256, :] __lowerCAmelCase = in_proj_bias_cross_attn[:256] __lowerCAmelCase = in_proj_weight_cross_attn[256:512, :] __lowerCAmelCase = in_proj_bias_cross_attn[256:512] __lowerCAmelCase = in_proj_weight_cross_attn[-256:, :] __lowerCAmelCase = in_proj_bias_cross_attn[-256:] def __lowerCAmelCase ( ): __lowerCAmelCase = "http://images.cocodataset.org/val2017/000000039769.jpg" __lowerCAmelCase = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im @torch.no_grad() def __lowerCAmelCase ( __snake_case , __snake_case=None , __snake_case=False ): __lowerCAmelCase , __lowerCAmelCase = get_detr_config(__snake_case ) # load original model from torch hub __lowerCAmelCase = { "detr-resnet-50": "detr_resnet50", "detr-resnet-101": "detr_resnet101", } logger.info(F"""Converting model {model_name}...""" ) __lowerCAmelCase = torch.hub.load("facebookresearch/detr" , model_name_to_original_name[model_name] , pretrained=__snake_case ).eval() __lowerCAmelCase = detr.state_dict() # rename keys for src, dest in create_rename_keys(__snake_case ): if is_panoptic: __lowerCAmelCase = "detr." + src rename_key(__snake_case , __snake_case , __snake_case ) # query, key and value matrices need special treatment read_in_q_k_v(__snake_case , is_panoptic=__snake_case ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them __lowerCAmelCase = "detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): __lowerCAmelCase = state_dict.pop(__snake_case ) __lowerCAmelCase = val elif "class_labels_classifier" in key or "bbox_predictor" in key: __lowerCAmelCase = state_dict.pop(__snake_case ) __lowerCAmelCase = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: __lowerCAmelCase = state_dict.pop(__snake_case ) __lowerCAmelCase = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): __lowerCAmelCase = state_dict.pop(__snake_case ) __lowerCAmelCase = val # finally, create HuggingFace model and load state dict __lowerCAmelCase = DetrForSegmentation(__snake_case ) if is_panoptic else DetrForObjectDetection(__snake_case ) model.load_state_dict(__snake_case ) model.eval() # verify our conversion on an image __lowerCAmelCase = "coco_panoptic" if is_panoptic else "coco_detection" __lowerCAmelCase = DetrImageProcessor(format=__snake_case ) __lowerCAmelCase = processor(images=prepare_img() , return_tensors="pt" ) __lowerCAmelCase = encoding["pixel_values"] __lowerCAmelCase = detr(__snake_case ) __lowerCAmelCase = model(__snake_case ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1E-3 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1E-3 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1E-4 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) model.save_pretrained(__snake_case ) processor.save_pretrained(__snake_case ) if push_to_hub: # Upload model and image processor to the hub logger.info("Uploading PyTorch model and image processor to the hub..." ) model.push_to_hub(F"""nielsr/{model_name}""" ) processor.push_to_hub(F"""nielsr/{model_name}""" ) if __name__ == "__main__": lowerCamelCase : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') lowerCamelCase : int = parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
290
1
import torch from diffusers import EulerDiscreteScheduler from diffusers.utils import torch_device from .test_schedulers import SchedulerCommonTest class UpperCamelCase ( UpperCamelCase__ ): '''simple docstring''' lowercase : Dict =(EulerDiscreteScheduler,) lowercase : List[str] =10 def UpperCamelCase ( self , **UpperCamelCase_ ): lowercase_ :Any = { "num_train_timesteps": 1100, "beta_start": 0.0001, "beta_end": 0.02, "beta_schedule": "linear", } config.update(**lowerCAmelCase__ ) return config def UpperCamelCase ( self ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase__ ) def UpperCamelCase ( self ): for beta_start, beta_end in zip([0.0_0001, 0.0001, 0.001] , [0.0002, 0.002, 0.02] ): self.check_over_configs(beta_start=lowerCAmelCase__ , beta_end=lowerCAmelCase__ ) def UpperCamelCase ( self ): for schedule in ["linear", "scaled_linear"]: self.check_over_configs(beta_schedule=lowerCAmelCase__ ) def UpperCamelCase ( self ): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase__ ) def UpperCamelCase ( self ): lowercase_ :List[Any] = self.scheduler_classes[0] lowercase_ :List[Any] = self.get_scheduler_config() lowercase_ :Optional[Any] = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ :Tuple = torch.manual_seed(0 ) lowercase_ :List[Any] = self.dummy_model() lowercase_ :Any = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ :Optional[int] = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :Union[str, Any] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :Tuple = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) lowercase_ :int = output.prev_sample lowercase_ :Union[str, Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowercase_ :int = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Union[str, Any] = self.scheduler_classes[0] lowercase_ :Dict = self.get_scheduler_config(prediction_type='''v_prediction''' ) lowercase_ :str = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps ) lowercase_ :Tuple = torch.manual_seed(0 ) lowercase_ :Dict = self.dummy_model() lowercase_ :List[str] = self.dummy_sample_deter * scheduler.init_noise_sigma lowercase_ :Tuple = sample.to(lowerCAmelCase__ ) for i, t in enumerate(scheduler.timesteps ): lowercase_ :List[str] = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :Any = model(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :List[str] = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) lowercase_ :Optional[Any] = output.prev_sample lowercase_ :Optional[Any] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowercase_ :List[Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 0.0002 ) < 1E-2 assert abs(result_mean.item() - 2.2676E-06 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :List[Any] = self.scheduler_classes[0] lowercase_ :Dict = self.get_scheduler_config() lowercase_ :str = scheduler_class(**lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) lowercase_ :Tuple = torch.manual_seed(0 ) lowercase_ :Any = self.dummy_model() lowercase_ :Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase_ :Optional[Any] = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: lowercase_ :Dict = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :str = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) lowercase_ :Union[str, Any] = output.prev_sample lowercase_ :List[str] = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowercase_ :Union[str, Any] = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 10.0807 ) < 1E-2 assert abs(result_mean.item() - 0.0131 ) < 1E-3 def UpperCamelCase ( self ): lowercase_ :Any = self.scheduler_classes[0] lowercase_ :List[Any] = self.get_scheduler_config() lowercase_ :List[Any] = scheduler_class(**lowerCAmelCase__ , use_karras_sigmas=lowerCAmelCase__ ) scheduler.set_timesteps(self.num_inference_steps , device=lowerCAmelCase__ ) lowercase_ :int = torch.manual_seed(0 ) lowercase_ :Dict = self.dummy_model() lowercase_ :int = self.dummy_sample_deter * scheduler.init_noise_sigma.cpu() lowercase_ :str = sample.to(lowerCAmelCase__ ) for t in scheduler.timesteps: lowercase_ :Tuple = scheduler.scale_model_input(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :Tuple = model(lowerCAmelCase__ , lowerCAmelCase__ ) lowercase_ :Dict = scheduler.step(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , generator=lowerCAmelCase__ ) lowercase_ :Tuple = output.prev_sample lowercase_ :int = torch.sum(torch.abs(lowerCAmelCase__ ) ) lowercase_ :Any = torch.mean(torch.abs(lowerCAmelCase__ ) ) assert abs(result_sum.item() - 124.52_2994_9951_1719 ) < 1E-2 assert abs(result_mean.item() - 0.1_6213_9326_3339_9963 ) < 1E-3
257
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaInpaintPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __lowerCAmelCase ( UpperCamelCase__ , unittest.TestCase): _lowercase : Optional[Any] = KandinskyVaaInpaintPipeline _lowercase : Union[str, Any] = ["""image_embeds""", """negative_image_embeds""", """image""", """mask_image"""] _lowercase : Optional[Any] = [ """image_embeds""", """negative_image_embeds""", """image""", """mask_image""", ] _lowercase : Tuple = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowercase : List[str] = False @property def _lowercase ( self ) -> int: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> int: '''simple docstring''' return 3_2 @property def _lowercase ( self ) -> Optional[int]: '''simple docstring''' return self.time_input_dim @property def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' return self.time_input_dim * 4 @property def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return 1_0_0 @property def _lowercase ( self ) -> List[str]: '''simple docstring''' torch.manual_seed(0 ) a__ : Any ={ "in_channels": 9, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } a__ : Dict =UNetaDConditionModel(**lowerCAmelCase__ ) return model @property def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' return { "block_out_channels": [3_2, 6_4], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 1_2, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self ) -> Union[str, Any]: '''simple docstring''' torch.manual_seed(0 ) a__ : Tuple =VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ) -> List[Any]: '''simple docstring''' a__ : Optional[int] =self.dummy_unet a__ : List[str] =self.dummy_movq a__ : Optional[Any] =DDIMScheduler( num_train_timesteps=1_0_0_0 , beta_schedule="linear" , beta_start=0.0_00_85 , beta_end=0.0_12 , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , steps_offset=1 , prediction_type="epsilon" , thresholding=lowerCAmelCase__ , ) a__ : List[str] ={ "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowercase ( self , lowerCAmelCase__ , lowerCAmelCase__=0 ) -> Union[str, Any]: '''simple docstring''' a__ : Any =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) a__ : Tuple =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowerCAmelCase__ ) # create init_image a__ : int =floats_tensor((1, 3, 6_4, 6_4) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) a__ : str =image.cpu().permute(0 , 2 , 3 , 1 )[0] a__ : Tuple =Image.fromarray(np.uinta(lowerCAmelCase__ ) ).convert("RGB" ).resize((2_5_6, 2_5_6) ) # create mask a__ : Dict =np.ones((6_4, 6_4) , dtype=np.floataa ) a__ : List[str] =0 if str(lowerCAmelCase__ ).startswith("mps" ): a__ : str =torch.manual_seed(lowerCAmelCase__ ) else: a__ : List[Any] =torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ : Tuple ={ "image": init_image, "mask_image": mask, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 6_4, "width": 6_4, "num_inference_steps": 2, "guidance_scale": 4.0, "output_type": "np", } return inputs def _lowercase ( self ) -> Optional[Any]: '''simple docstring''' a__ : List[Any] ="cpu" a__ : str =self.get_dummy_components() a__ : Tuple =self.pipeline_class(**lowerCAmelCase__ ) a__ : str =pipe.to(lowerCAmelCase__ ) pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : Optional[Any] =pipe(**self.get_dummy_inputs(lowerCAmelCase__ ) ) a__ : str =output.images a__ : str =pipe( **self.get_dummy_inputs(lowerCAmelCase__ ) , return_dict=lowerCAmelCase__ , )[0] a__ : Dict =image[0, -3:, -3:, -1] a__ : Any =image_from_tuple[0, -3:, -3:, -1] print(F'''image.shape {image.shape}''' ) assert image.shape == (1, 6_4, 6_4, 3) a__ : int =np.array( [0.50_77_59_03, 0.49_52_71_95, 0.48_82_45_43, 0.50_19_22_37, 0.48_64_49_06, 0.49_37_38_14, 0.4_78_05_98, 0.47_23_48_27, 0.48_32_78_48] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' def _lowercase ( self ) -> Optional[int]: '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase): def _lowercase ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ) -> int: '''simple docstring''' a__ : Any =load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinskyv22/kandinskyv22_inpaint_cat_with_hat_fp16.npy" ) a__ : List[str] =load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) a__ : List[str] =np.ones((7_6_8, 7_6_8) , dtype=np.floataa ) a__ : Any =0 a__ : Optional[int] ="a hat" a__ : List[Any] =KandinskyVaaPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-prior" , torch_dtype=torch.floataa ) pipe_prior.to(lowerCAmelCase__ ) a__ : int =KandinskyVaaInpaintPipeline.from_pretrained( "kandinsky-community/kandinsky-2-2-decoder-inpaint" , torch_dtype=torch.floataa ) a__ : List[str] =pipeline.to(lowerCAmelCase__ ) pipeline.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ : List[str] =torch.Generator(device="cpu" ).manual_seed(0 ) a__ , a__ : List[Any] =pipe_prior( lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() a__ : List[Any] =pipeline( image=lowerCAmelCase__ , mask_image=lowerCAmelCase__ , image_embeds=lowerCAmelCase__ , negative_image_embeds=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=1_0_0 , height=7_6_8 , width=7_6_8 , output_type="np" , ) a__ : int =output.images[0] assert image.shape == (7_6_8, 7_6_8, 3) assert_mean_pixel_difference(lowerCAmelCase__ , lowerCAmelCase__ )
563
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import AutoTokenizer, PegasusConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFPegasusForConditionalGeneration, TFPegasusModel @require_tf class _lowercase : _lowerCamelCase = PegasusConfig _lowerCamelCase = {} _lowerCamelCase = '''gelu''' def __init__( self , UpperCamelCase_ , UpperCamelCase_=13 , UpperCamelCase_=7 , UpperCamelCase_=True , UpperCamelCase_=False , UpperCamelCase_=99 , UpperCamelCase_=32 , UpperCamelCase_=2 , UpperCamelCase_=4 , UpperCamelCase_=37 , UpperCamelCase_=0.1 , UpperCamelCase_=0.1 , UpperCamelCase_=40 , UpperCamelCase_=2 , UpperCamelCase_=1 , UpperCamelCase_=0 , ): __magic_name__ = parent __magic_name__ = batch_size __magic_name__ = seq_length __magic_name__ = is_training __magic_name__ = use_labels __magic_name__ = vocab_size __magic_name__ = hidden_size __magic_name__ = num_hidden_layers __magic_name__ = num_attention_heads __magic_name__ = intermediate_size __magic_name__ = hidden_dropout_prob __magic_name__ = attention_probs_dropout_prob __magic_name__ = max_position_embeddings __magic_name__ = eos_token_id __magic_name__ = pad_token_id __magic_name__ = bos_token_id def lowerCAmelCase__ ( self ): __magic_name__ = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __magic_name__ = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __magic_name__ = tf.concat([input_ids, eos_tensor] , axis=1 ) __magic_name__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) __magic_name__ = prepare_pegasus_inputs_dict(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) return config, inputs_dict def lowerCAmelCase__ ( self , UpperCamelCase_ , UpperCamelCase_ ): __magic_name__ = TFPegasusModel(config=UpperCamelCase_ ).get_decoder() __magic_name__ = inputs_dict["input_ids"] __magic_name__ = input_ids[:1, :] __magic_name__ = inputs_dict["attention_mask"][:1, :] __magic_name__ = inputs_dict["head_mask"] __magic_name__ = 1 # first forward pass __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , head_mask=UpperCamelCase_ , use_cache=UpperCamelCase_ ) __magic_name__ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __magic_name__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __magic_name__ = tf.concat([input_ids, next_tokens] , axis=-1 ) __magic_name__ = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ )[0] __magic_name__ = model(UpperCamelCase_ , attention_mask=UpperCamelCase_ , past_key_values=UpperCamelCase_ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __magic_name__ = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __magic_name__ = output_from_no_past[:, -3:, random_slice_idx] __magic_name__ = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase_ , UpperCamelCase_ , rtol=1E-3 ) def lowercase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , __UpperCamelCase=None , ) -> Tuple: if attention_mask is None: __magic_name__ = tf.cast(tf.math.not_equal(__snake_case , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __magic_name__ = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __magic_name__ = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __magic_name__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __magic_name__ = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowercase ( _A , _A , unittest.TestCase ): _lowerCamelCase = (TFPegasusForConditionalGeneration, TFPegasusModel) if is_tf_available() else () _lowerCamelCase = (TFPegasusForConditionalGeneration,) if is_tf_available() else () _lowerCamelCase = ( { '''conversational''': TFPegasusForConditionalGeneration, '''feature-extraction''': TFPegasusModel, '''summarization''': TFPegasusForConditionalGeneration, '''text2text-generation''': TFPegasusForConditionalGeneration, '''translation''': TFPegasusForConditionalGeneration, } if is_tf_available() else {} ) _lowerCamelCase = True _lowerCamelCase = False _lowerCamelCase = False def lowerCAmelCase__ ( self ): __magic_name__ = TFPegasusModelTester(self ) __magic_name__ = ConfigTester(self , config_class=UpperCamelCase_ ) def lowerCAmelCase__ ( self ): self.config_tester.run_common_tests() def lowerCAmelCase__ ( self ): __magic_name__ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase_ ) @require_sentencepiece @require_tokenizers @require_tf class _lowercase ( unittest.TestCase ): _lowerCamelCase = [ ''' PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.''', ''' The London trio are up for best UK act and best album, as well as getting two nominations in the best song category."We got told like this morning \'Oh I think you\'re nominated\'", said Dappy."And I was like \'Oh yeah, which one?\' And now we\'ve got nominated for four awards. I mean, wow!"Bandmate Fazer added: "We thought it\'s best of us to come down and mingle with everyone and say hello to the cameras. And now we find we\'ve got four nominations."The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn\'t be too disappointed if they didn\'t win this time around."At the end of the day we\'re grateful to be where we are in our careers."If it don\'t happen then it don\'t happen - live to fight another day and keep on making albums and hits for the fans."Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers\' All These Things That I\'ve Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year\'s Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border."We just done Edinburgh the other day," said Dappy."We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!" ''', ] _lowerCamelCase = [ '''California\'s largest electricity provider has cut power to hundreds of thousands of customers in an effort to''' ''' reduce the risk of wildfires.''', '''N-Dubz have revealed they\'re "grateful" to have been nominated for four Mobo Awards.''', ] # differs slightly from pytorch, likely due to numerical differences in linear layers _lowerCamelCase = '''google/pegasus-xsum''' @cached_property def lowerCAmelCase__ ( self ): return AutoTokenizer.from_pretrained(self.model_name ) @cached_property def lowerCAmelCase__ ( self ): __magic_name__ = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model def lowerCAmelCase__ ( self , **UpperCamelCase_ ): __magic_name__ = self.translate_src_text(**UpperCamelCase_ ) assert self.expected_text == generated_words def lowerCAmelCase__ ( self , **UpperCamelCase_ ): __magic_name__ = self.tokenizer(self.src_text , **UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='''tf''' ) __magic_name__ = self.model.generate( model_inputs.input_ids , attention_mask=model_inputs.attention_mask , num_beams=2 , use_cache=UpperCamelCase_ , ) __magic_name__ = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=UpperCamelCase_ ) return generated_words @slow def lowerCAmelCase__ ( self ): self._assert_generated_batch_equal_expected()
713
"""simple docstring""" import os import unittest from transformers import FunnelTokenizer, FunnelTokenizerFast from transformers.models.funnel.tokenization_funnel import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __UpperCAmelCase , unittest.TestCase ): _lowerCamelCase = FunnelTokenizer _lowerCamelCase = FunnelTokenizerFast _lowerCamelCase = True _lowerCamelCase = True def lowerCAmelCase__ ( self ): super().setUp() __magic_name__ = [ '''<unk>''', '''<cls>''', '''<sep>''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] __magic_name__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return FunnelTokenizer.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , **UpperCamelCase_ ): return FunnelTokenizerFast.from_pretrained(self.tmpdirname , **UpperCamelCase_ ) def lowerCAmelCase__ ( self , UpperCamelCase_ ): __magic_name__ = '''UNwant\u00E9d,running''' __magic_name__ = '''unwanted, running''' return input_text, output_text def lowerCAmelCase__ ( self ): __magic_name__ = self.tokenizer_class(self.vocab_file ) __magic_name__ = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(UpperCamelCase_ , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase_ ) , [7, 4, 5, 10, 8, 9] ) def lowerCAmelCase__ ( self ): __magic_name__ = self.get_tokenizers(do_lower_case=UpperCamelCase_ ) for tokenizer in tokenizers: __magic_name__ = tokenizer('''UNwant\u00E9d,running''' ) __magic_name__ = len(inputs['''input_ids'''] ) - 1 self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len ) __magic_name__ = tokenizer('''UNwant\u00E9d,running''' , '''UNwant\u00E9d,running''' ) self.assertListEqual(inputs['''token_type_ids'''] , [2] + [0] * sentence_len + [1] * sentence_len )
190
0
from __future__ import annotations def A ( lowercase__ : int ) -> list[int]: UpperCamelCase__ :Union[str, Any] = [True] * limit UpperCamelCase__ :int = False UpperCamelCase__ :Optional[Any] = False UpperCamelCase__ :str = True for i in range(3 , int(limit**0.5 + 1 ) , 2 ): UpperCamelCase__ :List[Any] = i * 2 while index < limit: UpperCamelCase__ :Tuple = False UpperCamelCase__ :Tuple = index + i UpperCamelCase__ :str = [2] for i in range(3 , lowercase__ , 2 ): if is_prime[i]: primes.append(lowercase__ ) return primes def A ( lowercase__ : int = 100_0000 ) -> int: UpperCamelCase__ :Any = prime_sieve(lowercase__ ) UpperCamelCase__ :Optional[int] = 0 UpperCamelCase__ :Optional[Any] = 0 for i in range(len(lowercase__ ) ): for j in range(i + length , len(lowercase__ ) ): UpperCamelCase__ :Any = sum(primes[i:j] ) if sol >= ceiling: break if sol in primes: UpperCamelCase__ :Union[str, Any] = j - i UpperCamelCase__ :Any = sol return largest if __name__ == "__main__": print(f'''{solution() = }''')
45
import random def A ( lowercase__ : Dict , lowercase__ : str , lowercase__ : Optional[Any] ) -> int: UpperCamelCase__ :List[Any] = a[left_index] UpperCamelCase__ :Dict = left_index + 1 for j in range(left_index + 1 , lowercase__ ): if a[j] < pivot: UpperCamelCase__ , UpperCamelCase__ :Optional[int] = a[i], a[j] i += 1 UpperCamelCase__ , UpperCamelCase__ :Tuple = a[i - 1], a[left_index] return i - 1 def A ( lowercase__ : Tuple , lowercase__ : Optional[int] , lowercase__ : Any ) -> Optional[int]: if left < right: UpperCamelCase__ :List[Any] = random.randint(lowercase__ , right - 1 ) UpperCamelCase__ , UpperCamelCase__ :Union[str, Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound UpperCamelCase__ :int = partition(lowercase__ , lowercase__ , lowercase__ ) quick_sort_random( lowercase__ , lowercase__ , lowercase__ ) # recursive quicksort to the left of the pivot point quick_sort_random( lowercase__ , pivot_index + 1 , lowercase__ ) # recursive quicksort to the right of the pivot point def A ( ) -> List[Any]: UpperCamelCase__ :str = input("""Enter numbers separated by a comma:\n""" ).strip() UpperCamelCase__ :int = [int(lowercase__ ) for item in user_input.split(""",""" )] quick_sort_random(lowercase__ , 0 , len(lowercase__ ) ) print(lowercase__ ) if __name__ == "__main__": main()
45
1
"""simple docstring""" import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class snake_case_ : """simple docstring""" def __init__( self , __a , __a=13 , __a=7 , __a=True , __a=True , __a=True , __a=True , __a=99 , __a=32 , __a=5 , __a=4 , __a=4 , __a="gelu" , __a=0.0 , __a=0.1 , __a=True , __a=512 , __a=16 , __a=2 , __a=0.02 , __a=3 , __a=4 , __a=None , ): """simple docstring""" A__ = parent A__ = batch_size A__ = seq_length A__ = is_training A__ = use_input_mask A__ = use_token_type_ids A__ = use_labels A__ = vocab_size A__ = hidden_size A__ = num_hidden_layers A__ = num_attention_heads A__ = intermediate_multiple_size A__ = hidden_act A__ = hidden_dropout A__ = attention_dropout A__ = weight_tying A__ = max_position_embeddings A__ = type_vocab_size A__ = type_sequence_label_size A__ = initializer_range A__ = num_labels A__ = num_choices A__ = scope def _UpperCAmelCase ( self ): """simple docstring""" A__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A__ = None if self.use_input_mask: A__ = random_attention_mask([self.batch_size, self.seq_length] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A__ = self.get_config() return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__a , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self ): """simple docstring""" A__ , A__ , A__ , A__ = self.prepare_config_and_inputs() A__ = True return config, input_ids, input_mask, token_labels def _UpperCAmelCase ( self , __a , __a , __a ): """simple docstring""" A__ = GPTNeoXJapaneseModel(config=__a ) model.to(__a ) model.eval() A__ = model(__a , attention_mask=__a ) A__ = model(__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __a , __a , __a ): """simple docstring""" A__ = True A__ = GPTNeoXJapaneseModel(__a ) model.to(__a ) model.eval() A__ = model(__a , attention_mask=__a ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCAmelCase ( self , __a , __a , __a , __a ): """simple docstring""" A__ = GPTNeoXJapaneseForCausalLM(config=__a ) model.to(__a ) model.eval() A__ = model(__a , attention_mask=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCAmelCase ( self , __a , __a , __a ): """simple docstring""" A__ = True A__ = GPTNeoXJapaneseForCausalLM(config=__a ) model.to(__a ) model.eval() # first forward pass A__ = model(__a , attention_mask=__a , use_cache=__a ) A__ = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids A__ = ids_tensor((self.batch_size, 3) , config.vocab_size ) A__ = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and A__ = torch.cat([input_ids, next_tokens] , dim=-1 ) A__ = torch.cat([input_mask, next_mask] , dim=-1 ) A__ = model(__a , attention_mask=__a , output_hidden_states=__a ) A__ = output_from_no_past['hidden_states'][0] A__ = model( __a , attention_mask=__a , past_key_values=__a , output_hidden_states=__a , )['hidden_states'][0] # select random slice A__ = ids_tensor((1,) , output_from_past.shape[-1] ).item() A__ = output_from_no_past[:, -3:, random_slice_idx].detach() A__ = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__a , __a , atol=1E-3 ) ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.prepare_config_and_inputs() A__ , A__ , A__ , A__ = config_and_inputs A__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class snake_case_ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: Optional[Any] = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () SCREAMING_SNAKE_CASE_: Optional[int] = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () SCREAMING_SNAKE_CASE_: Optional[Any] = ( {"""feature-extraction""": GPTNeoXJapaneseModel, """text-generation""": GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_: int = False SCREAMING_SNAKE_CASE_: Any = False SCREAMING_SNAKE_CASE_: Dict = False SCREAMING_SNAKE_CASE_: int = False def _UpperCAmelCase ( self ): """simple docstring""" A__ = GPTNeoXJapaneseModelTester(self ) A__ = ConfigTester(self , config_class=__a , hidden_size=37 ) def _UpperCAmelCase ( self ): """simple docstring""" self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): """simple docstring""" A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__a , __a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs_for_decoder() A__ = None self.model_tester.create_and_check_model_as_decoder(__a , __a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ , A__ , A__ , A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__a , __a , __a ) def _UpperCAmelCase ( self ): """simple docstring""" A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__a ) @slow def _UpperCAmelCase ( self ): """simple docstring""" A__ = 'abeja/gpt-neox-japanese-2.7b' A__ = ['データサイエンティストとは、', '100年後に必要とされる会社は、', 'フルリモートの環境で働くために必要なことは、', '国境の長いトンネルを抜けると', '美味しい日本食といえば、'] A__ = [ 'データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。', '100年後に必要とされる会社は、「人」が中心の会社です。', 'フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。', '国境の長いトンネルを抜けると、そこは雪国だった。', '美味しい日本食といえば、やっぱりお寿司ですよね。', ] A__ = GPTNeoXJapaneseTokenizer.from_pretrained(__a ) A__ = GPTNeoXJapaneseForCausalLM.from_pretrained(__a ) A__ = [] for prompt in prompts: A__ = tokenizer(__a , return_tensors='pt' ).input_ids A__ = model.generate(__a , max_length=50 ) A__ = tokenizer.batch_decode(__a , skip_special_tokens=__a ) predicted_outputs += generated_string self.assertListEqual(__a , __a )
554
"""simple docstring""" from ..utils import DummyObject, requires_backends class snake_case_ ( metaclass=_lowerCamelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_: List[str] = ["""note_seq"""] def __init__( self , *__a , **__a ): """simple docstring""" requires_backends(self , ['note_seq'] ) @classmethod def _UpperCAmelCase ( cls , *__a , **__a ): """simple docstring""" requires_backends(cls , ['note_seq'] ) @classmethod def _UpperCAmelCase ( cls , *__a , **__a ): """simple docstring""" requires_backends(cls , ['note_seq'] )
554
1
import flax.linen as nn import jax import jax.numpy as jnp class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' UpperCamelCase_ : int UpperCamelCase_ : jnp.dtype = jnp.floataa def _A ( self : int ): SCREAMING_SNAKE_CASE : Optional[Any] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Optional[int] , UpperCAmelCase_ : List[str] ): SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = hidden_states.shape SCREAMING_SNAKE_CASE : int = jax.image.resize( UpperCAmelCase_ , shape=(batch, height * 2, width * 2, channels) , method="nearest" , ) SCREAMING_SNAKE_CASE : Optional[int] = self.conv(UpperCAmelCase_ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' UpperCamelCase_ : int UpperCamelCase_ : jnp.dtype = jnp.floataa def _A ( self : Union[str, Any] ): SCREAMING_SNAKE_CASE : List[str] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self : Dict , UpperCAmelCase_ : Tuple ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) SCREAMING_SNAKE_CASE : int = self.conv(UpperCAmelCase_ ) return hidden_states class SCREAMING_SNAKE_CASE ( nn.Module ): '''simple docstring''' UpperCamelCase_ : int UpperCamelCase_ : int = None UpperCamelCase_ : float = 0.0 UpperCamelCase_ : bool = None UpperCamelCase_ : jnp.dtype = jnp.floataa def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = self.in_channels if self.out_channels is None else self.out_channels SCREAMING_SNAKE_CASE : Tuple = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE : Optional[int] = nn.Conv( UpperCAmelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE : Dict = nn.Dense(UpperCAmelCase_ , dtype=self.dtype ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.GroupNorm(num_groups=32 , epsilon=1E-5 ) SCREAMING_SNAKE_CASE : Union[str, Any] = nn.Dropout(self.dropout_prob ) SCREAMING_SNAKE_CASE : Tuple = nn.Conv( UpperCAmelCase_ , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE : Any = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut SCREAMING_SNAKE_CASE : Optional[int] = None if use_nin_shortcut: SCREAMING_SNAKE_CASE : str = nn.Conv( UpperCAmelCase_ , kernel_size=(1, 1) , strides=(1, 1) , padding="VALID" , dtype=self.dtype , ) def __call__( self : Union[str, Any] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : str=True ): SCREAMING_SNAKE_CASE : Any = hidden_states SCREAMING_SNAKE_CASE : Tuple = self.norma(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Optional[int] = nn.swish(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.conva(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : List[Any] = self.time_emb_proj(nn.swish(UpperCAmelCase_ ) ) SCREAMING_SNAKE_CASE : Tuple = jnp.expand_dims(jnp.expand_dims(UpperCAmelCase_ , 1 ) , 1 ) SCREAMING_SNAKE_CASE : List[str] = hidden_states + temb SCREAMING_SNAKE_CASE : Dict = self.norma(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : int = nn.swish(UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Tuple = self.dropout(UpperCAmelCase_ , UpperCAmelCase_ ) SCREAMING_SNAKE_CASE : Dict = self.conva(UpperCAmelCase_ ) if self.conv_shortcut is not None: SCREAMING_SNAKE_CASE : Tuple = self.conv_shortcut(UpperCAmelCase_ ) return hidden_states + residual
62
'''simple docstring''' # Lint as: python3 import dataclasses import re from dataclasses import dataclass from functools import total_ordering from typing import Optional, Union snake_case_ = re.compile(R'^(?P<major>\d+)' R'\.(?P<minor>\d+)' R'\.(?P<patch>\d+)$') @total_ordering @dataclass class SCREAMING_SNAKE_CASE__ : _A = 42 _A = None _A = None _A = None _A = None def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = _str_to_version_tuple(self.version_str ) def __repr__( self ): """simple docstring""" return F"{self.tuple[0]}.{self.tuple[1]}.{self.tuple[2]}" @property def __lowerCamelCase ( self ): """simple docstring""" return self.major, self.minor, self.patch def __lowerCamelCase ( self , lowercase__ ): """simple docstring""" if isinstance(lowercase__ , lowercase__ ): return Version(lowercase__ ) elif isinstance(lowercase__ , lowercase__ ): return other raise TypeError(F"{other} (type {type(lowercase__ )}) cannot be compared to version." ) def __eq__( self , lowercase__ ): """simple docstring""" try: SCREAMING_SNAKE_CASE_ : List[Any] = self._validate_operand(lowercase__ ) except (TypeError, ValueError): return False else: return self.tuple == other.tuple def __lt__( self , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = self._validate_operand(lowercase__ ) return self.tuple < other.tuple def __hash__( self ): """simple docstring""" return hash(_version_tuple_to_str(self.tuple ) ) @classmethod def __lowerCamelCase ( cls , lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = {f.name for f in dataclasses.fields(cls )} return cls(**{k: v for k, v in dic.items() if k in field_names} ) def __lowerCamelCase ( self ): """simple docstring""" return self.version_str def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = _VERSION_REG.match(SCREAMING_SNAKE_CASE_ ) if not res: raise ValueError(F"Invalid version '{version_str}'. Format should be x.y.z with {{x,y,z}} being digits." ) return tuple(int(SCREAMING_SNAKE_CASE_ ) for v in [res.group("major" ), res.group("minor" ), res.group("patch" )] ) def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Optional[Any]: """simple docstring""" return ".".join(str(SCREAMING_SNAKE_CASE_ ) for v in version_tuple )
421
0
"""simple docstring""" import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("""9.1.0"""): a : Optional[Any] = { """linear""": PIL.Image.Resampling.BILINEAR, """bilinear""": PIL.Image.Resampling.BILINEAR, """bicubic""": PIL.Image.Resampling.BICUBIC, """lanczos""": PIL.Image.Resampling.LANCZOS, """nearest""": PIL.Image.Resampling.NEAREST, } else: a : Dict = { """linear""": PIL.Image.LINEAR, """bilinear""": PIL.Image.BILINEAR, """bicubic""": PIL.Image.BICUBIC, """lanczos""": PIL.Image.LANCZOS, """nearest""": PIL.Image.NEAREST, } def lowercase__(A ) ->Union[str, Any]: """simple docstring""" lowercase__ : int= (images / 2 + 0.5).clamp(0 , 1 ) lowercase__ : int= images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() lowercase__ : List[Any]= numpy_to_pil(A ) return images def lowercase__(A ) ->List[str]: """simple docstring""" if images.ndim == 3: lowercase__ : List[Any]= images[None, ...] lowercase__ : str= (images * 255).round().astype("uint8" ) if images.shape[-1] == 1: # special case for grayscale (single channel) images lowercase__ : str= [Image.fromarray(image.squeeze() , mode="L" ) for image in images] else: lowercase__ : List[str]= [Image.fromarray(A ) for image in images] return pil_images
85
"""simple docstring""" from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging a : int = logging.get_logger(__name__) a : str = { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/config.json""", """google/bigbird-roberta-large""": """https://huggingface.co/google/bigbird-roberta-large/resolve/main/config.json""", """google/bigbird-base-trivia-itc""": """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/config.json""", # See all BigBird models at https://huggingface.co/models?filter=big_bird } class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" __lowerCamelCase = "big_bird" def __init__( self , snake_case__=50358 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu_new" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=4096 , snake_case__=2 , snake_case__=0.02 , snake_case__=1e-12 , snake_case__=True , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=66 , snake_case__="block_sparse" , snake_case__=True , snake_case__=False , snake_case__=64 , snake_case__=3 , snake_case__=None , **snake_case__ , ): '''simple docstring''' super().__init__( pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ , sep_token_id=snake_case__ , **snake_case__ , ) lowercase__ : Dict= vocab_size lowercase__ : Optional[int]= max_position_embeddings lowercase__ : List[Any]= hidden_size lowercase__ : List[str]= num_hidden_layers lowercase__ : List[str]= num_attention_heads lowercase__ : Optional[int]= intermediate_size lowercase__ : Optional[int]= hidden_act lowercase__ : Tuple= hidden_dropout_prob lowercase__ : int= attention_probs_dropout_prob lowercase__ : int= initializer_range lowercase__ : List[Any]= type_vocab_size lowercase__ : Union[str, Any]= layer_norm_eps lowercase__ : Optional[Any]= use_cache lowercase__ : Union[str, Any]= rescale_embeddings lowercase__ : Union[str, Any]= attention_type lowercase__ : Any= use_bias lowercase__ : List[Any]= block_size lowercase__ : Optional[Any]= num_random_blocks lowercase__ : Optional[int]= classifier_dropout class __UpperCAmelCase( SCREAMING_SNAKE_CASE__ ): """simple docstring""" @property def UpperCAmelCase_ ( self ): '''simple docstring''' if self.task == "multiple-choice": lowercase__ : List[Any]= {0: "batch", 1: "choice", 2: "sequence"} else: lowercase__ : Tuple= {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
85
1
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class UpperCamelCase ( ctypes.Structure ): """simple docstring""" _lowerCamelCase : int =[("size", ctypes.c_int), ("visible", ctypes.c_byte)] def a_ ( ): if os.name == "nt": A__ = CursorInfo() A__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__a , ctypes.byref(__a ) ) A__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__a , ctypes.byref(__a ) ) elif os.name == "posix": sys.stdout.write('''\033[?25l''' ) sys.stdout.flush() def a_ ( ): if os.name == "nt": A__ = CursorInfo() A__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__a , ctypes.byref(__a ) ) A__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__a , ctypes.byref(__a ) ) elif os.name == "posix": sys.stdout.write('''\033[?25h''' ) sys.stdout.flush() @contextmanager def a_ ( ): try: hide_cursor() yield finally: show_cursor()
571
UpperCamelCase = 256 # Modulus to hash a string UpperCamelCase = 100_0003 def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): A_ : Any = len(SCREAMING_SNAKE_CASE ) A_ : int = len(SCREAMING_SNAKE_CASE ) if p_len > t_len: return False A_ : int = 0 A_ : Dict = 0 A_ : Optional[int] = 1 # Calculating the hash of pattern and substring of text for i in range(SCREAMING_SNAKE_CASE ): A_ : List[Any] = (ord(pattern[i] ) + p_hash * alphabet_size) % modulus A_ : Dict = (ord(text[i] ) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue A_ : Tuple = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1 ): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash A_ : List[str] = ( (text_hash - ord(text[i] ) * modulus_power) * alphabet_size + ord(text[i + p_len] ) ) % modulus return False def _SCREAMING_SNAKE_CASE ( ): A_ : List[Any] = '''abc1abc12''' A_ : str = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' A_ : Optional[Any] = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) and not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 2) A_ : List[str] = '''ABABX''' A_ : Tuple = '''ABABZABABYABABX''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 3) A_ : Optional[int] = '''AAAB''' A_ : Optional[Any] = '''ABAAAAAB''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 4) A_ : Optional[Any] = '''abcdabcy''' A_ : str = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # Test 5) A_ : Tuple = '''Lü''' A_ : Dict = '''Lüsai''' assert rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) A_ : Dict = '''Lue''' assert not rabin_karp(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print('''Success.''' ) if __name__ == "__main__": test_rabin_karp()
590
0
"""simple docstring""" import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values snake_case = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') snake_case = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') snake_case = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: snake_case = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) snake_case = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'pip install -r transformers/examples/{example_dir}/requirements.txt']) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
709
"""simple docstring""" from typing import List, Optional, TypeVar from .arrow_dataset import Dataset, _concatenate_map_style_datasets, _interleave_map_style_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .info import DatasetInfo from .iterable_dataset import IterableDataset, _concatenate_iterable_datasets, _interleave_iterable_datasets from .splits import NamedSplit from .utils import logging from .utils.py_utils import Literal snake_case = logging.get_logger(__name__) snake_case = TypeVar('DatasetType', Dataset, IterableDataset) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = "first_exhausted", ): from .arrow_dataset import Dataset from .iterable_dataset import IterableDataset if not datasets: raise ValueError('Unable to interleave an empty list of datasets.' ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_, (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(SCREAMING_SNAKE_CASE_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE_ ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if stopping_strategy not in ["first_exhausted", "all_exhausted"]: raise ValueError(f'''{stopping_strategy} is not supported. Please enter a valid stopping_strategy.''' ) if dataset_type is Dataset: return _interleave_map_style_datasets( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, info=SCREAMING_SNAKE_CASE_, split=SCREAMING_SNAKE_CASE_, stopping_strategy=SCREAMING_SNAKE_CASE_ ) else: return _interleave_iterable_datasets( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, info=SCREAMING_SNAKE_CASE_, split=SCREAMING_SNAKE_CASE_, stopping_strategy=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = None, SCREAMING_SNAKE_CASE_ = 0, ): if not dsets: raise ValueError('Unable to concatenate an empty list of datasets.' ) for i, dataset in enumerate(SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_, (Dataset, IterableDataset) ): if isinstance(SCREAMING_SNAKE_CASE_, (DatasetDict, IterableDatasetDict) ): if not dataset: raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} ''' 'is an empty dataset dictionary.' ) raise ValueError( f'''Dataset at position {i} has at least one split: {list(SCREAMING_SNAKE_CASE_ )}\n''' f'''Please pick one to interleave with the other datasets, for example: dataset[\'{next(iter(SCREAMING_SNAKE_CASE_ ) )}\']''' ) raise ValueError( f'''Expected a list of Dataset objects or a list of IterableDataset objects, but element at position {i} is a {type(SCREAMING_SNAKE_CASE_ ).__name__}.''' ) if i == 0: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = ( (Dataset, IterableDataset) if isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) else (IterableDataset, Dataset) ) elif not isinstance(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): raise ValueError( f'''Unable to interleave a {dataset_type.__name__} (at position 0) with a {other_type.__name__} (at position {i}). Expected a list of Dataset objects or a list of IterableDataset objects.''' ) if dataset_type is Dataset: return _concatenate_map_style_datasets(SCREAMING_SNAKE_CASE_, info=SCREAMING_SNAKE_CASE_, split=SCREAMING_SNAKE_CASE_, axis=SCREAMING_SNAKE_CASE_ ) else: return _concatenate_iterable_datasets(SCREAMING_SNAKE_CASE_, info=SCREAMING_SNAKE_CASE_, split=SCREAMING_SNAKE_CASE_, axis=SCREAMING_SNAKE_CASE_ )
406
0
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase ( __lowercase : Union[str, Any] ): '''simple docstring''' A_ : Union[str, Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class UpperCAmelCase ( __A , __A , __A , unittest.TestCase ): '''simple docstring''' lowerCamelCase_ = StableDiffusionLatentUpscalePipeline lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } lowerCamelCase_ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} lowerCamelCase_ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS lowerCamelCase_ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess lowerCamelCase_ = frozenset([] ) lowerCamelCase_ = True @property def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Dict = 1 A_ : int = 4 A_ : int = (1_6, 1_6) A_ : Tuple = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(lowercase ) return image def lowerCAmelCase_ ( self ): """simple docstring""" torch.manual_seed(0 ) A_ : Dict = UNetaDConditionModel( act_fn='gelu' , attention_head_dim=8 , norm_num_groups=lowercase , block_out_channels=[3_2, 3_2, 6_4, 6_4] , time_cond_proj_dim=1_6_0 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=3_2 , down_block_types=( 'KDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', 'KCrossAttnDownBlock2D', ) , in_channels=8 , mid_block_type=lowercase , only_cross_attention=lowercase , out_channels=5 , resnet_time_scale_shift='scale_shift' , time_embedding_type='fourier' , timestep_post_act='gelu' , up_block_types=('KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KCrossAttnUpBlock2D', 'KUpBlock2D') , ) A_ : List[str] = AutoencoderKL( block_out_channels=[3_2, 3_2, 6_4, 6_4] , in_channels=3 , out_channels=3 , down_block_types=[ 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', 'DownEncoderBlock2D', ] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) A_ : Tuple = EulerDiscreteScheduler(prediction_type='sample' ) A_ : Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='quick_gelu' , projection_dim=5_1_2 , ) A_ : Any = CLIPTextModel(lowercase ) A_ : Tuple = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A_ : Any = { 'unet': model.eval(), 'vae': vae.eval(), 'scheduler': scheduler, 'text_encoder': text_encoder, 'tokenizer': tokenizer, } return components def lowerCAmelCase_ ( self , lowercase , lowercase=0 ): """simple docstring""" if str(lowercase ).startswith('mps' ): A_ : Union[str, Any] = torch.manual_seed(lowercase ) else: A_ : Optional[int] = torch.Generator(device=lowercase ).manual_seed(lowercase ) A_ : Optional[int] = { 'prompt': 'A painting of a squirrel eating a burger', 'image': self.dummy_image.cpu(), 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = 'cpu' A_ : int = self.get_dummy_components() A_ : Any = self.pipeline_class(**lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : List[str] = self.get_dummy_inputs(lowercase ) A_ : int = pipe(**lowercase ).images A_ : Any = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 2_5_6, 2_5_6, 3) ) A_ : Dict = np.array( [0.4722_2412, 0.4192_1633, 0.4471_7434, 0.4687_4192, 0.4258_8258, 0.4615_0726, 0.467_7534, 0.4558_3832, 0.4857_9055] ) A_ : Tuple = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(lowercase , 1E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = [ 'DDIMScheduler', 'DDPMScheduler', 'PNDMScheduler', 'HeunDiscreteScheduler', 'EulerAncestralDiscreteScheduler', 'KDPM2DiscreteScheduler', 'KDPM2AncestralDiscreteScheduler', 'DPMSolverSDEScheduler', ] A_ : Union[str, Any] = self.get_dummy_components() A_ : Any = self.pipeline_class(**lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=lowercase ) pipe.to(lowercase ) pipe.set_progress_bar_config(disable=lowercase ) A_ : Union[str, Any] = self.get_dummy_inputs(lowercase ) A_ : Any = 2 A_ : List[str] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue A_ : Dict = getattr(lowercase , scheduler_enum.name ) A_ : List[Any] = scheduler_cls.from_config(pipe.scheduler.config ) A_ : List[Any] = pipe(**lowercase )[0] outputs.append(lowercase ) assert check_same_shape(lowercase ) @require_torch_gpu @slow class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ): """simple docstring""" A_ : List[Any] = torch.manual_seed(3_3 ) A_ : Optional[Any] = StableDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' , torch_dtype=torch.floataa ) pipe.to('cuda' ) A_ : List[str] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) A_ : Optional[Any] = 'a photo of an astronaut high resolution, unreal engine, ultra realistic' A_ : Optional[int] = pipe(lowercase , generator=lowercase , output_type='latent' ).images A_ : int = upscaler( prompt=lowercase , image=lowercase , num_inference_steps=2_0 , guidance_scale=0 , generator=lowercase , output_type='np' , ).images[0] A_ : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCAmelCase_ ( self ): """simple docstring""" A_ : Union[str, Any] = torch.manual_seed(3_3 ) A_ : List[str] = StableDiffusionLatentUpscalePipeline.from_pretrained( 'stabilityai/sd-x2-latent-upscaler' , torch_dtype=torch.floataa ) upscaler.to('cuda' ) A_ : List[str] = 'the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas' A_ : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png' ) A_ : Optional[int] = upscaler( prompt=lowercase , image=lowercase , num_inference_steps=2_0 , guidance_scale=0 , generator=lowercase , output_type='np' , ).images[0] A_ : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy' ) assert np.abs((expected_image - image).max() ) < 5E-2
558
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices _UpperCAmelCase = logging.get_logger(__name__) _UpperCAmelCase = { """google/bit-50""": """https://huggingface.co/google/bit-50/resolve/main/config.json""", } class UpperCAmelCase ( __A , __A ): '''simple docstring''' lowerCamelCase_ = '''bit''' lowerCamelCase_ = ['''preactivation''', '''bottleneck'''] lowerCamelCase_ = ['''SAME''', '''VALID'''] def __init__( self , lowercase=3 , lowercase=6_4 , lowercase=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , lowercase=[3, 4, 6, 3] , lowercase="preactivation" , lowercase="relu" , lowercase=None , lowercase=3_2 , lowercase=0.0 , lowercase=False , lowercase=3_2 , lowercase=1 , lowercase=None , lowercase=None , **lowercase , ): """simple docstring""" super().__init__(**lowercase ) if layer_type not in self.layer_types: raise ValueError(F'''layer_type={layer_type} is not one of {','.join(self.layer_types )}''' ) if global_padding is not None: if global_padding.upper() in self.supported_padding: A_ : Tuple = global_padding.upper() else: raise ValueError(F'''Padding strategy {global_padding} not supported''' ) A_ : Any = num_channels A_ : Any = embedding_size A_ : List[Any] = hidden_sizes A_ : int = depths A_ : Union[str, Any] = layer_type A_ : List[Any] = hidden_act A_ : Tuple = global_padding A_ : List[str] = num_groups A_ : int = drop_path_rate A_ : str = embedding_dynamic_padding A_ : Dict = output_stride A_ : Any = width_factor A_ : int = ['stem'] + [F'''stage{idx}''' for idx in range(1 , len(lowercase ) + 1 )] A_ , A_ : List[Any] = get_aligned_output_features_output_indices( out_features=lowercase , out_indices=lowercase , stage_names=self.stage_names )
558
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTConfig, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : Tuple =logging.get_logger(__name__) def UpperCAmelCase__ ( lowerCAmelCase__ :Tuple ) -> Optional[Any]: '''simple docstring''' lowercase = MobileViTConfig() # size of the architecture if "mobilevit_s" in mobilevit_name: lowercase = [1_4_4, 1_9_2, 2_4_0] lowercase = [1_6, 3_2, 6_4, 9_6, 1_2_8, 1_6_0, 6_4_0] elif "mobilevit_xs" in mobilevit_name: lowercase = [9_6, 1_2_0, 1_4_4] lowercase = [1_6, 3_2, 4_8, 6_4, 8_0, 9_6, 3_8_4] elif "mobilevit_xxs" in mobilevit_name: lowercase = [6_4, 8_0, 9_6] lowercase = [1_6, 1_6, 2_4, 4_8, 6_4, 8_0, 3_2_0] lowercase = 0.05 lowercase = 2.0 if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = 5_1_2 lowercase = 1_6 lowercase = 2_1 lowercase = """pascal-voc-id2label.json""" else: lowercase = 1_0_0_0 lowercase = """imagenet-1k-id2label.json""" lowercase = """huggingface/label-files""" lowercase = json.load(open(hf_hub_download(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ ( lowerCAmelCase__ :Union[str, Any] , lowerCAmelCase__ :Tuple=False ) -> str: '''simple docstring''' for i in range(1 , 6 ): if f'layer_{i}.' in name: lowercase = name.replace(f'layer_{i}.' , f'encoder.layer.{i - 1}.' ) if "conv_1." in name: lowercase = name.replace("""conv_1.""" , """conv_stem.""" ) if ".block." in name: lowercase = name.replace(""".block.""" , """.""" ) if "exp_1x1" in name: lowercase = name.replace("""exp_1x1""" , """expand_1x1""" ) if "red_1x1" in name: lowercase = name.replace("""red_1x1""" , """reduce_1x1""" ) if ".local_rep.conv_3x3." in name: lowercase = name.replace(""".local_rep.conv_3x3.""" , """.conv_kxk.""" ) if ".local_rep.conv_1x1." in name: lowercase = name.replace(""".local_rep.conv_1x1.""" , """.conv_1x1.""" ) if ".norm." in name: lowercase = name.replace(""".norm.""" , """.normalization.""" ) if ".conv." in name: lowercase = name.replace(""".conv.""" , """.convolution.""" ) if ".conv_proj." in name: lowercase = name.replace(""".conv_proj.""" , """.conv_projection.""" ) for i in range(0 , 2 ): for j in range(0 , 4 ): if f'.{i}.{j}.' in name: lowercase = name.replace(f'.{i}.{j}.' , f'.{i}.layer.{j}.' ) for i in range(2 , 6 ): for j in range(0 , 4 ): if f'.{i}.{j}.' in name: lowercase = name.replace(f'.{i}.{j}.' , f'.{i}.' ) if "expand_1x1" in name: lowercase = name.replace("""expand_1x1""" , """downsampling_layer.expand_1x1""" ) if "conv_3x3" in name: lowercase = name.replace("""conv_3x3""" , """downsampling_layer.conv_3x3""" ) if "reduce_1x1" in name: lowercase = name.replace("""reduce_1x1""" , """downsampling_layer.reduce_1x1""" ) for i in range(2 , 5 ): if f'.global_rep.{i}.weight' in name: lowercase = name.replace(f'.global_rep.{i}.weight' , """.layernorm.weight""" ) if f'.global_rep.{i}.bias' in name: lowercase = name.replace(f'.global_rep.{i}.bias' , """.layernorm.bias""" ) if ".global_rep." in name: lowercase = name.replace(""".global_rep.""" , """.transformer.""" ) if ".pre_norm_mha.0." in name: lowercase = name.replace(""".pre_norm_mha.0.""" , """.layernorm_before.""" ) if ".pre_norm_mha.1.out_proj." in name: lowercase = name.replace(""".pre_norm_mha.1.out_proj.""" , """.attention.output.dense.""" ) if ".pre_norm_ffn.0." in name: lowercase = name.replace(""".pre_norm_ffn.0.""" , """.layernorm_after.""" ) if ".pre_norm_ffn.1." in name: lowercase = name.replace(""".pre_norm_ffn.1.""" , """.intermediate.dense.""" ) if ".pre_norm_ffn.4." in name: lowercase = name.replace(""".pre_norm_ffn.4.""" , """.output.dense.""" ) if ".transformer." in name: lowercase = name.replace(""".transformer.""" , """.transformer.layer.""" ) if ".aspp_layer." in name: lowercase = name.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in name: lowercase = name.replace(""".aspp_pool.""" , """.""" ) if "seg_head." in name: lowercase = name.replace("""seg_head.""" , """segmentation_head.""" ) if "segmentation_head.classifier.classifier." in name: lowercase = name.replace("""segmentation_head.classifier.classifier.""" , """segmentation_head.classifier.""" ) if "classifier.fc." in name: lowercase = name.replace("""classifier.fc.""" , """classifier.""" ) elif (not base_model) and ("segmentation_head." not in name): lowercase = """mobilevit.""" + name return name def UpperCAmelCase__ ( lowerCAmelCase__ :str , lowerCAmelCase__ :List[Any] , lowerCAmelCase__ :str=False ) -> List[str]: '''simple docstring''' if base_model: lowercase = """""" else: lowercase = """mobilevit.""" for key in orig_state_dict.copy().keys(): lowercase = orig_state_dict.pop(lowerCAmelCase__ ) if key[:8] == "encoder.": lowercase = key[8:] if "qkv" in key: lowercase = key.split(""".""" ) lowercase = int(key_split[0][6:] ) - 1 lowercase = int(key_split[3] ) lowercase = model.get_submodule(f'{model_prefix}encoder.layer.{layer_num}' ) lowercase = layer.transformer.layer[transformer_num].attention.attention.all_head_size lowercase = ( f'{model_prefix}encoder.layer.{layer_num}.transformer.layer.{transformer_num}.attention.attention.' ) if "weight" in key: lowercase = val[:dim, :] lowercase = val[dim : dim * 2, :] lowercase = val[-dim:, :] else: lowercase = val[:dim] lowercase = val[dim : dim * 2] lowercase = val[-dim:] else: lowercase = val return orig_state_dict def UpperCAmelCase__ ( ) -> Optional[int]: '''simple docstring''' lowercase = """http://images.cocodataset.org/val2017/000000039769.jpg""" lowercase = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ ( lowerCAmelCase__ :Dict , lowerCAmelCase__ :Dict , lowerCAmelCase__ :str , lowerCAmelCase__ :Any=False ) -> int: '''simple docstring''' lowercase = get_mobilevit_config(lowerCAmelCase__ ) # load original state_dict lowercase = torch.load(lowerCAmelCase__ , map_location="""cpu""" ) # load 🤗 model if mobilevit_name.startswith("""deeplabv3_""" ): lowercase = MobileViTForSemanticSegmentation(lowerCAmelCase__ ).eval() else: lowercase = MobileViTForImageClassification(lowerCAmelCase__ ).eval() lowercase = convert_state_dict(lowerCAmelCase__ , lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) # Check outputs on an image, prepared by MobileViTImageProcessor lowercase = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 3_2 ) lowercase = image_processor(images=prepare_img() , return_tensors="""pt""" ) lowercase = model(**lowerCAmelCase__ ) lowercase = outputs.logits if mobilevit_name.startswith("""deeplabv3_""" ): assert logits.shape == (1, 2_1, 3_2, 3_2) if mobilevit_name == "deeplabv3_mobilevit_s": lowercase = torch.tensor( [ [[6.2_065, 6.1_292, 6.2_070], [6.1_079, 6.1_254, 6.1_747], [6.0_042, 6.1_071, 6.1_034]], [[-6.9_253, -6.8_653, -7.0_398], [-7.3_218, -7.3_983, -7.3_670], [-7.1_961, -7.2_482, -7.1_569]], [[-4.4_723, -4.4_348, -4.3_769], [-5.3_629, -5.4_632, -5.4_598], [-5.1_587, -5.3_402, -5.5_059]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xs": lowercase = torch.tensor( [ [[5.4_449, 5.5_733, 5.6_314], [5.1_815, 5.3_930, 5.5_963], [5.1_656, 5.4_333, 5.4_853]], [[-9.4_423, -9.7_766, -9.6_714], [-9.1_581, -9.5_720, -9.5_519], [-9.1_006, -9.6_458, -9.5_703]], [[-7.7_721, -7.3_716, -7.1_583], [-8.4_599, -8.0_624, -7.7_944], [-8.4_172, -7.8_366, -7.5_025]], ] ) elif mobilevit_name == "deeplabv3_mobilevit_xxs": lowercase = torch.tensor( [ [[6.9_811, 6.9_743, 7.3_123], [7.1_777, 7.1_931, 7.3_938], [7.5_633, 7.8_050, 7.8_901]], [[-10.5_536, -10.2_332, -10.2_924], [-10.2_336, -9.8_624, -9.5_964], [-10.8_840, -10.8_158, -10.6_659]], [[-3.4_938, -3.0_631, -2.8_620], [-3.4_205, -2.8_135, -2.6_875], [-3.4_179, -2.7_945, -2.8_750]], ] ) else: raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3, :3, :3] , lowerCAmelCase__ , atol=1e-4 ) else: assert logits.shape == (1, 1_0_0_0) if mobilevit_name == "mobilevit_s": lowercase = torch.tensor([-0.9_866, 0.2_392, -1.1_241] ) elif mobilevit_name == "mobilevit_xs": lowercase = torch.tensor([-2.4_761, -0.9_399, -1.9_587] ) elif mobilevit_name == "mobilevit_xxs": lowercase = torch.tensor([-1.9_364, -1.2_327, -0.4_653] ) else: raise ValueError(f'Unknown mobilevit_name: {mobilevit_name}' ) assert torch.allclose(logits[0, :3] , lowerCAmelCase__ , atol=1e-4 ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) print(f'Saving model {mobilevit_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowerCAmelCase__ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase__ ) if push_to_hub: lowercase = { """mobilevit_s""": """mobilevit-small""", """mobilevit_xs""": """mobilevit-x-small""", """mobilevit_xxs""": """mobilevit-xx-small""", """deeplabv3_mobilevit_s""": """deeplabv3-mobilevit-small""", """deeplabv3_mobilevit_xs""": """deeplabv3-mobilevit-x-small""", """deeplabv3_mobilevit_xxs""": """deeplabv3-mobilevit-xx-small""", } print("""Pushing to the hub...""" ) lowercase = model_mapping[mobilevit_name] image_processor.push_to_hub(lowerCAmelCase__ , organization="""apple""" ) model.push_to_hub(lowerCAmelCase__ , organization="""apple""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] =argparse.ArgumentParser() # Required parameters parser.add_argument( """--mobilevit_name""", default="""mobilevit_s""", type=str, help=( """Name of the MobileViT model you'd like to convert. Should be one of 'mobilevit_s', 'mobilevit_xs',""" """ 'mobilevit_xxs', 'deeplabv3_mobilevit_s', 'deeplabv3_mobilevit_xs', 'deeplabv3_mobilevit_xxs'.""" ), ) parser.add_argument( """--checkpoint_path""", required=True, type=str, help="""Path to the original state dict (.pt file).""" ) parser.add_argument( """--pytorch_dump_folder_path""", required=True, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) __lowerCAmelCase : int =parser.parse_args() convert_movilevit_checkpoint( args.mobilevit_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub )
197
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase : Any =logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] ={ """facebook/timesformer""": """https://huggingface.co/facebook/timesformer/resolve/main/config.json""", } class _A ( lowerCAmelCase ): snake_case__ : Optional[Any] = 'timesformer' def __init__( self , __lowerCAmelCase=224 , __lowerCAmelCase=16 , __lowerCAmelCase=3 , __lowerCAmelCase=8 , __lowerCAmelCase=768 , __lowerCAmelCase=12 , __lowerCAmelCase=12 , __lowerCAmelCase=3072 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.0_2 , __lowerCAmelCase=1E-6 , __lowerCAmelCase=True , __lowerCAmelCase="divided_space_time" , __lowerCAmelCase=0 , **__lowerCAmelCase , ): """simple docstring""" super().__init__(**__lowerCAmelCase ) lowercase = image_size lowercase = patch_size lowercase = num_channels lowercase = num_frames lowercase = hidden_size lowercase = num_hidden_layers lowercase = num_attention_heads lowercase = intermediate_size lowercase = hidden_act lowercase = hidden_dropout_prob lowercase = attention_probs_dropout_prob lowercase = initializer_range lowercase = layer_norm_eps lowercase = qkv_bias lowercase = attention_type lowercase = drop_path_rate
197
1
import unittest from transformers import AutoConfig, AutoTokenizer, BertConfig, TensorType, is_flax_available from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, require_flax, slow if is_flax_available(): import jax from transformers.models.auto.modeling_flax_auto import FlaxAutoModel from transformers.models.bert.modeling_flax_bert import FlaxBertModel from transformers.models.roberta.modeling_flax_roberta import FlaxRobertaModel @require_flax class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE_( self ) -> Any: for model_name in ["bert-base-cased", "bert-large-uncased"]: with self.subTest(lowercase ): lowerCamelCase_ = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) lowerCamelCase_ = FlaxAutoModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Optional[Any]: for model_name in ["roberta-base", "roberta-large"]: with self.subTest(lowercase ): lowerCamelCase_ = AutoConfig.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) lowerCamelCase_ = FlaxAutoModel.from_pretrained(lowercase ) self.assertIsNotNone(lowercase ) self.assertIsInstance(lowercase , lowercase ) @slow def SCREAMING_SNAKE_CASE_( self ) -> Tuple: for model_name in ["bert-base-cased", "bert-large-uncased"]: lowerCamelCase_ = AutoTokenizer.from_pretrained(lowercase ) lowerCamelCase_ = FlaxBertModel.from_pretrained(lowercase ) lowerCamelCase_ = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowercase ): return model(**lowercase ) eval(**lowercase ).block_until_ready() @slow def SCREAMING_SNAKE_CASE_( self ) -> int: for model_name in ["roberta-base", "roberta-large"]: lowerCamelCase_ = AutoTokenizer.from_pretrained(lowercase ) lowerCamelCase_ = FlaxRobertaModel.from_pretrained(lowercase ) lowerCamelCase_ = tokenizer("Do you support jax jitted function?" , return_tensors=TensorType.JAX ) @jax.jit def eval(**lowercase ): return model(**lowercase ) eval(**lowercase ).block_until_ready() def SCREAMING_SNAKE_CASE_( self ) -> int: with self.assertRaisesRegex( lowercase , "bert-base is not a local folder and is not a valid model identifier" ): lowerCamelCase_ = FlaxAutoModel.from_pretrained("bert-base" ) def SCREAMING_SNAKE_CASE_( self ) -> List[Any]: with self.assertRaisesRegex( lowercase , R"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): lowerCamelCase_ = FlaxAutoModel.from_pretrained(lowercase , revision="aaaaaa" ) def SCREAMING_SNAKE_CASE_( self ) -> int: with self.assertRaisesRegex( lowercase , "hf-internal-testing/config-no-model does not appear to have a file named flax_model.msgpack" , ): lowerCamelCase_ = FlaxAutoModel.from_pretrained("hf-internal-testing/config-no-model" ) def SCREAMING_SNAKE_CASE_( self ) -> int: with self.assertRaisesRegex(lowercase , "Use `from_pt=True` to load this model" ): lowerCamelCase_ = FlaxAutoModel.from_pretrained("hf-internal-testing/tiny-bert-pt-only" )
463
import tempfile import unittest from transformers import TaConfig, is_torch_available from transformers.testing_utils import ( require_sentencepiece, require_tokenizers, require_torch, slow, torch_device, ) from ...generation.test_utils import GenerationTesterMixin from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import AutoTokenizer, UMTaForConditionalGeneration, UMTaForQuestionAnswering, UMTaModel class _SCREAMING_SNAKE_CASE : def __init__( self , lowercase , lowercase=99 , lowercase=13 , lowercase=7 , lowercase=9 , lowercase=True , lowercase=True , lowercase=False , lowercase=32 , lowercase=5 , lowercase=4 , lowercase=37 , lowercase=8 , lowercase=0.1 , lowercase=0.0_0_2 , lowercase=1 , lowercase=0 , lowercase=0 , lowercase=None , lowercase=None , ) -> Tuple: lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = encoder_seq_length lowerCamelCase_ = decoder_seq_length # For common tests lowerCamelCase_ = self.decoder_seq_length lowerCamelCase_ = is_training lowerCamelCase_ = use_attention_mask lowerCamelCase_ = use_labels lowerCamelCase_ = vocab_size lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = d_ff lowerCamelCase_ = relative_attention_num_buckets lowerCamelCase_ = dropout_rate lowerCamelCase_ = initializer_factor lowerCamelCase_ = eos_token_id lowerCamelCase_ = pad_token_id lowerCamelCase_ = decoder_start_token_id lowerCamelCase_ = None lowerCamelCase_ = decoder_layers def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return TaConfig.from_pretrained("google/umt5-base" ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase=None , ) -> str: if attention_mask is None: lowerCamelCase_ = input_ids.ne(config.pad_token_id ) if decoder_attention_mask is None: lowerCamelCase_ = decoder_input_ids.ne(config.pad_token_id ) if head_mask is None: lowerCamelCase_ = torch.ones(config.num_hidden_layers , config.num_attention_heads , device=lowercase ) if decoder_head_mask is None: lowerCamelCase_ = torch.ones(config.num_decoder_layers , config.num_attention_heads , device=lowercase ) if cross_attn_head_mask is None: lowerCamelCase_ = torch.ones( config.num_decoder_layers , config.num_attention_heads , device=lowercase ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } def SCREAMING_SNAKE_CASE_( self ) -> Dict: lowerCamelCase_ = ids_tensor([self.batch_size, self.encoder_seq_length] , self.vocab_size ) lowerCamelCase_ = ids_tensor([self.batch_size, self.decoder_seq_length] , self.vocab_size ) # we need to clamp the input ids here to avoid having pad token in between # this is because for NllbMoe the position_ids are prepared such that # all pad tokens have pos id = 2 and rest are between 2..seq_length # and the seq_length here is seq_length - num_pad_tokens # but when using past, there is no way of knowing if the past input ids had # pad tokens in them, which results in incorrect seq_lenth and which in turn results in # position_ids being off by num_pad_tokens in past input lowerCamelCase_ = input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase_ = decoder_input_ids.clamp(self.pad_token_id + 1 ) lowerCamelCase_ = self.get_config() lowerCamelCase_ = config.num_attention_heads lowerCamelCase_ = self.prepare_inputs_dict(lowercase , lowercase , lowercase ) return config, input_dict def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ , lowerCamelCase_ = self.prepare_config_and_inputs() return config, inputs_dict def SCREAMING_SNAKE_CASE_( self ) -> List[str]: return TaConfig( vocab_size=166 , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE_( self ) -> Any: return TaConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , d_ff=self.d_ff , d_kv=self.hidden_size // self.num_attention_heads , num_layers=self.num_hidden_layers , num_decoder_layers=self.decoder_layers , num_heads=self.num_attention_heads , relative_attention_num_buckets=self.relative_attention_num_buckets , dropout_rate=self.dropout_rate , initializer_factor=self.initializer_factor , eos_token_id=self.eos_token_id , bos_token_id=self.pad_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.decoder_start_token_id , ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Optional[Any]: lowerCamelCase_ = UMTaModel(config=lowercase ) model.to(lowercase ) model.eval() lowerCamelCase_ = model( input_ids=lowercase , decoder_input_ids=lowercase , attention_mask=lowercase , decoder_attention_mask=lowercase , ) lowerCamelCase_ = model(input_ids=lowercase , decoder_input_ids=lowercase ) lowerCamelCase_ = result.last_hidden_state lowerCamelCase_ = result.past_key_values lowerCamelCase_ = result.encoder_last_hidden_state self.parent.assertEqual(encoder_output.size() , (self.batch_size, self.encoder_seq_length, self.hidden_size) ) self.parent.assertEqual(decoder_output.size() , (self.batch_size, self.decoder_seq_length, self.hidden_size) ) # There should be `num_layers` key value embeddings stored in decoder_past self.parent.assertEqual(len(lowercase ) , config.num_layers ) # There should be a self attn key, a self attn value, a cross attn key and a cross attn value stored in each decoder_past tuple self.parent.assertEqual(len(decoder_past[0] ) , 4 ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , lowercase , lowercase , lowercase , lowercase , ) -> Optional[int]: lowerCamelCase_ = UMTaModel(config=lowercase ).get_decoder().to(lowercase ).eval() # first forward pass lowerCamelCase_ = model(lowercase , use_cache=lowercase ) lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = model(lowercase , use_cache=lowercase ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) ) self.parent.assertTrue(len(lowercase ) == len(lowercase ) + 1 ) lowerCamelCase_ , lowerCamelCase_ = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids lowerCamelCase_ = ids_tensor((self.batch_size, 1) , config.vocab_size ) # append to next input_ids and lowerCamelCase_ = torch.cat([input_ids, next_tokens] , dim=-1 ) lowerCamelCase_ = model(lowercase )["last_hidden_state"] lowerCamelCase_ = model(lowercase , past_key_values=lowercase )["last_hidden_state"] # select random slice lowerCamelCase_ = ids_tensor((1,) , output_from_past.shape[-1] ).item() lowerCamelCase_ = output_from_no_past[:, -1, random_slice_idx].detach() lowerCamelCase_ = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase , lowercase , atol=1e-3 ) ) def SCREAMING_SNAKE_CASE_( self , lowercase , lowercase , ) -> Tuple: lowerCamelCase_ = UMTaModel(config=lowercase ).to(lowercase ).half().eval() lowerCamelCase_ = model(**lowercase )["last_hidden_state"] self.parent.assertFalse(torch.isnan(lowercase ).any().item() ) @require_torch class _SCREAMING_SNAKE_CASE ( snake_case_ , snake_case_ , snake_case_ , unittest.TestCase ): lowerCAmelCase__ = ( (UMTaModel, UMTaForConditionalGeneration, UMTaForQuestionAnswering) if is_torch_available() else () ) lowerCAmelCase__ = (UMTaForConditionalGeneration,) if is_torch_available() else () lowerCAmelCase__ = ( { 'conversational': UMTaForConditionalGeneration, 'feature-extraction': UMTaModel, 'summarization': UMTaForConditionalGeneration, 'text2text-generation': UMTaForConditionalGeneration, 'translation': UMTaForConditionalGeneration, 'question-answering': UMTaForQuestionAnswering, } if is_torch_available() else {} ) lowerCAmelCase__ = True lowerCAmelCase__ = False lowerCAmelCase__ = False lowerCAmelCase__ = True lowerCAmelCase__ = True # The small UMT5 model needs higher percentages for CPU/MP tests lowerCAmelCase__ = [0.8, 0.9] def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = UMTaModelTester(self ) @unittest.skip("Test has a segmentation fault on torch 1.8.0" ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = UMTaModel(config_and_inputs[0] ).to(lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: torch.onnx.export( lowercase , (config_and_inputs[1], config_and_inputs[3], config_and_inputs[2]) , f'{tmpdirname}/t5_test.onnx' , export_params=lowercase , opset_version=9 , input_names=["input_ids", "decoder_input_ids"] , ) @unittest.skipIf(torch_device == "cpu" , "Cant do half precision" ) def SCREAMING_SNAKE_CASE_( self ) -> str: lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model_fpaa_forward(*lowercase ) def SCREAMING_SNAKE_CASE_( self ) -> List[str]: lowerCamelCase_ = ["encoder_attentions", "decoder_attentions", "cross_attentions"] lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() lowerCamelCase_ = config_and_inputs[0] lowerCamelCase_ = UMTaForConditionalGeneration(lowercase ).eval() model.to(lowercase ) lowerCamelCase_ = { "head_mask": torch.zeros(config.num_layers , config.num_heads , device=lowercase ), "decoder_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase ), "cross_attn_head_mask": torch.zeros(config.num_decoder_layers , config.num_heads , device=lowercase ), } for attn_name, (name, mask) in zip(lowercase , head_masking.items() ): lowerCamelCase_ = {name: mask} # Explicitly pass decoder_head_mask as it is required from T5 model when head_mask specified if name == "head_mask": lowerCamelCase_ = torch.ones( config.num_decoder_layers , config.num_heads , device=lowercase ) lowerCamelCase_ = model.generate( config_and_inputs[1]["input_ids"] , num_beams=1 , max_length=3 , output_attentions=lowercase , return_dict_in_generate=lowercase , **lowercase , ) # We check the state of decoder_attentions and cross_attentions just from the last step lowerCamelCase_ = out[attn_name] if attn_name == attention_names[0] else out[attn_name][-1] self.assertEqual(sum([w.sum().item() for w in attn_weights] ) , 0.0 ) @unittest.skip("Does not work on the tiny model as we keep hitting edge cases." ) def SCREAMING_SNAKE_CASE_( self ) -> Tuple: pass @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): @slow @unittest.skip( "Unless we stop stripping left and right by default for all special tokens, the expected ids obtained here will not match the original ones. Wait for https://github.com/huggingface/transformers/pull/23909 to be merged" ) def SCREAMING_SNAKE_CASE_( self ) -> int: lowerCamelCase_ = UMTaForConditionalGeneration.from_pretrained("google/umt5-small" , return_dict=lowercase ).to(lowercase ) lowerCamelCase_ = AutoTokenizer.from_pretrained("google/umt5-small" , use_fast=lowercase , legacy=lowercase ) lowerCamelCase_ = [ "Bonjour monsieur <extra_id_0> bien <extra_id_1>.", "No se como puedo <extra_id_0>.", "This is the reason why we <extra_id_0> them.", "The <extra_id_0> walks in <extra_id_1>, seats", "A <extra_id_0> walks into a bar and orders a <extra_id_1> with <extra_id_2> pinch of <extra_id_3>.", ] lowerCamelCase_ = tokenizer(lowercase , return_tensors="pt" , padding=lowercase ).input_ids # fmt: off lowerCamelCase_ = torch.tensor( [ [ 38530, 210703, 256299, 1410, 256298, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 826, 321, 671, 25922, 256299, 274, 1, 0,0, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 1460, 339, 312, 19014, 10620, 758, 256299, 2355,274, 1, 0, 0, 0, 0, 0, 0,0, 0], [ 517, 256299, 14869, 281, 301, 256298, 275, 119983,1, 0, 0, 0, 0, 0, 0, 0,0, 0], [ 320, 256299, 14869, 281, 2234, 289, 2275, 333,61391, 289, 256298, 543, 256297, 168714, 329, 256296,274, 1], ] ) # fmt: on torch.testing.assert_allclose(lowercase , lowercase ) lowerCamelCase_ = model.generate(input_ids.to(lowercase ) ) lowerCamelCase_ = [ "<pad><extra_id_0> et<extra_id_1> [eod] <extra_id_2><extra_id_55>.. [eod] 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 💐 <extra_id_56>ajšietosto<extra_id_56>lleux<extra_id_19><extra_id_6>ajšie</s>", "<pad><extra_id_0>.<extra_id_1>.,<0x0A>...spech <0x0A><extra_id_20> <extra_id_21></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> are not going to be a part of the world. We are not going to be a part of<extra_id_1> and<extra_id_2><0x0A><extra_id_48>.<extra_id_48></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0> door<extra_id_1>, the door<extra_id_2> 피해[/</s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", "<pad><extra_id_0>nyone who<extra_id_1> drink<extra_id_2> a<extra_id_3> alcohol<extra_id_4> A<extra_id_5> A. This<extra_id_6> I<extra_id_7><extra_id_52><extra_id_53></s><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad><pad>", ] lowerCamelCase_ = tokenizer.batch_decode(lowercase ) self.assertEqual(lowercase , lowercase )
463
1
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class _a : '''simple docstring''' def __init__( self , __UpperCAmelCase , __UpperCAmelCase=100 , __UpperCAmelCase=13 , __UpperCAmelCase=30 , __UpperCAmelCase=2 , __UpperCAmelCase=3 , __UpperCAmelCase=True , __UpperCAmelCase=True , __UpperCAmelCase=32 , __UpperCAmelCase=4 , __UpperCAmelCase=4 , __UpperCAmelCase=37 , __UpperCAmelCase="gelu" , __UpperCAmelCase=0.1 , __UpperCAmelCase=0.1 , __UpperCAmelCase=10 , __UpperCAmelCase=0.0_2 , __UpperCAmelCase=3 , __UpperCAmelCase=None , __UpperCAmelCase=[0, 1, 2, 3] , ): """simple docstring""" a__ : List[str] = parent a__ : List[str] = 100 a__ : Union[str, Any] = batch_size a__ : List[Any] = image_size a__ : int = patch_size a__ : Tuple = num_channels a__ : Tuple = is_training a__ : List[Any] = use_labels a__ : List[str] = hidden_size a__ : Any = num_hidden_layers a__ : str = num_attention_heads a__ : Optional[int] = intermediate_size a__ : int = hidden_act a__ : Union[str, Any] = hidden_dropout_prob a__ : Tuple = attention_probs_dropout_prob a__ : List[Any] = type_sequence_label_size a__ : List[Any] = initializer_range a__ : Any = scope a__ : Any = out_indices a__ : List[str] = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ : Any = (image_size // patch_size) ** 2 a__ : Any = num_patches + 1 def _A ( self ): """simple docstring""" a__ : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ : List[Any] = None a__ : Dict = None if self.use_labels: a__ : Optional[int] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) a__ : List[str] = self.get_config() return config, pixel_values, labels, pixel_labels def _A ( self ): """simple docstring""" return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=__UpperCAmelCase , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Dict = BeitModel(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a__ : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Any = BeitForMaskedImageModeling(config=__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a__ : str = model(__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Union[str, Any] = self.type_sequence_label_size a__ : Tuple = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a__ : Optional[int] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ : List[Any] = 1 a__ : Tuple = BeitForImageClassification(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a__ : List[Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ : List[Any] = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _A ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" a__ : Any = self.num_labels a__ : List[Any] = BeitForSemanticSegmentation(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.eval() a__ : Dict = model(__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) a__ : str = model(__UpperCAmelCase , labels=__UpperCAmelCase ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _A ( self ): """simple docstring""" a__ : List[str] = self.prepare_config_and_inputs() a__ , a__ , a__ , a__ : Dict = config_and_inputs a__ : Dict = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A :List[str] = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) A :Any = ( { "feature-extraction": BeitModel, "image-classification": BeitForImageClassification, "image-segmentation": BeitForSemanticSegmentation, } if is_torch_available() else {} ) A :Tuple = False A :Union[str, Any] = False A :List[str] = False def _A ( self ): """simple docstring""" a__ : Union[str, Any] = BeitModelTester(self ) a__ : Tuple = ConfigTester(self , config_class=__UpperCAmelCase , has_text_modality=__UpperCAmelCase , hidden_size=37 ) def _A ( self ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="BEiT does not use inputs_embeds" ) def _A ( self ): """simple docstring""" pass @require_torch_multi_gpu @unittest.skip(reason="BEiT has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def _A ( self ): """simple docstring""" pass def _A ( self ): """simple docstring""" a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Dict = model_class(__UpperCAmelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) a__ : int = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__UpperCAmelCase , nn.Linear ) ) def _A ( self ): """simple docstring""" a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ : Optional[int] = model_class(__UpperCAmelCase ) a__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ : Union[str, Any] = [*signature.parameters.keys()] a__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1] , __UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*__UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__UpperCAmelCase ) def _A ( self ): """simple docstring""" a__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__UpperCAmelCase ) def _A ( self ): """simple docstring""" if not self.model_tester.is_training: return a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() a__ : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling]: continue a__ : List[Any] = model_class(__UpperCAmelCase ) model.to(__UpperCAmelCase ) model.train() a__ : List[str] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a__ : Optional[int] = model(**__UpperCAmelCase ).loss loss.backward() def _A ( self ): """simple docstring""" a__ , a__ : Optional[int] = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return a__ : Tuple = False a__ : Tuple = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(__UpperCAmelCase ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue a__ : Union[str, Any] = model_class(__UpperCAmelCase ) model.gradient_checkpointing_enable() model.to(__UpperCAmelCase ) model.train() a__ : Optional[Any] = self._prepare_for_class(__UpperCAmelCase , __UpperCAmelCase , return_labels=__UpperCAmelCase ) a__ : int = model(**__UpperCAmelCase ).loss loss.backward() def _A ( self ): """simple docstring""" a__ , a__ : int = self.model_tester.prepare_config_and_inputs_for_common() a__ : Optional[int] = _config_zero_init(__UpperCAmelCase ) for model_class in self.all_model_classes: a__ : Dict = model_class(config=__UpperCAmelCase ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=f'Parameter {name} of model {model_class} seems not properly initialized' , ) @slow def _A ( self ): """simple docstring""" for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a__ : Dict = BeitModel.from_pretrained(__UpperCAmelCase ) self.assertIsNotNone(__UpperCAmelCase ) def SCREAMING_SNAKE_CASE( ) -> Dict: a__ : Any = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class _a ( unittest.TestCase ): '''simple docstring''' @cached_property def _A ( self ): """simple docstring""" return BeitImageProcessor.from_pretrained("microsoft/beit-base-patch16-224" ) if is_vision_available() else None @slow def _A ( self ): """simple docstring""" a__ : int = BeitForMaskedImageModeling.from_pretrained("microsoft/beit-base-patch16-224-pt22k" ).to(__UpperCAmelCase ) a__ : Tuple = self.default_image_processor a__ : Optional[Any] = prepare_img() a__ : Optional[int] = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).pixel_values.to(__UpperCAmelCase ) # prepare bool_masked_pos a__ : Optional[int] = torch.ones((1, 196) , dtype=torch.bool ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(pixel_values=__UpperCAmelCase , bool_masked_pos=__UpperCAmelCase ) a__ : Any = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 196, 8192) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a__ : List[str] = torch.tensor( [[-3.2_4_3_7, 0.5_0_7_2, -1_3.9_1_7_4], [-3.2_4_5_6, 0.4_9_4_8, -1_3.9_4_0_1], [-3.2_0_3_3, 0.5_1_2_1, -1_3.8_5_5_0]] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , __UpperCAmelCase , atol=1E-2 ) ) @slow def _A ( self ): """simple docstring""" a__ : Union[str, Any] = BeitForImageClassification.from_pretrained("microsoft/beit-base-patch16-224" ).to(__UpperCAmelCase ) a__ : str = self.default_image_processor a__ : Optional[Any] = prepare_img() a__ : List[Any] = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a__ : Union[str, Any] = model(**__UpperCAmelCase ) a__ : List[Any] = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 1000) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a__ : Optional[int] = torch.tensor([-1.2_3_8_5, -1.0_9_8_7, -1.0_1_0_8] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) a__ : List[str] = 281 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def _A ( self ): """simple docstring""" a__ : Optional[int] = BeitForImageClassification.from_pretrained("microsoft/beit-large-patch16-224-pt22k-ft22k" ).to( __UpperCAmelCase ) a__ : Tuple = self.default_image_processor a__ : Union[str, Any] = prepare_img() a__ : int = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a__ : Optional[int] = model(**__UpperCAmelCase ) a__ : Optional[Any] = outputs.logits # verify the logits a__ : List[Any] = torch.Size((1, 2_1841) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a__ : str = torch.tensor([1.6_8_8_1, -0.2_7_8_7, 0.5_9_0_1] ).to(__UpperCAmelCase ) self.assertTrue(torch.allclose(logits[0, :3] , __UpperCAmelCase , atol=1E-4 ) ) a__ : Any = 2396 self.assertEqual(logits.argmax(-1 ).item() , __UpperCAmelCase ) @slow def _A ( self ): """simple docstring""" a__ : Any = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Dict = model.to(__UpperCAmelCase ) a__ : List[Any] = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : List[str] = Image.open(ds[0]["file"] ) a__ : Union[str, Any] = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a__ : List[Any] = model(**__UpperCAmelCase ) a__ : int = outputs.logits # verify the logits a__ : List[str] = torch.Size((1, 150, 160, 160) ) self.assertEqual(logits.shape , __UpperCAmelCase ) a__ : Union[str, Any] = version.parse(PIL.__version__ ) < version.parse("9.0.0" ) if is_pillow_less_than_a: a__ : Optional[int] = torch.tensor( [ [[-4.9_2_2_5, -2.3_9_5_4, -3.0_5_2_2], [-2.8_8_2_2, -1.0_0_4_6, -1.7_5_6_1], [-2.9_5_4_9, -1.3_2_2_8, -2.1_3_4_7]], [[-5.8_1_6_8, -3.4_1_2_9, -4.0_7_7_8], [-3.8_6_5_1, -2.2_2_1_4, -3.0_2_7_7], [-3.8_3_5_6, -2.4_6_4_3, -3.3_5_3_5]], [[-0.0_0_7_8, 3.9_9_5_2, 4.0_7_5_4], [2.9_8_5_6, 4.6_9_4_4, 5.0_0_3_5], [3.2_4_1_3, 4.7_8_1_3, 4.9_9_6_9]], ] , device=__UpperCAmelCase , ) else: a__ : List[Any] = torch.tensor( [ [[-4.8_9_6_0, -2.3_6_8_8, -3.0_3_5_5], [-2.8_4_7_8, -0.9_8_3_6, -1.7_4_1_8], [-2.9_4_4_9, -1.3_3_3_2, -2.1_4_5_6]], [[-5.8_0_8_1, -3.4_1_2_4, -4.1_0_0_6], [-3.8_5_6_1, -2.2_0_8_1, -3.0_3_2_3], [-3.8_3_6_5, -2.4_6_0_1, -3.3_6_6_9]], [[-0.0_3_0_9, 3.9_8_6_8, 4.0_5_4_0], [2.9_6_4_0, 4.6_8_7_7, 4.9_9_7_6], [3.2_0_8_1, 4.7_6_9_0, 4.9_9_4_2]], ] , device=__UpperCAmelCase , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __UpperCAmelCase , atol=1E-4 ) ) @slow def _A ( self ): """simple docstring""" a__ : int = BeitForSemanticSegmentation.from_pretrained("microsoft/beit-base-finetuned-ade-640-640" ) a__ : Tuple = model.to(__UpperCAmelCase ) a__ : List[Any] = BeitImageProcessor(do_resize=__UpperCAmelCase , size=640 , do_center_crop=__UpperCAmelCase ) a__ : Tuple = load_dataset("hf-internal-testing/fixtures_ade20k" , split="test" ) a__ : str = Image.open(ds[0]["file"] ) a__ : List[str] = image_processor(images=__UpperCAmelCase , return_tensors="pt" ).to(__UpperCAmelCase ) # forward pass with torch.no_grad(): a__ : Optional[Any] = model(**__UpperCAmelCase ) a__ : Any = outputs.logits.detach().cpu() a__ : str = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase , target_sizes=[(500, 300)] ) a__ : Optional[Any] = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase ) a__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=__UpperCAmelCase ) a__ : Optional[int] = torch.Size((160, 160) ) self.assertEqual(segmentation[0].shape , __UpperCAmelCase )
207
import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def SCREAMING_SNAKE_CASE( __UpperCamelCase = 8 ) -> str: a__ : Optional[int] = ascii_letters + digits + punctuation return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> str: # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(__UpperCamelCase ) a__ : List[Any] = i // 3 a__ : int = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) a__ : Union[str, Any] = ( chars_incl + random(__UpperCamelCase , quotient + remainder ) + random(__UpperCamelCase , __UpperCamelCase ) + random(__UpperCamelCase , __UpperCamelCase ) ) a__ : Tuple = list(__UpperCamelCase ) shuffle(__UpperCamelCase ) return "".join(__UpperCamelCase ) # random is a generalised function for letters, characters and numbers def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> str: return "".join(secrets.choice(__UpperCamelCase ) for _ in range(__UpperCamelCase ) ) def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> List[str]: pass # Put your code here... def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> Union[str, Any]: pass # Put your code here... def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase ) -> List[Any]: pass # Put your code here... def SCREAMING_SNAKE_CASE( __UpperCamelCase , __UpperCamelCase = 8 ) -> bool: if len(__UpperCamelCase ) < min_length: # Your Password must be at least 8 characters long return False a__ : Dict = any(char in ascii_uppercase for char in password ) a__ : Optional[int] = any(char in ascii_lowercase for char in password ) a__ : Optional[Any] = any(char in digits for char in password ) a__ : Tuple = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def SCREAMING_SNAKE_CASE( ) -> Dict: a__ : List[Any] = int(input("Please indicate the max length of your password: " ).strip() ) a__ : Optional[Any] = input( "Please indicate the characters that must be in your password: " ).strip() print("Password generated:" , password_generator(__UpperCamelCase ) ) print( "Alternative Password generated:" , alternative_password_generator(__UpperCamelCase , __UpperCamelCase ) , ) print("[If you are thinking of using this passsword, You better save it.]" ) if __name__ == "__main__": main()
207
1
# flake8: noqa # Lint as: python3 from typing import Dict, List, Optional, Type from .. import config from ..utils import logging from .formatting import ( ArrowFormatter, CustomFormatter, Formatter, PandasFormatter, PythonFormatter, TensorFormatter, format_table, query_table, ) from .np_formatter import NumpyFormatter lowercase__ =logging.get_logger(__name__) lowercase__ ={} lowercase__ ={} lowercase__ ={} def __UpperCamelCase ( lowerCAmelCase__ : str , lowerCAmelCase__ : str , lowerCAmelCase__ : str = None , ): __a : Any = aliases if aliases is not None else [] if format_type in _FORMAT_TYPES: logger.warning( f"Overwriting format type \'{format_type}\' ({_FORMAT_TYPES[format_type].__name__} -> {formatter_cls.__name__})" ) __a : List[str] = formatter_cls for alias in set(aliases + [format_type] ): if alias in _FORMAT_TYPES_ALIASES: logger.warning( f"Overwriting format type alias \'{alias}\' ({_FORMAT_TYPES_ALIASES[alias]} -> {format_type})" ) __a : Any = format_type def __UpperCamelCase ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : Union[str, Any] = None ): __a : Tuple = aliases if aliases is not None else [] for alias in set(aliases + [format_type] ): __a : Any = unavailable_error # Here we define all the available formatting functions that can be used by `Dataset.set_format` _register_formatter(PythonFormatter, None, aliases=['python']) _register_formatter(ArrowFormatter, 'arrow', aliases=['pa', 'pyarrow']) _register_formatter(NumpyFormatter, 'numpy', aliases=['np']) _register_formatter(PandasFormatter, 'pandas', aliases=['pd']) _register_formatter(CustomFormatter, 'custom') if config.TORCH_AVAILABLE: from .torch_formatter import TorchFormatter _register_formatter(TorchFormatter, 'torch', aliases=['pt', 'pytorch']) else: lowercase__ =ValueError('PyTorch needs to be installed to be able to return PyTorch tensors.') _register_unavailable_formatter(_torch_error, 'torch', aliases=['pt', 'pytorch']) if config.TF_AVAILABLE: from .tf_formatter import TFFormatter _register_formatter(TFFormatter, 'tensorflow', aliases=['tf']) else: lowercase__ =ValueError('Tensorflow needs to be installed to be able to return Tensorflow tensors.') _register_unavailable_formatter(_tf_error, 'tensorflow', aliases=['tf']) if config.JAX_AVAILABLE: from .jax_formatter import JaxFormatter _register_formatter(JaxFormatter, 'jax', aliases=[]) else: lowercase__ =ValueError('JAX needs to be installed to be able to return JAX arrays.') _register_unavailable_formatter(_jax_error, 'jax', aliases=[]) def __UpperCamelCase ( lowerCAmelCase__ : int ): if format_type in _FORMAT_TYPES_ALIASES: return _FORMAT_TYPES_ALIASES[format_type] else: return format_type def __UpperCamelCase ( lowerCAmelCase__ : int , **lowerCAmelCase__ : List[str] ): __a : Tuple = get_format_type_from_alias(lowerCAmelCase__ ) if format_type in _FORMAT_TYPES: return _FORMAT_TYPES[format_type](**lowerCAmelCase__ ) if format_type in _FORMAT_TYPES_ALIASES_UNAVAILABLE: raise _FORMAT_TYPES_ALIASES_UNAVAILABLE[format_type] else: raise ValueError( f"Return type should be None or selected in {list(type for type in _FORMAT_TYPES.keys() if type != None )}, but got \'{format_type}\'" )
521
from collections.abc import Sequence from queue import Queue class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None )->List[str]: '''simple docstring''' A_ : List[str] = start A_ : Dict = end A_ : Optional[Any] = val A_ : Optional[int] = (start + end) // 2 A_ : List[Any] = left A_ : Any = right def __repr__( self )->List[Any]: '''simple docstring''' return F'''SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})''' class _lowerCamelCase : """simple docstring""" def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Tuple: '''simple docstring''' A_ : Union[str, Any] = collection A_ : int = function if self.collection: A_ : Tuple = self._build_tree(0 , len(_SCREAMING_SNAKE_CASE ) - 1 ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[int]: '''simple docstring''' self._update_tree(self.root , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->List[str]: '''simple docstring''' return self._query_range(self.root , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->int: '''simple docstring''' if start == end: return SegmentTreeNode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.collection[start] ) A_ : List[str] = (start + end) // 2 A_ : str = self._build_tree(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[Any] = self._build_tree(mid + 1 , _SCREAMING_SNAKE_CASE ) return SegmentTreeNode(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , self.fn(left.val , right.val ) , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Any: '''simple docstring''' if node.start == i and node.end == i: A_ : str = val return if i <= node.mid: self._update_tree(node.left , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: self._update_tree(node.right , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ : List[str] = self.fn(node.left.val , node.right.val ) def _snake_case ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE )->Optional[Any]: '''simple docstring''' if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , _SCREAMING_SNAKE_CASE , node.mid ) , self._query_range(node.right , node.mid + 1 , _SCREAMING_SNAKE_CASE ) , ) else: # range in right child tree return self._query_range(node.right , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def _snake_case ( self )->Union[str, Any]: '''simple docstring''' if self.root is not None: A_ : Any = Queue() queue.put(self.root ) while not queue.empty(): A_ : List[str] = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print("""*""" * 50) UpperCamelCase = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
590
0
from __future__ import annotations import inspect import unittest import numpy as np from transformers import DeiTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, TFDeiTModel, ) from transformers.models.deit.modeling_tf_deit import TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import DeiTImageProcessor class A__ : '''simple docstring''' def __init__( self : List[str] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict=13 , _SCREAMING_SNAKE_CASE : Dict=30 , _SCREAMING_SNAKE_CASE : Union[str, Any]=2 , _SCREAMING_SNAKE_CASE : List[Any]=3 , _SCREAMING_SNAKE_CASE : Tuple=True , _SCREAMING_SNAKE_CASE : str=True , _SCREAMING_SNAKE_CASE : str=32 , _SCREAMING_SNAKE_CASE : Any=2 , _SCREAMING_SNAKE_CASE : int=4 , _SCREAMING_SNAKE_CASE : Tuple=37 , _SCREAMING_SNAKE_CASE : Optional[int]="gelu" , _SCREAMING_SNAKE_CASE : int=0.1 , _SCREAMING_SNAKE_CASE : str=0.1 , _SCREAMING_SNAKE_CASE : str=10 , _SCREAMING_SNAKE_CASE : str=0.0_2 , _SCREAMING_SNAKE_CASE : Union[str, Any]=3 , _SCREAMING_SNAKE_CASE : Optional[Any]=None , _SCREAMING_SNAKE_CASE : str=2 , ): """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = is_training UpperCamelCase = use_labels UpperCamelCase = hidden_size UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = type_sequence_label_size UpperCamelCase = initializer_range UpperCamelCase = scope UpperCamelCase = encoder_stride # in DeiT, the seq length equals the number of patches + 2 (we add 2 for the [CLS] and distilation tokens) UpperCamelCase = (image_size // patch_size) ** 2 UpperCamelCase = num_patches + 2 def _SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCamelCase = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" return DeiTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] , _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Tuple ): """simple docstring""" UpperCamelCase = TFDeiTModel(config=_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" UpperCamelCase = TFDeiTForMaskedImageModeling(config=_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFDeiTForMaskedImageModeling(_SCREAMING_SNAKE_CASE ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _SCREAMING_SNAKE_CASE ( self : Any , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" UpperCamelCase = self.type_sequence_label_size UpperCamelCase = TFDeiTForImageClassification(_SCREAMING_SNAKE_CASE ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images UpperCamelCase = 1 UpperCamelCase = TFDeiTForImageClassification(_SCREAMING_SNAKE_CASE ) UpperCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) UpperCamelCase = model(_SCREAMING_SNAKE_CASE , labels=_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class A__ ( __snake_case , __snake_case , unittest.TestCase ): '''simple docstring''' snake_case__ = ( ( TFDeiTModel, TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher, TFDeiTForMaskedImageModeling, ) if is_tf_available() else () ) snake_case__ = ( { """feature-extraction""": TFDeiTModel, """image-classification""": (TFDeiTForImageClassification, TFDeiTForImageClassificationWithTeacher), } if is_tf_available() else {} ) snake_case__ = False snake_case__ = False snake_case__ = False snake_case__ = False def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" UpperCamelCase = TFDeiTModelTester(self ) UpperCamelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : int ): """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason='DeiT does not use inputs_embeds' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) UpperCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_SCREAMING_SNAKE_CASE , tf.keras.layers.Dense ) ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(_SCREAMING_SNAKE_CASE ) UpperCamelCase = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self : List[Any] , _SCREAMING_SNAKE_CASE : Any , _SCREAMING_SNAKE_CASE : Tuple , _SCREAMING_SNAKE_CASE : List[str]=False ): """simple docstring""" UpperCamelCase = super()._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , return_labels=_SCREAMING_SNAKE_CASE ) if return_labels: if "labels" in inputs_dict and "labels" not in inspect.signature(model_class.call ).parameters: del inputs_dict["labels"] return inputs_dict @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" for model_name in TF_DEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = TFDeiTModel.from_pretrained(_SCREAMING_SNAKE_CASE ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) def lowercase__ ( ) -> Dict: """simple docstring""" UpperCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png') return image @require_tf @require_vision class A__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : Dict ): """simple docstring""" return ( DeiTImageProcessor.from_pretrained('facebook/deit-base-distilled-patch16-224' ) if is_vision_available() else None ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): """simple docstring""" UpperCamelCase = TFDeiTForImageClassificationWithTeacher.from_pretrained('facebook/deit-base-distilled-patch16-224' ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=_SCREAMING_SNAKE_CASE , return_tensors='tf' ) # forward pass UpperCamelCase = model(**_SCREAMING_SNAKE_CASE ) # verify the logits UpperCamelCase = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _SCREAMING_SNAKE_CASE ) UpperCamelCase = tf.constant([-1.0_2_6_6, 0.1_9_1_2, -1.2_8_6_1] ) self.assertTrue(np.allclose(outputs.logits[0, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
410
from ...configuration_utils import PretrainedConfig from ...utils import logging __magic_name__ : int = logging.get_logger(__name__) __magic_name__ : Optional[Any] = { '''uclanlp/visualbert-vqa''': '''https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json''', '''uclanlp/visualbert-vqa-pre''': '''https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json''', '''uclanlp/visualbert-vqa-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-vcr''': '''https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json''', '''uclanlp/visualbert-vcr-pre''': '''https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json''', '''uclanlp/visualbert-vcr-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json''' ), '''uclanlp/visualbert-nlvr2''': '''https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-pre''': '''https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json''', '''uclanlp/visualbert-nlvr2-coco-pre''': ( '''https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json''' ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class A__ ( __snake_case ): '''simple docstring''' snake_case__ = """visual_bert""" def __init__( self : Optional[Any] , _SCREAMING_SNAKE_CASE : Optional[int]=3_0522 , _SCREAMING_SNAKE_CASE : Dict=768 , _SCREAMING_SNAKE_CASE : Tuple=512 , _SCREAMING_SNAKE_CASE : Optional[Any]=12 , _SCREAMING_SNAKE_CASE : Any=12 , _SCREAMING_SNAKE_CASE : Any=3072 , _SCREAMING_SNAKE_CASE : Dict="gelu" , _SCREAMING_SNAKE_CASE : Union[str, Any]=0.1 , _SCREAMING_SNAKE_CASE : Any=0.1 , _SCREAMING_SNAKE_CASE : Optional[int]=512 , _SCREAMING_SNAKE_CASE : List[Any]=2 , _SCREAMING_SNAKE_CASE : str=0.0_2 , _SCREAMING_SNAKE_CASE : Any=1E-1_2 , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[int]=True , _SCREAMING_SNAKE_CASE : Dict=1 , _SCREAMING_SNAKE_CASE : Optional[int]=0 , _SCREAMING_SNAKE_CASE : str=2 , **_SCREAMING_SNAKE_CASE : Dict , ): """simple docstring""" super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) UpperCamelCase = vocab_size UpperCamelCase = max_position_embeddings UpperCamelCase = hidden_size UpperCamelCase = visual_embedding_dim UpperCamelCase = num_hidden_layers UpperCamelCase = num_attention_heads UpperCamelCase = intermediate_size UpperCamelCase = hidden_act UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = initializer_range UpperCamelCase = type_vocab_size UpperCamelCase = layer_norm_eps UpperCamelCase = bypass_transformer UpperCamelCase = special_visual_initialize
410
1
import unittest from transformers import GPTNeoXJapaneseConfig, is_torch_available from transformers.models.gpt_neox_japanese.tokenization_gpt_neox_japanese import GPTNeoXJapaneseTokenizer from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import GPTNeoXJapaneseForCausalLM, GPTNeoXJapaneseModel class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase=1_3 , __lowerCAmelCase=7 , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=True , __lowerCAmelCase=9_9 , __lowerCAmelCase=3_2 , __lowerCAmelCase=5 , __lowerCAmelCase=4 , __lowerCAmelCase=4 , __lowerCAmelCase="gelu" , __lowerCAmelCase=0.0 , __lowerCAmelCase=0.1 , __lowerCAmelCase=True , __lowerCAmelCase=5_1_2 , __lowerCAmelCase=1_6 , __lowerCAmelCase=2 , __lowerCAmelCase=0.02 , __lowerCAmelCase=3 , __lowerCAmelCase=4 , __lowerCAmelCase=None , ): """simple docstring""" __magic_name__ :str = parent __magic_name__ :Dict = batch_size __magic_name__ :List[Any] = seq_length __magic_name__ :int = is_training __magic_name__ :Optional[int] = use_input_mask __magic_name__ :Tuple = use_token_type_ids __magic_name__ :Optional[Any] = use_labels __magic_name__ :Tuple = vocab_size __magic_name__ :List[str] = hidden_size __magic_name__ :str = num_hidden_layers __magic_name__ :int = num_attention_heads __magic_name__ :Tuple = intermediate_multiple_size __magic_name__ :int = hidden_act __magic_name__ :Optional[int] = hidden_dropout __magic_name__ :Optional[Any] = attention_dropout __magic_name__ :Optional[Any] = weight_tying __magic_name__ :str = max_position_embeddings __magic_name__ :Any = type_vocab_size __magic_name__ :Optional[int] = type_sequence_label_size __magic_name__ :List[str] = initializer_range __magic_name__ :Dict = num_labels __magic_name__ :Optional[Any] = num_choices __magic_name__ :List[Any] = scope def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __magic_name__ :Optional[Any] = None if self.use_input_mask: __magic_name__ :Optional[Any] = random_attention_mask([self.batch_size, self.seq_length] ) __magic_name__ :List[str] = None if self.use_labels: __magic_name__ :Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __magic_name__ :Dict = self.get_config() return config, input_ids, input_mask, token_labels def A ( self ): """simple docstring""" return GPTNeoXJapaneseConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_multiple_size=self.intermediate_multiple_size , hidden_act=self.hidden_act , hidden_dropout=self.hidden_dropout , attention_dropout=self.attention_dropout , weight_tying=self.weight_tying , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__lowerCAmelCase , initializer_range=self.initializer_range , ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :List[Any] = self.prepare_config_and_inputs() __magic_name__ :Union[str, Any] = True return config, input_ids, input_mask, token_labels def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :str = GPTNeoXJapaneseModel(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Tuple = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) __magic_name__ :Dict = model(__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :str = True __magic_name__ :Union[str, Any] = GPTNeoXJapaneseModel(__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :Any = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :str = GPTNeoXJapaneseForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() __magic_name__ :List[Any] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , labels=__lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = True __magic_name__ :Dict = GPTNeoXJapaneseForCausalLM(config=__lowerCAmelCase ) model.to(__lowerCAmelCase ) model.eval() # first forward pass __magic_name__ :List[str] = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , use_cache=__lowerCAmelCase ) __magic_name__ :Optional[Any] = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids __magic_name__ :str = ids_tensor((self.batch_size, 3) , config.vocab_size ) __magic_name__ :Optional[Any] = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and __magic_name__ :List[str] = torch.cat([input_ids, next_tokens] , dim=-1 ) __magic_name__ :Optional[Any] = torch.cat([input_mask, next_mask] , dim=-1 ) __magic_name__ :Tuple = model(__lowerCAmelCase , attention_mask=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase ) __magic_name__ :int = output_from_no_past['''hidden_states'''][0] __magic_name__ :Dict = model( __lowerCAmelCase , attention_mask=__lowerCAmelCase , past_key_values=__lowerCAmelCase , output_hidden_states=__lowerCAmelCase , )['''hidden_states'''][0] # select random slice __magic_name__ :int = ids_tensor((1,) , output_from_past.shape[-1] ).item() __magic_name__ :Optional[Any] = output_from_no_past[:, -3:, random_slice_idx].detach() __magic_name__ :Optional[int] = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__lowerCAmelCase , __lowerCAmelCase , atol=1E-3 ) ) def A ( self ): """simple docstring""" __magic_name__ :Union[str, Any] = self.prepare_config_and_inputs() __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :Optional[int] = config_and_inputs __magic_name__ :Optional[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase_ ( lowerCamelCase , lowerCamelCase , unittest.TestCase ): a__ = (GPTNeoXJapaneseModel, GPTNeoXJapaneseForCausalLM) if is_torch_available() else () a__ = (GPTNeoXJapaneseForCausalLM,) if is_torch_available() else () a__ = ( {'''feature-extraction''': GPTNeoXJapaneseModel, '''text-generation''': GPTNeoXJapaneseForCausalLM} if is_torch_available() else {} ) a__ = False a__ = False a__ = False a__ = False def A ( self ): """simple docstring""" __magic_name__ :int = GPTNeoXJapaneseModelTester(self ) __magic_name__ :Union[str, Any] = ConfigTester(self , config_class=__lowerCAmelCase , hidden_size=3_7 ) def A ( self ): """simple docstring""" self.config_tester.run_common_tests() def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :int = self.model_tester.prepare_config_and_inputs_for_decoder() self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" # This regression test was failing with PyTorch < 1.3 __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :int = self.model_tester.prepare_config_and_inputs_for_decoder() __magic_name__ :List[str] = None self.model_tester.create_and_check_model_as_decoder(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ :str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_decoder_model_past_large_inputs(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) def A ( self ): """simple docstring""" __magic_name__ :Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_causal_lm(*__lowerCAmelCase ) @slow def A ( self ): """simple docstring""" __magic_name__ :Any = '''abeja/gpt-neox-japanese-2.7b''' __magic_name__ :Union[str, Any] = ['''データサイエンティストとは、''', '''100年後に必要とされる会社は、''', '''フルリモートの環境で働くために必要なことは、''', '''国境の長いトンネルを抜けると''', '''美味しい日本食といえば、'''] __magic_name__ :Union[str, Any] = [ '''データサイエンティストとは、データを分析し、ビジネスに役立つ知見を導き出す専門家のことです。''', '''100年後に必要とされる会社は、「人」が中心の会社です。''', '''フルリモートの環境で働くために必要なことは、「自分の時間をコントロールする」ことです。''', '''国境の長いトンネルを抜けると、そこは雪国だった。''', '''美味しい日本食といえば、やっぱりお寿司ですよね。''', ] __magic_name__ :Optional[int] = GPTNeoXJapaneseTokenizer.from_pretrained(__lowerCAmelCase ) __magic_name__ :Union[str, Any] = GPTNeoXJapaneseForCausalLM.from_pretrained(__lowerCAmelCase ) __magic_name__ :Optional[Any] = [] for prompt in prompts: __magic_name__ :Optional[int] = tokenizer(__lowerCAmelCase , return_tensors='''pt''' ).input_ids __magic_name__ :List[Any] = model.generate(__lowerCAmelCase , max_length=5_0 ) __magic_name__ :Dict = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase )
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def a__ ( snake_case__ ) -> list[list[float]]: lowerCamelCase = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(snake_case__ ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCamelCase = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creates a copy of the matrix with swapped positions of the elements lowerCamelCase = [[0.0, 0.0], [0.0, 0.0]] lowerCamelCase , lowerCamelCase = matrix[1][1], matrix[0][0] lowerCamelCase , lowerCamelCase = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(snake_case__ ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(snake_case__ ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCamelCase = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("""This matrix has no inverse.""" ) # Creating cofactor matrix lowerCamelCase = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCamelCase = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCamelCase = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCamelCase = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCamelCase = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCamelCase = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCamelCase = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCamelCase = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCamelCase = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCamelCase = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCamelCase = array(snake_case__ ) for i in range(3 ): for j in range(3 ): lowerCamelCase = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCamelCase = array(snake_case__ ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(snake_case__ ) # Calculate the inverse of the matrix return [[float(d(snake_case__ ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("""Please provide a matrix of size 2x2 or 3x3.""" )
543
0
import math from typing import Dict, Iterable, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, get_image_size, is_torch_available, is_torch_tensor, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_torch_available(): import torch if is_vision_available(): import PIL __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCAmelCase_ : np.ndarray ,lowerCAmelCase_ : Union[int, Iterable[int]] ,lowerCAmelCase_ : bool ,lowerCAmelCase_ : int ) -> Tuple[int, int]: """simple docstring""" def constraint_to_multiple_of(lowerCAmelCase_ : Union[str, Any] ,lowerCAmelCase_ : int ,lowerCAmelCase_ : Any=0 ,lowerCAmelCase_ : Optional[Any]=None ): SCREAMING_SNAKE_CASE_ : Optional[Any] =round(val / multiple ) * multiple if max_val is not None and x > max_val: SCREAMING_SNAKE_CASE_ : int =math.floor(val / multiple ) * multiple if x < min_val: SCREAMING_SNAKE_CASE_ : Optional[int] =math.ceil(val / multiple ) * multiple return x SCREAMING_SNAKE_CASE_ : Union[str, Any] =(output_size, output_size) if isinstance(lowerCAmelCase_ ,lowerCAmelCase_ ) else output_size SCREAMING_SNAKE_CASE_ : str =get_image_size(lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Dict =output_size # determine new height and width SCREAMING_SNAKE_CASE_ : Optional[Any] =output_height / input_height SCREAMING_SNAKE_CASE_ : str =output_width / input_width if keep_aspect_ratio: # scale as little as possible if abs(1 - scale_width ) < abs(1 - scale_height ): # fit width SCREAMING_SNAKE_CASE_ : List[Any] =scale_width else: # fit height SCREAMING_SNAKE_CASE_ : Optional[int] =scale_height SCREAMING_SNAKE_CASE_ : Any =constraint_to_multiple_of(scale_height * input_height ,multiple=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE_ : Optional[Any] =constraint_to_multiple_of(scale_width * input_width ,multiple=lowerCAmelCase_ ) return (new_height, new_width) class lowerCAmelCase_ ( __A ): '''simple docstring''' _lowercase = ['pixel_values'] def __init__( self , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = PILImageResampling.BILINEAR , __UpperCAmelCase = False , __UpperCAmelCase = 1 , __UpperCAmelCase = True , __UpperCAmelCase = 1 / 255 , __UpperCAmelCase = True , __UpperCAmelCase = None , __UpperCAmelCase = None , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Tuple =size if size is not None else {'height': 384, 'width': 384} SCREAMING_SNAKE_CASE_ : List[Any] =get_size_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Optional[Any] =do_resize SCREAMING_SNAKE_CASE_ : List[Any] =size SCREAMING_SNAKE_CASE_ : Union[str, Any] =keep_aspect_ratio SCREAMING_SNAKE_CASE_ : Optional[Any] =ensure_multiple_of SCREAMING_SNAKE_CASE_ : List[str] =resample SCREAMING_SNAKE_CASE_ : List[str] =do_rescale SCREAMING_SNAKE_CASE_ : Union[str, Any] =rescale_factor SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_normalize SCREAMING_SNAKE_CASE_ : List[Any] =image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN SCREAMING_SNAKE_CASE_ : List[Any] =image_std if image_std is not None else IMAGENET_STANDARD_STD def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = False , __UpperCAmelCase = 1 , __UpperCAmelCase = PILImageResampling.BICUBIC , __UpperCAmelCase = None , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : List[str] =get_size_dict(__UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) SCREAMING_SNAKE_CASE_ : Optional[int] =get_resize_output_image_size( __UpperCAmelCase , output_size=(size['height'], size['width']) , keep_aspect_ratio=__UpperCAmelCase , multiple=__UpperCAmelCase , ) return resize(__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return rescale(__UpperCAmelCase , scale=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = None , **__UpperCAmelCase , ): return normalize(__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase , data_format=__UpperCAmelCase , **__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = None , __UpperCAmelCase = ChannelDimension.FIRST , **__UpperCAmelCase , ): SCREAMING_SNAKE_CASE_ : Dict =do_resize if do_resize is not None else self.do_resize SCREAMING_SNAKE_CASE_ : Any =size if size is not None else self.size SCREAMING_SNAKE_CASE_ : str =get_size_dict(__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : int =keep_aspect_ratio if keep_aspect_ratio is not None else self.keep_aspect_ratio SCREAMING_SNAKE_CASE_ : str =ensure_multiple_of if ensure_multiple_of is not None else self.ensure_multiple_of SCREAMING_SNAKE_CASE_ : Optional[Any] =resample if resample is not None else self.resample SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_rescale if do_rescale is not None else self.do_rescale SCREAMING_SNAKE_CASE_ : Tuple =rescale_factor if rescale_factor is not None else self.rescale_factor SCREAMING_SNAKE_CASE_ : Union[str, Any] =do_normalize if do_normalize is not None else self.do_normalize SCREAMING_SNAKE_CASE_ : str =image_mean if image_mean is not None else self.image_mean SCREAMING_SNAKE_CASE_ : Optional[Any] =image_std if image_std is not None else self.image_std SCREAMING_SNAKE_CASE_ : int =make_list_of_images(__UpperCAmelCase ) if not valid_images(__UpperCAmelCase ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # All transformations expect numpy arrays. SCREAMING_SNAKE_CASE_ : List[str] =[to_numpy_array(__UpperCAmelCase ) for image in images] if do_resize: SCREAMING_SNAKE_CASE_ : Optional[int] =[self.resize(image=__UpperCAmelCase , size=__UpperCAmelCase , resample=__UpperCAmelCase ) for image in images] if do_rescale: SCREAMING_SNAKE_CASE_ : int =[self.rescale(image=__UpperCAmelCase , scale=__UpperCAmelCase ) for image in images] if do_normalize: SCREAMING_SNAKE_CASE_ : List[Any] =[self.normalize(image=__UpperCAmelCase , mean=__UpperCAmelCase , std=__UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Optional[int] =[to_channel_dimension_format(__UpperCAmelCase , __UpperCAmelCase ) for image in images] SCREAMING_SNAKE_CASE_ : Optional[Any] ={'pixel_values': images} return BatchFeature(data=__UpperCAmelCase , tensor_type=__UpperCAmelCase ) def __lowerCamelCase ( self , __UpperCAmelCase , __UpperCAmelCase = None ): SCREAMING_SNAKE_CASE_ : int =outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(__UpperCAmelCase ) != len(__UpperCAmelCase ): raise ValueError( 'Make sure that you pass in as many target sizes as the batch dimension of the logits' ) if is_torch_tensor(__UpperCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[Any] =target_sizes.numpy() SCREAMING_SNAKE_CASE_ : Optional[int] =[] for idx in range(len(__UpperCAmelCase ) ): SCREAMING_SNAKE_CASE_ : Union[str, Any] =torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode='bilinear' , align_corners=__UpperCAmelCase ) SCREAMING_SNAKE_CASE_ : Union[str, Any] =resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE_ : Any =logits.argmax(dim=1 ) SCREAMING_SNAKE_CASE_ : Dict =[semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
706
__SCREAMING_SNAKE_CASE = '\n# Transformers installation\n! pip install transformers datasets\n# To install from source instead of the last release, comment the command above and uncomment the following one.\n# ! pip install git+https://github.com/huggingface/transformers.git\n' __SCREAMING_SNAKE_CASE = [{'type': 'code', 'content': INSTALL_CONTENT}] __SCREAMING_SNAKE_CASE = { '{processor_class}': 'FakeProcessorClass', '{model_class}': 'FakeModelClass', '{object_class}': 'FakeObjectClass', }
153
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_blenderbot import BlenderbotTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation __lowercase = logging.get_logger(__name__) __lowercase = { '''vocab_file''': '''vocab.json''', '''merges_file''': '''merges.txt''', '''tokenizer_config_file''': '''tokenizer_config.json''', } __lowercase = { '''vocab_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/vocab.json'''}, '''merges_file''': {'''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/merges.txt'''}, '''tokenizer_config_file''': { '''facebook/blenderbot-3B''': '''https://huggingface.co/facebook/blenderbot-3B/resolve/main/tokenizer_config.json''' }, } __lowercase = {'''facebook/blenderbot-3B''': 128} class lowerCamelCase_ ( UpperCAmelCase_ ): '''simple docstring''' a__ : List[str] = VOCAB_FILES_NAMES a__ : int = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Optional[Any] = ["""input_ids""", """attention_mask"""] a__ : List[Any] = BlenderbotTokenizer def __init__( self , __lowercase=None , __lowercase=None , __lowercase=None , __lowercase="replace" , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<s>" , __lowercase="<unk>" , __lowercase="<pad>" , __lowercase="<mask>" , __lowercase=False , __lowercase=True , **__lowercase , ) -> Optional[int]: super().__init__( __lowercase , __lowercase , tokenizer_file=__lowercase , errors=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , cls_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , mask_token=__lowercase , add_prefix_space=__lowercase , trim_offsets=__lowercase , **__lowercase , ) __UpperCamelCase :Any = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__()) if pre_tok_state.get('''add_prefix_space''' , __lowercase) != add_prefix_space: __UpperCamelCase :List[Any] = getattr(__lowercase , pre_tok_state.pop('''type''')) __UpperCamelCase :Optional[Any] = add_prefix_space __UpperCamelCase :Any = pre_tok_class(**__lowercase) __UpperCamelCase :List[Any] = add_prefix_space __UpperCamelCase :str = '''post_processor''' __UpperCamelCase :Union[str, Any] = getattr(self.backend_tokenizer , __lowercase , __lowercase) if tokenizer_component_instance: __UpperCamelCase :Tuple = json.loads(tokenizer_component_instance.__getstate__()) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: __UpperCamelCase :Union[str, Any] = tuple(state['''sep''']) if "cls" in state: __UpperCamelCase :int = tuple(state['''cls''']) __UpperCamelCase :Optional[int] = False if state.get('''add_prefix_space''' , __lowercase) != add_prefix_space: __UpperCamelCase :List[str] = add_prefix_space __UpperCamelCase :Union[str, Any] = True if state.get('''trim_offsets''' , __lowercase) != trim_offsets: __UpperCamelCase :Dict = trim_offsets __UpperCamelCase :Tuple = True if changes_to_apply: __UpperCamelCase :List[Any] = getattr(__lowercase , state.pop('''type''')) __UpperCamelCase :List[Any] = component_class(**__lowercase) setattr(self.backend_tokenizer , __lowercase , __lowercase) @property # Copied from transformers.models.roberta.tokenization_roberta_fast.RobertaTokenizerFast.mask_token with Roberta->Blenderbot, RoBERTa->Blenderbot def UpperCamelCase__ ( self) -> str: if self._mask_token is None: if self.verbose: logger.error('''Using mask_token, but it is not set yet.''') return None return str(self._mask_token) @mask_token.setter def UpperCamelCase__ ( self , __lowercase) -> Optional[int]: __UpperCamelCase :Dict = AddedToken(__lowercase , lstrip=__lowercase , rstrip=__lowercase) if isinstance(__lowercase , __lowercase) else value __UpperCamelCase :Optional[int] = value def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> BatchEncoding: __UpperCamelCase :int = kwargs.get('''is_split_into_words''' , __lowercase) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , *__lowercase , **__lowercase) -> BatchEncoding: __UpperCamelCase :List[Any] = kwargs.get('''is_split_into_words''' , __lowercase) assert self.add_prefix_space or not is_split_into_words, ( f"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__lowercase , **__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Tuple[str]: __UpperCamelCase :Union[str, Any] = self._tokenizer.model.save(__lowercase , name=__lowercase) return tuple(__lowercase) def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> List[int]: __UpperCamelCase :Tuple = [self.sep_token_id] __UpperCamelCase :Any = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep) * [0] def UpperCamelCase__ ( self , __lowercase , __lowercase = None) -> Dict: return token_ids_a + [self.eos_token_id] def UpperCamelCase__ ( self , __lowercase) -> List[int]: __UpperCamelCase :Any = [] for is_user, text in conversation.iter_texts(): if is_user: # We need to space prefix as it's being done within blenderbot inputs.append(''' ''' + text) else: # Generated responses should contain them already. inputs.append(__lowercase) __UpperCamelCase :Tuple = ''' '''.join(__lowercase) __UpperCamelCase :Any = self.encode(__lowercase) if len(__lowercase) > self.model_max_length: __UpperCamelCase :List[str] = input_ids[-self.model_max_length :] logger.warning(f"""Trimmed input from conversation as it was longer than {self.model_max_length} tokens.""") return input_ids
167
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase_ ( UpperCAmelCase_ , unittest.TestCase ): '''simple docstring''' a__ : Any = DDIMPipeline a__ : int = UNCONDITIONAL_IMAGE_GENERATION_PARAMS a__ : Optional[int] = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """latents""", """callback""", """callback_steps""", } a__ : Any = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS a__ : Optional[int] = False def UpperCamelCase__ ( self) -> Optional[Any]: torch.manual_seed(0) __UpperCamelCase :Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) __UpperCamelCase :Dict = DDIMScheduler() __UpperCamelCase :int = {'''unet''': unet, '''scheduler''': scheduler} return components def UpperCamelCase__ ( self , __lowercase , __lowercase=0) -> Tuple: if str(__lowercase).startswith('''mps'''): __UpperCamelCase :Optional[int] = torch.manual_seed(__lowercase) else: __UpperCamelCase :Tuple = torch.Generator(device=__lowercase).manual_seed(__lowercase) __UpperCamelCase :str = { '''batch_size''': 1, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :int = '''cpu''' __UpperCamelCase :Any = self.get_dummy_components() __UpperCamelCase :Any = self.pipeline_class(**__lowercase) pipe.to(__lowercase) pipe.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Dict = self.get_dummy_inputs(__lowercase) __UpperCamelCase :Union[str, Any] = pipe(**__lowercase).images __UpperCamelCase :Dict = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3)) __UpperCamelCase :List[str] = np.array( [1.0_0_0E0_0, 5.7_1_7E-0_1, 4.7_1_7E-0_1, 1.0_0_0E0_0, 0.0_0_0E0_0, 1.0_0_0E0_0, 3.0_0_0E-0_4, 0.0_0_0E0_0, 9.0_0_0E-0_4]) __UpperCamelCase :int = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(__lowercase , 1E-3) def UpperCamelCase__ ( self) -> str: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3) def UpperCamelCase__ ( self) -> Any: super().test_save_load_local(expected_max_difference=3E-3) def UpperCamelCase__ ( self) -> Optional[Any]: super().test_save_load_optional_components(expected_max_difference=3E-3) def UpperCamelCase__ ( self) -> Union[str, Any]: super().test_inference_batch_single_identical(expected_max_diff=3E-3) @slow @require_torch_gpu class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase__ ( self) -> Dict: __UpperCamelCase :int = '''google/ddpm-cifar10-32''' __UpperCamelCase :str = UNetaDModel.from_pretrained(__lowercase) __UpperCamelCase :int = DDIMScheduler() __UpperCamelCase :Optional[Any] = DDIMPipeline(unet=__lowercase , scheduler=__lowercase) ddim.to(__lowercase) ddim.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Dict = torch.manual_seed(0) __UpperCamelCase :Tuple = ddim(generator=__lowercase , eta=0.0 , output_type='''numpy''').images __UpperCamelCase :Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __UpperCamelCase :List[str] = np.array([0.17_23, 0.16_17, 0.16_00, 0.16_26, 0.14_97, 0.15_13, 0.15_05, 0.14_42, 0.14_53]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2 def UpperCamelCase__ ( self) -> str: __UpperCamelCase :int = '''google/ddpm-ema-bedroom-256''' __UpperCamelCase :Optional[Any] = UNetaDModel.from_pretrained(__lowercase) __UpperCamelCase :Union[str, Any] = DDIMScheduler.from_pretrained(__lowercase) __UpperCamelCase :Optional[int] = DDIMPipeline(unet=__lowercase , scheduler=__lowercase) ddpm.to(__lowercase) ddpm.set_progress_bar_config(disable=__lowercase) __UpperCamelCase :Dict = torch.manual_seed(0) __UpperCamelCase :Optional[int] = ddpm(generator=__lowercase , output_type='''numpy''').images __UpperCamelCase :Any = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) __UpperCamelCase :Any = np.array([0.00_60, 0.02_01, 0.03_44, 0.00_24, 0.00_18, 0.00_02, 0.00_22, 0.00_00, 0.00_69]) assert np.abs(image_slice.flatten() - expected_slice).max() < 1E-2
167
1
"""simple docstring""" from . import __version__ # Backward compatibility imports, to make sure all those objects can be found in file_utils from .utils import ( CLOUDFRONT_DISTRIB_PREFIX, CONFIG_NAME, DISABLE_TELEMETRY, DUMMY_INPUTS, DUMMY_MASK, ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, FEATURE_EXTRACTOR_NAME, FLAX_WEIGHTS_NAME, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, MODEL_CARD_NAME, MULTIPLE_CHOICE_DUMMY_INPUTS, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, SENTENCEPIECE_UNDERLINE, SPIECE_UNDERLINE, TF2_WEIGHTS_NAME, TF_WEIGHTS_NAME, TORCH_FX_REQUIRED_VERSION, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, USE_JAX, USE_TF, USE_TORCH, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ContextManagers, DummyObject, EntryNotFoundError, ExplicitEnum, ModelOutput, PaddingStrategy, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, TensorType, _LazyModule, add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, cached_property, copy_func, default_cache_path, define_sagemaker_information, get_cached_models, get_file_from_repo, get_full_repo_name, get_torch_version, has_file, http_user_agent, is_apex_available, is_bsa_available, is_coloredlogs_available, is_datasets_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_librosa_available, is_offline_mode, is_onnx_available, is_pandas_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytorch_quantization_available, is_rjieba_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_tensor, is_tensorflow_probability_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_training_run_on_sagemaker, is_vision_available, replace_return_docstrings, requires_backends, to_numpy, to_py_obj, torch_only_method, )
562
"""simple docstring""" from timeit import timeit UpperCamelCase = { """MALAYALAM""": True, """String""": False, """rotor""": True, """level""": True, """A""": True, """BB""": True, """ABC""": False, """amanaplanacanalpanama""": True, # "a man a plan a canal panama" } # Ensure our test data is valid assert all((key == key[::-1]) is value for key, value in test_data.items()) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bool: """simple docstring""" A__ = 0 A__ = len(UpperCAmelCase_ ) - 1 while start_i < end_i: if s[start_i] == s[end_i]: start_i += 1 end_i -= 1 else: return False return True def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bool: """simple docstring""" A__ = len(UpperCAmelCase_ ) // 2 A__ = len(UpperCAmelCase_ ) # We need to traverse till half of the length of string # as we can get access of the i'th last element from # i'th index. # eg: [0,1,2,3,4,5] => 4th index can be accessed # with the help of 1st index (i==n-i-1) # where n is length of string return all(s[i] == s[n - i - 1] for i in range(UpperCAmelCase_ ) ) def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bool: """simple docstring""" if len(UpperCAmelCase_ ) <= 2: return True if s[0] == s[len(UpperCAmelCase_ ) - 1]: return is_palindrome_recursive(s[1:-1] ) else: return False def _lowerCamelCase ( UpperCAmelCase_ : str ) -> bool: """simple docstring""" return s == s[::-1] def _lowerCamelCase ( UpperCAmelCase_ : str ) -> None: """simple docstring""" A__ = F"""all({name}(key) is value for key, value in test_data.items())""" A__ = F"""from __main__ import test_data, {name}""" A__ = 500000 A__ = timeit(stmt=UpperCAmelCase_, setup=UpperCAmelCase_, number=UpperCAmelCase_ ) print(F"""{name:<35} finished {number:,} runs in {result:.5f} seconds""" ) if __name__ == "__main__": for key, value in test_data.items(): assert is_palindrome(key) is is_palindrome_recursive(key) assert is_palindrome(key) is is_palindrome_slice(key) print(f'{key:21} {value}') print("""a man a plan a canal panama""") # finished 500,000 runs in 0.46793 seconds benchmark_function("""is_palindrome_slice""") # finished 500,000 runs in 0.85234 seconds benchmark_function("""is_palindrome""") # finished 500,000 runs in 1.32028 seconds benchmark_function("""is_palindrome_recursive""") # finished 500,000 runs in 2.08679 seconds benchmark_function("""is_palindrome_traversal""")
562
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from .config import config_command_parser from .config_args import default_config_file, load_config_from_file # noqa: F401 from .default import default_command_parser from .update import update_command_parser def UpperCamelCase__ ( __magic_name__ : Dict=None ) -> Tuple: '''simple docstring''' snake_case__ : List[Any] = argparse.ArgumentParser(add_help=UpperCamelCase__ , allow_abbrev=UpperCamelCase__ ) # The main config parser snake_case__ : int = config_command_parser(UpperCamelCase__ ) # The subparser to add commands to snake_case__ : Optional[Any] = config_parser.add_subparsers(title="""subcommands""" , dest="""subcommand""" ) # Then add other parsers with the parent parser default_command_parser(UpperCamelCase__ , parents=[parent_parser] ) update_command_parser(UpperCamelCase__ , parents=[parent_parser] ) return config_parser def UpperCamelCase__ ( ) -> List[Any]: '''simple docstring''' snake_case__ : int = get_config_parser() snake_case__ : Any = config_parser.parse_args() if not hasattr(UpperCamelCase__ , """func""" ): config_parser.print_help() exit(1 ) # Run args.func(UpperCamelCase__ ) if __name__ == "__main__": main()
38
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase__ = { 'configuration_jukebox': [ 'JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP', 'JukeboxConfig', 'JukeboxPriorConfig', 'JukeboxVQVAEConfig', ], 'tokenization_jukebox': ['JukeboxTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase__ = [ 'JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST', 'JukeboxModel', 'JukeboxPreTrainedModel', 'JukeboxVQVAE', 'JukeboxPrior', ] if TYPE_CHECKING: from .configuration_jukebox import ( JUKEBOX_PRETRAINED_CONFIG_ARCHIVE_MAP, JukeboxConfig, JukeboxPriorConfig, JukeboxVQVAEConfig, ) from .tokenization_jukebox import JukeboxTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_jukebox import ( JUKEBOX_PRETRAINED_MODEL_ARCHIVE_LIST, JukeboxModel, JukeboxPreTrainedModel, JukeboxPrior, JukeboxVQVAE, ) else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
503
0
import requests __UpperCamelCase : Dict = 'YOUR API KEY' def _UpperCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : str = giphy_api_key ): """simple docstring""" __lowerCamelCase : Any = """+""".join(query.split() ) __lowerCamelCase : List[Any] = f"""https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}""" __lowerCamelCase : List[str] = requests.get(UpperCAmelCase ).json()["""data"""] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
458
import argparse import fairseq import torch from torch import nn from transformers import ( MBartaaTokenizer, MBartConfig, MBartForCausalLM, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __UpperCamelCase : Optional[Any] = logging.get_logger(__name__) __UpperCamelCase : List[str] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'quantizer.weight_proj': 'quantizer.weight_proj', 'quantizer.vars': 'quantizer.codevectors', 'project_q': 'project_q', 'final_proj': 'project_hid', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } __UpperCamelCase : Dict = [ 'lm_head', 'quantizer.weight_proj', 'quantizer.codevectors', 'project_q', 'project_hid', ] def _UpperCAmelCase ( UpperCAmelCase : Optional[int] , UpperCAmelCase : List[str] , UpperCAmelCase : Optional[int] , UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any ): """simple docstring""" for attribute in key.split(""".""" ): __lowerCamelCase : Any = getattr(UpperCAmelCase , UpperCAmelCase ) if weight_type is not None: __lowerCamelCase : List[Any] = getattr(UpperCAmelCase , UpperCAmelCase ).shape else: __lowerCamelCase : Optional[int] = hf_pointer.shape assert hf_shape == value.shape, ( f"""Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be""" f""" {value.shape} for {full_name}""" ) if weight_type == "weight": __lowerCamelCase : List[Any] = value elif weight_type == "weight_g": __lowerCamelCase : Tuple = value elif weight_type == "weight_v": __lowerCamelCase : List[Any] = value elif weight_type == "bias": __lowerCamelCase : Optional[int] = value else: __lowerCamelCase : Dict = value logger.info(f"""{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.""" ) def _UpperCAmelCase ( UpperCAmelCase : List[Any] , UpperCAmelCase : Optional[Any] ): """simple docstring""" __lowerCamelCase : Tuple = [] __lowerCamelCase : Union[str, Any] = fairseq_model.state_dict() __lowerCamelCase : Optional[Any] = hf_model.feature_extractor __lowerCamelCase : List[str] = hf_model.adapter for name, value in fairseq_dict.items(): __lowerCamelCase : List[str] = False if "conv_layers" in name: load_conv_layer( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , hf_model.config.feat_extract_norm == """group""" , ) __lowerCamelCase : Any = True elif any(x in name for x in ["""adaptor""", """w2v_encoder.proj.""", """w2v_proj_ln."""] ): load_adapter(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase : Dict = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split("""w2v_model.""" )[-1] == name.split(""".""" )[0]: __lowerCamelCase : Union[str, Any] = True if "*" in mapped_key: __lowerCamelCase : int = name.split(UpperCAmelCase )[0].split(""".""" )[-2] __lowerCamelCase : Dict = mapped_key.replace("""*""" , UpperCAmelCase ) if "weight_g" in name: __lowerCamelCase : int = """weight_g""" elif "weight_v" in name: __lowerCamelCase : List[str] = """weight_v""" elif "bias" in name: __lowerCamelCase : str = """bias""" elif "weight" in name: __lowerCamelCase : List[str] = """weight""" else: __lowerCamelCase : int = None set_recursively(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) continue if not is_used: unused_weights.append(UpperCAmelCase ) logger.warning(f"""Unused weights: {unused_weights}""" ) def _UpperCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : Optional[int] , UpperCAmelCase : Any , UpperCAmelCase : Union[str, Any] , UpperCAmelCase : Union[str, Any] ): """simple docstring""" __lowerCamelCase : List[str] = full_name.split("""conv_layers.""" )[-1] __lowerCamelCase : Tuple = name.split(""".""" ) __lowerCamelCase : Tuple = int(items[0] ) __lowerCamelCase : str = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) __lowerCamelCase : Dict = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) __lowerCamelCase : List[str] = value logger.info(f"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) __lowerCamelCase : Any = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"""{full_name} has size {value.shape}, but""" f""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) __lowerCamelCase : str = value logger.info(f"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): """simple docstring""" __lowerCamelCase : Union[str, Any] = full_name.split("""adaptor.""" )[-1] __lowerCamelCase : Any = name.split(""".""" ) if items[1].isdigit(): __lowerCamelCase : Dict = int(items[1] ) else: __lowerCamelCase : List[str] = None if "adaptor" not in full_name: if "proj_ln" in full_name: # has to be layer norm if "bias" in name: assert ( value.shape == adapter.proj_layer_norm.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.bias.data.shape} was found.""" __lowerCamelCase : str = value logger.info(f"""Adapter proj layer norm bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj_layer_norm.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj_layer_norm.weight.data.shape} was found.""" __lowerCamelCase : str = value else: # has to be projection layer if "bias" in name: assert ( value.shape == adapter.proj.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.bias.data.shape} was found.""" __lowerCamelCase : Optional[int] = value logger.info(f"""Adapter proj layer bias was initialized from {full_name}.""" ) if "weight" in name: assert ( value.shape == adapter.proj.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.proj.weight.data.shape} was found.""" __lowerCamelCase : List[str] = value logger.info(f"""Adapter proj layer weight was initialized from {full_name}.""" ) elif isinstance(UpperCAmelCase , UpperCAmelCase ): if "bias" in name: assert ( value.shape == adapter.layers[layer_id].conv.bias.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.bias.data.shape} was found.""" __lowerCamelCase : int = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) elif "weight" in name: assert ( value.shape == adapter.layers[layer_id].conv.weight.data.shape ), f"""{full_name} has size {value.shape}, but {adapter.layers[layer_id].conv.weight.data.shape} was found.""" __lowerCamelCase : Tuple = value logger.info(f"""Adapter layer {layer_id} bias was initialized from {full_name}.""" ) else: unused_weights.append(UpperCAmelCase ) def _UpperCAmelCase ( UpperCAmelCase : List[Any] ): """simple docstring""" __lowerCamelCase , __lowerCamelCase : Tuple = emb.weight.shape __lowerCamelCase : Any = nn.Linear(UpperCAmelCase , UpperCAmelCase , bias=UpperCAmelCase ) __lowerCamelCase : List[Any] = emb.weight.data return lin_layer @torch.no_grad() def _UpperCAmelCase ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : List[str] , UpperCAmelCase : List[Any] , UpperCAmelCase : str , UpperCAmelCase : int , UpperCAmelCase : Dict , UpperCAmelCase : Tuple , UpperCAmelCase : Optional[Any] , UpperCAmelCase : int , UpperCAmelCase : int , UpperCAmelCase : Optional[Any] , ): """simple docstring""" __lowerCamelCase : int = WavaVecaConfig.from_pretrained( UpperCAmelCase , add_adapter=UpperCAmelCase , adapter_stride=UpperCAmelCase , adapter_kernel_size=UpperCAmelCase , use_auth_token=UpperCAmelCase , output_hidden_size=UpperCAmelCase , ) __lowerCamelCase : Optional[int] = MBartConfig.from_pretrained(UpperCAmelCase ) # load model __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : Dict = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={ """config_yaml""": config_yaml_path, """data""": """/""".join(dict_path.split("""/""" )[:-1] ), """w2v_path""": checkpoint_path, """load_pretrained_decoder_from""": None, } , ) __lowerCamelCase : Union[str, Any] = model[0].eval() # load feature extractor __lowerCamelCase : Any = WavaVecaFeatureExtractor.from_pretrained(UpperCAmelCase , use_auth_token=UpperCAmelCase ) # set weights for wav2vec2 encoder __lowerCamelCase : Tuple = WavaVecaModel(UpperCAmelCase ) recursively_load_weights_wavaveca(model.encoder , UpperCAmelCase ) # load decoder weights __lowerCamelCase : Dict = MBartForCausalLM(UpperCAmelCase ) __lowerCamelCase , __lowerCamelCase : int = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=UpperCAmelCase ) logger.warning(f"""The following keys are missing when loading the decoder weights: {missing_keys}""" ) logger.warning(f"""The following keys are unexpected when loading the decoder weights: {unexpected_keys}""" ) __lowerCamelCase : List[Any] = SpeechEncoderDecoderModel(encoder=UpperCAmelCase , decoder=UpperCAmelCase ) __lowerCamelCase : Union[str, Any] = False __lowerCamelCase : List[str] = MBartaaTokenizer(UpperCAmelCase ) tokenizer.save_pretrained(UpperCAmelCase ) __lowerCamelCase : int = hf_wavavec.config.to_dict() __lowerCamelCase : str = tokenizer.pad_token_id __lowerCamelCase : Optional[Any] = tokenizer.bos_token_id __lowerCamelCase : Dict = tokenizer.eos_token_id __lowerCamelCase : Tuple = """mbart50""" __lowerCamelCase : List[str] = """wav2vec2""" __lowerCamelCase : List[str] = tokenizer.eos_token_id __lowerCamelCase : Optional[int] = 250_004 __lowerCamelCase : Dict = tokenizer.eos_token_id __lowerCamelCase : Optional[Any] = SpeechEncoderDecoderConfig.from_dict(UpperCAmelCase ) hf_wavavec.save_pretrained(UpperCAmelCase ) feature_extractor.save_pretrained(UpperCAmelCase ) if __name__ == "__main__": __UpperCamelCase : Dict = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_yaml_path', default=None, type=str, help='Path to yaml file of fine-tuned model') parser.add_argument( '--encoder_config_path', default='facebook/wav2vec2-xls-r-1b', type=str, help='Path to hf encoder wav2vec2 checkpoint config', ) parser.add_argument( '--decoder_config_path', default='facebook/mbart-large-50-one-to-many-mmt', type=str, help='Path to hf decoder checkpoint config', ) parser.add_argument('--add_adapter', default=True, type=bool, help='whethere to add model adapter layers') parser.add_argument('--adapter_stride', default=2, type=int, help='stride of adapter layers') parser.add_argument('--adapter_kernel_size', default=3, type=int, help='kernel size of adapter layers') parser.add_argument('--encoder_output_dim', default=1024, type=int, help='encoder output dim') parser.add_argument('--start_token_id', default=250004, type=int, help='`decoder_start_token_id` of model config') __UpperCamelCase : int = parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, args.config_yaml_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, add_adapter=args.add_adapter, adapter_kernel_size=args.adapter_kernel_size, adapter_stride=args.adapter_stride, decoder_start_token_id=args.start_token_id, encoder_output_dim=args.encoder_output_dim, )
458
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase__ ( __snake_case ) -> bool: """simple docstring""" if len(__snake_case ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) _UpperCamelCase = nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
19
"""simple docstring""" import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING _a = logging.get_logger(__name__) _a = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class _UpperCAmelCase( lowerCamelCase ): lowercase__ = 'detr' lowercase__ = ['past_key_values'] lowercase__ = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self , __a=True , __a=None , __a=3 , __a=1_00 , __a=6 , __a=20_48 , __a=8 , __a=6 , __a=20_48 , __a=8 , __a=0.0 , __a=0.0 , __a=True , __a="relu" , __a=2_56 , __a=0.1 , __a=0.0 , __a=0.0 , __a=0.02 , __a=1.0 , __a=False , __a="sine" , __a="resnet50" , __a=True , __a=False , __a=1 , __a=5 , __a=2 , __a=1 , __a=1 , __a=5 , __a=2 , __a=0.1 , **__a , ) -> int: '''simple docstring''' if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''') if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''') _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4''']) elif isinstance(__a , __a): _UpperCamelCase = backbone_config.get('''model_type''') _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(__a) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=__a , **__a) @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.encoder_attention_heads @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return self.d_model @classmethod def UpperCAmelCase ( cls , __a , **__a) -> int: '''simple docstring''' return cls(backbone_config=__a , **__a) def UpperCAmelCase ( self) -> Dict[str, any]: '''simple docstring''' _UpperCamelCase = copy.deepcopy(self.__dict__) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class _UpperCAmelCase( lowerCamelCase ): lowercase__ = version.parse('1.11' ) @property def UpperCAmelCase ( self) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ]) @property def UpperCAmelCase ( self) -> float: '''simple docstring''' return 1e-5 @property def UpperCAmelCase ( self) -> int: '''simple docstring''' return 12
19
1
from collections.abc import Generator from math import sin def _lowercase ( SCREAMING_SNAKE_CASE_ : bytes ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) != 32: raise ValueError("""Input must be of length 32""" ) UpperCamelCase = b"" for i in [3, 2, 1, 0]: little_endian += string_aa[8 * i : 8 * i + 8] return little_endian def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase = format(SCREAMING_SNAKE_CASE_ , """08x""" )[-8:] UpperCamelCase = b"" for i in [3, 2, 1, 0]: little_endian_hex += hex_rep[2 * i : 2 * i + 2].encode("""utf-8""" ) return little_endian_hex def _lowercase ( SCREAMING_SNAKE_CASE_ : bytes ): """simple docstring""" UpperCamelCase = b"" for char in message: bit_string += format(SCREAMING_SNAKE_CASE_ , """08b""" ).encode("""utf-8""" ) UpperCamelCase = format(len(SCREAMING_SNAKE_CASE_ ) , """064b""" ).encode("""utf-8""" ) # Pad bit_string to a multiple of 512 chars bit_string += b"1" while len(SCREAMING_SNAKE_CASE_ ) % 512 != 448: bit_string += b"0" bit_string += to_little_endian(start_len[32:] ) + to_little_endian(start_len[:32] ) return bit_string def _lowercase ( SCREAMING_SNAKE_CASE_ : bytes ): """simple docstring""" if len(SCREAMING_SNAKE_CASE_ ) % 512 != 0: raise ValueError("""Input must have length that's a multiple of 512""" ) for pos in range(0 , len(SCREAMING_SNAKE_CASE_ ) , 512 ): UpperCamelCase = bit_string[pos : pos + 512] UpperCamelCase = [] for i in range(0 , 512 , 32 ): block_words.append(int(to_little_endian(block[i : i + 32] ) , 2 ) ) yield block_words def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) UpperCamelCase = format(SCREAMING_SNAKE_CASE_ , """032b""" ) UpperCamelCase = "" for c in i_str: new_str += "1" if c == "0" else "0" return int(SCREAMING_SNAKE_CASE_ , 2 ) def _lowercase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" return (a + b) % 2**32 def _lowercase ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" if i < 0: raise ValueError("""Input must be non-negative""" ) if shift < 0: raise ValueError("""Shift must be non-negative""" ) return ((i << shift) ^ (i >> (32 - shift))) % 2**32 def _lowercase ( SCREAMING_SNAKE_CASE_ : bytes ): """simple docstring""" UpperCamelCase = preprocess(SCREAMING_SNAKE_CASE_ ) UpperCamelCase = [int(2**32 * abs(sin(i + 1 ) ) ) for i in range(64 )] # Starting states UpperCamelCase = 0x67_45_23_01 UpperCamelCase = 0xef_cd_ab_89 UpperCamelCase = 0x98_ba_dc_fe UpperCamelCase = 0x10_32_54_76 UpperCamelCase = [ 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 7, 12, 17, 22, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 5, 9, 14, 20, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 4, 11, 16, 23, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, 6, 10, 15, 21, ] # Process bit string in chunks, each with 16 32-char words for block_words in get_block_words(SCREAMING_SNAKE_CASE_ ): UpperCamelCase = aa UpperCamelCase = ba UpperCamelCase = ca UpperCamelCase = da # Hash current chunk for i in range(64 ): if i <= 15: # f = (b & c) | (not_32(b) & d) # Alternate definition for f UpperCamelCase = d ^ (b & (c ^ d)) UpperCamelCase = i elif i <= 31: # f = (d & b) | (not_32(d) & c) # Alternate definition for f UpperCamelCase = c ^ (d & (b ^ c)) UpperCamelCase = (5 * i + 1) % 16 elif i <= 47: UpperCamelCase = b ^ c ^ d UpperCamelCase = (3 * i + 5) % 16 else: UpperCamelCase = c ^ (b | not_aa(SCREAMING_SNAKE_CASE_ )) UpperCamelCase = (7 * i) % 16 UpperCamelCase = (f + a + added_consts[i] + block_words[g]) % 2**32 UpperCamelCase = d UpperCamelCase = c UpperCamelCase = b UpperCamelCase = sum_aa(SCREAMING_SNAKE_CASE_ , left_rotate_aa(SCREAMING_SNAKE_CASE_ , shift_amounts[i] ) ) # Add hashed chunk to running total UpperCamelCase = sum_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sum_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sum_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = sum_aa(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase = reformat_hex(SCREAMING_SNAKE_CASE_ ) + reformat_hex(SCREAMING_SNAKE_CASE_ ) + reformat_hex(SCREAMING_SNAKE_CASE_ ) + reformat_hex(SCREAMING_SNAKE_CASE_ ) return digest if __name__ == "__main__": import doctest doctest.testmod()
721
def _lowercase ( SCREAMING_SNAKE_CASE_ : int ): """simple docstring""" UpperCamelCase = int(SCREAMING_SNAKE_CASE_ ) if decimal in (0, 1): # Exit cases for the recursion return str(SCREAMING_SNAKE_CASE_ ) UpperCamelCase , UpperCamelCase = divmod(SCREAMING_SNAKE_CASE_ , 2 ) return binary_recursive(SCREAMING_SNAKE_CASE_ ) + str(SCREAMING_SNAKE_CASE_ ) def _lowercase ( SCREAMING_SNAKE_CASE_ : str ): """simple docstring""" UpperCamelCase = str(SCREAMING_SNAKE_CASE_ ).strip() if not number: raise ValueError("""No input value was provided""" ) UpperCamelCase = """-""" if number.startswith("""-""" ) else """""" UpperCamelCase = number.lstrip("""-""" ) if not number.isnumeric(): raise ValueError("""Input value is not an integer""" ) return f'{negative}0b{binary_recursive(int(SCREAMING_SNAKE_CASE_ ) )}' if __name__ == "__main__": from doctest import testmod testmod()
181
0
"""simple docstring""" from dataclasses import dataclass from typing import List, Optional, Union import numpy as np import PIL from ...utils import BaseOutput, OptionalDependencyNotAvailable, is_torch_available, is_transformers_available from .timesteps import ( fastaa_timesteps, smartaa_timesteps, smartaa_timesteps, smartaaa_timesteps, smartaaa_timesteps, superaa_timesteps, superaa_timesteps, superaaa_timesteps, ) @dataclass class __snake_case ( snake_case__ ): """simple docstring""" lowerCAmelCase_ : Any = 42 lowerCAmelCase_ : int = 42 lowerCAmelCase_ : Optional[Any] = 42 try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipeline_if import IFPipeline from .pipeline_if_imgaimg import IFImgaImgPipeline from .pipeline_if_imgaimg_superresolution import IFImgaImgSuperResolutionPipeline from .pipeline_if_inpainting import IFInpaintingPipeline from .pipeline_if_inpainting_superresolution import IFInpaintingSuperResolutionPipeline from .pipeline_if_superresolution import IFSuperResolutionPipeline from .safety_checker import IFSafetyChecker from .watermark import IFWatermarker
388
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available _lowerCAmelCase = { """configuration_nezha""": ["""NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP""", """NezhaConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = [ """NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST""", """NezhaForNextSentencePrediction""", """NezhaForMaskedLM""", """NezhaForPreTraining""", """NezhaForMultipleChoice""", """NezhaForQuestionAnswering""", """NezhaForSequenceClassification""", """NezhaForTokenClassification""", """NezhaModel""", """NezhaPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_nezha import NEZHA_PRETRAINED_CONFIG_ARCHIVE_MAP, NezhaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_nezha import ( NEZHA_PRETRAINED_MODEL_ARCHIVE_LIST, NezhaForMaskedLM, NezhaForMultipleChoice, NezhaForNextSentencePrediction, NezhaForPreTraining, NezhaForQuestionAnswering, NezhaForSequenceClassification, NezhaForTokenClassification, NezhaModel, NezhaPreTrainedModel, ) else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
137
0
"""simple docstring""" def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" if not isinstance(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): UpperCamelCase__ = F'Input value of [number={number}] must be an integer' raise TypeError(SCREAMING_SNAKE_CASE ) if number < 0: return False UpperCamelCase__ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
714
"""simple docstring""" import sys from collections import defaultdict class __lowerCamelCase : def __init__( self ) -> Tuple: UpperCamelCase__ = [] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ ) -> List[str]: return self.node_position[vertex] def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Optional[int]: UpperCamelCase__ = pos def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> List[Any]: if start > size // 2 - 1: return else: if 2 * start + 2 >= size: UpperCamelCase__ = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: UpperCamelCase__ = 2 * start + 1 else: UpperCamelCase__ = 2 * start + 2 if heap[smallest_child] < heap[start]: UpperCamelCase__ , UpperCamelCase__ = heap[smallest_child], positions[smallest_child] UpperCamelCase__ , UpperCamelCase__ = ( heap[start], positions[start], ) UpperCamelCase__ , UpperCamelCase__ = temp, tempa UpperCamelCase__ = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , snake_case_ ) self.top_to_bottom(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = position[index] while index != 0: UpperCamelCase__ = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: UpperCamelCase__ = heap[parent] UpperCamelCase__ = position[parent] self.set_position(position[parent] , snake_case_ ) else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , snake_case_ ) break UpperCamelCase__ = parent else: UpperCamelCase__ = val UpperCamelCase__ = temp self.set_position(snake_case_ , 0 ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> Any: UpperCamelCase__ = len(snake_case_ ) // 2 - 1 for i in range(snake_case_ , -1 , -1 ): self.top_to_bottom(snake_case_ , snake_case_ , len(snake_case_ ) , snake_case_ ) def SCREAMING_SNAKE_CASE__ ( self , snake_case_ , snake_case_ ) -> List[Any]: UpperCamelCase__ = positions[0] UpperCamelCase__ = sys.maxsize self.top_to_bottom(snake_case_ , 0 , len(snake_case_ ) , snake_case_ ) return temp def lowerCAmelCase_( SCREAMING_SNAKE_CASE ) -> Tuple: """simple docstring""" UpperCamelCase__ = Heap() UpperCamelCase__ = [0] * len(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [-1] * len(SCREAMING_SNAKE_CASE ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph UpperCamelCase__ = [] # Heap of Distance of vertices from their neighboring vertex UpperCamelCase__ = [] for vertex in range(len(SCREAMING_SNAKE_CASE ) ): distance_tv.append(sys.maxsize ) positions.append(SCREAMING_SNAKE_CASE ) heap.node_position.append(SCREAMING_SNAKE_CASE ) UpperCamelCase__ = [] UpperCamelCase__ = 1 UpperCamelCase__ = sys.maxsize for neighbor, distance in adjacency_list[0]: UpperCamelCase__ = 0 UpperCamelCase__ = distance heap.heapify(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for _ in range(1 , len(SCREAMING_SNAKE_CASE ) ): UpperCamelCase__ = heap.delete_minimum(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) UpperCamelCase__ = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(SCREAMING_SNAKE_CASE )] ): UpperCamelCase__ = distance heap.bottom_to_top( SCREAMING_SNAKE_CASE , heap.get_position(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase__ = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > A__ : Dict= int(input("""Enter number of edges: """).strip()) A__ : Dict= defaultdict(list) for _ in range(edges_number): A__ : Dict= [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
20
0
'''simple docstring''' import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_rembert import RemBertTokenizer else: SCREAMING_SNAKE_CASE_: Union[str, Any] =None SCREAMING_SNAKE_CASE_: Any =logging.get_logger(__name__) SCREAMING_SNAKE_CASE_: Dict ={'vocab_file': 'sentencepiece.model', 'tokenizer_file': 'tokenizer.json'} SCREAMING_SNAKE_CASE_: Optional[int] ={ 'vocab_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/sentencepiece.model', }, 'tokenizer_file': { 'google/rembert': 'https://huggingface.co/google/rembert/resolve/main/tokenizer.json', }, } SCREAMING_SNAKE_CASE_: int ={ 'google/rembert': 2_56, } SCREAMING_SNAKE_CASE_: Optional[Any] ='▁' class __A ( UpperCamelCase__ ): a__ : Optional[Any] = VOCAB_FILES_NAMES a__ : Dict = PRETRAINED_VOCAB_FILES_MAP a__ : Any = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : Any = RemBertTokenizer def __init__(self : Dict , __a : List[Any]=None , __a : List[Any]=None , __a : Dict=True , __a : Any=True , __a : Optional[Any]=False , __a : List[Any]="[CLS]" , __a : Dict="[SEP]" , __a : str="<unk>" , __a : int="[SEP]" , __a : Dict="<pad>" , __a : List[str]="[CLS]" , __a : Optional[int]="[MASK]" , **__a : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase_ = AddedToken(__a , lstrip=__a , rstrip=__a ) if isinstance(__a , __a ) else mask_token super().__init__( __a , tokenizer_file=__a , do_lower_case=__a , remove_space=__a , keep_accents=__a , bos_token=__a , eos_token=__a , unk_token=__a , sep_token=__a , pad_token=__a , cls_token=__a , mask_token=__a , **__a , ) UpperCAmelCase_ = do_lower_case UpperCAmelCase_ = remove_space UpperCAmelCase_ = keep_accents UpperCAmelCase_ = vocab_file UpperCAmelCase_ = False if not self.vocab_file else True def _lowercase (self : List[str] , __a : List[int] , __a : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def _lowercase (self : Tuple , __a : List[int] , __a : Optional[List[int]] = None , __a : bool = False ): if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__a )) + [1] + ([0] * len(__a )) + [1] return [1] + ([0] * len(__a )) + [1] def _lowercase (self : Any , __a : List[int] , __a : Optional[List[int]] = None ): UpperCAmelCase_ = [self.sep_token_id] UpperCAmelCase_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _lowercase (self : Dict , __a : str , __a : Optional[str] = None ): if not os.path.isdir(__a ): logger.error("Vocabulary path ({}) should be a directory".format(__a ) ) return UpperCAmelCase_ = os.path.join( __a , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__a ): copyfile(self.vocab_file , __a ) return (out_vocab_file,)
78
"""simple docstring""" from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available __lowercase : List[str] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Tuple = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
142
0
from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING lowerCAmelCase__ = logging.get_logger(__name__) @add_end_docstrings(lowerCamelCase_ ) class _a ( lowerCamelCase_ ): """simple docstring""" def __init__( self , *lowerCAmelCase_ , **lowerCAmelCase_ ): super().__init__(*lowerCAmelCase_ , **lowerCAmelCase_ ) self.check_model_type(lowerCAmelCase_ ) def __lowerCAmelCase ( self , lowerCAmelCase_=None , lowerCAmelCase_=None , lowerCAmelCase_=None , **lowerCAmelCase_ ): _lowercase , _lowercase ={}, {} if padding is not None: _lowercase =padding if truncation is not None: _lowercase =truncation if top_k is not None: _lowercase =top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , **lowerCAmelCase_ ): if isinstance(lowerCAmelCase_ , (Image.Image, str) ) and isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _lowercase ={"image": image, "question": question} else: _lowercase =image _lowercase =super().__call__(lowerCAmelCase_ , **lowerCAmelCase_ ) return results def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=False , lowerCAmelCase_=False ): _lowercase =load_image(inputs["image"] ) _lowercase =self.tokenizer( inputs["question"] , return_tensors=self.framework , padding=lowerCAmelCase_ , truncation=lowerCAmelCase_ ) _lowercase =self.image_processor(images=lowerCAmelCase_ , return_tensors=self.framework ) model_inputs.update(lowerCAmelCase_ ) return model_inputs def __lowerCAmelCase ( self , lowerCAmelCase_ ): _lowercase =self.model(**lowerCAmelCase_ ) return model_outputs def __lowerCAmelCase ( self , lowerCAmelCase_ , lowerCAmelCase_=5 ): if top_k > self.model.config.num_labels: _lowercase =self.model.config.num_labels if self.framework == "pt": _lowercase =model_outputs.logits.sigmoid()[0] _lowercase , _lowercase =probs.topk(lowerCAmelCase_ ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) _lowercase =scores.tolist() _lowercase =ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(lowerCAmelCase_ , lowerCAmelCase_ )]
717
from math import factorial def __lowerCamelCase ( __a : int , __a : int , __a : float ) -> float: if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(__a , __a ) or not isinstance(__a , __a ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) _lowercase =(prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! _lowercase =float(factorial(__a ) ) coefficient /= factorial(__a ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print("Probability of 2 successes out of 4 trails") print("with probability of 0.75 is:", end=" ") print(binomial_distribution(2, 4, 0.7_5))
594
0
'''simple docstring''' def __A ( a_ : int ): if a < 0: raise ValueError("Input value must be a positive integer" ) elif isinstance(a_ ,a_ ): raise TypeError("Input value must be a 'int' type" ) return bin(a_ ).count("1" ) if __name__ == "__main__": import doctest doctest.testmod()
525
'''simple docstring''' import logging import os import random import sys from dataclasses import dataclass, field from typing import Optional import datasets import evaluate import numpy as np from datasets import load_dataset import transformers from transformers import ( AutoConfig, AutoModelForSequenceClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, default_data_collator, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("""4.31.0""") require_version("""datasets>=1.8.0""", """To fix: pip install -r examples/pytorch/text-classification/requirements.txt""") lowerCAmelCase = logging.getLogger(__name__) @dataclass class lowerCamelCase : snake_case_ = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) snake_case_ = field( default=_A , metadata={"help": "Overwrite the cached preprocessed datasets or not."} ) snake_case_ = field( default=_A , metadata={ "help": ( "Whether to pad all samples to `max_seq_length`. " "If False, will pad the samples dynamically when batching to the maximum length in the batch." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) snake_case_ = field( default=_A , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of prediction examples to this " "value if set." ) } , ) @dataclass class lowerCamelCase : snake_case_ = field( default=_A , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) snake_case_ = field( default=_A , metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."} ) snake_case_ = field( default=_A , metadata={"help": "Train language if it is different from the evaluation language."} ) snake_case_ = field( default=_A , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) snake_case_ = field( default=_A , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) snake_case_ = field( default=_A , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) snake_case_ = field( default=_A , metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"} , ) snake_case_ = field( default=_A , metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."} , ) snake_case_ = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) snake_case_ = field( default=_A , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) snake_case_ = field( default=_A , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def __A ( ): # See all possible arguments in src/transformers/training_args.py # or by passing the --help flag to this script. # We now keep distinct sets of args, for a cleaner separation of concerns. lowerCAmelCase : List[str] = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Tuple = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("run_xnli" ,a_ ) # Setup logging logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s" ,datefmt="%m/%d/%Y %H:%M:%S" ,handlers=[logging.StreamHandler(sys.stdout )] ,) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() lowerCAmelCase : str = training_args.get_process_log_level() logger.setLevel(a_ ) datasets.utils.logging.set_verbosity(a_ ) transformers.utils.logging.set_verbosity(a_ ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( f'''Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}''' + f'''distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}''' ) logger.info(f'''Training/evaluation parameters {training_args}''' ) # Detecting last checkpoint. lowerCAmelCase : Union[str, Any] = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: lowerCAmelCase : Dict = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( f'''Output directory ({training_args.output_dir}) already exists and is not empty. ''' "Use --overwrite_output_dir to overcome." ) elif last_checkpoint is not None: logger.info( f'''Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ''' "the `--output_dir` or add `--overwrite_output_dir` to train from scratch." ) # Set seed before initializing model. set_seed(training_args.seed ) # In distributed training, the load_dataset function guarantees that only one local process can concurrently # download the dataset. # Downloading and loading xnli dataset from the hub. if training_args.do_train: if model_args.train_language is None: lowerCAmelCase : Any = load_dataset( "xnli" ,model_args.language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) else: lowerCAmelCase : Union[str, Any] = load_dataset( "xnli" ,model_args.train_language ,split="train" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : int = train_dataset.features["label"].names if training_args.do_eval: lowerCAmelCase : Any = load_dataset( "xnli" ,model_args.language ,split="validation" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Dict = eval_dataset.features["label"].names if training_args.do_predict: lowerCAmelCase : Optional[Any] = load_dataset( "xnli" ,model_args.language ,split="test" ,cache_dir=model_args.cache_dir ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[Any] = predict_dataset.features["label"].names # Labels lowerCAmelCase : Tuple = len(a_ ) # Load pretrained model and tokenizer # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. lowerCAmelCase : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,num_labels=a_ ,idalabel={str(a_ ): label for i, label in enumerate(a_ )} ,labelaid={label: i for i, label in enumerate(a_ )} ,finetuning_task="xnli" ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : Optional[Any] = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,do_lower_case=model_args.do_lower_case ,cache_dir=model_args.cache_dir ,use_fast=model_args.use_fast_tokenizer ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,) lowerCAmelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained( model_args.model_name_or_path ,from_tf=bool(".ckpt" in model_args.model_name_or_path ) ,config=a_ ,cache_dir=model_args.cache_dir ,revision=model_args.model_revision ,use_auth_token=True if model_args.use_auth_token else None ,ignore_mismatched_sizes=model_args.ignore_mismatched_sizes ,) # Preprocessing the datasets # Padding strategy if data_args.pad_to_max_length: lowerCAmelCase : int = "max_length" else: # We will pad later, dynamically at batch creation, to the max sequence length in each batch lowerCAmelCase : Union[str, Any] = False def preprocess_function(a_ : Dict ): # Tokenize the texts return tokenizer( examples["premise"] ,examples["hypothesis"] ,padding=a_ ,max_length=data_args.max_seq_length ,truncation=a_ ,) if training_args.do_train: if data_args.max_train_samples is not None: lowerCAmelCase : Tuple = min(len(a_ ) ,data_args.max_train_samples ) lowerCAmelCase : int = train_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="train dataset map pre-processing" ): lowerCAmelCase : Optional[int] = train_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on train dataset" ,) # Log a few random samples from the training set: for index in random.sample(range(len(a_ ) ) ,3 ): logger.info(f'''Sample {index} of the training set: {train_dataset[index]}.''' ) if training_args.do_eval: if data_args.max_eval_samples is not None: lowerCAmelCase : int = min(len(a_ ) ,data_args.max_eval_samples ) lowerCAmelCase : Optional[Any] = eval_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="validation dataset map pre-processing" ): lowerCAmelCase : Optional[Any] = eval_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on validation dataset" ,) if training_args.do_predict: if data_args.max_predict_samples is not None: lowerCAmelCase : Optional[Any] = min(len(a_ ) ,data_args.max_predict_samples ) lowerCAmelCase : Optional[Any] = predict_dataset.select(range(a_ ) ) with training_args.main_process_first(desc="prediction dataset map pre-processing" ): lowerCAmelCase : Tuple = predict_dataset.map( a_ ,batched=a_ ,load_from_cache_file=not data_args.overwrite_cache ,desc="Running tokenizer on prediction dataset" ,) # Get the metric function lowerCAmelCase : str = evaluate.load("xnli" ) # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a # predictions and label_ids field) and has to return a dictionary string to float. def compute_metrics(a_ : EvalPrediction ): lowerCAmelCase : Union[str, Any] = p.predictions[0] if isinstance(p.predictions ,a_ ) else p.predictions lowerCAmelCase : Any = np.argmax(a_ ,axis=1 ) return metric.compute(predictions=a_ ,references=p.label_ids ) # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding. if data_args.pad_to_max_length: lowerCAmelCase : Optional[Any] = default_data_collator elif training_args.fpaa: lowerCAmelCase : Union[str, Any] = DataCollatorWithPadding(a_ ,pad_to_multiple_of=8 ) else: lowerCAmelCase : str = None # Initialize our Trainer lowerCAmelCase : Tuple = Trainer( model=a_ ,args=a_ ,train_dataset=train_dataset if training_args.do_train else None ,eval_dataset=eval_dataset if training_args.do_eval else None ,compute_metrics=a_ ,tokenizer=a_ ,data_collator=a_ ,) # Training if training_args.do_train: lowerCAmelCase : str = None if training_args.resume_from_checkpoint is not None: lowerCAmelCase : Any = training_args.resume_from_checkpoint elif last_checkpoint is not None: lowerCAmelCase : List[str] = last_checkpoint lowerCAmelCase : Optional[int] = trainer.train(resume_from_checkpoint=a_ ) lowerCAmelCase : List[Any] = train_result.metrics lowerCAmelCase : Optional[Any] = ( data_args.max_train_samples if data_args.max_train_samples is not None else len(a_ ) ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.save_model() # Saves the tokenizer too for easy upload trainer.log_metrics("train" ,a_ ) trainer.save_metrics("train" ,a_ ) trainer.save_state() # Evaluation if training_args.do_eval: logger.info("*** Evaluate ***" ) lowerCAmelCase : Optional[int] = trainer.evaluate(eval_dataset=a_ ) lowerCAmelCase : Optional[int] = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(a_ ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.log_metrics("eval" ,a_ ) trainer.save_metrics("eval" ,a_ ) # Prediction if training_args.do_predict: logger.info("*** Predict ***" ) lowerCAmelCase , lowerCAmelCase , lowerCAmelCase : Optional[Any] = trainer.predict(a_ ,metric_key_prefix="predict" ) lowerCAmelCase : List[Any] = ( data_args.max_predict_samples if data_args.max_predict_samples is not None else len(a_ ) ) lowerCAmelCase : Any = min(a_ ,len(a_ ) ) trainer.log_metrics("predict" ,a_ ) trainer.save_metrics("predict" ,a_ ) lowerCAmelCase : Optional[int] = np.argmax(a_ ,axis=1 ) lowerCAmelCase : Any = os.path.join(training_args.output_dir ,"predictions.txt" ) if trainer.is_world_process_zero(): with open(a_ ,"w" ) as writer: writer.write("index\tprediction\n" ) for index, item in enumerate(a_ ): lowerCAmelCase : str = label_list[item] writer.write(f'''{index}\t{item}\n''' ) if __name__ == "__main__": main()
525
1
'''simple docstring''' import argparse import json import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __UpperCamelCase : Optional[Any] = 16 __UpperCamelCase : Optional[Any] = 32 def _UpperCAmelCase ( UpperCAmelCase : Optional[Any] , UpperCAmelCase : Any = 16 , UpperCAmelCase : Any = "bert-base-cased" ): """simple docstring""" __lowerCamelCase : List[str] = AutoTokenizer.from_pretrained(lowerCAmelCase__ ) __lowerCamelCase : Optional[int] = load_dataset("""glue""" , """mrpc""" ) def tokenize_function(UpperCAmelCase : str ): # max_length=None => use the model max length (it's actually the default) __lowerCamelCase : Union[str, Any] = tokenizer(examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCAmelCase__ , max_length=lowerCAmelCase__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset __lowerCamelCase : Optional[int] = datasets.map( lowerCAmelCase__ , batched=lowerCAmelCase__ , remove_columns=["""idx""", """sentence1""", """sentence2"""] , load_from_cache_file=lowerCAmelCase__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library __lowerCamelCase : int = tokenized_datasets.rename_column("""label""" , """labels""" ) def collate_fn(UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCAmelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCAmelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. __lowerCamelCase : Dict = DataLoader( tokenized_datasets["""train"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) __lowerCamelCase : Union[str, Any] = DataLoader( tokenized_datasets["""validation"""] , shuffle=lowerCAmelCase__ , collate_fn=lowerCAmelCase__ , batch_size=lowerCAmelCase__ ) return train_dataloader, eval_dataloader def _UpperCAmelCase ( UpperCAmelCase : Any , UpperCAmelCase : Dict , UpperCAmelCase : str , UpperCAmelCase : List[str] ): """simple docstring""" model.eval() __lowerCamelCase : Optional[int] = 0 for step, batch in enumerate(lowerCAmelCase__ ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): __lowerCamelCase : Any = model(**lowerCAmelCase__ ) __lowerCamelCase : Tuple = outputs.logits.argmax(dim=-1 ) # It is slightly faster to call this once, than multiple times __lowerCamelCase , __lowerCamelCase : List[str] = accelerator.gather( (predictions, batch["""labels"""]) ) # If we are in a multiprocess environment, the last batch has duplicates if accelerator.use_distributed: if step == len(lowerCAmelCase__ ) - 1: __lowerCamelCase : Any = predictions[: len(eval_dataloader.dataset ) - samples_seen] __lowerCamelCase : int = references[: len(eval_dataloader.dataset ) - samples_seen] else: samples_seen += references.shape[0] metric.add_batch( predictions=lowerCAmelCase__ , references=lowerCAmelCase__ , ) __lowerCamelCase : Union[str, Any] = metric.compute() return eval_metric["accuracy"] def _UpperCAmelCase ( UpperCAmelCase : Dict , UpperCAmelCase : int ): """simple docstring""" __lowerCamelCase : Dict = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs __lowerCamelCase : List[Any] = config["""lr"""] __lowerCamelCase : Dict = int(config["""num_epochs"""] ) __lowerCamelCase : Any = int(config["""seed"""] ) __lowerCamelCase : Optional[int] = int(config["""batch_size"""] ) __lowerCamelCase : int = args.model_name_or_path set_seed(lowerCAmelCase__ ) __lowerCamelCase , __lowerCamelCase : Tuple = get_dataloaders(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) __lowerCamelCase : List[Any] = AutoModelForSequenceClassification.from_pretrained(lowerCAmelCase__ , return_dict=lowerCAmelCase__ ) # Instantiate optimizer __lowerCamelCase : Optional[int] = ( AdamW if accelerator.state.deepspeed_plugin is None or """optimizer""" not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) __lowerCamelCase : Dict = optimizer_cls(params=model.parameters() , lr=lowerCAmelCase__ ) if accelerator.state.deepspeed_plugin is not None: __lowerCamelCase : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ """gradient_accumulation_steps""" ] else: __lowerCamelCase : Any = 1 __lowerCamelCase : int = (len(lowerCAmelCase__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): __lowerCamelCase : Dict = get_linear_schedule_with_warmup( optimizer=lowerCAmelCase__ , num_warmup_steps=0 , num_training_steps=lowerCAmelCase__ , ) else: __lowerCamelCase : int = DummyScheduler(lowerCAmelCase__ , total_num_steps=lowerCAmelCase__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase : List[Any] = accelerator.prepare( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) # We need to keep track of how many total steps we have iterated over __lowerCamelCase : Union[str, Any] = 0 # We also need to keep track of the stating epoch so files are named properly __lowerCamelCase : Union[str, Any] = 0 __lowerCamelCase : Any = evaluate.load("""glue""" , """mrpc""" ) __lowerCamelCase : Tuple = num_epochs if args.partial_train_epoch is not None: __lowerCamelCase : Dict = args.partial_train_epoch if args.resume_from_checkpoint: accelerator.load_state(args.resume_from_checkpoint ) __lowerCamelCase : int = args.resume_from_checkpoint.split("""epoch_""" )[1] __lowerCamelCase : Dict = """""" for char in epoch_string: if char.isdigit(): state_epoch_num += char else: break __lowerCamelCase : Dict = int(lowerCAmelCase__ ) + 1 __lowerCamelCase : Optional[int] = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) accelerator.print("""resumed checkpoint performance:""" , lowerCAmelCase__ ) accelerator.print("""resumed checkpoint's scheduler's lr:""" , lr_scheduler.get_lr()[0] ) accelerator.print("""resumed optimizers's lr:""" , optimizer.param_groups[0]["""lr"""] ) with open(os.path.join(args.output_dir , f"""state_{starting_epoch-1}.json""" ) , """r""" ) as f: __lowerCamelCase : List[str] = json.load(lowerCAmelCase__ ) assert resumed_state["accuracy"] == accuracy, "Accuracy mismatch, loading from checkpoint failed" assert ( resumed_state["lr"] == lr_scheduler.get_lr()[0] ), "Scheduler learning rate mismatch, loading from checkpoint failed" assert ( resumed_state["optimizer_lr"] == optimizer.param_groups[0]["lr"] ), "Optimizer learning rate mismatch, loading from checkpoint failed" assert resumed_state["epoch"] == starting_epoch - 1, "Epoch mismatch, loading from checkpoint failed" return # Now we train the model __lowerCamelCase : Tuple = {} for epoch in range(lowerCAmelCase__ , lowerCAmelCase__ ): model.train() for step, batch in enumerate(lowerCAmelCase__ ): __lowerCamelCase : Any = model(**lowerCAmelCase__ ) __lowerCamelCase : Dict = outputs.loss __lowerCamelCase : str = loss / gradient_accumulation_steps accelerator.backward(lowerCAmelCase__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 __lowerCamelCase : Dict = f"""epoch_{epoch}""" __lowerCamelCase : Dict = os.path.join(args.output_dir , lowerCAmelCase__ ) accelerator.save_state(lowerCAmelCase__ ) __lowerCamelCase : Dict = evaluation_loop(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) __lowerCamelCase : str = accuracy __lowerCamelCase : Optional[int] = lr_scheduler.get_lr()[0] __lowerCamelCase : int = optimizer.param_groups[0]["""lr"""] __lowerCamelCase : Optional[int] = epoch __lowerCamelCase : Union[str, Any] = overall_step accelerator.print(f"""epoch {epoch}:""" , lowerCAmelCase__ ) accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , f"""state_{epoch}.json""" ) , """w""" ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ ) def _UpperCAmelCase ( ): """simple docstring""" __lowerCamelCase : int = argparse.ArgumentParser(description="""Simple example of training script tracking peak GPU memory usage.""" ) parser.add_argument( """--model_name_or_path""" , type=lowerCAmelCase__ , default="""bert-base-cased""" , help="""Path to pretrained model or model identifier from huggingface.co/models.""" , required=lowerCAmelCase__ , ) parser.add_argument( """--output_dir""" , type=lowerCAmelCase__ , default=""".""" , help="""Optional save directory where all checkpoint folders will be stored. Default is the current working directory.""" , ) parser.add_argument( """--resume_from_checkpoint""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""If the training should continue from a checkpoint folder.""" , ) parser.add_argument( """--partial_train_epoch""" , type=lowerCAmelCase__ , default=lowerCAmelCase__ , help="""If passed, the training will stop after this number of epochs.""" , ) parser.add_argument( """--num_epochs""" , type=lowerCAmelCase__ , default=2 , help="""Number of train epochs.""" , ) __lowerCamelCase : List[str] = parser.parse_args() __lowerCamelCase : Union[str, Any] = {"""lr""": 2e-5, """num_epochs""": args.num_epochs, """seed""": 42, """batch_size""": 16} training_function(lowerCAmelCase__ , lowerCAmelCase__ ) if __name__ == "__main__": main()
714
def _UpperCAmelCase ( UpperCAmelCase : str ): """simple docstring""" __lowerCamelCase : List[Any] = hex_num.strip() if not hex_num: raise ValueError("""No value was passed to the function""" ) __lowerCamelCase : Dict = hex_num[0] == """-""" if is_negative: __lowerCamelCase : Optional[Any] = hex_num[1:] try: __lowerCamelCase : Any = int(UpperCAmelCase , 16 ) except ValueError: raise ValueError("""Invalid value was passed to the function""" ) __lowerCamelCase : List[str] = """""" while int_num > 0: __lowerCamelCase : Dict = str(int_num % 2 ) + bin_str int_num >>= 1 return int(("""-""" + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
458
0
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def lowerCamelCase__ ( __lowerCamelCase : Tuple ): __UpperCAmelCase : str = [2, 2, 6, 2] if """tiny""" in model_name else [2, 2, 18, 2] __UpperCAmelCase : Any = True if """large""" in model_name or """huge""" in model_name else False __UpperCAmelCase : int = True if """large""" in model_name or """huge""" in model_name else False __UpperCAmelCase : Optional[int] = True if """large""" in model_name or """huge""" in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: __UpperCAmelCase : Union[str, Any] = [3, 3, 3, 3] __UpperCAmelCase : Union[str, Any] = [5, 5, 5, 5] elif "fl4" in model_name: __UpperCAmelCase : str = [4, 4, 4, 4] __UpperCAmelCase : Optional[Any] = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: __UpperCAmelCase : Dict = [3, 3, 3, 3] if "lrf" in model_name: __UpperCAmelCase : Optional[Any] = [3, 3, 3, 3] else: __UpperCAmelCase : Optional[int] = [2, 2, 2, 2] if "tiny" in model_name: __UpperCAmelCase : List[str] = 96 elif "small" in model_name: __UpperCAmelCase : Dict = 96 elif "base" in model_name: __UpperCAmelCase : List[Any] = 128 elif "large" in model_name: __UpperCAmelCase : Any = 192 elif "xlarge" in model_name: __UpperCAmelCase : Tuple = 256 elif "huge" in model_name: __UpperCAmelCase : int = 352 # set label information __UpperCAmelCase : Tuple = """huggingface/label-files""" if "large" in model_name or "huge" in model_name: __UpperCAmelCase : Any = """imagenet-22k-id2label.json""" else: __UpperCAmelCase : Dict = """imagenet-1k-id2label.json""" __UpperCAmelCase : str = json.load(open(hf_hub_download(__lowerCamelCase , __lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __UpperCAmelCase : Optional[int] = {int(__lowerCamelCase ): v for k, v in idalabel.items()} __UpperCAmelCase : Union[str, Any] = {v: k for k, v in idalabel.items()} __UpperCAmelCase : List[str] = FocalNetConfig( embed_dim=__lowerCamelCase , depths=__lowerCamelCase , focal_levels=__lowerCamelCase , focal_windows=__lowerCamelCase , use_conv_embed=__lowerCamelCase , idalabel=__lowerCamelCase , labelaid=__lowerCamelCase , use_post_layernorm=__lowerCamelCase , use_layerscale=__lowerCamelCase , ) return config def lowerCamelCase__ ( __lowerCamelCase : Tuple ): if "patch_embed.proj" in name: __UpperCAmelCase : List[Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "patch_embed.norm" in name: __UpperCAmelCase : Dict = name.replace("""patch_embed.norm""" , """embeddings.norm""" ) if "layers" in name: __UpperCAmelCase : int = """encoder.""" + name if "encoder.layers" in name: __UpperCAmelCase : Optional[int] = name.replace("""encoder.layers""" , """encoder.stages""" ) if "downsample.proj" in name: __UpperCAmelCase : Optional[Any] = name.replace("""downsample.proj""" , """downsample.projection""" ) if "blocks" in name: __UpperCAmelCase : Union[str, Any] = name.replace("""blocks""" , """layers""" ) if "modulation.f.weight" in name or "modulation.f.bias" in name: __UpperCAmelCase : List[str] = name.replace("""modulation.f""" , """modulation.projection_in""" ) if "modulation.h.weight" in name or "modulation.h.bias" in name: __UpperCAmelCase : List[Any] = name.replace("""modulation.h""" , """modulation.projection_context""" ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: __UpperCAmelCase : str = name.replace("""modulation.proj""" , """modulation.projection_out""" ) if name == "norm.weight": __UpperCAmelCase : Optional[Any] = """layernorm.weight""" if name == "norm.bias": __UpperCAmelCase : Dict = """layernorm.bias""" if "head" in name: __UpperCAmelCase : Tuple = name.replace("""head""" , """classifier""" ) else: __UpperCAmelCase : int = """focalnet.""" + name return name def lowerCamelCase__ ( __lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : List[str]=False ): # fmt: off __UpperCAmelCase : Dict = { """focalnet-tiny""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth""", """focalnet-tiny-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth""", """focalnet-small""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth""", """focalnet-small-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth""", """focalnet-base""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth""", """focalnet-base-lrf""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth""", """focalnet-large-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth""", """focalnet-large-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth""", """focalnet-xlarge-lrf-fl3""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth""", """focalnet-xlarge-lrf-fl4""": """https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth""", } # fmt: on __UpperCAmelCase : int = model_name_to_url[model_name] print("""Checkpoint URL: """ , __lowerCamelCase ) __UpperCAmelCase : Dict = torch.hub.load_state_dict_from_url(__lowerCamelCase , map_location="""cpu""" )["""model"""] # rename keys for key in state_dict.copy().keys(): __UpperCAmelCase : Tuple = state_dict.pop(__lowerCamelCase ) __UpperCAmelCase : Optional[Any] = val __UpperCAmelCase : Optional[Any] = get_focalnet_config(__lowerCamelCase ) __UpperCAmelCase : Any = FocalNetForImageClassification(__lowerCamelCase ) model.eval() # load state dict model.load_state_dict(__lowerCamelCase ) # verify conversion __UpperCAmelCase : Optional[int] = """http://images.cocodataset.org/val2017/000000039769.jpg""" __UpperCAmelCase : Union[str, Any] = BitImageProcessor( do_resize=__lowerCamelCase , size={"""shortest_edge""": 256} , resample=PILImageResampling.BILINEAR , do_center_crop=__lowerCamelCase , crop_size=224 , do_normalize=__lowerCamelCase , image_mean=__lowerCamelCase , image_std=__lowerCamelCase , ) __UpperCAmelCase : Optional[Any] = Image.open(requests.get(__lowerCamelCase , stream=__lowerCamelCase ).raw ) __UpperCAmelCase : List[Any] = processor(images=__lowerCamelCase , return_tensors="""pt""" ) __UpperCAmelCase : str = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) __UpperCAmelCase : List[Any] = image_transforms(__lowerCamelCase ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , __lowerCamelCase , atol=1E-4 ) __UpperCAmelCase : Dict = model(**__lowerCamelCase ) __UpperCAmelCase : Any = outputs.logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) print("""First values of logits:""" , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": __UpperCAmelCase : Union[str, Any] = torch.tensor([0.2_1_6_6, -0.4_3_6_8, 0.2_1_9_1] ) elif model_name == "focalnet-tiny-lrf": __UpperCAmelCase : Dict = torch.tensor([1.1_6_6_9, 0.0_1_2_5, -0.1_6_9_5] ) elif model_name == "focalnet-small": __UpperCAmelCase : int = torch.tensor([0.4_9_1_7, -0.0_4_3_0, 0.1_3_4_1] ) elif model_name == "focalnet-small-lrf": __UpperCAmelCase : int = torch.tensor([-0.2_5_8_8, -0.5_3_4_2, -0.2_3_3_1] ) elif model_name == "focalnet-base": __UpperCAmelCase : Optional[int] = torch.tensor([-0.1_6_5_5, -0.4_0_9_0, -0.1_7_3_0] ) elif model_name == "focalnet-base-lrf": __UpperCAmelCase : Optional[Any] = torch.tensor([0.5_3_0_6, -0.0_4_8_3, -0.3_9_2_8] ) assert torch.allclose(outputs.logits[0, :3] , __lowerCamelCase , atol=1E-4 ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: print(f"""Saving model and processor of {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) if push_to_hub: print(f"""Pushing model and processor of {model_name} to the hub...""" ) model.push_to_hub(f"""{model_name}""" ) processor.push_to_hub(f"""{model_name}""" ) if __name__ == "__main__": a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) a : Any = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
63
import warnings from contextlib import contextmanager from ....processing_utils import ProcessorMixin class _SCREAMING_SNAKE_CASE ( snake_case_ ): lowerCAmelCase__ = 'MCTCTFeatureExtractor' lowerCAmelCase__ = 'AutoTokenizer' def __init__( self , lowercase , lowercase ) -> str: super().__init__(lowercase , lowercase ) lowerCamelCase_ = self.feature_extractor lowerCamelCase_ = False def __call__( self , *lowercase , **lowercase ) -> List[str]: # For backward compatibility if self._in_target_context_manager: return self.current_processor(*lowercase , **lowercase ) if "raw_speech" in kwargs: warnings.warn("Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead." ) lowerCamelCase_ = kwargs.pop("raw_speech" ) else: lowerCamelCase_ = kwargs.pop("audio" , lowercase ) lowerCamelCase_ = kwargs.pop("sampling_rate" , lowercase ) lowerCamelCase_ = kwargs.pop("text" , lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = args[0] lowerCamelCase_ = args[1:] if audio is None and text is None: raise ValueError("You need to specify either an `audio` or `text` input to process." ) if audio is not None: lowerCamelCase_ = self.feature_extractor(lowercase , *lowercase , sampling_rate=lowercase , **lowercase ) if text is not None: lowerCamelCase_ = self.tokenizer(lowercase , **lowercase ) if text is None: return inputs elif audio is None: return encodings else: lowerCamelCase_ = encodings["input_ids"] return inputs def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Optional[Any]: return self.tokenizer.batch_decode(*lowercase , **lowercase ) def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> Optional[Any]: # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*lowercase , **lowercase ) lowerCamelCase_ = kwargs.pop("input_features" , lowercase ) lowerCamelCase_ = kwargs.pop("labels" , lowercase ) if len(lowercase ) > 0: lowerCamelCase_ = args[0] lowerCamelCase_ = args[1:] if input_features is not None: lowerCamelCase_ = self.feature_extractor.pad(lowercase , *lowercase , **lowercase ) if labels is not None: lowerCamelCase_ = self.tokenizer.pad(lowercase , **lowercase ) if labels is None: return input_features elif input_features is None: return labels else: lowerCamelCase_ = labels["input_ids"] return input_features def SCREAMING_SNAKE_CASE_( self , *lowercase , **lowercase ) -> List[str]: return self.tokenizer.decode(*lowercase , **lowercase ) @contextmanager def SCREAMING_SNAKE_CASE_( self ) -> Optional[int]: warnings.warn( "`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your " "labels by using the argument `text` of the regular `__call__` method (either in the same call as " "your audio inputs, or in a separate call." ) lowerCamelCase_ = True lowerCamelCase_ = self.tokenizer yield lowerCamelCase_ = self.feature_extractor lowerCamelCase_ = False
463
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available lowerCamelCase = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
102
def __lowercase ( UpperCAmelCase__ = 10 , UpperCAmelCase__ = 1_000 , UpperCAmelCase__ = True ): """simple docstring""" assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)' ) return min_val if option else max_val def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return int((number_a + number_a) / 2 ) def __lowercase ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" assert ( isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) and isinstance(UpperCAmelCase__ , UpperCAmelCase__ ) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)' ) if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value' ) def answer(UpperCAmelCase__ ) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...' ) __lowerCAmelCase = lower __lowerCAmelCase = higher __lowerCAmelCase = [] while True: __lowerCAmelCase = get_avg(UpperCAmelCase__ , UpperCAmelCase__ ) last_numbers.append(UpperCAmelCase__ ) if answer(UpperCAmelCase__ ) == "low": __lowerCAmelCase = number elif answer(UpperCAmelCase__ ) == "high": __lowerCAmelCase = number else: break print(F"""guess the number : {last_numbers[-1]}""" ) print(F"""details : {last_numbers!s}""" ) def __lowercase ( ): """simple docstring""" __lowerCAmelCase = int(input('Enter lower value : ' ).strip() ) __lowerCAmelCase = int(input('Enter high value : ' ).strip() ) __lowerCAmelCase = int(input('Enter value to guess : ' ).strip() ) guess_the_number(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) if __name__ == "__main__": main()
102
1
'''simple docstring''' import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def snake_case_ ( _lowerCAmelCase : str ) -> Optional[Any]: def wrapper(*_lowerCAmelCase : List[Any] , **_lowerCAmelCase : List[Any] ): UpperCAmelCase : Union[str, Any] = timeit.default_timer() UpperCAmelCase : Union[str, Any] = func(*A__ , **A__ ) UpperCAmelCase : Dict = timeit.default_timer() - starttime return delta UpperCAmelCase : Optional[Any] = func.__name__ return wrapper def snake_case_ ( _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int]=100 , _lowerCAmelCase : str=None ) -> Tuple: UpperCAmelCase : str = [] UpperCAmelCase : List[str] = seq_shapes or {} for i in range(A__ ): UpperCAmelCase : int = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(A__ , _ArrayXD ): UpperCAmelCase : Optional[int] = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(A__ , datasets.Value ): if v.dtype == "string": UpperCAmelCase : List[str] = "The small grey turtle was surprisingly fast when challenged." else: UpperCAmelCase : List[str] = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(A__ , datasets.Sequence ): while isinstance(A__ , datasets.Sequence ): UpperCAmelCase : List[str] = v.feature UpperCAmelCase : List[Any] = seq_shapes[k] UpperCAmelCase : Dict = np.random.rand(*A__ ).astype(v.dtype ) UpperCAmelCase : Dict = data dummy_data.append((i, example) ) return dummy_data def snake_case_ ( _lowerCAmelCase : List[str] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : List[Any]=100 , _lowerCAmelCase : Dict=None ) -> List[str]: UpperCAmelCase : Optional[Any] = generate_examples(A__ , num_examples=A__ , seq_shapes=A__ ) with ArrowWriter(features=A__ , path=A__ ) as writer: for key, record in dummy_data: UpperCAmelCase : Any = features.encode_example(A__ ) writer.write(A__ ) UpperCAmelCase : Optional[int] = writer.finalize() if not num_final_examples == num_examples: raise ValueError( f"""Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.""" ) UpperCAmelCase : List[Any] = datasets.Dataset.from_file(filename=A__ , info=datasets.DatasetInfo(features=A__ ) ) return dataset
127
"""simple docstring""" import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class UpperCamelCase_ : @staticmethod def _SCREAMING_SNAKE_CASE ( *lowerCAmelCase_ : Any , **lowerCAmelCase_ : Dict ) -> str: pass def snake_case ( A__ ): return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowerCamelCase_ = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class UpperCamelCase_ (unittest.TestCase ): __magic_name__ = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] ) -> Union[str, Any]: UpperCAmelCase_ : int = pipeline( "document-question-answering" , model=lowerCAmelCase_ , tokenizer=lowerCAmelCase_ , image_processor=lowerCAmelCase_ ) UpperCAmelCase_ : int = INVOICE_URL UpperCAmelCase_ : Union[str, Any] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) UpperCAmelCase_ : Optional[Any] = "What is the placebo?" UpperCAmelCase_ : Tuple = [ { "image": load_image(lowerCAmelCase_ ), "question": question, }, { "image": image, "question": question, }, { "image": image, "question": question, "word_boxes": word_boxes, }, ] return dqa_pipeline, examples def _SCREAMING_SNAKE_CASE ( self : int , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] ) -> int: UpperCAmelCase_ : Union[str, Any] = dqa_pipeline(lowerCAmelCase_ , top_k=2 ) self.assertEqual( lowerCAmelCase_ , [ [ {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, {"score": ANY(lowerCAmelCase_ ), "answer": ANY(lowerCAmelCase_ ), "start": ANY(lowerCAmelCase_ ), "end": ANY(lowerCAmelCase_ )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Any: UpperCAmelCase_ : Tuple = pipeline("document-question-answering" , model="hf-internal-testing/tiny-random-layoutlmv2" ) UpperCAmelCase_ : Dict = INVOICE_URL UpperCAmelCase_ : int = "How many cats are there?" UpperCAmelCase_ : Any = [ {"score": 0.0_0_0_1, "answer": "oy 2312/2019", "start": 38, "end": 39}, {"score": 0.0_0_0_1, "answer": "oy 2312/2019 DUE", "start": 38, "end": 40}, ] UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , lowerCAmelCase_ ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Dict = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) # We can optionnally pass directly the words and bounding boxes UpperCAmelCase_ : int = "./tests/fixtures/tests_samples/COCO/000000039769.png" UpperCAmelCase_ : Optional[Any] = [] UpperCAmelCase_ : Dict = [] UpperCAmelCase_ : Optional[Any] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , words=lowerCAmelCase_ , boxes=lowerCAmelCase_ , top_k=2 ) self.assertEqual(lowerCAmelCase_ , [] ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Any ) -> int: UpperCAmelCase_ : Dict = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , ) UpperCAmelCase_ : Optional[Any] = INVOICE_URL UpperCAmelCase_ : Dict = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : int = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Any = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_4_4, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_0_0_9, "answer": "us-001", "start": 16, "end": 16}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def _SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Tuple: UpperCAmelCase_ : Tuple = pipeline( "document-question-answering" , model="tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa" , revision="9977165" , max_seq_len=50 , ) UpperCAmelCase_ : Tuple = INVOICE_URL UpperCAmelCase_ : Any = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Optional[int] = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : str = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_7_4, "answer": "1110212019", "start": 23, "end": 23}, {"score": 0.9_9_4_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: UpperCAmelCase_ : Any = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , ) UpperCAmelCase_ : Any = INVOICE_URL UpperCAmelCase_ : List[str] = "What is the invoice number?" UpperCAmelCase_ : str = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Dict = dqa_pipeline({"image": image, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) UpperCAmelCase_ : Union[str, Any] = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] ] * 2 , ) UpperCAmelCase_ : Dict = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : List[str] = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.4_2_5_1, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.0_8_1_9, "answer": "1110212019", "start": 23, "end": 23}, ] , ) @slow @require_torch @require_pytesseract @require_vision def _SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: UpperCAmelCase_ : List[Any] = AutoTokenizer.from_pretrained( "impira/layoutlm-document-qa" , revision="3dc6de3" , add_prefix_space=lowerCAmelCase_ ) UpperCAmelCase_ : str = pipeline( "document-question-answering" , model="impira/layoutlm-document-qa" , tokenizer=lowerCAmelCase_ , revision="3dc6de3" , max_seq_len=50 , ) UpperCAmelCase_ : List[Any] = INVOICE_URL UpperCAmelCase_ : Optional[int] = "What is the invoice number?" UpperCAmelCase_ : int = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) UpperCAmelCase_ : Tuple = dqa_pipeline( [{"image": image, "question": question}, {"image": image, "question": question}] , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] ] * 2 , ) UpperCAmelCase_ : Optional[int] = list(zip(*apply_tesseract(load_image(lowerCAmelCase_ ) , lowerCAmelCase_ , "" ) ) ) # This model should also work if `image` is set to None UpperCAmelCase_ : Dict = dqa_pipeline({"image": None, "word_boxes": word_boxes, "question": question} , top_k=2 ) self.assertEqual( nested_simplify(lowerCAmelCase_ , decimals=4 ) , [ {"score": 0.9_9_9_9, "answer": "us-001", "start": 16, "end": 16}, {"score": 0.9_9_9_8, "answer": "us-001", "start": 16, "end": 16}, ] , ) @slow @require_torch def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> List[str]: UpperCAmelCase_ : List[Any] = pipeline( "document-question-answering" , model="naver-clova-ix/donut-base-finetuned-docvqa" , tokenizer=AutoTokenizer.from_pretrained("naver-clova-ix/donut-base-finetuned-docvqa" ) , feature_extractor="naver-clova-ix/donut-base-finetuned-docvqa" , ) UpperCAmelCase_ : Optional[int] = INVOICE_URL UpperCAmelCase_ : int = "What is the invoice number?" UpperCAmelCase_ : List[str] = dqa_pipeline(image=lowerCAmelCase_ , question=lowerCAmelCase_ , top_k=2 ) self.assertEqual(nested_simplify(lowerCAmelCase_ , decimals=4 ) , [{"answer": "us-001"}] ) @require_tf @unittest.skip("Document question answering not implemented in TF" ) def _SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[str]: pass
95
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available A_ = { '''configuration_groupvit''': [ '''GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''GroupViTConfig''', '''GroupViTOnnxConfig''', '''GroupViTTextConfig''', '''GroupViTVisionConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''GroupViTModel''', '''GroupViTPreTrainedModel''', '''GroupViTTextModel''', '''GroupViTVisionModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A_ = [ '''TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFGroupViTModel''', '''TFGroupViTPreTrainedModel''', '''TFGroupViTTextModel''', '''TFGroupViTVisionModel''', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys A_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
28
"""simple docstring""" import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipaConfig, BlipaForConditionalGeneration, BlipaProcessor, BlipaVisionConfig, BlipImageProcessor, OPTConfig, TaConfig, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def UpperCAmelCase__ (): """simple docstring""" _snake_case : Optional[Any] = """https://storage.googleapis.com/sfr-vision-language-research/LAVIS/assets/merlion.png""" _snake_case : Union[str, Any] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ).convert("""RGB""" ) return image def UpperCAmelCase__ (snake_case__ : Any ): """simple docstring""" _snake_case : str = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"visual_encoder.blocks.{i}.norm1.weight", F"vision_model.encoder.layers.{i}.layer_norm1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm1.bias", F"vision_model.encoder.layers.{i}.layer_norm1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.weight", F"vision_model.encoder.layers.{i}.layer_norm2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.norm2.bias", F"vision_model.encoder.layers.{i}.layer_norm2.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.qkv.weight", F"vision_model.encoder.layers.{i}.self_attn.qkv.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.weight", F"vision_model.encoder.layers.{i}.self_attn.projection.weight",) ) rename_keys.append((F"visual_encoder.blocks.{i}.attn.proj.bias", F"vision_model.encoder.layers.{i}.self_attn.projection.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.weight", F"vision_model.encoder.layers.{i}.mlp.fc1.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc1.bias", F"vision_model.encoder.layers.{i}.mlp.fc1.bias") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.weight", F"vision_model.encoder.layers.{i}.mlp.fc2.weight") ) rename_keys.append((F"visual_encoder.blocks.{i}.mlp.fc2.bias", F"vision_model.encoder.layers.{i}.mlp.fc2.bias") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.layernorm.bias""") ) # fmt: on return rename_keys def UpperCAmelCase__ (snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Tuple ): """simple docstring""" _snake_case : Optional[Any] = dct.pop(snake_case__ ) _snake_case : Optional[int] = val def UpperCAmelCase__ (snake_case__ : List[str] , snake_case__ : str ): """simple docstring""" for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases _snake_case : Optional[int] = state_dict.pop(F"visual_encoder.blocks.{i}.attn.q_bias" ) _snake_case : Tuple = state_dict.pop(F"visual_encoder.blocks.{i}.attn.v_bias" ) # next, set bias in the state dict _snake_case : List[str] = torch.cat((q_bias, torch.zeros_like(snake_case__ , requires_grad=snake_case__ ), v_bias) ) _snake_case : Dict = qkv_bias def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Union[str, Any] ): """simple docstring""" _snake_case : List[Any] = 3_64 if """coco""" in model_name else 2_24 _snake_case : List[str] = BlipaVisionConfig(image_size=snake_case__ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "opt-2.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-2.7b""" , eos_token_id=snake_case__ ).to_dict() elif "opt-6.7b" in model_name: _snake_case : List[str] = OPTConfig.from_pretrained("""facebook/opt-6.7b""" , eos_token_id=snake_case__ ).to_dict() elif "t5-xl" in model_name: _snake_case : Tuple = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: _snake_case : List[Any] = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() _snake_case : int = BlipaConfig(vision_config=snake_case__ , text_config=snake_case__ ) return config, image_size @torch.no_grad() def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int=None , snake_case__ : str=False ): """simple docstring""" _snake_case : List[str] = ( AutoTokenizer.from_pretrained("""facebook/opt-2.7b""" ) if """opt""" in model_name else AutoTokenizer.from_pretrained("""google/flan-t5-xl""" ) ) _snake_case : str = tokenizer("""\n""" , add_special_tokens=snake_case__ ).input_ids[0] _snake_case , _snake_case : Dict = get_blipa_config(snake_case__ , eos_token_id=snake_case__ ) _snake_case : str = BlipaForConditionalGeneration(snake_case__ ).eval() _snake_case : int = { """blip2-opt-2.7b""": ("""blip2_opt""", """pretrain_opt2.7b"""), """blip2-opt-6.7b""": ("""blip2_opt""", """pretrain_opt6.7b"""), """blip2-opt-2.7b-coco""": ("""blip2_opt""", """caption_coco_opt2.7b"""), """blip2-opt-6.7b-coco""": ("""blip2_opt""", """caption_coco_opt6.7b"""), """blip2-flan-t5-xl""": ("""blip2_t5""", """pretrain_flant5xl"""), """blip2-flan-t5-xl-coco""": ("""blip2_t5""", """caption_coco_flant5xl"""), """blip2-flan-t5-xxl""": ("""blip2_t5""", """pretrain_flant5xxl"""), } _snake_case , _snake_case : List[Any] = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) _snake_case : int = """cuda""" if torch.cuda.is_available() else """cpu""" _snake_case , _snake_case , _snake_case : Any = load_model_and_preprocess( name=snake_case__ , model_type=snake_case__ , is_eval=snake_case__ , device=snake_case__ ) original_model.eval() print("""Done!""" ) # update state dict keys _snake_case : Any = original_model.state_dict() _snake_case : Dict = create_rename_keys(snake_case__ ) for src, dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): _snake_case : str = state_dict.pop(snake_case__ ) if key.startswith("""Qformer.bert""" ): _snake_case : str = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: _snake_case : Any = key.replace("""self""" , """attention""" ) if "opt_proj" in key: _snake_case : List[str] = key.replace("""opt_proj""" , """language_projection""" ) if "t5_proj" in key: _snake_case : Optional[Any] = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""opt""" ): _snake_case : List[Any] = key.replace("""opt""" , """language""" ) if key.startswith("""t5""" ): _snake_case : List[Any] = key.replace("""t5""" , """language""" ) _snake_case : str = val # read in qv biases read_in_q_v_bias(snake_case__ , snake_case__ ) _snake_case , _snake_case : List[str] = hf_model.load_state_dict(snake_case__ , strict=snake_case__ ) assert len(snake_case__ ) == 0 assert unexpected_keys == ["qformer.embeddings.position_ids"] _snake_case : Any = load_demo_image() _snake_case : str = vis_processors["""eval"""](snake_case__ ).unsqueeze(0 ).to(snake_case__ ) _snake_case : List[Any] = tokenizer(["""\n"""] , return_tensors="""pt""" ).input_ids.to(snake_case__ ) # create processor _snake_case : Any = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=snake_case__ , image_std=snake_case__ ) _snake_case : int = BlipaProcessor(image_processor=snake_case__ , tokenizer=snake_case__ ) _snake_case : Any = processor(images=snake_case__ , return_tensors="""pt""" ).pixel_values.to(snake_case__ ) # make sure processor creates exact same pixel values assert torch.allclose(snake_case__ , snake_case__ ) original_model.to(snake_case__ ) hf_model.to(snake_case__ ) with torch.no_grad(): if "opt" in model_name: _snake_case : str = original_model({"""image""": original_pixel_values, """text_input""": [""""""]} ).logits _snake_case : int = hf_model(snake_case__ , snake_case__ ).logits else: _snake_case : str = original_model( {"""image""": original_pixel_values, """text_input""": ["""\n"""], """text_output""": ["""\n"""]} ).logits _snake_case : Optional[int] = input_ids.masked_fill(input_ids == tokenizer.pad_token_id , -1_00 ) _snake_case : Union[str, Any] = hf_model(snake_case__ , snake_case__ , labels=snake_case__ ).logits assert original_logits.shape == logits.shape print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values if model_name == "blip2-flan-t5-xl": _snake_case : List[str] = torch.tensor( [[-41.58_50, -4.44_40, -8.99_22], [-47.43_22, -5.91_43, -1.73_40]] , device=snake_case__ ) assert torch.allclose(logits[0, :3, :3] , snake_case__ , atol=1e-4 ) elif model_name == "blip2-flan-t5-xl-coco": _snake_case : Union[str, Any] = torch.tensor( [[-57.01_09, -9.89_67, -12.62_80], [-68.65_78, -12.71_91, -10.50_65]] , device=snake_case__ ) else: # cast to same type _snake_case : int = logits.dtype assert torch.allclose(original_logits.to(snake_case__ ) , snake_case__ , atol=1e-2 ) print("""Looks ok!""" ) print("""Generating a caption...""" ) _snake_case : Any = """""" _snake_case : str = tokenizer(snake_case__ , return_tensors="""pt""" ).input_ids.to(snake_case__ ) _snake_case : Union[str, Any] = original_model.generate({"""image""": original_pixel_values} ) _snake_case : Tuple = hf_model.generate( snake_case__ , snake_case__ , do_sample=snake_case__ , num_beams=5 , max_length=30 , min_length=1 , top_p=0.9 , repetition_penalty=1.0 , length_penalty=1.0 , temperature=1 , ) print("""Original generation:""" , snake_case__ ) _snake_case : Optional[Any] = input_ids.shape[1] _snake_case : int = processor.batch_decode(outputs[:, prompt_length:] , skip_special_tokens=snake_case__ ) _snake_case : Optional[Any] = [text.strip() for text in output_text] print("""HF generation:""" , snake_case__ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(snake_case__ ) hf_model.save_pretrained(snake_case__ ) if push_to_hub: processor.push_to_hub(F"nielsr/{model_name}" ) hf_model.push_to_hub(F"nielsr/{model_name}" ) if __name__ == "__main__": A_ = argparse.ArgumentParser() A_ = [ '''blip2-opt-2.7b''', '''blip2-opt-6.7b''', '''blip2-opt-2.7b-coco''', '''blip2-opt-6.7b-coco''', '''blip2-flan-t5-xl''', '''blip2-flan-t5-xl-coco''', '''blip2-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''blip2-opt-2.7b''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) A_ = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
28
1
'''simple docstring''' import os import tempfile from functools import partial from unittest import TestCase from unittest.mock import patch import numpy as np import pytest from datasets.arrow_dataset import Dataset from datasets.search import ElasticSearchIndex, FaissIndex, MissingIndex from .utils import require_elasticsearch, require_faiss lowerCAmelCase = pytest.mark.integration @require_faiss class lowerCamelCase ( _A ): def _lowerCamelCase ( self ): lowerCAmelCase : Dict = Dataset.from_dict({"filename": ["my_name-train" + "_" + str(a_ ) for x in np.arange(30 ).tolist()]} ) return dset def _lowerCamelCase ( self ): import faiss lowerCAmelCase : Dataset = self._create_dummy_dataset() lowerCAmelCase : Optional[int] = dset.map( lambda a_ , a_ : {"vecs": i * np.ones(5 , dtype=np.floataa )} , with_indices=a_ , keep_in_memory=a_ ) lowerCAmelCase : List[str] = dset.add_faiss_index("vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT ) lowerCAmelCase , lowerCAmelCase : str = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) dset.drop_index("vecs" ) def _lowerCamelCase ( self ): import faiss lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , batch_size=100 , metric_type=faiss.METRIC_INNER_PRODUCT , ) lowerCAmelCase , lowerCAmelCase : Tuple = dset.get_nearest_examples("vecs" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self ): import faiss lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" , metric_type=faiss.METRIC_INNER_PRODUCT , ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=a_ ) as tmp_file: dset.save_faiss_index("vecs" , tmp_file.name ) dset.load_faiss_index("vecs2" , tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase , lowerCAmelCase : Dict = dset.get_nearest_examples("vecs2" , np.ones(5 , dtype=np.floataa ) ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) def _lowerCamelCase ( self ): lowerCAmelCase : Dataset = self._create_dummy_dataset() dset.add_faiss_index_from_external_arrays( external_arrays=np.ones((30, 5) ) * np.arange(30 ).reshape(-1 , 1 ) , index_name="vecs" ) dset.drop_index("vecs" ) self.assertRaises(a_ , partial(dset.get_nearest_examples , "vecs2" , np.ones(5 , dtype=np.floataa ) ) ) def _lowerCamelCase ( self ): from elasticsearch import Elasticsearch lowerCAmelCase : Dataset = self._create_dummy_dataset() with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCAmelCase : Tuple = {"acknowledged": True} mocked_bulk.return_value([(True, None)] * 30 ) lowerCAmelCase : Optional[int] = {"hits": {"hits": [{"_score": 1, "_id": 29}]}} lowerCAmelCase : Optional[int] = Elasticsearch() dset.add_elasticsearch_index("filename" , es_client=a_ ) lowerCAmelCase , lowerCAmelCase : List[str] = dset.get_nearest_examples("filename" , "my_name-train_29" ) self.assertEqual(examples["filename"][0] , "my_name-train_29" ) @require_faiss class lowerCamelCase ( _A ): def _lowerCamelCase ( self ): import faiss lowerCAmelCase : Dict = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) # add vectors index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsNotNone(index.faiss_index ) self.assertEqual(index.faiss_index.ntotal , 5 ) index.add_vectors(np.zeros((5, 5) , dtype=np.floataa ) ) self.assertEqual(index.faiss_index.ntotal , 10 ) # single query lowerCAmelCase : Tuple = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase : Dict = 1 lowerCAmelCase , lowerCAmelCase : List[str] = index.search(a_ ) self.assertRaises(a_ , index.search , query.reshape(-1 , 1 ) ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) # batched queries lowerCAmelCase : Union[str, Any] = np.eye(5 , dtype=np.floataa )[::-1] lowerCAmelCase , lowerCAmelCase : Optional[int] = index.search_batch(a_ ) self.assertRaises(a_ , index.search_batch , queries[0] ) lowerCAmelCase : List[Any] = [scores[0] for scores in total_scores] lowerCAmelCase : str = [indices[0] for indices in total_indices] self.assertGreater(np.min(a_ ) , 0 ) self.assertListEqual([4, 3, 2, 1, 0] , a_ ) def _lowerCamelCase ( self ): import faiss lowerCAmelCase : Optional[int] = FaissIndex(string_factory="Flat" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) lowerCAmelCase : Tuple = FaissIndex(string_factory="LSH" ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexLSH ) with self.assertRaises(a_ ): lowerCAmelCase : Tuple = FaissIndex(string_factory="Flat" , custom_index=faiss.IndexFlat(5 ) ) def _lowerCamelCase ( self ): import faiss lowerCAmelCase : Optional[Any] = faiss.IndexFlat(5 ) lowerCAmelCase : Optional[int] = FaissIndex(custom_index=a_ ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) self.assertIsInstance(index.faiss_index , faiss.IndexFlat ) def _lowerCamelCase ( self ): import faiss lowerCAmelCase : str = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 , dtype=np.floataa ) ) # Setting delete=False and unlinking manually is not pretty... but it is required on Windows to # ensure somewhat stable behaviour. If we don't, we get PermissionErrors. This is an age-old issue. # see https://bugs.python.org/issue14243 and # https://stackoverflow.com/questions/23212435/permission-denied-to-write-to-my-temporary-file/23212515 with tempfile.NamedTemporaryFile(delete=a_ ) as tmp_file: index.save(tmp_file.name ) lowerCAmelCase : int = FaissIndex.load(tmp_file.name ) os.unlink(tmp_file.name ) lowerCAmelCase : Any = np.zeros(5 , dtype=np.floataa ) lowerCAmelCase : Tuple = 1 lowerCAmelCase , lowerCAmelCase : Dict = index.search(a_ ) self.assertGreater(scores[0] , 0 ) self.assertEqual(indices[0] , 1 ) @require_faiss def __A ( a_ : Union[str, Any] ): import faiss lowerCAmelCase : Any = FaissIndex(metric_type=faiss.METRIC_INNER_PRODUCT ) index.add_vectors(np.eye(5 ,dtype=np.floataa ) ) lowerCAmelCase : Tuple = "index.faiss" lowerCAmelCase : Optional[int] = f'''mock://{index_name}''' index.save(a_ ,storage_options=mockfs.storage_options ) lowerCAmelCase : List[Any] = FaissIndex.load(a_ ,storage_options=mockfs.storage_options ) lowerCAmelCase : Optional[Any] = np.zeros(5 ,dtype=np.floataa ) lowerCAmelCase : Dict = 1 lowerCAmelCase , lowerCAmelCase : Optional[int] = index.search(a_ ) assert scores[0] > 0 assert indices[0] == 1 @require_elasticsearch class lowerCamelCase ( _A ): def _lowerCamelCase ( self ): from elasticsearch import Elasticsearch with patch("elasticsearch.Elasticsearch.search" ) as mocked_search, patch( "elasticsearch.client.IndicesClient.create" ) as mocked_index_create, patch("elasticsearch.helpers.streaming_bulk" ) as mocked_bulk: lowerCAmelCase : Union[str, Any] = Elasticsearch() lowerCAmelCase : Optional[int] = {"acknowledged": True} lowerCAmelCase : Tuple = ElasticSearchIndex(es_client=a_ ) mocked_bulk.return_value([(True, None)] * 3 ) index.add_documents(["foo", "bar", "foobar"] ) # single query lowerCAmelCase : Dict = "foo" lowerCAmelCase : List[str] = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCAmelCase , lowerCAmelCase : Tuple = index.search(a_ ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # single query with timeout lowerCAmelCase : Union[str, Any] = "foo" lowerCAmelCase : int = {"hits": {"hits": [{"_score": 1, "_id": 0}]}} lowerCAmelCase , lowerCAmelCase : Dict = index.search(a_ , request_timeout=30 ) self.assertEqual(scores[0] , 1 ) self.assertEqual(indices[0] , 0 ) # batched queries lowerCAmelCase : Optional[Any] = ["foo", "bar", "foobar"] lowerCAmelCase : Union[str, Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCAmelCase , lowerCAmelCase : List[str] = index.search_batch(a_ ) lowerCAmelCase : Any = [scores[0] for scores in total_scores] lowerCAmelCase : Tuple = [indices[0] for indices in total_indices] self.assertGreater(np.min(a_ ) , 0 ) self.assertListEqual([1, 1, 1] , a_ ) # batched queries with timeout lowerCAmelCase : Dict = ["foo", "bar", "foobar"] lowerCAmelCase : Optional[Any] = {"hits": {"hits": [{"_score": 1, "_id": 1}]}} lowerCAmelCase , lowerCAmelCase : int = index.search_batch(a_ , request_timeout=30 ) lowerCAmelCase : int = [scores[0] for scores in total_scores] lowerCAmelCase : List[Any] = [indices[0] for indices in total_indices] self.assertGreater(np.min(a_ ) , 0 ) self.assertListEqual([1, 1, 1] , a_ )
525
'''simple docstring''' import itertools import random import unittest import numpy as np from transformers import WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaConfig, WavaVecaFeatureExtractor from transformers.testing_utils import require_torch, slow from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin lowerCAmelCase = random.Random() def __A ( a_ : Union[str, Any] ,a_ : Tuple=1.0 ,a_ : Optional[int]=None ,a_ : Union[str, Any]=None ): if rng is None: lowerCAmelCase : str = global_rng lowerCAmelCase : Any = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values class lowerCamelCase ( unittest.TestCase ): def __init__( self , a_ , a_=7 , a_=400 , a_=2_000 , a_=1 , a_=0.0 , a_=16_000 , a_=True , a_=True , ): lowerCAmelCase : Dict = parent lowerCAmelCase : Optional[int] = batch_size lowerCAmelCase : Dict = min_seq_length lowerCAmelCase : Dict = max_seq_length lowerCAmelCase : Optional[Any] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) lowerCAmelCase : Union[str, Any] = feature_size lowerCAmelCase : Tuple = padding_value lowerCAmelCase : Dict = sampling_rate lowerCAmelCase : int = return_attention_mask lowerCAmelCase : Optional[Any] = do_normalize def _lowerCamelCase ( self ): return { "feature_size": self.feature_size, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def _lowerCamelCase ( self , a_=False , a_=False ): def _flatten(a_ ): return list(itertools.chain(*a_ ) ) if equal_length: lowerCAmelCase : List[Any] = floats_list((self.batch_size, self.max_seq_length) ) else: # make sure that inputs increase in size lowerCAmelCase : Any = [ _flatten(floats_list((x, self.feature_size) ) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: lowerCAmelCase : List[str] = [np.asarray(a_ ) for x in speech_inputs] return speech_inputs class lowerCamelCase ( _A , unittest.TestCase ): snake_case_ = WavaVecaFeatureExtractor def _lowerCamelCase ( self ): lowerCAmelCase : Tuple = WavaVecaFeatureExtractionTester(self ) def _lowerCamelCase ( self , a_ ): self.assertTrue(np.all(np.mean(a_ , axis=0 ) < 1e-3 ) ) self.assertTrue(np.all(np.abs(np.var(a_ , axis=0 ) - 1 ) < 1e-3 ) ) def _lowerCamelCase ( self ): # Tests that all call wrap to encode_plus and batch_encode_plus lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 lowerCAmelCase : str = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Dict = [np.asarray(a_ ) for speech_input in speech_inputs] # Test not batched input lowerCAmelCase : Optional[int] = feat_extract(speech_inputs[0] , return_tensors="np" ).input_values lowerCAmelCase : Any = feat_extract(np_speech_inputs[0] , return_tensors="np" ).input_values self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test batched lowerCAmelCase : Any = feat_extract(a_ , return_tensors="np" ).input_values lowerCAmelCase : int = feat_extract(a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) # Test 2-D numpy arrays are batched. lowerCAmelCase : Dict = [floats_list((1, x) )[0] for x in (800, 800, 800)] lowerCAmelCase : Tuple = np.asarray(a_ ) lowerCAmelCase : int = feat_extract(a_ , return_tensors="np" ).input_values lowerCAmelCase : Union[str, Any] = feat_extract(a_ , return_tensors="np" ).input_values for enc_seq_a, enc_seq_a in zip(a_ , a_ ): self.assertTrue(np.allclose(a_ , a_ , atol=1e-3 ) ) def _lowerCamelCase ( self ): lowerCAmelCase : int = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Any = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Union[str, Any] = ["longest", "max_length", "do_not_pad"] lowerCAmelCase : Optional[int] = [None, 1_600, None] for max_length, padding in zip(a_ , a_ ): lowerCAmelCase : List[Any] = feat_extract(a_ , padding=a_ , max_length=a_ , return_tensors="np" ) lowerCAmelCase : Any = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self.assertTrue(input_values[0][800:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self.assertTrue(input_values[0][1_000:].sum() < 1e-6 ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Optional[int] = range(800 , 1_400 , 200 ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in lengths] lowerCAmelCase : str = ["longest", "max_length", "do_not_pad"] lowerCAmelCase : Any = [None, 1_600, None] for max_length, padding in zip(a_ , a_ ): lowerCAmelCase : Dict = feat_extract(a_ , max_length=a_ , padding=a_ ) lowerCAmelCase : int = processed.input_values self._check_zero_mean_unit_variance(input_values[0][:800] ) self._check_zero_mean_unit_variance(input_values[1][:1_000] ) self._check_zero_mean_unit_variance(input_values[2][:1_200] ) def _lowerCamelCase ( self ): lowerCAmelCase : List[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Dict = feat_extract( a_ , truncation=a_ , max_length=1_000 , padding="max_length" , return_tensors="np" ) lowerCAmelCase : Union[str, Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1] ) self._check_zero_mean_unit_variance(input_values[2] ) def _lowerCamelCase ( self ): lowerCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : Tuple = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Union[str, Any] = feat_extract( a_ , truncation=a_ , max_length=1_000 , padding="longest" , return_tensors="np" ) lowerCAmelCase : Dict = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length < longest -> then pad to max_length self.assertTrue(input_values.shape == (3, 1_000) ) lowerCAmelCase : List[str] = [floats_list((1, x) )[0] for x in range(800 , 1_400 , 200 )] lowerCAmelCase : Union[str, Any] = feat_extract( a_ , truncation=a_ , max_length=2_000 , padding="longest" , return_tensors="np" ) lowerCAmelCase : Optional[Any] = processed.input_values self._check_zero_mean_unit_variance(input_values[0, :800] ) self._check_zero_mean_unit_variance(input_values[1, :1_000] ) self._check_zero_mean_unit_variance(input_values[2] ) # make sure that if max_length > longest -> then pad to longest self.assertTrue(input_values.shape == (3, 1_200) ) @require_torch def _lowerCamelCase ( self ): import torch lowerCAmelCase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) lowerCAmelCase : List[Any] = np.random.rand(100 ).astype(np.floataa ) lowerCAmelCase : List[Any] = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: lowerCAmelCase : Union[str, Any] = feature_extractor.pad([{"input_values": inputs}] , return_tensors="np" ) self.assertTrue(np_processed.input_values.dtype == np.floataa ) lowerCAmelCase : Tuple = feature_extractor.pad([{"input_values": inputs}] , return_tensors="pt" ) self.assertTrue(pt_processed.input_values.dtype == torch.floataa ) @slow @require_torch def _lowerCamelCase ( self ): # this test makes sure that models that are using # group norm don't have their feature extractor return the # attention_mask for model_id in WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST: lowerCAmelCase : Any = WavaVecaConfig.from_pretrained(a_ ) lowerCAmelCase : List[str] = WavaVecaFeatureExtractor.from_pretrained(a_ ) # only "layer" feature extraction norm should make use of # attention_mask self.assertEqual(feat_extract.return_attention_mask , config.feat_extract_norm == "layer" )
525
1
"""simple docstring""" import argparse import json from tqdm import tqdm def __SCREAMING_SNAKE_CASE ( ): _lowercase : Any = argparse.ArgumentParser() # Required parameters parser.add_argument( """--src_path""" , type=__UpperCAmelCase , default="""biencoder-nq-dev.json""" , help="""Path to raw DPR training data""" , ) parser.add_argument( """--evaluation_set""" , type=__UpperCAmelCase , help="""where to store parsed evaluation_set file""" , ) parser.add_argument( """--gold_data_path""" , type=__UpperCAmelCase , help="""where to store parsed gold_data_path file""" , ) _lowercase : Union[str, Any] = parser.parse_args() with open(args.src_path , """r""" ) as src_file, open(args.evaluation_set , """w""" ) as eval_file, open( args.gold_data_path , """w""" ) as gold_file: _lowercase : List[str] = json.load(__UpperCAmelCase ) for dpr_record in tqdm(__UpperCAmelCase ): _lowercase : int = dpr_record["""question"""] _lowercase : List[str] = [context["""title"""] for context in dpr_record["""positive_ctxs"""]] eval_file.write(question + """\n""" ) gold_file.write("""\t""".join(__UpperCAmelCase ) + """\n""" ) if __name__ == "__main__": main()
600
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) UpperCAmelCase: List[Any] = {"""configuration_encoder_decoder""": ["""EncoderDecoderConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Tuple = ["""EncoderDecoderModel"""] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: Optional[int] = ["""TFEncoderDecoderModel"""] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase: List[str] = ["""FlaxEncoderDecoderModel"""] if TYPE_CHECKING: from .configuration_encoder_decoder import EncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_encoder_decoder import EncoderDecoderModel try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_encoder_decoder import TFEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_encoder_decoder import FlaxEncoderDecoderModel else: import sys UpperCAmelCase: Union[str, Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
600
1
"""simple docstring""" from ....configuration_utils import PretrainedConfig from ....utils import logging _UpperCamelCase : int = logging.get_logger(__name__) _UpperCamelCase : Optional[Any] = { "CarlCochet/trajectory-transformer-halfcheetah-medium-v2": ( "https://huggingface.co/CarlCochet/trajectory-transformer-halfcheetah-medium-v2/resolve/main/config.json" ), # See all TrajectoryTransformer models at https://huggingface.co/models?filter=trajectory_transformer } class UpperCAmelCase_ ( _a): lowerCamelCase__ : Tuple = "trajectory_transformer" lowerCamelCase__ : Optional[int] = ["past_key_values"] lowerCamelCase__ : Optional[Any] = { "hidden_size": "n_embd", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self , a=1_0_0 , a=5 , a=1 , a=1 , a=2_4_9 , a=6 , a=1_7 , a=2_5 , a=4 , a=4 , a=1_2_8 , a=0.1 , a=0.1 , a=0.1 , a=0.0_006 , a=5_1_2 , a=0.02 , a=1e-12 , a=1 , a=True , a=1 , a=5_0_2_5_6 , a=5_0_2_5_6 , **a , ) -> List[Any]: lowercase__ : Union[str, Any] = vocab_size lowercase__ : List[str] = action_weight lowercase__ : Union[str, Any] = reward_weight lowercase__ : Union[str, Any] = value_weight lowercase__ : List[Any] = max_position_embeddings lowercase__ : Optional[int] = block_size lowercase__ : Tuple = action_dim lowercase__ : Dict = observation_dim lowercase__ : Dict = transition_dim lowercase__ : Optional[int] = learning_rate lowercase__ : int = n_layer lowercase__ : Optional[int] = n_head lowercase__ : str = n_embd lowercase__ : str = embd_pdrop lowercase__ : Dict = attn_pdrop lowercase__ : Tuple = resid_pdrop lowercase__ : Optional[Any] = initializer_range lowercase__ : List[str] = layer_norm_eps lowercase__ : str = kaiming_initializer_range lowercase__ : Union[str, Any] = use_cache super().__init__(pad_token_id=a , bos_token_id=a , eos_token_id=a , **a )
599
"""simple docstring""" import argparse import json from tqdm import tqdm def a_ ( ): '''simple docstring''' lowercase__ : str = argparse.ArgumentParser() # Required parameters parser.add_argument( '--src_path' , type=_lowerCAmelCase , default='biencoder-nq-dev.json' , help='Path to raw DPR training data' , ) parser.add_argument( '--evaluation_set' , type=_lowerCAmelCase , help='where to store parsed evaluation_set file' , ) parser.add_argument( '--gold_data_path' , type=_lowerCAmelCase , help='where to store parsed gold_data_path file' , ) lowercase__ : Union[str, Any] = parser.parse_args() with open(args.src_path , 'r' ) as src_file, open(args.evaluation_set , 'w' ) as eval_file, open( args.gold_data_path , 'w' ) as gold_file: lowercase__ : List[str] = json.load(_lowerCAmelCase ) for dpr_record in tqdm(_lowerCAmelCase ): lowercase__ : Any = dpr_record['question'] lowercase__ : Optional[Any] = [context['title'] for context in dpr_record['positive_ctxs']] eval_file.write(question + '\n' ) gold_file.write('\t'.join(_lowerCAmelCase ) + '\n' ) if __name__ == "__main__": main()
599
1
from collections import defaultdict class lowerCamelCase__ : def __init__( self : Any , lowercase__ : str , lowercase__ : Any ): _lowerCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 _lowerCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(lowercase__ ) ) ] _lowerCAmelCase = defaultdict(lowercase__ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 _lowerCAmelCase = (1 << len(lowercase__ )) - 1 def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : Any , lowercase__ : str ): # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement _lowerCAmelCase = self.count_ways_until(lowercase__ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. _lowerCAmelCase = total_ways_util return self.dp[mask][task_no] def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] , lowercase__ : List[Any] ): # Store the list of persons for each task for i in range(len(lowercase__ ) ): for j in task_performed[i]: self.task[j].append(lowercase__ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _lowercase: Union[str, Any] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _lowercase: Optional[int] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
225
from sklearn.metrics import mean_squared_error import datasets _lowercase: Tuple = '''\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } ''' _lowercase: Any = '''\ Mean Squared Error(MSE) is the average of the square of difference between the predicted and actual values. ''' _lowercase: Union[str, Any] = ''' Args: predictions: array-like of shape (n_samples,) or (n_samples, n_outputs) Estimated target values. references: array-like of shape (n_samples,) or (n_samples, n_outputs) Ground truth (correct) target values. sample_weight: array-like of shape (n_samples,), default=None Sample weights. multioutput: {"raw_values", "uniform_average"} or array-like of shape (n_outputs,), default="uniform_average" Defines aggregating of multiple output values. Array-like value defines weights used to average errors. "raw_values" : Returns a full set of errors in case of multioutput input. "uniform_average" : Errors of all outputs are averaged with uniform weight. squared : bool, default=True If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value. Returns: mse : mean squared error. Examples: >>> mse_metric = datasets.load_metric("mse") >>> predictions = [2.5, 0.0, 2, 8] >>> references = [3, -0.5, 2, 7] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.375} >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False) >>> print(rmse_result) {\'mse\': 0.6123724356957945} If you\'re using multi-dimensional lists, then set the config as follows : >>> mse_metric = datasets.load_metric("mse", "multilist") >>> predictions = [[0.5, 1], [-1, 1], [7, -6]] >>> references = [[0, 2], [-1, 2], [8, -5]] >>> results = mse_metric.compute(predictions=predictions, references=references) >>> print(results) {\'mse\': 0.7083333333333334} >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput=\'raw_values\') >>> print(results) # doctest: +NORMALIZE_WHITESPACE {\'mse\': array([0.41666667, 1. ])} ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCamelCase__ ( datasets.Metric ): def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ 'https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html' ] , ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value('float' ) ), "references": datasets.Sequence(datasets.Value('float' ) ), } else: return { "predictions": datasets.Value('float' ), "references": datasets.Value('float' ), } def SCREAMING_SNAKE_CASE__ ( self : Dict , lowercase__ : str , lowercase__ : Tuple , lowercase__ : Any=None , lowercase__ : Optional[Any]="uniform_average" , lowercase__ : int=True ): _lowerCAmelCase = mean_squared_error( lowercase__ , lowercase__ , sample_weight=lowercase__ , multioutput=lowercase__ , squared=lowercase__ ) return {"mse": mse}
225
1
import operator def _lowerCAmelCase ( _lowerCAmelCase ,_lowerCAmelCase = False ,_lowerCAmelCase = None ): '''simple docstring''' A_ : Tuple = operator.lt if reverse else operator.gt A_ : int = solution or [] if not arr: return solution A_ : Any = [arr.pop(0 )] for i, item in enumerate(a__ ): if _operator(a__ ,sublist[-1] ): sublist.append(a__ ) arr.pop(a__ ) # merging sublist into solution list if not solution: solution.extend(a__ ) else: while sublist: A_ : int = sublist.pop(0 ) for i, xx in enumerate(a__ ): if not _operator(a__ ,a__ ): solution.insert(a__ ,a__ ) break else: solution.append(a__ ) strand_sort(a__ ,a__ ,a__ ) return solution if __name__ == "__main__": assert strand_sort([4, 3, 5, 1, 2]) == [1, 2, 3, 4, 5] assert strand_sort([4, 3, 5, 1, 2], reverse=True) == [5, 4, 3, 2, 1]
569
"""simple docstring""" import argparse import torch from transformers import MobileBertConfig, MobileBertForPreTraining, load_tf_weights_in_mobilebert from transformers.utils import logging logging.set_verbosity_info() def UpperCAmelCase ( a__ , a__ , a__ ): '''simple docstring''' lowerCAmelCase :Tuple = MobileBertConfig.from_json_file(a__ ) print(F"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase :Tuple = MobileBertForPreTraining(a__ ) # Load weights from tf checkpoint lowerCAmelCase :Any = load_tf_weights_in_mobilebert(a__ , a__ , a__ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , a__ ) if __name__ == "__main__": __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--mobilebert_config_file', default=None, type=str, required=True, help=( 'The config json file corresponding to the pre-trained MobileBERT model. \n' 'This specifies the model architecture.' ), ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) __SCREAMING_SNAKE_CASE = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.mobilebert_config_file, args.pytorch_dump_path)
553
0
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE_ : Optional[Any] = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ : int = { """asapp/sew-tiny-100k""": """https://huggingface.co/asapp/sew-tiny-100k/resolve/main/config.json""", # See all SEW models at https://huggingface.co/models?filter=sew } class _A ( __a ): __a = "sew" def __init__( self , SCREAMING_SNAKE_CASE__=32 , SCREAMING_SNAKE_CASE__=768 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=12 , SCREAMING_SNAKE_CASE__=3072 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.1 , SCREAMING_SNAKE_CASE__=0.02 , SCREAMING_SNAKE_CASE__=1e-5 , SCREAMING_SNAKE_CASE__="group" , SCREAMING_SNAKE_CASE__="gelu" , SCREAMING_SNAKE_CASE__=(64, 128, 128, 128, 128, 256, 256, 256, 256, 512, 512, 512, 512) , SCREAMING_SNAKE_CASE__=(5, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__=(10, 3, 1, 3, 1, 3, 1, 3, 1, 2, 1, 2, 1) , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=128 , SCREAMING_SNAKE_CASE__=16 , SCREAMING_SNAKE_CASE__=True , SCREAMING_SNAKE_CASE__=0.05 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=2 , SCREAMING_SNAKE_CASE__=0.0 , SCREAMING_SNAKE_CASE__=10 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__="mean" , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=False , SCREAMING_SNAKE_CASE__=256 , SCREAMING_SNAKE_CASE__=0 , SCREAMING_SNAKE_CASE__=1 , SCREAMING_SNAKE_CASE__=2 , **SCREAMING_SNAKE_CASE__ , ) -> Tuple: super().__init__(**SCREAMING_SNAKE_CASE__ , pad_token_id=SCREAMING_SNAKE_CASE__ , bos_token_id=SCREAMING_SNAKE_CASE__ , eos_token_id=SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = hidden_size lowerCamelCase__ = feat_extract_norm lowerCamelCase__ = feat_extract_activation lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = list(SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = conv_bias lowerCamelCase__ = num_conv_pos_embeddings lowerCamelCase__ = num_conv_pos_embedding_groups lowerCamelCase__ = len(self.conv_dim ) lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = intermediate_size lowerCamelCase__ = squeeze_factor lowerCamelCase__ = hidden_act lowerCamelCase__ = num_attention_heads lowerCamelCase__ = hidden_dropout lowerCamelCase__ = attention_dropout lowerCamelCase__ = activation_dropout lowerCamelCase__ = feat_proj_dropout lowerCamelCase__ = final_dropout lowerCamelCase__ = layerdrop lowerCamelCase__ = layer_norm_eps lowerCamelCase__ = initializer_range lowerCamelCase__ = vocab_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect." "It is required that `len(config.conv_dim)` == `len(config.conv_stride)` == `len(config.conv_kernel)`," f'but is `len(config.conv_dim) = {len(self.conv_dim )}`, `len(config.conv_stride)' f'= {len(self.conv_stride )}`, `len(config.conv_kernel) = {len(self.conv_kernel )}`.' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase__ = apply_spec_augment lowerCamelCase__ = mask_time_prob lowerCamelCase__ = mask_time_length lowerCamelCase__ = mask_time_min_masks lowerCamelCase__ = mask_feature_prob lowerCamelCase__ = mask_feature_length lowerCamelCase__ = mask_feature_min_masks # ctc loss lowerCamelCase__ = ctc_loss_reduction lowerCamelCase__ = ctc_zero_infinity # sequence classification lowerCamelCase__ = use_weighted_layer_sum lowerCamelCase__ = classifier_proj_size @property def _lowerCamelCase ( self ) -> str: return functools.reduce(operator.mul , self.conv_stride , 1 )
706
"""simple docstring""" def UpperCAmelCase__ ( A__ ) -> list[int]: """simple docstring""" if length <= 0 or not isinstance(A__ , A__ ): raise ValueError("Length must be a positive integer." ) return [n * (2 * n - 1) for n in range(A__ )] if __name__ == "__main__": print(hexagonal_numbers(length=5)) print(hexagonal_numbers(length=10))
274
0
import os import unittest from transformers.models.cpmant.tokenization_cpmant import VOCAB_FILES_NAMES, CpmAntTokenizer from transformers.testing_utils import require_jieba, tooslow from ...test_tokenization_common import TokenizerTesterMixin @require_jieba class _SCREAMING_SNAKE_CASE ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowercase_ = CpmAntTokenizer lowercase_ = False def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->List[str]: '''simple docstring''' super().setUp() lowerCamelCase__: Optional[int] =[ "<d>", "</d>", "<s>", "</s>", "</_>", "<unk>", "<pad>", "</n>", "我", "是", "C", "P", "M", "A", "n", "t", ] lowerCamelCase__: Any =os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"]) with open(self.vocab_file , "w" , encoding="utf-8") as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens])) @tooslow def SCREAMING_SNAKE_CASE_ (self : Optional[int]) ->Optional[int]: '''simple docstring''' lowerCamelCase__: List[Any] =CpmAntTokenizer.from_pretrained("openbmb/cpm-ant-10b") lowerCamelCase__: Union[str, Any] ="今天天气真好!" lowerCamelCase__: int =["今天", "天气", "真", "好", "!"] lowerCamelCase__: List[str] =tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) lowerCamelCase__: Dict ="今天天气真好!" lowerCamelCase__: str =[tokenizer.bos_token] + tokens lowerCamelCase__: Union[str, Any] =[6, 9_802, 14_962, 2_082, 831, 244] self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , UpperCAmelCase_) lowerCamelCase__: Tuple =tokenizer.decode(UpperCAmelCase_) self.assertEqual(UpperCAmelCase_ , UpperCAmelCase_)
59
'''simple docstring''' import datasets __lowerCamelCase : int = """\ @InProceedings{conneau2018xnli, author = \"Conneau, Alexis and Rinott, Ruty and Lample, Guillaume and Williams, Adina and Bowman, Samuel R. and Schwenk, Holger and Stoyanov, Veselin\", title = \"XNLI: Evaluating Cross-lingual Sentence Representations\", booktitle = \"Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing\", year = \"2018\", publisher = \"Association for Computational Linguistics\", location = \"Brussels, Belgium\", } """ __lowerCamelCase : List[Any] = """\ XNLI is a subset of a few thousand examples from MNLI which has been translated into a 14 different languages (some low-ish resource). As with MNLI, the goal is to predict textual entailment (does sentence A imply/contradict/neither sentence B) and is a classification task (given two sentences, predict one of three labels). """ __lowerCamelCase : List[Any] = """ Computes XNLI score which is just simple accuracy. Args: predictions: Predicted labels. references: Ground truth labels. Returns: 'accuracy': accuracy Examples: >>> predictions = [0, 1] >>> references = [0, 1] >>> xnli_metric = datasets.load_metric(\"xnli\") >>> results = xnli_metric.compute(predictions=predictions, references=references) >>> print(results) {'accuracy': 1.0} """ def __snake_case (__UpperCAmelCase , __UpperCAmelCase ): """simple docstring""" return (preds == labels).mean() @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION ,_KWARGS_DESCRIPTION ) class lowerCAmelCase__ ( datasets.Metric ): def __UpperCamelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), '''references''': datasets.Value('''int64''' if self.config_name != '''sts-b''' else '''float32''' ), } ) , codebase_urls=[] , reference_urls=[] , format='''numpy''' , ) def __UpperCamelCase ( self : Optional[int] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Optional[Any] ) -> Union[str, Any]: """simple docstring""" return {"accuracy": simple_accuracy(UpperCamelCase_ , UpperCamelCase_ )}
501
0
'''simple docstring''' from ..utils import DummyObject, requires_backends class lowercase ( metaclass=__lowerCAmelCase ): lowerCamelCase_ =['''transformers''', '''torch''', '''note_seq'''] def __init__( self : Tuple , *__lowerCAmelCase : Union[str, Any] , **__lowerCAmelCase : str) -> str: requires_backends(self , ["transformers", "torch", "note_seq"]) @classmethod def __UpperCAmelCase ( cls : Optional[int] , *__lowerCAmelCase : Tuple , **__lowerCAmelCase : Tuple) -> Optional[Any]: requires_backends(cls , ["transformers", "torch", "note_seq"]) @classmethod def __UpperCAmelCase ( cls : Any , *__lowerCAmelCase : int , **__lowerCAmelCase : Union[str, Any]) -> int: requires_backends(cls , ["transformers", "torch", "note_seq"])
717
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class lowercase : def __init__( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Any=14 , __lowerCAmelCase : Optional[Any]=7 , __lowerCAmelCase : List[str]=True , __lowerCAmelCase : Optional[int]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Optional[Any]=True , __lowerCAmelCase : Any=99 , __lowerCAmelCase : Tuple=32 , __lowerCAmelCase : Union[str, Any]=5 , __lowerCAmelCase : str=4 , __lowerCAmelCase : Dict=37 , __lowerCAmelCase : Optional[int]="gelu" , __lowerCAmelCase : int=0.1 , __lowerCAmelCase : Tuple=0.1 , __lowerCAmelCase : str=512 , __lowerCAmelCase : Optional[Any]=16 , __lowerCAmelCase : Optional[int]=2 , __lowerCAmelCase : str=0.02 , __lowerCAmelCase : str=3 , __lowerCAmelCase : Tuple=4 , __lowerCAmelCase : Union[str, Any]=None , ) -> List[Any]: lowercase_ = parent lowercase_ = batch_size lowercase_ = seq_length lowercase_ = is_training lowercase_ = use_token_type_ids lowercase_ = use_input_mask lowercase_ = use_labels lowercase_ = use_mc_token_ids lowercase_ = vocab_size lowercase_ = hidden_size lowercase_ = num_hidden_layers lowercase_ = num_attention_heads lowercase_ = intermediate_size lowercase_ = hidden_act lowercase_ = hidden_dropout_prob lowercase_ = attention_probs_dropout_prob lowercase_ = max_position_embeddings lowercase_ = type_vocab_size lowercase_ = type_sequence_label_size lowercase_ = initializer_range lowercase_ = num_labels lowercase_ = num_choices lowercase_ = scope lowercase_ = self.vocab_size - 1 def __UpperCAmelCase ( self : Tuple) -> int: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) lowercase_ = None if self.use_input_mask: lowercase_ = random_attention_mask([self.batch_size, self.seq_length]) lowercase_ = None if self.use_token_type_ids: lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) lowercase_ = None if self.use_mc_token_ids: lowercase_ = ids_tensor([self.batch_size, self.num_choices] , self.seq_length) lowercase_ = None lowercase_ = None lowercase_ = None if self.use_labels: lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) lowercase_ = ids_tensor([self.batch_size] , self.num_choices) lowercase_ = self.get_config() lowercase_ = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def __UpperCAmelCase ( self : Union[str, Any]) -> int: return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def __UpperCAmelCase ( self : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple , __lowerCAmelCase : Union[str, Any] , *__lowerCAmelCase : Tuple) -> List[str]: lowercase_ = CTRLModel(config=__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , head_mask=__lowerCAmelCase) model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase) lowercase_ = model(__lowerCAmelCase) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) self.parent.assertEqual(len(result.past_key_values) , config.n_layer) def __UpperCAmelCase ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Dict , *__lowerCAmelCase : int) -> int: lowercase_ = CTRLLMHeadModel(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowercase_ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def __UpperCAmelCase ( self : Dict) -> int: lowercase_ = self.prepare_config_and_inputs() ( ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ( lowercase_ ) , ) = config_and_inputs lowercase_ = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def __UpperCAmelCase ( self : Any , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[str] , *__lowerCAmelCase : List[Any]) -> int: lowercase_ = self.num_labels lowercase_ = CTRLForSequenceClassification(__lowerCAmelCase) model.to(__lowerCAmelCase) model.eval() lowercase_ = ids_tensor([self.batch_size] , self.type_sequence_label_size) lowercase_ = model(__lowerCAmelCase , token_type_ids=__lowerCAmelCase , labels=__lowerCAmelCase) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels)) @require_torch class lowercase ( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): lowerCamelCase_ =(CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () lowerCamelCase_ =(CTRLLMHeadModel,) if is_torch_available() else () lowerCamelCase_ =( { 'feature-extraction': CTRLModel, 'text-classification': CTRLForSequenceClassification, 'text-generation': CTRLLMHeadModel, 'zero-shot': CTRLForSequenceClassification, } if is_torch_available() else {} ) lowerCamelCase_ =True lowerCamelCase_ =False lowerCamelCase_ =False def __UpperCAmelCase ( self : Tuple , __lowerCAmelCase : Dict , __lowerCAmelCase : Dict , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int) -> Optional[int]: if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def __UpperCAmelCase ( self : str) -> Tuple: lowercase_ = CTRLModelTester(self) lowercase_ = ConfigTester(self , config_class=__lowerCAmelCase , n_embd=37) def __UpperCAmelCase ( self : Dict) -> Optional[Any]: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def __UpperCAmelCase ( self : str) -> List[Any]: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Any) -> List[Any]: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*__lowerCAmelCase) def __UpperCAmelCase ( self : Tuple) -> Dict: lowercase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*__lowerCAmelCase) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests.") def __UpperCAmelCase ( self : Union[str, Any]) -> Optional[Any]: pass @slow def __UpperCAmelCase ( self : Dict) -> List[str]: for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowercase_ = CTRLModel.from_pretrained(__lowerCAmelCase) self.assertIsNotNone(__lowerCAmelCase) @unittest.skip("The model doesn't support left padding") # and it's not used enough to be worth fixing :) def __UpperCAmelCase ( self : Optional[Any]) -> Dict: pass @require_torch class lowercase ( unittest.TestCase ): def __UpperCAmelCase ( self : Optional[int]) -> Any: super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def __UpperCAmelCase ( self : int) -> Any: lowercase_ = CTRLLMHeadModel.from_pretrained("ctrl") model.to(__lowerCAmelCase) lowercase_ = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=__lowerCAmelCase) # Legal the president is lowercase_ = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a lowercase_ = model.generate(__lowerCAmelCase , do_sample=__lowerCAmelCase) self.assertListEqual(output_ids[0].tolist() , __lowerCAmelCase)
461
0
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) _SCREAMING_SNAKE_CASE = { "facebook/encodec_24khz": "https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json", "facebook/encodec_48khz": "https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json", } class lowerCAmelCase_ ( __magic_name__ ): __lowerCamelCase : Union[str, Any] = "encodec" def __init__( self , _lowerCAmelCase=[1.5, 3.0, 6.0, 12.0, 24.0] , _lowerCAmelCase=24000 , _lowerCAmelCase=1 , _lowerCAmelCase=False , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=128 , _lowerCAmelCase=32 , _lowerCAmelCase=1 , _lowerCAmelCase=[8, 5, 4, 2] , _lowerCAmelCase="weight_norm" , _lowerCAmelCase=7 , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=2 , _lowerCAmelCase=True , _lowerCAmelCase="reflect" , _lowerCAmelCase=2 , _lowerCAmelCase=2 , _lowerCAmelCase=1.0 , _lowerCAmelCase=1024 , _lowerCAmelCase=None , _lowerCAmelCase=True , **_lowerCAmelCase , ) -> Any: _lowerCAmelCase = target_bandwidths _lowerCAmelCase = sampling_rate _lowerCAmelCase = audio_channels _lowerCAmelCase = normalize _lowerCAmelCase = chunk_length_s _lowerCAmelCase = overlap _lowerCAmelCase = hidden_size _lowerCAmelCase = num_filters _lowerCAmelCase = num_residual_layers _lowerCAmelCase = upsampling_ratios _lowerCAmelCase = norm_type _lowerCAmelCase = kernel_size _lowerCAmelCase = last_kernel_size _lowerCAmelCase = residual_kernel_size _lowerCAmelCase = dilation_growth_rate _lowerCAmelCase = use_causal_conv _lowerCAmelCase = pad_mode _lowerCAmelCase = compress _lowerCAmelCase = num_lstm_layers _lowerCAmelCase = trim_right_ratio _lowerCAmelCase = codebook_size _lowerCAmelCase = codebook_dim if codebook_dim is not None else hidden_size _lowerCAmelCase = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**_lowerCAmelCase ) @property def _snake_case ( self ) -> Optional[int]: if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def _snake_case ( self ) -> Optional[int]: if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def _snake_case ( self ) -> int: _lowerCAmelCase = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def _snake_case ( self ) -> int: return int(1000 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
18
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, convert_to_rgb, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) if is_vision_available(): import PIL class UpperCamelCase ( _UpperCAmelCase ): lowerCAmelCase : Union[str, Any] = ["""pixel_values"""] def __init__( self , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = PILImageResampling.BICUBIC , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = True , UpperCAmelCase__ = 1 / 255 , UpperCAmelCase__ = True , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = True , **UpperCAmelCase__ , ): super().__init__(**UpperCAmelCase__ ) A__ = size if size is not None else {"shortest_edge": 224} A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) A__ = crop_size if crop_size is not None else {"height": 224, "width": 224} A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ , param_name="crop_size" ) A__ = do_resize A__ = size A__ = resample A__ = do_center_crop A__ = crop_size A__ = do_rescale A__ = rescale_factor A__ = do_normalize A__ = image_mean if image_mean is not None else OPENAI_CLIP_MEAN A__ = image_std if image_std is not None else OPENAI_CLIP_STD A__ = do_convert_rgb def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = PILImageResampling.BICUBIC , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): A__ = get_size_dict(UpperCAmelCase__ , default_to_square=UpperCAmelCase__ ) if "shortest_edge" not in size: raise ValueError(F"""The `size` parameter must contain the key `shortest_edge`. Got {size.keys()}""" ) A__ = get_resize_output_image_size(UpperCAmelCase__ , size=size["shortest_edge"] , default_to_square=UpperCAmelCase__ ) return resize(UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): A__ = get_size_dict(UpperCAmelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F"""The `size` parameter must contain the keys (height, width). Got {size.keys()}""" ) return center_crop(UpperCAmelCase__ , size=(size["height"], size["width"]) , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): return rescale(UpperCAmelCase__ , scale=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): return normalize(UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ , data_format=UpperCAmelCase__ , **UpperCAmelCase__ ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = ChannelDimension.FIRST , **UpperCAmelCase__ , ): A__ = do_resize if do_resize is not None else self.do_resize A__ = size if size is not None else self.size A__ = get_size_dict(UpperCAmelCase__ , param_name="size" , default_to_square=UpperCAmelCase__ ) A__ = resample if resample is not None else self.resample A__ = do_center_crop if do_center_crop is not None else self.do_center_crop A__ = crop_size if crop_size is not None else self.crop_size A__ = get_size_dict(UpperCAmelCase__ , param_name="crop_size" , default_to_square=UpperCAmelCase__ ) A__ = do_rescale if do_rescale is not None else self.do_rescale A__ = rescale_factor if rescale_factor is not None else self.rescale_factor A__ = do_normalize if do_normalize is not None else self.do_normalize A__ = image_mean if image_mean is not None else self.image_mean A__ = image_std if image_std is not None else self.image_std A__ = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb A__ = make_list_of_images(UpperCAmelCase__ ) if not valid_images(UpperCAmelCase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # PIL RGBA images are converted to RGB if do_convert_rgb: A__ = [convert_to_rgb(UpperCAmelCase__ ) for image in images] # All transformations expect numpy arrays. A__ = [to_numpy_array(UpperCAmelCase__ ) for image in images] if do_resize: A__ = [self.resize(image=UpperCAmelCase__ , size=UpperCAmelCase__ , resample=UpperCAmelCase__ ) for image in images] if do_center_crop: A__ = [self.center_crop(image=UpperCAmelCase__ , size=UpperCAmelCase__ ) for image in images] if do_rescale: A__ = [self.rescale(image=UpperCAmelCase__ , scale=UpperCAmelCase__ ) for image in images] if do_normalize: A__ = [self.normalize(image=UpperCAmelCase__ , mean=UpperCAmelCase__ , std=UpperCAmelCase__ ) for image in images] A__ = [to_channel_dimension_format(UpperCAmelCase__ , UpperCAmelCase__ ) for image in images] A__ = {"pixel_values": images} return BatchFeature(data=UpperCAmelCase__ , tensor_type=UpperCAmelCase__ )
491
0
import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self : List[str] ): '''simple docstring''' __lowerCamelCase : Any = (0, 0) __lowerCamelCase : List[str] = None __lowerCamelCase : List[str] = 0 __lowerCamelCase : Optional[Any] = 0 __lowerCamelCase : List[str] = 0 def __eq__( self : Tuple , _lowerCamelCase : Dict ): '''simple docstring''' return self.position == cell.position def _snake_case ( self : Union[str, Any] ): '''simple docstring''' print(self.position ) class _UpperCamelCase : '''simple docstring''' def __init__( self : str , _lowerCamelCase : List[Any]=(5, 5) ): '''simple docstring''' __lowerCamelCase : Tuple = np.zeros(_lowerCamelCase ) __lowerCamelCase : int = world_size[0] __lowerCamelCase : List[Any] = world_size[1] def _snake_case ( self : Optional[Any] ): '''simple docstring''' print(self.w ) def _snake_case ( self : str , _lowerCamelCase : Tuple ): '''simple docstring''' __lowerCamelCase : int = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] __lowerCamelCase : Optional[Any] = cell.position[0] __lowerCamelCase : int = cell.position[1] __lowerCamelCase : Optional[int] = [] for n in neughbour_cord: __lowerCamelCase : List[str] = current_x + n[0] __lowerCamelCase : str = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: __lowerCamelCase : List[Any] = Cell() __lowerCamelCase : Tuple = (x, y) __lowerCamelCase : str = cell neighbours.append(_lowerCamelCase ) return neighbours def _UpperCAmelCase ( UpperCAmelCase : Union[str, Any] , UpperCAmelCase : List[str] , UpperCAmelCase : str ): """simple docstring""" __lowerCamelCase : str = [] __lowerCamelCase : Union[str, Any] = [] _open.append(UpperCAmelCase ) while _open: __lowerCamelCase : Tuple = np.argmin([n.f for n in _open] ) __lowerCamelCase : List[str] = _open[min_f] _closed.append(_open.pop(UpperCAmelCase ) ) if current == goal: break for n in world.get_neigbours(UpperCAmelCase ): for c in _closed: if c == n: continue __lowerCamelCase : Any = current.g + 1 __lowerCamelCase : List[str] = n.position __lowerCamelCase : Tuple = goal.position __lowerCamelCase : Optional[int] = (ya - ya) ** 2 + (xa - xa) ** 2 __lowerCamelCase : Optional[int] = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(UpperCAmelCase ) __lowerCamelCase : Tuple = [] while current.parent is not None: path.append(current.position ) __lowerCamelCase : int = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __UpperCamelCase : Any = Gridworld() # Start position and goal __UpperCamelCase : Optional[Any] = Cell() __UpperCamelCase : Optional[Any] = (0, 0) __UpperCamelCase : Optional[int] = Cell() __UpperCamelCase : Any = (4, 4) print(F'''path from {start.position} to {goal.position}''') __UpperCamelCase : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: __UpperCamelCase : Optional[int] = 1 print(world.w)
707
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Optional[Any] = { 'configuration_swinv2': ['SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Swinv2Config'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : List[Any] = [ 'SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Swinv2ForImageClassification', 'Swinv2ForMaskedImageModeling', 'Swinv2Model', 'Swinv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
458
0
import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : str ={'vocab_file': 'vocab.json'} lowerCAmelCase__ : Union[str, Any] ={ 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } lowerCAmelCase__ : str ={'mgp-str': 27} class __lowercase (__SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCAmelCase = VOCAB_FILES_NAMES _UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP _UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , lowerCAmelCase__ , lowerCAmelCase__="[GO]" , lowerCAmelCase__="[GO]" , lowerCAmelCase__="[s]" , lowerCAmelCase__="[GO]" , **lowerCAmelCase__ ): """simple docstring""" super().__init__( unk_token=lowerCAmelCase__ , bos_token=lowerCAmelCase__ , eos_token=lowerCAmelCase__ , pad_token=lowerCAmelCase__ , **lowerCAmelCase__ , ) with open(lowerCAmelCase__ , encoding='utf-8' ) as vocab_handle: SCREAMING_SNAKE_CASE_ : int = json.load(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = {v: k for k, v in self.vocab.items()} @property def UpperCamelCase__ ( self ): """simple docstring""" return len(self.vocab ) def UpperCamelCase__ ( self ): """simple docstring""" return dict(self.vocab , **self.added_tokens_encoder ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = [] for s in text: char_tokens.extend(lowerCAmelCase__ ) return char_tokens def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.vocab.get(lowerCAmelCase__ , self.vocab.get(self.unk_token ) ) def UpperCamelCase__ ( self , lowerCAmelCase__ ): """simple docstring""" return self.decoder.get(lowerCAmelCase__ ) def UpperCamelCase__ ( self , lowerCAmelCase__ , lowerCAmelCase__ = None ): """simple docstring""" if not os.path.isdir(lowerCAmelCase__ ): logger.error('Vocabulary path ({}) should be a directory'.format(lowerCAmelCase__ ) ) return SCREAMING_SNAKE_CASE_ : List[str] = os.path.join( lowerCAmelCase__ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(lowerCAmelCase__ , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=lowerCAmelCase__ , ensure_ascii=lowerCAmelCase__ ) + '\n' ) return (vocab_file,)
101
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = torch.device('''cpu''') def snake_case ( ): UpperCAmelCase_ : str = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ : str = Image.open(requests.get(A__ ,stream=A__ ).raw ) return im def snake_case ( A__ ): if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1703e00, 2.1107e00, -2.0811e00, 8.8685e-01, 2.4360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9636e-01, 2.3478e-01, -1.6963e00, -1.7381e00, -8.6337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2768e-01, -4.7429e-01, -1.0897e00, -1.0248e00, 3.5523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5330e-01, 2.4211e-01, -6.0185e-01, -8.2789e-01, -6.0446e-02] ) def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Tuple = dct.pop(A__ ) UpperCAmelCase_ : Optional[Any] = val def snake_case ( A__ ): UpperCAmelCase_ : List[str] = [] for k in state_dict.keys(): UpperCAmelCase_ : Union[str, Any] = k if ".pwconv" in k: UpperCAmelCase_ : Dict = k_new.replace(".pwconv" ,".point_wise_conv" ) if ".dwconv" in k: UpperCAmelCase_ : Any = k_new.replace(".dwconv" ,".depth_wise_conv" ) if ".Proj." in k: UpperCAmelCase_ : Dict = k_new.replace(".Proj." ,".proj." ) if "patch_embed" in k_new: UpperCAmelCase_ : Tuple = k_new.replace("patch_embed" ,"swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: UpperCAmelCase_ : List[Any] = k_new.split("." ) if ls[2].isdigit(): UpperCAmelCase_ : Tuple = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: UpperCAmelCase_ : Optional[Any] = k_new.replace("network" ,"swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def snake_case ( A__ ,A__ ,A__ ): UpperCAmelCase_ : Optional[int] = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size UpperCAmelCase_ : Optional[Any] = 10_00 UpperCAmelCase_ : str = "huggingface/label-files" UpperCAmelCase_ : str = "imagenet-1k-id2label.json" UpperCAmelCase_ : List[str] = json.load(open(hf_hub_download(A__ ,A__ ,repo_type="dataset" ) ,"r" ) ) UpperCAmelCase_ : Tuple = {int(A__ ): v for k, v in idalabel.items()} UpperCAmelCase_ : List[Any] = idalabel UpperCAmelCase_ : Optional[Any] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": UpperCAmelCase_ : Tuple = [3, 3, 6, 4] UpperCAmelCase_ : str = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": UpperCAmelCase_ : Optional[Any] = [3, 3, 9, 6] UpperCAmelCase_ : Optional[Any] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": UpperCAmelCase_ : int = [4, 3, 10, 5] UpperCAmelCase_ : Union[str, Any] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": UpperCAmelCase_ : Dict = [4, 4, 12, 6] UpperCAmelCase_ : Optional[int] = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): UpperCAmelCase_ : List[Any] = torch.hub.load_state_dict_from_url(A__ ,map_location="cpu" ,check_hash=A__ ) else: UpperCAmelCase_ : Any = torch.load(A__ ,map_location="cpu" ) UpperCAmelCase_ : List[str] = checkpoint UpperCAmelCase_ : Dict = create_rename_keys(A__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(A__ ,A__ ,A__ ) # load HuggingFace model UpperCAmelCase_ : Optional[int] = SwiftFormerForImageClassification(A__ ).eval() hf_model.load_state_dict(A__ ) # prepare test inputs UpperCAmelCase_ : Tuple = prepare_img() UpperCAmelCase_ : int = ViTImageProcessor.from_pretrained("preprocessor_config" ) UpperCAmelCase_ : int = processor(images=A__ ,return_tensors="pt" ) # compare outputs from both models UpperCAmelCase_ : List[Any] = get_expected_output(A__ ) UpperCAmelCase_ : int = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] ,A__ ,atol=1e-3 ) Path(A__ ).mkdir(exist_ok=A__ ) print(F"""Saving model {swiftformer_name} to {pytorch_dump_folder_path}""" ) hf_model.save_pretrained(A__ ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--swiftformer_name''', default='''swiftformer_xs''', choices=['''swiftformer_xs''', '''swiftformer_s''', '''swiftformer_l1''', '''swiftformer_l3'''], type=str, help='''Name of the SwiftFormer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''./converted_outputs/''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--original_ckpt''', default=None, type=str, help='''Path to the original model checkpoint.''') lowerCamelCase_ = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
95
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) a_ : Optional[int] = { 'configuration_lxmert': ['LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LxmertConfig'], 'tokenization_lxmert': ['LxmertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = ['LxmertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : str = [ 'LxmertEncoder', 'LxmertForPreTraining', 'LxmertForQuestionAnswering', 'LxmertModel', 'LxmertPreTrainedModel', 'LxmertVisualFeatureEncoder', 'LxmertXLayer', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ 'TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFLxmertForPreTraining', 'TFLxmertMainLayer', 'TFLxmertModel', 'TFLxmertPreTrainedModel', 'TFLxmertVisualFeatureEncoder', ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys a_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
from tempfile import TemporaryDirectory from unittest import TestCase from unittest.mock import MagicMock, patch from transformers import AutoModel, TFAutoModel from transformers.onnx import FeaturesManager from transformers.testing_utils import SMALL_MODEL_IDENTIFIER, require_tf, require_torch @require_torch @require_tf class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" def _a (self ): '''simple docstring''' lowerCamelCase = SMALL_MODEL_IDENTIFIER lowerCamelCase = "pt" lowerCamelCase = "tf" def _a (self , __a ): '''simple docstring''' lowerCamelCase = AutoModel.from_pretrained(self.test_model ) model_pt.save_pretrained(__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = TFAutoModel.from_pretrained(self.test_model , from_pt=__a ) model_tf.save_pretrained(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = "mock_framework" # Framework provided - return whatever the user provides lowerCamelCase = FeaturesManager.determine_framework(self.test_model , __a ) self.assertEqual(__a , __a ) # Local checkpoint and framework provided - return provided framework # PyTorch checkpoint with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a , __a ) self.assertEqual(__a , __a ) def _a (self ): '''simple docstring''' with TemporaryDirectory() as local_pt_ckpt: self._setup_pt_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_pt ) # TensorFlow checkpoint with TemporaryDirectory() as local_tf_ckpt: self._setup_tf_ckpt(__a ) lowerCamelCase = FeaturesManager.determine_framework(__a ) self.assertEqual(__a , self.framework_tf ) # Invalid local checkpoint with TemporaryDirectory() as local_invalid_ckpt: with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(__a ) def _a (self ): '''simple docstring''' lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # PyTorch not in environment -> use TensorFlow lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_tf ) # Both in environment -> use PyTorch lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model ) self.assertEqual(__a , self.framework_pt ) # Both not in environment -> raise error lowerCamelCase = MagicMock(return_value=__a ) lowerCamelCase = MagicMock(return_value=__a ) with patch("transformers.onnx.features.is_tf_available" , __a ), patch( "transformers.onnx.features.is_torch_available" , __a ): with self.assertRaises(__a ): lowerCamelCase = FeaturesManager.determine_framework(self.test_model )
484
1
from __future__ import annotations UpperCAmelCase : Optional[Any] = 8.988e9 # units = N * m^s * C^-2 def __lowerCamelCase ( lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float , lowerCamelCase__ : float ): '''simple docstring''' lowerCamelCase = abs(chargea * chargea ) if (force, chargea, chargea, distance).count(0 ) != 1: raise ValueError("""One and only one argument must be 0""" ) if distance < 0: raise ValueError("""Distance cannot be negative""" ) if force == 0: lowerCamelCase = COULOMBS_CONSTANT * charge_product / (distance**2) return {"force": force} elif chargea == 0: lowerCamelCase = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge1": chargea} elif chargea == 0: lowerCamelCase = abs(lowerCamelCase__ ) * (distance**2) / (COULOMBS_CONSTANT * chargea) return {"charge2": chargea} elif distance == 0: lowerCamelCase = (COULOMBS_CONSTANT * charge_product / abs(lowerCamelCase__ )) ** 0.5 return {"distance": distance} raise ValueError("""Exactly one argument must be 0""" ) if __name__ == "__main__": import doctest doctest.testmod()
457
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCAmelCase : Any = { "configuration_roc_bert": ["ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoCBertConfig"], "tokenization_roc_bert": ["RoCBertTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: pass try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase : Union[str, Any] = [ "ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST", "RoCBertForCausalLM", "RoCBertForMaskedLM", "RoCBertForMultipleChoice", "RoCBertForPreTraining", "RoCBertForQuestionAnswering", "RoCBertForSequenceClassification", "RoCBertForTokenClassification", "RoCBertLayer", "RoCBertModel", "RoCBertPreTrainedModel", "load_tf_weights_in_roc_bert", ] if TYPE_CHECKING: from .configuration_roc_bert import ROC_BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RoCBertConfig from .tokenization_roc_bert import RoCBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: raise OptionalDependencyNotAvailable() try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roc_bert import ( ROC_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, RoCBertForCausalLM, RoCBertForMaskedLM, RoCBertForMultipleChoice, RoCBertForPreTraining, RoCBertForQuestionAnswering, RoCBertForSequenceClassification, RoCBertForTokenClassification, RoCBertLayer, RoCBertModel, RoCBertPreTrainedModel, load_tf_weights_in_roc_bert, ) else: import sys UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
457
1
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class __magic_name__ ( unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[Any] = inspect.getfile(accelerate.test_utils) SCREAMING_SNAKE_CASE__ : str = os.path.sep.join(mod_file.split(os.path.sep)[:-1] + ["scripts", "test_cli.py"]) SCREAMING_SNAKE_CASE__ : Union[str, Any] = ["accelerate", "launch"] SCREAMING_SNAKE_CASE__ : Tuple = Path.home() / ".cache/huggingface/accelerate" SCREAMING_SNAKE_CASE__ : Tuple = "default_config.yaml" SCREAMING_SNAKE_CASE__ : Dict = config_folder / config_file SCREAMING_SNAKE_CASE__ : List[str] = config_folder / "_default_config.yaml" SCREAMING_SNAKE_CASE__ : Tuple = Path("tests/test_configs") @classmethod def _A ( cls: List[str] ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def _A ( cls: int ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def _A ( self: List[str] ): SCREAMING_SNAKE_CASE_ = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def _A ( self: str ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowerCamelCase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowerCamelCase ), self.test_file_path] , env=os.environ.copy() ) def _A ( self: Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class __magic_name__ ( unittest.TestCase): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Any = "test-tpu" SCREAMING_SNAKE_CASE__ : Optional[Any] = "us-central1-a" SCREAMING_SNAKE_CASE__ : Dict = "ls" SCREAMING_SNAKE_CASE__ : List[str] = ["accelerate", "tpu-config"] SCREAMING_SNAKE_CASE__ : Optional[int] = "cd /usr/share" SCREAMING_SNAKE_CASE__ : Union[str, Any] = "tests/test_samples/test_command_file.sh" SCREAMING_SNAKE_CASE__ : Any = "Running gcloud compute tpus tpu-vm ssh" def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowerCamelCase , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , _lowerCamelCase , ) def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , _lowerCamelCase , ) def _A ( self: List[Any] ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowerCamelCase ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , _lowerCamelCase , ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowerCamelCase , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all" , _lowerCamelCase , ) def _A ( self: Tuple ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all" , _lowerCamelCase , ) def _A ( self: Any ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowerCamelCase , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , _lowerCamelCase , ) def _A ( self: int ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all" , _lowerCamelCase , ) def _A ( self: Dict ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowerCamelCase , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all" , _lowerCamelCase , ) def _A ( self: Optional[int] ): SCREAMING_SNAKE_CASE_ = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowerCamelCase , ) self.assertIn( f"{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all" , _lowerCamelCase , )
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
89
0
'''simple docstring''' from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class SCREAMING_SNAKE_CASE (yaml.SafeLoader ): def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' __A : str = [self.constructed_objects[key_node] for key_node, _ in node.value] __A : Dict = [tuple(_UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase) else key for key in keys] __A : str = Counter(_UpperCAmelCase) __A : Optional[int] = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(F'Got duplicate yaml keys: {duplicate_keys}') def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase=False): '''simple docstring''' __A : Optional[int] = super().construct_mapping(_UpperCAmelCase , deep=_UpperCAmelCase) self._check_no_duplicates_on_constructed_node(_UpperCAmelCase) return mapping def _lowerCAmelCase ( __snake_case : str ) -> Tuple[Optional[str], str]: __A : Union[str, Any] = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: __A : Optional[int] = full_content[1:].index('---' ) + 1 __A : int = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__snake_case ) class SCREAMING_SNAKE_CASE (a__ ): # class attributes lowerCAmelCase = {'''train_eval_index'''} # train-eval-index in the YAML metadata @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase): '''simple docstring''' with open(_UpperCAmelCase , encoding='utf-8') as readme_file: __A ,__A : int = _split_yaml_from_readme(readme_file.read()) if yaml_string is not None: return cls.from_yaml_string(_UpperCAmelCase) else: return cls() def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase): '''simple docstring''' if path.exists(): with open(_UpperCAmelCase , encoding='utf-8') as readme_file: __A : Dict = readme_file.read() else: __A : Optional[Any] = None __A : str = self._to_readme(_UpperCAmelCase) with open(_UpperCAmelCase , 'w' , encoding='utf-8') as readme_file: readme_file.write(_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase = None): '''simple docstring''' if readme_content is not None: __A ,__A : Any = _split_yaml_from_readme(_UpperCAmelCase) __A : Union[str, Any] = '---\n' + self.to_yaml_string() + '---\n' + content else: __A : Optional[int] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def SCREAMING_SNAKE_CASE ( cls , _UpperCAmelCase): '''simple docstring''' __A : Dict = yaml.load(_UpperCAmelCase , Loader=_NoDuplicateSafeLoader) or {} # Convert the YAML keys to DatasetMetadata fields __A : Tuple = { (key.replace('-' , '_') if key.replace('-' , '_') in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self): '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-') if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=_UpperCAmelCase , allow_unicode=_UpperCAmelCase , encoding='utf-8' , ).decode('utf-8') lowercase__ : List[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowercase__ : int = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowercase__ : Tuple = ap.parse_args() lowercase__ : int = Path(args.readme_filepath) lowercase__ : Any = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
8
from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case :List[str] =logging.get_logger(__name__) __snake_case :int ={'openai-gpt': 'https://huggingface.co/openai-gpt/resolve/main/config.json'} class lowerCAmelCase__ ( _lowerCamelCase ): A_ : Optional[Any] = 'openai-gpt' A_ : Any = { 'max_position_embeddings': 'n_positions', 'hidden_size': 'n_embd', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self : List[Any] , __UpperCamelCase : List[str]=40_478 , __UpperCamelCase : List[Any]=512 , __UpperCamelCase : List[Any]=768 , __UpperCamelCase : Optional[int]=12 , __UpperCamelCase : Dict=12 , __UpperCamelCase : List[str]="gelu" , __UpperCamelCase : str=0.1 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Union[str, Any]=0.1 , __UpperCamelCase : List[str]=1e-5 , __UpperCamelCase : List[Any]=0.0_2 , __UpperCamelCase : str="cls_index" , __UpperCamelCase : int=True , __UpperCamelCase : int=None , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Tuple=0.1 , **__UpperCamelCase : List[Any] , ) -> List[str]: A = vocab_size A = n_positions A = n_embd A = n_layer A = n_head A = afn A = resid_pdrop A = embd_pdrop A = attn_pdrop A = layer_norm_epsilon A = initializer_range A = summary_type A = summary_use_proj A = summary_activation A = summary_first_dropout A = summary_proj_to_labels super().__init__(**__UpperCamelCase )
106
0
'''simple docstring''' from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available() and is_transformers_version(">=", "4.25.0")): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import ( VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, ) else: from .modeling_text_unet import UNetFlatConditionModel from .pipeline_versatile_diffusion import VersatileDiffusionPipeline from .pipeline_versatile_diffusion_dual_guided import VersatileDiffusionDualGuidedPipeline from .pipeline_versatile_diffusion_image_variation import VersatileDiffusionImageVariationPipeline from .pipeline_versatile_diffusion_text_to_image import VersatileDiffusionTextToImagePipeline
715
lowerCamelCase ={"a": ["c", "b"], "b": ["d", "e"], "c": [], "d": [], "e": []} lowerCamelCase =["a", "b", "c", "d", "e"] def SCREAMING_SNAKE_CASE_ ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): UpperCamelCase__ : str = start # add current to visited visited.append(UpperCamelCase__ ) UpperCamelCase__ : int = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: UpperCamelCase__ : int = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # if all neighbors visited add current to sort sort.append(UpperCamelCase__ ) # if all vertices haven't been visited select a new one to visit if len(UpperCamelCase__ ) != len(UpperCamelCase__ ): for vertice in vertices: if vertice not in visited: UpperCamelCase__ : Optional[int] = topological_sort(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # return sort return sort if __name__ == "__main__": lowerCamelCase =topological_sort("a", [], []) print(sort)
462
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...models.auto.modeling_auto import MODEL_FOR_CAUSAL_LM_MAPPING_NAMES from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case = logging.get_logger(__name__) __snake_case = { '''salesforce/blip2-opt-2.7b''': '''https://huggingface.co/salesforce/blip2-opt-2.7b/resolve/main/config.json''', } class __lowerCamelCase (_a ): _lowercase = """blip_2_vision_model""" def __init__( self: Optional[int],A_: str=1408,A_: Union[str, Any]=6144,A_: Tuple=39,A_: Optional[int]=16,A_: List[str]=224,A_: Optional[Any]=14,A_: Union[str, Any]="gelu",A_: List[Any]=0.0_0_0_0_1,A_: List[Any]=0.0,A_: List[Any]=1E-10,A_: Optional[int]=True,**A_: Union[str, Any],): '''simple docstring''' super().__init__(**A_ ) __UpperCamelCase = hidden_size __UpperCamelCase = intermediate_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = patch_size __UpperCamelCase = image_size __UpperCamelCase = initializer_range __UpperCamelCase = attention_dropout __UpperCamelCase = layer_norm_eps __UpperCamelCase = hidden_act __UpperCamelCase = qkv_bias @classmethod def snake_case_ ( cls: Tuple,A_: Union[str, os.PathLike],**A_: Tuple ): '''simple docstring''' cls._set_token_in_kwargs(A_ ) __UpperCamelCase, __UpperCamelCase = cls.get_config_dict(A_,**A_ ) # get the vision config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __UpperCamelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A_,**A_ ) class __lowerCamelCase (_a ): _lowercase = """blip_2_qformer""" def __init__( self: Optional[Any],A_: Optional[int]=3_0522,A_: List[Any]=768,A_: Any=12,A_: Dict=12,A_: int=3072,A_: Dict="gelu",A_: Union[str, Any]=0.1,A_: Any=0.1,A_: Any=512,A_: Dict=0.0_2,A_: str=1E-12,A_: List[Any]=0,A_: Optional[int]="absolute",A_: List[str]=2,A_: Optional[Any]=1408,**A_: Optional[Any],): '''simple docstring''' super().__init__(pad_token_id=A_,**A_ ) __UpperCamelCase = vocab_size __UpperCamelCase = hidden_size __UpperCamelCase = num_hidden_layers __UpperCamelCase = num_attention_heads __UpperCamelCase = hidden_act __UpperCamelCase = intermediate_size __UpperCamelCase = hidden_dropout_prob __UpperCamelCase = attention_probs_dropout_prob __UpperCamelCase = max_position_embeddings __UpperCamelCase = initializer_range __UpperCamelCase = layer_norm_eps __UpperCamelCase = position_embedding_type __UpperCamelCase = cross_attention_frequency __UpperCamelCase = encoder_hidden_size @classmethod def snake_case_ ( cls: int,A_: Union[str, os.PathLike],**A_: int ): '''simple docstring''' cls._set_token_in_kwargs(A_ ) __UpperCamelCase, __UpperCamelCase = cls.get_config_dict(A_,**A_ ) # get the qformer config dict if we are loading from Blip2Config if config_dict.get('model_type' ) == "blip-2": __UpperCamelCase = config_dict['qformer_config'] if "model_type" in config_dict and hasattr(cls,'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A_,**A_ ) class __lowerCamelCase (_a ): _lowercase = """blip-2""" _lowercase = True def __init__( self: Union[str, Any],A_: Optional[int]=None,A_: List[str]=None,A_: Optional[Any]=None,A_: List[str]=32,**A_: Optional[Any] ): '''simple docstring''' super().__init__(**A_ ) if vision_config is None: __UpperCamelCase = {} logger.info('vision_config is None. initializing the Blip2VisionConfig with default values.' ) if qformer_config is None: __UpperCamelCase = {} logger.info('qformer_config is None. Initializing the Blip2QFormerConfig with default values.' ) if text_config is None: __UpperCamelCase = {} logger.info('text_config is None. Initializing the text config with default values (`OPTConfig`).' ) __UpperCamelCase = BlipaVisionConfig(**A_ ) __UpperCamelCase = BlipaQFormerConfig(**A_ ) __UpperCamelCase = text_config['model_type'] if 'model_type' in text_config else 'opt' __UpperCamelCase = CONFIG_MAPPING[text_model_type](**A_ ) __UpperCamelCase = self.text_config.tie_word_embeddings __UpperCamelCase = self.text_config.is_encoder_decoder __UpperCamelCase = num_query_tokens __UpperCamelCase = self.vision_config.hidden_size __UpperCamelCase = self.text_config.model_type in MODEL_FOR_CAUSAL_LM_MAPPING_NAMES __UpperCamelCase = 1.0 __UpperCamelCase = 0.0_2 @classmethod def snake_case_ ( cls: List[Any],A_: BlipaVisionConfig,A_: BlipaQFormerConfig,A_: PretrainedConfig,**A_: Optional[int],): '''simple docstring''' return cls( vision_config=vision_config.to_dict(),qformer_config=qformer_config.to_dict(),text_config=text_config.to_dict(),**A_,) def snake_case_ ( self: Optional[int] ): '''simple docstring''' __UpperCamelCase = copy.deepcopy(self.__dict__ ) __UpperCamelCase = self.vision_config.to_dict() __UpperCamelCase = self.qformer_config.to_dict() __UpperCamelCase = self.text_config.to_dict() __UpperCamelCase = self.__class__.model_type return output
1
import argparse import math import os import torch from neural_compressor.utils.pytorch import load from PIL import Image from transformers import CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, StableDiffusionPipeline, UNetaDConditionModel def SCREAMING_SNAKE_CASE__ ( ) -> int: '''simple docstring''' lowercase__ : str = argparse.ArgumentParser() parser.add_argument( '-m' , '--pretrained_model_name_or_path' , type=_lowercase , default=_lowercase , required=_lowercase , help='Path to pretrained model or model identifier from huggingface.co/models.' , ) parser.add_argument( '-c' , '--caption' , type=_lowercase , default='robotic cat with wings' , help='Text used to generate images.' , ) parser.add_argument( '-n' , '--images_num' , type=_lowercase , default=4 , help='How much images to generate.' , ) parser.add_argument( '-s' , '--seed' , type=_lowercase , default=42 , help='Seed for random process.' , ) parser.add_argument( '-ci' , '--cuda_id' , type=_lowercase , default=0 , help='cuda_id.' , ) lowercase__ : Any = parser.parse_args() return args def SCREAMING_SNAKE_CASE__ ( _lowercase : Union[str, Any] , _lowercase : Optional[int] , _lowercase : Union[str, Any] ) -> str: '''simple docstring''' if not len(_lowercase ) == rows * cols: raise ValueError('The specified number of rows and columns are not correct.' ) lowercase__ , lowercase__ : Any = imgs[0].size lowercase__ : int = Image.new('RGB' , size=(cols * w, rows * h) ) lowercase__ , lowercase__ : Any = grid.size for i, img in enumerate(_lowercase ): grid.paste(_lowercase , box=(i % cols * w, i // cols * h) ) return grid def SCREAMING_SNAKE_CASE__ ( _lowercase : Optional[int] , _lowercase : Tuple="robotic cat with wings" , _lowercase : Optional[Any]=7.5 , _lowercase : int=50 , _lowercase : str=1 , _lowercase : Any=42 , ) -> str: '''simple docstring''' lowercase__ : int = torch.Generator(pipeline.device ).manual_seed(_lowercase ) lowercase__ : Any = pipeline( _lowercase , guidance_scale=_lowercase , num_inference_steps=_lowercase , generator=_lowercase , num_images_per_prompt=_lowercase , ).images lowercase__ : Dict = int(math.sqrt(_lowercase ) ) lowercase__ : int = image_grid(_lowercase , rows=_rows , cols=num_images_per_prompt // _rows ) return grid, images __UpperCamelCase: int = parse_args() # Load models and create wrapper for stable diffusion __UpperCamelCase: Optional[int] = CLIPTokenizer.from_pretrained(args.pretrained_model_name_or_path, subfolder="""tokenizer""") __UpperCamelCase: List[str] = CLIPTextModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""text_encoder""") __UpperCamelCase: int = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="""vae""") __UpperCamelCase: int = UNetaDConditionModel.from_pretrained(args.pretrained_model_name_or_path, subfolder="""unet""") __UpperCamelCase: Tuple = StableDiffusionPipeline.from_pretrained( args.pretrained_model_name_or_path, text_encoder=text_encoder, vae=vae, unet=unet, tokenizer=tokenizer ) __UpperCamelCase: List[str] = lambda images, clip_input: (images, False) if os.path.exists(os.path.join(args.pretrained_model_name_or_path, """best_model.pt""")): __UpperCamelCase: Dict = load(args.pretrained_model_name_or_path, model=unet) unet.eval() setattr(pipeline, """unet""", unet) else: __UpperCamelCase: Dict = unet.to(torch.device("""cuda""", args.cuda_id)) __UpperCamelCase: Optional[int] = pipeline.to(unet.device) __UpperCamelCase, __UpperCamelCase: Union[str, Any] = generate_images(pipeline, prompt=args.caption, num_images_per_prompt=args.images_num, seed=args.seed) grid.save(os.path.join(args.pretrained_model_name_or_path, """{}.png""".format("""_""".join(args.caption.split())))) __UpperCamelCase: List[str] = os.path.join(args.pretrained_model_name_or_path, """_""".join(args.caption.split())) os.makedirs(dirname, exist_ok=True) for idx, image in enumerate(images): image.save(os.path.join(dirname, """{}.png""".format(idx + 1)))
266
0
import re def SCREAMING_SNAKE_CASE ( lowerCAmelCase ): if len(re.findall('''[ATCG]''' , lowerCAmelCase ) ) != len(lowerCAmelCase ): raise ValueError('''Invalid Strand''' ) return dna.translate(dna.maketrans('''ATCG''' , '''TAGC''' ) ) if __name__ == "__main__": import doctest doctest.testmod()
701
import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING lowercase : Optional[int] = logging.get_logger(__name__) lowercase : List[Any] = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class __A( __UpperCAmelCase ): __A = "detr" __A = ["past_key_values"] __A = { "hidden_size": "d_model", "num_attention_heads": "encoder_attention_heads", } def __init__( self, A=True, A=None, A=3, A=100, A=6, A=2048, A=8, A=6, A=2048, A=8, A=0.0, A=0.0, A=True, A="relu", A=256, A=0.1, A=0.0, A=0.0, A=0.02, A=1.0, A=False, A="sine", A="resnet50", A=True, A=False, A=1, A=5, A=2, A=1, A=1, A=5, A=2, A=0.1, **A, ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError('''You can\'t specify both `backbone_config` and `use_timm_backbone`.''' ) if not use_timm_backbone: if backbone_config is None: logger.info('''`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.''' ) _UpperCamelCase = CONFIG_MAPPING['''resnet'''](out_features=['''stage4'''] ) elif isinstance(A, A ): _UpperCamelCase = backbone_config.get('''model_type''' ) _UpperCamelCase = CONFIG_MAPPING[backbone_model_type] _UpperCamelCase = config_class.from_dict(A ) # set timm attributes to None _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None, None, None _UpperCamelCase = use_timm_backbone _UpperCamelCase = backbone_config _UpperCamelCase = num_channels _UpperCamelCase = num_queries _UpperCamelCase = d_model _UpperCamelCase = encoder_ffn_dim _UpperCamelCase = encoder_layers _UpperCamelCase = encoder_attention_heads _UpperCamelCase = decoder_ffn_dim _UpperCamelCase = decoder_layers _UpperCamelCase = decoder_attention_heads _UpperCamelCase = dropout _UpperCamelCase = attention_dropout _UpperCamelCase = activation_dropout _UpperCamelCase = activation_function _UpperCamelCase = init_std _UpperCamelCase = init_xavier_std _UpperCamelCase = encoder_layerdrop _UpperCamelCase = decoder_layerdrop _UpperCamelCase = encoder_layers _UpperCamelCase = auxiliary_loss _UpperCamelCase = position_embedding_type _UpperCamelCase = backbone _UpperCamelCase = use_pretrained_backbone _UpperCamelCase = dilation # Hungarian matcher _UpperCamelCase = class_cost _UpperCamelCase = bbox_cost _UpperCamelCase = giou_cost # Loss coefficients _UpperCamelCase = mask_loss_coefficient _UpperCamelCase = dice_loss_coefficient _UpperCamelCase = bbox_loss_coefficient _UpperCamelCase = giou_loss_coefficient _UpperCamelCase = eos_coefficient super().__init__(is_encoder_decoder=A, **A ) @property def _UpperCamelCase ( self ): """simple docstring""" return self.encoder_attention_heads @property def _UpperCamelCase ( self ): """simple docstring""" return self.d_model @classmethod def _UpperCamelCase ( cls, A, **A ): """simple docstring""" return cls(backbone_config=A, **A ) def _UpperCamelCase ( self ): """simple docstring""" _UpperCamelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: _UpperCamelCase = self.backbone_config.to_dict() _UpperCamelCase = self.__class__.model_type return output class __A( __UpperCAmelCase ): __A = version.parse("1.11" ) @property def _UpperCamelCase ( self ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''pixel_mask''', {0: '''batch'''}), ] ) @property def _UpperCamelCase ( self ): """simple docstring""" return 1E-5 @property def _UpperCamelCase ( self ): """simple docstring""" return 12
105
0
def A ( _SCREAMING_SNAKE_CASE ) -> Optional[int]: lowerCamelCase : List[str] = 0 lowerCamelCase : Optional[int] = len(__snake_case ) for i in range(n - 1 ): for j in range(i + 1 ,__snake_case ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def A ( _SCREAMING_SNAKE_CASE ) -> Optional[Any]: if len(__snake_case ) <= 1: return arr, 0 lowerCamelCase : List[Any] = len(__snake_case ) // 2 lowerCamelCase : int = arr[0:mid] lowerCamelCase : List[Any] = arr[mid:] lowerCamelCase : Optional[Any] = count_inversions_recursive(__snake_case ) lowerCamelCase : Any = count_inversions_recursive(__snake_case ) lowerCamelCase : str = _count_cross_inversions(__snake_case ,__snake_case ) lowerCamelCase : int = inversion_p + inversions_q + cross_inversions return c, num_inversions def A ( _SCREAMING_SNAKE_CASE ,_SCREAMING_SNAKE_CASE ) -> Tuple: lowerCamelCase : List[str] = [] lowerCamelCase : Optional[int] = 0 while i < len(__snake_case ) and j < len(__snake_case ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(__snake_case ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(__snake_case ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def A ( ) -> Any: lowerCamelCase : Optional[Any] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCamelCase : Tuple = count_inversions_bf(__snake_case ) lowerCamelCase : Optional[Any] = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 8 print("number of inversions = " ,__snake_case ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCamelCase : str = count_inversions_bf(__snake_case ) lowerCamelCase : Any = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " ,__snake_case ) # an empty list should also have zero inversions lowerCamelCase : Union[str, Any] = [] lowerCamelCase : List[Any] = count_inversions_bf(__snake_case ) lowerCamelCase : List[Any] = count_inversions_recursive(__snake_case ) assert num_inversions_bf == num_inversions_recursive == 0 print("number of inversions = " ,__snake_case ) if __name__ == "__main__": main()
311
'''simple docstring''' import argparse import torch from transformers import BlenderbotConfig, BlenderbotForConditionalGeneration from transformers.utils import logging logging.set_verbosity_info() lowercase__ : Tuple = logging.get_logger(__name__) lowercase__ : str = [ ['''attention''', '''attn'''], ['''encoder_attention''', '''encoder_attn'''], ['''q_lin''', '''q_proj'''], ['''k_lin''', '''k_proj'''], ['''v_lin''', '''v_proj'''], ['''out_lin''', '''out_proj'''], ['''norm_embeddings''', '''layernorm_embedding'''], ['''position_embeddings''', '''embed_positions'''], ['''embeddings''', '''embed_tokens'''], ['''ffn.lin''', '''fc'''], ] def _lowerCAmelCase ( __snake_case : List[Any] ) -> Tuple: if k == "embeddings.weight": return "shared.weight" for parlai_name, hf_name in PATTERNS: __A : Optional[Any] = k.replace(__snake_case , __snake_case ) if k.startswith('encoder' ): __A : Any = k.replace('.attn' , '.self_attn' ) __A : Any = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'final_layer_norm' ) elif k.startswith('decoder' ): __A : Tuple = k.replace('norm1' , 'self_attn_layer_norm' ) __A : str = k.replace('norm2' , 'encoder_attn_layer_norm' ) __A : int = k.replace('norm3' , 'final_layer_norm' ) return k def _lowerCAmelCase ( __snake_case : List[Any] ) -> Dict: __A : Optional[int] = [ 'model.encoder.layernorm_embedding.weight', 'model.encoder.layernorm_embedding.bias', 'model.decoder.layernorm_embedding.weight', 'model.decoder.layernorm_embedding.bias', ] for k in keys: __A : Tuple = sd.pop(__snake_case ) __A : Union[str, Any] = k.replace('layernorm_embedding' , 'layer_norm' ) assert new_k not in sd __A : str = v lowercase__ : Tuple = ['''START'''] @torch.no_grad() def _lowerCAmelCase ( __snake_case : Dict , __snake_case : Any , __snake_case : List[Any] ) -> int: __A : List[str] = torch.load(__snake_case , map_location='cpu' ) __A : Tuple = model['model'] __A : str = BlenderbotConfig.from_json_file(__snake_case ) __A : int = BlenderbotForConditionalGeneration(__snake_case ) __A : List[Any] = m.model.state_dict().keys() __A : Optional[int] = [] __A : Optional[int] = {} for k, v in sd.items(): if k in IGNORE_KEYS: continue __A : Union[str, Any] = rename_state_dict_key(__snake_case ) if new_k not in valid_keys: failures.append([k, new_k] ) else: __A : Optional[Any] = v if cfg.normalize_before: # Blenderbot-3B checkpoints. Rename layernorm_embedding -> layer_norm rename_layernorm_keys(__snake_case ) m.model.load_state_dict(__snake_case , strict=__snake_case ) m.half() m.save_pretrained(__snake_case ) if __name__ == "__main__": lowercase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument('''--src_path''', type=str, help='''like blenderbot-model.bin''') parser.add_argument('''--save_dir''', default='''hf_blenderbot''', type=str, help='''Where to save converted model.''') parser.add_argument( '''--hf_config_json''', default='''blenderbot-3b-config.json''', type=str, help='''Path to config to use''' ) lowercase__ : Optional[Any] = parser.parse_args() convert_parlai_checkpoint(args.src_path, args.save_dir, args.hf_config_json)
8
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _lowercase = logging.get_logger(__name__) class __A ( A_ ): def _snake_case (self , __magic_name__ ): if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase__ : Any = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__(self , __magic_name__ , __magic_name__ , __magic_name__ ): if len(__magic_name__ ) == 0 or len(__magic_name__ ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(__magic_name__ ) ) if isinstance(__magic_name__ , __magic_name__ ): lowerCamelCase__ : str = [sequences] lowerCamelCase__ : Optional[int] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__magic_name__ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(A_ ) class __A ( A_ ): def __init__(self , __magic_name__=ZeroShotClassificationArgumentHandler() , *__magic_name__ , **__magic_name__ ): lowerCamelCase__ : Union[str, Any] = args_parser super().__init__(*__magic_name__ , **__magic_name__ ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _snake_case (self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _snake_case (self , __magic_name__ , __magic_name__=True , __magic_name__=True , __magic_name__=TruncationStrategy.ONLY_FIRST , **__magic_name__ ): lowerCamelCase__ : Dict = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) lowerCamelCase__ : str = self.tokenizer.eos_token try: lowerCamelCase__ : List[Any] = self.tokenizer( __magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , ) except Exception as e: if "too short" in str(__magic_name__ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowerCamelCase__ : Dict = self.tokenizer( __magic_name__ , add_special_tokens=__magic_name__ , return_tensors=__magic_name__ , padding=__magic_name__ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _snake_case (self , **__magic_name__ ): if kwargs.get("""multi_class""" , __magic_name__ ) is not None: lowerCamelCase__ : int = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) lowerCamelCase__ : int = {} if "candidate_labels" in kwargs: lowerCamelCase__ : List[Any] = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: lowerCamelCase__ : Any = kwargs["""hypothesis_template"""] lowerCamelCase__ : List[Any] = {} if "multi_label" in kwargs: lowerCamelCase__ : Any = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__(self , __magic_name__ , *__magic_name__ , **__magic_name__ , ): if len(__magic_name__ ) == 0: pass elif len(__magic_name__ ) == 1 and "candidate_labels" not in kwargs: lowerCamelCase__ : Union[str, Any] = args[0] else: raise ValueError(f"Unable to understand extra arguments {args}" ) return super().__call__(__magic_name__ , **__magic_name__ ) def _snake_case (self , __magic_name__ , __magic_name__=None , __magic_name__="This example is {}." ): lowerCamelCase__ : Optional[Any] = self._args_parser(__magic_name__ , __magic_name__ , __magic_name__ ) for i, (candidate_label, sequence_pair) in enumerate(zip(__magic_name__ , __magic_name__ ) ): lowerCamelCase__ : Union[str, Any] = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__magic_name__ ) - 1, **model_input, } def _snake_case (self , __magic_name__ ): lowerCamelCase__ : int = inputs["""candidate_label"""] lowerCamelCase__ : int = inputs["""sequence"""] lowerCamelCase__ : str = {k: inputs[k] for k in self.tokenizer.model_input_names} lowerCamelCase__ : Optional[int] = self.model(**__magic_name__ ) lowerCamelCase__ : str = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _snake_case (self , __magic_name__ , __magic_name__=False ): lowerCamelCase__ : Union[str, Any] = [outputs["""candidate_label"""] for outputs in model_outputs] lowerCamelCase__ : Optional[int] = [outputs["""sequence"""] for outputs in model_outputs] lowerCamelCase__ : Any = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) lowerCamelCase__ : List[Any] = logits.shape[0] lowerCamelCase__ : Union[str, Any] = len(__magic_name__ ) lowerCamelCase__ : int = N // n lowerCamelCase__ : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__magic_name__ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowerCamelCase__ : int = self.entailment_id lowerCamelCase__ : str = -1 if entailment_id == 0 else 0 lowerCamelCase__ : int = reshaped_outputs[..., [contradiction_id, entailment_id]] lowerCamelCase__ : Optional[int] = np.exp(__magic_name__ ) / np.exp(__magic_name__ ).sum(-1 , keepdims=__magic_name__ ) lowerCamelCase__ : Tuple = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowerCamelCase__ : Dict = reshaped_outputs[..., self.entailment_id] lowerCamelCase__ : str = np.exp(__magic_name__ ) / np.exp(__magic_name__ ).sum(-1 , keepdims=__magic_name__ ) lowerCamelCase__ : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
700
import inspect import unittest from transformers import MobileViTVaConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, MobileViTVaModel from transformers.models.mobilevitva.modeling_mobilevitva import ( MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST, make_divisible, ) if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __A ( A_ ): def _snake_case (self ): lowerCamelCase__ : Dict = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(__magic_name__ , """width_multiplier""" ) ) class __A : def __init__(self , __magic_name__ , __magic_name__=13 , __magic_name__=64 , __magic_name__=2 , __magic_name__=3 , __magic_name__="swish" , __magic_name__=3 , __magic_name__=32 , __magic_name__=0.1 , __magic_name__=0.02 , __magic_name__=True , __magic_name__=True , __magic_name__=10 , __magic_name__=None , __magic_name__=0.25 , __magic_name__=0.0 , __magic_name__=0.0 , ): lowerCamelCase__ : Optional[Any] = parent lowerCamelCase__ : List[Any] = batch_size lowerCamelCase__ : Optional[Any] = image_size lowerCamelCase__ : Union[str, Any] = patch_size lowerCamelCase__ : Dict = num_channels lowerCamelCase__ : Optional[Any] = make_divisible(512 * width_multiplier , divisor=8 ) lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Union[str, Any] = conv_kernel_size lowerCamelCase__ : int = output_stride lowerCamelCase__ : Tuple = classifier_dropout_prob lowerCamelCase__ : Optional[Any] = use_labels lowerCamelCase__ : Tuple = is_training lowerCamelCase__ : List[Any] = num_labels lowerCamelCase__ : str = initializer_range lowerCamelCase__ : Optional[Any] = scope lowerCamelCase__ : Tuple = width_multiplier lowerCamelCase__ : List[Any] = ffn_dropout lowerCamelCase__ : Union[str, Any] = attn_dropout def _snake_case (self ): lowerCamelCase__ : Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : str = None lowerCamelCase__ : List[Any] = None if self.use_labels: lowerCamelCase__ : Tuple = ids_tensor([self.batch_size] , self.num_labels ) lowerCamelCase__ : List[Any] = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase__ : int = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case (self ): return MobileViTVaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , width_multiplier=self.width_multiplier , ffn_dropout=self.ffn_dropout_prob , attn_dropout=self.attn_dropout_prob , ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Any = MobileViTVaModel(config=__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : Optional[Any] = model(__magic_name__ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : Optional[int] = MobileViTVaForImageClassification(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : Dict = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case (self , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Dict = self.num_labels lowerCamelCase__ : Any = MobileViTVaForSemanticSegmentation(__magic_name__ ) model.to(__magic_name__ ) model.eval() lowerCamelCase__ : Optional[int] = model(__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) lowerCamelCase__ : Dict = model(__magic_name__ , labels=__magic_name__ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _snake_case (self ): lowerCamelCase__ : Any = self.prepare_config_and_inputs() lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ : List[str] = config_and_inputs lowerCamelCase__ : str = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class __A ( A_ , A_ , unittest.TestCase ): UpperCamelCase :Optional[Any] = ( (MobileViTVaModel, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase :List[Any] = ( { '''feature-extraction''': MobileViTVaModel, '''image-classification''': MobileViTVaForImageClassification, '''image-segmentation''': MobileViTVaForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase :List[Any] = False UpperCamelCase :int = False UpperCamelCase :Optional[int] = False UpperCamelCase :int = False def _snake_case (self ): lowerCamelCase__ : Optional[int] = MobileViTVaModelTester(self ) lowerCamelCase__ : Optional[int] = MobileViTVaConfigTester(self , config_class=__magic_name__ , has_text_modality=__magic_name__ ) def _snake_case (self ): self.config_tester.run_common_tests() @unittest.skip(reason="""MobileViTV2 does not use inputs_embeds""" ) def _snake_case (self ): pass @unittest.skip(reason="""MobileViTV2 does not support input and output embeddings""" ) def _snake_case (self ): pass @unittest.skip(reason="""MobileViTV2 does not output attentions""" ) def _snake_case (self ): pass @require_torch_multi_gpu @unittest.skip(reason="""Got `CUDA error: misaligned address` for tests after this one being run.""" ) def _snake_case (self ): pass @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def _snake_case (self ): pass def _snake_case (self ): lowerCamelCase__ ,lowerCamelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = model_class(__magic_name__ ) lowerCamelCase__ : Optional[Any] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Union[str, Any] = [*signature.parameters.keys()] lowerCamelCase__ : Union[str, Any] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__magic_name__ ) def _snake_case (self ): def check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ): lowerCamelCase__ : Dict = model_class(__magic_name__ ) model.to(__magic_name__ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**self._prepare_for_class(__magic_name__ , __magic_name__ ) ) lowerCamelCase__ : str = outputs.hidden_states lowerCamelCase__ : Dict = 5 self.assertEqual(len(__magic_name__ ) , __magic_name__ ) # MobileViTV2's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. lowerCamelCase__ : Dict = 2 for i in range(len(__magic_name__ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) lowerCamelCase__ ,lowerCamelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : Tuple = True check_hidden_states_output(__magic_name__ , __magic_name__ , __magic_name__ ) def _snake_case (self ): lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__magic_name__ ) def _snake_case (self ): lowerCamelCase__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*__magic_name__ ) @slow def _snake_case (self ): for model_name in MOBILEVITV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : int = MobileViTVaModel.from_pretrained(__magic_name__ ) self.assertIsNotNone(__magic_name__ ) def _A () ->List[Any]: '''simple docstring''' lowerCamelCase__ : Tuple = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class __A ( unittest.TestCase ): @cached_property def _snake_case (self ): return ( MobileViTImageProcessor.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ) if is_vision_available() else None ) @slow def _snake_case (self ): lowerCamelCase__ : str = MobileViTVaForImageClassification.from_pretrained("""apple/mobilevitv2-1.0-imagenet1k-256""" ).to( __magic_name__ ) lowerCamelCase__ : Union[str, Any] = self.default_image_processor lowerCamelCase__ : Any = prepare_img() lowerCamelCase__ : Optional[Any] = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(**__magic_name__ ) # verify the logits lowerCamelCase__ : List[Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , __magic_name__ ) lowerCamelCase__ : Optional[Any] = torch.tensor([-1.63_36E00, -7.32_04E-02, -5.18_83E-01] ).to(__magic_name__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __magic_name__ , atol=1E-4 ) ) @slow def _snake_case (self ): lowerCamelCase__ : Optional[int] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Dict = model.to(__magic_name__ ) lowerCamelCase__ : str = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : str = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : Dict = model(**__magic_name__ ) lowerCamelCase__ : List[str] = outputs.logits # verify the logits lowerCamelCase__ : Tuple = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , __magic_name__ ) lowerCamelCase__ : Any = torch.tensor( [ [[7.08_63, 7.15_25, 6.82_01], [6.69_31, 6.87_70, 6.89_33], [6.29_78, 7.03_66, 6.96_36]], [[-3.71_34, -3.67_12, -3.66_75], [-3.58_25, -3.35_49, -3.47_77], [-3.34_35, -3.39_79, -3.28_57]], [[-2.93_29, -2.80_03, -2.73_69], [-3.05_64, -2.47_80, -2.02_07], [-2.68_89, -1.92_98, -1.76_40]], ] , device=__magic_name__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , __magic_name__ , atol=1E-4 ) ) @slow def _snake_case (self ): lowerCamelCase__ : Union[str, Any] = MobileViTVaForSemanticSegmentation.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : List[Any] = model.to(__magic_name__ ) lowerCamelCase__ : Optional[int] = MobileViTImageProcessor.from_pretrained("""shehan97/mobilevitv2-1.0-voc-deeplabv3""" ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : Dict = image_processor(images=__magic_name__ , return_tensors="""pt""" ).to(__magic_name__ ) # forward pass with torch.no_grad(): lowerCamelCase__ : List[str] = model(**__magic_name__ ) lowerCamelCase__ : str = outputs.logits.detach().cpu() lowerCamelCase__ : Optional[int] = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ , target_sizes=[(50, 60)] ) lowerCamelCase__ : List[Any] = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , __magic_name__ ) lowerCamelCase__ : List[str] = image_processor.post_process_semantic_segmentation(outputs=__magic_name__ ) lowerCamelCase__ : int = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , __magic_name__ )
96
0
from __future__ import absolute_import, division, print_function, unicode_literals from torch import nn from torch.nn import CrossEntropyLoss, MSELoss from transformers import RobertaConfig from transformers.file_utils import add_start_docstrings, add_start_docstrings_to_model_forward from transformers.models.roberta.modeling_roberta import ( ROBERTA_INPUTS_DOCSTRING, ROBERTA_START_DOCSTRING, RobertaEmbeddings, ) from .modeling_highway_bert import BertPreTrainedModel, DeeBertModel, HighwayException, entropy @add_start_docstrings( '''The RoBERTa Model transformer with early exiting (DeeRoBERTa). ''' , _UpperCamelCase , ) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : Union[str, Any] = RobertaConfig _lowerCAmelCase : Any = '''roberta''' def __init__( self , lowercase__): super().__init__(lowercase__) __UpperCAmelCase : str = RobertaEmbeddings(lowercase__) self.init_weights() @add_start_docstrings( '''RoBERTa Model (with early exiting - DeeRoBERTa) with a classifier on top, also takes care of multi-layer training. ''' , _UpperCamelCase , ) class lowerCamelCase ( _UpperCamelCase ): _lowerCAmelCase : str = RobertaConfig _lowerCAmelCase : Union[str, Any] = '''roberta''' def __init__( self , lowercase__): super().__init__(lowercase__) __UpperCAmelCase : Dict = config.num_labels __UpperCAmelCase : Any = config.num_hidden_layers __UpperCAmelCase : Union[str, Any] = DeeRobertaModel(lowercase__) __UpperCAmelCase : Any = nn.Dropout(config.hidden_dropout_prob) __UpperCAmelCase : Any = nn.Linear(config.hidden_size , self.config.num_labels) @add_start_docstrings_to_model_forward(lowercase__) def A( self , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=None , lowercase__=-1 , lowercase__=False , ): __UpperCAmelCase : Any = self.num_layers try: __UpperCAmelCase : int = self.roberta( lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , position_ids=lowercase__ , head_mask=lowercase__ , inputs_embeds=lowercase__ , ) __UpperCAmelCase : str = outputs[1] __UpperCAmelCase : List[Any] = self.dropout(lowercase__) __UpperCAmelCase : int = self.classifier(lowercase__) __UpperCAmelCase : List[Any] = (logits,) + outputs[2:] # add hidden states and attention if they are here except HighwayException as e: __UpperCAmelCase : Optional[Any] = e.message __UpperCAmelCase : Any = e.exit_layer __UpperCAmelCase : Tuple = outputs[0] if not self.training: __UpperCAmelCase : Optional[Any] = entropy(lowercase__) __UpperCAmelCase : Tuple = [] __UpperCAmelCase : Tuple = [] if labels is not None: if self.num_labels == 1: # We are doing regression __UpperCAmelCase : Optional[Any] = MSELoss() __UpperCAmelCase : Any = loss_fct(logits.view(-1) , labels.view(-1)) else: __UpperCAmelCase : Any = CrossEntropyLoss() __UpperCAmelCase : int = loss_fct(logits.view(-1 , self.num_labels) , labels.view(-1)) # work with highway exits __UpperCAmelCase : str = [] for highway_exit in outputs[-1]: __UpperCAmelCase : str = highway_exit[0] if not self.training: highway_logits_all.append(lowercase__) highway_entropy.append(highway_exit[2]) if self.num_labels == 1: # We are doing regression __UpperCAmelCase : Optional[Any] = MSELoss() __UpperCAmelCase : Dict = loss_fct(highway_logits.view(-1) , labels.view(-1)) else: __UpperCAmelCase : int = CrossEntropyLoss() __UpperCAmelCase : int = loss_fct(highway_logits.view(-1 , self.num_labels) , labels.view(-1)) highway_losses.append(lowercase__) if train_highway: __UpperCAmelCase : Union[str, Any] = (sum(highway_losses[:-1]),) + outputs # exclude the final highway, of course else: __UpperCAmelCase : Dict = (loss,) + outputs if not self.training: __UpperCAmelCase : int = outputs + ((original_entropy, highway_entropy), exit_layer) if output_layer >= 0: __UpperCAmelCase : Dict = ( (outputs[0],) + (highway_logits_all[output_layer],) + outputs[2:] ) # use the highway of the last layer return outputs # (loss), logits, (hidden_states), (attentions), entropy
462
def __SCREAMING_SNAKE_CASE ( ) -> Optional[int]: '''simple docstring''' __UpperCAmelCase : str = [31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31] __UpperCAmelCase : Union[str, Any] = 6 __UpperCAmelCase : Optional[Any] = 1 __UpperCAmelCase : Tuple = 1901 __UpperCAmelCase : Any = 0 while year < 2001: day += 7 if (year % 4 == 0 and year % 100 != 0) or (year % 400 == 0): if day > days_per_month[month - 1] and month != 2: month += 1 __UpperCAmelCase : Optional[int] = day - days_per_month[month - 2] elif day > 29 and month == 2: month += 1 __UpperCAmelCase : Optional[Any] = day - 29 else: if day > days_per_month[month - 1]: month += 1 __UpperCAmelCase : Optional[Any] = day - days_per_month[month - 2] if month > 12: year += 1 __UpperCAmelCase : int = 1 if year < 2001 and day == 1: sundays += 1 return sundays if __name__ == "__main__": print(solution())
462
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ = { 'configuration_maskformer': ['MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MaskFormerConfig'], 'configuration_maskformer_swin': ['MaskFormerSwinConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = ['MaskFormerFeatureExtractor'] a_ = ['MaskFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ = [ 'MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'MaskFormerForInstanceSegmentation', 'MaskFormerModel', 'MaskFormerPreTrainedModel', ] a_ = [ 'MaskFormerSwinBackbone', 'MaskFormerSwinModel', 'MaskFormerSwinPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskformer import MASKFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskFormerConfig from .configuration_maskformer_swin import MaskFormerSwinConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_maskformer import MaskFormerFeatureExtractor from .image_processing_maskformer import MaskFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskformer import ( MASKFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskFormerForInstanceSegmentation, MaskFormerModel, MaskFormerPreTrainedModel, ) from .modeling_maskformer_swin import ( MaskFormerSwinBackbone, MaskFormerSwinModel, MaskFormerSwinPreTrainedModel, ) else: import sys a_ = _LazyModule(__name__, globals()['__file__'], _import_structure)
719
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging a_ = logging.get_logger(__name__) a_ = { 'bigcode/gpt_bigcode-santacoder': 'https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json', } class __SCREAMING_SNAKE_CASE ( lowerCamelCase ): snake_case_ = """gpt_bigcode""" snake_case_ = ["""past_key_values"""] snake_case_ = { """hidden_size""": """n_embd""", """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : Any , __lowercase : Any=5_02_57 , __lowercase : int=10_24 , __lowercase : List[str]=7_68 , __lowercase : Optional[int]=12 , __lowercase : Dict=12 , __lowercase : List[str]=None , __lowercase : int="gelu_pytorch_tanh" , __lowercase : Union[str, Any]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[int]=0.1 , __lowercase : Optional[Any]=1e-5 , __lowercase : List[str]=0.02 , __lowercase : Tuple=True , __lowercase : Optional[Any]=True , __lowercase : Union[str, Any]=5_02_56 , __lowercase : List[Any]=5_02_56 , __lowercase : Union[str, Any]=True , __lowercase : List[str]=True , __lowercase : Dict=True , **__lowercase : List[Any] , ) -> Optional[int]: SCREAMING_SNAKE_CASE__ : Union[str, Any] =vocab_size SCREAMING_SNAKE_CASE__ : Union[str, Any] =n_positions SCREAMING_SNAKE_CASE__ : Dict =n_embd SCREAMING_SNAKE_CASE__ : Dict =n_layer SCREAMING_SNAKE_CASE__ : Union[str, Any] =n_head SCREAMING_SNAKE_CASE__ : List[str] =n_inner SCREAMING_SNAKE_CASE__ : List[str] =activation_function SCREAMING_SNAKE_CASE__ : List[Any] =resid_pdrop SCREAMING_SNAKE_CASE__ : List[Any] =embd_pdrop SCREAMING_SNAKE_CASE__ : List[str] =attn_pdrop SCREAMING_SNAKE_CASE__ : Dict =layer_norm_epsilon SCREAMING_SNAKE_CASE__ : List[str] =initializer_range SCREAMING_SNAKE_CASE__ : List[Any] =scale_attn_weights SCREAMING_SNAKE_CASE__ : Union[str, Any] =use_cache SCREAMING_SNAKE_CASE__ : Dict =attention_softmax_in_fpaa SCREAMING_SNAKE_CASE__ : int =scale_attention_softmax_in_fpaa SCREAMING_SNAKE_CASE__ : Dict =multi_query SCREAMING_SNAKE_CASE__ : Optional[Any] =bos_token_id SCREAMING_SNAKE_CASE__ : Optional[Any] =eos_token_id super().__init__(bos_token_id=__lowercase , eos_token_id=__lowercase , **__lowercase )
665
0
import itertools import string from collections.abc import Generator, Iterable def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Generator[tuple[str, ...], None, None]: lowercase__ = iter(_SCREAMING_SNAKE_CASE ) while True: lowercase__ = tuple(itertools.islice(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) if not chunk: return yield chunk def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> str: lowercase__ = ''.join([c.upper() for c in dirty if c in string.ascii_letters] ) lowercase__ = '' if len(_SCREAMING_SNAKE_CASE ) < 2: return dirty for i in range(len(_SCREAMING_SNAKE_CASE ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(_SCREAMING_SNAKE_CASE ) & 1: clean += "X" return clean def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> list[str]: # I and J are used interchangeably to allow # us to use a 5x5 table (25 letters) lowercase__ = 'ABCDEFGHIKLMNOPQRSTUVWXYZ' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler lowercase__ = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(_SCREAMING_SNAKE_CASE ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(_SCREAMING_SNAKE_CASE ) return table def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = generate_table(_SCREAMING_SNAKE_CASE ) lowercase__ = prepare_input(_SCREAMING_SNAKE_CASE ) lowercase__ = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_SCREAMING_SNAKE_CASE , 2 ): lowercase__ , lowercase__ = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) lowercase__ , lowercase__ = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: lowercase__ = generate_table(_SCREAMING_SNAKE_CASE ) lowercase__ = '' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(_SCREAMING_SNAKE_CASE , 2 ): lowercase__ , lowercase__ = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) lowercase__ , lowercase__ = divmod(table.index(_SCREAMING_SNAKE_CASE ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
235
def __UpperCamelCase (_SCREAMING_SNAKE_CASE ) -> bool: lowercase__ = set() # To detect a back edge, keep track of vertices currently in the recursion stack lowercase__ = set() return any( node not in visited and depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for node in graph ) def __UpperCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> bool: visited.add(_SCREAMING_SNAKE_CASE ) rec_stk.add(_SCREAMING_SNAKE_CASE ) for node in graph[vertex]: if node not in visited: if depth_first_search(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(_SCREAMING_SNAKE_CASE ) return False if __name__ == "__main__": from doctest import testmod testmod()
235
1
'''simple docstring''' class snake_case : # Public class to implement a graph def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> None: lowercase__ = row lowercase__ = col lowercase__ = graph def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> bool: return ( 0 <= i < self.ROW and 0 <= j < self.COL and not visited[i][j] and self.graph[i][j] ) def _a ( self ,UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> None: # Checking all 8 elements surrounding nth element lowercase__ = [-1, -1, -1, 0, 0, 1, 1, 1] # Coordinate order lowercase__ = [-1, 0, 1, -1, 1, -1, 0, 1] lowercase__ = True # Make those cells visited for k in range(8 ): if self.is_safe(i + row_nbr[k] ,j + col_nbr[k] ,UpperCAmelCase_ ): self.diffs(i + row_nbr[k] ,j + col_nbr[k] ,UpperCAmelCase_ ) def _a ( self ) -> int: # And finally, count all islands. lowercase__ = [[False for j in range(self.COL )] for i in range(self.ROW )] lowercase__ = 0 for i in range(self.ROW ): for j in range(self.COL ): if visited[i][j] is False and self.graph[i][j] == 1: self.diffs(UpperCAmelCase_ ,UpperCAmelCase_ ,UpperCAmelCase_ ) count += 1 return count
539
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin class snake_case (unittest.TestCase , UpperCamelCase ): def _a ( self ) -> List[str]: lowercase__ = load_tool("text-classification" ) self.tool.setup() lowercase__ = load_tool("text-classification" ,remote=UpperCAmelCase_ ) def _a ( self ) -> Any: lowercase__ = self.tool("That's quite cool" ,["positive", "negative"] ) self.assertEqual(UpperCAmelCase_ ,"positive" ) def _a ( self ) -> Optional[int]: lowercase__ = self.remote_tool("That's quite cool" ,["positive", "negative"] ) self.assertEqual(UpperCAmelCase_ ,"positive" ) def _a ( self ) -> List[Any]: lowercase__ = self.tool(text="That's quite cool" ,labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase_ ,"positive" ) def _a ( self ) -> List[Any]: lowercase__ = self.remote_tool(text="That's quite cool" ,labels=["positive", "negative"] ) self.assertEqual(UpperCAmelCase_ ,"positive" )
539
1
import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def a ( A__ , A__ , A__ ) -> Optional[int]: '''simple docstring''' SCREAMING_SNAKE_CASE__ : Tuple = LxmertConfig.from_json_file(A__ ) print(f"""Building PyTorch model from configuration: {config}""" ) SCREAMING_SNAKE_CASE__ : str = LxmertForPreTraining(A__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(A__ , A__ , A__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , A__ ) if __name__ == "__main__": a_ :List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--tf_checkpoint_path', default=None, type=str, required=True, help='Path to the TensorFlow checkpoint path.' ) parser.add_argument( '--config_file', default=None, type=str, required=True, help='The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) a_ :Optional[int] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
35
'''simple docstring''' def __lowercase ( __lowercase , __lowercase ) -> Optional[int]: '''simple docstring''' assert x is not None assert y is not None _A = len(__lowercase ) _A = len(__lowercase ) # declaring the array for storing the dp values _A = [[0] * (n + 1) for _ in range(m + 1 )] # noqa: E741 for i in range(1 , m + 1 ): for j in range(1 , n + 1 ): _A = 1 if x[i - 1] == y[j - 1] else 0 _A = max(l[i - 1][j] , l[i][j - 1] , l[i - 1][j - 1] + match ) _A = "" _A , _A = m, n while i > 0 and j > 0: _A = 1 if x[i - 1] == y[j - 1] else 0 if l[i][j] == l[i - 1][j - 1] + match: if match == 1: _A = x[i - 1] + seq i -= 1 j -= 1 elif l[i][j] == l[i - 1][j]: i -= 1 else: j -= 1 return l[m][n], seq if __name__ == "__main__": lowerCamelCase_ = '''AGGTAB''' lowerCamelCase_ = '''GXTXAYB''' lowerCamelCase_ = 4 lowerCamelCase_ = '''GTAB''' lowerCamelCase_ , lowerCamelCase_ = longest_common_subsequence(a, b) print('''len =''', ln, ''', sub-sequence =''', subseq) import doctest doctest.testmod()
330
0
"""simple docstring""" import os from pathlib import Path import numpy as np import pytest from pack_dataset import pack_data_dir from parameterized import parameterized from save_len_file import save_len_file from torch.utils.data import DataLoader from transformers import AutoTokenizer from transformers.models.mbart.modeling_mbart import shift_tokens_right from transformers.testing_utils import TestCasePlus, slow from utils import FAIRSEQ_AVAILABLE, DistributedSortishSampler, LegacySeqaSeqDataset, SeqaSeqDataset _A = "bert-base-cased" _A = "google/pegasus-xsum" _A = [" Sam ate lunch today.", "Sams lunch ingredients."] _A = ["A very interesting story about what I ate for lunch.", "Avocado, celery, turkey, coffee"] _A = "patrickvonplaten/t5-tiny-random" _A = "sshleifer/bart-tiny-random" _A = "sshleifer/tiny-mbart" _A = "sshleifer/tiny-marian-en-de" def lowercase (_snake_case ,_snake_case ) -> Tuple: '''simple docstring''' __UpperCamelCase = "\n".join(UpperCamelCase__ ) Path(UpperCamelCase__ ).open("w" ).writelines(UpperCamelCase__ ) def lowercase (_snake_case ) -> str: '''simple docstring''' for split in ["train", "val", "test"]: _dump_articles(os.path.join(UpperCamelCase__ ,f"""{split}.source""" ) ,UpperCamelCase__ ) _dump_articles(os.path.join(UpperCamelCase__ ,f"""{split}.target""" ) ,UpperCamelCase__ ) return tmp_dir class __UpperCAmelCase ( UpperCAmelCase_ ): """simple docstring""" @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) @slow def A ( self : Optional[Any] , A_ : Any )-> List[Any]: __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __UpperCamelCase = max(len(tokenizer.encode(_lowercase ) ) for a in ARTICLES ) __UpperCamelCase = max(len(tokenizer.encode(_lowercase ) ) for a in SUMMARIES ) __UpperCamelCase = 4 __UpperCamelCase = 8 assert max_len_target > max_src_len # Will be truncated assert max_len_source > max_src_len # Will be truncated __UpperCamelCase , __UpperCamelCase = "ro_RO", "de_DE" # ignored for all but mbart, but never causes error. __UpperCamelCase = SeqaSeqDataset( _lowercase , data_dir=_lowercase , type_path="train" , max_source_length=_lowercase , max_target_length=_lowercase , src_lang=_lowercase , tgt_lang=_lowercase , ) __UpperCamelCase = DataLoader(_lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert isinstance(_lowercase , _lowercase ) assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_src_len # show that targets are the same len assert batch["labels"].shape[1] == max_tgt_len if tok_name != MBART_TINY: continue # check language codes in correct place __UpperCamelCase = shift_tokens_right(batch["labels"] , tokenizer.pad_token_id ) assert batch["decoder_input_ids"][0, 0].item() == tokenizer.lang_code_to_id[tgt_lang] assert batch["decoder_input_ids"][0, -1].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -2].item() == tokenizer.eos_token_id assert batch["input_ids"][0, -1].item() == tokenizer.lang_code_to_id[src_lang] break # No need to test every batch @parameterized.expand([BART_TINY, BERT_BASE_CASED] ) def A ( self : Any , A_ : int )-> Union[str, Any]: __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) __UpperCamelCase = max(len(tokenizer.encode(_lowercase ) ) for a in ARTICLES ) __UpperCamelCase = max(len(tokenizer.encode(_lowercase ) ) for a in SUMMARIES ) __UpperCamelCase = 4 __UpperCamelCase = LegacySeqaSeqDataset( _lowercase , data_dir=_lowercase , type_path="train" , max_source_length=20 , max_target_length=_lowercase , ) __UpperCamelCase = DataLoader(_lowercase , batch_size=2 , collate_fn=train_dataset.collate_fn ) for batch in dataloader: assert batch["attention_mask"].shape == batch["input_ids"].shape # show that articles were trimmed. assert batch["input_ids"].shape[1] == max_len_source assert 20 >= batch["input_ids"].shape[1] # trimmed significantly # show that targets were truncated assert batch["labels"].shape[1] == trunc_target # Truncated assert max_len_target > trunc_target # Truncated break # No need to test every batch def A ( self : Optional[int] )-> Dict: __UpperCamelCase = AutoTokenizer.from_pretrained("facebook/mbart-large-cc25" ) __UpperCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) __UpperCamelCase = tmp_dir.joinpath("train.source" ).open().readlines() __UpperCamelCase = Path(make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) ) pack_data_dir(_lowercase , _lowercase , 1_28 , _lowercase ) __UpperCamelCase = {x.name for x in tmp_dir.iterdir()} __UpperCamelCase = {x.name for x in save_dir.iterdir()} __UpperCamelCase = save_dir.joinpath("train.source" ).open().readlines() # orig: [' Sam ate lunch today.\n', 'Sams lunch ingredients.'] # desired_packed: [' Sam ate lunch today.\n Sams lunch ingredients.'] assert len(_lowercase ) < len(_lowercase ) assert len(_lowercase ) == 1 assert len(packed_examples[0] ) == sum(len(_lowercase ) for x in orig_examples ) assert orig_paths == new_paths @pytest.mark.skipif(not FAIRSEQ_AVAILABLE , reason="This test requires fairseq" ) def A ( self : Any )-> Optional[Any]: if not FAIRSEQ_AVAILABLE: return __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._get_dataset(max_len=64 ) __UpperCamelCase = 64 __UpperCamelCase = ds.make_dynamic_sampler(_lowercase , required_batch_size_multiple=_lowercase ) __UpperCamelCase = [len(_lowercase ) for x in batch_sampler] assert len(set(_lowercase ) ) > 1 # it's not dynamic batch size if every batch is the same length assert sum(_lowercase ) == len(_lowercase ) # no dropped or added examples __UpperCamelCase = DataLoader(_lowercase , batch_sampler=_lowercase , collate_fn=ds.collate_fn , num_workers=2 ) __UpperCamelCase = [] __UpperCamelCase = [] for batch in data_loader: __UpperCamelCase = batch["input_ids"].shape __UpperCamelCase = src_shape[0] assert bs % required_batch_size_multiple == 0 or bs < required_batch_size_multiple __UpperCamelCase = np.product(batch["input_ids"].shape ) num_src_per_batch.append(_lowercase ) if num_src_tokens > (max_tokens * 1.1): failures.append(_lowercase ) assert num_src_per_batch[0] == max(_lowercase ) if failures: raise AssertionError(f"""too many tokens in {len(_lowercase )} batches""" ) def A ( self : int )-> Dict: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._get_dataset(max_len=5_12 ) __UpperCamelCase = 2 __UpperCamelCase = ds.make_sortish_sampler(_lowercase , shuffle=_lowercase ) __UpperCamelCase = DataLoader(_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn , num_workers=2 ) __UpperCamelCase = DataLoader(_lowercase , batch_size=_lowercase , collate_fn=ds.collate_fn , num_workers=2 , sampler=_lowercase ) __UpperCamelCase = tokenizer.pad_token_id def count_pad_tokens(A_ : Any , A_ : str="input_ids" ): return [batch[k].eq(_lowercase ).sum().item() for batch in data_loader] assert sum(count_pad_tokens(_lowercase , k="labels" ) ) < sum(count_pad_tokens(_lowercase , k="labels" ) ) assert sum(count_pad_tokens(_lowercase ) ) < sum(count_pad_tokens(_lowercase ) ) assert len(_lowercase ) == len(_lowercase ) def A ( self : Any , A_ : List[Any]=10_00 , A_ : Any=1_28 )-> Optional[Any]: if os.getenv("USE_REAL_DATA" , _lowercase ): __UpperCamelCase = "examples/seq2seq/wmt_en_ro" __UpperCamelCase = max_len * 2 * 64 if not Path(_lowercase ).joinpath("train.len" ).exists(): save_len_file(_lowercase , _lowercase ) else: __UpperCamelCase = "examples/seq2seq/test_data/wmt_en_ro" __UpperCamelCase = max_len * 4 save_len_file(_lowercase , _lowercase ) __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase ) __UpperCamelCase = SeqaSeqDataset( _lowercase , data_dir=_lowercase , type_path="train" , max_source_length=_lowercase , max_target_length=_lowercase , n_obs=_lowercase , ) return ds, max_tokens, tokenizer def A ( self : List[Any] )-> Optional[int]: __UpperCamelCase , __UpperCamelCase , __UpperCamelCase = self._get_dataset() __UpperCamelCase = set(DistributedSortishSampler(_lowercase , 2_56 , num_replicas=2 , rank=0 , add_extra_examples=_lowercase ) ) __UpperCamelCase = set(DistributedSortishSampler(_lowercase , 2_56 , num_replicas=2 , rank=1 , add_extra_examples=_lowercase ) ) assert idsa.intersection(_lowercase ) == set() @parameterized.expand( [ MBART_TINY, MARIAN_TINY, T5_TINY, BART_TINY, PEGASUS_XSUM, ] , ) def A ( self : Optional[int] , A_ : List[str] )-> int: __UpperCamelCase = AutoTokenizer.from_pretrained(_lowercase , use_fast=_lowercase ) if tok_name == MBART_TINY: __UpperCamelCase = SeqaSeqDataset( _lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , src_lang="EN" , tgt_lang="FR" , ) __UpperCamelCase = train_dataset.dataset_kwargs assert "src_lang" in kwargs and "tgt_lang" in kwargs else: __UpperCamelCase = SeqaSeqDataset( _lowercase , data_dir=make_test_data_dir(tmp_dir=self.get_auto_remove_tmp_dir() ) , type_path="train" , max_source_length=4 , max_target_length=8 , ) __UpperCamelCase = train_dataset.dataset_kwargs assert "add_prefix_space" not in kwargs if tok_name != BART_TINY else "add_prefix_space" in kwargs assert len(_lowercase ) == 1 if tok_name == BART_TINY else len(_lowercase ) == 0
703
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def A ( self : Union[str, Any] )-> Tuple: __UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-base" ) __UpperCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCamelCase = torch.Size((1, 12, 7_68) ) # batch_size, sequence_length, embedding_vector_dim __UpperCamelCase = torch.tensor( [[-0.0_101, 0.1_218, -0.0_803, 0.0_801, 0.1_327, 0.0_776, -0.1_215, 0.2_383, 0.3_338, 0.3_106, 0.0_300, 0.0_252]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCamelCase = model(A_ )["last_hidden_state"].detach() self.assertEqual(output.shape , A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A_ , atol=1e-3 ) ) @slow def A ( self : List[Any] )-> Union[str, Any]: __UpperCamelCase = XLMRobertaModel.from_pretrained("xlm-roberta-large" ) __UpperCamelCase = torch.tensor([[0, 5_81, 1_02_69, 83, 9_99_42, 1_36, 6_07_42, 23, 70, 8_05_83, 1_82_76, 2]] ) # The dog is cute and lives in the garden house __UpperCamelCase = torch.Size((1, 12, 10_24) ) # batch_size, sequence_length, embedding_vector_dim __UpperCamelCase = torch.tensor( [[-0.0_699, -0.0_318, 0.0_705, -0.1_241, 0.0_999, -0.0_520, 0.1_004, -0.1_838, -0.4_704, 0.1_437, 0.0_821, 0.0_126]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): __UpperCamelCase = model(A_ )["last_hidden_state"].detach() self.assertEqual(output.shape , A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] , A_ , atol=1e-3 ) )
228
0
'''simple docstring''' import math from typing import Optional import numpy as np from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { """facebook/encodec_24khz""": """https://huggingface.co/facebook/encodec_24khz/resolve/main/config.json""", """facebook/encodec_48khz""": """https://huggingface.co/facebook/encodec_48khz/resolve/main/config.json""", } class UpperCamelCase__ ( lowercase_ ): """simple docstring""" SCREAMING_SNAKE_CASE__ = '''encodec''' def __init__( self : Union[str, Any] , lowerCamelCase_ : int=[1.5, 3.0, 6.0, 12.0, 24.0] , lowerCamelCase_ : Any=2_40_00 , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : Optional[int]=False , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : str=None , lowerCamelCase_ : Optional[int]=1_28 , lowerCamelCase_ : str=32 , lowerCamelCase_ : List[str]=1 , lowerCamelCase_ : List[Any]=[8, 5, 4, 2] , lowerCamelCase_ : Any="weight_norm" , lowerCamelCase_ : str=7 , lowerCamelCase_ : Tuple=7 , lowerCamelCase_ : Optional[int]=3 , lowerCamelCase_ : Union[str, Any]=2 , lowerCamelCase_ : List[Any]=True , lowerCamelCase_ : List[str]="reflect" , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : str=1.0 , lowerCamelCase_ : int=10_24 , lowerCamelCase_ : int=None , lowerCamelCase_ : str=True , **lowerCamelCase_ : Tuple , ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = target_bandwidths SCREAMING_SNAKE_CASE : Any = sampling_rate SCREAMING_SNAKE_CASE : Optional[Any] = audio_channels SCREAMING_SNAKE_CASE : Any = normalize SCREAMING_SNAKE_CASE : Dict = chunk_length_s SCREAMING_SNAKE_CASE : List[str] = overlap SCREAMING_SNAKE_CASE : Optional[int] = hidden_size SCREAMING_SNAKE_CASE : List[str] = num_filters SCREAMING_SNAKE_CASE : List[Any] = num_residual_layers SCREAMING_SNAKE_CASE : int = upsampling_ratios SCREAMING_SNAKE_CASE : Optional[Any] = norm_type SCREAMING_SNAKE_CASE : Dict = kernel_size SCREAMING_SNAKE_CASE : Dict = last_kernel_size SCREAMING_SNAKE_CASE : List[Any] = residual_kernel_size SCREAMING_SNAKE_CASE : Dict = dilation_growth_rate SCREAMING_SNAKE_CASE : str = use_causal_conv SCREAMING_SNAKE_CASE : str = pad_mode SCREAMING_SNAKE_CASE : Optional[Any] = compress SCREAMING_SNAKE_CASE : Dict = num_lstm_layers SCREAMING_SNAKE_CASE : List[Any] = trim_right_ratio SCREAMING_SNAKE_CASE : Optional[int] = codebook_size SCREAMING_SNAKE_CASE : List[str] = codebook_dim if codebook_dim is not None else hidden_size SCREAMING_SNAKE_CASE : Optional[Any] = use_conv_shortcut if self.norm_type not in ["weight_norm", "time_group_norm"]: raise ValueError( f'''self.norm_type must be one of `"weight_norm"`, `"time_group_norm"`), got {self.norm_type}''' ) super().__init__(**lowerCamelCase_ ) @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' if self.chunk_length_s is None: return None else: return int(self.chunk_length_s * self.sampling_rate ) @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' if self.chunk_length_s is None or self.overlap is None: return None else: return max(1 , int((1.0 - self.overlap) * self.chunk_length ) ) @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = np.prod(self.upsampling_ratios ) return math.ceil(self.sampling_rate / hop_length ) @property def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' return int(10_00 * self.target_bandwidths[-1] // (self.frame_rate * 10) )
379
'''simple docstring''' from __future__ import annotations from statistics import mean def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = [0] * no_of_processes SCREAMING_SNAKE_CASE : int = [0] * no_of_processes # Initialize remaining_time to waiting_time. for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Optional[int] = burst_time[i] SCREAMING_SNAKE_CASE : list[int] = [] SCREAMING_SNAKE_CASE : List[str] = 0 SCREAMING_SNAKE_CASE : List[Any] = 0 # When processes are not completed, # A process whose arrival time has passed \ # and has remaining execution time is put into the ready_process. # The shortest process in the ready_process, target_process is executed. while completed != no_of_processes: SCREAMING_SNAKE_CASE : Optional[int] = [] SCREAMING_SNAKE_CASE : Any = -1 for i in range(lowerCamelCase_ ): if (arrival_time[i] <= total_time) and (remaining_time[i] > 0): ready_process.append(lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: SCREAMING_SNAKE_CASE : Union[str, Any] = ready_process[0] for i in ready_process: if remaining_time[i] < remaining_time[target_process]: SCREAMING_SNAKE_CASE : Any = i total_time += burst_time[target_process] completed += 1 SCREAMING_SNAKE_CASE : Any = 0 SCREAMING_SNAKE_CASE : Optional[int] = ( total_time - arrival_time[target_process] - burst_time[target_process] ) else: total_time += 1 return waiting_time def __A ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = [0] * no_of_processes for i in range(lowerCamelCase_ ): SCREAMING_SNAKE_CASE : Union[str, Any] = burst_time[i] + waiting_time[i] return turn_around_time if __name__ == "__main__": print("""[TEST CASE 01]""") __UpperCAmelCase = 4 __UpperCAmelCase = [2, 5, 3, 7] __UpperCAmelCase = [0, 0, 0, 0] __UpperCAmelCase = calculate_waitingtime(arrival_time, burst_time, no_of_processes) __UpperCAmelCase = calculate_turnaroundtime( burst_time, no_of_processes, waiting_time ) # Printing the Result print("""PID\tBurst Time\tArrival Time\tWaiting Time\tTurnaround Time""") for i, process_id in enumerate(list(range(1, 5))): print( f'''{process_id}\t{burst_time[i]}\t\t\t{arrival_time[i]}\t\t\t\t''' f'''{waiting_time[i]}\t\t\t\t{turn_around_time[i]}''' ) print(f'''\nAverage waiting time = {mean(waiting_time):.5f}''') print(f'''Average turnaround time = {mean(turn_around_time):.5f}''')
379
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 _SCREAMING_SNAKE_CASE : Union[str, Any] = { # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 2048-bit 1_4: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 3072-bit 1_5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 4096-bit 1_6: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 6144-bit 1_7: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, # 8192-bit 1_8: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=1_6, ), 'generator': 2, }, } class UpperCamelCase__ : '''simple docstring''' def __init__( self , UpperCamelCase__ = 14 ): if group not in primes: raise ValueError('''Unsupported Group''' ) A__ : List[str] = primes[group]['''prime'''] A__ : Tuple = primes[group]['''generator'''] A__ : Optional[int] = int(hexlify(urandom(32 ) ) , base=16 ) def __snake_case ( self ): return hex(self.__private_key )[2:] def __snake_case ( self ): A__ : Optional[Any] = pow(self.generator , self.__private_key , self.prime ) return hex(UpperCamelCase__ )[2:] def __snake_case ( self , UpperCamelCase__ ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(UpperCamelCase__ , (self.prime - 1) // 2 , self.prime ) == 1 ) def __snake_case ( self , UpperCamelCase__ ): A__ : str = int(UpperCamelCase__ , base=16 ) if not self.is_valid_public_key(UpperCamelCase__ ): raise ValueError('''Invalid public key''' ) A__ : List[Any] = pow(UpperCamelCase__ , self.__private_key , self.prime ) return shaaaa(str(UpperCamelCase__ ).encode() ).hexdigest() @staticmethod def __snake_case ( UpperCamelCase__ , UpperCamelCase__ ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(UpperCamelCase__ , (prime - 1) // 2 , UpperCamelCase__ ) == 1 ) @staticmethod def __snake_case ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 14 ): A__ : Optional[Any] = int(UpperCamelCase__ , base=16 ) A__ : Any = int(UpperCamelCase__ , base=16 ) A__ : int = primes[group]['''prime'''] if not DiffieHellman.is_valid_public_key_static(UpperCamelCase__ , UpperCamelCase__ ): raise ValueError('''Invalid public key''' ) A__ : Union[str, Any] = pow(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return shaaaa(str(UpperCamelCase__ ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
703
import inspect import os import unittest import torch import accelerate from accelerate import debug_launcher from accelerate.test_utils import ( execute_subprocess_async, require_cpu, require_huggingface_suite, require_multi_gpu, require_single_gpu, ) from accelerate.utils import patch_environment @require_huggingface_suite class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' def __snake_case ( self ): A__ : Dict = inspect.getfile(accelerate.test_utils ) A__ : Any = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps''', '''test_metrics.py'''] ) from accelerate.test_utils.scripts.external_deps import test_metrics # noqa: F401 A__ : Tuple = test_metrics @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main , num_processes=1 ) @require_cpu def __snake_case ( self ): debug_launcher(self.test_metrics.main ) @require_single_gpu def __snake_case ( self ): self.test_metrics.main() @require_multi_gpu def __snake_case ( self ): print(F"Found {torch.cuda.device_count()} devices." ) A__ : int = ['''torchrun''', F"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
55
0
def UpperCamelCase ( _a ) -> str: '''simple docstring''' lowercase_ :Tuple = 0 for ch in input_str: lowercase_ :Optional[Any] = ord(_a ) lowercase_ :Tuple = pow(2 , _a ) # If we already turned on bit for current character's unicode if bitmap >> ch_unicode & 1 == 1: return False bitmap |= ch_bit_index_on return True if __name__ == "__main__": import doctest doctest.testmod()
257
import argparse import requests import torch from PIL import Image from torchvision.transforms import Compose, Normalize, Resize, ToTensor from transformers import SwinaSRConfig, SwinaSRForImageSuperResolution, SwinaSRImageProcessor def _A ( SCREAMING_SNAKE_CASE : List[str] ): """simple docstring""" a__ : Optional[Any] =SwinaSRConfig() if "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: a__ : Optional[int] =4 elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: a__ : int =4 a__ : Optional[int] =48 a__ : str ="pixelshuffle_aux" elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: a__ : str =[6, 6, 6, 6] a__ : Optional[int] =60 a__ : Any =[6, 6, 6, 6] a__ : int ="pixelshuffledirect" elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: a__ : List[str] =4 a__ : Union[str, Any] ="nearest+conv" elif "Swin2SR_Jpeg_dynamic" in checkpoint_url: a__ : str =1 a__ : Optional[Any] =1 a__ : str =126 a__ : Optional[Any] =7 a__ : Optional[int] =2_5_5.0 a__ : str ="" return config def _A ( SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" if "patch_embed.proj" in name and "layers" not in name: a__ : Any =name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: a__ : str =name.replace("patch_embed.norm" , "embeddings.patch_embeddings.layernorm" ) if "layers" in name: a__ : Union[str, Any] =name.replace("layers" , "encoder.stages" ) if "residual_group.blocks" in name: a__ : List[Any] =name.replace("residual_group.blocks" , "layers" ) if "attn.proj" in name: a__ : Union[str, Any] =name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: a__ : int =name.replace("attn" , "attention.self" ) if "norm1" in name: a__ : List[Any] =name.replace("norm1" , "layernorm_before" ) if "norm2" in name: a__ : Optional[int] =name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: a__ : Dict =name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: a__ : Optional[int] =name.replace("mlp.fc2" , "output.dense" ) if "q_bias" in name: a__ : List[Any] =name.replace("q_bias" , "query.bias" ) if "k_bias" in name: a__ : Optional[int] =name.replace("k_bias" , "key.bias" ) if "v_bias" in name: a__ : Optional[Any] =name.replace("v_bias" , "value.bias" ) if "cpb_mlp" in name: a__ : List[str] =name.replace("cpb_mlp" , "continuous_position_bias_mlp" ) if "patch_embed.proj" in name: a__ : List[Any] =name.replace("patch_embed.proj" , "patch_embed.projection" ) if name == "norm.weight": a__ : Dict ="layernorm.weight" if name == "norm.bias": a__ : Any ="layernorm.bias" if "conv_first" in name: a__ : Tuple =name.replace("conv_first" , "first_convolution" ) if ( "upsample" in name or "conv_before_upsample" in name or "conv_bicubic" in name or "conv_up" in name or "conv_hr" in name or "conv_last" in name or "aux" in name ): # heads if "conv_last" in name: a__ : List[str] =name.replace("conv_last" , "final_convolution" ) if config.upsampler in ["pixelshuffle", "pixelshuffle_aux", "nearest+conv"]: if "conv_before_upsample.0" in name: a__ : str =name.replace("conv_before_upsample.0" , "conv_before_upsample" ) if "upsample.0" in name: a__ : Any =name.replace("upsample.0" , "upsample.convolution_0" ) if "upsample.2" in name: a__ : Optional[int] =name.replace("upsample.2" , "upsample.convolution_1" ) a__ : Any ="upsample." + name elif config.upsampler == "pixelshuffledirect": a__ : str =name.replace("upsample.0.weight" , "upsample.conv.weight" ) a__ : Any =name.replace("upsample.0.bias" , "upsample.conv.bias" ) else: pass else: a__ : Dict ="swin2sr." + name return name def _A ( SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Any ): """simple docstring""" for key in orig_state_dict.copy().keys(): a__ : Dict =orig_state_dict.pop(SCREAMING_SNAKE_CASE ) if "qkv" in key: a__ : str =key.split("." ) a__ : Optional[int] =int(key_split[1] ) a__ : Dict =int(key_split[4] ) a__ : List[Any] =config.embed_dim if "weight" in key: a__ : List[Any] =val[:dim, :] a__ : List[str] =val[dim : dim * 2, :] a__ : Dict =val[-dim:, :] else: a__ : int =val[:dim] a__ : Union[str, Any] =val[dim : dim * 2] a__ : Tuple =val[-dim:] pass else: a__ : Union[str, Any] =val return orig_state_dict def _A ( SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : List[Any] , SCREAMING_SNAKE_CASE : str ): """simple docstring""" a__ : Optional[Any] =get_config(SCREAMING_SNAKE_CASE ) a__ : Union[str, Any] =SwinaSRForImageSuperResolution(SCREAMING_SNAKE_CASE ) model.eval() a__ : Union[str, Any] =torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location="cpu" ) a__ : Dict =convert_state_dict(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) a__ , a__ : List[Any] =model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) if len(SCREAMING_SNAKE_CASE ) > 0: raise ValueError("Missing keys when converting: {}".format(SCREAMING_SNAKE_CASE ) ) for key in unexpected_keys: if not ("relative_position_index" in key or "relative_coords_table" in key or "self_mask" in key): raise ValueError(f'''Unexpected key {key} in state_dict''' ) # verify values a__ : str ="https://github.com/mv-lab/swin2sr/blob/main/testsets/real-inputs/shanghai.jpg?raw=true" a__ : List[Any] =Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert("RGB" ) a__ : Dict =SwinaSRImageProcessor() # pixel_values = processor(image, return_tensors="pt").pixel_values a__ : List[str] =126 if "Jpeg" in checkpoint_url else 256 a__ : Optional[Any] =Compose( [ Resize((image_size, image_size) ), ToTensor(), Normalize(mean=[0.4_8_5, 0.4_5_6, 0.4_0_6] , std=[0.2_2_9, 0.2_2_4, 0.2_2_5] ), ] ) a__ : Dict =transforms(SCREAMING_SNAKE_CASE ).unsqueeze(0 ) if config.num_channels == 1: a__ : Tuple =pixel_values[:, 0, :, :].unsqueeze(1 ) a__ : Union[str, Any] =model(SCREAMING_SNAKE_CASE ) # assert values if "Swin2SR_ClassicalSR_X2_64" in checkpoint_url: a__ : str =torch.Size([1, 3, 512, 512] ) a__ : List[str] =torch.tensor( [[-0.7_0_8_7, -0.7_1_3_8, -0.6_7_2_1], [-0.8_3_4_0, -0.8_0_9_5, -0.7_2_9_8], [-0.9_1_4_9, -0.8_4_1_4, -0.7_9_4_0]] ) elif "Swin2SR_ClassicalSR_X4_64" in checkpoint_url: a__ : List[Any] =torch.Size([1, 3, 1_024, 1_024] ) a__ : List[str] =torch.tensor( [[-0.7_7_7_5, -0.8_1_0_5, -0.8_9_3_3], [-0.7_7_6_4, -0.8_3_5_6, -0.9_2_2_5], [-0.7_9_7_6, -0.8_6_8_6, -0.9_5_7_9]] ) elif "Swin2SR_CompressedSR_X4_48" in checkpoint_url: # TODO values didn't match exactly here a__ : Tuple =torch.Size([1, 3, 1_024, 1_024] ) a__ : Optional[int] =torch.tensor( [[-0.8_0_3_5, -0.7_5_0_4, -0.7_4_9_1], [-0.8_5_3_8, -0.8_1_2_4, -0.7_7_8_2], [-0.8_8_0_4, -0.8_6_5_1, -0.8_4_9_3]] ) elif "Swin2SR_Lightweight_X2_64" in checkpoint_url: a__ : Tuple =torch.Size([1, 3, 512, 512] ) a__ : str =torch.tensor( [[-0.7_6_6_9, -0.8_6_6_2, -0.8_7_6_7], [-0.8_8_1_0, -0.9_9_6_2, -0.9_8_2_0], [-0.9_3_4_0, -1.0_3_2_2, -1.1_1_4_9]] ) elif "Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR" in checkpoint_url: a__ : Optional[int] =torch.Size([1, 3, 1_024, 1_024] ) a__ : Optional[Any] =torch.tensor( [[-0.5_2_3_8, -0.5_5_5_7, -0.6_3_2_1], [-0.6_0_1_6, -0.5_9_0_3, -0.6_3_9_1], [-0.6_2_4_4, -0.6_3_3_4, -0.6_8_8_9]] ) assert ( outputs.reconstruction.shape == expected_shape ), f'''Shape of reconstruction should be {expected_shape}, but is {outputs.reconstruction.shape}''' assert torch.allclose(outputs.reconstruction[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1e-3 ) print("Looks ok!" ) a__ : int ={ "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth": ( "swin2SR-classical-sr-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X4_64.pth": ( "swin2SR-classical-sr-x4-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_CompressedSR_X4_48.pth": ( "swin2SR-compressed-sr-x4-48" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_Lightweight_X2_64.pth": ( "swin2SR-lightweight-x2-64" ), "https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_RealworldSR_X4_64_BSRGAN_PSNR.pth": ( "swin2SR-realworld-sr-x4-64-bsrgan-psnr" ), } a__ : Any =url_to_name[checkpoint_url] if pytorch_dump_folder_path is not None: print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(f'''Saving image processor to {pytorch_dump_folder_path}''' ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: model.push_to_hub(f'''caidas/{model_name}''' ) processor.push_to_hub(f'''caidas/{model_name}''' ) if __name__ == "__main__": UpperCAmelCase : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--checkpoint_url""", default="""https://github.com/mv-lab/swin2sr/releases/download/v0.0.1/Swin2SR_ClassicalSR_X2_64.pth""", type=str, help="""URL of the original Swin2SR checkpoint you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Whether to push the converted model to the hub.""") UpperCAmelCase : Optional[Any] = parser.parse_args() convert_swinasr_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
563
0
from __future__ import annotations import requests def A__ ( SCREAMING_SNAKE_CASE_ ) -> Any: lowerCamelCase : List[str] =F"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(_UpperCAmelCase ).json() def A__ ( SCREAMING_SNAKE_CASE_ = 1_0 ) -> Tuple: lowerCamelCase : int ='''https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty''' lowerCamelCase : List[Any] =requests.get(_UpperCAmelCase ).json()[:max_stories] return [get_hackernews_story(_UpperCAmelCase ) for story_id in story_ids] def A__ ( SCREAMING_SNAKE_CASE_ = 1_0 ) -> int: lowerCamelCase : Tuple =hackernews_top_stories(_UpperCAmelCase ) return "\n".join('''* [{title}]({url})'''.format(**_UpperCAmelCase ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
716
import string def A__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCamelCase : Optional[Any] ='''''' for i in sequence: lowerCamelCase : int =ord(SCREAMING_SNAKE_CASE_ ) if 6_5 <= extract <= 9_0: output += chr(1_5_5 - extract ) elif 9_7 <= extract <= 1_2_2: output += chr(2_1_9 - extract ) else: output += i return output def A__ ( SCREAMING_SNAKE_CASE_ ) -> str: lowerCamelCase : Tuple =string.ascii_letters lowerCamelCase : int =string.ascii_lowercase[::-1] + string.ascii_uppercase[::-1] return "".join( letters_reversed[letters.index(SCREAMING_SNAKE_CASE_ )] if c in letters else c for c in sequence ) def A__ ( ) -> None: from timeit import timeit print('''Running performance benchmarks...''' ) lowerCamelCase : Tuple ='''from string import printable ; from __main__ import atbash, atbash_slow''' print(F"> atbash_slow(): {timeit('atbash_slow(printable)' , setup=SCREAMING_SNAKE_CASE_ )} seconds" ) print(F"> atbash(): {timeit('atbash(printable)' , setup=SCREAMING_SNAKE_CASE_ )} seconds" ) if __name__ == "__main__": for example in ("ABCDEFGH", "123GGjj", "testStringtest", "with space"): print(F"""{example} encrypted in atbash: {atbash(example)}""") benchmark()
262
0
'''simple docstring''' class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_ ) -> List[str]: lowerCAmelCase__ = n lowerCAmelCase__ = [None] * self.n lowerCAmelCase__ = 0 # index of the first element lowerCAmelCase__ = 0 lowerCAmelCase__ = 0 def __len__( self ) -> int: return self.size def __SCREAMING_SNAKE_CASE ( self ) -> bool: return self.size == 0 def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: return False if self.is_empty() else self.array[self.front] def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_ ) -> Optional[int]: if self.size >= self.n: raise Exception('''QUEUE IS FULL''' ) lowerCAmelCase__ = data lowerCAmelCase__ = (self.rear + 1) % self.n self.size += 1 return self def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: if self.size == 0: raise Exception('''UNDERFLOW''' ) lowerCAmelCase__ = self.array[self.front] lowerCAmelCase__ = None lowerCAmelCase__ = (self.front + 1) % self.n self.size -= 1 return temp
90
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _snake_case ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _snake_case ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _snake_case ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case__ ): http_head('https://huggingface.co' )
91
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __a = { 'configuration_rembert': ['REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'RemBertConfig', 'RemBertOnnxConfig'] } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['RemBertTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = ['RemBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'RemBertForCausalLM', 'RemBertForMaskedLM', 'RemBertForMultipleChoice', 'RemBertForQuestionAnswering', 'RemBertForSequenceClassification', 'RemBertForTokenClassification', 'RemBertLayer', 'RemBertModel', 'RemBertPreTrainedModel', 'load_tf_weights_in_rembert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a = [ 'TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFRemBertForCausalLM', 'TFRemBertForMaskedLM', 'TFRemBertForMultipleChoice', 'TFRemBertForQuestionAnswering', 'TFRemBertForSequenceClassification', 'TFRemBertForTokenClassification', 'TFRemBertLayer', 'TFRemBertModel', 'TFRemBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_rembert import REMBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, RemBertConfig, RemBertOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert import RemBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_rembert_fast import RemBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_rembert import ( REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, RemBertForCausalLM, RemBertForMaskedLM, RemBertForMultipleChoice, RemBertForQuestionAnswering, RemBertForSequenceClassification, RemBertForTokenClassification, RemBertLayer, RemBertModel, RemBertPreTrainedModel, load_tf_weights_in_rembert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_rembert import ( TF_REMBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFRemBertForCausalLM, TFRemBertForMaskedLM, TFRemBertForMultipleChoice, TFRemBertForQuestionAnswering, TFRemBertForSequenceClassification, TFRemBertForTokenClassification, TFRemBertLayer, TFRemBertModel, TFRemBertPreTrainedModel, ) else: import sys __a = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
708
'''simple docstring''' import warnings from ...utils import logging from .image_processing_mobilevit import MobileViTImageProcessor __a = logging.get_logger(__name__) class A__ ( UpperCamelCase ): """simple docstring""" def __init__( self : Dict , *lowerCAmelCase__ : Dict , **lowerCAmelCase__ : Any ) -> None: """simple docstring""" warnings.warn( "The class MobileViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers." " Please use MobileViTImageProcessor instead." , lowerCAmelCase__ , ) super().__init__(*lowerCAmelCase__ , **lowerCAmelCase__ )
257
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version __UpperCAmelCase = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def UpperCamelCase ( snake_case__ : str , snake_case__ : Tuple , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : Dict , snake_case__ : Tuple ) -> Optional[Any]: if got_ver is None or want_ver is None: raise ValueError( F"""Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider""" F""" reinstalling {pkg}.""" ) if not ops[op](version.parse(snake_case__ ) , version.parse(snake_case__ ) ): raise ImportError( F"""{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}""" ) def UpperCamelCase ( snake_case__ : str , snake_case__ : Optional[str] = None ) -> None: UpperCamelCase : Union[str, Any] = F"""\n{hint}""" if hint is not None else '' # non-versioned check if re.match(R'^[\w_\-\d]+$' , snake_case__ ): UpperCamelCase , UpperCamelCase , UpperCamelCase : str = requirement, None, None else: UpperCamelCase : Union[str, Any] = re.findall(R'^([^!=<>\s]+)([\s!=<>]{1,2}.+)' , snake_case__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but' F""" got {requirement}""" ) UpperCamelCase , UpperCamelCase : Dict = match[0] UpperCamelCase : Dict = want_full.split(',' ) # there could be multiple requirements UpperCamelCase : Any = {} for w in want_range: UpperCamelCase : Union[str, Any] = re.findall(R'^([\s!=<>]{1,2})(.+)' , snake_case__ ) if not match: raise ValueError( 'requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,' F""" but got {requirement}""" ) UpperCamelCase , UpperCamelCase : Any = match[0] UpperCamelCase : Any = want_ver if op not in ops: raise ValueError(F"""{requirement}: need one of {list(ops.keys() )}, but got {op}""" ) # special case if pkg == "python": UpperCamelCase : Optional[int] = '.'.join([str(snake_case__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) return # check if any version is installed try: UpperCamelCase : Tuple = importlib.metadata.version(snake_case__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F"""The '{requirement}' distribution was not found and is required by this application. {hint}""" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) def UpperCamelCase ( snake_case__ : List[str] ) -> Optional[Any]: UpperCamelCase : Any = 'Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main' return require_version(snake_case__ , snake_case__ )
40
import gc import random import unittest import torch from diffusers import ( IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ) from diffusers.models.attention_processor import AttnAddedKVProcessor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import floats_tensor, load_numpy, require_torch_gpu, skip_mps, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase_ ( a__ , a__ , unittest.TestCase ): UpperCAmelCase__ : int = IFPipeline UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_PARAMS - {"width", "height", "latents"} UpperCAmelCase__ : List[str] = TEXT_TO_IMAGE_BATCH_PARAMS UpperCAmelCase__ : Optional[int] = PipelineTesterMixin.required_optional_params - {"latents"} def snake_case_ ( self ) -> str: return self._get_dummy_components() def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_=0 ) -> Union[str, Any]: if str(SCREAMING_SNAKE_CASE_ ).startswith('mps' ): UpperCamelCase : List[Any] = torch.manual_seed(SCREAMING_SNAKE_CASE_ ) else: UpperCamelCase : str = torch.Generator(device=SCREAMING_SNAKE_CASE_ ).manual_seed(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : int = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'output_type': 'numpy', } return inputs def snake_case_ ( self ) -> Optional[int]: self._test_save_load_optional_components() @unittest.skipIf(torch_device != 'cuda', reason='float16 requires CUDA' ) def snake_case_ ( self ) -> str: # Due to non-determinism in save load of the hf-internal-testing/tiny-random-t5 text encoder super().test_save_load_floataa(expected_max_diff=1e-1 ) def snake_case_ ( self ) -> Dict: self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def snake_case_ ( self ) -> Optional[int]: self._test_save_load_local() def snake_case_ ( self ) -> List[str]: self._test_inference_batch_single_identical( expected_max_diff=1e-2, ) @unittest.skipIf( torch_device != 'cuda' or not is_xformers_available(), reason='XFormers attention is only available with CUDA and `xformers` installed', ) def snake_case_ ( self ) -> Optional[int]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): def snake_case_ ( self ) -> List[Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ) -> List[Any]: # if UpperCamelCase : Union[str, Any] = IFPipeline.from_pretrained('DeepFloyd/IF-I-XL-v1.0', variant='fp16', torch_dtype=torch.floataa ) UpperCamelCase : str = IFSuperResolutionPipeline.from_pretrained( 'DeepFloyd/IF-II-L-v1.0', variant='fp16', torch_dtype=torch.floataa, text_encoder=SCREAMING_SNAKE_CASE_, tokenizer=SCREAMING_SNAKE_CASE_ ) # pre compute text embeddings and remove T5 to save memory pipe_a.text_encoder.to('cuda' ) UpperCamelCase , UpperCamelCase : List[str] = pipe_a.encode_prompt('anime turtle', device='cuda' ) del pipe_a.tokenizer del pipe_a.text_encoder gc.collect() UpperCamelCase : int = None UpperCamelCase : Union[str, Any] = None pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # img2img UpperCamelCase : Optional[int] = IFImgaImgPipeline(**pipe_a.components ) UpperCamelCase : List[Any] = IFImgaImgSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_imgaimg(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) pipe_a.remove_all_hooks() pipe_a.remove_all_hooks() # inpainting UpperCamelCase : Union[str, Any] = IFInpaintingPipeline(**pipe_a.components ) UpperCamelCase : Union[str, Any] = IFInpaintingSuperResolutionPipeline(**pipe_a.components ) pipe_a.enable_model_cpu_offload() pipe_a.enable_model_cpu_offload() pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) pipe_a.unet.set_attn_processor(AttnAddedKVProcessor() ) self._test_if_inpainting(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Any: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Union[str, Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 13 * 10**9 UpperCamelCase : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : Union[str, Any] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Tuple = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Tuple = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Tuple = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> List[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : int = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Dict = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Any = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : str = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : int = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_img2img_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def snake_case_ ( self, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: # pipeline 1 _start_torch_memory_measurement() UpperCamelCase : Dict = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = floats_tensor((1, 3, 64, 64), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : Optional[int] = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : Any = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, num_inference_steps=2, generator=SCREAMING_SNAKE_CASE_, output_type='np', ) UpperCamelCase : List[Any] = output.images[0] assert image.shape == (64, 64, 3) UpperCamelCase : Optional[Any] = torch.cuda.max_memory_allocated() assert mem_bytes < 10 * 10**9 UpperCamelCase : Tuple = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) # pipeline 2 _start_torch_memory_measurement() UpperCamelCase : str = torch.Generator(device='cpu' ).manual_seed(0 ) UpperCamelCase : str = floats_tensor((1, 3, 64, 64), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = floats_tensor((1, 3, 256, 256), rng=random.Random(0 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[str] = floats_tensor((1, 3, 256, 256), rng=random.Random(1 ) ).to(SCREAMING_SNAKE_CASE_ ) UpperCamelCase : List[Any] = pipe_a( prompt_embeds=SCREAMING_SNAKE_CASE_, negative_prompt_embeds=SCREAMING_SNAKE_CASE_, image=SCREAMING_SNAKE_CASE_, mask_image=SCREAMING_SNAKE_CASE_, original_image=SCREAMING_SNAKE_CASE_, generator=SCREAMING_SNAKE_CASE_, num_inference_steps=2, output_type='np', ) UpperCamelCase : Optional[int] = output.images[0] assert image.shape == (256, 256, 3) UpperCamelCase : Any = torch.cuda.max_memory_allocated() assert mem_bytes < 4 * 10**9 UpperCamelCase : Optional[int] = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/if/test_if_inpainting_superresolution_stage_II.npy' ) assert_mean_pixel_difference(SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ) def UpperCamelCase ( ) -> Union[str, Any]: torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats()
40
1
def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )-> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def __lowerCAmelCase ()-> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
718
from math import sqrt import numpy as np from sympy import symbols # Coefficient # Speed of light (m/s) UpperCAmelCase = 2_9979_2458 # Symbols UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase = symbols("""ct x y z""") def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> float: """simple docstring""" if velocity > c: raise ValueError('''Speed must not exceed light speed 299,792,458 [m/s]!''' ) elif velocity < 1: # Usually the speed should be much higher than 1 (c order of magnitude) raise ValueError('''Speed must be greater than or equal to 1!''' ) return velocity / c def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> float: """simple docstring""" return 1 / sqrt(1 - beta(SCREAMING_SNAKE_CASE ) ** 2 ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE )-> np.ndarray: """simple docstring""" return np.array( [ [gamma(SCREAMING_SNAKE_CASE ), -gamma(SCREAMING_SNAKE_CASE ) * beta(SCREAMING_SNAKE_CASE ), 0, 0], [-gamma(SCREAMING_SNAKE_CASE ) * beta(SCREAMING_SNAKE_CASE ), gamma(SCREAMING_SNAKE_CASE ), 0, 0], [0, 0, 1, 0], [0, 0, 0, 1], ] ) def __lowerCAmelCase (SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = None )-> np.ndarray: """simple docstring""" if event is None: snake_case_ = np.array([ct, x, y, z] ) # Symbolic four vector else: event[0] *= c # x0 is ct (speed of light * time) return transformation_matrix(SCREAMING_SNAKE_CASE ) @ event if __name__ == "__main__": import doctest doctest.testmod() # Example of symbolic vector: UpperCAmelCase = transform(2997_9245) print("""Example of four vector: """) print(f'''ct\' = {four_vector[0]}''') print(f'''x\' = {four_vector[1]}''') print(f'''y\' = {four_vector[2]}''') print(f'''z\' = {four_vector[3]}''') # Substitute symbols with numerical values UpperCAmelCase = {ct: c, x: 1, y: 1, z: 1} UpperCAmelCase = [four_vector[i].subs(sub_dict) for i in range(4)] print(f'''\n{numerical_vector}''')
531
0
import json from typing import TYPE_CHECKING, List, Optional, Tuple from tokenizers import pre_tokenizers from ...tokenization_utils_base import BatchEncoding from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_gpta import GPTaTokenizer if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation snake_case = logging.get_logger(__name__) snake_case = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} snake_case = { """vocab_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/vocab.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/vocab.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/vocab.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/vocab.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/vocab.json""", }, """merges_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/merges.txt""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/merges.txt""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/merges.txt""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/merges.txt""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/merges.txt""", }, """tokenizer_file""": { """gpt2""": """https://huggingface.co/gpt2/resolve/main/tokenizer.json""", """gpt2-medium""": """https://huggingface.co/gpt2-medium/resolve/main/tokenizer.json""", """gpt2-large""": """https://huggingface.co/gpt2-large/resolve/main/tokenizer.json""", """gpt2-xl""": """https://huggingface.co/gpt2-xl/resolve/main/tokenizer.json""", """distilgpt2""": """https://huggingface.co/distilgpt2/resolve/main/tokenizer.json""", }, } snake_case = { """gpt2""": 1_0_2_4, """gpt2-medium""": 1_0_2_4, """gpt2-large""": 1_0_2_4, """gpt2-xl""": 1_0_2_4, """distilgpt2""": 1_0_2_4, } class A_ ( UpperCAmelCase ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ : Tuple = PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ : Dict = ['''input_ids''', '''attention_mask'''] SCREAMING_SNAKE_CASE_ : Any = GPTaTokenizer def __init__( self : int ,__A : Optional[int]=None ,__A : Optional[int]=None ,__A : List[str]=None ,__A : Any="<|endoftext|>" ,__A : int="<|endoftext|>" ,__A : List[str]="<|endoftext|>" ,__A : str=False ,**__A : Union[str, Any] ,) -> int: super().__init__( __A ,__A ,tokenizer_file=__A ,unk_token=__A ,bos_token=__A ,eos_token=__A ,add_prefix_space=__A ,**__A ,) _lowercase = kwargs.pop('add_bos_token' ,__A ) _lowercase = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get('add_prefix_space' ,__A ) != add_prefix_space: _lowercase = getattr(__A ,pre_tok_state.pop('type' ) ) _lowercase = add_prefix_space _lowercase = pre_tok_class(**__A ) _lowercase = add_prefix_space def __UpperCAmelCase ( self : Any ,*__A : List[Any] ,**__A : Tuple ) -> BatchEncoding: _lowercase = kwargs.get('is_split_into_words' ,__A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*__A ,**__A ) def __UpperCAmelCase ( self : int ,*__A : Any ,**__A : Any ) -> BatchEncoding: _lowercase = kwargs.get('is_split_into_words' ,__A ) assert self.add_prefix_space or not is_split_into_words, ( F"""You need to instantiate {self.__class__.__name__} with add_prefix_space=True """ "to use it with pretokenized inputs." ) return super()._encode_plus(*__A ,**__A ) def __UpperCAmelCase ( self : int ,__A : str ,__A : Optional[str] = None ) -> Tuple[str]: _lowercase = self._tokenizer.model.save(__A ,name=__A ) return tuple(__A ) def __UpperCAmelCase ( self : List[Any] ,__A : "Conversation" ) -> List[int]: _lowercase = [] for is_user, text in conversation.iter_texts(): input_ids.extend(self.encode(__A ,add_special_tokens=__A ) + [self.eos_token_id] ) if len(__A ) > self.model_max_length: _lowercase = input_ids[-self.model_max_length :] return input_ids
67
from multiprocessing import Lock, Pipe, Process # lock used to ensure that two processes do not access a pipe at the same time snake_case = Lock() def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] , snake_case__ :Union[str, Any] , snake_case__ :Tuple , snake_case__ :Any , snake_case__ :Dict , snake_case__ :Optional[int] , snake_case__ :List[str] ) -> Optional[Any]: global process_lock # we perform n swaps since after n swaps we know we are sorted # we *could* stop early if we are sorted already, but it takes as long to # find out we are sorted as it does to sort the list with this algorithm for i in range(0 , 10 ): if (i + position) % 2 == 0 and r_send is not None: # send your value to your right neighbor process_lock.acquire() r_send[1].send(snake_case__ ) process_lock.release() # receive your right neighbor's value process_lock.acquire() _lowercase = rr_cv[0].recv() process_lock.release() # take the lower value since you are on the left _lowercase = min(snake_case__ , snake_case__ ) elif (i + position) % 2 != 0 and l_send is not None: # send your value to your left neighbor process_lock.acquire() l_send[1].send(snake_case__ ) process_lock.release() # receive your left neighbor's value process_lock.acquire() _lowercase = lr_cv[0].recv() process_lock.release() # take the higher value since you are on the right _lowercase = max(snake_case__ , snake_case__ ) # after all swaps are performed, send the values back to main result_pipe[1].send(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> Dict: _lowercase = [] _lowercase = [] # initialize the list of pipes where the values will be retrieved for _ in arr: result_pipe.append(Pipe() ) # creates the processes # the first and last process only have one neighbor so they are made outside # of the loop _lowercase = Pipe() _lowercase = Pipe() process_array_.append( Process( target=snake_case__ , args=(0, arr[0], None, temp_rs, None, temp_rr, result_pipe[0]) , ) ) _lowercase = temp_rs _lowercase = temp_rr for i in range(1 , len(snake_case__ ) - 1 ): _lowercase = Pipe() _lowercase = Pipe() process_array_.append( Process( target=snake_case__ , args=(i, arr[i], temp_ls, temp_rs, temp_lr, temp_rr, result_pipe[i]) , ) ) _lowercase = temp_rs _lowercase = temp_rr process_array_.append( Process( target=snake_case__ , args=( len(snake_case__ ) - 1, arr[len(snake_case__ ) - 1], temp_ls, None, temp_lr, None, result_pipe[len(snake_case__ ) - 1], ) , ) ) # start the processes for p in process_array_: p.start() # wait for the processes to end and write their values to the list for p in range(0 , len(snake_case__ ) ): _lowercase = result_pipe[p][0].recv() process_array_[p].join() return arr def SCREAMING_SNAKE_CASE__ ( ) -> List[Any]: _lowercase = list(range(10 , 0 , -1 ) ) print('Initial List' ) print(*snake_case__ ) _lowercase = odd_even_transposition(snake_case__ ) print('Sorted List\n' ) print(*snake_case__ ) if __name__ == "__main__": main()
67
1
'''simple docstring''' import inspect from typing import Callable, List, Optional, Union import torch from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer from diffusers import DiffusionPipeline from diffusers.models import AutoencoderKL, UNetaDConditionModel from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker from diffusers.schedulers import DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler from diffusers.utils import logging lowerCamelCase__ = logging.get_logger(__name__) # pylint: disable=invalid-name class __magic_name__ (__a ): def __init__( self , _a , _a , _a , _a , _a , _a , _a , ) -> List[Any]: super().__init__() self.register_modules( vae=A__ , text_encoder=A__ , tokenizer=A__ , unet=A__ , scheduler=A__ , safety_checker=A__ , feature_extractor=A__ , ) def __a ( self , _a = "auto" ) -> Optional[Any]: if slice_size == "auto": # half the attention head size is usually a good trade-off between # speed and memory lowerCAmelCase_ = self.unet.config.attention_head_dim // 2 self.unet.set_attention_slice(A__ ) def __a ( self ) -> Union[str, Any]: self.enable_attention_slicing(A__ ) @torch.no_grad() def __call__( self , _a , _a = 512 , _a = 512 , _a = 50 , _a = 7.5 , _a = None , _a = 1 , _a = 0.0 , _a = None , _a = None , _a = "pil" , _a = True , _a = None , _a = 1 , _a = None , **_a , ) -> Optional[Any]: if isinstance(A__ , A__ ): lowerCAmelCase_ = 1 elif isinstance(A__ , A__ ): lowerCAmelCase_ = len(A__ ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(A__ )}" ) if height % 8 != 0 or width % 8 != 0: raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}." ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(A__ , A__ ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(A__ )}." ) # get prompt text embeddings lowerCAmelCase_ = self.tokenizer( A__ , padding="max_length" , max_length=self.tokenizer.model_max_length , return_tensors="pt" , ) lowerCAmelCase_ = text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: lowerCAmelCase_ = self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) lowerCAmelCase_ = text_input_ids[:, : self.tokenizer.model_max_length] if text_embeddings is None: lowerCAmelCase_ = self.text_encoder(text_input_ids.to(self.device ) )[0] # duplicate text embeddings for each generation per prompt, using mps friendly method lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = text_embeddings.shape lowerCAmelCase_ = text_embeddings.repeat(1 , A__ , 1 ) lowerCAmelCase_ = text_embeddings.view(bs_embed * num_images_per_prompt , A__ , -1 ) # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` # corresponds to doing no classifier free guidance. lowerCAmelCase_ = guidance_scale > 1.0 # get unconditional embeddings for classifier free guidance if do_classifier_free_guidance: lowerCAmelCase_ = 42 if negative_prompt is None: lowerCAmelCase_ = [""] elif type(A__ ) is not type(A__ ): raise TypeError( f"`negative_prompt` should be the same type to `prompt`, but got {type(A__ )} !=" f" {type(A__ )}." ) elif isinstance(A__ , A__ ): lowerCAmelCase_ = [negative_prompt] elif batch_size != len(A__ ): raise ValueError( f"`negative_prompt`: {negative_prompt} has batch size {len(A__ )}, but `prompt`:" f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: lowerCAmelCase_ = negative_prompt lowerCAmelCase_ = text_input_ids.shape[-1] lowerCAmelCase_ = self.tokenizer( A__ , padding="max_length" , max_length=A__ , truncation=A__ , return_tensors="pt" , ) lowerCAmelCase_ = self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase_ = uncond_embeddings.shape[1] lowerCAmelCase_ = uncond_embeddings.repeat(A__ , A__ , 1 ) lowerCAmelCase_ = uncond_embeddings.view(batch_size * num_images_per_prompt , A__ , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase_ = torch.cat([uncond_embeddings, text_embeddings] ) # get the initial random noise unless the user supplied it # Unlike in other pipelines, latents need to be generated in the target device # for 1-to-1 results reproducibility with the CompVis implementation. # However this currently doesn't work in `mps`. lowerCAmelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, height // 8, width // 8) lowerCAmelCase_ = (batch_size * num_images_per_prompt, self.unet.config.in_channels, 64, 64) lowerCAmelCase_ = text_embeddings.dtype if latents is None: if self.device.type == "mps": # randn does not exist on mps lowerCAmelCase_ = torch.randn( A__ , generator=A__ , device="cpu" , dtype=A__ ).to(self.device ) lowerCAmelCase_ = torch.randn(A__ , generator=A__ , device="cpu" , dtype=A__ ).to( self.device ) else: lowerCAmelCase_ = torch.randn( A__ , generator=A__ , device=self.device , dtype=A__ ) lowerCAmelCase_ = torch.randn(A__ , generator=A__ , device=self.device , dtype=A__ ) else: if latents_reference.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) lowerCAmelCase_ = latents_reference.to(self.device ) lowerCAmelCase_ = latents.to(self.device ) # This is the key part of the pipeline where we # try to ensure that the generated images w/ the same seed # but different sizes actually result in similar images lowerCAmelCase_ = (latents_shape[3] - latents_shape_reference[3]) // 2 lowerCAmelCase_ = (latents_shape[2] - latents_shape_reference[2]) // 2 lowerCAmelCase_ = latents_shape_reference[3] if dx >= 0 else latents_shape_reference[3] + 2 * dx lowerCAmelCase_ = latents_shape_reference[2] if dy >= 0 else latents_shape_reference[2] + 2 * dy lowerCAmelCase_ = 0 if dx < 0 else dx lowerCAmelCase_ = 0 if dy < 0 else dy lowerCAmelCase_ = max(-dx , 0 ) lowerCAmelCase_ = max(-dy , 0 ) # import pdb # pdb.set_trace() lowerCAmelCase_ = latents_reference[:, :, dy : dy + h, dx : dx + w] # set timesteps self.scheduler.set_timesteps(A__ ) # Some schedulers like PNDM have timesteps as arrays # It's more optimized to move all timesteps to correct device beforehand lowerCAmelCase_ = self.scheduler.timesteps.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler lowerCAmelCase_ = latents * self.scheduler.init_noise_sigma # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 # and should be between [0, 1] lowerCAmelCase_ = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) lowerCAmelCase_ = {} if accepts_eta: lowerCAmelCase_ = eta for i, t in enumerate(self.progress_bar(A__ ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase_ = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase_ = self.scheduler.scale_model_input(A__ , A__ ) # predict the noise residual lowerCAmelCase_ = self.unet(A__ , A__ , encoder_hidden_states=A__ ).sample # perform guidance if do_classifier_free_guidance: lowerCAmelCase_ , lowerCAmelCase_ = noise_pred.chunk(2 ) lowerCAmelCase_ = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase_ = self.scheduler.step(A__ , A__ , A__ , **A__ ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(A__ , A__ , A__ ) lowerCAmelCase_ = 1 / 0.1_8_2_1_5 * latents lowerCAmelCase_ = self.vae.decode(A__ ).sample lowerCAmelCase_ = (image / 2 + 0.5).clamp(0 , 1 ) # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16 lowerCAmelCase_ = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if self.safety_checker is not None: lowerCAmelCase_ = self.feature_extractor(self.numpy_to_pil(A__ ) , return_tensors="pt" ).to( self.device ) lowerCAmelCase_ , lowerCAmelCase_ = self.safety_checker( images=A__ , clip_input=safety_checker_input.pixel_values.to(text_embeddings.dtype ) ) else: lowerCAmelCase_ = None if output_type == "pil": lowerCAmelCase_ = self.numpy_to_pil(A__ ) if not return_dict: return (image, has_nsfw_concept) return StableDiffusionPipelineOutput(images=A__ , nsfw_content_detected=A__ )
700
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Dict: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() @property def __a ( self ) -> Dict: lowerCAmelCase_ = 1 lowerCAmelCase_ = 3 lowerCAmelCase_ = (32, 32) lowerCAmelCase_ = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_a ) return image @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) return model @property def __a ( self ) -> Union[str, Any]: torch.manual_seed(0 ) lowerCAmelCase_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def __a ( self ) -> int: torch.manual_seed(0 ) lowerCAmelCase_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModel(_a ) @property def __a ( self ) -> List[str]: def extract(*_a , **_a ): class __magic_name__ : def __init__( self ) -> List[str]: lowerCAmelCase_ = torch.ones([0] ) def __a ( self , _a ) -> int: self.pixel_values.to(_a ) return self return Out() return extract def __a ( self ) -> Dict: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule="scaled_linear" , clip_sample=_a , set_alpha_to_one=_a , ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.5_7_5_6, 0.6_1_1_8, 0.5_0_0_5, 0.5_0_4_1, 0.5_4_7_1, 0.4_7_2_6, 0.4_9_7_6, 0.4_8_6_5, 0.4_8_6_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = "cpu" # ensure determinism for the device-dependent torch.Generator lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe([prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" ) lowerCAmelCase_ = output.images lowerCAmelCase_ = torch.Generator(device=_a ).manual_seed(0 ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=6.0 , num_inference_steps=2 , output_type="np" , return_dict=_a , )[0] lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase_ = np.array([0.5_1_2_5, 0.5_7_1_6, 0.4_8_2_8, 0.5_0_6_0, 0.5_6_5_0, 0.4_7_6_8, 0.5_1_8_5, 0.4_8_9_5, 0.4_9_9_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Any: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained( "hf-internal-testing/tiny-stable-diffusion-lms-pipe" , safety_checker=_a ) assert isinstance(_a , _a ) assert isinstance(pipe.scheduler , _a ) assert pipe.safety_checker is None lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(_a ) lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained(_a ) # sanity check that the pipeline still works assert pipe.safety_checker is None lowerCAmelCase_ = pipe("example prompt" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def __a ( self ) -> Any: lowerCAmelCase_ = self.dummy_cond_unet lowerCAmelCase_ = PNDMScheduler(skip_prk_steps=_a ) lowerCAmelCase_ = self.dummy_vae lowerCAmelCase_ = self.dummy_text_encoder lowerCAmelCase_ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) # put models in fp16 lowerCAmelCase_ = unet.half() lowerCAmelCase_ = vae.half() lowerCAmelCase_ = bert.half() # make sure here that pndm scheduler skips prk lowerCAmelCase_ = StableDiffusionPipeline( unet=_a , scheduler=_a , vae=_a , text_encoder=_a , tokenizer=_a , safety_checker=_a , feature_extractor=self.dummy_extractor , ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "A painting of a squirrel eating a burger" lowerCAmelCase_ = sd_pipe([prompt] , num_inference_steps=2 , output_type="np" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class __magic_name__ (unittest.TestCase ): def __a ( self ) -> Union[str, Any]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self ) -> Any: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = ( "portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle" " coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with" " anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and" " children from bahnhof zoo, detailed " ) lowerCAmelCase_ = 4003660346 lowerCAmelCase_ = 7 # without safety guidance (sld_guidance_scale = 0) lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.2_2_7_8, 0.2_2_3_1, 0.2_2_4_9, 0.2_3_3_3, 0.2_3_0_3, 0.1_8_8_5, 0.2_2_7_3, 0.2_1_4_4, 0.2_1_7_6] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 # without safety guidance (strong configuration) lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.2_3_8_3, 0.2_2_7_6, 0.2_3_6, 0.2_1_9_2, 0.2_1_8_6, 0.2_0_5_3, 0.1_9_7_1, 0.1_9_0_1, 0.1_7_1_9] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> Optional[Any]: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" , safety_checker=_a ) lowerCAmelCase_ = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = "padme amidala taking a bath artwork, safe for work, no nudity" lowerCAmelCase_ = 2734971755 lowerCAmelCase_ = 7 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.3_5_0_2, 0.3_6_2_2, 0.3_3_9_6, 0.3_6_4_2, 0.3_4_7_8, 0.3_3_1_8, 0.3_5, 0.3_3_4_8, 0.3_2_9_7] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = [0.5_5_3_1, 0.5_2_0_6, 0.4_8_9_5, 0.5_1_5_6, 0.5_1_8_2, 0.4_7_5_1, 0.4_8_0_2, 0.4_8_0_3, 0.4_4_4_3] assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def __a ( self ) -> int: lowerCAmelCase_ = StableDiffusionPipeline.from_pretrained("runwayml/stable-diffusion-v1-5" ) lowerCAmelCase_ = sd_pipe.to(_a ) sd_pipe.set_progress_bar_config(disable=_a ) lowerCAmelCase_ = ( "the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c." " leyendecker" ) lowerCAmelCase_ = 1044355234 lowerCAmelCase_ = 12 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=0 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-7 lowerCAmelCase_ = torch.manual_seed(_a ) lowerCAmelCase_ = sd_pipe( [prompt] , generator=_a , guidance_scale=_a , num_inference_steps=50 , output_type="np" , width=512 , height=512 , sld_guidance_scale=2000 , sld_warmup_steps=7 , sld_threshold=0.0_2_5 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) lowerCAmelCase_ = output.images lowerCAmelCase_ = image[0, -3:, -3:, -1] lowerCAmelCase_ = np.array([0.5_8_1_8, 0.6_2_8_5, 0.6_8_3_5, 0.6_0_1_9, 0.6_2_5, 0.6_7_5_4, 0.6_0_9_6, 0.6_3_3_4, 0.6_5_6_1] ) assert image.shape == (1, 512, 512, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
226
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) snake_case = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
67
def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> list: _lowercase = [0] * len(snake_case__ ) for i in range(1 , len(snake_case__ ) ): # use last results for better performance - dynamic programming _lowercase = prefix_result[i - 1] while j > 0 and input_string[i] != input_string[j]: _lowercase = prefix_result[j - 1] if input_string[i] == input_string[j]: j += 1 _lowercase = j return prefix_result def SCREAMING_SNAKE_CASE__ ( snake_case__ :str ) -> int: return max(prefix_function(snake_case__ ) ) if __name__ == "__main__": import doctest doctest.testmod()
67
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase__ = {'configuration_reformer': ['REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ReformerConfig']} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['ReformerTokenizer'] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = ['ReformerTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ 'REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'ReformerAttention', 'ReformerForMaskedLM', 'ReformerForQuestionAnswering', 'ReformerForSequenceClassification', 'ReformerLayer', 'ReformerModel', 'ReformerModelWithLMHead', 'ReformerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_reformer import REFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, ReformerConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer import ReformerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_reformer_fast import ReformerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_reformer import ( REFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, ReformerAttention, ReformerForMaskedLM, ReformerForQuestionAnswering, ReformerForSequenceClassification, ReformerLayer, ReformerModel, ReformerModelWithLMHead, ReformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
709
'''simple docstring''' import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class _UpperCAmelCase ( snake_case , unittest.TestCase ): __lowerCamelCase: Dict = KandinskyVaaPriorPipeline __lowerCamelCase: Optional[int] = ['prompt'] __lowerCamelCase: Any = ['prompt', 'negative_prompt'] __lowerCamelCase: List[Any] = [ 'num_images_per_prompt', 'generator', 'num_inference_steps', 'latents', 'negative_prompt', 'guidance_scale', 'output_type', 'return_dict', ] __lowerCamelCase: List[Any] = False @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return 3_2 @property def lowerCAmelCase__ ( self : Any ): '''simple docstring''' return self.time_input_dim @property def lowerCAmelCase__ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' return 1_0_0 @property def lowerCAmelCase__ ( self : List[Any] ): '''simple docstring''' lowercase_ : Any = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Tuple = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , ) return CLIPTextModelWithProjection(a ) @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : List[str] = { "num_attention_heads": 2, "attention_head_dim": 1_2, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } lowercase_ : Union[str, Any] = PriorTransformer(**a ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 lowercase_ : List[Any] = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def lowerCAmelCase__ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase_ : Dict = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=2_2_4 , projection_dim=self.text_embedder_hidden_size , intermediate_size=3_7 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=1_4 , ) lowercase_ : Optional[Any] = CLIPVisionModelWithProjection(a ) return model @property def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : List[str] = CLIPImageProcessor( crop_size=2_2_4 , do_center_crop=a , do_normalize=a , do_resize=a , image_mean=[0.4814_5466, 0.457_8275, 0.4082_1073] , image_std=[0.2686_2954, 0.2613_0258, 0.2757_7711] , resample=3 , size=2_2_4 , ) return image_processor def lowerCAmelCase__ ( self : List[str] ): '''simple docstring''' lowercase_ : Any = self.dummy_prior lowercase_ : Optional[Any] = self.dummy_image_encoder lowercase_ : List[Any] = self.dummy_text_encoder lowercase_ : Any = self.dummy_tokenizer lowercase_ : Optional[Any] = self.dummy_image_processor lowercase_ : List[str] = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_0_0_0 , clip_sample=a , clip_sample_range=10.0 , ) lowercase_ : List[Any] = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def lowerCAmelCase__ ( self : Any , a : Dict , a : Dict=0 ): '''simple docstring''' if str(a ).startswith("mps" ): lowercase_ : int = torch.manual_seed(a ) else: lowercase_ : Optional[Any] = torch.Generator(device=a ).manual_seed(a ) lowercase_ : Any = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : str = "cpu" lowercase_ : Any = self.get_dummy_components() lowercase_ : int = self.pipeline_class(**a ) lowercase_ : Any = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowercase_ : Any = pipe(**self.get_dummy_inputs(a ) ) lowercase_ : List[Any] = output.image_embeds lowercase_ : str = pipe( **self.get_dummy_inputs(a ) , return_dict=a , )[0] lowercase_ : Any = image[0, -1_0:] lowercase_ : Dict = image_from_tuple[0, -1_0:] assert image.shape == (1, 3_2) lowercase_ : int = np.array( [-0.0532, 1.7120, 0.3656, -1.0852, -0.8946, -1.1756, 0.4348, 0.2482, 0.5146, -0.1156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def lowerCAmelCase__ ( self : Optional[Any] ): '''simple docstring''' lowercase_ : int = torch_device == "cpu" lowercase_ : Tuple = True lowercase_ : str = False self._test_inference_batch_single_identical( test_max_difference=a , relax_max_difference=a , test_mean_pixel_difference=a , ) @skip_mps def lowerCAmelCase__ ( self : Union[str, Any] ): '''simple docstring''' lowercase_ : Any = torch_device == "cpu" lowercase_ : int = False self._test_attention_slicing_forward_pass( test_max_difference=a , test_mean_pixel_difference=a , )
640
0
def _lowerCamelCase ( snake_case , snake_case ): _enforce_args(snake_case , snake_case ) if n == 0: return 0 _lowerCAmelCase = float('-inf' ) for i in range(1 , n + 1 ): _lowerCAmelCase = max( snake_case , prices[i - 1] + naive_cut_rod_recursive(n - i , snake_case ) ) return max_revue def _lowerCamelCase ( snake_case , snake_case ): _enforce_args(snake_case , snake_case ) _lowerCAmelCase = [float('-inf' ) for _ in range(n + 1 )] return _top_down_cut_rod_recursive(snake_case , snake_case , snake_case ) def _lowerCamelCase ( snake_case , snake_case , snake_case ): if max_rev[n] >= 0: return max_rev[n] elif n == 0: return 0 else: _lowerCAmelCase = float('-inf' ) for i in range(1 , n + 1 ): _lowerCAmelCase = max( snake_case , prices[i - 1] + _top_down_cut_rod_recursive(n - i , snake_case , snake_case ) , ) _lowerCAmelCase = max_revenue return max_rev[n] def _lowerCamelCase ( snake_case , snake_case ): _enforce_args(snake_case , snake_case ) # length(max_rev) = n + 1, to accommodate for the revenue obtainable from a rod of # length 0. _lowerCAmelCase = [float('-inf' ) for _ in range(n + 1 )] _lowerCAmelCase = 0 for i in range(1 , n + 1 ): _lowerCAmelCase = max_rev[i] for j in range(1 , i + 1 ): _lowerCAmelCase = max(snake_case , prices[j - 1] + max_rev[i - j] ) _lowerCAmelCase = max_revenue_i return max_rev[n] def _lowerCamelCase ( snake_case , snake_case ): if n < 0: _lowerCAmelCase = F'n must be greater than or equal to 0. Got n = {n}' raise ValueError(snake_case ) if n > len(snake_case ): _lowerCAmelCase = ( 'Each integral piece of rod must have a corresponding price. ' F'Got n = {n} but length of prices = {len(snake_case )}' ) raise ValueError(snake_case ) def _lowerCamelCase ( ): _lowerCAmelCase = [6, 10, 12, 15, 20, 23] _lowerCAmelCase = len(snake_case ) # the best revenue comes from cutting the rod into 6 pieces, each # of length 1 resulting in a revenue of 6 * 6 = 36. _lowerCAmelCase = 36 _lowerCAmelCase = top_down_cut_rod(snake_case , snake_case ) _lowerCAmelCase = bottom_up_cut_rod(snake_case , snake_case ) _lowerCAmelCase = naive_cut_rod_recursive(snake_case , snake_case ) assert expected_max_revenue == max_rev_top_down assert max_rev_top_down == max_rev_bottom_up assert max_rev_bottom_up == max_rev_naive if __name__ == "__main__": main()
192
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ChineseCLIPImageProcessor class lowerCamelCase__ ( unittest.TestCase ): def __init__( self : List[str] , lowercase__ : Any , lowercase__ : List[Any]=7 , lowercase__ : List[str]=3 , lowercase__ : str=18 , lowercase__ : List[Any]=30 , lowercase__ : Optional[int]=4_00 , lowercase__ : Dict=True , lowercase__ : List[str]=None , lowercase__ : int=True , lowercase__ : Tuple=None , lowercase__ : int=True , lowercase__ : Tuple=[0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3] , lowercase__ : Optional[int]=[0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1] , lowercase__ : Any=True , ): _lowerCAmelCase = size if size is not None else {'height': 2_24, 'width': 2_24} _lowerCAmelCase = crop_size if crop_size is not None else {'height': 18, 'width': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_center_crop _lowerCAmelCase = crop_size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = do_convert_rgb def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_convert_rgb": self.do_convert_rgb, } def SCREAMING_SNAKE_CASE__ ( self : List[str] , lowercase__ : Tuple=False , lowercase__ : List[Any]=False , lowercase__ : str=False ): assert not (numpify and torchify), "You cannot specify both numpy and PyTorch tensors at the same time" if equal_resolution: _lowerCAmelCase = [] for i in range(self.batch_size ): image_inputs.append( np.random.randint( 2_55 , size=(self.num_channels, self.max_resolution, self.max_resolution) , dtype=np.uinta ) ) else: _lowerCAmelCase = [] for i in range(self.batch_size ): _lowerCAmelCase , _lowerCAmelCase = np.random.choice(np.arange(self.min_resolution , self.max_resolution ) , 2 ) image_inputs.append(np.random.randint(2_55 , size=(self.num_channels, width, height) , dtype=np.uinta ) ) if not numpify and not torchify: # PIL expects the channel dimension as last dimension _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase__ , 0 , -1 ) ) for x in image_inputs] if torchify: _lowerCAmelCase = [torch.from_numpy(lowercase__ ) for x in image_inputs] return image_inputs @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = ChineseCLIPImageProcessingTester(self , do_center_crop=lowercase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : Tuple ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase__ , 'size' ) ) self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase__ , 'image_std' ) ) self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 2_24, 'width': 2_24} ) self.assertEqual(image_processor.crop_size , {'height': 18, 'width': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'shortest_edge': 42} ) self.assertEqual(image_processor.crop_size , {'height': 84, 'width': 84} ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : str ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self : Any ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) def SCREAMING_SNAKE_CASE__ ( self : int ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ , torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) @require_torch @require_vision class lowerCamelCase__ ( UpperCAmelCase ,unittest.TestCase ): UpperCamelCase__ =ChineseCLIPImageProcessor if is_vision_available() else None def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): _lowerCAmelCase = ChineseCLIPImageProcessingTester(self , num_channels=4 , do_center_crop=lowercase__ ) _lowerCAmelCase = 3 @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowercase__ , 'size' ) ) self.assertTrue(hasattr(lowercase__ , 'do_center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'center_crop' ) ) self.assertTrue(hasattr(lowercase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowercase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowercase__ , 'image_std' ) ) self.assertTrue(hasattr(lowercase__ , 'do_convert_rgb' ) ) def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : Dict ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCAmelCase = self.image_processor_tester.prepare_inputs(equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__ , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , ) # Test batched _lowerCAmelCase = image_processing(lowercase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.expected_encoded_image_num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ) , )
192
1
def __lowercase( __snake_case : List[Any] ,__snake_case : Dict ) -> Dict: return x if y == 0 else greatest_common_divisor(SCREAMING_SNAKE_CASE_ ,x % y ) def __lowercase( __snake_case : Tuple ,__snake_case : Optional[int] ) -> Tuple: return (x * y) // greatest_common_divisor(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) def __lowercase( __snake_case : Optional[Any] = 20 ) -> Optional[int]: __snake_case = 1 for i in range(1 ,n + 1 ): __snake_case = lcm(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return g if __name__ == "__main__": print(f"""{solution() = }""")
715
import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import AutoProcessor, BlipaProcessor, BlipImageProcessor, GPTaTokenizer, PreTrainedTokenizerFast @require_vision class _lowerCamelCase (unittest.TestCase ): def __lowerCamelCase ( self ): __snake_case = tempfile.mkdtemp() __snake_case = BlipImageProcessor() __snake_case = GPTaTokenizer.from_pretrained('hf-internal-testing/tiny-random-GPT2Model' ) __snake_case = BlipaProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).tokenizer def __lowerCamelCase ( self , **SCREAMING_SNAKE_CASE_ ): return AutoProcessor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ).image_processor def __lowerCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __lowerCamelCase ( self ): __snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] __snake_case = [Image.fromarray(np.moveaxis(SCREAMING_SNAKE_CASE_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def __lowerCamelCase ( self ): __snake_case = BlipaProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) __snake_case = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) __snake_case = self.get_image_processor(do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) __snake_case = BlipaProcessor.from_pretrained( self.tmpdirname , bos_token='(BOS)' , eos_token='(EOS)' , do_normalize=SCREAMING_SNAKE_CASE_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = self.prepare_image_inputs() __snake_case = image_processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = 'lower newer' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = 'lower newer' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] ) # test if it raises when no input is passed with pytest.raises(SCREAMING_SNAKE_CASE_ ): processor() def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __lowerCamelCase ( self ): __snake_case = self.get_image_processor() __snake_case = self.get_tokenizer() __snake_case = BlipaProcessor(tokenizer=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) __snake_case = 'lower newer' __snake_case = self.prepare_image_inputs() __snake_case = processor(text=SCREAMING_SNAKE_CASE_ , images=SCREAMING_SNAKE_CASE_ ) # For now the processor supports only ['pixel_values', 'input_ids', 'attention_mask'] self.assertListEqual(list(inputs.keys() ) , ['pixel_values', 'input_ids', 'attention_mask'] )
345
0
import argparse import os import re import packaging.version snake_case = """examples/""" snake_case = { """examples""": (re.compile(R"""^check_min_version\(\"[^\"]+\"\)\s*$""", re.MULTILINE), """check_min_version(\"VERSION\")\n"""), """init""": (re.compile(R"""^__version__\s+=\s+\"([^\"]+)\"\s*$""", re.MULTILINE), """__version__ = \"VERSION\"\n"""), """setup""": (re.compile(R"""^(\s*)version\s*=\s*\"[^\"]+\",""", re.MULTILINE), R"""\1version=\"VERSION\","""), """doc""": (re.compile(R"""^(\s*)release\s*=\s*\"[^\"]+\"$""", re.MULTILINE), """release = \"VERSION\"\n"""), } snake_case = { """init""": """src/diffusers/__init__.py""", """setup""": """setup.py""", } snake_case = """README.md""" def SCREAMING_SNAKE_CASE__ ( snake_case__ :Optional[int] , snake_case__ :Any , snake_case__ :Optional[int] ) -> Tuple: with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowercase = f.read() _lowercase , _lowercase = REPLACE_PATTERNS[pattern] _lowercase = replace.replace('VERSION' , snake_case__ ) _lowercase = re_pattern.sub(snake_case__ , snake_case__ ) with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.write(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Dict ) -> Optional[Any]: for folder, directories, fnames in os.walk(snake_case__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove('research_projects' ) if "legacy" in directories: directories.remove('legacy' ) for fname in fnames: if fname.endswith('.py' ): update_version_in_file(os.path.join(snake_case__ , snake_case__ ) , snake_case__ , pattern='examples' ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Any , snake_case__ :Tuple=False ) -> List[Any]: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(snake_case__ , snake_case__ , snake_case__ ) if not patch: update_version_in_examples(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( ) -> int: _lowercase = '🤗 Transformers currently provides the following architectures' _lowercase = '1. Want to contribute a new model?' with open(snake_case__ , 'r' , encoding='utf-8' , newline='\n' ) as f: _lowercase = f.readlines() # Find the start of the list. _lowercase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 _lowercase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith('1.' ): _lowercase = lines[index].replace( 'https://huggingface.co/docs/diffusers/main/model_doc' , 'https://huggingface.co/docs/diffusers/model_doc' , ) index += 1 with open(snake_case__ , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( ) -> Optional[Any]: with open(REPLACE_FILES['init'] , 'r' ) as f: _lowercase = f.read() _lowercase = REPLACE_PATTERNS['init'][0].search(snake_case__ ).groups()[0] return packaging.version.parse(snake_case__ ) def SCREAMING_SNAKE_CASE__ ( snake_case__ :Tuple=False ) -> Tuple: _lowercase = get_version() if patch and default_version.is_devrelease: raise ValueError('Can\'t create a patch version from the dev branch, checkout a released version!' ) if default_version.is_devrelease: _lowercase = default_version.base_version elif patch: _lowercase = F"""{default_version.major}.{default_version.minor}.{default_version.micro + 1}""" else: _lowercase = F"""{default_version.major}.{default_version.minor + 1}.0""" # Now let's ask nicely if that's the right one. _lowercase = input(F"""Which version are you releasing? [{default_version}]""" ) if len(snake_case__ ) == 0: _lowercase = default_version print(F"""Updating version to {version}.""" ) global_version_update(snake_case__ , patch=snake_case__ ) def SCREAMING_SNAKE_CASE__ ( ) -> Any: _lowercase = get_version() _lowercase = F"""{current_version.major}.{current_version.minor + 1}.0.dev0""" _lowercase = current_version.base_version # Check with the user we got that right. _lowercase = input(F"""Which version are we developing now? [{dev_version}]""" ) if len(snake_case__ ) == 0: _lowercase = dev_version print(F"""Updating version to {version}.""" ) global_version_update(snake_case__ ) # print("Cleaning main README, don't forget to run `make fix-copies`.") # clean_main_ref_in_model_list() if __name__ == "__main__": snake_case = argparse.ArgumentParser() parser.add_argument("""--post_release""", action="""store_true""", help="""Whether this is pre or post release.""") parser.add_argument("""--patch""", action="""store_true""", help="""Whether or not this is a patch release.""") snake_case = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print("""Nothing to do after a patch :-)""") else: post_release_work()
67
def SCREAMING_SNAKE_CASE__ ( snake_case__ :str , snake_case__ :str ) -> list: _lowercase = len(snake_case__ ) _lowercase = [] for i in range(len(snake_case__ ) - pat_len + 1 ): _lowercase = True for j in range(snake_case__ ): if s[i + j] != pattern[j]: _lowercase = False break if match_found: position.append(snake_case__ ) return position if __name__ == "__main__": assert naive_pattern_search("""ABCDEFG""", """DE""") == [3] print(naive_pattern_search("""ABAAABCDBBABCDDEBCABC""", """ABC"""))
67
1
from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer, TensorType, is_torch_available from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfigWithPast from ...utils import logging _snake_case : Dict = logging.get_logger(__name__) _snake_case : List[Any] = { 'EleutherAI/gpt-neo-1.3B': 'https://huggingface.co/EleutherAI/gpt-neo-1.3B/resolve/main/config.json', # See all GPTNeo models at https://huggingface.co/models?filter=gpt_neo } class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = """gpt_neo""" a_ = ["""past_key_values"""] a_ = {"""num_attention_heads""": """num_heads""", """num_hidden_layers""": """num_layers"""} def __init__( self : Optional[int] , lowerCAmelCase_ : List[str]=5_0_2_5_7 , lowerCAmelCase_ : Dict=2_0_4_8 , lowerCAmelCase_ : Any=2_0_4_8 , lowerCAmelCase_ : Union[str, Any]=2_4 , lowerCAmelCase_ : Optional[Any]=[[["global", "local"], 1_2]] , lowerCAmelCase_ : Any=1_6 , lowerCAmelCase_ : Optional[int]=None , lowerCAmelCase_ : Optional[Any]=2_5_6 , lowerCAmelCase_ : Union[str, Any]="gelu_new" , lowerCAmelCase_ : Tuple=0.0 , lowerCAmelCase_ : Any=0.0 , lowerCAmelCase_ : str=0.0 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Any=1e-5 , lowerCAmelCase_ : List[Any]=0.02 , lowerCAmelCase_ : Union[str, Any]=True , lowerCAmelCase_ : str=5_0_2_5_6 , lowerCAmelCase_ : Any=5_0_2_5_6 , **lowerCAmelCase_ : List[str] , ) -> List[Any]: __lowerCAmelCase = vocab_size __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = hidden_size __lowerCAmelCase = num_layers __lowerCAmelCase = num_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = window_size __lowerCAmelCase = activation_function __lowerCAmelCase = resid_dropout __lowerCAmelCase = embed_dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = classifier_dropout __lowerCAmelCase = layer_norm_epsilon __lowerCAmelCase = initializer_range __lowerCAmelCase = use_cache __lowerCAmelCase = bos_token_id __lowerCAmelCase = eos_token_id __lowerCAmelCase = attention_types __lowerCAmelCase = self.expand_attention_types_params(lowerCAmelCase_ ) if len(self.attention_layers ) != self.num_layers: raise ValueError( 'Configuration for convolutional module is incorrect. ' 'It is required that `len(config.attention_layers)` == `config.num_layers` ' f"""but is `len(config.attention_layers) = {len(self.attention_layers )}`, """ f"""`config.num_layers = {self.num_layers}`. """ '`config.attention_layers` is prepared using `config.attention_types`. ' 'Please verify the value of `config.attention_types` argument.' ) super().__init__(bos_token_id=lowerCAmelCase_ , eos_token_id=lowerCAmelCase_ , **lowerCAmelCase_ ) @staticmethod def lowercase ( lowerCAmelCase_ : Optional[Any] ) -> int: __lowerCAmelCase = [] for item in attention_types: for _ in range(item[1] ): attentions.extend(item[0] ) return attentions def a_ ( lowerCAmelCase_ : Dict, lowerCAmelCase_ : Optional[Any], lowerCAmelCase_ : Union[str, Any], lowerCAmelCase_ : Union[str, Any] ): import torch __lowerCAmelCase = input.size() __lowerCAmelCase = len(lowerCAmelCase_ ) __lowerCAmelCase = shape[dimension] __lowerCAmelCase = torch.arange(0, lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = torch.div(sizedim - size, lowerCAmelCase_, rounding_mode='floor' ) + 1 __lowerCAmelCase = torch.arange(lowerCAmelCase_ ) + low_indices[:min_length][:, None] __lowerCAmelCase = [slice(lowerCAmelCase_ )] * rank __lowerCAmelCase = indices __lowerCAmelCase = input[s] __lowerCAmelCase = list(range(0, rank + 1 ) ) perm.append(perm.pop(dimension + 1 ) ) return sliced.permute(lowerCAmelCase_ ) def a_ ( lowerCAmelCase_ : int, lowerCAmelCase_ : Optional[Any] ): import torch __lowerCAmelCase = torch.arange(1, lowerCAmelCase_ ) __lowerCAmelCase = torch.remainder(lowerCAmelCase_, lowerCAmelCase_ ) __lowerCAmelCase = remainders == 0 __lowerCAmelCase = candidates[divisor_indices] __lowerCAmelCase = torch.max(lowerCAmelCase_ ) return largest_divisor, torch.div(lowerCAmelCase_, lowerCAmelCase_, rounding_mode='floor' ) class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" @property def lowercase ( self : str ) -> Mapping[str, Mapping[int, str]]: __lowerCAmelCase = OrderedDict({'input_ids': {0: 'batch', 1: 'sequence'}} ) if self.use_past: self.fill_with_past_key_values_(lowerCAmelCase_ , direction='inputs' ) __lowerCAmelCase = {0: 'batch', 1: 'past_sequence + sequence'} else: __lowerCAmelCase = {0: 'batch', 1: 'sequence'} return common_inputs @property def lowercase ( self : Optional[int] ) -> int: return self._config.num_heads def lowercase ( self : Optional[int] , lowerCAmelCase_ : PreTrainedTokenizer , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : int = -1 , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[TensorType] = None , ) -> Mapping[str, Any]: __lowerCAmelCase = super(lowerCAmelCase_ , self ).generate_dummy_inputs( lowerCAmelCase_ , batch_size=lowerCAmelCase_ , seq_length=lowerCAmelCase_ , is_pair=lowerCAmelCase_ , framework=lowerCAmelCase_ ) # We need to order the input in the way they appears in the forward() __lowerCAmelCase = OrderedDict({'input_ids': common_inputs['input_ids']} ) # Need to add the past_keys if self.use_past: if not is_torch_available(): raise ValueError('Cannot generate dummy past_keys inputs without PyTorch installed.' ) else: import torch __lowerCAmelCase , __lowerCAmelCase = common_inputs['input_ids'].shape # Not using the same length for past_key_values __lowerCAmelCase = seqlen + 2 __lowerCAmelCase = ( batch, self.num_attention_heads, past_key_values_length, self._config.hidden_size // self.num_attention_heads, ) __lowerCAmelCase = [ (torch.zeros(lowerCAmelCase_ ), torch.zeros(lowerCAmelCase_ )) for _ in range(self.num_layers ) ] __lowerCAmelCase = common_inputs['attention_mask'] if self.use_past: __lowerCAmelCase = ordered_inputs['attention_mask'].dtype __lowerCAmelCase = torch.cat( [ordered_inputs['attention_mask'], torch.ones(lowerCAmelCase_ , lowerCAmelCase_ , dtype=lowerCAmelCase_ )] , dim=1 ) return ordered_inputs @property def lowercase ( self : Tuple ) -> int: return 1_3
421
_snake_case : List[Any] = '0.18.2' from .configuration_utils import ConfigMixin from .utils import ( OptionalDependencyNotAvailable, is_flax_available, is_inflect_available, is_invisible_watermark_available, is_k_diffusion_available, is_k_diffusion_version, is_librosa_available, is_note_seq_available, is_onnx_available, is_scipy_available, is_torch_available, is_torchsde_available, is_transformers_available, is_transformers_version, is_unidecode_available, logging, ) try: if not is_onnx_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_onnx_objects import * # noqa F403 else: from .pipelines import OnnxRuntimeModel try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_pt_objects import * # noqa F403 else: from .models import ( AutoencoderKL, ControlNetModel, ModelMixin, PriorTransformer, TaFilmDecoder, TransformeraDModel, UNetaDModel, UNetaDConditionModel, UNetaDModel, UNetaDConditionModel, VQModel, ) from .optimization import ( get_constant_schedule, get_constant_schedule_with_warmup, get_cosine_schedule_with_warmup, get_cosine_with_hard_restarts_schedule_with_warmup, get_linear_schedule_with_warmup, get_polynomial_decay_schedule_with_warmup, get_scheduler, ) from .pipelines import ( AudioPipelineOutput, ConsistencyModelPipeline, DanceDiffusionPipeline, DDIMPipeline, DDPMPipeline, DiffusionPipeline, DiTPipeline, ImagePipelineOutput, KarrasVePipeline, LDMPipeline, LDMSuperResolutionPipeline, PNDMPipeline, RePaintPipeline, ScoreSdeVePipeline, ) from .schedulers import ( CMStochasticIterativeScheduler, DDIMInverseScheduler, DDIMParallelScheduler, DDIMScheduler, DDPMParallelScheduler, DDPMScheduler, DEISMultistepScheduler, DPMSolverMultistepInverseScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, HeunDiscreteScheduler, IPNDMScheduler, KarrasVeScheduler, KDPMaAncestralDiscreteScheduler, KDPMaDiscreteScheduler, PNDMScheduler, RePaintScheduler, SchedulerMixin, ScoreSdeVeScheduler, UnCLIPScheduler, UniPCMultistepScheduler, VQDiffusionScheduler, ) from .training_utils import EMAModel try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .schedulers import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .schedulers import DPMSolverSDEScheduler try: if not (is_torch_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .pipelines import ( AltDiffusionImgaImgPipeline, AltDiffusionPipeline, AudioLDMPipeline, CycleDiffusionPipeline, IFImgaImgPipeline, IFImgaImgSuperResolutionPipeline, IFInpaintingPipeline, IFInpaintingSuperResolutionPipeline, IFPipeline, IFSuperResolutionPipeline, ImageTextPipelineOutput, KandinskyImgaImgPipeline, KandinskyInpaintPipeline, KandinskyPipeline, KandinskyPriorPipeline, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaControlnetPipeline, KandinskyVaaImgaImgPipeline, KandinskyVaaInpaintPipeline, KandinskyVaaPipeline, KandinskyVaaPriorEmbaEmbPipeline, KandinskyVaaPriorPipeline, LDMTextToImagePipeline, PaintByExamplePipeline, SemanticStableDiffusionPipeline, ShapEImgaImgPipeline, ShapEPipeline, StableDiffusionAttendAndExcitePipeline, StableDiffusionControlNetImgaImgPipeline, StableDiffusionControlNetInpaintPipeline, StableDiffusionControlNetPipeline, StableDiffusionDepthaImgPipeline, StableDiffusionDiffEditPipeline, StableDiffusionImageVariationPipeline, StableDiffusionImgaImgPipeline, StableDiffusionInpaintPipeline, StableDiffusionInpaintPipelineLegacy, StableDiffusionInstructPixaPixPipeline, StableDiffusionLatentUpscalePipeline, StableDiffusionLDMaDPipeline, StableDiffusionModelEditingPipeline, StableDiffusionPanoramaPipeline, StableDiffusionParadigmsPipeline, StableDiffusionPipeline, StableDiffusionPipelineSafe, StableDiffusionPixaPixZeroPipeline, StableDiffusionSAGPipeline, StableDiffusionUpscalePipeline, StableUnCLIPImgaImgPipeline, StableUnCLIPPipeline, TextToVideoSDPipeline, TextToVideoZeroPipeline, UnCLIPImageVariationPipeline, UnCLIPPipeline, UniDiffuserModel, UniDiffuserPipeline, UniDiffuserTextDecoder, VersatileDiffusionDualGuidedPipeline, VersatileDiffusionImageVariationPipeline, VersatileDiffusionPipeline, VersatileDiffusionTextToImagePipeline, VideoToVideoSDPipeline, VQDiffusionPipeline, ) try: if not (is_torch_available() and is_transformers_available() and is_invisible_watermark_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_invisible_watermark_objects import * # noqa F403 else: from .pipelines import StableDiffusionXLImgaImgPipeline, StableDiffusionXLPipeline try: if not (is_torch_available() and is_transformers_available() and is_k_diffusion_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_k_diffusion_objects import * # noqa F403 else: from .pipelines import StableDiffusionKDiffusionPipeline try: if not (is_torch_available() and is_transformers_available() and is_onnx_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_transformers_and_onnx_objects import * # noqa F403 else: from .pipelines import ( OnnxStableDiffusionImgaImgPipeline, OnnxStableDiffusionInpaintPipeline, OnnxStableDiffusionInpaintPipelineLegacy, OnnxStableDiffusionPipeline, OnnxStableDiffusionUpscalePipeline, StableDiffusionOnnxPipeline, ) try: if not (is_torch_available() and is_librosa_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_torch_and_librosa_objects import * # noqa F403 else: from .pipelines import AudioDiffusionPipeline, Mel try: if not (is_transformers_available() and is_torch_available() and is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_transformers_and_torch_and_note_seq_objects import * # noqa F403 else: from .pipelines import SpectrogramDiffusionPipeline try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_objects import * # noqa F403 else: from .models.controlnet_flax import FlaxControlNetModel from .models.modeling_flax_utils import FlaxModelMixin from .models.unet_ad_condition_flax import FlaxUNetaDConditionModel from .models.vae_flax import FlaxAutoencoderKL from .pipelines import FlaxDiffusionPipeline from .schedulers import ( FlaxDDIMScheduler, FlaxDDPMScheduler, FlaxDPMSolverMultistepScheduler, FlaxKarrasVeScheduler, FlaxLMSDiscreteScheduler, FlaxPNDMScheduler, FlaxSchedulerMixin, FlaxScoreSdeVeScheduler, ) try: if not (is_flax_available() and is_transformers_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_flax_and_transformers_objects import * # noqa F403 else: from .pipelines import ( FlaxStableDiffusionControlNetPipeline, FlaxStableDiffusionImgaImgPipeline, FlaxStableDiffusionInpaintPipeline, FlaxStableDiffusionPipeline, ) try: if not (is_note_seq_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from .utils.dummy_note_seq_objects import * # noqa F403 else: from .pipelines import MidiProcessor
421
1