code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import unittest from transformers import AutoTokenizer, is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, slow if is_flax_available(): import jax.numpy as jnp from transformers import FlaxXLMRobertaModel @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase_ ( unittest.TestCase ): @slow def __UpperCAmelCase ( self ): UpperCAmelCase__ : int = FlaxXLMRobertaModel.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase__ : List[str] = AutoTokenizer.from_pretrained("""xlm-roberta-base""" ) UpperCAmelCase__ : Optional[int] = """The dog is cute and lives in the garden house""" UpperCAmelCase__ : List[Any] = jnp.array([tokenizer.encode(_lowerCAmelCase )] ) UpperCAmelCase__ : str = (1, 12, 768) # batch_size, sequence_length, embedding_vector_dim UpperCAmelCase__ : int = jnp.array( [[-0.0_1_0_1, 0.1_2_1_8, -0.0_8_0_3, 0.0_8_0_1, 0.1_3_2_7, 0.0_7_7_6, -0.1_2_1_5, 0.2_3_8_3, 0.3_3_3_8, 0.3_1_0_6, 0.0_3_0_0, 0.0_2_5_2]] ) UpperCAmelCase__ : Optional[Any] = model(_lowerCAmelCase )["""last_hidden_state"""] self.assertEqual(output.shape , _lowerCAmelCase ) # compare the actual values for a slice of last dim self.assertTrue(jnp.allclose(output[:, :, -1] , _lowerCAmelCase , atol=1e-3 ) )
79
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _lowerCAmelCase: Optional[Any] = { 'configuration_swiftformer': [ 'SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SwiftFormerConfig', 'SwiftFormerOnnxConfig', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase: List[str] = [ 'SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'SwiftFormerForImageClassification', 'SwiftFormerModel', 'SwiftFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys _lowerCAmelCase: List[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
20
0
def snake_case ( lowerCamelCase ): '''simple docstring''' try: __lowercase = float(lowerCAmelCase__ ) except ValueError: raise ValueError("""Please enter a valid number""" ) __lowercase = decimal - int(lowerCAmelCase__ ) if fractional_part == 0: return int(lowerCAmelCase__ ), 1 else: __lowercase = len(str(lowerCAmelCase__ ).split(""".""" )[1] ) __lowercase = int(decimal * (10**number_of_frac_digits) ) __lowercase = 10**number_of_frac_digits __lowercase , __lowercase = denominator, numerator while True: __lowercase = dividend % divisor if remainder == 0: break __lowercase , __lowercase = divisor, remainder __lowercase , __lowercase = numerator / divisor, denominator / divisor return int(lowerCAmelCase__ ), int(lowerCAmelCase__ ) if __name__ == "__main__": print(F'''{decimal_to_fraction(2) = }''') print(F'''{decimal_to_fraction(8_9.0) = }''') print(F'''{decimal_to_fraction("67") = }''') print(F'''{decimal_to_fraction("45.0") = }''') print(F'''{decimal_to_fraction(1.5) = }''') print(F'''{decimal_to_fraction("6.25") = }''') print(F'''{decimal_to_fraction("78td") = }''')
720
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) __UpperCamelCase : Tuple = { """configuration_swiftformer""": [ """SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SwiftFormerConfig""", """SwiftFormerOnnxConfig""", ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[Any] = [ """SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST""", """SwiftFormerForImageClassification""", """SwiftFormerModel""", """SwiftFormerPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swiftformer import ( SWIFTFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, SwiftFormerConfig, SwiftFormerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swiftformer import ( SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, SwiftFormerForImageClassification, SwiftFormerModel, SwiftFormerPreTrainedModel, ) else: import sys __UpperCamelCase : List[Any] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
53
0
"""simple docstring""" import re from filelock import FileLock try: import nltk SCREAMING_SNAKE_CASE_ = True except (ImportError, ModuleNotFoundError): SCREAMING_SNAKE_CASE_ = False if NLTK_AVAILABLE: with FileLock('''.lock''') as lock: nltk.download('''punkt''', quiet=True) def lowercase__ ( lowerCAmelCase : str ) -> str: """simple docstring""" re.sub('<n>' , '' , lowerCAmelCase ) # remove pegasus newline char assert NLTK_AVAILABLE, "nltk must be installed to separate newlines between sentences. (pip install nltk)" return "\n".join(nltk.sent_tokenize(lowerCAmelCase ) )
373
"""simple docstring""" from math import ceil, sqrt def lowercase__ ( lowerCAmelCase : int = 1_000_000 ) -> int: """simple docstring""" UpperCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: UpperCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: UpperCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(F'{solution() = }')
373
1
import requests def a_ (_lowerCAmelCase : str , _lowerCAmelCase : str )-> None: snake_case: Dict = {"""Content-Type""": """application/json"""} snake_case: List[str] = requests.post(_lowerCAmelCase , json={"""text""": message_body} , headers=_lowerCAmelCase ) if response.status_code != 200: snake_case: int = ( """Request to slack returned an error """ F"{response.status_code}, the response is:\n{response.text}" ) raise ValueError(_lowerCAmelCase ) if __name__ == "__main__": # Set the slack url to the one provided by Slack when you create the webhook at # https://my.slack.com/services/new/incoming-webhook/ send_slack_message('<YOUR MESSAGE BODY>', '<SLACK CHANNEL URL>')
164
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import YolosConfig, YolosForObjectDetection, YolosImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCAmelCase : List[str] = logging.get_logger(__name__) def a_ (_lowerCAmelCase : str )-> YolosConfig: snake_case: List[Any] = YolosConfig() # size of the architecture if "yolos_ti" in yolos_name: snake_case: Optional[int] = 192 snake_case: List[str] = 768 snake_case: int = 12 snake_case: Any = 3 snake_case: Union[str, Any] = [800, 1333] snake_case: Union[str, Any] = False elif yolos_name == "yolos_s_dWr": snake_case: Any = 330 snake_case: Tuple = 14 snake_case: Optional[int] = 6 snake_case: str = 1320 elif "yolos_s" in yolos_name: snake_case: Dict = 384 snake_case: Optional[int] = 1536 snake_case: Dict = 12 snake_case: Optional[Any] = 6 elif "yolos_b" in yolos_name: snake_case: Dict = [800, 1344] snake_case: Union[str, Any] = 91 snake_case: List[str] = """huggingface/label-files""" snake_case: List[str] = """coco-detection-id2label.json""" snake_case: str = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="""dataset""" ) , """r""" ) ) snake_case: str = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} snake_case: Optional[int] = idalabel snake_case: Union[str, Any] = {v: k for k, v in idalabel.items()} return config def a_ (_lowerCAmelCase : dict , _lowerCAmelCase : YolosConfig , _lowerCAmelCase : bool = False )-> Any: for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) snake_case: Optional[Any] = state_dict.pop(F"blocks.{i}.attn.qkv.weight" ) snake_case: str = state_dict.pop(F"blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict snake_case: Tuple = in_proj_weight[: config.hidden_size, :] snake_case: int = in_proj_bias[: config.hidden_size] snake_case: Union[str, Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] snake_case: Any = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] snake_case: str = in_proj_weight[-config.hidden_size :, :] snake_case: List[Any] = in_proj_bias[-config.hidden_size :] def a_ (_lowerCAmelCase : str )-> str: if "backbone" in name: snake_case: str = name.replace("""backbone""" , """vit""" ) if "cls_token" in name: snake_case: List[str] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "det_token" in name: snake_case: int = name.replace("""det_token""" , """embeddings.detection_tokens""" ) if "mid_pos_embed" in name: snake_case: int = name.replace("""mid_pos_embed""" , """encoder.mid_position_embeddings""" ) if "pos_embed" in name: snake_case: List[Any] = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: snake_case: str = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) if "blocks" in name: snake_case: Tuple = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: snake_case: Optional[Any] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: snake_case: str = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: snake_case: List[str] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: snake_case: List[str] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: snake_case: Dict = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: snake_case: List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "class_embed" in name: snake_case: List[Any] = name.replace("""class_embed""" , """class_labels_classifier""" ) if "bbox_embed" in name: snake_case: Optional[Any] = name.replace("""bbox_embed""" , """bbox_predictor""" ) if "vit.norm" in name: snake_case: Tuple = name.replace("""vit.norm""" , """vit.layernorm""" ) return name def a_ (_lowerCAmelCase : dict , _lowerCAmelCase : YolosForObjectDetection )-> dict: for key in orig_state_dict.copy().keys(): snake_case: Union[str, Any] = orig_state_dict.pop(_lowerCAmelCase ) if "qkv" in key: snake_case: Optional[Any] = key.split(""".""" ) snake_case: List[str] = int(key_split[2] ) snake_case: Tuple = model.vit.encoder.layer[layer_num].attention.attention.all_head_size if "weight" in key: snake_case: Tuple = val[:dim, :] snake_case: Any = val[ dim : dim * 2, : ] snake_case: int = val[-dim:, :] else: snake_case: List[str] = val[:dim] snake_case: List[Any] = val[dim : dim * 2] snake_case: List[str] = val[-dim:] else: snake_case: List[Any] = val return orig_state_dict def a_ ()-> torch.Tensor: snake_case: Optional[Any] = """http://images.cocodataset.org/val2017/000000039769.jpg""" snake_case: Tuple = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return im @torch.no_grad() def a_ (_lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : bool = False )-> Any: snake_case: Union[str, Any] = get_yolos_config(_lowerCAmelCase ) # load original state_dict snake_case: List[str] = torch.load(_lowerCAmelCase , map_location="""cpu""" )["""model"""] # load 🤗 model snake_case: Any = YolosForObjectDetection(_lowerCAmelCase ) model.eval() snake_case: List[Any] = convert_state_dict(_lowerCAmelCase , _lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) # Check outputs on an image, prepared by YolosImageProcessor snake_case: Dict = 800 if yolos_name != """yolos_ti""" else 512 snake_case: int = YolosImageProcessor(format="""coco_detection""" , size=_lowerCAmelCase ) snake_case: Union[str, Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) snake_case: List[Any] = model(**_lowerCAmelCase ) snake_case , snake_case: Any = outputs.logits, outputs.pred_boxes snake_case , snake_case: Optional[int] = None, None if yolos_name == "yolos_ti": snake_case: List[str] = torch.tensor( [[-39.5_022, -11.9_820, -17.6_888], [-29.9_574, -9.9_769, -17.7_691], [-42.3_281, -20.7_200, -30.6_294]] ) snake_case: Tuple = torch.tensor( [[0.4_021, 0.0_836, 0.7_979], [0.0_184, 0.2_609, 0.0_364], [0.1_781, 0.2_004, 0.2_095]] ) elif yolos_name == "yolos_s_200_pre": snake_case: List[str] = torch.tensor( [[-24.0_248, -10.3_024, -14.8_290], [-42.0_392, -16.8_200, -27.4_334], [-27.2_743, -11.8_154, -18.7_148]] ) snake_case: str = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] ) elif yolos_name == "yolos_s_300_pre": snake_case: Tuple = torch.tensor( [[-36.2_220, -14.4_385, -23.5_457], [-35.6_970, -14.7_583, -21.3_935], [-31.5_939, -13.6_042, -16.8_049]] ) snake_case: Optional[int] = torch.tensor( [[0.7_614, 0.2_316, 0.4_728], [0.7_168, 0.4_495, 0.3_855], [0.4_996, 0.1_466, 0.9_996]] ) elif yolos_name == "yolos_s_dWr": snake_case: Optional[int] = torch.tensor( [[-42.8_668, -24.1_049, -41.1_690], [-34.7_456, -14.1_274, -24.9_194], [-33.7_898, -12.1_946, -25.6_495]] ) snake_case: Dict = torch.tensor( [[0.5_587, 0.2_773, 0.0_605], [0.5_004, 0.3_014, 0.9_994], [0.4_999, 0.1_548, 0.9_994]] ) elif yolos_name == "yolos_base": snake_case: List[Any] = torch.tensor( [[-40.6_064, -24.3_084, -32.6_447], [-55.1_990, -30.7_719, -35.5_877], [-51.4_311, -33.3_507, -35.6_462]] ) snake_case: Optional[int] = torch.tensor( [[0.5_555, 0.2_794, 0.0_655], [0.9_049, 0.2_664, 0.1_894], [0.9_183, 0.1_984, 0.1_635]] ) else: raise ValueError(F"Unknown yolos_name: {yolos_name}" ) assert torch.allclose(logits[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) assert torch.allclose(pred_boxes[0, :3, :3] , _lowerCAmelCase , atol=1e-4 ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) print(F"Saving model {yolos_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(_lowerCAmelCase ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(_lowerCAmelCase ) if push_to_hub: snake_case: Optional[Any] = { """yolos_ti""": """yolos-tiny""", """yolos_s_200_pre""": """yolos-small""", """yolos_s_300_pre""": """yolos-small-300""", """yolos_s_dWr""": """yolos-small-dwr""", """yolos_base""": """yolos-base""", } print("""Pushing to the hub...""" ) snake_case: Tuple = model_mapping[yolos_name] image_processor.push_to_hub(_lowerCAmelCase , organization="""hustvl""" ) model.push_to_hub(_lowerCAmelCase , organization="""hustvl""" ) if __name__ == "__main__": __lowerCAmelCase : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--yolos_name', default='yolos_s_200_pre', type=str, help=( 'Name of the YOLOS model you\'d like to convert. Should be one of \'yolos_ti\', \'yolos_s_200_pre\',' ' \'yolos_s_300_pre\', \'yolos_s_dWr\', \'yolos_base\'.' ), ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original state dict (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) __lowerCAmelCase : int = parser.parse_args() convert_yolos_checkpoint(args.yolos_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
164
1
'''simple docstring''' import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class UpperCAmelCase ( UpperCAmelCase__ ): '''simple docstring''' def UpperCamelCase( self ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , 'num_encoder_blocks' ) ) class UpperCAmelCase : '''simple docstring''' def __init__( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=13 , SCREAMING_SNAKE_CASE_=64 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=4 , SCREAMING_SNAKE_CASE_=[2, 2, 2, 2] , SCREAMING_SNAKE_CASE_=[8, 4, 2, 1] , SCREAMING_SNAKE_CASE_=[16, 32, 64, 128] , SCREAMING_SNAKE_CASE_=[1, 4, 8, 16] , SCREAMING_SNAKE_CASE_=[1, 2, 4, 8] , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_=True , SCREAMING_SNAKE_CASE_="gelu" , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.1 , SCREAMING_SNAKE_CASE_=0.02 , SCREAMING_SNAKE_CASE_=3 , SCREAMING_SNAKE_CASE_=None , ) -> str: '''simple docstring''' lowerCamelCase_ = parent lowerCamelCase_ = batch_size lowerCamelCase_ = image_size lowerCamelCase_ = num_channels lowerCamelCase_ = num_encoder_blocks lowerCamelCase_ = sr_ratios lowerCamelCase_ = depths lowerCamelCase_ = hidden_sizes lowerCamelCase_ = downsampling_rates lowerCamelCase_ = num_attention_heads lowerCamelCase_ = is_training lowerCamelCase_ = use_labels lowerCamelCase_ = hidden_act lowerCamelCase_ = hidden_dropout_prob lowerCamelCase_ = attention_probs_dropout_prob lowerCamelCase_ = initializer_range lowerCamelCase_ = num_labels lowerCamelCase_ = scope def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase_ = None if self.use_labels: lowerCamelCase_ = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) lowerCamelCase_ = self.get_config() return config, pixel_values, labels def UpperCamelCase( self ) -> int: '''simple docstring''' return SegformerConfig( image_size=self.image_size , num_channels=self.num_channels , num_encoder_blocks=self.num_encoder_blocks , depths=self.depths , hidden_sizes=self.hidden_sizes , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , initializer_range=self.initializer_range , ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: '''simple docstring''' lowerCamelCase_ = SegformerModel(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = lowerCamelCase_ = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Dict: '''simple docstring''' lowerCamelCase_ = self.num_labels lowerCamelCase_ = SegformerForSemanticSegmentation(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ = 1 lowerCamelCase_ = SegformerForSemanticSegmentation(config=SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() lowerCamelCase_ = torch.randint(0 , 1 , (self.batch_size, self.image_size, self.image_size) ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertGreater(result.loss , 0.0 ) def UpperCamelCase( self ) -> Any: '''simple docstring''' lowerCamelCase_ = self.prepare_config_and_inputs() lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ = config_and_inputs lowerCamelCase_ = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE_ = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False SCREAMING_SNAKE_CASE_ = False def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = SegformerModelTester(self ) lowerCamelCase_ = SegformerConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*SCREAMING_SNAKE_CASE_ ) @unittest.skip('SegFormer does not use inputs_embeds' ) def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' pass def UpperCamelCase( self ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase_ = [*signature.parameters.keys()] lowerCamelCase_ = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> str: '''simple docstring''' lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True for model_class in self.all_model_classes: lowerCamelCase_ = True lowerCamelCase_ = False lowerCamelCase_ = True lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = outputs.attentions lowerCamelCase_ = sum(self.model_tester.depths ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase_ = True lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # verify the first attentions (first block, first layer) lowerCamelCase_ = (self.model_tester.image_size // 4) ** 2 lowerCamelCase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) # verify the last attentions (last block, last layer) lowerCamelCase_ = (self.model_tester.image_size // 32) ** 2 lowerCamelCase_ = (self.model_tester.image_size // (32 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ) , [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len] , ) lowerCamelCase_ = len(SCREAMING_SNAKE_CASE_ ) # Check attention is always last and order is fine lowerCamelCase_ = True lowerCamelCase_ = True lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(out_len + 1 , len(SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = outputs.attentions self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # verify the first attentions (first block, first layer) lowerCamelCase_ = (self.model_tester.image_size // 4) ** 2 lowerCamelCase_ = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len] , ) def UpperCamelCase( self ) -> str: '''simple docstring''' def check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.eval() with torch.no_grad(): lowerCamelCase_ = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) lowerCamelCase_ = outputs.hidden_states lowerCamelCase_ = self.model_tester.num_encoder_blocks self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase_ = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCamelCase( self ) -> Tuple: '''simple docstring''' if not self.model_tester.is_training: return lowerCamelCase_ ,lowerCamelCase_ = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase_ = True for model_class in self.all_model_classes: if model_class in get_values(SCREAMING_SNAKE_CASE_ ): continue lowerCamelCase_ = model_class(SCREAMING_SNAKE_CASE_ ) model.to(SCREAMING_SNAKE_CASE_ ) model.train() lowerCamelCase_ = self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_labels=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = model(**SCREAMING_SNAKE_CASE_ ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def UpperCamelCase( self ) -> str: '''simple docstring''' pass @slow def UpperCamelCase( self ) -> str: '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase_ = SegformerModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def _UpperCamelCase ( ) -> Optional[Any]: lowerCamelCase_ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase( self ) -> int: '''simple docstring''' lowerCamelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-4 ) ) @slow def UpperCamelCase( self ) -> List[Any]: '''simple docstring''' lowerCamelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Size((1, model.config.num_labels, 128, 128) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(SCREAMING_SNAKE_CASE_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3] , SCREAMING_SNAKE_CASE_ , atol=1E-1 ) ) @slow def UpperCamelCase( self ) -> Optional[Any]: '''simple docstring''' lowerCamelCase_ = SegformerImageProcessor( image_scale=(512, 512) , keep_ratio=SCREAMING_SNAKE_CASE_ , align=SCREAMING_SNAKE_CASE_ , do_random_crop=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = prepare_img() lowerCamelCase_ = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='pt' ) lowerCamelCase_ = encoded_inputs.pixel_values.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCamelCase_ = model(SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = outputs.logits.detach().cpu() lowerCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ , target_sizes=[(500, 300)] ) lowerCamelCase_ = torch.Size((500, 300) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = image_processor.post_process_semantic_segmentation(outputs=SCREAMING_SNAKE_CASE_ ) lowerCamelCase_ = torch.Size((128, 128) ) self.assertEqual(segmentation[0].shape , SCREAMING_SNAKE_CASE_ )
42
def lowerCamelCase_(lowerCamelCase_ ) -> None: UpperCAmelCase = generate_pascal_triangle(lowerCamelCase_ ) for row_idx in range(lowerCamelCase_ ): # Print left spaces for _ in range(num_rows - row_idx - 1 ): print(end=" " ) # Print row values for col_idx in range(row_idx + 1 ): if col_idx != row_idx: print(triangle[row_idx][col_idx] , end=" " ) else: print(triangle[row_idx][col_idx] , end="" ) print() def lowerCamelCase_(lowerCamelCase_ ) -> list[list[int]]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase = [] for current_row_idx in range(lowerCamelCase_ ): UpperCAmelCase = populate_current_row(lowerCamelCase_ , lowerCamelCase_ ) triangle.append(lowerCamelCase_ ) return triangle def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ ) -> list[int]: UpperCAmelCase = [-1] * (current_row_idx + 1) # first and last elements of current row are equal to 1 UpperCAmelCase , UpperCAmelCase = 1, 1 for current_col_idx in range(1 , lowerCamelCase_ ): calculate_current_element( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) return current_row def lowerCamelCase_(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) -> None: UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx - 1] UpperCAmelCase = triangle[current_row_idx - 1][current_col_idx] UpperCAmelCase = above_to_left_elt + above_to_right_elt def lowerCamelCase_(lowerCamelCase_ ) -> list[list[int]]: if not isinstance(lowerCamelCase_ , lowerCamelCase_ ): raise TypeError("The input value of 'num_rows' should be 'int'" ) if num_rows == 0: return [] elif num_rows < 0: raise ValueError( "The input value of 'num_rows' should be greater than or equal to 0" ) UpperCAmelCase = [[1]] for row_index in range(1 , lowerCamelCase_ ): UpperCAmelCase = [0] + result[-1] + [0] UpperCAmelCase = row_index + 1 # Calculate the number of distinct elements in a row UpperCAmelCase = sum(divmod(lowerCamelCase_ , 2 ) ) UpperCAmelCase = [ temp_row[i - 1] + temp_row[i] for i in range(1 , distinct_elements + 1 ) ] UpperCAmelCase = row_first_half[: (row_index + 1) // 2] row_second_half.reverse() UpperCAmelCase = row_first_half + row_second_half result.append(lowerCamelCase_ ) return result def lowerCamelCase_() -> None: from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) -> None: UpperCAmelCase = F'{func.__name__}({value})' UpperCAmelCase = timeit(F'__main__.{call}' , setup="import __main__" ) # print(f"{call:38} = {func(value)} -- {timing:.4f} seconds") print(F'{call:38} -- {timing:.4f} seconds' ) for value in range(15 ): # (1, 7, 14): for func in (generate_pascal_triangle, generate_pascal_triangle_optimized): benchmark_a_function(lowerCamelCase_ , lowerCamelCase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
323
0
"""simple docstring""" from __future__ import annotations a : List[Any] = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _SCREAMING_SNAKE_CASE ( _lowercase : list[list[int]] , _lowercase : list[int] , _lowercase : list[int] , _lowercase : int , _lowercase : list[list[int]] , ) ->List[Any]: '''simple docstring''' a : List[Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the reference grid a : List[str] = 1 a : Union[str, Any] = [ [0 for col in range(len(grid[0] ) )] for row in range(len(snake_case__ ) ) ] # the action grid a : List[Any] = init[0] a : str = init[1] a : int = 0 a : Optional[int] = g + heuristic[x][y] # cost from starting cell to destination cell a : int = [[f, g, x, y]] a : Union[str, Any] = False # flag that is set when search is complete a : int = False # flag set if we can't find expand while not found and not resign: if len(snake_case__ ) == 0: raise ValueError("Algorithm is unable to find solution" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() a : Dict = cell.pop() a : str = next_cell[2] a : List[str] = next_cell[3] a : List[Any] = next_cell[1] if x == goal[0] and y == goal[1]: a : Optional[int] = True else: for i in range(len(snake_case__ ) ): # to try out different valid actions a : Dict = x + DIRECTIONS[i][0] a : Dict = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(snake_case__ ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: a : List[str] = g + cost a : str = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) a : str = 1 a : Any = i a : List[Any] = [] a : List[str] = goal[0] a : List[Any] = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: a : Any = x - DIRECTIONS[action[x][y]][0] a : List[Any] = y - DIRECTIONS[action[x][y]][1] a : Optional[int] = xa a : int = ya invpath.append([x, y] ) a : int = [] for i in range(len(snake_case__ ) ): path.append(invpath[len(snake_case__ ) - 1 - i] ) return path, action if __name__ == "__main__": a : Optional[Any] = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] a : Optional[int] = [0, 0] # all coordinates are given in format [y,x] a : Tuple = [len(grid) - 1, len(grid[0]) - 1] a : Any = 1 # the cost map which pushes the path closer to the goal a : Any = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): a : Tuple = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map a : int = 99 a , a : int = search(grid, init, goal, cost, heuristic) print('''ACTION MAP''') for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
706
"""simple docstring""" import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal a : Optional[Any] = datasets.utils.logging.get_logger(__name__) a : Union[str, Any] = ['''names''', '''prefix'''] a : Any = ['''warn_bad_lines''', '''error_bad_lines''', '''mangle_dupe_cols'''] a : Any = ['''encoding_errors''', '''on_bad_lines'''] a : List[str] = ['''date_format'''] @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): lowerCamelCase : str ="," lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[Union[int, List[int], str]] ="infer" lowerCamelCase : Optional[List[str]] =None lowerCamelCase : Optional[List[str]] =None lowerCamelCase : Optional[Union[int, str, List[int], List[str]]] =None lowerCamelCase : Optional[Union[List[int], List[str]]] =None lowerCamelCase : Optional[str] =None lowerCamelCase : bool =True lowerCamelCase : Optional[Literal["c", "python", "pyarrow"]] =None lowerCamelCase : Dict[Union[int, str], Callable[[Any], Any]] =None lowerCamelCase : Optional[list] =None lowerCamelCase : Optional[list] =None lowerCamelCase : bool =False lowerCamelCase : Optional[Union[int, List[int]]] =None lowerCamelCase : Optional[int] =None lowerCamelCase : Optional[Union[str, List[str]]] =None lowerCamelCase : bool =True lowerCamelCase : bool =True lowerCamelCase : bool =False lowerCamelCase : bool =True lowerCamelCase : Optional[str] =None lowerCamelCase : str ="." lowerCamelCase : Optional[str] =None lowerCamelCase : str ='"' lowerCamelCase : int =0 lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None lowerCamelCase : Optional[str] =None lowerCamelCase : bool =True lowerCamelCase : bool =True lowerCamelCase : int =0 lowerCamelCase : bool =True lowerCamelCase : bool =False lowerCamelCase : Optional[str] =None lowerCamelCase : int =1_0000 lowerCamelCase : Optional[datasets.Features] =None lowerCamelCase : Optional[str] ="strict" lowerCamelCase : Literal["error", "warn", "skip"] ="error" lowerCamelCase : Optional[str] =None def __a ( self ) -> Dict: if self.delimiter is not None: a : int = self.delimiter if self.column_names is not None: a : Any = self.column_names @property def __a ( self ) -> List[str]: a : Dict = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , lowerCAmelCase__ ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class __UpperCamelCase ( datasets.ArrowBasedBuilder ): lowerCamelCase : Union[str, Any] =CsvConfig def __a ( self ) -> Optional[Any]: return datasets.DatasetInfo(features=self.config.features ) def __a ( self , lowerCAmelCase__ ) -> Optional[int]: if not self.config.data_files: raise ValueError(f"""At least one data file must be specified, but got data_files={self.config.data_files}""" ) a : Optional[Any] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(lowerCAmelCase__ , (str, list, tuple) ): a : Tuple = data_files if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Tuple = [files] a : int = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] a : int = [] for split_name, files in data_files.items(): if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): a : Any = [files] a : List[str] = [dl_manager.iter_files(lowerCAmelCase__ ) for file in files] splits.append(datasets.SplitGenerator(name=lowerCAmelCase__ , gen_kwargs={"files": files} ) ) return splits def __a ( self , lowerCAmelCase__ ) -> pa.Table: if self.config.features is not None: a : Optional[Any] = self.config.features.arrow_schema if all(not require_storage_cast(lowerCAmelCase__ ) for feature in self.config.features.values() ): # cheaper cast a : Dict = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=lowerCAmelCase__ ) else: # more expensive cast; allows str <-> int/float or str to Audio for example a : Union[str, Any] = table_cast(lowerCAmelCase__ , lowerCAmelCase__ ) return pa_table def __a ( self , lowerCAmelCase__ ) -> Any: a : Tuple = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str a : Any = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(lowerCAmelCase__ ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(lowerCAmelCase__ ) ): a : Tuple = pd.read_csv(lowerCAmelCase__ , iterator=lowerCAmelCase__ , dtype=lowerCAmelCase__ , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(lowerCAmelCase__ ): a : Any = pa.Table.from_pandas(lowerCAmelCase__ ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(lowerCAmelCase__ ) except ValueError as e: logger.error(f"""Failed to read file '{file}' with error {type(lowerCAmelCase__ )}: {e}""" ) raise
31
0
'''simple docstring''' import asyncio import os import re import sys import tempfile import unittest from contextlib import contextmanager from copy import deepcopy from distutils.util import strtobool from enum import Enum from importlib.util import find_spec from pathlib import Path from unittest.mock import patch import pyarrow as pa import pytest import requests from packaging import version from datasets import config if config.PY_VERSION < version.parse('''3.8'''): import importlib_metadata else: import importlib.metadata as importlib_metadata def snake_case_ ( __snake_case : List[Any] , __snake_case : str=False) -> Tuple: try: lowerCAmelCase_ = os.environ[key] except KeyError: # KEY isn't set, default to `default`. lowerCAmelCase_ = default else: # KEY is set, convert it to True or False. try: lowerCAmelCase_ = strtobool(__snake_case) except ValueError: # More values are supported, but let's keep the message simple. raise ValueError(F'''If set, {key} must be yes or no.''') return _value A_ : Optional[Any] =parse_flag_from_env('''RUN_SLOW''', default=False) A_ : Optional[int] =parse_flag_from_env('''RUN_REMOTE''', default=False) A_ : Any =parse_flag_from_env('''RUN_LOCAL''', default=True) A_ : List[str] =parse_flag_from_env('''RUN_PACKAGED''', default=True) # Compression A_ : Tuple =pytest.mark.skipif(not config.LZ4_AVAILABLE, reason='''test requires lz4''') A_ : int =pytest.mark.skipif(not config.PY7ZR_AVAILABLE, reason='''test requires py7zr''') A_ : List[str] =pytest.mark.skipif(not config.ZSTANDARD_AVAILABLE, reason='''test requires zstandard''') # Audio A_ : Optional[int] =pytest.mark.skipif( # On Windows and OS X, soundfile installs sndfile find_spec('''soundfile''') is None or version.parse(importlib_metadata.version('''soundfile''')) < version.parse('''0.12.0'''), reason='''test requires sndfile>=0.12.1: \'pip install \"soundfile>=0.12.1\"\'; ''', ) # Beam A_ : Any =pytest.mark.skipif( not config.BEAM_AVAILABLE or config.DILL_VERSION >= version.parse('''0.3.2'''), reason='''test requires apache-beam and a compatible dill version''', ) # Dill-cloudpickle compatibility A_ : Dict =pytest.mark.skipif( config.DILL_VERSION <= version.parse('''0.3.2'''), reason='''test requires dill>0.3.2 for cloudpickle compatibility''', ) # Windows A_ : Dict =pytest.mark.skipif( sys.platform == '''win32''', reason='''test should not be run on Windows''', ) def snake_case_ ( __snake_case : Optional[Any]) -> int: try: import faiss # noqa except ImportError: lowerCAmelCase_ = unittest.skip('''test requires faiss''')(__snake_case) return test_case def snake_case_ ( __snake_case : List[str]) -> str: try: import regex # noqa except ImportError: lowerCAmelCase_ = unittest.skip('''test requires regex''')(__snake_case) return test_case def snake_case_ ( __snake_case : Any) -> int: try: import elasticsearch # noqa except ImportError: lowerCAmelCase_ = unittest.skip('''test requires elasticsearch''')(__snake_case) return test_case def snake_case_ ( __snake_case : Optional[Any]) -> Tuple: try: import sqlalchemy # noqa except ImportError: lowerCAmelCase_ = unittest.skip('''test requires sqlalchemy''')(__snake_case) return test_case def snake_case_ ( __snake_case : int) -> Union[str, Any]: if not config.TORCH_AVAILABLE: lowerCAmelCase_ = unittest.skip('''test requires PyTorch''')(__snake_case) return test_case def snake_case_ ( __snake_case : Optional[int]) -> List[Any]: if not config.TF_AVAILABLE: lowerCAmelCase_ = unittest.skip('''test requires TensorFlow''')(__snake_case) return test_case def snake_case_ ( __snake_case : Optional[Any]) -> List[str]: if not config.JAX_AVAILABLE: lowerCAmelCase_ = unittest.skip('''test requires JAX''')(__snake_case) return test_case def snake_case_ ( __snake_case : Dict) -> Tuple: if not config.PIL_AVAILABLE: lowerCAmelCase_ = unittest.skip('''test requires Pillow''')(__snake_case) return test_case def snake_case_ ( __snake_case : Optional[int]) -> Tuple: try: import transformers # noqa F401 except ImportError: return unittest.skip('''test requires transformers''')(__snake_case) else: return test_case def snake_case_ ( __snake_case : List[Any]) -> Union[str, Any]: try: import tiktoken # noqa F401 except ImportError: return unittest.skip('''test requires tiktoken''')(__snake_case) else: return test_case def snake_case_ ( __snake_case : Any) -> str: try: import spacy # noqa F401 except ImportError: return unittest.skip('''test requires spacy''')(__snake_case) else: return test_case def snake_case_ ( __snake_case : Dict) -> Union[str, Any]: def _require_spacy_model(__snake_case : Optional[int]): try: import spacy # noqa F401 spacy.load(__snake_case) except ImportError: return unittest.skip('''test requires spacy''')(__snake_case) except OSError: return unittest.skip('''test requires spacy model \'{}\''''.format(__snake_case))(__snake_case) else: return test_case return _require_spacy_model def snake_case_ ( __snake_case : Optional[int]) -> Optional[Any]: try: import pyspark # noqa F401 except ImportError: return unittest.skip('''test requires pyspark''')(__snake_case) else: return test_case def snake_case_ ( __snake_case : List[str]) -> Union[str, Any]: try: import joblibspark # noqa F401 except ImportError: return unittest.skip('''test requires joblibspark''')(__snake_case) else: return test_case def snake_case_ ( __snake_case : Optional[int]) -> Optional[int]: if not _run_slow_tests or _run_slow_tests == 0: lowerCAmelCase_ = unittest.skip('''test is slow''')(__snake_case) return test_case def snake_case_ ( __snake_case : Optional[Any]) -> List[str]: if not _run_local_tests or _run_local_tests == 0: lowerCAmelCase_ = unittest.skip('''test is local''')(__snake_case) return test_case def snake_case_ ( __snake_case : Union[str, Any]) -> Any: if not _run_packaged_tests or _run_packaged_tests == 0: lowerCAmelCase_ = unittest.skip('''test is packaged''')(__snake_case) return test_case def snake_case_ ( __snake_case : List[str]) -> Optional[int]: if not _run_remote_tests or _run_remote_tests == 0: lowerCAmelCase_ = unittest.skip('''test requires remote''')(__snake_case) return test_case def snake_case_ ( *__snake_case : List[Any]) -> Optional[int]: def decorate(cls : Optional[int]): for name, fn in cls.__dict__.items(): if callable(__snake_case) and name.startswith('''test'''): for decorator in decorators: lowerCAmelCase_ = decorator(__snake_case) setattr(cls , __snake_case , __snake_case) return cls return decorate class __UpperCAmelCase ( __a ): pass class __UpperCAmelCase ( __a ): __A : List[str] = 0 __A : Optional[int] = 1 __A : List[Any] = 2 @contextmanager def snake_case_ ( __snake_case : Optional[Any]=OfflineSimulationMode.CONNECTION_FAILS , __snake_case : Optional[Any]=1E-1_6) -> str: lowerCAmelCase_ = requests.Session().request def timeout_request(__snake_case : Union[str, Any] , __snake_case : Optional[int] , __snake_case : Tuple , **__snake_case : int): # Change the url to an invalid url so that the connection hangs lowerCAmelCase_ = '''https://10.255.255.1''' if kwargs.get('''timeout''') is None: raise RequestWouldHangIndefinitelyError( F'''Tried a call to {url} in offline mode with no timeout set. Please set a timeout.''') lowerCAmelCase_ = timeout try: return online_request(__snake_case , __snake_case , **__snake_case) except Exception as e: # The following changes in the error are just here to make the offline timeout error prettier lowerCAmelCase_ = url lowerCAmelCase_ = e.args[0] lowerCAmelCase_ = (max_retry_error.args[0].replace('''10.255.255.1''' , F'''OfflineMock[{url}]'''),) lowerCAmelCase_ = (max_retry_error,) raise def raise_connection_error(__snake_case : Dict , __snake_case : str , **__snake_case : Union[str, Any]): raise requests.ConnectionError('''Offline mode is enabled.''' , request=__snake_case) if mode is OfflineSimulationMode.CONNECTION_FAILS: with patch('''requests.Session.send''' , __snake_case): yield elif mode is OfflineSimulationMode.CONNECTION_TIMES_OUT: # inspired from https://stackoverflow.com/a/904609 with patch('''requests.Session.request''' , __snake_case): yield elif mode is OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1: with patch('''datasets.config.HF_DATASETS_OFFLINE''' , __snake_case): yield else: raise ValueError('''Please use a value from the OfflineSimulationMode enum.''') @contextmanager def snake_case_ ( *__snake_case : Any , **__snake_case : Optional[int]) -> int: lowerCAmelCase_ = str(Path().resolve()) with tempfile.TemporaryDirectory(*__snake_case , **__snake_case) as tmp_dir: try: os.chdir(__snake_case) yield finally: os.chdir(__snake_case) @contextmanager def snake_case_ ( ) -> Tuple: import gc gc.collect() lowerCAmelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory > 0, "Arrow memory didn't increase." @contextmanager def snake_case_ ( ) -> Dict: import gc gc.collect() lowerCAmelCase_ = pa.total_allocated_bytes() yield assert pa.total_allocated_bytes() - previous_allocated_memory <= 0, "Arrow memory wasn't expected to increase." def snake_case_ ( __snake_case : Union[str, Any] , __snake_case : str) -> Any: return deepcopy(__snake_case).integers(0 , 100 , 10).tolist() == deepcopy(__snake_case).integers(0 , 100 , 10).tolist() def snake_case_ ( __snake_case : Dict) -> Dict: import decorator from requests.exceptions import HTTPError def _wrapper(__snake_case : Tuple , *__snake_case : int , **__snake_case : List[str]): try: return func(*__snake_case , **__snake_case) except HTTPError as err: if str(__snake_case).startswith('''500''') or str(__snake_case).startswith('''502'''): pytest.xfail(str(__snake_case)) raise err return decorator.decorator(_wrapper , __snake_case) class __UpperCAmelCase : def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): lowerCAmelCase_ = returncode lowerCAmelCase_ = stdout lowerCAmelCase_ = stderr async def snake_case_ ( __snake_case : str , __snake_case : Tuple) -> List[Any]: while True: lowerCAmelCase_ = await stream.readline() if line: callback(__snake_case) else: break async def snake_case_ ( __snake_case : int , __snake_case : Any=None , __snake_case : Optional[Any]=None , __snake_case : Optional[Any]=None , __snake_case : Dict=False , __snake_case : Tuple=False) -> _RunOutput: if echo: print('''\nRunning: ''' , ''' '''.join(__snake_case)) lowerCAmelCase_ = await asyncio.create_subprocess_exec( cmd[0] , *cmd[1:] , stdin=__snake_case , stdout=asyncio.subprocess.PIPE , stderr=asyncio.subprocess.PIPE , env=__snake_case , ) # note: there is a warning for a possible deadlock when using `wait` with huge amounts of data in the pipe # https://docs.python.org/3/library/asyncio-subprocess.html#asyncio.asyncio.subprocess.Process.wait # # If it starts hanging, will need to switch to the following code. The problem is that no data # will be seen until it's done and if it hangs for example there will be no debug info. # out, err = await p.communicate() # return _RunOutput(p.returncode, out, err) lowerCAmelCase_ = [] lowerCAmelCase_ = [] def tee(__snake_case : Optional[int] , __snake_case : Dict , __snake_case : Optional[int] , __snake_case : str=""): lowerCAmelCase_ = line.decode('''utf-8''').rstrip() sink.append(__snake_case) if not quiet: print(__snake_case , __snake_case , file=__snake_case) # XXX: the timeout doesn't seem to make any difference here await asyncio.wait( [ _read_stream(p.stdout , lambda __snake_case: tee(__snake_case , __snake_case , sys.stdout , label='''stdout:''')), _read_stream(p.stderr , lambda __snake_case: tee(__snake_case , __snake_case , sys.stderr , label='''stderr:''')), ] , timeout=__snake_case , ) return _RunOutput(await p.wait() , __snake_case , __snake_case) def snake_case_ ( __snake_case : Tuple , __snake_case : Any=None , __snake_case : Any=None , __snake_case : Optional[int]=180 , __snake_case : List[Any]=False , __snake_case : str=True) -> _RunOutput: lowerCAmelCase_ = asyncio.get_event_loop() lowerCAmelCase_ = loop.run_until_complete( _stream_subprocess(__snake_case , env=__snake_case , stdin=__snake_case , timeout=__snake_case , quiet=__snake_case , echo=__snake_case)) lowerCAmelCase_ = ''' '''.join(__snake_case) if result.returncode > 0: lowerCAmelCase_ = '''\n'''.join(result.stderr) raise RuntimeError( F'''\'{cmd_str}\' failed with returncode {result.returncode}\n\n''' F'''The combined stderr from workers follows:\n{stderr}''') # check that the subprocess actually did run and produced some output, should the test rely on # the remote side to do the testing if not result.stdout and not result.stderr: raise RuntimeError(F'''\'{cmd_str}\' produced no output.''') return result def snake_case_ ( ) -> Dict: lowerCAmelCase_ = os.environ.get('''PYTEST_XDIST_WORKER''' , '''gw0''') lowerCAmelCase_ = re.sub(R'''^gw''' , '''''' , __snake_case , 0 , re.M) return int(__snake_case) def snake_case_ ( ) -> Dict: lowerCAmelCase_ = 29500 lowerCAmelCase_ = pytest_xdist_worker_id() return port + uniq_delta
274
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DetrConfig, DetrForObjectDetection, DetrForSegmentation, DetrImageProcessor, ResNetConfig from transformers.utils import logging logging.set_verbosity_info() A_ : Dict =logging.get_logger(__name__) def snake_case_ ( __snake_case : Any) -> Tuple: # initialize config if "resnet-50" in model_name: lowerCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-50''') elif "resnet-101" in model_name: lowerCAmelCase_ = ResNetConfig.from_pretrained('''microsoft/resnet-101''') else: raise ValueError('''Model name should include either resnet50 or resnet101''') lowerCAmelCase_ = DetrConfig(use_timm_backbone=__snake_case , backbone_config=__snake_case) # set label attributes lowerCAmelCase_ = '''panoptic''' in model_name if is_panoptic: lowerCAmelCase_ = 250 else: lowerCAmelCase_ = 91 lowerCAmelCase_ = '''huggingface/label-files''' lowerCAmelCase_ = '''coco-detection-id2label.json''' lowerCAmelCase_ = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type='''dataset''') , '''r''')) lowerCAmelCase_ = {int(__snake_case): v for k, v in idalabel.items()} lowerCAmelCase_ = idalabel lowerCAmelCase_ = {v: k for k, v in idalabel.items()} return config, is_panoptic def snake_case_ ( __snake_case : Optional[Any]) -> Tuple: # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase_ = [] # stem # fmt: off rename_keys.append(('''backbone.0.body.conv1.weight''', '''backbone.conv_encoder.model.embedder.embedder.convolution.weight''')) rename_keys.append(('''backbone.0.body.bn1.weight''', '''backbone.conv_encoder.model.embedder.embedder.normalization.weight''')) rename_keys.append(('''backbone.0.body.bn1.bias''', '''backbone.conv_encoder.model.embedder.embedder.normalization.bias''')) rename_keys.append(('''backbone.0.body.bn1.running_mean''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_mean''')) rename_keys.append(('''backbone.0.body.bn1.running_var''', '''backbone.conv_encoder.model.embedder.embedder.normalization.running_var''')) # stages for stage_idx in range(len(config.backbone_config.depths)): for layer_idx in range(config.backbone_config.depths[stage_idx]): # shortcut if layer_idx == 0: rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.0.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.convolution.weight''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.weight''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.bias''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_mean''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.downsample.1.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.shortcut.normalization.running_var''', )) # 3 convs for i in range(3): rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.conv{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.convolution.weight''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.weight''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.weight''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.bias''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.bias''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_mean''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_mean''', )) rename_keys.append( ( F'''backbone.0.body.layer{stage_idx + 1}.{layer_idx}.bn{i+1}.running_var''', F'''backbone.conv_encoder.model.encoder.stages.{stage_idx}.layers.{layer_idx}.layer.{i}.normalization.running_var''', )) # fmt: on for i in range(config.encoder_layers): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( ( F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''', )) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( ( F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''', )) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''')) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', )) rename_keys.append( ( F'''transformer.decoder.layers.{i}.multihead_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', )) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ]) return rename_keys def snake_case_ ( __snake_case : List[str] , __snake_case : Tuple , __snake_case : Optional[Any]) -> List[str]: lowerCAmelCase_ = state_dict.pop(__snake_case) lowerCAmelCase_ = val def snake_case_ ( __snake_case : List[Any] , __snake_case : Optional[int]=False) -> str: lowerCAmelCase_ = '''''' if is_panoptic: lowerCAmelCase_ = '''detr.''' # first: transformer encoder for i in range(6): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''') lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[:256, :] lowerCAmelCase_ = in_proj_bias[:256] lowerCAmelCase_ = in_proj_weight[256:512, :] lowerCAmelCase_ = in_proj_bias[256:512] lowerCAmelCase_ = in_proj_weight[-256:, :] lowerCAmelCase_ = in_proj_bias[-256:] # next: transformer decoder (which is a bit more complex because it also includes cross-attention) for i in range(6): # read in weights + bias of input projection layer of self-attention lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_weight''') lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.self_attn.in_proj_bias''') # next, add query, keys and values (in that order) to the state dict lowerCAmelCase_ = in_proj_weight[:256, :] lowerCAmelCase_ = in_proj_bias[:256] lowerCAmelCase_ = in_proj_weight[256:512, :] lowerCAmelCase_ = in_proj_bias[256:512] lowerCAmelCase_ = in_proj_weight[-256:, :] lowerCAmelCase_ = in_proj_bias[-256:] # read in weights + bias of input projection layer of cross-attention lowerCAmelCase_ = state_dict.pop( F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_weight''') lowerCAmelCase_ = state_dict.pop(F'''{prefix}transformer.decoder.layers.{i}.multihead_attn.in_proj_bias''') # next, add query, keys and values (in that order) of cross-attention to the state dict lowerCAmelCase_ = in_proj_weight_cross_attn[:256, :] lowerCAmelCase_ = in_proj_bias_cross_attn[:256] lowerCAmelCase_ = in_proj_weight_cross_attn[256:512, :] lowerCAmelCase_ = in_proj_bias_cross_attn[256:512] lowerCAmelCase_ = in_proj_weight_cross_attn[-256:, :] lowerCAmelCase_ = in_proj_bias_cross_attn[-256:] def snake_case_ ( ) -> str: lowerCAmelCase_ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' lowerCAmelCase_ = Image.open(requests.get(__snake_case , stream=__snake_case).raw) return im @torch.no_grad() def snake_case_ ( __snake_case : Union[str, Any] , __snake_case : List[Any]=None , __snake_case : Any=False) -> Optional[Any]: lowerCAmelCase_ ,lowerCAmelCase_ = get_detr_config(__snake_case) # load original model from torch hub lowerCAmelCase_ = { '''detr-resnet-50''': '''detr_resnet50''', '''detr-resnet-101''': '''detr_resnet101''', } logger.info(F'''Converting model {model_name}...''') lowerCAmelCase_ = torch.hub.load('''facebookresearch/detr''' , model_name_to_original_name[model_name] , pretrained=__snake_case).eval() lowerCAmelCase_ = detr.state_dict() # rename keys for src, dest in create_rename_keys(__snake_case): if is_panoptic: lowerCAmelCase_ = '''detr.''' + src rename_key(__snake_case , __snake_case , __snake_case) # query, key and value matrices need special treatment read_in_q_k_v(__snake_case , is_panoptic=__snake_case) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them lowerCAmelCase_ = '''detr.model.''' if is_panoptic else '''model.''' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('''detr''') and not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor''') ): lowerCAmelCase_ = state_dict.pop(__snake_case) lowerCAmelCase_ = val elif "class_labels_classifier" in key or "bbox_predictor" in key: lowerCAmelCase_ = state_dict.pop(__snake_case) lowerCAmelCase_ = val elif key.startswith('''bbox_attention''') or key.startswith('''mask_head'''): continue else: lowerCAmelCase_ = state_dict.pop(__snake_case) lowerCAmelCase_ = val else: if not key.startswith('''class_labels_classifier''') and not key.startswith('''bbox_predictor'''): lowerCAmelCase_ = state_dict.pop(__snake_case) lowerCAmelCase_ = val # finally, create HuggingFace model and load state dict lowerCAmelCase_ = DetrForSegmentation(__snake_case) if is_panoptic else DetrForObjectDetection(__snake_case) model.load_state_dict(__snake_case) model.eval() # verify our conversion on an image lowerCAmelCase_ = '''coco_panoptic''' if is_panoptic else '''coco_detection''' lowerCAmelCase_ = DetrImageProcessor(format=__snake_case) lowerCAmelCase_ = processor(images=prepare_img() , return_tensors='''pt''') lowerCAmelCase_ = encoding['''pixel_values'''] lowerCAmelCase_ = detr(__snake_case) lowerCAmelCase_ = model(__snake_case) assert torch.allclose(outputs.logits , original_outputs['''pred_logits'''] , atol=1E-3) assert torch.allclose(outputs.pred_boxes , original_outputs['''pred_boxes'''] , atol=1E-3) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['''pred_masks'''] , atol=1E-4) print('''Looks ok!''') if pytorch_dump_folder_path is not None: # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''') Path(__snake_case).mkdir(exist_ok=__snake_case) model.save_pretrained(__snake_case) processor.save_pretrained(__snake_case) if push_to_hub: # Upload model and image processor to the hub logger.info('''Uploading PyTorch model and image processor to the hub...''') model.push_to_hub(F'''nielsr/{model_name}''') processor.push_to_hub(F'''nielsr/{model_name}''') if __name__ == "__main__": A_ : Any =argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''detr-resnet-50''', type=str, choices=['''detr-resnet-50''', '''detr-resnet-101'''], help='''Name of the DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Whether to push the model to the hub or not.''') A_ : Optional[int] =parser.parse_args() convert_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
274
1
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.local_sgd import LocalSGD ######################################################################## # This is a fully working simple example to use Accelerate # with LocalSGD, which is a method to synchronize model # parameters every K batches. It is different, but complementary # to gradient accumulation. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _SCREAMING_SNAKE_CASE : Tuple = 1_6 _SCREAMING_SNAKE_CASE : Optional[Any] = 3_2 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Accelerator , __UpperCamelCase : int = 16 ) -> Optional[Any]: """simple docstring""" A__ : Union[str, Any] = AutoTokenizer.from_pretrained('''bert-base-cased''' ) A__ : Optional[Any] = load_dataset('''glue''' , '''mrpc''' ) def tokenize_function(__UpperCamelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) A__ : int = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=__UpperCamelCase , max_length=__UpperCamelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): A__ : str = datasets.map( __UpperCamelCase , batched=__UpperCamelCase , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library A__ : Union[str, Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(__UpperCamelCase : Union[str, Any] ): # On TPU it's best to pad everything to the same length or training will be very slow. A__ : Union[str, Any] = 1_28 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": A__ : Union[str, Any] = 16 elif accelerator.mixed_precision != "no": A__ : Dict = 8 else: A__ : List[Any] = None return tokenizer.pad( __UpperCamelCase , padding='''longest''' , max_length=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_tensors='''pt''' , ) # Instantiate dataloaders. A__ : Any = DataLoader( tokenized_datasets['''train'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) A__ : str = DataLoader( tokenized_datasets['''validation'''] , shuffle=__UpperCamelCase , collate_fn=__UpperCamelCase , batch_size=__UpperCamelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS', None) == "1": from accelerate.test_utils.training import mocked_dataloaders _SCREAMING_SNAKE_CASE : Optional[int] = mocked_dataloaders # noqa: F811 def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Tuple , __UpperCamelCase : Optional[int] ) -> int: """simple docstring""" if os.environ.get('''TESTING_MOCKED_DATALOADERS''' , __UpperCamelCase ) == "1": A__ : Tuple = 2 # New Code # A__ : Optional[int] = int(args.gradient_accumulation_steps ) A__ : List[Any] = int(args.local_sgd_steps ) # Initialize accelerator A__ : Tuple = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=__UpperCamelCase ) if accelerator.distributed_type not in [DistributedType.NO, DistributedType.MULTI_CPU, DistributedType.MULTI_GPU]: raise NotImplementedError('''LocalSGD is supported only for CPUs and GPUs (no DeepSpeed or MegatronLM)''' ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs A__ : Tuple = config['''lr'''] A__ : List[Any] = int(config['''num_epochs'''] ) A__ : int = int(config['''seed'''] ) A__ : List[Any] = int(config['''batch_size'''] ) A__ : List[Any] = evaluate.load('''glue''' , '''mrpc''' ) set_seed(__UpperCamelCase ) A__ , A__ : List[Any] = get_dataloaders(__UpperCamelCase , __UpperCamelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) A__ : Dict = AutoModelForSequenceClassification.from_pretrained('''bert-base-cased''' , return_dict=__UpperCamelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). A__ : List[Any] = model.to(accelerator.device ) # Instantiate optimizer A__ : Dict = AdamW(params=model.parameters() , lr=__UpperCamelCase ) # Instantiate scheduler A__ : Optional[int] = get_linear_schedule_with_warmup( optimizer=__UpperCamelCase , num_warmup_steps=1_00 , num_training_steps=(len(__UpperCamelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. A__ , A__ , A__ , A__ , A__ : Dict = accelerator.prepare( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # Now we train the model for epoch in range(__UpperCamelCase ): model.train() with LocalSGD( accelerator=__UpperCamelCase , model=__UpperCamelCase , local_sgd_steps=__UpperCamelCase , enabled=local_sgd_steps is not None ) as local_sgd: for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(__UpperCamelCase ): A__ : Tuple = model(**__UpperCamelCase ) A__ : str = output.loss accelerator.backward(__UpperCamelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() # LocalSGD-specific line local_sgd.step() model.eval() for step, batch in enumerate(__UpperCamelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): A__ : str = model(**__UpperCamelCase ) A__ : Dict = outputs.logits.argmax(dim=-1 ) A__ , A__ : int = accelerator.gather_for_metrics((predictions, batch['''labels''']) ) metric.add_batch( predictions=__UpperCamelCase , references=__UpperCamelCase , ) A__ : List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F"epoch {epoch}:" , __UpperCamelCase ) def SCREAMING_SNAKE_CASE ( ) -> int: """simple docstring""" A__ : List[Any] = argparse.ArgumentParser(description='''Simple example of training script.''' ) parser.add_argument( '''--mixed_precision''' , type=__UpperCamelCase , default=__UpperCamelCase , choices=['''no''', '''fp16''', '''bf16''', '''fp8'''] , help='''Whether to use mixed precision. Choose''' '''between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.''' '''and an Nvidia Ampere GPU.''' , ) # New Code # parser.add_argument( '''--gradient_accumulation_steps''' , type=__UpperCamelCase , default=1 , help='''The number of minibatches to be ran before gradients are accumulated.''' , ) parser.add_argument( '''--local_sgd_steps''' , type=__UpperCamelCase , default=8 , help='''Number of local SGD steps or None to disable local SGD''' ) parser.add_argument('''--cpu''' , action='''store_true''' , help='''If passed, will train on the CPU.''' ) A__ : Optional[int] = parser.parse_args() A__ : Optional[Any] = {'''lr''': 2e-5, '''num_epochs''': 3, '''seed''': 42, '''batch_size''': 16} training_function(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": main()
55
from PIL import Image def SCREAMING_SNAKE_CASE ( __UpperCamelCase : Image , __UpperCamelCase : float ) -> Image: """simple docstring""" def brightness(__UpperCamelCase : int ) -> float: return 1_28 + level + (c - 1_28) if not -2_5_5.0 <= level <= 2_5_5.0: raise ValueError('''level must be between -255.0 (black) and 255.0 (white)''' ) return img.point(__UpperCamelCase ) if __name__ == "__main__": # Load image with Image.open('image_data/lena.jpg') as img: # Change brightness to 100 _SCREAMING_SNAKE_CASE : Dict = change_brightness(img, 1_0_0) brigt_img.save('image_data/lena_brightness.png', format='png')
55
1
"""simple docstring""" import math def _lowerCamelCase ( UpperCAmelCase_ : int ) -> bool: """simple docstring""" return math.sqrt(UpperCAmelCase_ ) * math.sqrt(UpperCAmelCase_ ) == num def _lowerCamelCase ( UpperCAmelCase_ : int ) -> bool: """simple docstring""" A__ = 0 A__ = n while left <= right: A__ = (left + right) // 2 if mid**2 == n: return True elif mid**2 > n: A__ = mid - 1 else: A__ = mid + 1 return False if __name__ == "__main__": import doctest doctest.testmod()
104
"""simple docstring""" from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
104
1
from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar _UpperCAmelCase : Tuple = TypeVar("""T""") class lowercase ( Generic[T] ): __SCREAMING_SNAKE_CASE : deque[T] # Cache store of keys __SCREAMING_SNAKE_CASE : set[T] # References of the keys in cache __SCREAMING_SNAKE_CASE : int = 10 # Maximum capacity of cache def __init__( self , snake_case ): snake_case_ = deque() snake_case_ = set() if not n: snake_case_ = sys.maxsize elif n < 0: raise ValueError('n should be an integer greater than 0.' ) else: snake_case_ = n def a ( self , snake_case ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: snake_case_ = self.dq_store.pop() self.key_reference.remove(snake_case ) else: self.dq_store.remove(snake_case ) self.dq_store.appendleft(snake_case ) self.key_reference.add(snake_case ) def a ( self ): for k in self.dq_store: print(snake_case ) def __repr__( self ): return F'''LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}''' if __name__ == "__main__": import doctest doctest.testmod() _UpperCAmelCase : LRUCache[str | int] = LRUCache(4) lru_cache.refer("""A""") lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer("""A""") lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
108
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( """stable diffusion controlnet""", """0.22.0""", """Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.""", standard_warn=False, stacklevel=3, )
108
1
from __future__ import annotations # This is the precision for this function which can be altered. # It is recommended for users to keep this number greater than or equal to 10. A__ : int = 10 def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): for i in range(a__ ,a__ ): if array[i] == target: return i return -1 def UpperCamelCase( __UpperCamelCase : list[int] ,__UpperCamelCase : int ): lowerCAmelCase_ : Tuple = 0 lowerCAmelCase_ : Dict = len(a__ ) while left <= right: if right - left < precision: return lin_search(a__ ,a__ ,a__ ,a__ ) lowerCAmelCase_ : Optional[Any] = (left + right) // 3 + 1 lowerCAmelCase_ : Any = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: lowerCAmelCase_ : Union[str, Any] = one_third - 1 elif array[two_third] < target: lowerCAmelCase_ : List[Any] = two_third + 1 else: lowerCAmelCase_ : List[Any] = one_third + 1 lowerCAmelCase_ : int = two_third - 1 else: return -1 def UpperCamelCase( __UpperCamelCase : int ,__UpperCamelCase : int ,__UpperCamelCase : list[int] ,__UpperCamelCase : int ): if left < right: if right - left < precision: return lin_search(a__ ,a__ ,a__ ,a__ ) lowerCAmelCase_ : Optional[Any] = (left + right) // 3 + 1 lowerCAmelCase_ : List[str] = 2 * (left + right) // 3 + 1 if array[one_third] == target: return one_third elif array[two_third] == target: return two_third elif target < array[one_third]: return rec_ternary_search(a__ ,one_third - 1 ,a__ ,a__ ) elif array[two_third] < target: return rec_ternary_search(two_third + 1 ,a__ ,a__ ,a__ ) else: return rec_ternary_search(one_third + 1 ,two_third - 1 ,a__ ,a__ ) else: return -1 if __name__ == "__main__": import doctest doctest.testmod() A__ : Any = input('''Enter numbers separated by comma:\n''').strip() A__ : List[str] = [int(item.strip()) for item in user_input.split(''',''')] assert collection == sorted(collection), F"List must be ordered.\n{collection}." A__ : Optional[int] = int(input('''Enter the number to be found in the list:\n''').strip()) A__ : List[Any] = ite_ternary_search(collection, target) A__ : Optional[int] = rec_ternary_search(0, len(collection) - 1, collection, target) if resulta != -1: print(F'''Iterative search: {target} found at positions: {resulta}''') print(F'''Recursive search: {target} found at positions: {resulta}''') else: print('''Not found''')
171
from sympy import diff, lambdify, symbols from sympy.functions import * # noqa: F403 def __SCREAMING_SNAKE_CASE ( a__ : str ,a__ : complex ,a__ : str = "x" ,a__ : float = 10**-10 ,a__ : int = 1 ,) -> complex: __A : Tuple = symbols(a__ ) __A : List[str] = lambdify(a__ ,a__ ) __A : Any = lambdify(a__ ,diff(a__ ,a__ ) ) __A : Dict = starting_point while True: if diff_function(a__ ) != 0: __A : Optional[int] = prev_guess - multiplicity * func(a__ ) / diff_function( a__ ) else: raise ZeroDivisionError("""Could not find root""" ) from None # Precision is checked by comparing the difference of consecutive guesses if abs(next_guess - prev_guess ) < precision: return next_guess __A : List[Any] = next_guess # Let's Execute if __name__ == "__main__": # Find root of trigonometric function # Find value of pi print(f"""The root of sin(x) = 0 is {newton_raphson("sin(x)", 2)}""") # Find root of polynomial # Find fourth Root of 5 print(f"""The root of x**4 - 5 = 0 is {newton_raphson("x**4 -5", 0.4 +5J)}""") # Find value of e print( '''The root of log(y) - 1 = 0 is ''', f"""{newton_raphson("log(y) - 1", 2, variable="y")}""", ) # Exponential Roots print( '''The root of exp(x) - 1 = 0 is''', f"""{newton_raphson("exp(x) - 1", 10, precision=0.005)}""", ) # Find root of cos(x) print(f"""The root of cos(x) = 0 is {newton_raphson("cos(x)", 0)}""")
17
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available snake_case = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys snake_case = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
406
"""simple docstring""" import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin snake_case = '▁' snake_case = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece class UpperCamelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ : int = BertGenerationTokenizer UpperCAmelCase_ : List[str] = False UpperCAmelCase_ : str = True def A ( self ) -> int: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE = BertGenerationTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = '<s>' SCREAMING_SNAKE_CASE = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowercase__ ) , lowercase__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowercase__ ) , lowercase__ ) def A ( self ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<unk>' ) self.assertEqual(vocab_keys[1] , '<s>' ) self.assertEqual(vocab_keys[-1] , '<pad>' ) self.assertEqual(len(lowercase__ ) , 1002 ) def A ( self ) -> Any: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def A ( self ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE = BertGenerationTokenizer(lowercase__ , keep_accents=lowercase__ ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('This is a test' ) self.assertListEqual(lowercase__ , ['▁This', '▁is', '▁a', '▁t', 'est'] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [285, 46, 10, 170, 382] , ) SCREAMING_SNAKE_CASE = tokenizer.tokenize('I was born in 92000, and this is falsé.' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) @cached_property def A ( self ) -> Any: """simple docstring""" return BertGenerationTokenizer.from_pretrained('google/bert_for_seq_generation_L-24_bbc_encoder' ) @slow def A ( self ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE = 'Hello World!' SCREAMING_SNAKE_CASE = [18536, 2260, 101] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @slow def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = ( 'This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will' ' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth' ) SCREAMING_SNAKE_CASE = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, ] self.assertListEqual(lowercase__ , self.big_tokenizer.encode(lowercase__ ) ) @require_torch @slow def A ( self ) -> int: """simple docstring""" import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence SCREAMING_SNAKE_CASE = list(self.big_tokenizer.get_vocab().keys() )[:10] SCREAMING_SNAKE_CASE = ' '.join(lowercase__ ) SCREAMING_SNAKE_CASE = self.big_tokenizer.encode_plus(lowercase__ , return_tensors='pt' , return_token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE = self.big_tokenizer.batch_encode_plus( [sequence + ' ' + sequence] , return_tensors='pt' , return_token_type_ids=lowercase__ ) SCREAMING_SNAKE_CASE = BertGenerationConfig() SCREAMING_SNAKE_CASE = BertGenerationEncoder(lowercase__ ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowercase__ ) model(**lowercase__ ) @slow def A ( self ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE = {'input_ids': [[39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114], [448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowercase__ , model_name='google/bert_for_seq_generation_L-24_bbc_encoder' , revision='c817d1fd1be2ffa69431227a1fe320544943d4db' , )
406
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_download, hf_hub_url from PIL import Image from transformers import DetaConfig, DetaForObjectDetection, DetaImageProcessor, SwinConfig from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase = logging.get_logger(__name__) def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = SwinConfig( embed_dim=192 , depths=(2, 2, 18, 2) , num_heads=(6, 12, 24, 48) , window_size=12 , out_features=["stage2", "stage3", "stage4"] , ) UpperCAmelCase_ = DetaConfig( backbone_config=lowerCAmelCase__ , num_queries=900 , encoder_ffn_dim=2048 , decoder_ffn_dim=2048 , num_feature_levels=5 , assign_first_stage=lowerCAmelCase__ , with_box_refine=lowerCAmelCase__ , two_stage=lowerCAmelCase__ , ) # set labels UpperCAmelCase_ = "huggingface/label-files" if "o365" in model_name: UpperCAmelCase_ = 366 UpperCAmelCase_ = "object365-id2label.json" else: UpperCAmelCase_ = 91 UpperCAmelCase_ = "coco-detection-id2label.json" UpperCAmelCase_ = num_labels UpperCAmelCase_ = json.load(open(cached_download(hf_hub_url(lowerCAmelCase__ , lowerCAmelCase__ , repo_type="dataset" ) ) , "r" ) ) UpperCAmelCase_ = {int(lowerCAmelCase__ ): v for k, v in idalabel.items()} UpperCAmelCase_ = idalabel UpperCAmelCase_ = {v: k for k, v in idalabel.items()} return config def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = [] # stem # fmt: off rename_keys.append(("backbone.0.body.patch_embed.proj.weight", "model.backbone.model.embeddings.patch_embeddings.projection.weight") ) rename_keys.append(("backbone.0.body.patch_embed.proj.bias", "model.backbone.model.embeddings.patch_embeddings.projection.bias") ) rename_keys.append(("backbone.0.body.patch_embed.norm.weight", "model.backbone.model.embeddings.norm.weight") ) rename_keys.append(("backbone.0.body.patch_embed.norm.bias", "model.backbone.model.embeddings.norm.bias") ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_before.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_bias_table""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_bias_table""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.relative_position_index""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.self.relative_position_index""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.attn.proj.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.attention.output.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.norm2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.layernorm_after.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc1.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.intermediate.dense.bias""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.weight""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.blocks.{j}.mlp.fc2.bias""", f"""model.backbone.model.encoder.layers.{i}.blocks.{j}.output.dense.bias""") ) if i < 3: rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.reduction.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.reduction.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.weight""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.weight""") ) rename_keys.append((f"""backbone.0.body.layers.{i}.downsample.norm.bias""", f"""model.backbone.model.encoder.layers.{i}.downsample.norm.bias""") ) rename_keys.append(("backbone.0.body.norm1.weight", "model.backbone.model.hidden_states_norms.stage2.weight") ) rename_keys.append(("backbone.0.body.norm1.bias", "model.backbone.model.hidden_states_norms.stage2.bias") ) rename_keys.append(("backbone.0.body.norm2.weight", "model.backbone.model.hidden_states_norms.stage3.weight") ) rename_keys.append(("backbone.0.body.norm2.bias", "model.backbone.model.hidden_states_norms.stage3.bias") ) rename_keys.append(("backbone.0.body.norm3.weight", "model.backbone.model.hidden_states_norms.stage4.weight") ) rename_keys.append(("backbone.0.body.norm3.bias", "model.backbone.model.hidden_states_norms.stage4.bias") ) # transformer encoder for i in range(config.encoder_layers ): rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.weight""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.sampling_offsets.bias""", f"""model.encoder.layers.{i}.self_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.weight""", f"""model.encoder.layers.{i}.self_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.attention_weights.bias""", f"""model.encoder.layers.{i}.self_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.weight""", f"""model.encoder.layers.{i}.self_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.value_proj.bias""", f"""model.encoder.layers.{i}.self_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.weight""", f"""model.encoder.layers.{i}.self_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.self_attn.output_proj.bias""", f"""model.encoder.layers.{i}.self_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.weight""", f"""model.encoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm1.bias""", f"""model.encoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.weight""", f"""model.encoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear1.bias""", f"""model.encoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.weight""", f"""model.encoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.linear2.bias""", f"""model.encoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.weight""", f"""model.encoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.encoder.layers.{i}.norm2.bias""", f"""model.encoder.layers.{i}.final_layer_norm.bias""") ) # transformer decoder for i in range(config.decoder_layers ): rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.weight""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.sampling_offsets.bias""", f"""model.decoder.layers.{i}.encoder_attn.sampling_offsets.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.weight""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.attention_weights.bias""", f"""model.decoder.layers.{i}.encoder_attn.attention_weights.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.value_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.value_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.weight""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.cross_attn.output_proj.bias""", f"""model.decoder.layers.{i}.encoder_attn.output_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.weight""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm1.bias""", f"""model.decoder.layers.{i}.encoder_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.weight""", f"""model.decoder.layers.{i}.self_attn.out_proj.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.self_attn.out_proj.bias""", f"""model.decoder.layers.{i}.self_attn.out_proj.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.weight""", f"""model.decoder.layers.{i}.self_attn_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm2.bias""", f"""model.decoder.layers.{i}.self_attn_layer_norm.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.weight""", f"""model.decoder.layers.{i}.fc1.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear1.bias""", f"""model.decoder.layers.{i}.fc1.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.weight""", f"""model.decoder.layers.{i}.fc2.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.linear2.bias""", f"""model.decoder.layers.{i}.fc2.bias""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.weight""", f"""model.decoder.layers.{i}.final_layer_norm.weight""") ) rename_keys.append((f"""transformer.decoder.layers.{i}.norm3.bias""", f"""model.decoder.layers.{i}.final_layer_norm.bias""") ) # fmt: on return rename_keys def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = dct.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = [int(backbone_config.embed_dim * 2**i ) for i in range(len(backbone_config.depths ) )] for i in range(len(backbone_config.depths ) ): UpperCAmelCase_ = num_features[i] for j in range(backbone_config.depths[i] ): # fmt: off # read in weights + bias of input projection layer (in original implementation, this is a single matrix + bias) UpperCAmelCase_ = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.weight""" ) UpperCAmelCase_ = state_dict.pop(f"""backbone.0.body.layers.{i}.blocks.{j}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:dim, :] UpperCAmelCase_ = in_proj_bias[: dim] UpperCAmelCase_ = in_proj_weight[ dim : dim * 2, : ] UpperCAmelCase_ = in_proj_bias[ dim : dim * 2 ] UpperCAmelCase_ = in_proj_weight[ -dim :, : ] UpperCAmelCase_ = in_proj_bias[-dim :] # fmt: on def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ): # transformer decoder self-attention layers UpperCAmelCase_ = config.d_model for i in range(config.decoder_layers ): # read in weights + bias of input projection layer of self-attention UpperCAmelCase_ = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_weight""" ) UpperCAmelCase_ = state_dict.pop(f"""transformer.decoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict UpperCAmelCase_ = in_proj_weight[:hidden_size, :] UpperCAmelCase_ = in_proj_bias[:hidden_size] UpperCAmelCase_ = in_proj_weight[ hidden_size : hidden_size * 2, : ] UpperCAmelCase_ = in_proj_bias[hidden_size : hidden_size * 2] UpperCAmelCase_ = in_proj_weight[-hidden_size:, :] UpperCAmelCase_ = in_proj_bias[-hidden_size:] def a__ ( ): UpperCAmelCase_ = "http://images.cocodataset.org/val2017/000000039769.jpg" UpperCAmelCase_ = Image.open(requests.get(lowerCAmelCase__ , stream=lowerCAmelCase__ ).raw ) return im @torch.no_grad() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): UpperCAmelCase_ = get_deta_config(lowerCAmelCase__ ) # load original state dict if model_name == "deta-swin-large": UpperCAmelCase_ = hf_hub_download(repo_id="nielsr/deta-checkpoints" , filename="adet_swin_ft.pth" ) elif model_name == "deta-swin-large-o365": UpperCAmelCase_ = hf_hub_download(repo_id="jozhang97/deta-swin-l-o365" , filename="deta_swin_pt_o365.pth" ) else: raise ValueError(f"""Model name {model_name} not supported""" ) UpperCAmelCase_ = torch.load(lowerCAmelCase__ , map_location="cpu" )["model"] # original state dict for name, param in state_dict.items(): print(lowerCAmelCase__ , param.shape ) # rename keys UpperCAmelCase_ = create_rename_keys(lowerCAmelCase__ ) for src, dest in rename_keys: rename_key(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) read_in_swin_q_k_v(lowerCAmelCase__ , config.backbone_config ) read_in_decoder_q_k_v(lowerCAmelCase__ , lowerCAmelCase__ ) # fix some prefixes for key in state_dict.copy().keys(): if "transformer.decoder.class_embed" in key or "transformer.decoder.bbox_embed" in key: UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val if "input_proj" in key: UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val if "level_embed" in key or "pos_trans" in key or "pix_trans" in key or "enc_output" in key: UpperCAmelCase_ = state_dict.pop(lowerCAmelCase__ ) UpperCAmelCase_ = val # finally, create HuggingFace model and load state dict UpperCAmelCase_ = DetaForObjectDetection(lowerCAmelCase__ ) model.load_state_dict(lowerCAmelCase__ ) model.eval() UpperCAmelCase_ = "cuda" if torch.cuda.is_available() else "cpu" model.to(lowerCAmelCase__ ) # load image processor UpperCAmelCase_ = DetaImageProcessor(format="coco_detection" ) # verify our conversion on image UpperCAmelCase_ = prepare_img() UpperCAmelCase_ = processor(images=lowerCAmelCase__ , return_tensors="pt" ) UpperCAmelCase_ = encoding["pixel_values"] UpperCAmelCase_ = model(pixel_values.to(lowerCAmelCase__ ) ) # verify logits print("Logits:" , outputs.logits[0, :3, :3] ) print("Boxes:" , outputs.pred_boxes[0, :3, :3] ) if model_name == "deta-swin-large": UpperCAmelCase_ = torch.tensor( [[-7.6308, -2.8485, -5.3737], [-7.2037, -4.5505, -4.8027], [-7.2943, -4.2611, -4.6617]] ) UpperCAmelCase_ = torch.tensor([[0.4987, 0.4969, 0.9999], [0.2549, 0.5498, 0.4805], [0.5498, 0.2757, 0.0569]] ) elif model_name == "deta-swin-large-o365": UpperCAmelCase_ = torch.tensor( [[-8.0122, -3.5720, -4.9717], [-8.1547, -3.6886, -4.6389], [-7.6610, -3.6194, -5.0134]] ) UpperCAmelCase_ = torch.tensor([[0.2523, 0.5549, 0.4881], [0.7715, 0.4149, 0.4601], [0.5503, 0.2753, 0.0575]] ) assert torch.allclose(outputs.logits[0, :3, :3] , expected_logits.to(lowerCAmelCase__ ) , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes[0, :3, :3] , expected_boxes.to(lowerCAmelCase__ ) , atol=1e-4 ) print("Everything ok!" ) if pytorch_dump_folder_path: # Save model and processor logger.info(f"""Saving PyTorch model and processor to {pytorch_dump_folder_path}...""" ) Path(lowerCAmelCase__ ).mkdir(exist_ok=lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) processor.save_pretrained(lowerCAmelCase__ ) # Push to hub if push_to_hub: print("Pushing model and processor to hub..." ) model.push_to_hub(f"""jozhang97/{model_name}""" ) processor.push_to_hub(f"""jozhang97/{model_name}""" ) if __name__ == "__main__": lowerCamelCase = argparse.ArgumentParser() parser.add_argument( """--model_name""", type=str, default="""deta-swin-large""", choices=["""deta-swin-large""", """deta-swin-large-o365"""], help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase = parser.parse_args() convert_deta_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
82
import webbrowser from sys import argv from urllib.parse import parse_qs, quote import requests from bsa import BeautifulSoup from fake_useragent import UserAgent if __name__ == "__main__": lowerCAmelCase__ : Optional[int] ='%20'.join(argv[1:]) if len(argv) > 1 else quote(str(input('Search: '))) print('Googling.....') lowerCAmelCase__ : Optional[int] =F"""https://www.google.com/search?q={query}&num=100""" lowerCAmelCase__ : Union[str, Any] =requests.get( url, headers={'User-Agent': str(UserAgent().random)}, ) try: lowerCAmelCase__ : str =( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'yuRUbf'}) .find('a') .get('href') ) except AttributeError: lowerCAmelCase__ : Optional[Any] =parse_qs( BeautifulSoup(res.text, 'html.parser') .find('div', attrs={'class': 'kCrYT'}) .find('a') .get('href') )['url'][0] webbrowser.open(link)
101
0
_UpperCAmelCase = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
297
import json import logging import os import sys from pathlib import Path import finetune_rag from transformers.file_utils import is_apex_available from transformers.testing_utils import ( TestCasePlus, execute_subprocess_async, require_ray, require_torch_gpu, require_torch_multi_gpu, ) logging.basicConfig(level=logging.DEBUG) _UpperCAmelCase = logging.getLogger() _UpperCAmelCase = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class __magic_name__ ( lowercase_ ): """simple docstring""" def _UpperCAmelCase ( self , a__ ): os.makedirs(a__ , exist_ok=a__ ) _lowerCamelCase = {'''source''': '''What is love ?''', '''target''': '''life'''} _lowerCamelCase = {'''train''': 12, '''val''': 2, '''test''': 2} for split in ["train", "test", "val"]: for field in ["source", "target"]: _lowerCamelCase = '''\n'''.join([contents[field]] * n_lines[split] ) with open(os.path.join(a__ , f'''{split}.{field}''' ) , '''w''' ) as f: f.write(a__ ) def _UpperCAmelCase ( self , a__ , a__ = "pytorch" ): _lowerCamelCase = self.get_auto_remove_tmp_dir() _lowerCamelCase = os.path.join(a__ , '''output''' ) _lowerCamelCase = os.path.join(a__ , '''data''' ) self._create_dummy_data(data_dir=a__ ) _lowerCamelCase = f''' --data_dir {data_dir} \ --output_dir {output_dir} \ --model_name_or_path facebook/rag-sequence-base \ --model_type rag_sequence \ --do_train \ --do_predict \ --n_val -1 \ --val_check_interval 1.0 \ --train_batch_size 2 \ --eval_batch_size 1 \ --max_source_length 25 \ --max_target_length 25 \ --val_max_target_length 25 \ --test_max_target_length 25 \ --label_smoothing 0.1 \ --dropout 0.1 \ --attention_dropout 0.1 \ --weight_decay 0.001 \ --adam_epsilon 1e-08 \ --max_grad_norm 0.1 \ --lr_scheduler polynomial \ --learning_rate 3e-04 \ --num_train_epochs 1 \ --warmup_steps 4 \ --gradient_accumulation_steps 1 \ --distributed-port 8787 \ --use_dummy_dataset 1 \ --distributed_retriever {distributed_retriever} \ '''.split() if gpus > 0: testargs.append(f'''--gpus={gpus}''' ) if is_apex_available(): testargs.append('''--fp16''' ) else: testargs.append('''--gpus=0''' ) testargs.append('''--distributed_backend=ddp_cpu''' ) testargs.append('''--num_processes=2''' ) _lowerCamelCase = [sys.executable, str(Path(finetune_rag.__file__ ).resolve() )] + testargs execute_subprocess_async(a__ , env=self.get_env() ) _lowerCamelCase = os.path.join(a__ , '''metrics.json''' ) with open(a__ ) as f: _lowerCamelCase = json.load(a__ ) return result @require_torch_gpu def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=2 ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_gpu @require_ray def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 ) @require_torch_multi_gpu @require_ray def _UpperCAmelCase ( self ): _lowerCamelCase = self._run_finetune(gpus=1 , distributed_retriever='''ray''' ) self.assertGreaterEqual(result['''test'''][0]['''test_avg_em'''] , 0.2 )
297
1
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase__ : def __init__( self , UpperCamelCase__ , UpperCamelCase__=13 , UpperCamelCase__=32 , UpperCamelCase__=2 , UpperCamelCase__=3 , UpperCamelCase__=16 , UpperCamelCase__=[32, 64, 1_28] , UpperCamelCase__=[1, 2, 1] , UpperCamelCase__=[2, 2, 4] , UpperCamelCase__=2 , UpperCamelCase__=2.0 , UpperCamelCase__=True , UpperCamelCase__=0.0 , UpperCamelCase__=0.0 , UpperCamelCase__=0.1 , UpperCamelCase__="gelu" , UpperCamelCase__=False , UpperCamelCase__=True , UpperCamelCase__=0.02 , UpperCamelCase__=1e-5 , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=True , UpperCamelCase__=10 , UpperCamelCase__=8 , UpperCamelCase__=["stage1", "stage2"] , UpperCamelCase__=[1, 2] , ): '''simple docstring''' A__ = parent A__ = batch_size A__ = image_size A__ = patch_size A__ = num_channels A__ = embed_dim A__ = hidden_sizes A__ = depths A__ = num_heads A__ = window_size A__ = mlp_ratio A__ = qkv_bias A__ = hidden_dropout_prob A__ = attention_probs_dropout_prob A__ = drop_path_rate A__ = hidden_act A__ = use_absolute_embeddings A__ = patch_norm A__ = layer_norm_eps A__ = initializer_range A__ = is_training A__ = scope A__ = use_labels A__ = type_sequence_label_size A__ = encoder_stride A__ = out_features A__ = out_indices def lowercase_ ( self ): '''simple docstring''' A__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) A__ = None if self.use_labels: A__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A__ = self.get_config() return config, pixel_values, labels def lowercase_ ( self ): '''simple docstring''' return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = FocalNetModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ ) A__ = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) A__ = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None A__ = None A__ = FocalNetBackbone(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = FocalNetForMaskedImageModeling(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images A__ = 1 A__ = FocalNetForMaskedImageModeling(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = self.type_sequence_label_size A__ = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = model(UpperCamelCase__ , labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images A__ = 1 A__ = FocalNetForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() A__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) A__ = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowercase_ ( self ): '''simple docstring''' A__ = self.prepare_config_and_inputs() A__ , A__ , A__ = config_and_inputs A__ = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): lowercase__ : List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) lowercase__ : List[Any] = ( {"""feature-extraction""": FocalNetModel, """image-classification""": FocalNetForImageClassification} if is_torch_available() else {} ) lowercase__ : Any = False lowercase__ : List[Any] = False lowercase__ : Dict = False lowercase__ : List[str] = False lowercase__ : int = False def lowercase_ ( self ): '''simple docstring''' A__ = FocalNetModelTester(self ) A__ = ConfigTester(self , config_class=UpperCamelCase__ , embed_dim=37 , has_text_modality=UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowercase_ ( self ): '''simple docstring''' return def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip(reason="FocalNet does not use inputs_embeds" ) def lowercase_ ( self ): '''simple docstring''' pass @unittest.skip(reason="FocalNet does not use feedforward chunking" ) def lowercase_ ( self ): '''simple docstring''' pass def lowercase_ ( self ): '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: A__ = model_class(UpperCamelCase__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) A__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(UpperCamelCase__ , nn.Linear ) ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: A__ = model_class(UpperCamelCase__ ) A__ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic A__ = [*signature.parameters.keys()] A__ = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCamelCase__ ) def lowercase_ ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ): '''simple docstring''' A__ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): A__ = model(**self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) A__ = outputs.hidden_states A__ = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) # FocalNet has a different seq_length A__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A__ = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) A__ = outputs.reshaped_hidden_states self.assertEqual(len(UpperCamelCase__ ) , UpperCamelCase__ ) A__ , A__ , A__ , A__ = reshaped_hidden_states[0].shape A__ = ( reshaped_hidden_states[0].view(UpperCamelCase__ , UpperCamelCase__ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: A__ = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = 3 A__ = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) A__ = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) A__ = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) A__ = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: A__ = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] A__ = True self.check_hidden_states_output(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , (padded_height, padded_width) ) @slow def lowercase_ ( self ): '''simple docstring''' for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A__ = FocalNetModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def lowercase_ ( self ): '''simple docstring''' A__ , A__ = self.model_tester.prepare_config_and_inputs_for_common() A__ = _config_zero_init(UpperCamelCase__ ) for model_class in self.all_model_classes: A__ = model_class(config=UpperCamelCase__ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCAmelCase__ ( unittest.TestCase ): @cached_property def lowercase_ ( self ): '''simple docstring''' return AutoImageProcessor.from_pretrained("microsoft/focalnet-tiny" ) if is_vision_available() else None @slow def lowercase_ ( self ): '''simple docstring''' A__ = FocalNetForImageClassification.from_pretrained("microsoft/focalnet-tiny" ).to(UpperCamelCase__ ) A__ = self.default_image_processor A__ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) A__ = image_processor(images=UpperCamelCase__ , return_tensors="pt" ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): A__ = model(**UpperCamelCase__ ) # verify the logits A__ = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , UpperCamelCase__ ) A__ = torch.tensor([0.2166, -0.4368, 0.2191] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCamelCase__ , atol=1e-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class lowerCAmelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowercase__ : Tuple = (FocalNetBackbone,) if is_torch_available() else () lowercase__ : Any = FocalNetConfig lowercase__ : Union[str, Any] = False def lowercase_ ( self ): '''simple docstring''' A__ = FocalNetModelTester(self )
337
"""simple docstring""" import importlib import sys from argparse import REMAINDER, ArgumentParser from pathlib import Path import torch_xla.distributed.xla_multiprocessing as xmp def __a ( ) -> Optional[Any]: '''simple docstring''' A__ = ArgumentParser( description=( "PyTorch TPU distributed training launch helper utility that will spawn up multiple distributed processes" ) ) # Optional arguments for the launch helper parser.add_argument("--num_cores" , type=A , default=1 , help="Number of TPU cores to use (1 or 8)." ) # positional parser.add_argument( "training_script" , type=A , help=( "The full path to the single TPU training " "program/script to be launched in parallel, " "followed by all the arguments for the " "training script" ) , ) # rest from the training program parser.add_argument("training_script_args" , nargs=A ) return parser.parse_args() def __a ( ) -> List[str]: '''simple docstring''' A__ = parse_args() # Import training_script as a module. A__ = Path(args.training_script ) sys.path.append(str(script_fpath.parent.resolve() ) ) A__ = script_fpath.stem A__ = importlib.import_module(A ) # Patch sys.argv A__ = [args.training_script] + args.training_script_args + ["--tpu_num_cores", str(args.num_cores )] xmp.spawn(mod._mp_fn , args=() , nprocs=args.num_cores ) if __name__ == "__main__": main()
337
1
import sys from collections import defaultdict class __lowerCAmelCase : """simple docstring""" def __init__( self : List[Any] ): __lowercase : Tuple = [] def snake_case_ ( self : Optional[Any] , _snake_case : Dict ): return self.node_position[vertex] def snake_case_ ( self : List[Any] , _snake_case : Any , _snake_case : Any ): __lowercase : int = pos def snake_case_ ( self : Union[str, Any] , _snake_case : Tuple , _snake_case : Optional[Any] , _snake_case : Dict , _snake_case : Optional[Any] ): if start > size // 2 - 1: return else: if 2 * start + 2 >= size: __lowercase : str = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: __lowercase : Optional[Any] = 2 * start + 1 else: __lowercase : Any = 2 * start + 2 if heap[smallest_child] < heap[start]: __lowercase : List[str] = heap[smallest_child], positions[smallest_child] __lowercase : Dict = ( heap[start], positions[start], ) __lowercase : Dict = temp, tempa __lowercase : int = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , _snake_case ) self.top_to_bottom(_snake_case , _snake_case , _snake_case , _snake_case ) def snake_case_ ( self : List[Any] , _snake_case : Optional[int] , _snake_case : Optional[int] , _snake_case : Tuple , _snake_case : Union[str, Any] ): __lowercase : Tuple = position[index] while index != 0: __lowercase : Dict = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: __lowercase : Union[str, Any] = heap[parent] __lowercase : Optional[int] = position[parent] self.set_position(position[parent] , _snake_case ) else: __lowercase : Union[str, Any] = val __lowercase : Union[str, Any] = temp self.set_position(_snake_case , _snake_case ) break __lowercase : Tuple = parent else: __lowercase : List[Any] = val __lowercase : Any = temp self.set_position(_snake_case , 0 ) def snake_case_ ( self : Dict , _snake_case : str , _snake_case : Optional[int] ): __lowercase : Optional[Any] = len(_snake_case ) // 2 - 1 for i in range(_snake_case , -1 , -1 ): self.top_to_bottom(_snake_case , _snake_case , len(_snake_case ) , _snake_case ) def snake_case_ ( self : Union[str, Any] , _snake_case : Dict , _snake_case : Optional[Any] ): __lowercase : List[Any] = positions[0] __lowercase : Optional[int] = sys.maxsize self.top_to_bottom(_snake_case , 0 , len(_snake_case ) , _snake_case ) return temp def UpperCAmelCase_ ( __lowerCAmelCase ) -> int: __lowercase : Union[str, Any] = Heap() __lowercase : Tuple = [0] * len(__lowerCAmelCase ) __lowercase : Optional[int] = [-1] * len(__lowerCAmelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph __lowercase : List[str] = [] # Heap of Distance of vertices from their neighboring vertex __lowercase : Optional[Any] = [] for vertex in range(len(__lowerCAmelCase ) ): distance_tv.append(sys.maxsize ) positions.append(__lowerCAmelCase ) heap.node_position.append(__lowerCAmelCase ) __lowercase : Any = [] __lowercase : str = 1 __lowercase : List[Any] = sys.maxsize for neighbor, distance in adjacency_list[0]: __lowercase : List[str] = 0 __lowercase : Optional[int] = distance heap.heapify(__lowerCAmelCase , __lowerCAmelCase ) for _ in range(1 , len(__lowerCAmelCase ) ): __lowercase : Tuple = heap.delete_minimum(__lowerCAmelCase , __lowerCAmelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) __lowercase : List[Any] = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__lowerCAmelCase )] ): __lowercase : Dict = distance heap.bottom_to_top( __lowerCAmelCase , heap.get_position(__lowerCAmelCase ) , __lowerCAmelCase , __lowerCAmelCase ) __lowercase : Optional[Any] = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > __lowerCAmelCase : Any = int(input("Enter number of edges: ").strip()) __lowerCAmelCase : Any = defaultdict(list) for _ in range(edges_number): __lowerCAmelCase : str = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
719
from .constants import ( MODEL_NAME, OPTIMIZER_NAME, RNG_STATE_NAME, SAFE_WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SCALER_NAME, SCHEDULER_NAME, TORCH_LAUNCH_PARAMS, WEIGHTS_INDEX_NAME, WEIGHTS_NAME, ) from .dataclasses import ( BnbQuantizationConfig, ComputeEnvironment, CustomDtype, DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, DynamoBackend, FPaRecipeKwargs, FullyShardedDataParallelPlugin, GradientAccumulationPlugin, GradScalerKwargs, InitProcessGroupKwargs, KwargsHandler, LoggerType, MegatronLMPlugin, PrecisionType, ProjectConfiguration, RNGType, SageMakerDistributedType, TensorInformation, TorchDynamoPlugin, ) from .environment import get_int_from_env, parse_choice_from_env, parse_flag_from_env from .imports import ( get_ccl_version, is_abit_bnb_available, is_abit_bnb_available, is_aim_available, is_bfaa_available, is_bnb_available, is_botoa_available, is_ccl_available, is_comet_ml_available, is_datasets_available, is_deepspeed_available, is_fpa_available, is_ipex_available, is_megatron_lm_available, is_mlflow_available, is_mps_available, is_npu_available, is_rich_available, is_safetensors_available, is_sagemaker_available, is_tensorboard_available, is_tpu_available, is_transformers_available, is_wandb_available, is_xpu_available, ) from .modeling import ( check_device_map, check_tied_parameters_in_config, check_tied_parameters_on_same_device, compute_module_sizes, convert_file_size_to_int, dtype_byte_size, find_tied_parameters, get_balanced_memory, get_max_layer_size, get_max_memory, get_mixed_precision_context_manager, id_tensor_storage, infer_auto_device_map, load_checkpoint_in_model, load_offloaded_weights, load_state_dict, named_module_tensors, retie_parameters, set_module_tensor_to_device, shard_checkpoint, ) from .offload import ( OffloadedWeightsLoader, PrefixedDataset, extract_submodules_state_dict, load_offloaded_weight, offload_state_dict, offload_weight, save_offload_index, ) from .operations import ( broadcast, broadcast_object_list, concatenate, convert_outputs_to_fpaa, convert_to_fpaa, find_batch_size, find_device, gather, gather_object, get_data_structure, honor_type, initialize_tensors, is_namedtuple, is_tensor_information, is_torch_tensor, listify, pad_across_processes, recursively_apply, reduce, send_to_device, slice_tensors, ) from .versions import compare_versions, is_torch_version if is_deepspeed_available(): from .deepspeed import ( DeepSpeedEngineWrapper, DeepSpeedOptimizerWrapper, DeepSpeedSchedulerWrapper, DummyOptim, DummyScheduler, HfDeepSpeedConfig, ) from .bnb import has_abit_bnb_layers, load_and_quantize_model from .fsdp_utils import load_fsdp_model, load_fsdp_optimizer, save_fsdp_model, save_fsdp_optimizer from .launch import ( PrepareForLaunch, _filter_args, prepare_deepspeed_cmd_env, prepare_multi_gpu_env, prepare_sagemager_args_inputs, prepare_simple_launcher_cmd_env, prepare_tpu, ) from .megatron_lm import ( AbstractTrainStep, BertTrainStep, GPTTrainStep, MegatronEngine, MegatronLMDummyDataLoader, MegatronLMDummyScheduler, MegatronLMOptimizerWrapper, MegatronLMSchedulerWrapper, TaTrainStep, avg_losses_across_data_parallel_group, gather_across_data_parallel_groups, ) from .megatron_lm import initialize as megatron_lm_initialize from .megatron_lm import prepare_data_loader as megatron_lm_prepare_data_loader from .megatron_lm import prepare_model as megatron_lm_prepare_model from .megatron_lm import prepare_optimizer as megatron_lm_prepare_optimizer from .megatron_lm import prepare_scheduler as megatron_lm_prepare_scheduler from .memory import find_executable_batch_size, release_memory from .other import ( extract_model_from_parallel, get_pretty_name, is_port_in_use, merge_dicts, patch_environment, save, wait_for_everyone, write_basic_config, ) from .random import set_seed, synchronize_rng_state, synchronize_rng_states from .torch_xla import install_xla from .tqdm import tqdm from .transformer_engine import convert_model, has_transformer_engine_layers
284
0
"""simple docstring""" from __future__ import annotations from decimal import Decimal from numpy import array def lowercase__ ( lowerCamelCase : list[list[float]] ) -> list[list[float]]: lowerCAmelCase__ : List[str] = Decimal # Check if the provided matrix has 2 rows and 2 columns # since this implementation only works for 2x2 matrices if len(lowerCamelCase ) == 2 and len(matrix[0] ) == 2 and len(matrix[1] ) == 2: # Calculate the determinant of the matrix lowerCAmelCase__ : Tuple = float( d(matrix[0][0] ) * d(matrix[1][1] ) - d(matrix[1][0] ) * d(matrix[0][1] ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creates a copy of the matrix with swapped positions of the elements lowerCAmelCase__ : Optional[Any] = [[0.0, 0.0], [0.0, 0.0]] lowerCAmelCase__ , lowerCAmelCase__ : List[str] = matrix[1][1], matrix[0][0] lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = -matrix[1][0], -matrix[0][1] # Calculate the inverse of the matrix return [ [(float(d(lowerCamelCase ) ) / determinant) or 0.0 for n in row] for row in swapped_matrix ] elif ( len(lowerCamelCase ) == 3 and len(matrix[0] ) == 3 and len(matrix[1] ) == 3 and len(matrix[2] ) == 3 ): # Calculate the determinant of the matrix using Sarrus rule lowerCAmelCase__ : Union[str, Any] = float( ( (d(matrix[0][0] ) * d(matrix[1][1] ) * d(matrix[2][2] )) + (d(matrix[0][1] ) * d(matrix[1][2] ) * d(matrix[2][0] )) + (d(matrix[0][2] ) * d(matrix[1][0] ) * d(matrix[2][1] )) ) - ( (d(matrix[0][2] ) * d(matrix[1][1] ) * d(matrix[2][0] )) + (d(matrix[0][1] ) * d(matrix[1][0] ) * d(matrix[2][2] )) + (d(matrix[0][0] ) * d(matrix[1][2] ) * d(matrix[2][1] )) ) ) if determinant == 0: raise ValueError("This matrix has no inverse." ) # Creating cofactor matrix lowerCAmelCase__ : int = [ [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], [d(0.0 ), d(0.0 ), d(0.0 )], ] lowerCAmelCase__ : List[str] = (d(matrix[1][1] ) * d(matrix[2][2] )) - ( d(matrix[1][2] ) * d(matrix[2][1] ) ) lowerCAmelCase__ : Any = -( (d(matrix[1][0] ) * d(matrix[2][2] )) - (d(matrix[1][2] ) * d(matrix[2][0] )) ) lowerCAmelCase__ : str = (d(matrix[1][0] ) * d(matrix[2][1] )) - ( d(matrix[1][1] ) * d(matrix[2][0] ) ) lowerCAmelCase__ : str = -( (d(matrix[0][1] ) * d(matrix[2][2] )) - (d(matrix[0][2] ) * d(matrix[2][1] )) ) lowerCAmelCase__ : List[str] = (d(matrix[0][0] ) * d(matrix[2][2] )) - ( d(matrix[0][2] ) * d(matrix[2][0] ) ) lowerCAmelCase__ : Any = -( (d(matrix[0][0] ) * d(matrix[2][1] )) - (d(matrix[0][1] ) * d(matrix[2][0] )) ) lowerCAmelCase__ : List[str] = (d(matrix[0][1] ) * d(matrix[1][2] )) - ( d(matrix[0][2] ) * d(matrix[1][1] ) ) lowerCAmelCase__ : int = -( (d(matrix[0][0] ) * d(matrix[1][2] )) - (d(matrix[0][2] ) * d(matrix[1][0] )) ) lowerCAmelCase__ : int = (d(matrix[0][0] ) * d(matrix[1][1] )) - ( d(matrix[0][1] ) * d(matrix[1][0] ) ) # Transpose the cofactor matrix (Adjoint matrix) lowerCAmelCase__ : List[str] = array(lowerCamelCase ) for i in range(3 ): for j in range(3 ): lowerCAmelCase__ : Dict = cofactor_matrix[j][i] # Inverse of the matrix using the formula (1/determinant) * adjoint matrix lowerCAmelCase__ : str = array(lowerCamelCase ) for i in range(3 ): for j in range(3 ): inverse_matrix[i][j] /= d(lowerCamelCase ) # Calculate the inverse of the matrix return [[float(d(lowerCamelCase ) ) or 0.0 for n in row] for row in inverse_matrix] raise ValueError("Please provide a matrix of size 2x2 or 3x3." )
308
"""simple docstring""" def lowercase__ ( lowerCamelCase : int , lowerCamelCase : int ) -> int: return int(input_a == input_a == 0 ) def lowercase__ ( ) -> None: print("Truth Table of NOR Gate:" ) print("| Input 1 | Input 2 | Output |" ) print(F"| 0 | 0 | {nor_gate(0 , 0 )} |" ) print(F"| 0 | 1 | {nor_gate(0 , 1 )} |" ) print(F"| 1 | 0 | {nor_gate(1 , 0 )} |" ) print(F"| 1 | 1 | {nor_gate(1 , 1 )} |" ) if __name__ == "__main__": import doctest doctest.testmod() main()
308
1
from ...utils import logging from ..ta.modeling_tf_ta import TFTaEncoderModel, TFTaForConditionalGeneration, TFTaModel from .configuration_mta import MTaConfig _lowerCamelCase : Tuple = logging.get_logger(__name__) _lowerCamelCase : int = '''T5Config''' class lowercase ( a ): lowercase__ : Tuple = """mt5""" lowercase__ : Tuple = MTaConfig class lowercase ( a ): lowercase__ : Optional[int] = """mt5""" lowercase__ : List[Any] = MTaConfig class lowercase ( a ): lowercase__ : Union[str, Any] = """mt5""" lowercase__ : List[Any] = MTaConfig
647
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __lowerCamelCase (UpperCAmelCase__ : Any , UpperCAmelCase__ : Dict=False ): SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"module.blocks.{i}.norm1.weight", F"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"module.blocks.{i}.norm1.bias", F"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"module.blocks.{i}.attn.proj.weight", F"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.attn.proj.bias", F"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"module.blocks.{i}.norm2.weight", F"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"module.blocks.{i}.norm2.bias", F"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.weight", F"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc1.bias", F"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.weight", F"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"module.blocks.{i}.mlp.fc2.bias", F"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("module.cls_token", "vit.embeddings.cls_token"), ("module.patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"), ("module.patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"), ("module.pos_embed", "vit.embeddings.position_embeddings"), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("module.norm.weight", "layernorm.weight"), ("module.norm.bias", "layernorm.bias"), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" SCREAMING_SNAKE_CASE = [(pair[0], pair[1][4:]) if pair[1].startswith("vit" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("norm.weight", "vit.layernorm.weight"), ("norm.bias", "vit.layernorm.bias"), ("head.weight", "classifier.weight"), ("head.bias", "classifier.bias"), ] ) return rename_keys def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : int , UpperCAmelCase__ : str=False ): for i in range(config.num_hidden_layers ): if base_model: SCREAMING_SNAKE_CASE = "" else: SCREAMING_SNAKE_CASE = "vit." # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.weight" ) SCREAMING_SNAKE_CASE = state_dict.pop(F"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def __lowerCamelCase (UpperCAmelCase__ : Tuple ): SCREAMING_SNAKE_CASE = ["head.weight", "head.bias"] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : Any ): # projection head is used in the self-supervised pre-training in MSN, # for downstream task it's not needed. SCREAMING_SNAKE_CASE = [ "module.fc.fc1.weight", "module.fc.fc1.bias", "module.fc.bn1.weight", "module.fc.bn1.bias", "module.fc.bn1.running_mean", "module.fc.bn1.running_var", "module.fc.bn1.num_batches_tracked", "module.fc.fc2.weight", "module.fc.fc2.bias", "module.fc.bn2.weight", "module.fc.bn2.bias", "module.fc.bn2.running_mean", "module.fc.bn2.running_var", "module.fc.bn2.num_batches_tracked", "module.fc.fc3.weight", "module.fc.fc3.bias", ] for k in ignore_keys: state_dict.pop(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowerCamelCase (UpperCAmelCase__ : int , UpperCAmelCase__ : Union[str, Any] , UpperCAmelCase__ : Dict ): SCREAMING_SNAKE_CASE = dct.pop(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = val def __lowerCamelCase (UpperCAmelCase__ : Tuple , UpperCAmelCase__ : str ): SCREAMING_SNAKE_CASE = ViTMSNConfig() SCREAMING_SNAKE_CASE = 1_0_0_0 SCREAMING_SNAKE_CASE = "datasets/huggingface/label-files" SCREAMING_SNAKE_CASE = "imagenet-1k-id2label.json" SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(UpperCAmelCase__ , UpperCAmelCase__ ) , "r" ) ) SCREAMING_SNAKE_CASE = {int(UpperCAmelCase__ ): v for k, v in idalabel.items()} SCREAMING_SNAKE_CASE = idalabel SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = 3_8_4 SCREAMING_SNAKE_CASE = 1_5_3_6 SCREAMING_SNAKE_CASE = 6 elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = 2_4 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 0.1 elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = 4 elif "l7" in checkpoint_url: SCREAMING_SNAKE_CASE = 7 SCREAMING_SNAKE_CASE = 1_0_2_4 SCREAMING_SNAKE_CASE = 4_0_9_6 SCREAMING_SNAKE_CASE = 2_4 SCREAMING_SNAKE_CASE = 1_6 SCREAMING_SNAKE_CASE = 0.1 SCREAMING_SNAKE_CASE = ViTMSNModel(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(UpperCAmelCase__ , map_location="cpu" )["target_encoder"] SCREAMING_SNAKE_CASE = ViTImageProcessor(size=config.image_size ) remove_projection_head(UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = create_rename_keys(UpperCAmelCase__ , base_model=UpperCAmelCase__ ) for src, dest in rename_keys: rename_key(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) read_in_q_k_v(UpperCAmelCase__ , UpperCAmelCase__ , base_model=UpperCAmelCase__ ) model.load_state_dict(UpperCAmelCase__ ) model.eval() SCREAMING_SNAKE_CASE = "http://images.cocodataset.org/val2017/000000039769.jpg" SCREAMING_SNAKE_CASE = Image.open(requests.get(UpperCAmelCase__ , stream=UpperCAmelCase__ ).raw ) SCREAMING_SNAKE_CASE = ViTImageProcessor( size=config.image_size , image_mean=UpperCAmelCase__ , image_std=UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = image_processor(images=UpperCAmelCase__ , return_tensors="pt" ) # forward pass torch.manual_seed(2 ) SCREAMING_SNAKE_CASE = model(**UpperCAmelCase__ ) SCREAMING_SNAKE_CASE = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-1.0915, -1.4876, -1.1809]] ) elif "b16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[14.2889, -18.9045, 11.7281]] ) elif "l16" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[41.5028, -22.8681, 45.6475]] ) elif "b4" in checkpoint_url: SCREAMING_SNAKE_CASE = torch.tensor([[-4.3868, 5.2932, -0.4137]] ) else: SCREAMING_SNAKE_CASE = torch.tensor([[-0.1792, -0.6465, 2.4263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , UpperCAmelCase__ , atol=1e-4 ) print(F"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(UpperCAmelCase__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(UpperCAmelCase__ ) if __name__ == "__main__": _lowerCamelCase : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) _lowerCamelCase : Optional[Any] = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
647
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _a : int = logging.get_logger(__name__) _a : List[Any] = { """abeja/gpt-neox-japanese-2.7b""": """https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json""", } class __A (lowerCAmelCase_ ): snake_case :Tuple = "gpt_neox_japanese" def __init__( self , UpperCamelCase_=3_20_00 , UpperCamelCase_=25_60 , UpperCamelCase_=32 , UpperCamelCase_=32 , UpperCamelCase_=4 , UpperCamelCase_="gelu" , UpperCamelCase_=1.0_0 , UpperCamelCase_=1_00_00 , UpperCamelCase_=20_48 , UpperCamelCase_=0.0_2 , UpperCamelCase_=1E-5 , UpperCamelCase_=True , UpperCamelCase_=3_19_96 , UpperCamelCase_=3_19_99 , UpperCamelCase_=0.1 , UpperCamelCase_=0.0 , **UpperCamelCase_ , ): super().__init__(bos_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , **UpperCamelCase_ ) __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Union[str, Any] = max_position_embeddings __UpperCAmelCase : Dict = hidden_size __UpperCAmelCase : Optional[Any] = num_hidden_layers __UpperCAmelCase : List[Any] = num_attention_heads __UpperCAmelCase : Optional[Any] = intermediate_multiple_size __UpperCAmelCase : Optional[int] = hidden_act __UpperCAmelCase : List[Any] = rotary_pct __UpperCAmelCase : Dict = rotary_emb_base __UpperCAmelCase : Any = initializer_range __UpperCAmelCase : Tuple = layer_norm_eps __UpperCAmelCase : Union[str, Any] = use_cache __UpperCAmelCase : Optional[Any] = attention_dropout __UpperCAmelCase : Tuple = hidden_dropout
168
"""simple docstring""" from typing import Dict, List, Optional, Tuple, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, flip_channel_order, get_resize_output_image_size, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_torch_tensor, is_vision_available, logging if is_vision_available(): import PIL if is_torch_available(): import torch snake_case_ : str = logging.get_logger(__name__) class snake_case__ ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE__ = ['''pixel_values'''] def __init__( self : Any , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = PILImageResampling.BILINEAR , lowercase : bool = True , lowercase : Union[int, float] = 1 / 2_55 , lowercase : bool = True , lowercase : Dict[str, int] = None , lowercase : bool = True , **lowercase : Tuple , ): '''simple docstring''' super().__init__(**lowercase ) UpperCAmelCase : Optional[int] = size if size is not None else {"shortest_edge": 2_24} UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase : Union[str, Any] = crop_size if crop_size is not None else {"height": 2_56, "width": 2_56} UpperCAmelCase : List[Any] = get_size_dict(lowercase , param_name="crop_size" ) UpperCAmelCase : str = do_resize UpperCAmelCase : Union[str, Any] = size UpperCAmelCase : Any = resample UpperCAmelCase : str = do_rescale UpperCAmelCase : List[str] = rescale_factor UpperCAmelCase : List[str] = do_center_crop UpperCAmelCase : Any = crop_size UpperCAmelCase : str = do_flip_channel_order def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : PILImageResampling = PIL.Image.BILINEAR , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase : Dict = get_size_dict(lowercase , default_to_square=lowercase ) if "shortest_edge" not in size: raise ValueError(f"""The `size` dictionary must contain the key `shortest_edge`. Got {size.keys()}""" ) UpperCAmelCase : Dict = get_resize_output_image_size(lowercase , size=size["shortest_edge"] , default_to_square=lowercase ) return resize(lowercase , size=lowercase , resample=lowercase , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : List[str] , lowercase : np.ndarray , lowercase : Dict[str, int] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' UpperCAmelCase : int = get_size_dict(lowercase ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) return center_crop(lowercase , size=(size["height"], size["width"]) , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : Any , lowercase : np.ndarray , lowercase : Union[int, float] , lowercase : Optional[Union[str, ChannelDimension]] = None , **lowercase : List[Any] , ): '''simple docstring''' return rescale(lowercase , scale=lowercase , data_format=lowercase , **lowercase ) def __lowerCAmelCase ( self : Optional[int] , lowercase : np.ndarray , lowercase : Optional[Union[str, ChannelDimension]] = None ): '''simple docstring''' return flip_channel_order(lowercase , data_format=lowercase ) def __lowerCAmelCase ( self : Optional[Any] , lowercase : ImageInput , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : PILImageResampling = None , lowercase : bool = None , lowercase : float = None , lowercase : bool = None , lowercase : Dict[str, int] = None , lowercase : bool = None , lowercase : Optional[Union[str, TensorType]] = None , lowercase : ChannelDimension = ChannelDimension.FIRST , **lowercase : str , ): '''simple docstring''' UpperCAmelCase : Tuple = do_resize if do_resize is not None else self.do_resize UpperCAmelCase : List[str] = resample if resample is not None else self.resample UpperCAmelCase : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale UpperCAmelCase : Union[str, Any] = rescale_factor if rescale_factor is not None else self.rescale_factor UpperCAmelCase : str = do_center_crop if do_center_crop is not None else self.do_center_crop UpperCAmelCase : Dict = ( do_flip_channel_order if do_flip_channel_order is not None else self.do_flip_channel_order ) UpperCAmelCase : Optional[int] = size if size is not None else self.size UpperCAmelCase : Any = get_size_dict(lowercase , default_to_square=lowercase ) UpperCAmelCase : List[Any] = crop_size if crop_size is not None else self.crop_size UpperCAmelCase : int = get_size_dict(lowercase , param_name="crop_size" ) UpperCAmelCase : List[str] = make_list_of_images(lowercase ) if not valid_images(lowercase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) # All transformations expect numpy arrays. UpperCAmelCase : List[str] = [to_numpy_array(lowercase ) for image in images] if do_resize: UpperCAmelCase : Dict = [self.resize(image=lowercase , size=lowercase , resample=lowercase ) for image in images] if do_center_crop: UpperCAmelCase : Optional[Any] = [self.center_crop(image=lowercase , size=lowercase ) for image in images] if do_rescale: UpperCAmelCase : Optional[Any] = [self.rescale(image=lowercase , scale=lowercase ) for image in images] # the pretrained checkpoints assume images are BGR, not RGB if do_flip_channel_order: UpperCAmelCase : Tuple = [self.flip_channel_order(image=lowercase ) for image in images] UpperCAmelCase : Tuple = [to_channel_dimension_format(lowercase , lowercase ) for image in images] UpperCAmelCase : Tuple = {"pixel_values": images} return BatchFeature(data=lowercase , tensor_type=lowercase ) def __lowerCAmelCase ( self : Dict , lowercase : Union[str, Any] , lowercase : List[Tuple] = None ): '''simple docstring''' UpperCAmelCase : int = outputs.logits # Resize logits and compute semantic segmentation maps if target_sizes is not None: if len(lowercase ) != len(lowercase ): raise ValueError( "Make sure that you pass in as many target sizes as the batch dimension of the logits" ) if is_torch_tensor(lowercase ): UpperCAmelCase : Optional[Any] = target_sizes.numpy() UpperCAmelCase : Tuple = [] for idx in range(len(lowercase ) ): UpperCAmelCase : Tuple = torch.nn.functional.interpolate( logits[idx].unsqueeze(dim=0 ) , size=target_sizes[idx] , mode="bilinear" , align_corners=lowercase ) UpperCAmelCase : Union[str, Any] = resized_logits[0].argmax(dim=0 ) semantic_segmentation.append(lowercase ) else: UpperCAmelCase : Dict = logits.argmax(dim=1 ) UpperCAmelCase : Tuple = [semantic_segmentation[i] for i in range(semantic_segmentation.shape[0] )] return semantic_segmentation
595
0
'''simple docstring''' import random def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = False ): """simple docstring""" _UpperCamelCase ={i: [] for i in range(__SCREAMING_SNAKE_CASE )} # if probability is greater or equal than 1, then generate a complete graph if probability >= 1: return complete_graph(__SCREAMING_SNAKE_CASE ) # if probability is lower or equal than 0, then return a graph without edges if probability <= 0: return graph # for each couple of nodes, add an edge from u to v # if the number randomly generated is greater than probability probability for i in range(__SCREAMING_SNAKE_CASE ): for j in range(i + 1 , __SCREAMING_SNAKE_CASE ): if random.random() < probability: graph[i].append(__SCREAMING_SNAKE_CASE ) if not directed: # if the graph is undirected, add an edge in from j to i, either graph[j].append(__SCREAMING_SNAKE_CASE ) return graph def _a (__SCREAMING_SNAKE_CASE ): """simple docstring""" return { i: [j for j in range(__SCREAMING_SNAKE_CASE ) if i != j] for i in range(__SCREAMING_SNAKE_CASE ) } if __name__ == "__main__": import doctest doctest.testmod()
271
'''simple docstring''' from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def _a (__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): """simple docstring""" _UpperCamelCase =cva.getAffineTransform(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) return cva.warpAffine(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , (rows, cols) ) if __name__ == "__main__": # read original image __lowerCamelCase : List[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / 'image_data' / 'lena.jpg') ) # turn image in gray scale value __lowerCamelCase : List[Any] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape __lowerCamelCase , __lowerCamelCase : Any = gray_img.shape # set different points to rotate image __lowerCamelCase : Optional[Any] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) __lowerCamelCase : Any = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) __lowerCamelCase : int = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) __lowerCamelCase : List[Any] = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list __lowerCamelCase : int = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations __lowerCamelCase : Optional[Any] = plt.figure(1) __lowerCamelCase : Tuple = ['Original', 'Rotation 1', 'Rotation 2', 'Rotation 3'] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, 'gray') plt.title(titles[i]) plt.axis('off') plt.subplots_adjust(left=0.0, bottom=0.0_5, right=1.0, top=0.9_5) plt.show()
271
1
import argparse import json import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( VideoMAEConfig, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEImageProcessor, ) def _A ( lowerCAmelCase_ : Any ): """simple docstring""" lowerCAmelCase__ = VideoMAEConfig() set_architecture_configs(lowerCAmelCase_ , lowerCAmelCase_ ) if "finetuned" not in model_name: lowerCAmelCase__ = False if "finetuned" in model_name: lowerCAmelCase__ = "huggingface/label-files" if "kinetics" in model_name: lowerCAmelCase__ = 400 lowerCAmelCase__ = "kinetics400-id2label.json" elif "ssv2" in model_name: lowerCAmelCase__ = 174 lowerCAmelCase__ = "something-something-v2-id2label.json" else: raise ValueError("Model name should either contain 'kinetics' or 'ssv2' in case it's fine-tuned." ) lowerCAmelCase__ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) lowerCAmelCase__ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} lowerCAmelCase__ = idalabel lowerCAmelCase__ = {v: k for k, v in idalabel.items()} return config def _A ( lowerCAmelCase_ : str , lowerCAmelCase_ : int ): """simple docstring""" if "small" in model_name: lowerCAmelCase__ = 384 lowerCAmelCase__ = 1536 lowerCAmelCase__ = 12 lowerCAmelCase__ = 16 lowerCAmelCase__ = 12 lowerCAmelCase__ = 3 lowerCAmelCase__ = 192 lowerCAmelCase__ = 768 elif "large" in model_name: lowerCAmelCase__ = 1024 lowerCAmelCase__ = 4096 lowerCAmelCase__ = 24 lowerCAmelCase__ = 16 lowerCAmelCase__ = 12 lowerCAmelCase__ = 8 lowerCAmelCase__ = 512 lowerCAmelCase__ = 2048 elif "huge" in model_name: lowerCAmelCase__ = 1280 lowerCAmelCase__ = 5120 lowerCAmelCase__ = 32 lowerCAmelCase__ = 16 lowerCAmelCase__ = 12 lowerCAmelCase__ = 8 lowerCAmelCase__ = 640 lowerCAmelCase__ = 2560 elif "base" not in model_name: raise ValueError("Model name should include either \"small\", \"base\", \"large\", or \"huge\"" ) def _A ( lowerCAmelCase_ : Union[str, Any] ): """simple docstring""" if "encoder." in name: lowerCAmelCase__ = name.replace("encoder." , "" ) if "cls_token" in name: lowerCAmelCase__ = name.replace("cls_token" , "videomae.embeddings.cls_token" ) if "decoder_pos_embed" in name: lowerCAmelCase__ = name.replace("decoder_pos_embed" , "decoder.decoder_pos_embed" ) if "pos_embed" in name and "decoder" not in name: lowerCAmelCase__ = name.replace("pos_embed" , "videomae.embeddings.position_embeddings" ) if "patch_embed.proj" in name: lowerCAmelCase__ = name.replace("patch_embed.proj" , "videomae.embeddings.patch_embeddings.projection" ) if "patch_embed.norm" in name: lowerCAmelCase__ = name.replace("patch_embed.norm" , "videomae.embeddings.norm" ) if "decoder.blocks" in name: lowerCAmelCase__ = name.replace("decoder.blocks" , "decoder.decoder_layers" ) if "blocks" in name: lowerCAmelCase__ = name.replace("blocks" , "videomae.encoder.layer" ) if "attn.proj" in name: lowerCAmelCase__ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name and "bias" not in name: lowerCAmelCase__ = name.replace("attn" , "attention.self" ) if "attn" in name: lowerCAmelCase__ = name.replace("attn" , "attention.attention" ) if "norm1" in name: lowerCAmelCase__ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: lowerCAmelCase__ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: lowerCAmelCase__ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: lowerCAmelCase__ = name.replace("mlp.fc2" , "output.dense" ) if "decoder_embed" in name: lowerCAmelCase__ = name.replace("decoder_embed" , "decoder.decoder_embed" ) if "decoder_norm" in name: lowerCAmelCase__ = name.replace("decoder_norm" , "decoder.decoder_norm" ) if "decoder_pred" in name: lowerCAmelCase__ = name.replace("decoder_pred" , "decoder.decoder_pred" ) if "norm.weight" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase__ = name.replace("norm.weight" , "videomae.layernorm.weight" ) if "norm.bias" in name and "decoder" not in name and "fc" not in name: lowerCAmelCase__ = name.replace("norm.bias" , "videomae.layernorm.bias" ) if "head" in name and "decoder" not in name: lowerCAmelCase__ = name.replace("head" , "classifier" ) return name def _A ( lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict ): """simple docstring""" for key in orig_state_dict.copy().keys(): lowerCAmelCase__ = orig_state_dict.pop(lowerCAmelCase_ ) if key.startswith("encoder." ): lowerCAmelCase__ = key.replace("encoder." , "" ) if "qkv" in key: lowerCAmelCase__ = key.split("." ) if key.startswith("decoder.blocks" ): lowerCAmelCase__ = config.decoder_hidden_size lowerCAmelCase__ = int(key_split[2] ) lowerCAmelCase__ = "decoder.decoder_layers." if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = config.hidden_size lowerCAmelCase__ = int(key_split[1] ) lowerCAmelCase__ = "videomae.encoder.layer." if "weight" in key: lowerCAmelCase__ = val[:dim, :] lowerCAmelCase__ = val[dim : dim * 2, :] lowerCAmelCase__ = val[-dim:, :] else: lowerCAmelCase__ = val return orig_state_dict def _A ( ): """simple docstring""" lowerCAmelCase__ = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) lowerCAmelCase__ = np.load(lowerCAmelCase_ ) return list(lowerCAmelCase_ ) def _A ( lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : str ): """simple docstring""" lowerCAmelCase__ = get_videomae_config(lowerCAmelCase_ ) if "finetuned" in model_name: lowerCAmelCase__ = VideoMAEForVideoClassification(lowerCAmelCase_ ) else: lowerCAmelCase__ = VideoMAEForPreTraining(lowerCAmelCase_ ) # download original checkpoint, hosted on Google Drive lowerCAmelCase__ = "pytorch_model.bin" gdown.cached_download(lowerCAmelCase_ , lowerCAmelCase_ , quiet=lowerCAmelCase_ ) lowerCAmelCase__ = torch.load(lowerCAmelCase_ , map_location="cpu" ) if "model" in files: lowerCAmelCase__ = files["model"] else: lowerCAmelCase__ = files["module"] lowerCAmelCase__ = convert_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) model.load_state_dict(lowerCAmelCase_ ) model.eval() # verify model on basic input lowerCAmelCase__ = VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5] , image_std=[0.5, 0.5, 0.5] ) lowerCAmelCase__ = prepare_video() lowerCAmelCase__ = image_processor(lowerCAmelCase_ , return_tensors="pt" ) if "finetuned" not in model_name: lowerCAmelCase__ = hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos" , filename="bool_masked_pos.pt" ) lowerCAmelCase__ = torch.load(lowerCAmelCase_ ) lowerCAmelCase__ = model(**lowerCAmelCase_ ) lowerCAmelCase__ = outputs.logits lowerCAmelCase__ = [ "videomae-small-finetuned-kinetics", "videomae-small-finetuned-ssv2", # Kinetics-400 checkpoints (short = pretrained only for 800 epochs instead of 1600) "videomae-base-short", "videomae-base-short-finetuned-kinetics", "videomae-base", "videomae-base-finetuned-kinetics", "videomae-large", "videomae-large-finetuned-kinetics", "videomae-huge-finetuned-kinetics", # Something-Something-v2 checkpoints (short = pretrained only for 800 epochs instead of 2400) "videomae-base-short-ssv2", "videomae-base-short-finetuned-ssv2", "videomae-base-ssv2", "videomae-base-finetuned-ssv2", ] # NOTE: logits were tested with image_mean and image_std equal to [0.5, 0.5, 0.5] and [0.5, 0.5, 0.5] if model_name == "videomae-small-finetuned-kinetics": lowerCAmelCase__ = torch.Size([1, 400] ) lowerCAmelCase__ = torch.tensor([-0.9291, -0.4061, -0.9307] ) elif model_name == "videomae-small-finetuned-ssv2": lowerCAmelCase__ = torch.Size([1, 174] ) lowerCAmelCase__ = torch.tensor([0.2671, -0.4689, -0.8235] ) elif model_name == "videomae-base": lowerCAmelCase__ = torch.Size([1, 1408, 1536] ) lowerCAmelCase__ = torch.tensor([[0.7739, 0.7968, 0.7089], [0.6701, 0.7487, 0.6209], [0.4287, 0.5158, 0.4773]] ) elif model_name == "videomae-base-short": lowerCAmelCase__ = torch.Size([1, 1408, 1536] ) lowerCAmelCase__ = torch.tensor([[0.7994, 0.9612, 0.8508], [0.7401, 0.8958, 0.8302], [0.5862, 0.7468, 0.7325]] ) # we verified the loss both for normalized and unnormalized targets for this one lowerCAmelCase__ = torch.tensor([0.5142] ) if config.norm_pix_loss else torch.tensor([0.6469] ) elif model_name == "videomae-large": lowerCAmelCase__ = torch.Size([1, 1408, 1536] ) lowerCAmelCase__ = torch.tensor([[0.7149, 0.7997, 0.6966], [0.6768, 0.7869, 0.6948], [0.5139, 0.6221, 0.5605]] ) elif model_name == "videomae-large-finetuned-kinetics": lowerCAmelCase__ = torch.Size([1, 400] ) lowerCAmelCase__ = torch.tensor([0.0771, 0.0011, -0.3625] ) elif model_name == "videomae-huge-finetuned-kinetics": lowerCAmelCase__ = torch.Size([1, 400] ) lowerCAmelCase__ = torch.tensor([0.2433, 0.1632, -0.4894] ) elif model_name == "videomae-base-short-finetuned-kinetics": lowerCAmelCase__ = torch.Size([1, 400] ) lowerCAmelCase__ = torch.tensor([0.6588, 0.0990, -0.2493] ) elif model_name == "videomae-base-finetuned-kinetics": lowerCAmelCase__ = torch.Size([1, 400] ) lowerCAmelCase__ = torch.tensor([0.3669, -0.0688, -0.2421] ) elif model_name == "videomae-base-short-ssv2": lowerCAmelCase__ = torch.Size([1, 1408, 1536] ) lowerCAmelCase__ = torch.tensor([[0.4712, 0.5296, 0.5786], [0.2278, 0.2729, 0.4026], [0.0352, 0.0730, 0.2506]] ) elif model_name == "videomae-base-short-finetuned-ssv2": lowerCAmelCase__ = torch.Size([1, 174] ) lowerCAmelCase__ = torch.tensor([-0.0537, -0.1539, -0.3266] ) elif model_name == "videomae-base-ssv2": lowerCAmelCase__ = torch.Size([1, 1408, 1536] ) lowerCAmelCase__ = torch.tensor([[0.8131, 0.8727, 0.8546], [0.7366, 0.9377, 0.8870], [0.5935, 0.8874, 0.8564]] ) elif model_name == "videomae-base-finetuned-ssv2": lowerCAmelCase__ = torch.Size([1, 174] ) lowerCAmelCase__ = torch.tensor([0.1961, -0.8337, -0.6389] ) else: raise ValueError(F'Model name not supported. Should be one of {model_names}' ) # verify logits assert logits.shape == expected_shape if "finetuned" in model_name: assert torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1E-4 ) else: print("Logits:" , logits[0, :3, :3] ) assert torch.allclose(logits[0, :3, :3] , lowerCAmelCase_ , atol=1E-4 ) print("Logits ok!" ) # verify loss, if applicable if model_name == "videomae-base-short": lowerCAmelCase__ = outputs.loss assert torch.allclose(lowerCAmelCase_ , lowerCAmelCase_ , atol=1E-4 ) print("Loss ok!" ) if pytorch_dump_folder_path is not None: print(F'Saving model and image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(lowerCAmelCase_ ) model.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("Pushing to the hub..." ) model.push_to_hub(lowerCAmelCase_ , organization="nielsr" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint_url', default='https://drive.google.com/u/1/uc?id=1tEhLyskjb755TJ65ptsrafUG2llSwQE1&amp;export=download&amp;confirm=t&amp;uuid=aa3276eb-fb7e-482a-adec-dc7171df14c4', type=str, help=( 'URL of the original PyTorch checkpoint (on Google Drive) you\'d like to convert. Should be a direct' ' download link.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default='/Users/nielsrogge/Documents/VideoMAE/Test', type=str, help='Path to the output PyTorch model directory.', ) parser.add_argument('--model_name', default='videomae-base', type=str, help='Name of the model.') parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) UpperCamelCase = parser.parse_args() convert_videomae_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.model_name, args.push_to_hub)
61
import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def __A ( __lowerCamelCase ) -> Optional[int]: a = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class __lowerCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , unittest.TestCase ): UpperCamelCase__ = StableDiffusionLatentUpscalePipeline UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''height''', '''width''', '''cross_attention_kwargs''', '''negative_prompt_embeds''', '''prompt_embeds''', } UpperCamelCase__ = PipelineTesterMixin.required_optional_params - {'''num_images_per_prompt'''} UpperCamelCase__ = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS UpperCamelCase__ = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess UpperCamelCase__ = frozenset([] ) UpperCamelCase__ = True @property def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = 1 a = 4 a = (16, 16) a = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__magic_name__ ) return image def lowerCamelCase__ ( self :Any ): '''simple docstring''' torch.manual_seed(0 ) a = UNetaDConditionModel( act_fn="""gelu""" , attention_head_dim=8 , norm_num_groups=__magic_name__ , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( """KDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", """KCrossAttnDownBlock2D""", ) , in_channels=8 , mid_block_type=__magic_name__ , only_cross_attention=__magic_name__ , out_channels=5 , resnet_time_scale_shift="""scale_shift""" , time_embedding_type="""fourier""" , timestep_post_act="""gelu""" , up_block_types=("""KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KCrossAttnUpBlock2D""", """KUpBlock2D""") , ) a = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D""", ] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) a = EulerDiscreteScheduler(prediction_type="""sample""" ) a = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""quick_gelu""" , projection_dim=512 , ) a = CLIPTextModel(__magic_name__ ) a = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) a = { """unet""": model.eval(), """vae""": vae.eval(), """scheduler""": scheduler, """text_encoder""": text_encoder, """tokenizer""": tokenizer, } return components def lowerCamelCase__ ( self :Optional[int] , __magic_name__ :Tuple , __magic_name__ :Optional[int]=0 ): '''simple docstring''' if str(__magic_name__ ).startswith("""mps""" ): a = torch.manual_seed(__magic_name__ ) else: a = torch.Generator(device=__magic_name__ ).manual_seed(__magic_name__ ) a = { """prompt""": """A painting of a squirrel eating a burger""", """image""": self.dummy_image.cpu(), """generator""": generator, """num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' a = """cpu""" a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = pipe(**__magic_name__ ).images a = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) a = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) a = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(__magic_name__ , 1E-3 ) def lowerCamelCase__ ( self :Any ): '''simple docstring''' super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self :Dict ): '''simple docstring''' super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def lowerCamelCase__ ( self :Optional[int] ): '''simple docstring''' super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def lowerCamelCase__ ( self :str ): '''simple docstring''' super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCamelCase__ ( self :Tuple ): '''simple docstring''' super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' a = [ """DDIMScheduler""", """DDPMScheduler""", """PNDMScheduler""", """HeunDiscreteScheduler""", """EulerAncestralDiscreteScheduler""", """KDPM2DiscreteScheduler""", """KDPM2AncestralDiscreteScheduler""", """DPMSolverSDEScheduler""", ] a = self.get_dummy_components() a = self.pipeline_class(**__magic_name__ ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=__magic_name__ ) pipe.to(__magic_name__ ) pipe.set_progress_bar_config(disable=__magic_name__ ) a = self.get_dummy_inputs(__magic_name__ ) a = 2 a = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue a = getattr(__magic_name__ , scheduler_enum.name ) a = scheduler_cls.from_config(pipe.scheduler.config ) a = pipe(**__magic_name__ )[0] outputs.append(__magic_name__ ) assert check_same_shape(__magic_name__ ) @require_torch_gpu @slow class __lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase__ ( self :List[str] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase__ ( self :List[Any] ): '''simple docstring''' a = torch.manual_seed(33 ) a = StableDiffusionPipeline.from_pretrained("""CompVis/stable-diffusion-v1-4""" , torch_dtype=torch.floataa ) pipe.to("""cuda""" ) a = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) a = """a photo of an astronaut high resolution, unreal engine, ultra realistic""" a = pipe(__magic_name__ , generator=__magic_name__ , output_type="""latent""" ).images a = upscaler( prompt=__magic_name__ , image=__magic_name__ , num_inference_steps=20 , guidance_scale=0 , generator=__magic_name__ , output_type="""np""" , ).images[0] a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy""" ) assert np.abs((expected_image - image).mean() ) < 5E-2 def lowerCamelCase__ ( self :Optional[Any] ): '''simple docstring''' a = torch.manual_seed(33 ) a = StableDiffusionLatentUpscalePipeline.from_pretrained( """stabilityai/sd-x2-latent-upscaler""" , torch_dtype=torch.floataa ) upscaler.to("""cuda""" ) a = """the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas""" a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png""" ) a = upscaler( prompt=__magic_name__ , image=__magic_name__ , num_inference_steps=20 , guidance_scale=0 , generator=__magic_name__ , output_type="""np""" , ).images[0] a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy""" ) assert np.abs((expected_image - image).max() ) < 5E-2
468
0
snake_case = """Tobias Carryer""" from time import time class SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : int=int(time() ) ): # noqa: B008 SCREAMING_SNAKE_CASE : Optional[Any] = multiplier SCREAMING_SNAKE_CASE : Tuple = increment SCREAMING_SNAKE_CASE : int = modulo SCREAMING_SNAKE_CASE : Optional[int] = seed def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = (self.multiplier * self.seed + self.increment) % self.modulo return self.seed if __name__ == "__main__": # Show the LCG in action. snake_case = LinearCongruentialGenerator(1_664_525, 1_013_904_223, 2 << 31) while True: print(lcg.next_number())
488
import unittest import numpy as np from transformers.testing_utils import is_flaky, require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DonutImageProcessor class SCREAMING_SNAKE_CASE ( unittest.TestCase ): '''simple docstring''' def __init__( self : int , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Tuple=7 , UpperCAmelCase_ : Dict=3 , UpperCAmelCase_ : Any=18 , UpperCAmelCase_ : Optional[int]=30 , UpperCAmelCase_ : Any=400 , UpperCAmelCase_ : Optional[int]=True , UpperCAmelCase_ : Union[str, Any]=None , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[int]=False , UpperCAmelCase_ : List[Any]=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : Any=[0.5, 0.5, 0.5] , UpperCAmelCase_ : Dict=[0.5, 0.5, 0.5] , ): SCREAMING_SNAKE_CASE : Any = parent SCREAMING_SNAKE_CASE : int = batch_size SCREAMING_SNAKE_CASE : Dict = num_channels SCREAMING_SNAKE_CASE : str = image_size SCREAMING_SNAKE_CASE : Union[str, Any] = min_resolution SCREAMING_SNAKE_CASE : Any = max_resolution SCREAMING_SNAKE_CASE : int = do_resize SCREAMING_SNAKE_CASE : Union[str, Any] = size if size is not None else {"height": 18, "width": 20} SCREAMING_SNAKE_CASE : Optional[Any] = do_thumbnail SCREAMING_SNAKE_CASE : Tuple = do_align_axis SCREAMING_SNAKE_CASE : List[str] = do_pad SCREAMING_SNAKE_CASE : Optional[Any] = do_normalize SCREAMING_SNAKE_CASE : Any = image_mean SCREAMING_SNAKE_CASE : Any = image_std def _A ( self : str ): return { "do_resize": self.do_resize, "size": self.size, "do_thumbnail": self.do_thumbnail, "do_align_long_axis": self.do_align_axis, "do_pad": self.do_pad, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, } @require_torch @require_vision class SCREAMING_SNAKE_CASE ( lowerCAmelCase , unittest.TestCase ): '''simple docstring''' UpperCamelCase_ : str = DonutImageProcessor if is_vision_available() else None def _A ( self : Tuple ): SCREAMING_SNAKE_CASE : Optional[Any] = DonutImageProcessingTester(self ) @property def _A ( self : Tuple ): return self.image_processor_tester.prepare_image_processor_dict() def _A ( self : List[Any] ): SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_resize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "size" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_thumbnail" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_align_long_axis" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_pad" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "do_normalize" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_mean" ) ) self.assertTrue(hasattr(UpperCAmelCase_ , "image_std" ) ) def _A ( self : Optional[Any] ): SCREAMING_SNAKE_CASE : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"height": 18, "width": 20} ) SCREAMING_SNAKE_CASE : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {"height": 42, "width": 42} ) # Previous config had dimensions in (width, height) order SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=(42, 84) ) self.assertEqual(image_processor.size , {"height": 84, "width": 42} ) def _A ( self : Dict ): pass @is_flaky() def _A ( self : Optional[Any] ): # Initialize image_processing SCREAMING_SNAKE_CASE : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Dict = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def _A ( self : List[str] ): # Initialize image_processing SCREAMING_SNAKE_CASE : Dict = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , numpify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE : Any = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Optional[int] = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) @is_flaky() def _A ( self : Dict ): # Initialize image_processing SCREAMING_SNAKE_CASE : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=UpperCAmelCase_ , torchify=UpperCAmelCase_ ) for image in image_inputs: self.assertIsInstance(UpperCAmelCase_ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE : int = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , ) # Test batched SCREAMING_SNAKE_CASE : Union[str, Any] = image_processing(UpperCAmelCase_ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["height"], self.image_processor_tester.size["width"], ) , )
488
1
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( UniSpeechConfig, UniSpeechForCTC, UniSpeechForPreTraining, WavaVecaFeatureExtractor, WavaVecaPhonemeCTCTokenizer, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) _lowerCAmelCase : List[str] = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''ctc_proj''', '''mask_emb''': '''masked_spec_embed''', } _lowerCAmelCase : Optional[Any] = [ '''ctc_proj''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Any ) -> Dict: for attribute in key.split("." ): if is_finetuned: if attribute in ["quantizer", "project_q", "project_hid"]: # those layers are only relevant for pretraining and should be dropped return if attribute == "ctc_proj": # we should rename `ctc_proj` to `lm_head` for fine-tuned phoneme models A_ : Optional[Any] = "lm_head" A_ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ) if weight_type is not None: A_ : Dict = getattr(_lowerCAmelCase , _lowerCAmelCase ).shape else: A_ : List[Any] = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": A_ : int = value elif weight_type == "weight_g": A_ : int = value elif weight_type == "weight_v": A_ : str = value elif weight_type == "bias": A_ : Union[str, Any] = value else: A_ : Optional[int] = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __snake_case ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : str , _lowerCAmelCase : int ) -> Optional[int]: A_ : List[Any] = [] A_ : str = fairseq_model.state_dict() A_ : int = hf_model.unispeech.feature_extractor for name, value in fairseq_dict.items(): A_ : Any = False if "conv_layers" in name: load_conv_layer( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , hf_model.config.feat_extract_norm == "group" , ) A_ : Dict = True else: for key, mapped_key in MAPPING.items(): A_ : Optional[int] = "unispeech." + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: A_ : Tuple = True if "*" in mapped_key: A_ : Any = name.split(_lowerCAmelCase )[0].split("." )[-2] A_ : Any = mapped_key.replace("*" , _lowerCAmelCase ) if "weight_g" in name: A_ : List[Any] = "weight_g" elif "weight_v" in name: A_ : List[str] = "weight_v" elif "bias" in name: A_ : Any = "bias" elif "weight" in name: # TODO: don't match quantizer.weight_proj A_ : Optional[int] = "weight" else: A_ : Any = None set_recursively(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) continue if not is_used: unused_weights.append(_lowerCAmelCase ) logger.warning(f"Unused weights: {unused_weights}" ) def __snake_case ( _lowerCAmelCase : str , _lowerCAmelCase : Dict , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any ) -> str: A_ : int = full_name.split("conv_layers." )[-1] A_ : str = name.split("." ) A_ : Union[str, Any] = int(items[0] ) A_ : Optional[int] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) A_ : int = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) A_ : Optional[Any] = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) A_ : Any = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) A_ : Optional[Any] = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(_lowerCAmelCase ) @torch.no_grad() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Optional[int]=None , _lowerCAmelCase : Dict=True ) -> Dict: if config_path is not None: A_ : List[Any] = UniSpeechConfig.from_pretrained(_lowerCAmelCase ) else: A_ : Tuple = UniSpeechConfig() if is_finetuned: if dict_path: A_ : str = Dictionary.load_from_json(_lowerCAmelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq A_ : str = target_dict.pad_index A_ : Dict = target_dict.bos_index A_ : List[Any] = target_dict.eos_index A_ : Dict = len(target_dict.symbols ) A_ : Tuple = os.path.join(_lowerCAmelCase , "vocab.json" ) if not os.path.isdir(_lowerCAmelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(_lowerCAmelCase ) ) return os.makedirs(_lowerCAmelCase , exist_ok=_lowerCAmelCase ) A_ : Any = target_dict.indices # fairseq has the <pad> and <s> switched A_ : Tuple = 42 A_ : Dict = 43 with open(_lowerCAmelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(_lowerCAmelCase , _lowerCAmelCase ) A_ : Union[str, Any] = WavaVecaPhonemeCTCTokenizer( _lowerCAmelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=_lowerCAmelCase , ) A_ : Dict = True if config.feat_extract_norm == "layer" else False A_ : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=_lowerCAmelCase , return_attention_mask=_lowerCAmelCase , ) A_ : Tuple = WavaVecaProcessor(feature_extractor=_lowerCAmelCase , tokenizer=_lowerCAmelCase ) processor.save_pretrained(_lowerCAmelCase ) A_ : int = UniSpeechForCTC(_lowerCAmelCase ) else: A_ : Any = UniSpeechForPreTraining(_lowerCAmelCase ) if is_finetuned: A_ , A_ , A_ : int = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] ), "w2v_path": checkpoint_path} ) else: A_ , A_ , A_ : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) A_ : List[str] = model[0].eval() recursively_load_weights(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) hf_unispeech.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": _lowerCAmelCase : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) _lowerCAmelCase : Optional[int] = parser.parse_args() convert_unispeech_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
454
from __future__ import annotations import math import random from typing import Any class __magic_name__ : """simple docstring""" def __init__( self :Tuple ): '''simple docstring''' A_ : list[Any] = [] A_ : int = 0 A_ : int = 0 def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return self.head == self.tail def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Any ): '''simple docstring''' self.data.append(snake_case ) A_ : int = self.tail + 1 def SCREAMING_SNAKE_CASE ( self :str ): '''simple docstring''' A_ : int = self.data[self.head] A_ : Tuple = self.head + 1 return ret def SCREAMING_SNAKE_CASE ( self :Optional[int] ): '''simple docstring''' return self.tail - self.head def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' print(self.data ) print("**************" ) print(self.data[self.head : self.tail] ) class __magic_name__ : """simple docstring""" def __init__( self :Any , snake_case :Any ): '''simple docstring''' A_ : Any = data A_ : MyNode | None = None A_ : MyNode | None = None A_ : int = 1 def SCREAMING_SNAKE_CASE ( self :List[str] ): '''simple docstring''' return self.data def SCREAMING_SNAKE_CASE ( self :Dict ): '''simple docstring''' return self.left def SCREAMING_SNAKE_CASE ( self :Any ): '''simple docstring''' return self.right def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return self.height def SCREAMING_SNAKE_CASE ( self :List[str] , snake_case :Any ): '''simple docstring''' A_ : Optional[int] = data def SCREAMING_SNAKE_CASE ( self :Optional[int] , snake_case :MyNode | None ): '''simple docstring''' A_ : Tuple = node def SCREAMING_SNAKE_CASE ( self :str , snake_case :MyNode | None ): '''simple docstring''' A_ : str = node def SCREAMING_SNAKE_CASE ( self :Tuple , snake_case :int ): '''simple docstring''' A_ : Optional[int] = height def __snake_case ( _lowerCAmelCase : MyNode | None ) -> int: if node is None: return 0 return node.get_height() def __snake_case ( _lowerCAmelCase : int , _lowerCAmelCase : int ) -> int: if a > b: return a return b def __snake_case ( _lowerCAmelCase : MyNode ) -> MyNode: print("left rotation node:" , node.get_data() ) A_ : Optional[int] = node.get_left() assert ret is not None node.set_left(ret.get_right() ) ret.set_right(_lowerCAmelCase ) A_ : Any = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) A_ : List[str] = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def __snake_case ( _lowerCAmelCase : MyNode ) -> MyNode: print("right rotation node:" , node.get_data() ) A_ : Union[str, Any] = node.get_right() assert ret is not None node.set_right(ret.get_left() ) ret.set_left(_lowerCAmelCase ) A_ : int = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) A_ : Dict = my_max(get_height(ret.get_right() ) , get_height(ret.get_left() ) ) + 1 ret.set_height(_lowerCAmelCase ) return ret def __snake_case ( _lowerCAmelCase : MyNode ) -> MyNode: A_ : List[Any] = node.get_left() assert left_child is not None node.set_left(left_rotation(_lowerCAmelCase ) ) return right_rotation(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : MyNode ) -> MyNode: A_ : List[Any] = node.get_right() assert right_child is not None node.set_right(right_rotation(_lowerCAmelCase ) ) return left_rotation(_lowerCAmelCase ) def __snake_case ( _lowerCAmelCase : MyNode | None , _lowerCAmelCase : Any ) -> MyNode | None: if node is None: return MyNode(_lowerCAmelCase ) if data < node.get_data(): node.set_left(insert_node(node.get_left() , _lowerCAmelCase ) ) if ( get_height(node.get_left() ) - get_height(node.get_right() ) == 2 ): # an unbalance detected A_ : Any = node.get_left() assert left_child is not None if ( data < left_child.get_data() ): # new node is the left child of the left child A_ : Optional[int] = right_rotation(_lowerCAmelCase ) else: A_ : int = lr_rotation(_lowerCAmelCase ) else: node.set_right(insert_node(node.get_right() , _lowerCAmelCase ) ) if get_height(node.get_right() ) - get_height(node.get_left() ) == 2: A_ : Dict = node.get_right() assert right_child is not None if data < right_child.get_data(): A_ : Optional[Any] = rl_rotation(_lowerCAmelCase ) else: A_ : Dict = left_rotation(_lowerCAmelCase ) A_ : Optional[int] = my_max(get_height(node.get_right() ) , get_height(node.get_left() ) ) + 1 node.set_height(_lowerCAmelCase ) return node def __snake_case ( _lowerCAmelCase : MyNode ) -> Any: while True: A_ : Any = root.get_right() if right_child is None: break A_ : Optional[Any] = right_child return root.get_data() def __snake_case ( _lowerCAmelCase : MyNode ) -> Any: while True: A_ : Optional[Any] = root.get_left() if left_child is None: break A_ : int = left_child return root.get_data() def __snake_case ( _lowerCAmelCase : MyNode , _lowerCAmelCase : Any ) -> MyNode | None: A_ : Optional[int] = root.get_left() A_ : Dict = root.get_right() if root.get_data() == data: if left_child is not None and right_child is not None: A_ : int = get_left_most(_lowerCAmelCase ) root.set_data(_lowerCAmelCase ) root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) elif left_child is not None: A_ : Tuple = left_child elif right_child is not None: A_ : Any = right_child else: return None elif root.get_data() > data: if left_child is None: print("No such data" ) return root else: root.set_left(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) else: # root.get_data() < data if right_child is None: return root else: root.set_right(del_node(_lowerCAmelCase , _lowerCAmelCase ) ) if get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == 2: assert right_child is not None if get_height(right_child.get_right() ) > get_height(right_child.get_left() ): A_ : Dict = left_rotation(_lowerCAmelCase ) else: A_ : List[Any] = rl_rotation(_lowerCAmelCase ) elif get_height(_lowerCAmelCase ) - get_height(_lowerCAmelCase ) == -2: assert left_child is not None if get_height(left_child.get_left() ) > get_height(left_child.get_right() ): A_ : Optional[Any] = right_rotation(_lowerCAmelCase ) else: A_ : Tuple = lr_rotation(_lowerCAmelCase ) A_ : List[str] = my_max(get_height(root.get_right() ) , get_height(root.get_left() ) ) + 1 root.set_height(_lowerCAmelCase ) return root class __magic_name__ : """simple docstring""" def __init__( self :List[str] ): '''simple docstring''' A_ : MyNode | None = None def SCREAMING_SNAKE_CASE ( self :List[Any] ): '''simple docstring''' return get_height(self.root ) def SCREAMING_SNAKE_CASE ( self :str , snake_case :Any ): '''simple docstring''' print("insert:" + str(snake_case ) ) A_ : List[Any] = insert_node(self.root , snake_case ) def SCREAMING_SNAKE_CASE ( self :Optional[Any] , snake_case :Any ): '''simple docstring''' print("delete:" + str(snake_case ) ) if self.root is None: print("Tree is empty!" ) return A_ : Dict = del_node(self.root , snake_case ) def __str__( self :Optional[int] , ): # a level traversale, gives a more intuitive look on the tree '''simple docstring''' A_ : Optional[Any] = "" A_ : Optional[int] = MyQueue() q.push(self.root ) A_ : Optional[int] = self.get_height() if layer == 0: return output A_ : Dict = 0 while not q.is_empty(): A_ : Optional[int] = q.pop() A_ : Union[str, Any] = " " * int(math.pow(2 , layer - 1 ) ) output += space if node is None: output += "*" q.push(snake_case ) q.push(snake_case ) else: output += str(node.get_data() ) q.push(node.get_left() ) q.push(node.get_right() ) output += space A_ : str = cnt + 1 for i in range(100 ): if cnt == math.pow(2 , snake_case ) - 1: A_ : int = layer - 1 if layer == 0: output += "\n*************************************" return output output += "\n" break output += "\n*************************************" return output def __snake_case ( ) -> None: import doctest doctest.testmod() if __name__ == "__main__": _test() _lowerCAmelCase : int = AVLtree() _lowerCAmelCase : Optional[int] = list(range(10)) random.shuffle(lst) for i in lst: t.insert(i) print(str(t)) random.shuffle(lst) for i in lst: t.del_node(i) print(str(t))
454
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __magic_name__ = { '''configuration_mobilevit''': ['''MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MobileViTConfig''', '''MobileViTOnnxConfig'''], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = ['''MobileViTFeatureExtractor'''] __magic_name__ = ['''MobileViTImageProcessor'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MobileViTForImageClassification''', '''MobileViTForSemanticSegmentation''', '''MobileViTModel''', '''MobileViTPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFMobileViTForImageClassification''', '''TFMobileViTForSemanticSegmentation''', '''TFMobileViTModel''', '''TFMobileViTPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
314
from __future__ import annotations import os from collections.abc import Mapping __magic_name__ = tuple[int, int] class a__ : """simple docstring""" def __init__( self :List[Any] , lowercase__ :set[int] , lowercase__ :Mapping[EdgeT, int] ): lowercase = vertices lowercase = { (min(lowercase__ ), max(lowercase__ )): weight for edge, weight in edges.items() } def __UpperCAmelCase ( self :Union[str, Any] , lowercase__ :EdgeT , lowercase__ :int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) lowercase = weight def __UpperCAmelCase ( self :str ): lowercase = Graph({min(self.vertices )} , {} ) lowercase = 42 lowercase = 42 lowercase = 42 lowercase = 42 while len(subgraph.vertices ) < len(self.vertices ): lowercase = max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: lowercase = edge lowercase = weight subgraph.add_edge(lowercase__ , lowercase__ ) return subgraph def __snake_case ( _UpperCAmelCase = "p107_network.txt" ): """simple docstring""" lowercase = os.path.abspath(os.path.dirname(_UpperCAmelCase ) ) lowercase = os.path.join(_UpperCAmelCase , _UpperCAmelCase ) lowercase = {} lowercase = 42 lowercase = 42 lowercase = 42 with open(_UpperCAmelCase ) as f: lowercase = f.read().strip().split('\n' ) lowercase = [line.split(',' ) for line in data] for edgea in range(1 , len(_UpperCAmelCase ) ): for edgea in range(_UpperCAmelCase ): if adjaceny_matrix[edgea][edgea] != "-": lowercase = int(adjaceny_matrix[edgea][edgea] ) lowercase = Graph(set(range(len(_UpperCAmelCase ) ) ) , _UpperCAmelCase ) lowercase = graph.prims_algorithm() lowercase = sum(graph.edges.values() ) lowercase = sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(F"""{solution() = }""")
314
1
'''simple docstring''' def A__ ( __lowerCAmelCase : str , __lowerCAmelCase : bool = False ): if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = F'''Expected string as input, found {type(__lowerCAmelCase )}''' raise ValueError(__lowerCAmelCase ) if not isinstance(__lowerCAmelCase , __lowerCAmelCase ): lowerCamelCase__ = F'''Expected boolean as use_pascal parameter, found {type(__lowerCAmelCase )}''' raise ValueError(__lowerCAmelCase ) lowerCamelCase__ = input_str.split("""_""" ) lowerCamelCase__ = 0 if use_pascal else 1 lowerCamelCase__ = words[start_index:] lowerCamelCase__ = [word[0].upper() + word[1:] for word in words_to_capitalize] lowerCamelCase__ = """""" if use_pascal else words[0] return "".join([initial_word, *capitalized_words] ) if __name__ == "__main__": from doctest import testmod testmod()
50
"""simple docstring""" from typing import Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VISUAL_QUESTION_ANSWERING_MAPPING A_ : int =logging.get_logger(__name__) @add_end_docstrings(lowerCAmelCase__ ) class __a ( lowerCAmelCase__ ): def __init__( self , *a__ , **a__ ): super().__init__(*a__ , **a__ ) self.check_model_type(a__ ) def snake_case_ ( self , a__=None , a__=None , a__=None , **a__ ): _lowerCamelCase , _lowerCamelCase = {}, {} if padding is not None: _lowerCamelCase = padding if truncation is not None: _lowerCamelCase = truncation if top_k is not None: _lowerCamelCase = top_k return preprocess_params, {}, postprocess_params def __call__( self , a__ , a__ = None , **a__ ): if isinstance(a__ , (Image.Image, str) ) and isinstance(a__ , a__ ): _lowerCamelCase = {'image': image, 'question': question} else: _lowerCamelCase = image _lowerCamelCase = super().__call__(a__ , **a__ ) return results def snake_case_ ( self , a__ , a__=False , a__=False ): _lowerCamelCase = load_image(inputs['image'] ) _lowerCamelCase = self.tokenizer( inputs['question'] , return_tensors=self.framework , padding=a__ , truncation=a__ ) _lowerCamelCase = self.image_processor(images=a__ , return_tensors=self.framework ) model_inputs.update(a__ ) return model_inputs def snake_case_ ( self , a__ ): _lowerCamelCase = self.model(**a__ ) return model_outputs def snake_case_ ( self , a__ , a__=5 ): if top_k > self.model.config.num_labels: _lowerCamelCase = self.model.config.num_labels if self.framework == "pt": _lowerCamelCase = model_outputs.logits.sigmoid()[0] _lowerCamelCase , _lowerCamelCase = probs.topk(a__ ) else: raise ValueError(F'Unsupported framework: {self.framework}' ) _lowerCamelCase = scores.tolist() _lowerCamelCase = ids.tolist() return [{"score": score, "answer": self.model.config.idalabel[_id]} for score, _id in zip(a__ , a__ )]
650
0
"""simple docstring""" from datetime import datetime import requests def snake_case__ ( _snake_case : str ): """simple docstring""" UpperCamelCase__ = "https://downloadgram.net/wp-json/wppress/video-downloader/video?url=" UpperCamelCase__ = requests.get(base_url + url ).json()[0]["urls"][0]["src"] return requests.get(_snake_case ).content if __name__ == "__main__": A : int = input('Enter Video/IGTV url: ').strip() A : Optional[int] = F"{datetime.now():%Y-%m-%d_%H:%M:%S}.mp4" with open(file_name, 'wb') as fp: fp.write(download_video(url)) print(F"Done. Video saved to disk as {file_name}.")
304
"""simple docstring""" class lowerCAmelCase : '''simple docstring''' def __init__( self :Optional[Any] , lowerCamelCase_ :list ) -> None: """simple docstring""" UpperCamelCase__ = set_counts UpperCamelCase__ = max(lowerCamelCase_ ) UpperCamelCase__ = len(lowerCamelCase_ ) UpperCamelCase__ = [1] * num_sets UpperCamelCase__ = list(range(lowerCamelCase_ ) ) def lowerCamelCase__ ( self :str , lowerCamelCase_ :int , lowerCamelCase_ :int ) -> bool: """simple docstring""" UpperCamelCase__ = self.get_parent(lowerCamelCase_ ) UpperCamelCase__ = self.get_parent(lowerCamelCase_ ) if src_parent == dst_parent: return False if self.ranks[dst_parent] >= self.ranks[src_parent]: self.set_counts[dst_parent] += self.set_counts[src_parent] UpperCamelCase__ = 0 UpperCamelCase__ = dst_parent if self.ranks[dst_parent] == self.ranks[src_parent]: self.ranks[dst_parent] += 1 UpperCamelCase__ = self.set_counts[dst_parent] else: self.set_counts[src_parent] += self.set_counts[dst_parent] UpperCamelCase__ = 0 UpperCamelCase__ = src_parent UpperCamelCase__ = self.set_counts[src_parent] UpperCamelCase__ = max(self.max_set , lowerCamelCase_ ) return True def lowerCamelCase__ ( self :int , lowerCamelCase_ :int ) -> int: """simple docstring""" if self.parents[disj_set] == disj_set: return disj_set UpperCamelCase__ = self.get_parent(self.parents[disj_set] ) return self.parents[disj_set]
304
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { "configuration_trocr": ["TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP", "TrOCRConfig"], "processing_trocr": ["TrOCRProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ "TROCR_PRETRAINED_MODEL_ARCHIVE_LIST", "TrOCRForCausalLM", "TrOCRPreTrainedModel", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
181
import json import sys import tempfile import unittest from pathlib import Path import transformers from transformers import ( CONFIG_MAPPING, IMAGE_PROCESSOR_MAPPING, AutoConfig, AutoImageProcessor, CLIPConfig, CLIPImageProcessor, ) from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_image_processing import CustomImageProcessor # noqa E402 class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" def UpperCamelCase__ ( self :Any): """simple docstring""" _lowercase =0 def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" _lowercase =AutoImageProcessor.from_pretrained('openai/clip-vit-base-patch32') self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Union[str, Any]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =CLIPConfig() # Create a dummy config file with image_proceesor_type _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) # remove image_processor_type to make sure config.json alone is enough to load image processor locally _lowercase =AutoImageProcessor.from_pretrained(snake_case).to_dict() config_dict.pop('image_processor_type') _lowercase =CLIPImageProcessor(**snake_case) # save in new folder model_config.save_pretrained(snake_case) config.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case) # make sure private variable is not incorrectly saved _lowercase =json.loads(config.to_json_string()) self.assertTrue('_processor_class' not in dict_as_saved) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :Optional[int]): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' json.dump( {'image_processor_type': 'CLIPImageProcessor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) def UpperCamelCase__ ( self :int): """simple docstring""" with self.assertRaisesRegex( snake_case, 'clip-base is not a local folder and is not a valid model identifier'): _lowercase =AutoImageProcessor.from_pretrained('clip-base') def UpperCamelCase__ ( self :Dict): """simple docstring""" with self.assertRaisesRegex( snake_case, r'aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)'): _lowercase =AutoImageProcessor.from_pretrained(snake_case, revision='aaaaaa') def UpperCamelCase__ ( self :List[Any]): """simple docstring""" with self.assertRaisesRegex( snake_case, 'hf-internal-testing/config-no-model does not appear to have a file named preprocessor_config.json.', ): _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/config-no-model') def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" with self.assertRaises(snake_case): _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') # If remote code is disabled, we can't load this config. with self.assertRaises(snake_case): _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') # Test image processor can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case, trust_remote_code=snake_case) self.assertEqual(reloaded_image_processor.__class__.__name__, 'NewImageProcessor') def UpperCamelCase__ ( self :Optional[Any]): """simple docstring""" try: AutoConfig.register('custom', snake_case) AutoImageProcessor.register(snake_case, snake_case) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(snake_case): AutoImageProcessor.register(snake_case, snake_case) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase =Path(snake_case) / 'preprocessor_config.json' _lowercase =Path(snake_case) / 'config.json' json.dump( {'feature_extractor_type': 'CLIPFeatureExtractor', 'processor_class': 'CLIPProcessor'}, open(snake_case, 'w'), ) json.dump({'model_type': 'clip'}, open(snake_case, 'w')) _lowercase =CustomImageProcessor.from_pretrained(snake_case) # Now that the config is registered, it can be used as any other config with the auto-API with tempfile.TemporaryDirectory() as tmp_dir: image_processor.save_pretrained(snake_case) _lowercase =AutoImageProcessor.from_pretrained(snake_case) self.assertIsInstance(snake_case, snake_case) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig] def UpperCamelCase__ ( self :str): """simple docstring""" class SCREAMING_SNAKE_CASE_ ( _a ): """simple docstring""" __lowerCAmelCase : Union[str, Any] =True try: AutoConfig.register('custom', snake_case) AutoImageProcessor.register(snake_case, snake_case) # If remote code is not set, the default is to use local _lowercase =AutoImageProcessor.from_pretrained('hf-internal-testing/test_dynamic_image_processor') self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote code is disabled, we load the local one. _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(image_processor.is_local) # If remote is enabled, we load from the Hub _lowercase =AutoImageProcessor.from_pretrained( 'hf-internal-testing/test_dynamic_image_processor', trust_remote_code=snake_case) self.assertEqual(image_processor.__class__.__name__, 'NewImageProcessor') self.assertTrue(not hasattr(snake_case, 'is_local')) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in IMAGE_PROCESSOR_MAPPING._extra_content: del IMAGE_PROCESSOR_MAPPING._extra_content[CustomConfig]
181
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase__ : Tuple = logging.get_logger(__name__) def UpperCamelCase ( lowercase_ ) -> Dict: '''simple docstring''' lowercase__ : str = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase__ : int = 1_28 elif "12-12" in model_name: lowercase__ : Any = 12 lowercase__ : List[str] = 12 elif "14-14" in model_name: lowercase__ : int = 14 lowercase__ : Dict = 14 elif "16-16" in model_name: lowercase__ : Tuple = 16 lowercase__ : List[str] = 16 else: raise ValueError("""Model not supported""" ) lowercase__ : Union[str, Any] = """huggingface/label-files""" if "speech-commands" in model_name: lowercase__ : List[Any] = 35 lowercase__ : Optional[Any] = """speech-commands-v2-id2label.json""" else: lowercase__ : Union[str, Any] = 5_27 lowercase__ : Tuple = """audioset-id2label.json""" lowercase__ : Tuple = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase__ : str = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase__ : Any = idalabel lowercase__ : Optional[Any] = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( lowercase_ ) -> str: '''simple docstring''' if "module.v" in name: lowercase__ : List[Any] = name.replace("""module.v""" , """audio_spectrogram_transformer""" ) if "cls_token" in name: lowercase__ : Optional[Any] = name.replace("""cls_token""" , """embeddings.cls_token""" ) if "dist_token" in name: lowercase__ : List[Any] = name.replace("""dist_token""" , """embeddings.distillation_token""" ) if "pos_embed" in name: lowercase__ : Union[str, Any] = name.replace("""pos_embed""" , """embeddings.position_embeddings""" ) if "patch_embed.proj" in name: lowercase__ : Union[str, Any] = name.replace("""patch_embed.proj""" , """embeddings.patch_embeddings.projection""" ) # transformer blocks if "blocks" in name: lowercase__ : Optional[int] = name.replace("""blocks""" , """encoder.layer""" ) if "attn.proj" in name: lowercase__ : Optional[int] = name.replace("""attn.proj""" , """attention.output.dense""" ) if "attn" in name: lowercase__ : Optional[int] = name.replace("""attn""" , """attention.self""" ) if "norm1" in name: lowercase__ : str = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name: lowercase__ : List[Any] = name.replace("""norm2""" , """layernorm_after""" ) if "mlp.fc1" in name: lowercase__ : Optional[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: lowercase__ : Optional[int] = name.replace("""mlp.fc2""" , """output.dense""" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase__ : List[Any] = name.replace("""audio_spectrogram_transformer.norm""" , """audio_spectrogram_transformer.layernorm""" ) # classifier head if "module.mlp_head.0" in name: lowercase__ : List[Any] = name.replace("""module.mlp_head.0""" , """classifier.layernorm""" ) if "module.mlp_head.1" in name: lowercase__ : Dict = name.replace("""module.mlp_head.1""" , """classifier.dense""" ) return name def UpperCamelCase ( lowercase_ , lowercase_ ) -> List[Any]: '''simple docstring''' for key in orig_state_dict.copy().keys(): lowercase__ : Tuple = orig_state_dict.pop(lowercase_ ) if "qkv" in key: lowercase__ : Dict = key.split(""".""" ) lowercase__ : str = int(key_split[3] ) lowercase__ : Tuple = config.hidden_size if "weight" in key: lowercase__ : Tuple = val[:dim, :] lowercase__ : str = val[dim : dim * 2, :] lowercase__ : Dict = val[-dim:, :] else: lowercase__ : Optional[int] = val[:dim] lowercase__ : List[str] = val[dim : dim * 2] lowercase__ : str = val[-dim:] else: lowercase__ : str = val return orig_state_dict def UpperCamelCase ( lowercase_ ) -> Tuple: '''simple docstring''' lowercase__ : Dict = [ """module.v.head.weight""", """module.v.head.bias""", """module.v.head_dist.weight""", """module.v.head_dist.bias""", ] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) @torch.no_grad() def UpperCamelCase ( lowercase_ , lowercase_ , lowercase_=False ) -> Tuple: '''simple docstring''' lowercase__ : str = get_audio_spectrogram_transformer_config(lowercase_ ) lowercase__ : str = { """ast-finetuned-audioset-10-10-0.4593""": ( """https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.450""": ( """https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448""": ( """https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1""" ), """ast-finetuned-audioset-10-10-0.448-v2""": ( """https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1""" ), """ast-finetuned-audioset-12-12-0.447""": ( """https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1""" ), """ast-finetuned-audioset-14-14-0.443""": ( """https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1""" ), """ast-finetuned-audioset-16-16-0.442""": ( """https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1""" ), """ast-finetuned-speech-commands-v2""": ( """https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1""" ), } # load original state_dict lowercase__ : List[str] = model_name_to_url[model_name] lowercase__ : Dict = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" ) # remove some keys remove_keys(lowercase_ ) # rename some keys lowercase__ : List[str] = convert_state_dict(lowercase_ , lowercase_ ) # load 🤗 model lowercase__ : int = ASTForAudioClassification(lowercase_ ) model.eval() model.load_state_dict(lowercase_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase__ : str = -4.267_7393 if """speech-commands""" not in model_name else -6.84_5978 lowercase__ : Tuple = 4.568_9974 if """speech-commands""" not in model_name else 5.565_4526 lowercase__ : Dict = 10_24 if """speech-commands""" not in model_name else 1_28 lowercase__ : List[str] = ASTFeatureExtractor(mean=lowercase_ , std=lowercase_ , max_length=lowercase_ ) if "speech-commands" in model_name: lowercase__ : Dict = load_dataset("""speech_commands""" , """v0.02""" , split="""validation""" ) lowercase__ : Tuple = dataset[0]["""audio"""]["""array"""] else: lowercase__ : Dict = hf_hub_download( repo_id="""nielsr/audio-spectogram-transformer-checkpoint""" , filename="""sample_audio.flac""" , repo_type="""dataset""" , ) lowercase__ : int = torchaudio.load(lowercase_ ) lowercase__ : int = waveform.squeeze().numpy() lowercase__ : str = feature_extractor(lowercase_ , sampling_rate=1_60_00 , return_tensors="""pt""" ) # forward pass lowercase__ : Optional[Any] = model(**lowercase_ ) lowercase__ : List[str] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase__ : List[str] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase__ : List[Any] = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase__ : List[Any] = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase__ : Tuple = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase__ : Union[str, Any] = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase__ : List[Any] = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase__ : int = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase__ : int = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError("""Unknown model name""" ) if not torch.allclose(logits[0, :3] , lowercase_ , atol=1E-4 ): raise ValueError("""Logits don't match""" ) print("""Looks ok!""" ) if pytorch_dump_folder_path is not None: Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(lowercase_ ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(lowercase_ ) if push_to_hub: print("""Pushing model and feature extractor to the hub...""" ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": lowerCamelCase__ : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""ast-finetuned-audioset-10-10-0.4593""", type=str, help="""Name of the Audio Spectrogram Transformer model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Whether or not to push the converted model to the 🤗 hub.""" ) lowerCamelCase__ : Any = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
721
import sys lowerCamelCase__ : List[Any] = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def UpperCamelCase ( lowercase_ = N ) -> int: '''simple docstring''' lowercase__ : int = -sys.maxsize - 1 for i in range(len(lowercase_ ) - 12 ): lowercase__ : Optional[int] = 1 for j in range(13 ): product *= int(n[i + j] ) if product > largest_product: lowercase__ : int = product return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
495
0
'''simple docstring''' import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Optional[Any] ): """simple docstring""" __snake_case = mock.Mock() __snake_case = 500 __snake_case = {} __snake_case = HTTPError __snake_case = {} # Download this model to make sure it's in the cache. __snake_case = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head: __snake_case = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def A ( self : Optional[Any] ): """simple docstring""" __snake_case = mock.Mock() __snake_case = 500 __snake_case = {} __snake_case = HTTPError __snake_case = {} # Download this model to make sure it's in the cache. __snake_case = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=a_ ) as mock_head: __snake_case = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def A ( self : Optional[Any] ): """simple docstring""" try: __snake_case = tempfile.mktemp() with open(a_ , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , a_ ) __snake_case = AlbertTokenizer.from_pretrained(a_ ) finally: os.remove(a_ ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , a_ ) __snake_case = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def A ( self : str ): """simple docstring""" __snake_case = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): __SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def A ( cls : List[Any] ): """simple docstring""" __snake_case = TOKEN HfFolder.save_token(a_ ) @classmethod def A ( cls : List[Any] ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def A ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = BertTokenizer(a_ ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) __snake_case = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(a_ , repo_id="test-tokenizer" , push_to_hub=a_ , use_auth_token=self._token ) __snake_case = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def A ( self : int ): """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = BertTokenizer(a_ ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) __snake_case = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( a_ , repo_id="valid_org/test-tokenizer-org" , push_to_hub=a_ , use_auth_token=self._token ) __snake_case = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def A ( self : List[str] ): """simple docstring""" CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = CustomTokenizer(a_ ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) __snake_case = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __snake_case = os.path.join(a_ , "vocab.txt" ) with open(a_ , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __snake_case = BertTokenizerFast.from_pretrained(a_ ) bert_tokenizer.save_pretrained(a_ ) __snake_case = CustomTokenizerFast.from_pretrained(a_ ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) __snake_case = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) __snake_case = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=a_ , trust_remote_code=a_ ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def A ( self : Optional[int] ): """simple docstring""" __snake_case = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def A ( self : str ): """simple docstring""" __snake_case = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def A ( self : Optional[Any] ): """simple docstring""" __snake_case = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def A ( self : List[Any] ): """simple docstring""" __snake_case = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def A ( self : str ): """simple docstring""" __snake_case = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def A ( self : Optional[int] ): """simple docstring""" __snake_case = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def A ( self : Tuple ): """simple docstring""" __snake_case = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def A ( self : Any ): """simple docstring""" __snake_case = Trie() __snake_case = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(a_ , ["AB", "C"] )
69
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract UpperCamelCase__ = logging.get_logger(__name__) def lowerCamelCase__ ( __A :Optional[int] ,__A :Any ,__A :str ): """simple docstring""" return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def lowerCamelCase__ ( __A :np.ndarray ,__A :Optional[str] ,__A :Optional[str] ): """simple docstring""" __snake_case = to_pil_image(__A ) __snake_case , __snake_case = pil_image.size __snake_case = pytesseract.image_to_data(__A ,lang=__A ,output_type="""dict""" ,config=__A ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case = data["""text"""], data["""left"""], data["""top"""], data["""width"""], data["""height"""] # filter empty words and corresponding coordinates __snake_case = [idx for idx, word in enumerate(__A ) if not word.strip()] __snake_case = [word for idx, word in enumerate(__A ) if idx not in irrelevant_indices] __snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] __snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] __snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] __snake_case = [coord for idx, coord in enumerate(__A ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __snake_case = [] for x, y, w, h in zip(__A ,__A ,__A ,__A ): __snake_case = [x, y, x + w, y + h] actual_boxes.append(__A ) # finally, normalize the bounding boxes __snake_case = [] for box in actual_boxes: normalized_boxes.append(normalize_box(__A ,__A ,__A ) ) assert len(__A ) == len(__A ), "Not as many words as there are bounding boxes" return words, normalized_boxes class __snake_case ( snake_case__ ): """simple docstring""" __SCREAMING_SNAKE_CASE = ["pixel_values"] def __init__( self , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = True , _UpperCamelCase = 1 / 2_55 , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = True , _UpperCamelCase = None , _UpperCamelCase = "" , **_UpperCamelCase , ) -> None: """simple docstring""" super().__init__(**_UpperCamelCase ) __snake_case = size if size is not None else {"""height""": 2_24, """width""": 2_24} __snake_case = get_size_dict(_UpperCamelCase ) __snake_case = do_resize __snake_case = size __snake_case = resample __snake_case = do_rescale __snake_case = rescale_value __snake_case = do_normalize __snake_case = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case = image_std if image_std is not None else IMAGENET_STANDARD_STD __snake_case = apply_ocr __snake_case = ocr_lang __snake_case = tesseract_config def a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = PILImageResampling.BILINEAR , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: """simple docstring""" __snake_case = get_size_dict(_UpperCamelCase ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) __snake_case = (size["""height"""], size["""width"""]) return resize(_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: """simple docstring""" return rescale(_UpperCamelCase , scale=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def a ( self , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = None , **_UpperCamelCase , ) -> np.ndarray: """simple docstring""" return normalize(_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase , data_format=_UpperCamelCase , **_UpperCamelCase ) def a ( self , _UpperCamelCase , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase=None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = None , _UpperCamelCase = ChannelDimension.FIRST , **_UpperCamelCase , ) -> PIL.Image.Image: """simple docstring""" __snake_case = do_resize if do_resize is not None else self.do_resize __snake_case = size if size is not None else self.size __snake_case = get_size_dict(_UpperCamelCase ) __snake_case = resample if resample is not None else self.resample __snake_case = do_rescale if do_rescale is not None else self.do_rescale __snake_case = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case = do_normalize if do_normalize is not None else self.do_normalize __snake_case = image_mean if image_mean is not None else self.image_mean __snake_case = image_std if image_std is not None else self.image_std __snake_case = apply_ocr if apply_ocr is not None else self.apply_ocr __snake_case = ocr_lang if ocr_lang is not None else self.ocr_lang __snake_case = tesseract_config if tesseract_config is not None else self.tesseract_config __snake_case = make_list_of_images(_UpperCamelCase ) if not valid_images(_UpperCamelCase ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None: raise ValueError("""Size must be specified if do_resize is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""If do_normalize is True, image_mean and image_std must be specified.""" ) # All transformations expect numpy arrays. __snake_case = [to_numpy_array(_UpperCamelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , """pytesseract""" ) __snake_case = [] __snake_case = [] for image in images: __snake_case , __snake_case = apply_tesseract(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) words_batch.append(_UpperCamelCase ) boxes_batch.append(_UpperCamelCase ) if do_resize: __snake_case = [self.resize(image=_UpperCamelCase , size=_UpperCamelCase , resample=_UpperCamelCase ) for image in images] if do_rescale: __snake_case = [self.rescale(image=_UpperCamelCase , scale=_UpperCamelCase ) for image in images] if do_normalize: __snake_case = [self.normalize(image=_UpperCamelCase , mean=_UpperCamelCase , std=_UpperCamelCase ) for image in images] __snake_case = [to_channel_dimension_format(_UpperCamelCase , _UpperCamelCase ) for image in images] __snake_case = BatchFeature(data={"""pixel_values""": images} , tensor_type=_UpperCamelCase ) if apply_ocr: __snake_case = words_batch __snake_case = boxes_batch return data
268
0
from ..utils import DummyObject, requires_backends class __lowerCamelCase ( metaclass=lowercase__ ): """simple docstring""" snake_case__ = ["note_seq"] def __init__( self : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Any , **SCREAMING_SNAKE_CASE__ : int ) -> Dict: requires_backends(self , ["note_seq"] ) @classmethod def a ( cls : Union[str, Any] , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ) -> Tuple: requires_backends(cls , ["note_seq"] ) @classmethod def a ( cls : Tuple , *SCREAMING_SNAKE_CASE__ : Tuple , **SCREAMING_SNAKE_CASE__ : str ) -> int: requires_backends(cls , ["note_seq"] )
705
from __future__ import annotations def _A ( lowerCAmelCase_ : list[int | str] ): """simple docstring""" create_state_space_tree(lowerCAmelCase_ , [] , 0 , [0 for i in range(len(lowerCAmelCase_ ) )] ) def _A ( lowerCAmelCase_ : list[int | str] , lowerCAmelCase_ : list[int | str] , lowerCAmelCase_ : int , lowerCAmelCase_ : list[int] , ): """simple docstring""" if index == len(lowerCAmelCase_ ): print(lowerCAmelCase_ ) return for i in range(len(lowerCAmelCase_ ) ): if not index_used[i]: current_sequence.append(sequence[i] ) lowerCAmelCase__ = True create_state_space_tree(lowerCAmelCase_ , lowerCAmelCase_ , index + 1 , lowerCAmelCase_ ) current_sequence.pop() lowerCAmelCase__ = False UpperCamelCase = [3, 1, 2, 4] generate_all_permutations(sequence) UpperCamelCase = ["A", "B", "C"] generate_all_permutations(sequence_a)
125
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCAmelCase_ = { '''configuration_upernet''': ['''UperNetConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ = [ '''UperNetForSemanticSegmentation''', '''UperNetPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys lowerCAmelCase_ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
60
from __future__ import annotations import requests def _UpperCAmelCase (UpperCamelCase__ : str ): _A : List[Any] = f"https://hacker-news.firebaseio.com/v0/item/{story_id}.json?print=pretty" return requests.get(UpperCamelCase__ ).json() def _UpperCAmelCase (UpperCamelCase__ : int = 10 ): _A : Dict = "https://hacker-news.firebaseio.com/v0/topstories.json?print=pretty" _A : Tuple = requests.get(UpperCamelCase__ ).json()[:max_stories] return [get_hackernews_story(UpperCamelCase__ ) for story_id in story_ids] def _UpperCAmelCase (UpperCamelCase__ : int = 10 ): _A : Dict = hackernews_top_stories(UpperCamelCase__ ) return "\n".join("* [{title}]({url})".format(**UpperCamelCase__ ) for story in stories ) if __name__ == "__main__": print(hackernews_top_stories_as_markdown())
503
0
'''simple docstring''' import gc import unittest from transformers import CTRLConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, ) class snake_case : """simple docstring""" def __init__( self , lowerCAmelCase_ , lowerCAmelCase_=14 , lowerCAmelCase_=7 , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=True , lowerCAmelCase_=99 , lowerCAmelCase_=32 , lowerCAmelCase_=5 , lowerCAmelCase_=4 , lowerCAmelCase_=37 , lowerCAmelCase_="gelu" , lowerCAmelCase_=0.1 , lowerCAmelCase_=0.1 , lowerCAmelCase_=512 , lowerCAmelCase_=16 , lowerCAmelCase_=2 , lowerCAmelCase_=0.02 , lowerCAmelCase_=3 , lowerCAmelCase_=4 , lowerCAmelCase_=None , ): __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_token_type_ids __lowercase = use_input_mask __lowercase = use_labels __lowercase = use_mc_token_ids __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = type_vocab_size __lowercase = type_sequence_label_size __lowercase = initializer_range __lowercase = num_labels __lowercase = num_choices __lowercase = scope __lowercase = self.vocab_size - 1 def snake_case__ ( self ): __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __lowercase = None if self.use_input_mask: __lowercase = random_attention_mask([self.batch_size, self.seq_length] ) __lowercase = None if self.use_token_type_ids: __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __lowercase = None if self.use_mc_token_ids: __lowercase = ids_tensor([self.batch_size, self.num_choices] , self.seq_length ) __lowercase = None __lowercase = None __lowercase = None if self.use_labels: __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __lowercase = ids_tensor([self.batch_size] , self.num_choices ) __lowercase = self.get_config() __lowercase = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, sequence_labels, token_labels, choice_labels, ) def snake_case__ ( self ): return CTRLConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): __lowercase = CTRLModel(config=snake_case_ ) model.to(snake_case_ ) model.eval() model(snake_case_ , token_type_ids=snake_case_ , head_mask=snake_case_ ) model(snake_case_ , token_type_ids=snake_case_ ) __lowercase = model(snake_case_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(len(result.past_key_values ) , config.n_layer ) def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): __lowercase = CTRLLMHeadModel(snake_case_ ) model.to(snake_case_ ) model.eval() __lowercase = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def snake_case__ ( self ): __lowercase = self.prepare_config_and_inputs() ( __lowercase ) = config_and_inputs __lowercase = {"input_ids": input_ids, "token_type_ids": token_type_ids, "head_mask": head_mask} return config, inputs_dict def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , *lowerCAmelCase_ ): __lowercase = self.num_labels __lowercase = CTRLForSequenceClassification(snake_case_ ) model.to(snake_case_ ) model.eval() __lowercase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __lowercase = model(snake_case_ , token_type_ids=snake_case_ , labels=snake_case_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) @require_torch class snake_case ( _snake_case ,_snake_case ,_snake_case ,unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (CTRLModel, CTRLLMHeadModel, CTRLForSequenceClassification) if is_torch_available() else () __lowerCAmelCase = (CTRLLMHeadModel,) if is_torch_available() else () __lowerCAmelCase = ( { """feature-extraction""": CTRLModel, """text-classification""": CTRLForSequenceClassification, """text-generation""": CTRLLMHeadModel, """zero-shot""": CTRLForSequenceClassification, } if is_torch_available() else {} ) __lowerCAmelCase = True __lowerCAmelCase = False __lowerCAmelCase = False def snake_case__ ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ): if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `CTRLConfig` was never used in pipeline tests, either because of a missing checkpoint or because a tiny # config could not be created. return True return False def snake_case__ ( self ): __lowercase = CTRLModelTester(self ) __lowercase = ConfigTester(self , config_class=snake_case_ , n_embd=37 ) def snake_case__ ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() def snake_case__ ( self ): self.config_tester.run_common_tests() def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_ctrl_model(*snake_case_ ) def snake_case__ ( self ): __lowercase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*snake_case_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def snake_case__ ( self ): pass @slow def snake_case__ ( self ): for model_name in CTRL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __lowercase = CTRLModel.from_pretrained(snake_case_ ) self.assertIsNotNone(snake_case_ ) @unittest.skip("The model doesn't support left padding" ) # and it's not used enough to be worth fixing :) def snake_case__ ( self ): pass @require_torch class snake_case ( unittest.TestCase ): """simple docstring""" def snake_case__ ( self ): super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() torch.cuda.empty_cache() @slow def snake_case__ ( self ): __lowercase = CTRLLMHeadModel.from_pretrained("ctrl" ) model.to(snake_case_ ) __lowercase = torch.tensor( [[1_1859, 0, 1611, 8]] , dtype=torch.long , device=snake_case_ ) # Legal the president is __lowercase = [ 1_1859, 0, 1611, 8, 5, 150, 2_6449, 2, 19, 348, 469, 3, 2595, 48, 2_0740, 24_6533, 24_6533, 19, 30, 5, ] # Legal the president is a good guy and I don't want to lose my job. \n \n I have a __lowercase = model.generate(snake_case_ , do_sample=snake_case_ ) self.assertListEqual(output_ids[0].tolist() , snake_case_ )
721
from __future__ import annotations import numpy as np from numpy import floataa from numpy.typing import NDArray def __lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , ) -> list[float]: '''simple docstring''' __lowercase , __lowercase = coefficient_matrix.shape __lowercase , __lowercase = constant_matrix.shape if rowsa != colsa: __lowercase = f'''Coefficient matrix dimensions must be nxn but received {rowsa}x{colsa}''' raise ValueError(_UpperCAmelCase ) if colsa != 1: __lowercase = f'''Constant matrix must be nx1 but received {rowsa}x{colsa}''' raise ValueError(_UpperCAmelCase ) if rowsa != rowsa: __lowercase = ( "Coefficient and constant matrices dimensions must be nxn and nx1 but " f'''received {rowsa}x{colsa} and {rowsa}x{colsa}''' ) raise ValueError(_UpperCAmelCase ) if len(_UpperCAmelCase ) != rowsa: __lowercase = ( "Number of initial values must be equal to number of rows in coefficient " f'''matrix but received {len(_UpperCAmelCase )} and {rowsa}''' ) raise ValueError(_UpperCAmelCase ) if iterations <= 0: raise ValueError("Iterations must be at least 1" ) __lowercase = np.concatenate( (coefficient_matrix, constant_matrix) , axis=1 ) __lowercase , __lowercase = table.shape strictly_diagonally_dominant(_UpperCAmelCase ) # Iterates the whole matrix for given number of times for _ in range(_UpperCAmelCase ): __lowercase = [] for row in range(_UpperCAmelCase ): __lowercase = 0 for col in range(_UpperCAmelCase ): if col == row: __lowercase = table[row][col] elif col == cols - 1: __lowercase = table[row][col] else: temp += (-1) * table[row][col] * init_val[col] __lowercase = (temp + val) / denom new_val.append(_UpperCAmelCase ) __lowercase = new_val return [float(_UpperCAmelCase ) for i in new_val] def __lowercase ( _UpperCAmelCase ) -> bool: '''simple docstring''' __lowercase , __lowercase = table.shape __lowercase = True for i in range(0 , _UpperCAmelCase ): __lowercase = 0 for j in range(0 , cols - 1 ): if i == j: continue else: total += table[i][j] if table[i][i] <= total: raise ValueError("Coefficient matrix is not strictly diagonally dominant" ) return is_diagonally_dominant # Test Cases if __name__ == "__main__": import doctest doctest.testmod()
576
0
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class a_ ( snake_case_ ): '''simple docstring''' UpperCamelCase = '''distilbert''' UpperCamelCase = { '''hidden_size''': '''dim''', '''num_attention_heads''': '''n_heads''', '''num_hidden_layers''': '''n_layers''', } def __init__( self , A=3_0522 , A=512 , A=False , A=6 , A=12 , A=768 , A=4 * 768 , A=0.1 , A=0.1 , A="gelu" , A=0.02 , A=0.1 , A=0.2 , A=0 , **A , ) -> Dict: _SCREAMING_SNAKE_CASE = vocab_size _SCREAMING_SNAKE_CASE = max_position_embeddings _SCREAMING_SNAKE_CASE = sinusoidal_pos_embds _SCREAMING_SNAKE_CASE = n_layers _SCREAMING_SNAKE_CASE = n_heads _SCREAMING_SNAKE_CASE = dim _SCREAMING_SNAKE_CASE = hidden_dim _SCREAMING_SNAKE_CASE = dropout _SCREAMING_SNAKE_CASE = attention_dropout _SCREAMING_SNAKE_CASE = activation _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = qa_dropout _SCREAMING_SNAKE_CASE = seq_classif_dropout super().__init__(**A , pad_token_id=A ) class a_ ( snake_case_ ): '''simple docstring''' @property def snake_case_( self ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """choice""", 2: """sequence"""} else: _SCREAMING_SNAKE_CASE = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
314
'''simple docstring''' from __future__ import annotations import math def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->list: if len(__lowerCamelCase ) != 2 or len(a[0] ) != 2 or len(__lowerCamelCase ) != 2 or len(b[0] ) != 2: raise Exception("""Matrices are not 2x2""" ) _SCREAMING_SNAKE_CASE = [ [a[0][0] * b[0][0] + a[0][1] * b[1][0], a[0][0] * b[0][1] + a[0][1] * b[1][1]], [a[1][0] * b[0][0] + a[1][1] * b[1][0], a[1][0] * b[0][1] + a[1][1] * b[1][1]], ] return new_matrix def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->Dict: return [ [matrix_a[row][col] + matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCamelCase ) ) ] def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->Any: return [ [matrix_a[row][col] - matrix_b[row][col] for col in range(len(matrix_a[row] ) )] for row in range(len(__lowerCamelCase ) ) ] def lowerCamelCase ( __lowerCamelCase : list ) ->tuple[list, list, list, list]: if len(__lowerCamelCase ) % 2 != 0 or len(a[0] ) % 2 != 0: raise Exception("""Odd matrices are not supported!""" ) _SCREAMING_SNAKE_CASE = len(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_length // 2 _SCREAMING_SNAKE_CASE = [[a[i][j] for j in range(__lowerCamelCase , __lowerCamelCase )] for i in range(__lowerCamelCase )] _SCREAMING_SNAKE_CASE = [ [a[i][j] for j in range(__lowerCamelCase , __lowerCamelCase )] for i in range(__lowerCamelCase , __lowerCamelCase ) ] _SCREAMING_SNAKE_CASE = [[a[i][j] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase )] _SCREAMING_SNAKE_CASE = [[a[i][j] for j in range(__lowerCamelCase )] for i in range(__lowerCamelCase , __lowerCamelCase )] return top_left, top_right, bot_left, bot_right def lowerCamelCase ( __lowerCamelCase : list ) ->tuple[int, int]: return len(__lowerCamelCase ), len(matrix[0] ) def lowerCamelCase ( __lowerCamelCase : list ) ->None: print("""\n""".join(str(__lowerCamelCase ) for line in matrix ) ) def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->list: if matrix_dimensions(__lowerCamelCase ) == (2, 2): return default_matrix_multiplication(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = split_matrix(__lowerCamelCase ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = split_matrix(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = actual_strassen(__lowerCamelCase , matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = actual_strassen(__lowerCamelCase , matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = actual_strassen(matrix_subtraction(__lowerCamelCase , __lowerCamelCase ) , matrix_addition(__lowerCamelCase , __lowerCamelCase ) ) _SCREAMING_SNAKE_CASE = matrix_addition(matrix_subtraction(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_addition(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_addition(__lowerCamelCase , __lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_subtraction(matrix_subtraction(matrix_addition(__lowerCamelCase , __lowerCamelCase ) , __lowerCamelCase ) , __lowerCamelCase ) # construct the new matrix from our 4 quadrants _SCREAMING_SNAKE_CASE = [] for i in range(len(__lowerCamelCase ) ): new_matrix.append(top_left[i] + top_right[i] ) for i in range(len(__lowerCamelCase ) ): new_matrix.append(bot_left[i] + bot_right[i] ) return new_matrix def lowerCamelCase ( __lowerCamelCase : list , __lowerCamelCase : list ) ->list: if matrix_dimensions(__lowerCamelCase )[1] != matrix_dimensions(__lowerCamelCase )[0]: _SCREAMING_SNAKE_CASE = ( """Unable to multiply these matrices, please check the dimensions.\n""" F'Matrix A: {matrixa}\n' F'Matrix B: {matrixa}' ) raise Exception(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_dimensions(__lowerCamelCase ) _SCREAMING_SNAKE_CASE = matrix_dimensions(__lowerCamelCase ) if dimensiona[0] == dimensiona[1] and dimensiona[0] == dimensiona[1]: return [matrixa, matrixa] _SCREAMING_SNAKE_CASE = max(*__lowerCamelCase , *__lowerCamelCase ) _SCREAMING_SNAKE_CASE = int(math.pow(2 , math.ceil(math.loga(__lowerCamelCase ) ) ) ) _SCREAMING_SNAKE_CASE = matrixa _SCREAMING_SNAKE_CASE = matrixa # Adding zeros to the matrices so that the arrays dimensions are the same and also # power of 2 for i in range(0 , __lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): new_matrixa[i].append(0 ) else: new_matrixa.append([0] * maxim ) _SCREAMING_SNAKE_CASE = actual_strassen(__lowerCamelCase , __lowerCamelCase ) # Removing the additional zeros for i in range(0 , __lowerCamelCase ): if i < dimensiona[0]: for _ in range(dimensiona[1] , __lowerCamelCase ): final_matrix[i].pop() else: final_matrix.pop() return final_matrix if __name__ == "__main__": lowercase_ = [ [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 4, 3, 1], [2, 3, 6, 7], [3, 1, 2, 4], [2, 3, 4, 5], [6, 2, 3, 1], ] lowercase_ = [[0, 2, 1, 1], [16, 2, 3, 3], [2, 2, 7, 7], [13, 11, 22, 4]] print(strassen(matrixa, matrixa))
314
1
"""simple docstring""" def UpperCAmelCase_ ( __a : str ): '''simple docstring''' return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
349
"""simple docstring""" def UpperCAmelCase_ ( __a : list ): '''simple docstring''' _lowerCamelCase : List[Any] = len(__a ) for _ in range(__a ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: _lowerCamelCase , _lowerCamelCase : Optional[int] = arr[i + 1], arr[i] return arr if __name__ == "__main__": a_ = list(range(10, 0, -1)) print(F"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
349
1
import json import os import re import sys import urllib.request import requests from bsa import BeautifulSoup lowercase_ = { 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582' } def a ( A__ : str = "dhaka" , A__ : int = 5 ) -> int: """simple docstring""" _lowercase =min(A__ , 50 ) # Prevent abuse! _lowercase ={ 'q': query, 'tbm': 'isch', 'hl': 'en', 'ijn': '0', } _lowercase =requests.get('https://www.google.com/search' , params=A__ , headers=A__ ) _lowercase =BeautifulSoup(html.text , 'html.parser' ) _lowercase =''.join( re.findall(r'AF_initDataCallback\(([^<]+)\);' , str(soup.select('script' ) ) ) ) _lowercase =json.dumps(A__ ) _lowercase =json.loads(A__ ) _lowercase =re.findall( r'\[\"GRID_STATE0\",null,\[\[1,\[0,\".*?\",(.*),\"All\",' , A__ , ) if not matched_google_image_data: return 0 _lowercase =re.sub( r'\[\"(https\:\/\/encrypted-tbn0\.gstatic\.com\/images\?.*?)\",\d+,\d+\]' , '' , str(A__ ) , ) _lowercase =re.findall( r'(?:\'|,),\[\"(https:|http.*?)\",\d+,\d+\]' , A__ , ) for index, fixed_full_res_image in enumerate(A__ ): if index >= max_images: return index _lowercase =bytes(A__ , 'ascii' ).decode( 'unicode-escape' ) _lowercase =bytes(A__ , 'ascii' ).decode( 'unicode-escape' ) _lowercase =urllib.request.build_opener() _lowercase =[ ( 'User-Agent', 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36' ' (KHTML, like Gecko) Chrome/70.0.3538.102 Safari/537.36 Edge/18.19582', ) ] urllib.request.install_opener(A__ ) _lowercase =F'''query_{query.replace(" " , "_" )}''' if not os.path.exists(A__ ): os.makedirs(A__ ) urllib.request.urlretrieve( # noqa: S310 A__ , F'''{path_name}/original_size_img_{index}.jpg''' ) return index if __name__ == "__main__": try: lowercase_ = download_images_from_google_query(sys.argv[1]) print(f"{image_count} images were downloaded to disk.") except IndexError: print('Please provide a search term.') raise
291
import flax.linen as nn import jax import jax.numpy as jnp class __lowerCAmelCase ( nn.Module ): _a = 42 _a = jnp.floataa def A__ ( self ) -> int: '''simple docstring''' _lowercase =nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowerCAmelCase ) -> Any: '''simple docstring''' _lowercase , _lowercase , _lowercase , _lowercase =hidden_states.shape _lowercase =jax.image.resize( lowerCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) _lowercase =self.conv(lowerCAmelCase ) return hidden_states class __lowerCAmelCase ( nn.Module ): _a = 42 _a = jnp.floataa def A__ ( self ) -> Any: '''simple docstring''' _lowercase =nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self , lowerCAmelCase ) -> Optional[int]: '''simple docstring''' _lowercase =self.conv(lowerCAmelCase ) return hidden_states class __lowerCAmelCase ( nn.Module ): _a = 42 _a = None _a = 0.0 _a = None _a = jnp.floataa def A__ ( self ) -> Optional[int]: '''simple docstring''' _lowercase =self.in_channels if self.out_channels is None else self.out_channels _lowercase =nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowercase =nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowercase =nn.Dense(lowerCAmelCase , dtype=self.dtype ) _lowercase =nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowercase =nn.Dropout(self.dropout_prob ) _lowercase =nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowercase =self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowercase =None if use_nin_shortcut: _lowercase =nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True ) -> Tuple: '''simple docstring''' _lowercase =hidden_states _lowercase =self.norma(lowerCAmelCase ) _lowercase =nn.swish(lowerCAmelCase ) _lowercase =self.conva(lowerCAmelCase ) _lowercase =self.time_emb_proj(nn.swish(lowerCAmelCase ) ) _lowercase =jnp.expand_dims(jnp.expand_dims(lowerCAmelCase , 1 ) , 1 ) _lowercase =hidden_states + temb _lowercase =self.norma(lowerCAmelCase ) _lowercase =nn.swish(lowerCAmelCase ) _lowercase =self.dropout(lowerCAmelCase , lowerCAmelCase ) _lowercase =self.conva(lowerCAmelCase ) if self.conv_shortcut is not None: _lowercase =self.conv_shortcut(lowerCAmelCase ) return hidden_states + residual
291
1
"""simple docstring""" import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin _UpperCamelCase = '\nHugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning.\n\nIn March 2021, Hugging Face raised $40 million in a Series B funding round.[3]\n\nOn April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5]\n' class a ( unittest.TestCase, a__ ): def UpperCamelCase_ ( self ): lowercase = load_tool('text-question-answering' ) self.tool.setup() lowercase = load_tool('text-question-answering' , remote=lowerCamelCase_ ) def UpperCamelCase_ ( self ): lowercase = self.tool(lowerCamelCase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCamelCase_ , 'launched the BigScience Research Workshop' ) def UpperCamelCase_ ( self ): lowercase = self.remote_tool(lowerCamelCase_ , 'What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCamelCase_ , 'launched the BigScience Research Workshop' ) def UpperCamelCase_ ( self ): lowercase = self.tool(text=lowerCamelCase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCamelCase_ , 'launched the BigScience Research Workshop' ) def UpperCamelCase_ ( self ): lowercase = self.remote_tool(text=lowerCamelCase_ , question='What did Hugging Face do in April 2021?' ) self.assertEqual(lowerCamelCase_ , 'launched the BigScience Research Workshop' )
710
"""simple docstring""" from torch import nn class a ( nn.Module ): def __init__( self , _lowerCamelCase , _lowerCamelCase ): super().__init__() lowercase = class_size lowercase = embed_size # self.mlp1 = nn.Linear(embed_size, embed_size) # self.mlp2 = (nn.Linear(embed_size, class_size)) lowercase = nn.Linear(_lowerCamelCase , _lowerCamelCase ) def UpperCamelCase_ ( self , _lowerCamelCase ): # hidden_state = nn.functional.relu(self.mlp1(hidden_state)) # hidden_state = self.mlp2(hidden_state) lowercase = self.mlp(_lowerCamelCase ) return logits
134
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ = { '''configuration_mgp_str''': ['''MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MgpstrConfig'''], '''processing_mgp_str''': ['''MgpstrProcessor'''], '''tokenization_mgp_str''': ['''MgpstrTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ = [ '''MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MgpstrModel''', '''MgpstrPreTrainedModel''', '''MgpstrForSceneTextRecognition''', ] if TYPE_CHECKING: from .configuration_mgp_str import MGP_STR_PRETRAINED_CONFIG_ARCHIVE_MAP, MgpstrConfig from .processing_mgp_str import MgpstrProcessor from .tokenization_mgp_str import MgpstrTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mgp_str import ( MGP_STR_PRETRAINED_MODEL_ARCHIVE_LIST, MgpstrForSceneTextRecognition, MgpstrModel, MgpstrPreTrainedModel, ) else: import sys __magic_name__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
576
'''simple docstring''' from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class UpperCAmelCase_ : """simple docstring""" pass
173
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _a = {"""configuration_fnet""": ["""FNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """FNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""FNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = ["""FNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a = [ """FNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """FNetForMaskedLM""", """FNetForMultipleChoice""", """FNetForNextSentencePrediction""", """FNetForPreTraining""", """FNetForQuestionAnswering""", """FNetForSequenceClassification""", """FNetForTokenClassification""", """FNetLayer""", """FNetModel""", """FNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_fnet import FNET_PRETRAINED_CONFIG_ARCHIVE_MAP, FNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet import FNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_fnet_fast import FNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_fnet import ( FNET_PRETRAINED_MODEL_ARCHIVE_LIST, FNetForMaskedLM, FNetForMultipleChoice, FNetForNextSentencePrediction, FNetForPreTraining, FNetForQuestionAnswering, FNetForSequenceClassification, FNetForTokenClassification, FNetLayer, FNetModel, FNetPreTrainedModel, ) else: import sys _a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
78
"""simple docstring""" import sys from collections import defaultdict class _UpperCAmelCase: def __init__( self) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = [] def UpperCAmelCase ( self , __a) -> Optional[Any]: '''simple docstring''' return self.node_position[vertex] def UpperCAmelCase ( self , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = pos def UpperCAmelCase ( self , __a , __a , __a , __a) -> Tuple: '''simple docstring''' if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _UpperCamelCase = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _UpperCamelCase = 2 * start + 1 else: _UpperCamelCase = 2 * start + 2 if heap[smallest_child] < heap[start]: _UpperCamelCase , _UpperCamelCase = heap[smallest_child], positions[smallest_child] _UpperCamelCase , _UpperCamelCase = ( heap[start], positions[start], ) _UpperCamelCase , _UpperCamelCase = temp, tempa _UpperCamelCase = self.get_position(positions[smallest_child]) self.set_position( positions[smallest_child] , self.get_position(positions[start])) self.set_position(positions[start] , __a) self.top_to_bottom(__a , __a , __a , __a) def UpperCAmelCase ( self , __a , __a , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = position[index] while index != 0: _UpperCamelCase = int((index - 2) / 2) if index % 2 == 0 else int((index - 1) / 2) if val < heap[parent]: _UpperCamelCase = heap[parent] _UpperCamelCase = position[parent] self.set_position(position[parent] , __a) else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(__a , __a) break _UpperCamelCase = parent else: _UpperCamelCase = val _UpperCamelCase = temp self.set_position(__a , 0) def UpperCAmelCase ( self , __a , __a) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = len(__a) // 2 - 1 for i in range(__a , -1 , -1): self.top_to_bottom(__a , __a , len(__a) , __a) def UpperCAmelCase ( self , __a , __a) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = positions[0] _UpperCamelCase = sys.maxsize self.top_to_bottom(__a , 0 , len(__a) , __a) return temp def lowerCamelCase__ ( __snake_case ) -> Optional[int]: """simple docstring""" _UpperCamelCase = Heap() _UpperCamelCase = [0] * len(__snake_case ) _UpperCamelCase = [-1] * len(__snake_case ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _UpperCamelCase = [] # Heap of Distance of vertices from their neighboring vertex _UpperCamelCase = [] for vertex in range(len(__snake_case ) ): distance_tv.append(sys.maxsize ) positions.append(__snake_case ) heap.node_position.append(__snake_case ) _UpperCamelCase = [] _UpperCamelCase = 1 _UpperCamelCase = sys.maxsize for neighbor, distance in adjacency_list[0]: _UpperCamelCase = 0 _UpperCamelCase = distance heap.heapify(__snake_case, __snake_case ) for _ in range(1, len(__snake_case ) ): _UpperCamelCase = heap.delete_minimum(__snake_case, __snake_case ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _UpperCamelCase = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(__snake_case )] ): _UpperCamelCase = distance heap.bottom_to_top( __snake_case, heap.get_position(__snake_case ), __snake_case, __snake_case ) _UpperCamelCase = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _a = int(input("""Enter number of edges: """).strip()) _a = defaultdict(list) for _ in range(edges_number): _a = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
78
1
from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class A: '''simple docstring''' def a__ ( self : Dict , A_ : Dict ) -> Optional[int]: """simple docstring""" raise NotImplementedError() def a__ ( self : List[str] ) -> Tuple: """simple docstring""" raise NotImplementedError() class A( __snake_case ): '''simple docstring''' def __init__( self : Optional[Any] , A_ : Dict , A_ : List[Any] = False , **A_ : Union[str, Any] ) -> List[Any]: """simple docstring""" lowerCamelCase_ = tokenizer lowerCamelCase_ = skip_prompt lowerCamelCase_ = decode_kwargs # variables used in the streaming process lowerCamelCase_ = [] lowerCamelCase_ = 0 lowerCamelCase_ = True def a__ ( self : List[str] , A_ : List[str] ) -> Optional[Any]: """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('TextStreamer only supports batch size 1' ) elif len(value.shape ) > 1: lowerCamelCase_ = value[0] if self.skip_prompt and self.next_tokens_are_prompt: lowerCamelCase_ = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) lowerCamelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('\n' ): lowerCamelCase_ = text[self.print_len :] lowerCamelCase_ = [] lowerCamelCase_ = 0 # If the last token is a CJK character, we print the characters. elif len(_lowercase ) > 0 and self._is_chinese_char(ord(text[-1] ) ): lowerCamelCase_ = text[self.print_len :] self.print_len += len(_lowercase ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: lowerCamelCase_ = text[self.print_len : text.rfind(' ' ) + 1] self.print_len += len(_lowercase ) self.on_finalized_text(_lowercase ) def a__ ( self : Any ) -> Any: """simple docstring""" if len(self.token_cache ) > 0: lowerCamelCase_ = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) lowerCamelCase_ = text[self.print_len :] lowerCamelCase_ = [] lowerCamelCase_ = 0 else: lowerCamelCase_ = """""" lowerCamelCase_ = True self.on_finalized_text(_lowercase , stream_end=_lowercase ) def a__ ( self : Dict , A_ : Optional[int] , A_ : str = False ) -> int: """simple docstring""" print(_lowercase , flush=_lowercase , end='' if not stream_end else None ) def a__ ( self : Dict , A_ : List[Any] ) -> List[str]: """simple docstring""" if ( (cp >= 0X4E_00 and cp <= 0X9F_FF) or (cp >= 0X34_00 and cp <= 0X4D_BF) # or (cp >= 0X2_00_00 and cp <= 0X2_A6_DF) # or (cp >= 0X2_A7_00 and cp <= 0X2_B7_3F) # or (cp >= 0X2_B7_40 and cp <= 0X2_B8_1F) # or (cp >= 0X2_B8_20 and cp <= 0X2_CE_AF) # or (cp >= 0XF9_00 and cp <= 0XFA_FF) or (cp >= 0X2_F8_00 and cp <= 0X2_FA_1F) # ): # return True return False class A( __snake_case ): '''simple docstring''' def __init__( self : str , A_ : List[str] , A_ : Optional[Any] = False , A_ : Dict = None , **A_ : Tuple ) -> List[str]: """simple docstring""" super().__init__(_lowercase , _lowercase , **_lowercase ) lowerCamelCase_ = Queue() lowerCamelCase_ = None lowerCamelCase_ = timeout def a__ ( self : Optional[Any] , A_ : Any , A_ : str = False ) -> Optional[Any]: """simple docstring""" self.text_queue.put(_lowercase , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__( self : List[Any] ) -> Dict: """simple docstring""" return self def a__ ( self : List[Any] ) -> Tuple: """simple docstring""" lowerCamelCase_ = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
70
"""simple docstring""" from __future__ import annotations import math def __magic_name__ ( _lowerCamelCase : float , _lowerCamelCase : int ): __a : Tuple = u for i in range(1 , _lowerCamelCase ): __a : List[str] = temp * (u - i) return temp def __magic_name__ ( ): __a : Dict = int(input("""enter the numbers of values: """ ) ) __a : list[list[float]] = [] for _ in range(_lowerCamelCase ): y.append([] ) for i in range(_lowerCamelCase ): for j in range(_lowerCamelCase ): y[i].append(_lowerCamelCase ) __a : Any = 0 print("""enter the values of parameters in a list: """ ) __a : List[str] = list(map(_lowerCamelCase , input().split() ) ) print("""enter the values of corresponding parameters: """ ) for i in range(_lowerCamelCase ): __a : str = float(input() ) __a : List[Any] = int(input("""enter the value to interpolate: """ ) ) __a : Union[str, Any] = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , _lowerCamelCase ): for j in range(n - i ): __a : List[str] = y[j + 1][i - 1] - y[j][i - 1] __a : str = y[0][0] for i in range(1 , _lowerCamelCase ): summ += (ucal(_lowerCamelCase , _lowerCamelCase ) * y[0][i]) / math.factorial(_lowerCamelCase ) print(F'''the value at {value} is {summ}''' ) if __name__ == "__main__": main()
581
0
'''simple docstring''' import copy from collections import OrderedDict from typing import Dict, Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging from ..auto import CONFIG_MAPPING UpperCamelCase__ = logging.get_logger(__name__) UpperCamelCase__ = { """facebook/detr-resnet-50""": """https://huggingface.co/facebook/detr-resnet-50/resolve/main/config.json""", # See all DETR models at https://huggingface.co/models?filter=detr } class a__ ( snake_case__ ): _a : str = """detr""" _a : Union[str, Any] = ["""past_key_values"""] _a : Union[str, Any] = { """hidden_size""": """d_model""", """num_attention_heads""": """encoder_attention_heads""", } def __init__( self , _A=True , _A=None , _A=3 , _A=1_0_0 , _A=6 , _A=2_0_4_8 , _A=8 , _A=6 , _A=2_0_4_8 , _A=8 , _A=0.0 , _A=0.0 , _A=True , _A="relu" , _A=2_5_6 , _A=0.1 , _A=0.0 , _A=0.0 , _A=0.02 , _A=1.0 , _A=False , _A="sine" , _A="resnet50" , _A=True , _A=False , _A=1 , _A=5 , _A=2 , _A=1 , _A=1 , _A=5 , _A=2 , _A=0.1 , **_A , ): """simple docstring""" if backbone_config is not None and use_timm_backbone: raise ValueError("You can't specify both `backbone_config` and `use_timm_backbone`." ) if not use_timm_backbone: if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone." ) __lowerCAmelCase = CONFIG_MAPPING["resnet"](out_features=["stage4"] ) elif isinstance(_A , _A ): __lowerCAmelCase = backbone_config.get("model_type" ) __lowerCAmelCase = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase = config_class.from_dict(_A ) # set timm attributes to None __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None, None, None __lowerCAmelCase = use_timm_backbone __lowerCAmelCase = backbone_config __lowerCAmelCase = num_channels __lowerCAmelCase = num_queries __lowerCAmelCase = d_model __lowerCAmelCase = encoder_ffn_dim __lowerCAmelCase = encoder_layers __lowerCAmelCase = encoder_attention_heads __lowerCAmelCase = decoder_ffn_dim __lowerCAmelCase = decoder_layers __lowerCAmelCase = decoder_attention_heads __lowerCAmelCase = dropout __lowerCAmelCase = attention_dropout __lowerCAmelCase = activation_dropout __lowerCAmelCase = activation_function __lowerCAmelCase = init_std __lowerCAmelCase = init_xavier_std __lowerCAmelCase = encoder_layerdrop __lowerCAmelCase = decoder_layerdrop __lowerCAmelCase = encoder_layers __lowerCAmelCase = auxiliary_loss __lowerCAmelCase = position_embedding_type __lowerCAmelCase = backbone __lowerCAmelCase = use_pretrained_backbone __lowerCAmelCase = dilation # Hungarian matcher __lowerCAmelCase = class_cost __lowerCAmelCase = bbox_cost __lowerCAmelCase = giou_cost # Loss coefficients __lowerCAmelCase = mask_loss_coefficient __lowerCAmelCase = dice_loss_coefficient __lowerCAmelCase = bbox_loss_coefficient __lowerCAmelCase = giou_loss_coefficient __lowerCAmelCase = eos_coefficient super().__init__(is_encoder_decoder=_A , **_A ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.encoder_attention_heads @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.d_model @classmethod def __SCREAMING_SNAKE_CASE( cls , _A , **_A ): """simple docstring""" return cls(backbone_config=_A , **_A ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" __lowerCAmelCase = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __lowerCAmelCase = self.backbone_config.to_dict() __lowerCAmelCase = self.__class__.model_type return output class a__ ( snake_case__ ): _a : List[Any] = version.parse("""1.11""" ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ("pixel_mask", {0: "batch"}), ] ) @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1E-5 @property def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return 1_2
707
from __future__ import annotations from collections.abc import Iterator from typing import Any class a__ : def __init__( self , _A ): """simple docstring""" __lowerCAmelCase = data __lowerCAmelCase = None class a__ : def __init__( self ): """simple docstring""" __lowerCAmelCase = None __lowerCAmelCase = None def __iter__( self ): """simple docstring""" __lowerCAmelCase = self.head while self.head: yield node.data __lowerCAmelCase = node.next if node == self.head: break def __len__( self ): """simple docstring""" return sum(1 for _ in self ) def __repr__( self ): """simple docstring""" return "->".join(str(_A ) for item in iter(self ) ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" self.insert_nth(len(self ) , _A ) def __SCREAMING_SNAKE_CASE( self , _A ): """simple docstring""" self.insert_nth(0 , _A ) def __SCREAMING_SNAKE_CASE( self , _A , _A ): """simple docstring""" if index < 0 or index > len(self ): raise IndexError("list index out of range." ) __lowerCAmelCase = Node(_A ) if self.head is None: __lowerCAmelCase = new_node # first node points itself __lowerCAmelCase = __lowerCAmelCase = new_node elif index == 0: # insert at head __lowerCAmelCase = self.head __lowerCAmelCase = __lowerCAmelCase = new_node else: __lowerCAmelCase = self.head for _ in range(index - 1 ): __lowerCAmelCase = temp.next __lowerCAmelCase = temp.next __lowerCAmelCase = new_node if index == len(self ) - 1: # insert at tail __lowerCAmelCase = new_node def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.delete_nth(0 ) def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return self.delete_nth(len(self ) - 1 ) def __SCREAMING_SNAKE_CASE( self , _A = 0 ): """simple docstring""" if not 0 <= index < len(self ): raise IndexError("list index out of range." ) __lowerCAmelCase = self.head if self.head == self.tail: # just one node __lowerCAmelCase = __lowerCAmelCase = None elif index == 0: # delete head node __lowerCAmelCase = self.tail.next.next __lowerCAmelCase = self.head.next else: __lowerCAmelCase = self.head for _ in range(index - 1 ): __lowerCAmelCase = temp.next __lowerCAmelCase = temp.next __lowerCAmelCase = temp.next.next if index == len(self ) - 1: # delete at tail __lowerCAmelCase = temp return delete_node.data def __SCREAMING_SNAKE_CASE( self ): """simple docstring""" return len(self ) == 0 def _a ( ): __lowerCAmelCase = CircularLinkedList() assert len(SCREAMING_SNAKE_CASE_ ) == 0 assert circular_linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE_ ) == "" try: circular_linked_list.delete_front() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_tail() raise AssertionError # This should not happen except IndexError: assert True # This should happen try: circular_linked_list.delete_nth(-1 ) raise AssertionError except IndexError: assert True try: circular_linked_list.delete_nth(0 ) raise AssertionError except IndexError: assert True assert circular_linked_list.is_empty() is True for i in range(5 ): assert len(SCREAMING_SNAKE_CASE_ ) == i circular_linked_list.insert_nth(SCREAMING_SNAKE_CASE_ , i + 1 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) circular_linked_list.insert_tail(6 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 7 ) ) circular_linked_list.insert_head(0 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(0 , 7 ) ) assert circular_linked_list.delete_front() == 0 assert circular_linked_list.delete_tail() == 6 assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) assert circular_linked_list.delete_nth(2 ) == 3 circular_linked_list.insert_nth(2 , 3 ) assert str(SCREAMING_SNAKE_CASE_ ) == "->".join(str(SCREAMING_SNAKE_CASE_ ) for i in range(1 , 6 ) ) assert circular_linked_list.is_empty() is False if __name__ == "__main__": import doctest doctest.testmod()
552
0
def UpperCamelCase_ ( ) -> List[Any]: a__ : Optional[int] = [] a__ : Dict = 1 while len(__a ) < 1e6: constant.append(str(__a ) ) i += 1 a__ : Dict = "".join(__a ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9_999] ) * int(constant[99_999] ) * int(constant[999_999] ) ) if __name__ == "__main__": print(solution())
37
import json import os import unittest from transformers import BatchEncoding, MvpTokenizer, MvpTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin, filter_roberta_detectors @require_tokenizers class lowerCamelCase__ ( UpperCAmelCase , unittest.TestCase ): """simple docstring""" _UpperCamelCase : List[str] = MvpTokenizer _UpperCamelCase : Any = MvpTokenizerFast _UpperCamelCase : List[str] = True _UpperCamelCase : Dict = filter_roberta_detectors def snake_case__ ( self ): '''simple docstring''' super().setUp() UpperCamelCase__ = [ "l", "o", "w", "e", "r", "s", "t", "i", "d", "n", "\u0120", "\u0120l", "\u0120n", "\u0120lo", "\u0120low", "er", "\u0120lowest", "\u0120newer", "\u0120wider", "<unk>", ] UpperCamelCase__ = dict(zip(snake_case , range(len(snake_case ) ) ) ) UpperCamelCase__ = ["#version: 0.2", "\u0120 l", "\u0120l o", "\u0120lo w", "e r", ""] UpperCamelCase__ = {"unk_token": "<unk>"} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(snake_case ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(snake_case ) ) def snake_case__ ( self , **snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def snake_case__ ( self , **snake_case ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **snake_case ) def snake_case__ ( self , snake_case ): '''simple docstring''' return "lower newer", "lower newer" @cached_property def snake_case__ ( self ): '''simple docstring''' return MvpTokenizer.from_pretrained("RUCAIBox/mvp" ) @cached_property def snake_case__ ( self ): '''simple docstring''' return MvpTokenizerFast.from_pretrained("RUCAIBox/mvp" ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] UpperCamelCase__ = [0, 250, 251, 17818, 13, 39186, 1938, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , max_length=len(snake_case ) , padding=snake_case , return_tensors="pt" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) UpperCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(snake_case , snake_case ) # Test that special tokens are reset @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization.", "Another paragraph for summarization."] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , padding=snake_case , return_tensors="pt" ) # check if input_ids are returned and no labels self.assertIn("input_ids" , snake_case ) self.assertIn("attention_mask" , snake_case ) self.assertNotIn("labels" , snake_case ) self.assertNotIn("decoder_attention_mask" , snake_case ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = [ "Summary of the text.", "Another summary.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(text_target=snake_case , max_length=32 , padding="max_length" , return_tensors="pt" ) self.assertEqual(32 , targets["input_ids"].shape[1] ) @require_torch def snake_case__ ( self ): '''simple docstring''' for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer( ["I am a small frog" * 1024, "I am a small frog"] , padding=snake_case , truncation=snake_case , return_tensors="pt" ) self.assertIsInstance(snake_case , snake_case ) self.assertEqual(batch.input_ids.shape , (2, 1024) ) @require_torch def snake_case__ ( self ): '''simple docstring''' UpperCamelCase__ = ["A long paragraph for summarization."] UpperCamelCase__ = [ "Summary of the text.", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: UpperCamelCase__ = tokenizer(snake_case , text_target=snake_case , return_tensors="pt" ) UpperCamelCase__ = inputs["input_ids"] UpperCamelCase__ = inputs["labels"] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) def snake_case__ ( self ): '''simple docstring''' pass def snake_case__ ( self ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(snake_case , **snake_case ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(snake_case , **snake_case ) UpperCamelCase__ = "A, <mask> AllenNLP sentence." UpperCamelCase__ = tokenizer_r.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) UpperCamelCase__ = tokenizer_p.encode_plus(snake_case , add_special_tokens=snake_case , return_token_type_ids=snake_case ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["token_type_ids"] ) , sum(tokens_p["token_type_ids"] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["attention_mask"] ) / len(tokens_r["attention_mask"] ) , sum(tokens_p["attention_mask"] ) / len(tokens_p["attention_mask"] ) , ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"] ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual(tokens_r["input_ids"] , [0, 250, 6, 50264, 3823, 487, 21992, 3645, 4, 2] ) self.assertSequenceEqual( snake_case , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] ) self.assertSequenceEqual( snake_case , ["<s>", "A", ",", "<mask>", "ĠAllen", "N", "LP", "Ġsentence", ".", "</s>"] )
551
0
import os import unittest from transformers import BertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, BertTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCAmelCase__ ( __lowerCamelCase, unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = BertTokenizer __UpperCAmelCase : Dict = BertTokenizerFast __UpperCAmelCase : Tuple = True __UpperCAmelCase : Optional[int] = True __UpperCAmelCase : Optional[int] = filter_non_english def _UpperCamelCase ( self ): super().setUp() lowerCamelCase_ : Optional[Any] = [ "[UNK]", "[CLS]", "[SEP]", "[PAD]", "[MASK]", "want", "##want", "##ed", "wa", "un", "runn", "##ing", ",", "low", "lowest", ] lowerCamelCase_ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in vocab_tokens] ) ) def _UpperCamelCase ( self , a_ ): lowerCamelCase_ : Optional[Any] = "UNwant\u00E9d,running" lowerCamelCase_ : Optional[int] = "unwanted, running" return input_text, output_text def _UpperCamelCase ( self ): lowerCamelCase_ : Any = self.tokenizer_class(self.vocab_file ) lowerCamelCase_ : Union[str, Any] = tokenizer.tokenize("UNwant\u00E9d,running" ) self.assertListEqual(a_ , ["un", "##want", "##ed", ",", "runn", "##ing"] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(a_ ) , [9, 6, 7, 12, 10, 11] ) def _UpperCamelCase ( self ): if not self.test_rust_tokenizer: return lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : List[str] = self.get_rust_tokenizer() lowerCamelCase_ : int = "UNwant\u00E9d,running" lowerCamelCase_ : str = tokenizer.tokenize(a_ ) lowerCamelCase_ : List[str] = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowerCamelCase_ : Dict = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Optional[Any] = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) lowerCamelCase_ : Dict = self.get_rust_tokenizer() lowerCamelCase_ : Dict = tokenizer.encode(a_ ) lowerCamelCase_ : str = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) # With lower casing lowerCamelCase_ : int = self.get_tokenizer(do_lower_case=a_ ) lowerCamelCase_ : Tuple = self.get_rust_tokenizer(do_lower_case=a_ ) lowerCamelCase_ : str = "UNwant\u00E9d,running" lowerCamelCase_ : List[Any] = tokenizer.tokenize(a_ ) lowerCamelCase_ : Any = rust_tokenizer.tokenize(a_ ) self.assertListEqual(a_ , a_ ) lowerCamelCase_ : Union[str, Any] = tokenizer.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Union[str, Any] = rust_tokenizer.encode(a_ , add_special_tokens=a_ ) self.assertListEqual(a_ , a_ ) lowerCamelCase_ : List[Any] = self.get_rust_tokenizer() lowerCamelCase_ : Tuple = tokenizer.encode(a_ ) lowerCamelCase_ : Tuple = rust_tokenizer.encode(a_ ) self.assertListEqual(a_ , a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("ah\u535A\u63A8zz" ) , ["ah", "\u535A", "\u63A8", "zz"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Union[str, Any] = BasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["hello", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[str] = BasicTokenizer(do_lower_case=a_ , strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hällo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["h\u00E9llo"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = BasicTokenizer(do_lower_case=a_ , strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = BasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["hallo", "!", "how", "are", "you", "?"] ) self.assertListEqual(tokenizer.tokenize("H\u00E9llo" ) , ["hello"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = BasicTokenizer(do_lower_case=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? " ) , ["HeLLo", "!", "how", "Are", "yoU", "?"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Tuple = BasicTokenizer(do_lower_case=a_ , strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HäLLo", "!", "how", "Are", "yoU", "?"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[int] = BasicTokenizer(do_lower_case=a_ , strip_accents=a_ ) self.assertListEqual( tokenizer.tokenize(" \tHäLLo!how \n Are yoU? " ) , ["HaLLo", "!", "how", "Are", "yoU", "?"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = BasicTokenizer(do_lower_case=a_ , never_split=["[UNK]"] ) self.assertListEqual( tokenizer.tokenize(" \tHeLLo!how \n Are yoU? [UNK]" ) , ["HeLLo", "!", "how", "Are", "yoU", "?", "[UNK]"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : Dict = BasicTokenizer() lowerCamelCase_ : Dict = "a\n'll !!to?'d of, can't." lowerCamelCase_ : str = ["a", "'", "ll", "!", "!", "to", "?", "'", "d", "of", ",", "can", "'", "t", "."] self.assertListEqual(tokenizer.tokenize(a_ ) , a_ ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = ["[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn", "##ing"] lowerCamelCase_ : Union[str, Any] = {} for i, token in enumerate(a_ ): lowerCamelCase_ : List[str] = i lowerCamelCase_ : Optional[Any] = WordpieceTokenizer(vocab=a_ , unk_token="[UNK]" ) self.assertListEqual(tokenizer.tokenize("" ) , [] ) self.assertListEqual(tokenizer.tokenize("unwanted running" ) , ["un", "##want", "##ed", "runn", "##ing"] ) self.assertListEqual(tokenizer.tokenize("unwantedX running" ) , ["[UNK]", "runn", "##ing"] ) def _UpperCamelCase ( self ): self.assertTrue(_is_whitespace(" " ) ) self.assertTrue(_is_whitespace("\t" ) ) self.assertTrue(_is_whitespace("\r" ) ) self.assertTrue(_is_whitespace("\n" ) ) self.assertTrue(_is_whitespace("\u00A0" ) ) self.assertFalse(_is_whitespace("A" ) ) self.assertFalse(_is_whitespace("-" ) ) def _UpperCamelCase ( self ): self.assertTrue(_is_control("\u0005" ) ) self.assertFalse(_is_control("A" ) ) self.assertFalse(_is_control(" " ) ) self.assertFalse(_is_control("\t" ) ) self.assertFalse(_is_control("\r" ) ) def _UpperCamelCase ( self ): self.assertTrue(_is_punctuation("-" ) ) self.assertTrue(_is_punctuation("$" ) ) self.assertTrue(_is_punctuation("`" ) ) self.assertTrue(_is_punctuation("." ) ) self.assertFalse(_is_punctuation("A" ) ) self.assertFalse(_is_punctuation(" " ) ) def _UpperCamelCase ( self ): lowerCamelCase_ : str = self.get_tokenizer() lowerCamelCase_ : Any = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(a_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) self.assertListEqual( [rust_tokenizer.tokenize(a_ ) for t in ["Test", "\xad", "test"]] , [["[UNK]"], [], ["[UNK]"]] ) @slow def _UpperCamelCase ( self ): lowerCamelCase_ : Optional[Any] = self.tokenizer_class.from_pretrained("bert-base-uncased" ) lowerCamelCase_ : str = tokenizer.encode("sequence builders" , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer.encode("multi-sequence build" , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer.build_inputs_with_special_tokens(a_ ) lowerCamelCase_ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(a_ , a_ ) assert encoded_sentence == [101] + text + [102] assert encoded_pair == [101] + text + [102] + text_a + [102] def _UpperCamelCase ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ : str = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) lowerCamelCase_ : str = F"""A, naïve {tokenizer_r.mask_token} AllenNLP sentence.""" lowerCamelCase_ : Dict = tokenizer_r.encode_plus( a_ , return_attention_mask=a_ , return_token_type_ids=a_ , return_offsets_mapping=a_ , add_special_tokens=a_ , ) lowerCamelCase_ : Any = tokenizer_r.do_lower_case if hasattr(a_ , "do_lower_case" ) else False lowerCamelCase_ : List[str] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "A"), ((1, 2), ","), ((3, 5), "na"), ((5, 6), "##ï"), ((6, 8), "##ve"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "Allen"), ((21, 23), "##NL"), ((23, 24), "##P"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), "a"), ((1, 2), ","), ((3, 8), "naive"), ((9, 15), tokenizer_r.mask_token), ((16, 21), "allen"), ((21, 23), "##nl"), ((23, 24), "##p"), ((25, 33), "sentence"), ((33, 34), "."), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["input_ids"] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["offset_mapping"] ) def _UpperCamelCase ( self ): lowerCamelCase_ : List[Any] = ["的", "人", "有"] lowerCamelCase_ : str = "".join(a_ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCamelCase_ : Dict = True lowerCamelCase_ : str = self.tokenizer_class.from_pretrained(a_ , **a_ ) lowerCamelCase_ : List[str] = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) lowerCamelCase_ : Optional[Any] = tokenizer_p.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Dict = tokenizer_r.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Tuple = tokenizer_r.convert_ids_to_tokens(a_ ) lowerCamelCase_ : int = tokenizer_p.convert_ids_to_tokens(a_ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(a_ , a_ ) self.assertListEqual(a_ , a_ ) lowerCamelCase_ : List[Any] = False lowerCamelCase_ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(a_ , **a_ ) lowerCamelCase_ : Dict = self.tokenizer_class.from_pretrained(a_ , **a_ ) lowerCamelCase_ : int = tokenizer_r.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : Optional[Any] = tokenizer_p.encode(a_ , add_special_tokens=a_ ) lowerCamelCase_ : str = tokenizer_r.convert_ids_to_tokens(a_ ) lowerCamelCase_ : Union[str, Any] = tokenizer_p.convert_ids_to_tokens(a_ ) # it is expected that only the first Chinese character is not preceded by "##". lowerCamelCase_ : Optional[Any] = [ F"""##{token}""" if idx != 0 else token for idx, token in enumerate(a_ ) ] self.assertListEqual(a_ , a_ ) self.assertListEqual(a_ , a_ )
73
import re def __magic_name__ ( lowerCAmelCase_): '''simple docstring''' if len(re.findall("[ATCG]" , lowerCAmelCase_)) != len(lowerCAmelCase_): raise ValueError("Invalid Strand") return dna.translate(dna.maketrans("ATCG" , "TAGC")) if __name__ == "__main__": import doctest doctest.testmod()
73
1
'''simple docstring''' import argparse import json import os import torch from transformers.file_utils import has_file from diffusers import UNetaDConditionModel, UNetaDModel __lowerCAmelCase = False __lowerCAmelCase = True __lowerCAmelCase = False if __name__ == "__main__": __lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( """--repo_path""", default=None, type=str, required=True, help="""The config json file corresponding to the architecture.""", ) parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") __lowerCAmelCase = parser.parse_args() __lowerCAmelCase = { """image_size""": """sample_size""", """num_res_blocks""": """layers_per_block""", """block_channels""": """block_out_channels""", """down_blocks""": """down_block_types""", """up_blocks""": """up_block_types""", """downscale_freq_shift""": """freq_shift""", """resnet_num_groups""": """norm_num_groups""", """resnet_act_fn""": """act_fn""", """resnet_eps""": """norm_eps""", """num_head_channels""": """attention_head_dim""", } __lowerCAmelCase = { """time_steps""": """time_proj""", """mid""": """mid_block""", """downsample_blocks""": """down_blocks""", """upsample_blocks""": """up_blocks""", } __lowerCAmelCase = """""" if has_file(args.repo_path, """config.json""") else """unet""" with open(os.path.join(args.repo_path, subfolder, """config.json"""), """r""", encoding="""utf-8""") as reader: __lowerCAmelCase = reader.read() __lowerCAmelCase = json.loads(text) if do_only_config: for key in config_parameters_to_change.keys(): config.pop(key, None) if has_file(args.repo_path, """config.json"""): __lowerCAmelCase = UNetaDModel(**config) else: __lowerCAmelCase = UNetaDConditionModel if """ldm-text2im-large-256""" in args.repo_path else UNetaDModel __lowerCAmelCase = class_name(**config) if do_only_config: model.save_config(os.path.join(args.repo_path, subfolder)) __lowerCAmelCase = dict(model.config) if do_only_renaming: for key, value in config_parameters_to_change.items(): if key in config: __lowerCAmelCase = config[key] del config[key] __lowerCAmelCase = [k.replace("""UNetRes""", """""") for k in config["""down_block_types"""]] __lowerCAmelCase = [k.replace("""UNetRes""", """""") for k in config["""up_block_types"""]] if do_only_weights: __lowerCAmelCase = torch.load(os.path.join(args.repo_path, subfolder, """diffusion_pytorch_model.bin""")) __lowerCAmelCase = {} for param_key, param_value in state_dict.items(): if param_key.endswith(""".op.bias""") or param_key.endswith(""".op.weight"""): continue __lowerCAmelCase = False for key, new_key in key_parameters_to_change.items(): if not has_changed and param_key.split(""".""")[0] == key: __lowerCAmelCase = param_value __lowerCAmelCase = True if not has_changed: __lowerCAmelCase = param_value model.load_state_dict(new_state_dict) model.save_pretrained(os.path.join(args.repo_path, subfolder))
229
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { """vocab_file""": """vocab.json""", """tokenizer_config_file""": """tokenizer_config.json""", """merges_file""": """merges.txt""", } UpperCAmelCase_ = { """vocab_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json""" ), }, """tokenizer_config_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json""" ), }, """merges_file""": { """facebook/s2t-wav2vec2-large-en-de""": ( """https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt""" ), }, } UpperCAmelCase_ = """</w>""" UpperCAmelCase_ = """@@ """ def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] ) -> List[str]: _A = set() _A = word[0] for char in word[1:]: pairs.add((prev_char, char) ) _A = char return pairs # Speech2Text2 has no max input length UpperCAmelCase_ = {"""facebook/s2t-wav2vec2-large-en-de""": 1_0_2_4} class lowerCamelCase__ ( _A): """simple docstring""" a__ : Dict = VOCAB_FILES_NAMES a__ : str = PRETRAINED_VOCAB_FILES_MAP a__ : Optional[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a__ : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : List[str]="<s>" , __lowerCAmelCase : Tuple="<pad>" , __lowerCAmelCase : Optional[Any]="</s>" , __lowerCAmelCase : Dict="<unk>" , __lowerCAmelCase : Union[str, Any]=False , __lowerCAmelCase : Optional[int]=None , **__lowerCAmelCase : str , ) -> Dict: super().__init__( unk_token=__lowerCAmelCase , bos_token=__lowerCAmelCase , eos_token=__lowerCAmelCase , pad_token=__lowerCAmelCase , do_lower_case=__lowerCAmelCase , **__lowerCAmelCase , ) _A = do_lower_case with open(__lowerCAmelCase , encoding='''utf-8''' ) as vocab_handle: _A = json.load(__lowerCAmelCase ) _A = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(f'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) _A = None _A = None else: with open(__lowerCAmelCase , encoding='''utf-8''' ) as merges_handle: _A = merges_handle.read().split('''\n''' )[:-1] _A = [tuple(merge.split()[:2] ) for merge in merges] _A = dict(zip(__lowerCAmelCase , range(len(__lowerCAmelCase ) ) ) ) _A = {} @property def snake_case_ ( self : List[str] ) -> int: return len(self.decoder ) def snake_case_ ( self : Dict ) -> Dict: return dict(self.encoder , **self.added_tokens_encoder ) def snake_case_ ( self : Union[str, Any] , __lowerCAmelCase : Any ) -> Union[str, Any]: _A = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] _A = get_pairs(__lowerCAmelCase ) if not pairs: return token while True: _A = min(__lowerCAmelCase , key=lambda __lowerCAmelCase : self.bpe_ranks.get(__lowerCAmelCase , float('''inf''' ) ) ) if bigram not in self.bpe_ranks: break _A , _A = bigram _A = [] _A = 0 while i < len(__lowerCAmelCase ): try: _A = word.index(__lowerCAmelCase , __lowerCAmelCase ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) _A = j if word[i] == first and i < len(__lowerCAmelCase ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 _A = tuple(__lowerCAmelCase ) _A = new_word if len(__lowerCAmelCase ) == 1: break else: _A = get_pairs(__lowerCAmelCase ) _A = ''' '''.join(__lowerCAmelCase ) if word == "\n " + BPE_TOKEN_MERGES: _A = '''\n''' + BPE_TOKEN_MERGES if word.endswith(__lowerCAmelCase ): _A = word.replace(__lowerCAmelCase , '''''' ) _A = word.replace(''' ''' , __lowerCAmelCase ) _A = word return word def snake_case_ ( self : Optional[Any] , __lowerCAmelCase : Tuple ) -> Optional[int]: if self.bpe_ranks is None: raise ValueError( '''This tokenizer was instantiated without a `merges.txt` file, so''' ''' that it can only be used for decoding, not for encoding.''' '''Make sure to provide `merges.txt` file at instantiation to enable ''' '''encoding.''' ) if self.do_lower_case: _A = text.lower() _A = text.split() _A = [] for token in text: if token: split_tokens.extend(list(self.bpe(__lowerCAmelCase ).split(''' ''' ) ) ) return split_tokens def snake_case_ ( self : List[Any] , __lowerCAmelCase : str ) -> int: return self.encoder.get(__lowerCAmelCase , self.encoder.get(self.unk_token ) ) def snake_case_ ( self : str , __lowerCAmelCase : int ) -> str: _A = self.decoder.get(__lowerCAmelCase , self.unk_token ) return result def snake_case_ ( self : List[str] , __lowerCAmelCase : List[str] ) -> str: _A = ''' '''.join(__lowerCAmelCase ) # make sure @@ tokens are concatenated _A = ''''''.join(string.split(__lowerCAmelCase ) ) return string def snake_case_ ( self : Tuple , __lowerCAmelCase : str , __lowerCAmelCase : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(__lowerCAmelCase ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) _A = os.path.join( __lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''merges_file'''] ) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__lowerCAmelCase , ensure_ascii=__lowerCAmelCase ) + '''\n''' ) _A = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__lowerCAmelCase , '''w''' , encoding='''utf-8''' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __lowerCAmelCase : kv[1] ): if index != token_index: logger.warning( f'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ''' Please check that the tokenizer is not corrupted!''' ) _A = token_index writer.write(''' '''.join(__lowerCAmelCase ) + '''\n''' ) index += 1 return (vocab_file, merges_file)
2
0
import importlib.metadata import operator import re import sys from typing import Optional from packaging import version lowerCamelCase_ = { '''<''': operator.lt, '''<=''': operator.le, '''==''': operator.eq, '''!=''': operator.ne, '''>=''': operator.ge, '''>''': operator.gt, } def __magic_name__ ( __a : Dict , __a : List[str] , __a : int , __a : Dict , __a : Any , __a : Tuple ): '''simple docstring''' if got_ver is None or want_ver is None: raise ValueError( f"Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider" f" reinstalling {pkg}." ) if not ops[op](version.parse(UpperCAmelCase__ ) , version.parse(UpperCAmelCase__ ) ): raise ImportError( f"{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}" ) def __magic_name__ ( __a : Tuple , __a : Optional[int] = None ): '''simple docstring''' UpperCamelCase__ = f"\n{hint}" if hint is not None else """""" # non-versioned check if re.match(R"""^[\w_\-\d]+$""" , UpperCAmelCase__ ): UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = requirement, None, None else: UpperCamelCase__ = re.findall(R"""^([^!=<>\s]+)([\s!=<>]{1,2}.+)""" , UpperCAmelCase__ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but""" f" got {requirement}" ) UpperCamelCase__ , UpperCamelCase__ = match[0] UpperCamelCase__ = want_full.split(""",""" ) # there could be multiple requirements UpperCamelCase__ = {} for w in want_range: UpperCamelCase__ = re.findall(R"""^([\s!=<>]{1,2})(.+)""" , UpperCAmelCase__ ) if not match: raise ValueError( """requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,""" f" but got {requirement}" ) UpperCamelCase__ , UpperCamelCase__ = match[0] UpperCamelCase__ = want_ver if op not in ops: raise ValueError(f"{requirement}: need one of {list(ops.keys() )}, but got {op}" ) # special case if pkg == "python": UpperCamelCase__ = """.""".join([str(UpperCAmelCase__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) return # check if any version is installed try: UpperCamelCase__ = importlib.metadata.version(UpperCAmelCase__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( f"The '{requirement}' distribution was not found and is required by this application. {hint}" ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) def __magic_name__ ( __a : List[str] ): '''simple docstring''' UpperCamelCase__ = """Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main""" return require_version(UpperCAmelCase__ , UpperCAmelCase__ )
713
import itertools import json import os import unittest from transformers import AddedToken, RobertaTokenizer, RobertaTokenizerFast from transformers.models.roberta.tokenization_roberta import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __A( __lowerCamelCase , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE__ = RobertaTokenizer SCREAMING_SNAKE_CASE__ = RobertaTokenizerFast SCREAMING_SNAKE_CASE__ = True SCREAMING_SNAKE_CASE__ = {"""cls_token""": """<s>"""} def UpperCAmelCase_ (self ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase__ = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] UpperCamelCase__ = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) UpperCamelCase__ = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] UpperCamelCase__ = {"""unk_token""": """<unk>"""} UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCamelCase__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(SCREAMING_SNAKE_CASE_ ) ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , **SCREAMING_SNAKE_CASE_ ): kwargs.update(self.special_tokens_map ) return RobertaTokenizerFast.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self , SCREAMING_SNAKE_CASE_ ): UpperCamelCase__ = """lower newer""" UpperCamelCase__ = """lower newer""" return input_text, output_text def UpperCAmelCase_ (self ): UpperCamelCase__ = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase__ = """lower newer""" UpperCamelCase__ = ["""l""", """o""", """w""", """er""", """\u0120""", """n""", """e""", """w""", """er"""] UpperCamelCase__ = tokenizer.tokenize(SCREAMING_SNAKE_CASE_ ) # , add_prefix_space=True) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokens + [tokenizer.unk_token] UpperCamelCase__ = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() self.assertListEqual(tokenizer.encode("""Hello world!""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , [0, 3_14_14, 2_32, 3_28, 2] ) self.assertListEqual( tokenizer.encode("""Hello world! cécé herlolip 418""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) , [0, 3_14_14, 2_32, 3_28, 7_40, 11_40, 1_26_95, 69, 4_60_78, 15_88, 2] , ) @slow def UpperCAmelCase_ (self ): UpperCamelCase__ = self.tokenizer_class.from_pretrained("""roberta-base""" ) UpperCamelCase__ = tokenizer.encode("""sequence builders""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode("""multi-sequence build""" , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode( """sequence builders""" , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode( """sequence builders""" , """multi-sequence build""" , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def UpperCAmelCase_ (self ): UpperCamelCase__ = self.get_tokenizer() UpperCamelCase__ = """Encode this sequence.""" UpperCamelCase__ = tokenizer.byte_encoder[""" """.encode("""utf-8""" )[0]] # Testing encoder arguments UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) tokenizer.add_special_tokens({"""bos_token""": """<s>"""} ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Testing spaces after special tokens UpperCamelCase__ = """<mask>""" tokenizer.add_special_tokens( {"""mask_token""": AddedToken(SCREAMING_SNAKE_CASE_ , lstrip=SCREAMING_SNAKE_CASE_ , rstrip=SCREAMING_SNAKE_CASE_ )} ) # mask token has a left space UpperCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """Encode <mask> sequence""" UpperCamelCase__ = """Encode <mask>sequence""" UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = encoded.index(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.encode(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = encoded.index(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): pass def UpperCAmelCase_ (self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = """A, <mask> AllenNLP sentence.""" UpperCamelCase__ = tokenizer_r.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_p.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) UpperCamelCase__ = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) UpperCamelCase__ = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( SCREAMING_SNAKE_CASE_ , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) def UpperCAmelCase_ (self ): for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) UpperCamelCase__ = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state["""add_prefix_space"""] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(post_processor_state["""add_prefix_space"""] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(post_processor_state["""trim_offsets"""] , SCREAMING_SNAKE_CASE_ ) def UpperCAmelCase_ (self ): # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase__ = """hello""" # `hello` is a token in the vocabulary of `pretrained_name` UpperCamelCase__ = F"{text_of_1_token} {text_of_1_token}" UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ) + 1, len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(SCREAMING_SNAKE_CASE_ ), len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = F" {text}" # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ) + 1, 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ), 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , ) UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained( SCREAMING_SNAKE_CASE_ , use_fast=SCREAMING_SNAKE_CASE_ , add_prefix_space=SCREAMING_SNAKE_CASE_ , trim_offsets=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_r(SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(SCREAMING_SNAKE_CASE_ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(SCREAMING_SNAKE_CASE_ ), 1 + len(SCREAMING_SNAKE_CASE_ ) + 1 + len(SCREAMING_SNAKE_CASE_ )) , )
86
0
def __lowercase ( a__ = 3 , a__ = 7 , a__ = 1_00_00_00 ) -> int: __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = 1 for current_denominator in range(1 , limit + 1 ): __SCREAMING_SNAKE_CASE = current_denominator * numerator // denominator if current_denominator % denominator == 0: current_numerator -= 1 if current_numerator * max_denominator > current_denominator * max_numerator: __SCREAMING_SNAKE_CASE = current_numerator __SCREAMING_SNAKE_CASE = current_denominator return max_numerator if __name__ == "__main__": print(solution(numerator=3, denominator=7, limit=1000000))
148
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase__ : Tuple =logging.get_logger(__name__) lowerCAmelCase__ : Union[str, Any] ={ '''andreasmadsen/efficient_mlm_m0.40''': ( '''https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json''' ), } class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' UpperCamelCase__ : Dict = '''roberta-prelayernorm''' def __init__( self , _A=50_265 , _A=768 , _A=12 , _A=12 , _A=3_072 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=2 , _A=0.0_2 , _A=1e-12 , _A=1 , _A=0 , _A=2 , _A="absolute" , _A=True , _A=None , **_A , ): '''simple docstring''' super().__init__(pad_token_id=_A , bos_token_id=_A , eos_token_id=_A , **_A ) __SCREAMING_SNAKE_CASE = vocab_size __SCREAMING_SNAKE_CASE = hidden_size __SCREAMING_SNAKE_CASE = num_hidden_layers __SCREAMING_SNAKE_CASE = num_attention_heads __SCREAMING_SNAKE_CASE = hidden_act __SCREAMING_SNAKE_CASE = intermediate_size __SCREAMING_SNAKE_CASE = hidden_dropout_prob __SCREAMING_SNAKE_CASE = attention_probs_dropout_prob __SCREAMING_SNAKE_CASE = max_position_embeddings __SCREAMING_SNAKE_CASE = type_vocab_size __SCREAMING_SNAKE_CASE = initializer_range __SCREAMING_SNAKE_CASE = layer_norm_eps __SCREAMING_SNAKE_CASE = position_embedding_type __SCREAMING_SNAKE_CASE = use_cache __SCREAMING_SNAKE_CASE = classifier_dropout class UpperCAmelCase_ ( UpperCamelCase_ ): '''simple docstring''' @property def _A ( self ): '''simple docstring''' if self.task == "multiple-choice": __SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __SCREAMING_SNAKE_CASE = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
148
1
'''simple docstring''' import os import string import sys snake_case = 1 << 8 snake_case = { """tab""": ord("""\t"""), """newline""": ord("""\r"""), """esc""": 27, """up""": 65 + ARROW_KEY_FLAG, """down""": 66 + ARROW_KEY_FLAG, """right""": 67 + ARROW_KEY_FLAG, """left""": 68 + ARROW_KEY_FLAG, """mod_int""": 91, """undefined""": sys.maxsize, """interrupt""": 3, """insert""": 50, """delete""": 51, """pg_up""": 53, """pg_down""": 54, } snake_case = KEYMAP["""up"""] snake_case = KEYMAP["""left"""] if sys.platform == "win32": snake_case = [] snake_case = { B"""\xe0H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\x00H""": KEYMAP["""up"""] - ARROW_KEY_FLAG, B"""\xe0P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\x00P""": KEYMAP["""down"""] - ARROW_KEY_FLAG, B"""\xe0M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\x00M""": KEYMAP["""right"""] - ARROW_KEY_FLAG, B"""\xe0K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, B"""\x00K""": KEYMAP["""left"""] - ARROW_KEY_FLAG, } for i in range(10): snake_case = ord(str(i)) def UpperCAmelCase_ ( ): """simple docstring""" if os.name == "nt": import msvcrt lowerCAmelCase__ : int = "mbcs" # Flush the keyboard buffer while msvcrt.kbhit(): msvcrt.getch() if len(lowerCamelCase_ ) == 0: # Read the keystroke lowerCAmelCase__ : Dict = msvcrt.getch() # If it is a prefix char, get second part if ch in (b"\x00", b"\xe0"): lowerCAmelCase__ : List[Any] = ch + msvcrt.getch() # Translate actual Win chars to bullet char types try: lowerCAmelCase__ : List[str] = chr(WIN_KEYMAP[cha] ) WIN_CH_BUFFER.append(chr(KEYMAP["mod_int"] ) ) WIN_CH_BUFFER.append(lowerCamelCase_ ) if ord(lowerCamelCase_ ) in ( KEYMAP["insert"] - 1 << 9, KEYMAP["delete"] - 1 << 9, KEYMAP["pg_up"] - 1 << 9, KEYMAP["pg_down"] - 1 << 9, ): WIN_CH_BUFFER.append(chr(1_2_6 ) ) lowerCAmelCase__ : Optional[Any] = chr(KEYMAP["esc"] ) except KeyError: lowerCAmelCase__ : Tuple = cha[1] else: lowerCAmelCase__ : Optional[int] = ch.decode(lowerCamelCase_ ) else: lowerCAmelCase__ : List[str] = WIN_CH_BUFFER.pop(0 ) elif os.name == "posix": import termios import tty lowerCAmelCase__ : Optional[int] = sys.stdin.fileno() lowerCAmelCase__ : Any = termios.tcgetattr(lowerCamelCase_ ) try: tty.setraw(lowerCamelCase_ ) lowerCAmelCase__ : List[Any] = sys.stdin.read(1 ) finally: termios.tcsetattr(lowerCamelCase_ , termios.TCSADRAIN , lowerCamelCase_ ) return ch def UpperCAmelCase_ ( ): """simple docstring""" lowerCAmelCase__ : int = get_raw_chars() if ord(lowerCamelCase_ ) in [KEYMAP["interrupt"], KEYMAP["newline"]]: return char elif ord(lowerCamelCase_ ) == KEYMAP["esc"]: lowerCAmelCase__ : Any = get_raw_chars() if ord(lowerCamelCase_ ) == KEYMAP["mod_int"]: lowerCAmelCase__ : List[str] = get_raw_chars() if ord(lowerCamelCase_ ) >= KEYMAP["arrow_begin"] - ARROW_KEY_FLAG and ord(lowerCamelCase_ ) <= KEYMAP["arrow_end"] - ARROW_KEY_FLAG: return chr(ord(lowerCamelCase_ ) + ARROW_KEY_FLAG ) else: return KEYMAP["undefined"] else: return get_raw_chars() else: if char in string.printable: return char else: return KEYMAP["undefined"]
568
'''simple docstring''' from __future__ import annotations from math import ceil, floor, sqrt def UpperCAmelCase_ ( lowerCamelCase_ = 2_0_0_0_0_0_0 ): """simple docstring""" lowerCAmelCase__ : list[int] = [0] lowerCAmelCase__ : int for idx in range(1 , ceil(sqrt(target * 2 ) * 1.1 ) ): triangle_numbers.append(triangle_numbers[-1] + idx ) # we want this to be as close as possible to target lowerCAmelCase__ : int = 0 # the area corresponding to the grid that gives the product closest to target lowerCAmelCase__ : int = 0 # an estimate of b, using the quadratic formula lowerCAmelCase__ : float # the largest integer less than b_estimate lowerCAmelCase__ : int # the largest integer less than b_estimate lowerCAmelCase__ : int # the triangle number corresponding to b_floor lowerCAmelCase__ : int # the triangle number corresponding to b_ceil lowerCAmelCase__ : int for idx_a, triangle_a in enumerate(triangle_numbers[1:] , 1 ): lowerCAmelCase__ : Dict = (-1 + sqrt(1 + 8 * target / triangle_a )) / 2 lowerCAmelCase__ : Optional[int] = floor(lowerCamelCase_ ) lowerCAmelCase__ : Any = ceil(lowerCamelCase_ ) lowerCAmelCase__ : Optional[Any] = triangle_numbers[b_floor] lowerCAmelCase__ : Optional[int] = triangle_numbers[b_ceil] if abs(target - triangle_b_first_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase__ : Tuple = triangle_b_first_guess * triangle_a lowerCAmelCase__ : List[str] = idx_a * b_floor if abs(target - triangle_b_second_guess * triangle_a ) < abs( target - best_product ): lowerCAmelCase__ : Dict = triangle_b_second_guess * triangle_a lowerCAmelCase__ : Dict = idx_a * b_ceil return area if __name__ == "__main__": print(f'{solution() = }')
568
1
'''simple docstring''' import math def lowerCAmelCase (__A): """simple docstring""" _a = [True] * n _a = False _a = False _a = True for i in range(3 , int(n**0.5 + 1) , 2): _a = i * 2 while index < n: _a = False _a = index + i _a = [2] for i in range(3 , __A , 2): if is_prime[i]: primes.append(__A) return primes def lowerCAmelCase (__A = 999_966_663_333): """simple docstring""" _a = math.floor(math.sqrt(__A)) + 100 _a = prime_sieve(__A) _a = 0 _a = 0 _a = primes[prime_index] while (last_prime**2) <= limit: _a = primes[prime_index + 1] _a = last_prime**2 _a = next_prime**2 # Get numbers divisible by lps(current) _a = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) _a = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps _a = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair _a = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
11
from __future__ import annotations from dataclasses import dataclass @dataclass class UpperCAmelCase : '''simple docstring''' lowerCAmelCase_ = 42 lowerCAmelCase_ = None lowerCAmelCase_ = None def lowerCamelCase__ ( _A ): '''simple docstring''' def is_valid_tree(_A ) -> bool: if node is None: return True if not isinstance(_A , _A ): return False try: float(node.data ) except (TypeError, ValueError): return False return is_valid_tree(node.left ) and is_valid_tree(node.right ) if not is_valid_tree(_A ): raise ValueError( "Each node should be type of TreeNode and data should be float." ) def is_binary_search_tree_recursive_check( _A , _A , _A ) -> bool: if node is None: return True return ( left_bound < node.data < right_bound and is_binary_search_tree_recursive_check(node.left , _A , node.data ) and is_binary_search_tree_recursive_check( node.right , node.data , _A ) ) return is_binary_search_tree_recursive_check(_A , -float("inf" ) , float("inf" ) ) if __name__ == "__main__": import doctest doctest.testmod()
376
0
"""simple docstring""" from __future__ import annotations lowerCamelCase = 10 def a__ ( lowerCAmelCase__ ): UpperCAmelCase_ = 1 UpperCAmelCase_ = max(lowerCAmelCase__ ) while placement <= max_digit: # declare and initialize empty buckets UpperCAmelCase_ = [[] for _ in range(lowerCAmelCase__ )] # split list_of_ints between the buckets for i in list_of_ints: UpperCAmelCase_ = int((i / placement) % RADIX ) buckets[tmp].append(lowerCAmelCase__ ) # put each buckets' contents into list_of_ints UpperCAmelCase_ = 0 for b in range(lowerCAmelCase__ ): for i in buckets[b]: UpperCAmelCase_ = i a += 1 # move to next placement *= RADIX return list_of_ints if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowerCamelCase = { """configuration_swinv2""": ["""SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Swinv2Config"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase = [ """SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Swinv2ForImageClassification""", """Swinv2ForMaskedImageModeling""", """Swinv2Model""", """Swinv2PreTrainedModel""", ] if TYPE_CHECKING: from .configuration_swinva import SWINV2_PRETRAINED_CONFIG_ARCHIVE_MAP, SwinvaConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_swinva import ( SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST, SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel, SwinvaPreTrainedModel, ) else: import sys lowerCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
14
0
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def _a ( lowercase__ : bytes , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : str = f'''{sampling_rate}''' SCREAMING_SNAKE_CASE__ : Any = '1' SCREAMING_SNAKE_CASE__ : int = 'f32le' SCREAMING_SNAKE_CASE__ : Dict = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(lowercase__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE__ : Union[str, Any] = ffmpeg_process.communicate(lowercase__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error SCREAMING_SNAKE_CASE__ : Any = output_stream[0] SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.frombuffer(lowercase__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def _a ( lowercase__ : int , lowercase__ : float , lowercase__ : str = "f32le" , ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : List[str] = f'''{sampling_rate}''' SCREAMING_SNAKE_CASE__ : Optional[int] = '1' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE__ : Optional[int] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE__ : Union[str, Any] = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) SCREAMING_SNAKE_CASE__ : Dict = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE__ : Union[str, Any] = 'alsa' SCREAMING_SNAKE_CASE__ : Any = 'default' elif system == "Darwin": SCREAMING_SNAKE_CASE__ : Optional[Any] = 'avfoundation' SCREAMING_SNAKE_CASE__ : Dict = ':0' elif system == "Windows": SCREAMING_SNAKE_CASE__ : int = 'dshow' SCREAMING_SNAKE_CASE__ : Dict = 'default' SCREAMING_SNAKE_CASE__ : int = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] SCREAMING_SNAKE_CASE__ : List[str] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE__ : int = _ffmpeg_stream(lowercase__ , lowercase__ ) for item in iterator: yield item def _a ( lowercase__ : int , lowercase__ : float , lowercase__ : Optional[int] = None , lowercase__ : Optional[Union[Tuple[float, float], float]] = None , lowercase__ : str = "f32le" , ): '''simple docstring''' if stream_chunk_s is not None: SCREAMING_SNAKE_CASE__ : Optional[int] = stream_chunk_s else: SCREAMING_SNAKE_CASE__ : Optional[int] = chunk_length_s SCREAMING_SNAKE_CASE__ : Any = ffmpeg_microphone(lowercase__ , lowercase__ , format_for_conversion=lowercase__ ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE__ : int = np.intaa SCREAMING_SNAKE_CASE__ : Any = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE__ : int = np.floataa SCREAMING_SNAKE_CASE__ : Optional[int] = 4 else: raise ValueError(f'''Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`''' ) if stride_length_s is None: SCREAMING_SNAKE_CASE__ : str = chunk_length_s / 6 SCREAMING_SNAKE_CASE__ : List[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(lowercase__ , (int, float) ): SCREAMING_SNAKE_CASE__ : List[str] = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE__ : Any = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE__ : Tuple = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE__ : List[Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE__ : Union[str, Any] = datetime.timedelta(seconds=lowercase__ ) for item in chunk_bytes_iter(lowercase__ , lowercase__ , stride=(stride_left, stride_right) , stream=lowercase__ ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE__ : Tuple = np.frombuffer(item['raw'] , dtype=lowercase__ ) SCREAMING_SNAKE_CASE__ : Optional[int] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def _a ( lowercase__ : Optional[int] , lowercase__ : int , lowercase__ : Tuple[int, int] , lowercase__ : bool = False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : Union[str, Any] = b'' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ : Any = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'''Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}''' ) SCREAMING_SNAKE_CASE__ : int = 0 for raw in iterator: acc += raw if stream and len(lowercase__ ) < chunk_len: SCREAMING_SNAKE_CASE__ : int = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(lowercase__ ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE__ : Union[str, Any] = (_stride_left, stride_right) SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'raw': acc[:chunk_len], 'stride': stride} if stream: SCREAMING_SNAKE_CASE__ : Optional[int] = False yield item SCREAMING_SNAKE_CASE__ : Optional[Any] = stride_left SCREAMING_SNAKE_CASE__ : Tuple = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(lowercase__ ) > stride_left: SCREAMING_SNAKE_CASE__ : Union[str, Any] = {'raw': acc, 'stride': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE__ : Optional[int] = False yield item def _a ( lowercase__ : List[Any] , lowercase__ : int ): '''simple docstring''' SCREAMING_SNAKE_CASE__ : int = 2**24 # 16Mo try: with subprocess.Popen(lowercase__ , stdout=subprocess.PIPE , bufsize=lowercase__ ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE__ : Optional[Any] = ffmpeg_process.stdout.read(lowercase__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
85
import unittest from queue import Empty from threading import Thread from transformers import AutoTokenizer, TextIteratorStreamer, TextStreamer, is_torch_available from transformers.testing_utils import CaptureStdout, require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers import AutoModelForCausalLM @require_torch class lowerCAmelCase__ ( unittest.TestCase ): def __UpperCamelCase ( self : List[Any] ) -> Optional[Any]: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = tokenizer.decode(greedy_ids[0] ) with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A = cs.out[:-1] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> List[Any]: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = tokenizer.decode(greedy_ids[0] ) A = TextIteratorStreamer(__UpperCamelCase ) A = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A = Thread(target=model.generate , kwargs=__UpperCamelCase ) thread.start() A = '' for new_text in streamer: streamer_text += new_text self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : int ) -> Tuple: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase ) A = greedy_ids[:, input_ids.shape[1] :] A = tokenizer.decode(new_greedy_ids[0] ) with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase , skip_prompt=__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=10 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The greedy text should be printed to stdout, except for the final "\n" in the streamer A = cs.out[:-1] self.assertEqual(__UpperCamelCase , __UpperCamelCase ) def __UpperCamelCase ( self : List[Any] ) -> Tuple: # Tests that we can pass `decode_kwargs` to the streamer to control how the tokens are decoded. Must be tested # with actual models -- the dummy models' tokenizers are not aligned with their models, and # `skip_special_tokens=True` has no effect on them A = AutoTokenizer.from_pretrained('distilgpt2' ) A = AutoModelForCausalLM.from_pretrained('distilgpt2' ).to(__UpperCamelCase ) A = -1 A = torch.ones((1, 5) , device=__UpperCamelCase ).long() * model.config.bos_token_id with CaptureStdout() as cs: A = TextStreamer(__UpperCamelCase , skip_special_tokens=__UpperCamelCase ) model.generate(__UpperCamelCase , max_new_tokens=1 , do_sample=__UpperCamelCase , streamer=__UpperCamelCase ) # The prompt contains a special token, so the streamer should not print it. As such, the output text, when # re-tokenized, must only contain one token A = cs.out[:-1] # Remove the final "\n" A = tokenizer(__UpperCamelCase , return_tensors='pt' ) self.assertEqual(streamer_text_tokenized.input_ids.shape , (1, 1) ) def __UpperCamelCase ( self : Any ) -> Dict: A = AutoTokenizer.from_pretrained('hf-internal-testing/tiny-random-gpt2' ) A = AutoModelForCausalLM.from_pretrained('hf-internal-testing/tiny-random-gpt2' ).to(__UpperCamelCase ) A = -1 A = ids_tensor((1, 5) , vocab_size=model.config.vocab_size ).to(__UpperCamelCase ) A = TextIteratorStreamer(__UpperCamelCase , timeout=0.0_0_1 ) A = {'input_ids': input_ids, 'max_new_tokens': 10, 'do_sample': False, 'streamer': streamer} A = Thread(target=model.generate , kwargs=__UpperCamelCase ) thread.start() # The streamer will timeout after 0.001 seconds, so an exception will be raised with self.assertRaises(__UpperCamelCase ): A = '' for new_text in streamer: streamer_text += new_text
106
0
# This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCAmelCase ( __a , __a , __a , unittest.TestCase ): '''simple docstring''' _A : Tuple = StableDiffusionControlNetImgaImgPipeline _A : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _A : Optional[int] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : Tuple = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({'''control_image'''} ) _A : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" torch.manual_seed(0 ) __lowercase : str = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) __lowercase : Optional[int] = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) __lowercase : Union[str, Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) __lowercase : int = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase : str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowercase : List[Any] = CLIPTextModel(__a ) __lowercase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase : Dict = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase ( self : List[Any] , __a : str , __a : List[Any]=0 ) -> Optional[Any]: """simple docstring""" if str(__a ).startswith("""mps""" ): __lowercase : Dict = torch.manual_seed(__a ) else: __lowercase : Optional[Any] = torch.Generator(device=__a ).manual_seed(__a ) __lowercase : str = 2 __lowercase : Union[str, Any] = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ) __lowercase : Optional[int] = floats_tensor(control_image.shape , rng=random.Random(__a ) ).to(__a ) __lowercase : List[Any] = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : str = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) __lowercase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : Dict ) -> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowerCAmelCase ( self : str ) -> List[str]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class lowerCAmelCase ( __a , __a , unittest.TestCase ): '''simple docstring''' _A : Dict = StableDiffusionControlNetImgaImgPipeline _A : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {'''height''', '''width'''} _A : Union[str, Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS _A : Optional[Any] = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCAmelCase ( self : Optional[int] ) -> List[Any]: """simple docstring""" torch.manual_seed(0 ) __lowercase : Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(__a : List[Any] ): if isinstance(__a , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) __lowercase : Dict = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__a ) torch.manual_seed(0 ) __lowercase : int = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(__a ) torch.manual_seed(0 ) __lowercase : Optional[Any] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__a , set_alpha_to_one=__a , ) torch.manual_seed(0 ) __lowercase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) torch.manual_seed(0 ) __lowercase : List[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) __lowercase : Optional[int] = CLIPTextModel(__a ) __lowercase : Any = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) __lowercase : Optional[int] = MultiControlNetModel([controlneta, controlneta] ) __lowercase : List[Any] = { """unet""": unet, """controlnet""": controlnet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def lowerCAmelCase ( self : Tuple , __a : Union[str, Any] , __a : Optional[int]=0 ) -> Dict: """simple docstring""" if str(__a ).startswith("""mps""" ): __lowercase : List[str] = torch.manual_seed(__a ) else: __lowercase : List[Any] = torch.Generator(device=__a ).manual_seed(__a ) __lowercase : List[str] = 2 __lowercase : Optional[Any] = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=__a , device=torch.device(__a ) , ), ] __lowercase : Union[str, Any] = floats_tensor(control_image[0].shape , rng=random.Random(__a ) ).to(__a ) __lowercase : Any = image.cpu().permute(0 , 2 , 3 , 1 )[0] __lowercase : List[Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) __lowercase : Tuple = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """guidance_scale""": 6.0, """output_type""": """numpy""", """image""": image, """control_image""": control_image, } return inputs def lowerCAmelCase ( self : Optional[Any] ) -> Any: """simple docstring""" __lowercase : Dict = self.get_dummy_components() __lowercase : str = self.pipeline_class(**__a ) pipe.to(__a ) __lowercase : int = 10.0 __lowercase : Tuple = 4 __lowercase : Tuple = self.get_dummy_inputs(__a ) __lowercase : Tuple = steps __lowercase : Optional[int] = scale __lowercase : int = pipe(**__a )[0] __lowercase : Any = self.get_dummy_inputs(__a ) __lowercase : Union[str, Any] = steps __lowercase : Union[str, Any] = scale __lowercase : Optional[Any] = pipe(**__a , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] __lowercase : int = self.get_dummy_inputs(__a ) __lowercase : List[Any] = steps __lowercase : List[Any] = scale __lowercase : str = pipe(**__a , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] __lowercase : Any = self.get_dummy_inputs(__a ) __lowercase : List[str] = steps __lowercase : int = scale __lowercase : List[str] = pipe(**__a , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def lowerCAmelCase ( self : Union[str, Any] ) -> List[str]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != """cuda""" or not is_xformers_available() , reason="""XFormers attention is only available with CUDA and `xformers` installed""" , ) def lowerCAmelCase ( self : List[Any] ) -> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def lowerCAmelCase ( self : Optional[Any] ) -> str: """simple docstring""" __lowercase : str = self.get_dummy_components() __lowercase : Dict = self.pipeline_class(**__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(__a ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def lowerCAmelCase ( self : Dict ) -> Any: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase ( self : List[Any] ) -> Dict: """simple docstring""" __lowercase : int = ControlNetModel.from_pretrained("""lllyasviel/sd-controlnet-canny""" ) __lowercase : List[str] = StableDiffusionControlNetImgaImgPipeline.from_pretrained( """runwayml/stable-diffusion-v1-5""" , safety_checker=__a , controlnet=__a ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=__a ) __lowercase : List[Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) __lowercase : str = """evil space-punk bird""" __lowercase : str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png""" ).resize((512, 512) ) __lowercase : Union[str, Any] = load_image( """https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png""" ).resize((512, 512) ) __lowercase : Dict = pipe( __a , __a , control_image=__a , generator=__a , output_type="""np""" , num_inference_steps=50 , strength=0.6 , ) __lowercase : Optional[Any] = output.images[0] assert image.shape == (512, 512, 3) __lowercase : Optional[Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy""" ) assert np.abs(expected_image - image ).max() < 9E-2
649
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from typing import Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import randn_tensor from .scheduling_utils import SchedulerMixin class lowerCAmelCase ( __a , __a ): '''simple docstring''' _A : str = 1 @register_to_config def __init__( self : Optional[int] , __a : Tuple=2000 , __a : List[str]=0.1 , __a : str=20 , __a : Optional[int]=1E-3 ) -> int: """simple docstring""" __lowercase : Tuple = None __lowercase : Union[str, Any] = None __lowercase : int = None def lowerCAmelCase ( self : List[Any] , __a : Any , __a : Union[str, torch.device] = None ) -> str: """simple docstring""" __lowercase : List[str] = torch.linspace(1 , self.config.sampling_eps , __a , device=__a ) def lowerCAmelCase ( self : Tuple , __a : List[Any] , __a : Tuple , __a : int , __a : Optional[int]=None ) -> str: """simple docstring""" if self.timesteps is None: raise ValueError( """`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler""" ) # TODO(Patrick) better comments + non-PyTorch # postprocess model score __lowercase : Dict = ( -0.25 * t**2 * (self.config.beta_max - self.config.beta_min) - 0.5 * t * self.config.beta_min ) __lowercase : int = torch.sqrt(1.0 - torch.exp(2.0 * log_mean_coeff ) ) __lowercase : Union[str, Any] = std.flatten() while len(std.shape ) < len(score.shape ): __lowercase : Optional[Any] = std.unsqueeze(-1 ) __lowercase : List[Any] = -score / std # compute __lowercase : Dict = -1.0 / len(self.timesteps ) __lowercase : int = self.config.beta_min + t * (self.config.beta_max - self.config.beta_min) __lowercase : List[Any] = beta_t.flatten() while len(beta_t.shape ) < len(x.shape ): __lowercase : Union[str, Any] = beta_t.unsqueeze(-1 ) __lowercase : List[str] = -0.5 * beta_t * x __lowercase : int = torch.sqrt(__a ) __lowercase : Union[str, Any] = drift - diffusion**2 * score __lowercase : Optional[Any] = x + drift * dt # add noise __lowercase : List[str] = randn_tensor(x.shape , layout=x.layout , generator=__a , device=x.device , dtype=x.dtype ) __lowercase : str = x_mean + diffusion * math.sqrt(-dt ) * noise return x, x_mean def __len__( self : Tuple ) -> Optional[int]: """simple docstring""" return self.config.num_train_timesteps
649
1
from __future__ import annotations from typing import Any def lowerCAmelCase ( UpperCamelCase__ : list[Any] ) -> None: """simple docstring""" create_state_space_tree(UpperCamelCase__ , [] , 0 ) def lowerCAmelCase ( UpperCamelCase__ : list[Any] , UpperCamelCase__ : list[Any] , UpperCamelCase__ : int ) -> None: """simple docstring""" if index == len(UpperCamelCase__ ): print(UpperCamelCase__ ) return create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.append(sequence[index] ) create_state_space_tree(UpperCamelCase__ , UpperCamelCase__ , index + 1 ) current_subsequence.pop() if __name__ == "__main__": lowerCAmelCase : list[Any] = [3, 1, 2, 4] generate_all_subsequences(seq) seq.clear() seq.extend(["""A""", """B""", """C"""]) generate_all_subsequences(seq)
202
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) lowerCAmelCase : List[str] = { """configuration_gpt_bigcode""": ["""GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP""", """GPTBigCodeConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : str = [ """GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST""", """GPTBigCodeForSequenceClassification""", """GPTBigCodeForTokenClassification""", """GPTBigCodeForCausalLM""", """GPTBigCodeModel""", """GPTBigCodePreTrainedModel""", ] if TYPE_CHECKING: from .configuration_gpt_bigcode import GPT_BIGCODE_PRETRAINED_CONFIG_ARCHIVE_MAP, GPTBigCodeConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_gpt_bigcode import ( GPT_BIGCODE_PRETRAINED_MODEL_ARCHIVE_LIST, GPTBigCodeForCausalLM, GPTBigCodeForSequenceClassification, GPTBigCodeForTokenClassification, GPTBigCodeModel, GPTBigCodePreTrainedModel, ) else: import sys lowerCAmelCase : List[str] = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
202
1
'''simple docstring''' from __future__ import annotations def lowercase__ ( __UpperCamelCase : list[int] ): '''simple docstring''' if not nums: return 0 __lowercase = nums[0] __lowercase = 0 for num in nums[1:]: __lowercase , __lowercase = ( max_excluding + num, max(__UpperCamelCase , __UpperCamelCase ), ) return max(__UpperCamelCase , __UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
339
'''simple docstring''' import os import unittest from transformers import MobileBertTokenizer, MobileBertTokenizerFast from transformers.models.bert.tokenization_bert import ( VOCAB_FILES_NAMES, BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class lowerCamelCase__( snake_case_ , unittest.TestCase ): UpperCamelCase : Dict = MobileBertTokenizer UpperCamelCase : Optional[int] = MobileBertTokenizerFast UpperCamelCase : Union[str, Any] = True UpperCamelCase : int = True UpperCamelCase : Dict = filter_non_english UpperCamelCase : Any = "google/mobilebert-uncased" def __magic_name__ ( self ): """simple docstring""" super().setUp() __lowercase = [ """[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] __lowercase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) __lowercase = [ (tokenizer_def[0], self.pre_trained_model_path, tokenizer_def[2]) # else the 'google/' prefix is stripped for tokenizer_def in self.tokenizers_list ] def __magic_name__ ( self , __UpperCAmelCase ): """simple docstring""" __lowercase = """UNwant\u00E9d,running""" __lowercase = """unwanted, running""" return input_text, output_text def __magic_name__ ( self ): """simple docstring""" __lowercase = self.tokenizer_class(self.vocab_file ) __lowercase = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__UpperCAmelCase , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__UpperCAmelCase ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __magic_name__ ( self ): """simple docstring""" if not self.test_rust_tokenizer: return __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() __lowercase = """UNwant\u00E9d,running""" __lowercase = tokenizer.tokenize(__UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) # With lower casing __lowercase = self.get_tokenizer(do_lower_case=__UpperCAmelCase ) __lowercase = self.get_rust_tokenizer(do_lower_case=__UpperCAmelCase ) __lowercase = """UNwant\u00E9d,running""" __lowercase = tokenizer.tokenize(__UpperCAmelCase ) __lowercase = rust_tokenizer.tokenize(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = self.get_rust_tokenizer() __lowercase = tokenizer.encode(__UpperCAmelCase ) __lowercase = rust_tokenizer.encode(__UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""" ) , ["""ah""", """\u535A""", """\u63A8""", """zz"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""hello""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""h\u00E9llo"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""] ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""" ) , ["""hello"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """ ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , strip_accents=__UpperCAmelCase ) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """ ) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = BasicTokenizer(do_lower_case=__UpperCAmelCase , never_split=["""[UNK]"""] ) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""" ) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] __lowercase = {} for i, token in enumerate(__UpperCAmelCase ): __lowercase = i __lowercase = WordpieceTokenizer(vocab=__UpperCAmelCase , unk_token="""[UNK]""" ) self.assertListEqual(tokenizer.tokenize("""""" ) , [] ) self.assertListEqual(tokenizer.tokenize("""unwanted running""" ) , ["""un""", """##want""", """##ed""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.tokenize("""unwantedX running""" ) , ["""[UNK]""", """runn""", """##ing"""] ) def __magic_name__ ( self ): """simple docstring""" self.assertTrue(_is_whitespace(""" """ ) ) self.assertTrue(_is_whitespace("""\t""" ) ) self.assertTrue(_is_whitespace("""\r""" ) ) self.assertTrue(_is_whitespace("""\n""" ) ) self.assertTrue(_is_whitespace("""\u00A0""" ) ) self.assertFalse(_is_whitespace("""A""" ) ) self.assertFalse(_is_whitespace("""-""" ) ) def __magic_name__ ( self ): """simple docstring""" self.assertTrue(_is_control("""\u0005""" ) ) self.assertFalse(_is_control("""A""" ) ) self.assertFalse(_is_control(""" """ ) ) self.assertFalse(_is_control("""\t""" ) ) self.assertFalse(_is_control("""\r""" ) ) def __magic_name__ ( self ): """simple docstring""" self.assertTrue(_is_punctuation("""-""" ) ) self.assertTrue(_is_punctuation("""$""" ) ) self.assertTrue(_is_punctuation("""`""" ) ) self.assertTrue(_is_punctuation(""".""" ) ) self.assertFalse(_is_punctuation("""A""" ) ) self.assertFalse(_is_punctuation(""" """ ) ) def __magic_name__ ( self ): """simple docstring""" __lowercase = self.get_tokenizer() __lowercase = self.get_rust_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(__UpperCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) self.assertListEqual( [rust_tokenizer.tokenize(__UpperCAmelCase ) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]] ) @slow def __magic_name__ ( self ): """simple docstring""" __lowercase = self.tokenizer_class.from_pretrained("""google/mobilebert-uncased""" ) __lowercase = tokenizer.encode("""sequence builders""" , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer.encode("""multi-sequence build""" , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase ) __lowercase = tokenizer.build_inputs_with_special_tokens(__UpperCAmelCase , __UpperCAmelCase ) assert encoded_sentence == [1_0_1] + text + [1_0_2] assert encoded_pair == [1_0_1] + text + [1_0_2] + text_a + [1_0_2] def __magic_name__ ( self ): """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowercase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = F'''A, naïve {tokenizer_r.mask_token} AllenNLP sentence.''' __lowercase = tokenizer_r.encode_plus( __UpperCAmelCase , return_attention_mask=__UpperCAmelCase , return_token_type_ids=__UpperCAmelCase , return_offsets_mapping=__UpperCAmelCase , add_special_tokens=__UpperCAmelCase , ) __lowercase = tokenizer_r.do_lower_case if hasattr(__UpperCAmelCase , """do_lower_case""" ) else False __lowercase = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """Allen"""), ((2_1, 2_3), """##NL"""), ((2_3, 2_4), """##P"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 1_5), tokenizer_r.mask_token), ((1_6, 2_1), """allen"""), ((2_1, 2_3), """##nl"""), ((2_3, 2_4), """##p"""), ((2_5, 3_3), """sentence"""), ((3_3, 3_4), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""] ) ) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""] ) def __magic_name__ ( self ): """simple docstring""" __lowercase = ["""的""", """人""", """有"""] __lowercase = """""".join(__UpperCAmelCase ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): __lowercase = True __lowercase = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = tokenizer_p.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer_r.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(__UpperCAmelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(__UpperCAmelCase ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) __lowercase = False __lowercase = self.rust_tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = self.tokenizer_class.from_pretrained(__UpperCAmelCase , **__UpperCAmelCase ) __lowercase = tokenizer_r.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer_p.encode(__UpperCAmelCase , add_special_tokens=__UpperCAmelCase ) __lowercase = tokenizer_r.convert_ids_to_tokens(__UpperCAmelCase ) __lowercase = tokenizer_p.convert_ids_to_tokens(__UpperCAmelCase ) # it is expected that only the first Chinese character is not preceded by "##". __lowercase = [ F'''##{token}''' if idx != 0 else token for idx, token in enumerate(__UpperCAmelCase ) ] self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase ) self.assertListEqual(__UpperCAmelCase , __UpperCAmelCase )
339
1
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :List[str] , __snake_case :bool , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None ): '''simple docstring''' super().__init__() __magic_name__ : int =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __magic_name__ : Dict =torch.zeros(__snake_case , __snake_case ) else: __magic_name__ : Tuple =None __magic_name__ : int =torch.nn.Parameter(__snake_case ) class __A ( UpperCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :Dict , __snake_case :VQModel , __snake_case :CLIPTextModel , __snake_case :CLIPTokenizer , __snake_case :TransformeraDModel , __snake_case :VQDiffusionScheduler , __snake_case :LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__snake_case , transformer=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) def A__ ( self :Optional[int] , __snake_case :Optional[int] , __snake_case :Optional[Any] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : List[str] =len(__snake_case ) if isinstance(__snake_case , __snake_case ) else 1 # get prompt text embeddings __magic_name__ : str =self.tokenizer( __snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __magic_name__ : str =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __magic_name__ : int =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __magic_name__ : List[Any] =text_input_ids[:, : self.tokenizer.model_max_length] __magic_name__ : Union[str, Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __magic_name__ : Optional[Any] =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate text embeddings for each generation per prompt __magic_name__ : Any =prompt_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __magic_name__ : Union[str, Any] =self.learned_classifier_free_sampling_embeddings.embeddings __magic_name__ : Optional[Any] =negative_prompt_embeds.unsqueeze(0 ).repeat(__snake_case , 1 , 1 ) else: __magic_name__ : Any =[""""""] * batch_size __magic_name__ : List[str] =text_input_ids.shape[-1] __magic_name__ : Tuple =self.tokenizer( __snake_case , padding="""max_length""" , max_length=__snake_case , truncation=__snake_case , return_tensors="""pt""" , ) __magic_name__ : List[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __magic_name__ : Any =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : Any =negative_prompt_embeds.shape[1] __magic_name__ : str =negative_prompt_embeds.repeat(1 , __snake_case , 1 ) __magic_name__ : Any =negative_prompt_embeds.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Optional[int] =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self :Optional[Any] , __snake_case :Union[str, List[str]] , __snake_case :int = 1_00 , __snake_case :float = 5.0 , __snake_case :float = 1.0 , __snake_case :int = 1 , __snake_case :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case :Optional[torch.FloatTensor] = None , __snake_case :Optional[str] = "pil" , __snake_case :bool = True , __snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case :int = 1 , ): '''simple docstring''' if isinstance(__snake_case , __snake_case ): __magic_name__ : str =1 elif isinstance(__snake_case , __snake_case ): __magic_name__ : List[str] =len(__snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__snake_case )}" ) __magic_name__ : List[str] =batch_size * num_images_per_prompt __magic_name__ : Dict =guidance_scale > 1.0 __magic_name__ : Union[str, Any] =self._encode_prompt(__snake_case , __snake_case , __snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__snake_case )}." ) # get the initial completely masked latents unless the user supplied it __magic_name__ : List[Any] =(batch_size, self.transformer.num_latent_pixels) if latents is None: __magic_name__ : List[Any] =self.transformer.num_vector_embeds - 1 __magic_name__ : Union[str, Any] =torch.full(__snake_case , __snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) __magic_name__ : Dict =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) __magic_name__ : Optional[Any] =self.scheduler.timesteps.to(self.device ) __magic_name__ : List[Any] =latents for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the sample if we are doing classifier free guidance __magic_name__ : Dict =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __magic_name__ : List[str] =self.transformer(__snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case ).sample if do_classifier_free_guidance: __magic_name__ , __magic_name__ : List[str] =model_output.chunk(2 ) __magic_name__ : List[Any] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__snake_case , dim=1 , keepdim=__snake_case ) __magic_name__ : Any =self.truncate(__snake_case , __snake_case ) # remove `log(0)`'s (`-inf`s) __magic_name__ : Union[str, Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : Union[str, Any] =self.scheduler.step(__snake_case , timestep=__snake_case , sample=__snake_case , generator=__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) __magic_name__ : Tuple =self.vqvae.config.vq_embed_dim __magic_name__ : str =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) __magic_name__ : Optional[int] =self.vqvae.quantize.get_codebook_entry(__snake_case , shape=__snake_case ) __magic_name__ : Any =self.vqvae.decode(__snake_case , force_not_quantize=__snake_case ).sample __magic_name__ : Any =(image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : Optional[Any] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : Union[str, Any] =self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case ) def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :float ): '''simple docstring''' __magic_name__ , __magic_name__ : int =torch.sort(__snake_case , 1 , descending=__snake_case ) __magic_name__ : Any =torch.exp(__snake_case ) __magic_name__ : Dict =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __magic_name__ : Dict =torch.full_like(keep_mask[:, 0:1, :] , __snake_case ) __magic_name__ : str =torch.cat((all_true, keep_mask) , dim=1 ) __magic_name__ : Tuple =keep_mask[:, :-1, :] __magic_name__ : Optional[int] =keep_mask.gather(1 , indices.argsort(1 ) ) __magic_name__ : Optional[int] =log_p_x_0.clone() __magic_name__ : Union[str, Any] =-torch.inf # -inf = log(0) return rv
21
'''simple docstring''' import numpy as np def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] ): '''simple docstring''' A: Any = int(np.ceil((x_end - xa) / h ) ) A: Union[str, Any] = np.zeros((n + 1,) ) A: Optional[int] = ya A: int = xa for k in range(lowerCamelCase__ ): A: Optional[int] = f(lowerCamelCase__ , y[k] ) A: int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A: List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A: Optional[int] = f(x + h , y[k] + h * ka ) A: Optional[Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
135
0
'''simple docstring''' def __UpperCAmelCase ( _UpperCAmelCase : float , _UpperCAmelCase : float ) -> float: if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
680
'''simple docstring''' import argparse import glob import logging import os import time from argparse import Namespace import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from torch.utils.data import DataLoader, TensorDataset from transformers import glue_compute_metrics as compute_metrics from transformers import glue_convert_examples_to_features as convert_examples_to_features from transformers import glue_output_modes, glue_tasks_num_labels from transformers import glue_processors as processors a : Any = logging.getLogger(__name__) class SCREAMING_SNAKE_CASE__ ( _UpperCamelCase ): __SCREAMING_SNAKE_CASE = """sequence-classification""" def __init__( self : List[str] , a_ : str ): """simple docstring""" if type(a_ ) == dict: __snake_case = Namespace(**a_ ) __snake_case = glue_output_modes[hparams.task] __snake_case = glue_tasks_num_labels[hparams.task] super().__init__(a_ , a_ , self.mode ) def A ( self : Union[str, Any] , **a_ : List[Any] ): """simple docstring""" return self.model(**a_ ) def A ( self : int , a_ : Optional[Any] , a_ : int ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case = outputs[0] __snake_case = self.trainer.lr_schedulers[0]["scheduler"] __snake_case = {"loss": loss, "rate": lr_scheduler.get_last_lr()[-1]} return {"loss": loss, "log": tensorboard_logs} def A ( self : List[str] ): """simple docstring""" __snake_case = self.hparams __snake_case = processors[args.task]() __snake_case = processor.get_labels() for mode in ["train", "dev"]: __snake_case = self._feature_file(a_ ) if os.path.exists(a_ ) and not args.overwrite_cache: logger.info("Loading features from cached file %s" , a_ ) else: logger.info("Creating features from dataset file at %s" , args.data_dir ) __snake_case = ( processor.get_dev_examples(args.data_dir ) if mode == "dev" else processor.get_train_examples(args.data_dir ) ) __snake_case = convert_examples_to_features( a_ , self.tokenizer , max_length=args.max_seq_length , label_list=self.labels , output_mode=args.glue_output_mode , ) logger.info("Saving features into cached file %s" , a_ ) torch.save(a_ , a_ ) def A ( self : Optional[int] , a_ : str , a_ : int , a_ : bool = False ): """simple docstring""" __snake_case = "dev" if mode == "test" else mode __snake_case = self._feature_file(a_ ) logger.info("Loading features from cached file %s" , a_ ) __snake_case = torch.load(a_ ) __snake_case = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) __snake_case = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) if self.hparams.glue_output_mode == "classification": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.long ) elif self.hparams.glue_output_mode == "regression": __snake_case = torch.tensor([f.label for f in features] , dtype=torch.float ) return DataLoader( TensorDataset(a_ , a_ , a_ , a_ ) , batch_size=a_ , shuffle=a_ , ) def A ( self : int , a_ : List[str] , a_ : Tuple ): """simple docstring""" __snake_case = {"input_ids": batch[0], "attention_mask": batch[1], "labels": batch[3]} if self.config.model_type not in ["distilbert", "bart"]: __snake_case = batch[2] if self.config.model_type in ["bert", "xlnet", "albert"] else None __snake_case = self(**a_ ) __snake_case , __snake_case = outputs[:2] __snake_case = logits.detach().cpu().numpy() __snake_case = inputs["labels"].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def A ( self : Dict , a_ : Optional[int] ): """simple docstring""" __snake_case = torch.stack([x["val_loss"] for x in outputs] ).mean().detach().cpu().item() __snake_case = np.concatenate([x["pred"] for x in outputs] , axis=0 ) if self.hparams.glue_output_mode == "classification": __snake_case = np.argmax(a_ , axis=1 ) elif self.hparams.glue_output_mode == "regression": __snake_case = np.squeeze(a_ ) __snake_case = np.concatenate([x["target"] for x in outputs] , axis=0 ) __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = [[] for _ in range(out_label_ids.shape[0] )] __snake_case = {**{"val_loss": val_loss_mean}, **compute_metrics(self.hparams.task , a_ , a_ )} __snake_case = dict(results.items() ) __snake_case = results return ret, preds_list, out_label_list def A ( self : Tuple , a_ : list ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def A ( self : int , a_ : Tuple ): """simple docstring""" __snake_case , __snake_case , __snake_case = self._eval_end(a_ ) __snake_case = ret["log"] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def A ( a_ : str , a_ : Any ): """simple docstring""" BaseTransformer.add_model_specific_args(a_ , a_ ) parser.add_argument( "--max_seq_length" , default=128 , type=a_ , help=( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) , ) parser.add_argument( "--task" , default="" , type=a_ , required=a_ , help="The GLUE task to run" , ) parser.add_argument( "--gpus" , default=0 , type=a_ , help="The number of GPUs allocated for this, it is by default 0 meaning none" , ) parser.add_argument( "--overwrite_cache" , action="store_true" , help="Overwrite the cached training and evaluation sets" ) return parser def __UpperCAmelCase ( ) -> Union[str, Any]: __snake_case = argparse.ArgumentParser() add_generic_args(_UpperCAmelCase , os.getcwd() ) __snake_case = GLUETransformer.add_model_specific_args(_UpperCAmelCase , os.getcwd() ) __snake_case = parser.parse_args() # If output_dir not provided, a folder will be generated in pwd if args.output_dir is None: __snake_case = os.path.join( "./results" , F'''{args.task}_{time.strftime("%Y%m%d_%H%M%S" )}''' , ) os.makedirs(args.output_dir ) __snake_case = GLUETransformer(_UpperCAmelCase ) __snake_case = generic_train(_UpperCAmelCase , _UpperCAmelCase ) # Optionally, predict on dev set and write to output_dir if args.do_predict: __snake_case = sorted(glob.glob(os.path.join(args.output_dir , "checkpoint-epoch=*.ckpt" ) , recursive=_UpperCAmelCase ) ) __snake_case = model.load_from_checkpoint(checkpoints[-1] ) return trainer.test(_UpperCAmelCase ) if __name__ == "__main__": main()
680
1
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionAttendAndExcitePipeline, UNetaDConditionModel, ) from diffusers.utils import load_numpy, skip_mps, slow from diffusers.utils.testing_utils import require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin UpperCAmelCase = False @skip_mps class lowercase__ ( __a ,__a ,__a ,unittest.TestCase ): __UpperCAmelCase = StableDiffusionAttendAndExcitePipeline __UpperCAmelCase = False __UpperCAmelCase = TEXT_TO_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS.union({'''token_indices'''} ) __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS __UpperCAmelCase = TEXT_TO_IMAGE_IMAGE_PARAMS @classmethod def UpperCamelCase_ ( cls) -> str: super().setUpClass() torch.use_deterministic_algorithms(a_) @classmethod def UpperCamelCase_ ( cls) -> Union[str, Any]: super().tearDownClass() torch.use_deterministic_algorithms(a_) def UpperCamelCase_ ( self) -> int: torch.manual_seed(0) _lowerCamelCase : Optional[Any] = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=1 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=(2, 4) , use_linear_projection=a_ , ) _lowerCamelCase : Union[str, Any] = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule="""scaled_linear""" , clip_sample=a_ , set_alpha_to_one=a_ , ) torch.manual_seed(0) _lowerCamelCase : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , sample_size=128 , ) torch.manual_seed(0) _lowerCamelCase : Optional[int] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) _lowerCamelCase : List[Any] = CLIPTextModel(a_) _lowerCamelCase : List[Any] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""") _lowerCamelCase : Union[str, Any] = { """unet""": unet, """scheduler""": scheduler, """vae""": vae, """text_encoder""": text_encoder, """tokenizer""": tokenizer, """safety_checker""": None, """feature_extractor""": None, } return components def UpperCamelCase_ ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0) -> Optional[Any]: if str(a_).startswith("""mps"""): _lowerCamelCase : List[Any] = torch.manual_seed(a_) else: _lowerCamelCase : List[str] = torch.Generator(device=a_).manual_seed(a_) _lowerCamelCase : Optional[int] = { """prompt""": """a cat and a frog""", """token_indices""": [2, 5], """generator""": generator, """num_inference_steps""": 1, """guidance_scale""": 6.0, """output_type""": """numpy""", """max_iter_to_alter""": 2, """thresholds""": {0: 0.7}, } return inputs def UpperCamelCase_ ( self) -> Optional[int]: _lowerCamelCase : Tuple = """cpu""" _lowerCamelCase : Union[str, Any] = self.get_dummy_components() _lowerCamelCase : Dict = self.pipeline_class(**a_) pipe.to(a_) pipe.set_progress_bar_config(disable=a_) _lowerCamelCase : int = self.get_dummy_inputs(a_) _lowerCamelCase : List[Any] = pipe(**a_).images _lowerCamelCase : Optional[Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 64, 64, 3)) _lowerCamelCase : Union[str, Any] = np.array( [0.63_90_53_64, 0.62_89_73_07, 0.48_59_90_17, 0.5_13_36_24, 0.5_55_00_48, 0.45_76_95_16, 0.50_32_69_73, 0.5_02_31_39, 0.45_38_44_96]) _lowerCamelCase : List[Any] = np.abs(image_slice.flatten() - expected_slice).max() self.assertLessEqual(a_ , 1e-3) def UpperCamelCase_ ( self) -> Optional[int]: super().test_cpu_offload_forward_pass(expected_max_diff=5e-4) def UpperCamelCase_ ( self) -> Any: self._test_inference_batch_consistent(batch_sizes=[1, 2]) def UpperCamelCase_ ( self) -> Dict: self._test_inference_batch_single_identical(batch_size=2 , expected_max_diff=7e-4) def UpperCamelCase_ ( self) -> List[Any]: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3e-3) def UpperCamelCase_ ( self) -> Union[str, Any]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=5e-4) def UpperCamelCase_ ( self) -> List[Any]: super().test_save_load_local(expected_max_difference=5e-4) def UpperCamelCase_ ( self) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=4e-4) @require_torch_gpu @slow class lowercase__ ( unittest.TestCase ): @classmethod def UpperCamelCase_ ( cls) -> Union[str, Any]: super().setUpClass() torch.use_deterministic_algorithms(a_) @classmethod def UpperCamelCase_ ( cls) -> Union[str, Any]: super().tearDownClass() torch.use_deterministic_algorithms(a_) def UpperCamelCase_ ( self) -> List[Any]: super().tearDown() gc.collect() torch.cuda.empty_cache() def UpperCamelCase_ ( self) -> Union[str, Any]: _lowerCamelCase : Union[str, Any] = torch.manual_seed(51) _lowerCamelCase : Union[str, Any] = StableDiffusionAttendAndExcitePipeline.from_pretrained( """CompVis/stable-diffusion-v1-4""" , safety_checker=a_ , torch_dtype=torch.floataa) pipe.to("""cuda""") _lowerCamelCase : Optional[Any] = """a painting of an elephant with glasses""" _lowerCamelCase : str = [5, 7] _lowerCamelCase : int = pipe( prompt=a_ , token_indices=a_ , guidance_scale=7.5 , generator=a_ , num_inference_steps=5 , max_iter_to_alter=5 , output_type="""numpy""" , ).images[0] _lowerCamelCase : Tuple = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/attend-and-excite/elephant_glasses.npy""") assert np.abs((expected_image - image).max()) < 5e-1
88
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ (snake_case__ : int ): """simple docstring""" _snake_case : int = str(snake_case__ ) return len(snake_case__ ) == 9 and set(snake_case__ ) == set("""123456789""" ) def UpperCAmelCase__ (): """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): _snake_case : List[Any] = 10_00_02 * base_num if is_9_pandigital(snake_case__ ): return candidate for base_num in range(3_33 , 99 , -1 ): _snake_case : List[str] = 1_00_20_03 * base_num if is_9_pandigital(snake_case__ ): return candidate return None if __name__ == "__main__": print(F'''{solution() = }''')
609
0
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP snake_case_ = logging.get_logger(__name__) # pylint: disable=invalid-name snake_case_ = '\n Examples:\n ```py\n >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline\n >>> import torch\n\n >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior")\n >>> pipe_prior.to("cuda")\n\n >>> prompt = "red cat, 4k photo"\n >>> out = pipe_prior(prompt)\n >>> image_emb = out.image_embeds\n >>> negative_image_emb = out.negative_image_embeds\n\n >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1")\n >>> pipe.to("cuda")\n\n >>> image = pipe(\n ... prompt,\n ... image_embeds=image_emb,\n ... negative_image_embeds=negative_image_emb,\n ... height=768,\n ... width=768,\n ... num_inference_steps=100,\n ... ).images\n\n >>> image[0].save("cat.png")\n ```\n' def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : str=8 ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): def __init__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): """simple docstring""" super().__init__() self.register_modules( text_encoder=lowercase__ , tokenizer=lowercase__ , unet=lowercase__ , scheduler=lowercase__ , movq=lowercase__ , ) SCREAMING_SNAKE_CASE_ : List[Any] = 2 ** (len(self.movq.config.block_out_channels ) - 1) def __lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ): """simple docstring""" if latents is None: SCREAMING_SNAKE_CASE_ : Tuple = randn_tensor(lowercase__ , generator=lowercase__ , device=lowercase__ , dtype=lowercase__ ) else: if latents.shape != shape: raise ValueError(F"Unexpected latents shape, got {latents.shape}, expected {shape}" ) SCREAMING_SNAKE_CASE_ : List[str] = latents.to(lowercase__ ) SCREAMING_SNAKE_CASE_ : int = latents * scheduler.init_noise_sigma return latents def __lowerCamelCase ( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__=None , ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = len(lowercase__ ) if isinstance(lowercase__ , lowercase__ ) else 1 # get prompt text embeddings SCREAMING_SNAKE_CASE_ : Any = self.tokenizer( lowercase__ , padding="max_length" , truncation=lowercase__ , max_length=77 , return_attention_mask=lowercase__ , add_special_tokens=lowercase__ , return_tensors="pt" , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = text_inputs.input_ids SCREAMING_SNAKE_CASE_ : int = self.tokenizer(lowercase__ , padding="longest" , return_tensors="pt" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : Tuple = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( "The following part of your input was truncated because CLIP can only handle sequences up to" F" {self.tokenizer.model_max_length} tokens: {removed_text}" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = text_input_ids.to(lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = text_inputs.attention_mask.to(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = self.text_encoder( input_ids=lowercase__ , attention_mask=lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = prompt_embeds.repeat_interleave(lowercase__ , dim=0 ) SCREAMING_SNAKE_CASE_ : Tuple = text_encoder_hidden_states.repeat_interleave(lowercase__ , dim=0 ) SCREAMING_SNAKE_CASE_ : Optional[int] = text_mask.repeat_interleave(lowercase__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : List[str] if negative_prompt is None: SCREAMING_SNAKE_CASE_ : int = [""] * batch_size elif type(lowercase__ ) is not type(lowercase__ ): raise TypeError( F"`negative_prompt` should be the same type to `prompt`, but got {type(lowercase__ )} !=" F" {type(lowercase__ )}." ) elif isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = [negative_prompt] elif batch_size != len(lowercase__ ): raise ValueError( F"`negative_prompt`: {negative_prompt} has batch size {len(lowercase__ )}, but `prompt`:" F" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" " the batch size of `prompt`." ) else: SCREAMING_SNAKE_CASE_ : Optional[Any] = negative_prompt SCREAMING_SNAKE_CASE_ : str = self.tokenizer( lowercase__ , padding="max_length" , max_length=77 , truncation=lowercase__ , return_attention_mask=lowercase__ , add_special_tokens=lowercase__ , return_tensors="pt" , ) SCREAMING_SNAKE_CASE_ : List[Any] = uncond_input.input_ids.to(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = uncond_input.attention_mask.to(lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.text_encoder( input_ids=lowercase__ , attention_mask=lowercase__ ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method SCREAMING_SNAKE_CASE_ : List[Any] = negative_prompt_embeds.shape[1] SCREAMING_SNAKE_CASE_ : Dict = negative_prompt_embeds.repeat(1 , lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = negative_prompt_embeds.view(batch_size * num_images_per_prompt , lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = uncond_text_encoder_hidden_states.shape[1] SCREAMING_SNAKE_CASE_ : Tuple = uncond_text_encoder_hidden_states.repeat(1 , lowercase__ , 1 ) SCREAMING_SNAKE_CASE_ : str = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt , lowercase__ , -1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = uncond_text_mask.repeat_interleave(lowercase__ , dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes SCREAMING_SNAKE_CASE_ : str = torch.cat([negative_prompt_embeds, prompt_embeds] ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) SCREAMING_SNAKE_CASE_ : Dict = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def __lowerCamelCase ( self , lowercase__=0 ): """simple docstring""" if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("Please install accelerate via `pip install accelerate`" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.device(F"cuda:{gpu_id}" ) SCREAMING_SNAKE_CASE_ : Optional[int] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(lowercase__ , lowercase__ ) def __lowerCamelCase ( self , lowercase__=0 ): """simple docstring""" if is_accelerate_available() and is_accelerate_version(">=" , "0.17.0.dev0" ): from accelerate import cpu_offload_with_hook else: raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher." ) SCREAMING_SNAKE_CASE_ : List[str] = torch.device(F"cuda:{gpu_id}" ) if self.device.type != "cpu": self.to("cpu" , silence_dtype_warnings=lowercase__ ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) SCREAMING_SNAKE_CASE_ : Union[str, Any] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: SCREAMING_SNAKE_CASE_ : List[Any] = cpu_offload_with_hook(lowercase__ , lowercase__ , prev_module_hook=lowercase__ ) if self.safety_checker is not None: SCREAMING_SNAKE_CASE_ : Optional[Any] = cpu_offload_with_hook(self.safety_checker , lowercase__ , prev_module_hook=lowercase__ ) # We'll offload the last model manually. SCREAMING_SNAKE_CASE_ : int = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def __lowerCamelCase ( self ): """simple docstring""" if not hasattr(self.unet , "_hf_hook" ): return self.device for module in self.unet.modules(): if ( hasattr(lowercase__ , "_hf_hook" ) and hasattr(module._hf_hook , "execution_device" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(lowercase__ ) def __call__( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ = None , lowercase__ = 512 , lowercase__ = 512 , lowercase__ = 100 , lowercase__ = 4.0 , lowercase__ = 1 , lowercase__ = None , lowercase__ = None , lowercase__ = "pil" , lowercase__ = True , ): """simple docstring""" if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[str] = 1 elif isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[str] = len(lowercase__ ) else: raise ValueError(F"`prompt` has to be of type `str` or `list` but is {type(lowercase__ )}" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = self._execution_device SCREAMING_SNAKE_CASE_ : Dict = batch_size * num_images_per_prompt SCREAMING_SNAKE_CASE_ : Optional[int] = guidance_scale > 1.0 SCREAMING_SNAKE_CASE_ : str = self._encode_prompt( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : int = torch.cat(lowercase__ , dim=0 ) if isinstance(lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = torch.cat(lowercase__ , dim=0 ) if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_embeds.repeat_interleave(lowercase__ , dim=0 ) SCREAMING_SNAKE_CASE_ : List[str] = negative_image_embeds.repeat_interleave(lowercase__ , dim=0 ) SCREAMING_SNAKE_CASE_ : List[str] = torch.cat([negative_image_embeds, image_embeds] , dim=0 ).to( dtype=prompt_embeds.dtype , device=lowercase__ ) self.scheduler.set_timesteps(lowercase__ , device=lowercase__ ) SCREAMING_SNAKE_CASE_ : Tuple = self.scheduler.timesteps SCREAMING_SNAKE_CASE_ : Tuple = self.unet.config.in_channels SCREAMING_SNAKE_CASE_ : Dict = get_new_h_w(lowercase__ , lowercase__ , self.movq_scale_factor ) # create initial latent SCREAMING_SNAKE_CASE_ : Tuple = self.prepare_latents( (batch_size, num_channels_latents, height, width) , text_encoder_hidden_states.dtype , lowercase__ , lowercase__ , lowercase__ , self.scheduler , ) for i, t in enumerate(self.progress_bar(lowercase__ ) ): # expand the latents if we are doing classifier free guidance SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents SCREAMING_SNAKE_CASE_ : List[Any] = {"text_embeds": prompt_embeds, "image_embeds": image_embeds} SCREAMING_SNAKE_CASE_ : Dict = self.unet( sample=lowercase__ , timestep=lowercase__ , encoder_hidden_states=lowercase__ , added_cond_kwargs=lowercase__ , return_dict=lowercase__ , )[0] if do_classifier_free_guidance: SCREAMING_SNAKE_CASE_ : List[Any] = noise_pred.split(latents.shape[1] , dim=1 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = noise_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ : int = variance_pred.chunk(2 ) SCREAMING_SNAKE_CASE_ : Tuple = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) SCREAMING_SNAKE_CASE_ : Tuple = torch.cat([noise_pred, variance_pred_text] , dim=1 ) if not ( hasattr(self.scheduler.config , "variance_type" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = noise_pred.split(latents.shape[1] , dim=1 ) # compute the previous noisy sample x_t -> x_t-1 SCREAMING_SNAKE_CASE_ : str = self.scheduler.step( lowercase__ , lowercase__ , lowercase__ , generator=lowercase__ , ).prev_sample # post-processing SCREAMING_SNAKE_CASE_ : Optional[Any] = self.movq.decode(lowercase__ , force_not_quantize=lowercase__ )["sample"] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}" ) if output_type in ["np", "pil"]: SCREAMING_SNAKE_CASE_ : Union[str, Any] = image * 0.5 + 0.5 SCREAMING_SNAKE_CASE_ : int = image.clamp(0 , 1 ) SCREAMING_SNAKE_CASE_ : Dict = image.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() if output_type == "pil": SCREAMING_SNAKE_CASE_ : Dict = self.numpy_to_pil(lowercase__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=lowercase__ )
700
'''simple docstring''' import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __lowerCamelCase ( ) -> Any: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.nn.Linear(2 , 4 ) SCREAMING_SNAKE_CASE_ : List[Any] = torch.optim.AdamW(model.parameters() , lr=1.0 ) SCREAMING_SNAKE_CASE_ : Any = torch.optim.lr_scheduler.OneCycleLR(SCREAMING_SNAKE_CASE_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) SCREAMING_SNAKE_CASE_ : Dict = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) SCREAMING_SNAKE_CASE_ : Tuple = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : List[str] ) -> Tuple: """simple docstring""" return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __lowerCamelCase ( SCREAMING_SNAKE_CASE_ : Any ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE_ : str = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @require_cuda def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : List[Any] = Accelerator(cpu=lowercase__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = Accelerator() SCREAMING_SNAKE_CASE_ : Any = GradientState() assert state.num_steps == 1 SCREAMING_SNAKE_CASE_ : Union[str, Any] = 4 assert state.num_steps == 4 assert state.sync_gradients is True SCREAMING_SNAKE_CASE_ : Optional[int] = False assert state.sync_gradients is False GradientState._reset_state() def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = create_components() ( ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ( SCREAMING_SNAKE_CASE_ ), ) : Optional[Any] = accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : str = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def __lowerCamelCase ( self ): """simple docstring""" PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*lowercase__ , **lowercase__ ): pass with patch("torch.cuda.set_device" , lowercase__ ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): SCREAMING_SNAKE_CASE_ : List[str] = Accelerator() self.assertEqual(str(accelerator.state.device ) , "cuda:64" ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[int] = get_signature(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = create_components() accelerator.prepare(lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = get_signature(lowercase__ ) # saving hook def save_config(lowercase__ , lowercase__ , lowercase__ ): SCREAMING_SNAKE_CASE_ : Optional[Any] = {"class_name": models[0].__class__.__name__} with open(os.path.join(lowercase__ , "data.json" ) , "w" ) as f: json.dump(lowercase__ , lowercase__ ) # loading hook def load_config(lowercase__ , lowercase__ ): with open(os.path.join(lowercase__ , "data.json" ) , "r" ) as f: SCREAMING_SNAKE_CASE_ : Any = json.load(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = config["class_name"] SCREAMING_SNAKE_CASE_ : Dict = accelerator.register_save_state_pre_hook(lowercase__ ) SCREAMING_SNAKE_CASE_ : Optional[Any] = accelerator.register_load_state_pre_hook(lowercase__ ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match with hooks load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded SCREAMING_SNAKE_CASE_ : Union[str, Any] = "random" # make sure loaded weights match with hooks accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(lowercase__ ) # make sure random weights don't match with hooks removed load_random_weights(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) > 1e-3 ) # random class name to verify correct one is loaded SCREAMING_SNAKE_CASE_ : Tuple = "random" # make sure loaded weights match with hooks removed accelerator.load_state(lowercase__ ) self.assertTrue(abs(model_signature - get_signature(lowercase__ ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Tuple = create_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] = None # This should work SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertTrue(dummy_obj is None ) def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : List[Any] = Accelerator() SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : Dict = create_components() SCREAMING_SNAKE_CASE_ : Union[str, Any] = [1, 2, 3] # This should work SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ : int = accelerator.prepare( lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Dummy object should have `_is_accelerate_prepared` set to `True`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Model is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Optimizer is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Scheduler is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) self.assertEqual( getattr(lowercase__ , "_is_accelerate_prepared" , lowercase__ ) , lowercase__ , "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`" , ) @slow @require_bnb def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map={"": 0} , ) SCREAMING_SNAKE_CASE_ : Optional[int] = Accelerator() # This should work SCREAMING_SNAKE_CASE_ : List[Any] = accelerator.prepare(lowercase__ ) @slow @require_bnb def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : Optional[Any] = Accelerator() with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() SCREAMING_SNAKE_CASE_ : Optional[Any] = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[Any] = "cpu" SCREAMING_SNAKE_CASE_ : Tuple = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , device_map=lowercase__ , load_in_abit=lowercase__ , llm_inta_enable_fpaa_cpu_offload=lowercase__ ) # This should not work and get value error with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : str = accelerator.prepare(lowercase__ ) @slow @require_bnb @require_multi_gpu def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM SCREAMING_SNAKE_CASE_ : str = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) model.tie_weights() SCREAMING_SNAKE_CASE_ : str = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = 1 SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map=lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = Accelerator() # This should not work and get value error with self.assertRaises(lowercase__ ): SCREAMING_SNAKE_CASE_ : Tuple = accelerator.prepare(lowercase__ ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def __lowerCamelCase ( self ): """simple docstring""" from transformers import AutoModelForCausalLM with init_empty_weights(): SCREAMING_SNAKE_CASE_ : Optional[int] = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , ) SCREAMING_SNAKE_CASE_ : Optional[Any] = infer_auto_device_map(lowercase__ ) SCREAMING_SNAKE_CASE_ : List[str] = 1 SCREAMING_SNAKE_CASE_ : str = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m" , load_in_abit=lowercase__ , device_map=lowercase__ , ) SCREAMING_SNAKE_CASE_ : Any = Accelerator() # This should work SCREAMING_SNAKE_CASE_ : Optional[int] = accelerator.prepare(lowercase__ ) @require_cuda def __lowerCamelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = torch.nn.Linear(10 , 10 ) SCREAMING_SNAKE_CASE_ : Optional[int] = torch.optim.SGD(model.parameters() , lr=0.01 ) SCREAMING_SNAKE_CASE_ : Tuple = Accelerator(cpu=lowercase__ ) SCREAMING_SNAKE_CASE_ : Dict = accelerator.prepare(lowercase__ )
68
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE : int = { '''configuration_altclip''': [ '''ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''AltCLIPConfig''', '''AltCLIPTextConfig''', '''AltCLIPVisionConfig''', ], '''processing_altclip''': ['''AltCLIPProcessor'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : int = [ '''ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''AltCLIPPreTrainedModel''', '''AltCLIPModel''', '''AltCLIPTextModel''', '''AltCLIPVisionModel''', ] if TYPE_CHECKING: from .configuration_altclip import ( ALTCLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, AltCLIPConfig, AltCLIPTextConfig, AltCLIPVisionConfig, ) from .processing_altclip import AltCLIPProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_altclip import ( ALTCLIP_PRETRAINED_MODEL_ARCHIVE_LIST, AltCLIPModel, AltCLIPPreTrainedModel, AltCLIPTextModel, AltCLIPVisionModel, ) else: import sys SCREAMING_SNAKE_CASE : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
156
"""simple docstring""" class __lowerCamelCase : def __init__(self , lowerCamelCase ): '''simple docstring''' _lowerCAmelCase = val _lowerCAmelCase = None _lowerCAmelCase = None def A__ (self , lowerCamelCase ): '''simple docstring''' if self.val: if val < self.val: if self.left is None: _lowerCAmelCase = Node(lowerCamelCase ) else: self.left.insert(lowerCamelCase ) elif val > self.val: if self.right is None: _lowerCAmelCase = Node(lowerCamelCase ) else: self.right.insert(lowerCamelCase ) else: _lowerCAmelCase = val def __UpperCAmelCase ( snake_case_ : List[str] , snake_case_ : Any ) -> Dict: """simple docstring""" if root: inorder(root.left , snake_case_ ) res.append(root.val ) inorder(root.right , snake_case_ ) def __UpperCAmelCase ( snake_case_ : str ) -> List[Any]: """simple docstring""" if len(snake_case_ ) == 0: return arr _lowerCAmelCase = Node(arr[0] ) for i in range(1 , len(snake_case_ ) ): root.insert(arr[i] ) # Traverse BST in order. _lowerCAmelCase = [] inorder(snake_case_ , snake_case_ ) return res if __name__ == "__main__": print(tree_sort([1_0, 1, 3, 2, 9, 1_4, 1_3]))
156
1
import contextlib import csv import json import os import sqlitea import tarfile import textwrap import zipfile import pyarrow as pa import pyarrow.parquet as pq import pytest import datasets import datasets.config @pytest.fixture(scope="session" ) def snake_case_ ( ) -> Tuple: lowercase__ : Union[str, Any] = 10 lowercase__ : Dict = datasets.Features( { "tokens": datasets.Sequence(datasets.Value("string" ) ), "labels": datasets.Sequence(datasets.ClassLabel(names=["negative", "positive"] ) ), "answers": datasets.Sequence( { "text": datasets.Value("string" ), "answer_start": datasets.Value("int32" ), } ), "id": datasets.Value("int64" ), } ) lowercase__ : Any = datasets.Dataset.from_dict( { "tokens": [["foo"] * 5] * n, "labels": [[1] * 5] * n, "answers": [{"answer_start": [97], "text": ["1976"]}] * 10, "id": list(range(SCREAMING_SNAKE_CASE_ ) ), } ,features=SCREAMING_SNAKE_CASE_ ,) return dataset @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> List[str]: lowercase__ : int = str(tmp_path_factory.mktemp("data" ) / "file.arrow" ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE_ ) return filename # FILE_CONTENT + files __a : Tuple = '''\ Text data. Second line of data.''' @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: lowercase__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt" lowercase__ : int = FILE_CONTENT with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return filename @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: import bza lowercase__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.bz2" lowercase__ : Dict = bytes(SCREAMING_SNAKE_CASE_ ,"utf-8" ) with bza.open(SCREAMING_SNAKE_CASE_ ,"wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: import gzip lowercase__ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "file.txt.gz" ) lowercase__ : Tuple = bytes(SCREAMING_SNAKE_CASE_ ,"utf-8" ) with gzip.open(SCREAMING_SNAKE_CASE_ ,"wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Dict: if datasets.config.LZ4_AVAILABLE: import lza.frame lowercase__ : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.lz4" lowercase__ : Any = bytes(SCREAMING_SNAKE_CASE_ ,"utf-8" ) with lza.frame.open(SCREAMING_SNAKE_CASE_ ,"wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Tuple: if datasets.config.PY7ZR_AVAILABLE: import pyazr lowercase__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "file.txt.7z" with pyazr.SevenZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as archive: archive.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: import tarfile lowercase__ : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.txt.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: import lzma lowercase__ : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.xz" lowercase__ : int = bytes(SCREAMING_SNAKE_CASE_ ,"utf-8" ) with lzma.open(SCREAMING_SNAKE_CASE_ ,"wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Optional[int]: import zipfile lowercase__ : Dict = tmp_path_factory.mktemp("data" ) / "file.txt.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: if datasets.config.ZSTANDARD_AVAILABLE: import zstandard as zstd lowercase__ : Tuple = tmp_path_factory.mktemp("data" ) / "file.txt.zst" lowercase__ : Dict = bytes(SCREAMING_SNAKE_CASE_ ,"utf-8" ) with zstd.open(SCREAMING_SNAKE_CASE_ ,"wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowercase__ : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "file.xml" lowercase__ : List[str] = textwrap.dedent( "\\n <?xml version=\"1.0\" encoding=\"UTF-8\" ?>\n <tmx version=\"1.4\">\n <header segtype=\"sentence\" srclang=\"ca\" />\n <body>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 1</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 1</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 2</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 2</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 3</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 3</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 4</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 4</seg></tuv>\n </tu>\n <tu>\n <tuv xml:lang=\"ca\"><seg>Contingut 5</seg></tuv>\n <tuv xml:lang=\"en\"><seg>Content 5</seg></tuv>\n </tu>\n </body>\n </tmx>" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return filename __a : Union[str, Any] = [ {'''col_1''': '''0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''3''', '''col_2''': 3, '''col_3''': 3.0}, ] __a : List[Any] = [ {'''col_1''': '''4''', '''col_2''': 4, '''col_3''': 4.0}, {'''col_1''': '''5''', '''col_2''': 5, '''col_3''': 5.0}, ] __a : Dict = { '''col_1''': ['''0''', '''1''', '''2''', '''3'''], '''col_2''': [0, 1, 2, 3], '''col_3''': [0.0, 1.0, 2.0, 3.0], } __a : Dict = [ {'''col_3''': 0.0, '''col_1''': '''0''', '''col_2''': 0}, {'''col_3''': 1.0, '''col_1''': '''1''', '''col_2''': 1}, ] __a : List[str] = [ {'''col_1''': '''s0''', '''col_2''': 0, '''col_3''': 0.0}, {'''col_1''': '''s1''', '''col_2''': 1, '''col_3''': 1.0}, {'''col_1''': '''s2''', '''col_2''': 2, '''col_3''': 2.0}, {'''col_1''': '''s3''', '''col_2''': 3, '''col_3''': 3.0}, ] @pytest.fixture(scope="session" ) def snake_case_ ( ) -> Any: return DATA_DICT_OF_LISTS @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowercase__ : List[str] = datasets.Dataset.from_dict(SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = str(tmp_path_factory.mktemp("data" ) / "dataset.arrow" ) dataset.map(cache_file_name=SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: lowercase__ : str = str(tmp_path_factory.mktemp("data" ) / "dataset.sqlite" ) with contextlib.closing(sqlitea.connect(SCREAMING_SNAKE_CASE_ ) ) as con: lowercase__ : Dict = con.cursor() cur.execute("CREATE TABLE dataset(col_1 text, col_2 int, col_3 real)" ) for item in DATA: cur.execute("INSERT INTO dataset(col_1, col_2, col_3) VALUES (?, ?, ?)" ,tuple(item.values() ) ) con.commit() return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: lowercase__ : Optional[int] = str(tmp_path_factory.mktemp("data" ) / "dataset.csv" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ,newline="" ) as f: lowercase__ : Optional[int] = csv.DictWriter(SCREAMING_SNAKE_CASE_ ,fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ : Union[str, Any] = str(tmp_path_factory.mktemp("data" ) / "dataset2.csv" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ,newline="" ) as f: lowercase__ : Optional[int] = csv.DictWriter(SCREAMING_SNAKE_CASE_ ,fieldnames=["col_1", "col_2", "col_3"] ) writer.writeheader() for item in DATA: writer.writerow(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: import bza lowercase__ : Optional[Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.bz2" with open(SCREAMING_SNAKE_CASE_ ,"rb" ) as f: lowercase__ : Union[str, Any] = f.read() # data = bytes(FILE_CONTENT, "utf-8") with bza.open(SCREAMING_SNAKE_CASE_ ,"wb" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int: lowercase__ : str = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int: lowercase__ : Union[str, Any] = tmp_path_factory.mktemp("data" ) / "dataset.csv.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(csv_path.replace(".csv" ,".CSV" ) ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(csva_path.replace(".csv" ,".CSV" ) ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> List[str]: lowercase__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.csv.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join("main_dir" ,os.path.basename(SCREAMING_SNAKE_CASE_ ) ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join("main_dir" ,os.path.basename(SCREAMING_SNAKE_CASE_ ) ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: lowercase__ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.parquet" ) lowercase__ : List[Any] = pa.schema( { "col_1": pa.string(), "col_2": pa.intaa(), "col_3": pa.floataa(), } ) with open(SCREAMING_SNAKE_CASE_ ,"wb" ) as f: lowercase__ : Union[str, Any] = pq.ParquetWriter(SCREAMING_SNAKE_CASE_ ,schema=SCREAMING_SNAKE_CASE_ ) lowercase__ : List[str] = pa.Table.from_pydict({k: [DATA[i][k] for i in range(len(SCREAMING_SNAKE_CASE_ ) )] for k in DATA[0]} ,schema=SCREAMING_SNAKE_CASE_ ) writer.write_table(SCREAMING_SNAKE_CASE_ ) writer.close() return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : Any = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) lowercase__ : int = {"data": DATA} with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : str = str(tmp_path_factory.mktemp("data" ) / "dataset.json" ) lowercase__ : Optional[Any] = {"data": DATA_DICT_OF_LISTS} with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: json.dump(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowercase__ : str = str(tmp_path_factory.mktemp("data" ) / "dataset2.jsonl" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: for item in DATA: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowercase__ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset_312.jsonl" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: for item in DATA_312: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: lowercase__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset-str.jsonl" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: for item in DATA_STR: f.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + "\n" ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Any: import gzip lowercase__ : int = str(tmp_path_factory.mktemp("data" ) / "dataset.txt.gz" ) with open(SCREAMING_SNAKE_CASE_ ,"rb" ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE_ ,"wb" ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> List[Any]: import gzip lowercase__ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset.jsonl.gz" ) with open(SCREAMING_SNAKE_CASE_ ,"rb" ) as orig_file: with gzip.open(SCREAMING_SNAKE_CASE_ ,"wb" ) as zipped_file: zipped_file.writelines(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> int: lowercase__ : Any = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Tuple: lowercase__ : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join("nested" ,os.path.basename(SCREAMING_SNAKE_CASE_ ) ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: lowercase__ : str = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.jsonl.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join("main_dir" ,os.path.basename(SCREAMING_SNAKE_CASE_ ) ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join("main_dir" ,os.path.basename(SCREAMING_SNAKE_CASE_ ) ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowercase__ : str = tmp_path_factory.mktemp("data" ) / "dataset.jsonl.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) f.add(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> List[str]: lowercase__ : Optional[int] = tmp_path_factory.mktemp("data" ) / "dataset_nested.jsonl.tar" with tarfile.TarFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.add(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join("nested" ,os.path.basename(SCREAMING_SNAKE_CASE_ ) ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Any: lowercase__ : List[str] = ["0", "1", "2", "3"] lowercase__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset.txt" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[Any]: lowercase__ : Union[str, Any] = ["0", "1", "2", "3"] lowercase__ : Dict = str(tmp_path_factory.mktemp("data" ) / "dataset2.txt" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowercase__ : List[str] = ["0", "1", "2", "3"] lowercase__ : str = tmp_path_factory.mktemp("data" ) / "dataset.abc" with open(SCREAMING_SNAKE_CASE_ ,"w" ) as f: for item in data: f.write(item + "\n" ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Optional[int]: lowercase__ : Any = tmp_path_factory.mktemp("data" ) / "dataset.text.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Dict: lowercase__ : Any = tmp_path_factory.mktemp("data" ) / "dataset_with_dir.text.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join("main_dir" ,os.path.basename(SCREAMING_SNAKE_CASE_ ) ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.join("main_dir" ,os.path.basename(SCREAMING_SNAKE_CASE_ ) ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Dict: lowercase__ : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.ext.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename("unsupported.ext" ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename("unsupported_2.ext" ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> str: lowercase__ : Any = "\n".join(["First", "Second\u2029with Unicode new line", "Third"] ) lowercase__ : List[Any] = str(tmp_path_factory.mktemp("data" ) / "dataset_with_unicode_new_lines.txt" ) with open(SCREAMING_SNAKE_CASE_ ,"w" ,encoding="utf-8" ) as f: f.write(SCREAMING_SNAKE_CASE_ ) return path @pytest.fixture(scope="session" ) def snake_case_ ( ) -> List[Any]: return os.path.join("tests" ,"features" ,"data" ,"test_image_rgb.jpg" ) @pytest.fixture(scope="session" ) def snake_case_ ( ) -> Tuple: return os.path.join("tests" ,"features" ,"data" ,"test_audio_44100.wav" ) @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> Optional[Any]: lowercase__ : List[Any] = tmp_path_factory.mktemp("data" ) / "dataset.img.zip" with zipfile.ZipFile(SCREAMING_SNAKE_CASE_ ,"w" ) as f: f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ) ) f.write(SCREAMING_SNAKE_CASE_ ,arcname=os.path.basename(SCREAMING_SNAKE_CASE_ ).replace(".jpg" ,"2.jpg" ) ) return path @pytest.fixture(scope="session" ) def snake_case_ ( SCREAMING_SNAKE_CASE_ ) -> List[str]: lowercase__ : Tuple = tmp_path_factory.mktemp("data_dir" ) (data_dir / "subdir").mkdir() with open(data_dir / "subdir" / "train.txt" ,"w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / "subdir" / "test.txt" ,"w" ) as f: f.write("bar\n" * 10 ) # hidden file with open(data_dir / "subdir" / ".test.txt" ,"w" ) as f: f.write("bar\n" * 10 ) # hidden directory (data_dir / ".subdir").mkdir() with open(data_dir / ".subdir" / "train.txt" ,"w" ) as f: f.write("foo\n" * 10 ) with open(data_dir / ".subdir" / "test.txt" ,"w" ) as f: f.write("bar\n" * 10 ) return data_dir
298
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class UpperCAmelCase( unittest.TestCase ): """simple docstring""" @slow def __a ( self ) -> int: """simple docstring""" lowercase__ : str = FlaxMTaForConditionalGeneration.from_pretrained("google/mt5-small" ) lowercase__ : Optional[Any] = AutoTokenizer.from_pretrained("google/mt5-small" ) lowercase__ : Optional[int] = tokenizer("Hello there" , return_tensors="np" ).input_ids lowercase__ : Optional[Any] = tokenizer("Hi I am" , return_tensors="np" ).input_ids lowercase__ : int = shift_tokens_right(lowerCamelCase , model.config.pad_token_id , model.config.decoder_start_token_id ) lowercase__ : List[Any] = model(lowerCamelCase , decoder_input_ids=lowerCamelCase ).logits lowercase__ : Any = optax.softmax_cross_entropy(lowerCamelCase , onehot(lowerCamelCase , logits.shape[-1] ) ).mean() lowercase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowercase__ : Any = -84.91_27 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
298
1
"""simple docstring""" import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__:Tuple = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__:Optional[int] = { """b0""": efficientnet.EfficientNetBa, """b1""": efficientnet.EfficientNetBa, """b2""": efficientnet.EfficientNetBa, """b3""": efficientnet.EfficientNetBa, """b4""": efficientnet.EfficientNetBa, """b5""": efficientnet.EfficientNetBa, """b6""": efficientnet.EfficientNetBa, """b7""": efficientnet.EfficientNetBa, } SCREAMING_SNAKE_CASE__:Dict = { """b0""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.0, """image_size""": 224, """dropout_rate""": 0.2, """dw_padding""": [], }, """b1""": { """hidden_dim""": 1280, """width_coef""": 1.0, """depth_coef""": 1.1, """image_size""": 240, """dropout_rate""": 0.2, """dw_padding""": [16], }, """b2""": { """hidden_dim""": 1408, """width_coef""": 1.1, """depth_coef""": 1.2, """image_size""": 260, """dropout_rate""": 0.3, """dw_padding""": [5, 8, 16], }, """b3""": { """hidden_dim""": 1536, """width_coef""": 1.2, """depth_coef""": 1.4, """image_size""": 300, """dropout_rate""": 0.3, """dw_padding""": [5, 18], }, """b4""": { """hidden_dim""": 1792, """width_coef""": 1.4, """depth_coef""": 1.8, """image_size""": 380, """dropout_rate""": 0.4, """dw_padding""": [6], }, """b5""": { """hidden_dim""": 2048, """width_coef""": 1.6, """depth_coef""": 2.2, """image_size""": 456, """dropout_rate""": 0.4, """dw_padding""": [13, 27], }, """b6""": { """hidden_dim""": 2304, """width_coef""": 1.8, """depth_coef""": 2.6, """image_size""": 528, """dropout_rate""": 0.5, """dw_padding""": [31], }, """b7""": { """hidden_dim""": 2560, """width_coef""": 2.0, """depth_coef""": 3.1, """image_size""": 600, """dropout_rate""": 0.5, """dw_padding""": [18], }, } def _lowerCamelCase( a ): __a = EfficientNetConfig() __a = CONFIG_MAP[model_name]["hidden_dim"] __a = CONFIG_MAP[model_name]["width_coef"] __a = CONFIG_MAP[model_name]["depth_coef"] __a = CONFIG_MAP[model_name]["image_size"] __a = CONFIG_MAP[model_name]["dropout_rate"] __a = CONFIG_MAP[model_name]["dw_padding"] __a = "huggingface/label-files" __a = "imagenet-1k-id2label.json" __a = 1_0_0_0 __a = json.load(open(hf_hub_download(a , a , repo_type="dataset" ) , "r" ) ) __a = {int(a ): v for k, v in idalabel.items()} __a = idalabel __a = {v: k for k, v in idalabel.items()} return config def _lowerCamelCase( ): __a = "http://images.cocodataset.org/val2017/000000039769.jpg" __a = Image.open(requests.get(a , stream=a ).raw ) return im def _lowerCamelCase( a ): __a = CONFIG_MAP[model_name]["image_size"] __a = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.4_85, 0.4_56, 0.4_06] , image_std=[0.47_85_39_44, 0.4_73_28_64, 0.47_43_41_63] , do_center_crop=a , ) return preprocessor def _lowerCamelCase( a ): __a = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] __a = sorted(set(a ) ) __a = len(a ) __a = {b: str(a ) for b, i in zip(a , range(a ) )} __a = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: __a = block_name_mapping[b] rename_keys.append((F"block{b}_expand_conv/kernel:0", F"encoder.blocks.{hf_b}.expansion.expand_conv.weight") ) rename_keys.append((F"block{b}_expand_bn/gamma:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.weight") ) rename_keys.append((F"block{b}_expand_bn/beta:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.bias") ) rename_keys.append( (F"block{b}_expand_bn/moving_mean:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_mean") ) rename_keys.append( (F"block{b}_expand_bn/moving_variance:0", F"encoder.blocks.{hf_b}.expansion.expand_bn.running_var") ) rename_keys.append( (F"block{b}_dwconv/depthwise_kernel:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight") ) rename_keys.append((F"block{b}_bn/gamma:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight") ) rename_keys.append((F"block{b}_bn/beta:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias") ) rename_keys.append( (F"block{b}_bn/moving_mean:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean") ) rename_keys.append( (F"block{b}_bn/moving_variance:0", F"encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var") ) rename_keys.append((F"block{b}_se_reduce/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.weight") ) rename_keys.append((F"block{b}_se_reduce/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.reduce.bias") ) rename_keys.append((F"block{b}_se_expand/kernel:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.weight") ) rename_keys.append((F"block{b}_se_expand/bias:0", F"encoder.blocks.{hf_b}.squeeze_excite.expand.bias") ) rename_keys.append( (F"block{b}_project_conv/kernel:0", F"encoder.blocks.{hf_b}.projection.project_conv.weight") ) rename_keys.append((F"block{b}_project_bn/gamma:0", F"encoder.blocks.{hf_b}.projection.project_bn.weight") ) rename_keys.append((F"block{b}_project_bn/beta:0", F"encoder.blocks.{hf_b}.projection.project_bn.bias") ) rename_keys.append( (F"block{b}_project_bn/moving_mean:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_mean") ) rename_keys.append( (F"block{b}_project_bn/moving_variance:0", F"encoder.blocks.{hf_b}.projection.project_bn.running_var") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) __a = {} for item in rename_keys: if item[0] in original_param_names: __a = "efficientnet." + item[1] __a = "classifier.weight" __a = "classifier.bias" return key_mapping def _lowerCamelCase( a , a , a ): for key, value in tf_params.items(): if "normalization" in key: continue __a = key_mapping[key] if "_conv" in key and "kernel" in key: __a = torch.from_numpy(a ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: __a = torch.from_numpy(a ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: __a = torch.from_numpy(np.transpose(a ) ) else: __a = torch.from_numpy(a ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(a ) @torch.no_grad() def _lowerCamelCase( a , a , a , a ): __a = model_classes[model_name]( include_top=a , weights="imagenet" , input_tensor=a , input_shape=a , pooling=a , classes=1_0_0_0 , classifier_activation="softmax" , ) __a = original_model.trainable_variables __a = original_model.non_trainable_variables __a = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: __a = param.numpy() __a = list(tf_params.keys() ) # Load HuggingFace model __a = get_efficientnet_config(a ) __a = EfficientNetForImageClassification(a ).eval() __a = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) __a = rename_keys(a ) replace_params(a , a , a ) # Initialize preprocessor and preprocess input image __a = convert_image_processor(a ) __a = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): __a = hf_model(**a ) __a = outputs.logits.detach().numpy() # Original model inference __a = False __a = CONFIG_MAP[model_name]["image_size"] __a = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) __a = image.img_to_array(a ) __a = np.expand_dims(a , axis=0 ) __a = original_model.predict(a ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(a , a , atol=1E-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(a ): os.mkdir(a ) # Save converted model and image processor hf_model.save_pretrained(a ) preprocessor.save_pretrained(a ) if push_to_hub: # Push model and image processor to hub print(F"Pushing converted {model_name} to the hub..." ) __a = F"efficientnet-{model_name}" preprocessor.push_to_hub(a ) hf_model.push_to_hub(a ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__:int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""b0""", type=str, help="""Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""hf_model""", type=str, help="""Path to the output PyTorch model directory.""", ) parser.add_argument("""--save_model""", action="""store_true""", help="""Save model to local""") parser.add_argument("""--push_to_hub""", action="""store_true""", help="""Push model and image processor to the hub""") SCREAMING_SNAKE_CASE__:Optional[int] = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
528
"""simple docstring""" from __future__ import annotations import math def _lowerCamelCase( a , a ): __a = u for i in range(1 , a ): __a = temp * (u - i) return temp def _lowerCamelCase( ): __a = int(input("enter the numbers of values: " ) ) __a = [] for _ in range(a ): y.append([] ) for i in range(a ): for j in range(a ): y[i].append(a ) __a = 0 print("enter the values of parameters in a list: " ) __a = list(map(a , input().split() ) ) print("enter the values of corresponding parameters: " ) for i in range(a ): __a = float(input() ) __a = int(input("enter the value to interpolate: " ) ) __a = (value - x[0]) / (x[1] - x[0]) # for calculating forward difference table for i in range(1 , a ): for j in range(n - i ): __a = y[j + 1][i - 1] - y[j][i - 1] __a = y[0][0] for i in range(1 , a ): summ += (ucal(a , a ) * y[0][i]) / math.factorial(a ) print(F"the value at {value} is {summ}" ) if __name__ == "__main__": main()
528
1
from __future__ import annotations def _UpperCamelCase (a__ :list[list[int]] ): """simple docstring""" for i in range(1 , len(matrix[0] ) ): matrix[0][i] += matrix[0][i - 1] # preprocessing the first column for i in range(1 , len(a__ ) ): matrix[i][0] += matrix[i - 1][0] # updating the path cost for current position for i in range(1 , len(a__ ) ): for j in range(1 , len(matrix[0] ) ): matrix[i][j] += min(matrix[i - 1][j] , matrix[i][j - 1] ) return matrix[-1][-1] if __name__ == "__main__": import doctest doctest.testmod()
548
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--txt2img_unclip", default="kakaobrain/karlo-v1-alpha", type=str, required=False, help="The pretrained txt2img unclip.", ) UpperCamelCase__ = parser.parse_args() UpperCamelCase__ = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) UpperCamelCase__ = CLIPImageProcessor() UpperCamelCase__ = CLIPVisionModelWithProjection.from_pretrained("openai/clip-vit-large-patch14") UpperCamelCase__ = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
548
1
from datetime import datetime import matplotlib.pyplot as plt import torch def __a ( A__ : Tuple ): for param in module.parameters(): SCREAMING_SNAKE_CASE = False def __a ( ): SCREAMING_SNAKE_CASE = "cuda" if torch.cuda.is_available() else "cpu" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): SCREAMING_SNAKE_CASE = "mps" if device == "mps": print( "WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch" " errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues" " with generations." ) return device def __a ( A__ : Tuple ): SCREAMING_SNAKE_CASE = plt.imshow(A__ ) fig.axes.get_xaxis().set_visible(A__ ) fig.axes.get_yaxis().set_visible(A__ ) plt.show() def __a ( ): SCREAMING_SNAKE_CASE = datetime.now() SCREAMING_SNAKE_CASE = current_time.strftime("%H:%M:%S" ) return timestamp
16
import pytest __A : Optional[Any] = '__dummy_dataset1__' __A : Optional[int] = '\nimport json\nimport os\n\nimport datasets\n\n\nREPO_URL = "https://huggingface.co/datasets/albertvillanova/tests-raw-jsonl/resolve/main/"\nURLS = {"train": REPO_URL + "wikiann-bn-train.jsonl", "validation": REPO_URL + "wikiann-bn-validation.jsonl"}\n\n\nclass __DummyDataset1__(datasets.GeneratorBasedBuilder):\n\n def _info(self):\n features = datasets.Features(\n {\n "tokens": datasets.Sequence(datasets.Value("string")),\n "ner_tags": datasets.Sequence(\n datasets.features.ClassLabel(\n names=[\n "O",\n "B-PER",\n "I-PER",\n "B-ORG",\n "I-ORG",\n "B-LOC",\n "I-LOC",\n ]\n )\n ),\n "langs": datasets.Sequence(datasets.Value("string")),\n "spans": datasets.Sequence(datasets.Value("string")),\n }\n )\n return datasets.DatasetInfo(features=features)\n\n def _split_generators(self, dl_manager):\n dl_path = dl_manager.download(URLS)\n return [\n datasets.SplitGenerator(datasets.Split.TRAIN, gen_kwargs={"filepath": dl_path["train"]}),\n datasets.SplitGenerator(datasets.Split.VALIDATION, gen_kwargs={"filepath": dl_path["validation"]}),\n ]\n\n def _generate_examples(self, filepath):\n with open(filepath, "r", encoding="utf-8") as f:\n for i, line in enumerate(f):\n yield i, json.loads(line)\n' @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_NAME @pytest.fixture def __a ( ): return DATASET_LOADING_SCRIPT_CODE @pytest.fixture def __a ( A__ : Optional[Any] , A__ : List[str] , A__ : Optional[int] ): SCREAMING_SNAKE_CASE = dataset_loading_script_name SCREAMING_SNAKE_CASE = tmp_path / "datasets" / script_name script_dir.mkdir(parents=A__ ) SCREAMING_SNAKE_CASE = script_dir / F"{script_name}.py" with open(A__ , "w" ) as f: f.write(A__ ) return str(A__ )
16
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available a_ : List[str] = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Tuple = ["""GPTSw3Tokenizer"""] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_gpt_swa import GPTSwaTokenizer else: import sys a_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
445
'''simple docstring''' import math def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : float ): return math.pow(UpperCAmelCase_ , 2 ) - a def __snake_case ( UpperCAmelCase_ : float ): return 2 * x def __snake_case ( UpperCAmelCase_ : float ): lowerCamelCase_ = 2.0 while start <= a: lowerCamelCase_ = math.pow(UpperCAmelCase_ , 2 ) return start def __snake_case ( UpperCAmelCase_ : float , UpperCAmelCase_ : int = 9999 , UpperCAmelCase_ : float = 0.00_0000_0000_0001 ): if a < 0: raise ValueError("math domain error" ) lowerCamelCase_ = get_initial_point(UpperCAmelCase_ ) for _ in range(UpperCAmelCase_ ): lowerCamelCase_ = value lowerCamelCase_ = value - fx(UpperCAmelCase_ , UpperCAmelCase_ ) / fx_derivative(UpperCAmelCase_ ) if abs(prev_value - value ) < tolerance: return value return value if __name__ == "__main__": from doctest import testmod testmod()
445
1
'''simple docstring''' from __future__ import annotations import collections import tempfile import unittest import numpy as np from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import is_tf_available, is_vision_available from ...test_modeling_tf_common import floats_tensor, ids_tensor, random_attention_mask from ..bert.test_modeling_tf_bert import TFBertModelTester from ..clip.test_modeling_tf_clip import TFCLIPVisionModelTester from ..deit.test_modeling_tf_deit import TFDeiTModelTester from ..roberta.test_modeling_tf_roberta import TFRobertaModelTester from ..vit.test_modeling_tf_vit import TFViTModelTester if is_tf_available(): from transformers import ( TFBertModel, TFCLIPVisionModel, TFDeiTModel, TFRobertaModel, TFVisionTextDualEncoderModel, TFViTModel, VisionTextDualEncoderConfig, ) if is_vision_available(): from PIL import Image from transformers import VisionTextDualEncoderProcessor def lowerCamelCase ( UpperCAmelCase__ : str ) -> Tuple: '''simple docstring''' if isinstance(UpperCAmelCase__ , collections.abc.Iterable ): return x return (x, x) @require_tf class _SCREAMING_SNAKE_CASE: def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : int , UpperCamelCase_ : Dict ) -> Union[str, Any]: pass def __lowerCamelCase ( self : Dict ) -> Union[str, Any]: pass def __lowerCamelCase ( self : Any ) -> str: pass def __lowerCamelCase ( self : List[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : Any ) -> Tuple: SCREAMING_SNAKE_CASE__ :Optional[int] = VisionTextDualEncoderConfig.from_vision_text_configs(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = TFVisionTextDualEncoderModel(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], config.projection_dim) ) def __lowerCamelCase ( self : int , UpperCamelCase_ : Tuple , UpperCamelCase_ : Tuple , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Dict=None , **UpperCamelCase_ : str ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Dict = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCamelCase ( self : Optional[Any] , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Tuple=None , **UpperCamelCase_ : Any ) -> Optional[int]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :str = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = {'vision_model': vision_model, 'text_model': text_model} SCREAMING_SNAKE_CASE__ :str = TFVisionTextDualEncoderModel.from_vision_text_pretrained(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) self.assertEqual(output['text_embeds'].shape , (input_ids.shape[0], model.config.projection_dim) ) self.assertEqual(output['image_embeds'].shape , (pixel_values.shape[0], model.config.projection_dim) ) def __lowerCamelCase ( self : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : List[Any] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Optional[Any] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Any = output[0].numpy() with tempfile.TemporaryDirectory() as tmpdirname: model.save_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = model(input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Any = after_output[0].numpy() SCREAMING_SNAKE_CASE__ :List[Any] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1e-5 ) def __lowerCamelCase ( self : Tuple , UpperCamelCase_ : Any , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Optional[Any] , UpperCamelCase_ : Tuple , UpperCamelCase_ : Any=None , **UpperCamelCase_ : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = model( input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[str] = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase_ ) , vision_config.num_hidden_layers ) # in ViT, the seq_len equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE__ :List[str] = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE__ :List[str] = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE__ :str = num_patches + 1 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE__ :Optional[int] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCamelCase ( self : Dict , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : np.ndarray , UpperCamelCase_ : float ) -> List[str]: SCREAMING_SNAKE_CASE__ :int = np.abs((a - b) ).max() self.assertLessEqual(UpperCamelCase_ , UpperCamelCase_ , f'''Difference between torch and flax is {diff} (>= {tol}).''' ) def __lowerCamelCase ( self : int ) -> List[Any]: SCREAMING_SNAKE_CASE__ :List[str] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_model(**UpperCamelCase_ ) def __lowerCamelCase ( self : Optional[Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.prepare_config_and_inputs() self.check_model_from_pretrained_configs(**UpperCamelCase_ ) def __lowerCamelCase ( self : Optional[int] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :List[Any] = self.prepare_config_and_inputs() self.check_vision_text_dual_encoder_from_pretrained(**UpperCamelCase_ ) def __lowerCamelCase ( self : List[Any] ) -> str: SCREAMING_SNAKE_CASE__ :Union[str, Any] = self.prepare_config_and_inputs() self.check_save_load(**UpperCamelCase_ ) def __lowerCamelCase ( self : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ :List[str] = self.prepare_config_and_inputs() self.check_vision_text_output_attention(**UpperCamelCase_ ) @slow def __lowerCamelCase ( self : Tuple ) -> Tuple: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Optional[int] = self.get_pretrained_model_and_inputs() SCREAMING_SNAKE_CASE__ :List[str] = model_a(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = outputs[0].numpy() with tempfile.TemporaryDirectory() as tmp_dirname: model_a.save_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = model_a(**UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = after_outputs[0].numpy() SCREAMING_SNAKE_CASE__ :Optional[int] = np.amax(np.abs(out_a - out_a ) ) self.assertLessEqual(UpperCamelCase_ , 1e-5 ) @require_tf class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __lowerCamelCase ( self : List[str] ) -> Optional[Any]: SCREAMING_SNAKE_CASE__ :Any = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'hf-internal-testing/tiny-random-vit' , 'hf-internal-testing/tiny-random-bert' ) SCREAMING_SNAKE_CASE__ :Tuple = 13 SCREAMING_SNAKE_CASE__ :str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE__ :Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE__ :Dict = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ :List[str] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : Any ) -> str: SCREAMING_SNAKE_CASE__ :List[str] = TFViTModel(UpperCamelCase_ , name='vision_model' ) SCREAMING_SNAKE_CASE__ :Optional[int] = TFBertModel(UpperCamelCase_ , name='text_model' ) return vision_model, text_model def __lowerCamelCase ( self : Optional[Any] ) -> int: SCREAMING_SNAKE_CASE__ :Tuple = TFViTModelTester(self ) SCREAMING_SNAKE_CASE__ :List[str] = TFBertModelTester(self ) SCREAMING_SNAKE_CASE__ :Optional[int] = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ :Optional[int] = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Union[str, Any] = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) :Any = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __lowerCamelCase ( self : List[str] ) -> Tuple: # DeiT repo doesn't have TF weights, but we don't actually use the weights at all so let's # just reinitialize it. SCREAMING_SNAKE_CASE__ :Union[str, Any] = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-deit-tf' , 'hf-internal-testing/tiny-random-roberta' ) SCREAMING_SNAKE_CASE__ :int = 13 SCREAMING_SNAKE_CASE__ :str = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE__ :int = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE__ :Optional[int] = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ :Dict = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCamelCase ( self : Any , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : List[str] , UpperCamelCase_ : Optional[int]=None , **UpperCamelCase_ : Dict ) -> Dict: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Optional[Any] = self.get_vision_text_model(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :List[Any] = TFVisionTextDualEncoderModel(vision_model=UpperCamelCase_ , text_model=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = model( input_ids=UpperCamelCase_ , pixel_values=UpperCamelCase_ , attention_mask=UpperCamelCase_ , output_attentions=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = output.vision_model_output.attentions self.assertEqual(len(UpperCamelCase_ ) , vision_config.num_hidden_layers ) # in DEiT, the seq_len equals the number of patches + 2 (we add 2 for the [CLS] and distillation tokens) SCREAMING_SNAKE_CASE__ :Dict = to_atuple(vision_model.config.image_size ) SCREAMING_SNAKE_CASE__ :List[str] = to_atuple(vision_model.config.patch_size ) SCREAMING_SNAKE_CASE__ :Any = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) SCREAMING_SNAKE_CASE__ :Optional[int] = num_patches + 2 self.assertEqual(vision_attentions[0].shape[-3:] , (vision_config.num_attention_heads, seq_len, seq_len) ) SCREAMING_SNAKE_CASE__ :Optional[int] = output.text_model_output.attentions self.assertEqual(len(UpperCamelCase_ ) , text_config.num_hidden_layers ) self.assertEqual( text_attentions[0].shape[-3:] , (text_config.num_attention_heads, input_ids.shape[-1], input_ids.shape[-1]) , ) def __lowerCamelCase ( self : str , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Tuple = TFDeiTModel(UpperCamelCase_ , name='vision_model' ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = TFRobertaModel(UpperCamelCase_ , name='text_model' ) return vision_model, text_model def __lowerCamelCase ( self : int ) -> Tuple: SCREAMING_SNAKE_CASE__ :List[str] = TFDeiTModelTester(self ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = TFRobertaModelTester(self ) SCREAMING_SNAKE_CASE__ :Dict = vit_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ :List[Any] = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Any = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) :Optional[Any] = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_tf class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , unittest.TestCase ): def __lowerCamelCase ( self : List[Any] ) -> Optional[int]: SCREAMING_SNAKE_CASE__ :int = TFVisionTextDualEncoderModel.from_vision_text_pretrained( 'Rocketknight1/tiny-random-clip-tf' , 'hf-internal-testing/tiny-random-bert' ) SCREAMING_SNAKE_CASE__ :int = 13 SCREAMING_SNAKE_CASE__ :int = floats_tensor( [ batch_size, model.vision_model.config.num_channels, model.vision_model.config.image_size, model.vision_model.config.image_size, ] ) SCREAMING_SNAKE_CASE__ :Optional[int] = ids_tensor([batch_size, 4] , model.text_model.config.vocab_size ) SCREAMING_SNAKE_CASE__ :Dict = random_attention_mask([batch_size, 4] ) SCREAMING_SNAKE_CASE__ :Optional[Any] = {'pixel_values': pixel_values, 'input_ids': input_ids, 'attention_mask': attention_mask} return model, inputs def __lowerCamelCase ( self : Optional[int] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] ) -> int: SCREAMING_SNAKE_CASE__ :Tuple = TFCLIPVisionModel(UpperCamelCase_ , name='vision_model' ) SCREAMING_SNAKE_CASE__ :List[str] = TFBertModel(UpperCamelCase_ , name='text_model' ) return vision_model, text_model def __lowerCamelCase ( self : Dict ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Any = TFCLIPVisionModelTester(self ) SCREAMING_SNAKE_CASE__ :Optional[int] = TFBertModelTester(self ) SCREAMING_SNAKE_CASE__ :Tuple = clip_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ :str = bert_model_tester.prepare_config_and_inputs() SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ :Union[str, Any] = vision_config_and_inputs ( ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ( SCREAMING_SNAKE_CASE__ ) , ) :Tuple = text_config_and_inputs return { "text_config": text_config, "vision_config": vision_config, "pixel_values": pixel_values, "attention_mask": input_mask, "input_ids": input_ids, "text_token_type_ids": token_type_ids, "text_sequence_labels": sequence_labels, "text_token_labels": token_labels, "text_choice_labels": choice_labels, } @require_vision @require_tf class _SCREAMING_SNAKE_CASE( unittest.TestCase ): @slow def __lowerCamelCase ( self : Union[str, Any] ) -> Tuple: SCREAMING_SNAKE_CASE__ :Optional[Any] = TFVisionTextDualEncoderModel.from_pretrained( 'clip-italian/clip-italian' , logit_scale_init_value=1.0 , from_pt=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = VisionTextDualEncoderProcessor.from_pretrained('clip-italian/clip-italian' ) SCREAMING_SNAKE_CASE__ :int = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) SCREAMING_SNAKE_CASE__ :Optional[Any] = processor( text=['una foto di un gatto', 'una foto di un cane'] , images=UpperCamelCase_ , padding=UpperCamelCase_ , return_tensors='np' ) SCREAMING_SNAKE_CASE__ :Any = model(**UpperCamelCase_ ) # verify the logits self.assertEqual(outputs.logits_per_image.shape , (inputs.pixel_values.shape[0], inputs.input_ids.shape[0]) ) self.assertEqual( outputs.logits_per_text.shape , (inputs.input_ids.shape[0], inputs.pixel_values.shape[0]) , ) SCREAMING_SNAKE_CASE__ :Union[str, Any] = np.array([[1.228_4727, 0.310_4122]] ) self.assertTrue(np.allclose(outputs.logits_per_image.numpy() , UpperCamelCase_ , atol=1e-3 ) )
209
'''simple docstring''' import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin UpperCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece.model''') UpperCamelCase_ = get_tests_dir('''fixtures/test_sentencepiece_bpe.model''') UpperCamelCase_ = '''pt''' if is_torch_available() else '''tf''' @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE( _SCREAMING_SNAKE_CASE , unittest.TestCase ): A_ : Tuple = CamembertTokenizer A_ : Dict = CamembertTokenizerFast A_ : Any = True A_ : List[Any] = True def __lowerCamelCase ( self : int ) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing SCREAMING_SNAKE_CASE__ :Optional[int] = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __lowerCamelCase ( self : int ) -> int: SCREAMING_SNAKE_CASE__ :List[Any] = '<pad>' SCREAMING_SNAKE_CASE__ :Union[str, Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCamelCase_ ) , UpperCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCamelCase_ ) , UpperCamelCase_ ) def __lowerCamelCase ( self : int ) -> int: SCREAMING_SNAKE_CASE__ :Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '<s>NOTUSED' ) self.assertEqual(vocab_keys[1] , '<pad>' ) self.assertEqual(vocab_keys[-1] , '<mask>' ) self.assertEqual(len(UpperCamelCase_ ) , 10_04 ) def __lowerCamelCase ( self : List[str] ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def __lowerCamelCase ( self : Union[str, Any] ) -> List[Any]: SCREAMING_SNAKE_CASE__ :Any = CamembertTokenizer(UpperCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ :Dict = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) SCREAMING_SNAKE_CASE__ :Optional[int] = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ :List[str] = tokenizer.encode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :int = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Dict = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) SCREAMING_SNAKE_CASE__ :int = tokenizer.convert_ids_to_tokens(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Tuple = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) def __lowerCamelCase ( self : Optional[Any] ) -> List[str]: if not self.test_rust_tokenizer: return SCREAMING_SNAKE_CASE__ :List[str] = self.get_tokenizer() SCREAMING_SNAKE_CASE__ :Dict = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ :Optional[Any] = 'I was born in 92000, and this is falsé.' SCREAMING_SNAKE_CASE__ :Optional[int] = tokenizer.tokenize(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = rust_tokenizer.tokenize(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[int] = rust_tokenizer.encode(UpperCamelCase_ , add_special_tokens=UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :str = self.get_rust_tokenizer() SCREAMING_SNAKE_CASE__ :Union[str, Any] = tokenizer.encode(UpperCamelCase_ ) SCREAMING_SNAKE_CASE__ :Optional[Any] = rust_tokenizer.encode(UpperCamelCase_ ) self.assertListEqual(UpperCamelCase_ , UpperCamelCase_ ) @slow def __lowerCamelCase ( self : Union[str, Any] ) -> Any: # fmt: off SCREAMING_SNAKE_CASE__ :Union[str, Any] = {'input_ids': [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], 'attention_mask': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. SCREAMING_SNAKE_CASE__ :Union[str, Any] = [ 'Le transformeur est un modèle d\'apprentissage profond introduit en 2017, ' 'utilisé principalement dans le domaine du traitement automatique des langues (TAL).', 'À l\'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus ' 'pour gérer des données séquentielles, telles que le langage naturel, pour des tâches ' 'telles que la traduction et la synthèse de texte.', ] self.tokenizer_integration_test_util( expected_encoding=UpperCamelCase_ , model_name='camembert-base' , revision='3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf' , sequences=UpperCamelCase_ , )
209
1
'''simple docstring''' from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def lowercase__( __UpperCamelCase: Optional[int] ,__UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any]=None ,__UpperCamelCase: Dict=None ): """simple docstring""" if attention_mask is None: SCREAMING_SNAKE_CASE : str = tf.cast(tf.math.not_equal(__UpperCamelCase ,config.pad_token_id ) ,tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class _a : '''simple docstring''' A : Tuple = OPTConfig A : Optional[Any] = {} A : Optional[int] = '''gelu''' def __init__( self, A, A=13, A=7, A=True, A=False, A=99, A=16, A=2, A=4, A=4, A="gelu", A=0.1, A=0.1, A=20, A=2, A=1, A=0, A=16, A=16, ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = parent SCREAMING_SNAKE_CASE : Optional[Any] = batch_size SCREAMING_SNAKE_CASE : str = seq_length SCREAMING_SNAKE_CASE : List[str] = is_training SCREAMING_SNAKE_CASE : int = use_labels SCREAMING_SNAKE_CASE : Any = vocab_size SCREAMING_SNAKE_CASE : str = hidden_size SCREAMING_SNAKE_CASE : Dict = num_hidden_layers SCREAMING_SNAKE_CASE : int = num_attention_heads SCREAMING_SNAKE_CASE : str = intermediate_size SCREAMING_SNAKE_CASE : List[Any] = hidden_act SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob SCREAMING_SNAKE_CASE : Dict = attention_probs_dropout_prob SCREAMING_SNAKE_CASE : str = max_position_embeddings SCREAMING_SNAKE_CASE : int = eos_token_id SCREAMING_SNAKE_CASE : Optional[Any] = pad_token_id SCREAMING_SNAKE_CASE : Dict = bos_token_id SCREAMING_SNAKE_CASE : Union[str, Any] = embed_dim SCREAMING_SNAKE_CASE : Optional[Any] = word_embed_proj_dim SCREAMING_SNAKE_CASE : Optional[Any] = False def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = ids_tensor([self.batch_size, self.seq_length - 1], self.vocab_size ) SCREAMING_SNAKE_CASE : int = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ), 1 ) SCREAMING_SNAKE_CASE : Optional[int] = tf.concat([input_ids, eos_tensor], axis=1 ) SCREAMING_SNAKE_CASE : Any = self.config_cls( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, ffn_dim=self.intermediate_size, dropout=self.hidden_dropout_prob, attention_dropout=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, eos_token_id=self.eos_token_id, bos_token_id=self.bos_token_id, pad_token_id=self.pad_token_id, embed_dim=self.embed_dim, word_embed_proj_dim=self.word_embed_proj_dim, is_encoder_decoder=A, **self.config_updates, ) SCREAMING_SNAKE_CASE : List[str] = prepare_opt_inputs_dict(A, A ) return config, inputs_dict def UpperCamelCase_ ( self, A, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = TFOPTModel(config=A ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs_dict['input_ids'] SCREAMING_SNAKE_CASE : Optional[int] = input_ids[:1, :] SCREAMING_SNAKE_CASE : Dict = inputs_dict['attention_mask'][:1, :] SCREAMING_SNAKE_CASE : Optional[int] = 1 # first forward pass SCREAMING_SNAKE_CASE : Optional[Any] = model(A, attention_mask=A, use_cache=A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids SCREAMING_SNAKE_CASE : Any = ids_tensor((self.batch_size, 3), config.vocab_size ) SCREAMING_SNAKE_CASE : Optional[int] = tf.cast(ids_tensor((self.batch_size, 3), 2 ), tf.inta ) # append to next input_ids and SCREAMING_SNAKE_CASE : Tuple = tf.concat([input_ids, next_tokens], axis=-1 ) SCREAMING_SNAKE_CASE : int = tf.concat([attention_mask, next_attn_mask], axis=-1 ) SCREAMING_SNAKE_CASE : Dict = model(A, attention_mask=A )[0] SCREAMING_SNAKE_CASE : List[str] = model(A, attention_mask=A, past_key_values=A )[0] self.parent.assertEqual(next_tokens.shape[1], output_from_past.shape[1] ) # select random slice SCREAMING_SNAKE_CASE : str = int(ids_tensor((1,), output_from_past.shape[-1] ) ) SCREAMING_SNAKE_CASE : Dict = output_from_no_past[:, -3:, random_slice_idx] SCREAMING_SNAKE_CASE : str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(A, A, rtol=1E-3 ) @require_tf class _a ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' A : List[Any] = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () A : Any = (TFOPTForCausalLM,) if is_tf_available() else () A : List[Any] = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) A : Any = False A : Any = False A : int = False A : Optional[Any] = 10 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFOPTModelTester(self ) SCREAMING_SNAKE_CASE : Any = ConfigTester(self, config_class=A ) def UpperCamelCase_ ( self ): '''simple docstring''' self.config_tester.run_common_tests() def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(A, A ): if hasattr(A, 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(A, 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings SCREAMING_SNAKE_CASE : List[Any] = model_class(config=A ) SCREAMING_SNAKE_CASE : Dict = _get_word_embedding_weight(A, model.get_input_embeddings() ) SCREAMING_SNAKE_CASE : Optional[int] = _get_word_embedding_weight(A, model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(A ) SCREAMING_SNAKE_CASE : str = _get_word_embedding_weight(A, model.get_input_embeddings() ) SCREAMING_SNAKE_CASE : Any = _get_word_embedding_weight(A, model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. SCREAMING_SNAKE_CASE : Dict = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0], A ) # check that weights remain the same after resizing SCREAMING_SNAKE_CASE : Dict = True for pa, pa in zip(old_input_embeddings.value(), new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE : Any = False self.assertTrue(A ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0], A ) SCREAMING_SNAKE_CASE : int = True for pa, pa in zip(old_output_embeddings.value(), new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: SCREAMING_SNAKE_CASE : List[Any] = False self.assertTrue(A ) def lowercase__( __UpperCamelCase: Optional[int] ): """simple docstring""" return tf.constant(__UpperCamelCase ,dtype=tf.intaa ) @require_tf class _a ( unittest.TestCase ): '''simple docstring''' A : List[Any] = 99 def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = tf.ones((4, 1), dtype=tf.intaa ) * 2 SCREAMING_SNAKE_CASE : List[Any] = tf.concat([ids_tensor((4, 6), self.vocab_size - 3 ) + 3, eos_column_vector], axis=1 ) SCREAMING_SNAKE_CASE : Union[str, Any] = input_ids.shape[0] SCREAMING_SNAKE_CASE : Optional[Any] = OPTConfig( vocab_size=self.vocab_size, hidden_size=24, num_hidden_layers=2, num_attention_heads=2, ffn_dim=32, max_position_embeddings=48, eos_token_id=2, pad_token_id=1, bos_token_id=0, ) return config, input_ids, batch_size @require_sentencepiece @require_tf class _a ( unittest.TestCase ): '''simple docstring''' @slow def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Tuple = TFOPTModel.from_pretrained('facebook/opt-350m' ) SCREAMING_SNAKE_CASE : Dict = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) SCREAMING_SNAKE_CASE : Dict = tf.not_equal(A, model.config.pad_token_id ) with tf.GradientTape(): SCREAMING_SNAKE_CASE : str = model(input_ids=A, attention_mask=A ).last_hidden_state SCREAMING_SNAKE_CASE : Union[str, Any] = (1, 11, 512) self.assertEqual(output.shape, A ) SCREAMING_SNAKE_CASE : Dict = tf.constant( [[-0.28_73, -1.92_18, -0.30_33], [-1.27_10, -0.13_38, -0.19_02], [0.40_95, 0.12_14, -1.31_21]] ) self.assertTrue(np.allclose(output[:, :3, :3], A, atol=4E-3 ) ) SCREAMING_SNAKE_CASE : Any = tf.function(A, jit_compile=A ) SCREAMING_SNAKE_CASE : Any = xla_generate(A, A )[0] self.assertTrue(np.allclose(output[:, :3, :3], A, atol=4E-2 ) ) @require_tf @slow class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' super().setUp() SCREAMING_SNAKE_CASE : List[Any] = 'facebook/opt-350m' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Any = TFOPTForCausalLM.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE : Dict = GPTaTokenizer.from_pretrained(self.path_model ) SCREAMING_SNAKE_CASE : str = [ 'Today is a beautiful day and I want to', 'In the city of', 'Paris is the capital of France and', 'Computers and mobile phones have taken', ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False SCREAMING_SNAKE_CASE : Tuple = tokenizer(A, return_tensors='tf', padding=A, add_special_tokens=A ) SCREAMING_SNAKE_CASE : Tuple = tf.math.reduce_mean(model(inputs.input_ids, attention_mask=inputs.attention_mask )[0], axis=-1 ) SCREAMING_SNAKE_CASE : Optional[int] = tf.constant( [ [1.38_51, -13.89_23, -10.52_29, -10.75_33, -0.23_09, -10.23_84, -0.53_65, -9.09_47, -5.16_70], [-4.70_73, -10.62_76, -3.94_15, -21.52_42, -0.28_22, -0.28_22, -0.28_22, -0.28_22, -0.28_22], [0.62_47, -3.42_29, -8.91_79, -1.42_97, -14.16_50, 1.41_46, -9.02_18, -0.27_03, -0.27_03], [6.47_83, -1.99_13, -10.79_26, -2.33_36, 1.50_92, -0.99_74, -6.82_13, 1.34_77, 1.34_77], ] ) self.assertTrue(np.allclose(A, A, atol=1E-4 ) ) SCREAMING_SNAKE_CASE : Any = tf.function(A, jit_compile=A ) SCREAMING_SNAKE_CASE : Any = tf.math.reduce_mean(xla_generate(inputs.input_ids, attention_mask=inputs.attention_mask )[0], axis=-1 ) self.assertTrue(np.allclose(A, A, atol=1E-4 ) ) @require_tf @slow class _a ( unittest.TestCase ): '''simple docstring''' @property def UpperCamelCase_ ( self ): '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'facebook/opt-125m' SCREAMING_SNAKE_CASE : Union[str, Any] = [ 'Today is a beautiful day and I want to', 'In the city of New York, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] SCREAMING_SNAKE_CASE : Union[str, Any] = [] SCREAMING_SNAKE_CASE : Any = GPTaTokenizer.from_pretrained(A ) SCREAMING_SNAKE_CASE : List[Any] = TFOPTForCausalLM.from_pretrained(A ) for prompt in self.prompts: SCREAMING_SNAKE_CASE : Dict = tokenizer(A, return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE : Dict = model.generate(A, max_length=10 ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer.batch_decode(A, skip_special_tokens=A ) predicted_outputs += generated_string self.assertListEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = 'facebook/opt-350m' SCREAMING_SNAKE_CASE : Union[str, Any] = GPTaTokenizer.from_pretrained(A ) SCREAMING_SNAKE_CASE : List[str] = TFOPTForCausalLM.from_pretrained(A ) SCREAMING_SNAKE_CASE : Optional[Any] = 'left' # use different length sentences to test batching SCREAMING_SNAKE_CASE : str = [ 'Hello, my dog is a little', 'Today, I', ] SCREAMING_SNAKE_CASE : Dict = tokenizer(A, return_tensors='tf', padding=A ) SCREAMING_SNAKE_CASE : List[Any] = inputs['input_ids'] SCREAMING_SNAKE_CASE : int = model.generate(input_ids=A, attention_mask=inputs['attention_mask'] ) SCREAMING_SNAKE_CASE : int = tokenizer(sentences[0], return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE : Optional[Any] = model.generate(input_ids=A ) SCREAMING_SNAKE_CASE : Optional[Any] = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1], tf.intaa ) ) SCREAMING_SNAKE_CASE : Optional[int] = tokenizer(sentences[1], return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE : List[str] = model.generate(input_ids=A, max_length=model.config.max_length - num_paddings ) SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode(A, skip_special_tokens=A ) SCREAMING_SNAKE_CASE : str = tokenizer.decode(output_non_padded[0], skip_special_tokens=A ) SCREAMING_SNAKE_CASE : List[str] = tokenizer.decode(output_padded[0], skip_special_tokens=A ) SCREAMING_SNAKE_CASE : str = [ 'Hello, my dog is a little bit of a dork.\nI\'m a little bit', 'Today, I was in the middle of a conversation with a friend about the', ] self.assertListEqual(A, A ) self.assertListEqual(A, [non_padded_sentence, padded_sentence] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = 'facebook/opt-350m' SCREAMING_SNAKE_CASE : Dict = [ 'Today is a beautiful day and I want to', 'In the city of San Francisco, the city', 'Paris is the capital of France and the capital', 'Computers and mobile phones have taken over the', ] SCREAMING_SNAKE_CASE : Dict = [] SCREAMING_SNAKE_CASE : Optional[Any] = GPTaTokenizer.from_pretrained(A ) SCREAMING_SNAKE_CASE : Any = TFOPTForCausalLM.from_pretrained(A ) for prompt in self.prompts: SCREAMING_SNAKE_CASE : List[str] = tokenizer(A, return_tensors='tf' ).input_ids SCREAMING_SNAKE_CASE : Optional[int] = model.generate(A, max_length=10 ) SCREAMING_SNAKE_CASE : Tuple = tokenizer.batch_decode(A, skip_special_tokens=A ) predicted_outputs += generated_string self.assertListEqual(A, A )
508
'''simple docstring''' import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def lowercase__( __UpperCamelCase: bytes ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = f"{sampling_rate}" SCREAMING_SNAKE_CASE : str = '1' SCREAMING_SNAKE_CASE : Optional[Any] = 'f32le' SCREAMING_SNAKE_CASE : Any = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(__UpperCamelCase ,stdin=subprocess.PIPE ,stdout=subprocess.PIPE ) as ffmpeg_process: SCREAMING_SNAKE_CASE : Tuple = ffmpeg_process.communicate(__UpperCamelCase ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error SCREAMING_SNAKE_CASE : Union[str, Any] = output_stream[0] SCREAMING_SNAKE_CASE : Dict = np.frombuffer(__UpperCamelCase ,np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: str = "f32le" ,): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = f"{sampling_rate}" SCREAMING_SNAKE_CASE : str = '1' if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Optional[int] = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) SCREAMING_SNAKE_CASE : Optional[Any] = platform.system() if system == "Linux": SCREAMING_SNAKE_CASE : List[str] = 'alsa' SCREAMING_SNAKE_CASE : str = 'default' elif system == "Darwin": SCREAMING_SNAKE_CASE : Dict = 'avfoundation' SCREAMING_SNAKE_CASE : int = ':0' elif system == "Windows": SCREAMING_SNAKE_CASE : str = 'dshow' SCREAMING_SNAKE_CASE : Any = 'default' SCREAMING_SNAKE_CASE : Any = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] SCREAMING_SNAKE_CASE : Any = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = _ffmpeg_stream(__UpperCamelCase ,__UpperCamelCase ) for item in iterator: yield item def lowercase__( __UpperCamelCase: int ,__UpperCamelCase: float ,__UpperCamelCase: Optional[int] = None ,__UpperCamelCase: Optional[Union[Tuple[float, float], float]] = None ,__UpperCamelCase: str = "f32le" ,): """simple docstring""" if stream_chunk_s is not None: SCREAMING_SNAKE_CASE : Any = stream_chunk_s else: SCREAMING_SNAKE_CASE : Dict = chunk_length_s SCREAMING_SNAKE_CASE : Tuple = ffmpeg_microphone(__UpperCamelCase ,__UpperCamelCase ,format_for_conversion=__UpperCamelCase ) if format_for_conversion == "s16le": SCREAMING_SNAKE_CASE : Optional[int] = np.intaa SCREAMING_SNAKE_CASE : List[Any] = 2 elif format_for_conversion == "f32le": SCREAMING_SNAKE_CASE : Optional[int] = np.floataa SCREAMING_SNAKE_CASE : List[Any] = 4 else: raise ValueError(f"Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`" ) if stride_length_s is None: SCREAMING_SNAKE_CASE : List[str] = chunk_length_s / 6 SCREAMING_SNAKE_CASE : Optional[Any] = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(__UpperCamelCase ,(int, float) ): SCREAMING_SNAKE_CASE : str = [stride_length_s, stride_length_s] SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample SCREAMING_SNAKE_CASE : List[str] = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample SCREAMING_SNAKE_CASE : Union[str, Any] = datetime.datetime.now() SCREAMING_SNAKE_CASE : Dict = datetime.timedelta(seconds=__UpperCamelCase ) for item in chunk_bytes_iter(__UpperCamelCase ,__UpperCamelCase ,stride=(stride_left, stride_right) ,stream=__UpperCamelCase ): # Put everything back in numpy scale SCREAMING_SNAKE_CASE : List[Any] = np.frombuffer(item['raw'] ,dtype=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) SCREAMING_SNAKE_CASE : Any = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: int ,__UpperCamelCase: Tuple[int, int] ,__UpperCamelCase: bool = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = B'' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = stride if stride_left + stride_right >= chunk_len: raise ValueError( f"Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}" ) SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for raw in iterator: acc += raw if stream and len(__UpperCamelCase ) < chunk_len: SCREAMING_SNAKE_CASE : Tuple = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(__UpperCamelCase ) >= chunk_len: # We are flushing the accumulator SCREAMING_SNAKE_CASE : Optional[int] = (_stride_left, stride_right) SCREAMING_SNAKE_CASE : List[str] = {'raw': acc[:chunk_len], 'stride': stride} if stream: SCREAMING_SNAKE_CASE : Optional[int] = False yield item SCREAMING_SNAKE_CASE : List[Any] = stride_left SCREAMING_SNAKE_CASE : Union[str, Any] = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(__UpperCamelCase ) > stride_left: SCREAMING_SNAKE_CASE : Tuple = {'raw': acc, 'stride': (_stride_left, 0)} if stream: SCREAMING_SNAKE_CASE : List[Any] = False yield item def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: int ): """simple docstring""" SCREAMING_SNAKE_CASE : int = 2**24 # 16Mo try: with subprocess.Popen(__UpperCamelCase ,stdout=subprocess.PIPE ,bufsize=__UpperCamelCase ) as ffmpeg_process: while True: SCREAMING_SNAKE_CASE : Any = ffmpeg_process.stdout.read(__UpperCamelCase ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
508
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class _lowerCAmelCase ( __snake_case ): '''simple docstring''' lowerCAmelCase_ = "lilt" def __init__(self , UpperCAmelCase=30522 , UpperCAmelCase=768 , UpperCAmelCase=12 , UpperCAmelCase=12 , UpperCAmelCase=3072 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=512 , UpperCAmelCase=2 , UpperCAmelCase=0.02 , UpperCAmelCase=1e-1_2 , UpperCAmelCase=0 , UpperCAmelCase="absolute" , UpperCAmelCase=None , UpperCAmelCase=4 , UpperCAmelCase=1024 , **UpperCAmelCase , ) -> Optional[Any]: super().__init__(pad_token_id=UpperCAmelCase , **UpperCAmelCase ) _snake_case = vocab_size _snake_case = hidden_size _snake_case = num_hidden_layers _snake_case = num_attention_heads _snake_case = hidden_act _snake_case = intermediate_size _snake_case = hidden_dropout_prob _snake_case = attention_probs_dropout_prob _snake_case = max_position_embeddings _snake_case = type_vocab_size _snake_case = initializer_range _snake_case = layer_norm_eps _snake_case = position_embedding_type _snake_case = classifier_dropout _snake_case = channel_shrink_ratio _snake_case = max_ad_position_embeddings
585
'''simple docstring''' class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase , UpperCAmelCase ) -> Any: _snake_case = name _snake_case = val def __str__(self ) -> List[str]: return f"""{self.__class__.__name__}({self.name}, {self.val})""" def __lt__(self , UpperCAmelCase ) -> Any: return self.val < other.val class _lowerCAmelCase : '''simple docstring''' def __init__(self , UpperCAmelCase ) -> Dict: _snake_case = {} _snake_case = {} _snake_case = self.build_heap(UpperCAmelCase ) def __getitem__(self , UpperCAmelCase ) -> Union[str, Any]: return self.get_value(UpperCAmelCase ) def lowercase (self , UpperCAmelCase ) -> Dict: return (idx - 1) // 2 def lowercase (self , UpperCAmelCase ) -> Optional[Any]: return idx * 2 + 1 def lowercase (self , UpperCAmelCase ) -> Optional[int]: return idx * 2 + 2 def lowercase (self , UpperCAmelCase ) -> Union[str, Any]: return self.heap_dict[key] def lowercase (self , UpperCAmelCase ) -> str: _snake_case = len(UpperCAmelCase ) - 1 _snake_case = self.get_parent_idx(UpperCAmelCase ) for idx, i in enumerate(UpperCAmelCase ): _snake_case = idx _snake_case = i.val for i in range(UpperCAmelCase , -1 , -1 ): self.sift_down(UpperCAmelCase , UpperCAmelCase ) return array def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> int: while True: _snake_case = self.get_left_child_idx(UpperCAmelCase ) # noqa: E741 _snake_case = self.get_right_child_idx(UpperCAmelCase ) _snake_case = idx if l < len(UpperCAmelCase ) and array[l] < array[idx]: _snake_case = l if r < len(UpperCAmelCase ) and array[r] < array[smallest]: _snake_case = r if smallest != idx: _snake_case, _snake_case = array[smallest], array[idx] ( ( _snake_case ), ( _snake_case ), ) = ( self.idx_of_element[array[smallest]], self.idx_of_element[array[idx]], ) _snake_case = smallest else: break def lowercase (self , UpperCAmelCase ) -> str: _snake_case = self.get_parent_idx(UpperCAmelCase ) while p >= 0 and self.heap[p] > self.heap[idx]: _snake_case, _snake_case = self.heap[idx], self.heap[p] _snake_case, _snake_case = ( self.idx_of_element[self.heap[idx]], self.idx_of_element[self.heap[p]], ) _snake_case = p _snake_case = self.get_parent_idx(UpperCAmelCase ) def lowercase (self ) -> Optional[int]: return self.heap[0] def lowercase (self ) -> List[Any]: _snake_case, _snake_case = self.heap[-1], self.heap[0] _snake_case, _snake_case = ( self.idx_of_element[self.heap[-1]], self.idx_of_element[self.heap[0]], ) _snake_case = self.heap.pop() del self.idx_of_element[x] self.sift_down(0 , self.heap ) return x def lowercase (self , UpperCAmelCase ) -> List[str]: self.heap.append(UpperCAmelCase ) _snake_case = len(self.heap ) - 1 _snake_case = node.val self.sift_up(len(self.heap ) - 1 ) def lowercase (self ) -> int: return len(self.heap ) == 0 def lowercase (self , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: assert ( self.heap[self.idx_of_element[node]].val > new_value ), "newValue must be less that current value" _snake_case = new_value _snake_case = new_value self.sift_up(self.idx_of_element[node] ) __lowerCAmelCase = Node('R', -1) __lowerCAmelCase = Node('B', 6) __lowerCAmelCase = Node('A', 3) __lowerCAmelCase = Node('X', 1) __lowerCAmelCase = Node('E', 4) # Use one of these two ways to generate Min-Heap # Generating Min-Heap from array __lowerCAmelCase = MinHeap([r, b, a, x, e]) # Generating Min-Heap by Insert method # myMinHeap.insert(a) # myMinHeap.insert(b) # myMinHeap.insert(x) # myMinHeap.insert(r) # myMinHeap.insert(e) # Before print('Min Heap - before decrease key') for i in my_min_heap.heap: print(i) print('Min Heap - After decrease key of node [B -> -17]') my_min_heap.decrease_key(b, -17) # After for i in my_min_heap.heap: print(i) if __name__ == "__main__": import doctest doctest.testmod()
585
1
import gc import random import unittest import numpy as np import torch from diffusers import ( DDIMScheduler, KandinskyVaaControlnetPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = KandinskyVaaControlnetPipeline _lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] _lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """hint"""] _lowerCamelCase = [ """generator""", """height""", """width""", """latents""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase = False @property def snake_case_ ( self ): return 32 @property def snake_case_ ( self ): return 32 @property def snake_case_ ( self ): return self.time_input_dim @property def snake_case_ ( self ): return self.time_input_dim * 4 @property def snake_case_ ( self ): return 100 @property def snake_case_ ( self ): torch.manual_seed(0 ) __a = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __a = UNetaDConditionModel(**__A ) return model @property def snake_case_ ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ ( self ): torch.manual_seed(0 ) __a = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ): __a = self.dummy_unet __a = self.dummy_movq __a = DDIMScheduler( num_train_timesteps=1000 , beta_schedule="""linear""" , beta_start=0.00085 , beta_end=0.012 , clip_sample=__A , set_alpha_to_one=__A , steps_offset=1 , prediction_type="""epsilon""" , thresholding=__A , ) __a = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , __A , __A=0 ): __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__A ) ).to(__A ) __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __A ) # create hint __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """guidance_scale""": 4.0, """num_inference_steps""": 2, """output_type""": """np""", } return inputs def snake_case_ ( self ): __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__A ) __a = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = pipe(**self.get_dummy_inputs(__A ) ) __a = output.images __a = pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array( [0.6959826, 0.868279, 0.7558092, 0.68769467, 0.85805804, 0.65977496, 0.44885302, 0.5959111, 0.4251595] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): __a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_robotcat_fp16.npy""" ) __a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) __a = torch.from_numpy(np.array(__A ) ).float() / 255.0 __a = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __a = KandinskyVaaPriorPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__A ) __a = KandinskyVaaControlnetPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) __a = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) __a = """A robot, 4k photo""" __a = torch.Generator(device="""cuda""" ).manual_seed(0 ) __a , __a = pipe_prior( __A , generator=__A , num_inference_steps=5 , negative_prompt="""""" , ).to_tuple() __a = torch.Generator(device="""cuda""" ).manual_seed(0 ) __a = pipeline( image_embeds=__A , negative_image_embeds=__A , hint=__A , generator=__A , num_inference_steps=100 , output_type="""np""" , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__A , __A )
209
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __UpperCAmelCase ( __A , unittest.TestCase ): """simple docstring""" _lowerCamelCase = KandinskyVaaControlnetImgaImgPipeline _lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _lowerCamelCase = ["""image_embeds""", """negative_image_embeds""", """image""", """hint"""] _lowerCamelCase = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] _lowerCamelCase = False @property def snake_case_ ( self ): return 32 @property def snake_case_ ( self ): return 32 @property def snake_case_ ( self ): return self.time_input_dim @property def snake_case_ ( self ): return self.time_input_dim * 4 @property def snake_case_ ( self ): return 100 @property def snake_case_ ( self ): torch.manual_seed(0 ) __a = { """in_channels""": 8, # Out channels is double in channels because predicts mean and variance """out_channels""": 8, """addition_embed_type""": """image_hint""", """down_block_types""": ("""ResnetDownsampleBlock2D""", """SimpleCrossAttnDownBlock2D"""), """up_block_types""": ("""SimpleCrossAttnUpBlock2D""", """ResnetUpsampleBlock2D"""), """mid_block_type""": """UNetMidBlock2DSimpleCrossAttn""", """block_out_channels""": (self.block_out_channels_a, self.block_out_channels_a * 2), """layers_per_block""": 1, """encoder_hid_dim""": self.text_embedder_hidden_size, """encoder_hid_dim_type""": """image_proj""", """cross_attention_dim""": self.cross_attention_dim, """attention_head_dim""": 4, """resnet_time_scale_shift""": """scale_shift""", """class_embed_type""": None, } __a = UNetaDConditionModel(**__A ) return model @property def snake_case_ ( self ): return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def snake_case_ ( self ): torch.manual_seed(0 ) __a = VQModel(**self.dummy_movq_kwargs ) return model def snake_case_ ( self ): __a = self.dummy_unet __a = self.dummy_movq __a = { """num_train_timesteps""": 1000, """beta_schedule""": """linear""", """beta_start""": 0.00085, """beta_end""": 0.012, """clip_sample""": False, """set_alpha_to_one""": False, """steps_offset""": 0, """prediction_type""": """epsilon""", """thresholding""": False, } __a = DDIMScheduler(**__A ) __a = { """unet""": unet, """scheduler""": scheduler, """movq""": movq, } return components def snake_case_ ( self , __A , __A=0 ): __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(__A ) ).to(__A ) __a = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( __A ) # create init_image __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__A ) ).to(__A ) __a = image.cpu().permute(0 , 2 , 3 , 1 )[0] __a = Image.fromarray(np.uinta(__A ) ).convert("""RGB""" ).resize((256, 256) ) # create hint __a = floats_tensor((1, 3, 64, 64) , rng=random.Random(__A ) ).to(__A ) if str(__A ).startswith("""mps""" ): __a = torch.manual_seed(__A ) else: __a = torch.Generator(device=__A ).manual_seed(__A ) __a = { """image""": init_image, """image_embeds""": image_embeds, """negative_image_embeds""": negative_image_embeds, """hint""": hint, """generator""": generator, """height""": 64, """width""": 64, """num_inference_steps""": 10, """guidance_scale""": 7.0, """strength""": 0.2, """output_type""": """np""", } return inputs def snake_case_ ( self ): __a = """cpu""" __a = self.get_dummy_components() __a = self.pipeline_class(**__A ) __a = pipe.to(__A ) pipe.set_progress_bar_config(disable=__A ) __a = pipe(**self.get_dummy_inputs(__A ) ) __a = output.images __a = pipe( **self.get_dummy_inputs(__A ) , return_dict=__A , )[0] __a = image[0, -3:, -3:, -1] __a = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) __a = np.array( [0.54985034, 0.55509365, 0.52561504, 0.5570494, 0.5593818, 0.5263979, 0.50285643, 0.5069846, 0.51196736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def snake_case_ ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): __a = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy""" ) __a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinsky/cat.png""" ) __a = init_image.resize((512, 512) ) __a = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/kandinskyv22/hint_image_cat.png""" ) __a = torch.from_numpy(np.array(__A ) ).float() / 255.0 __a = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) __a = """A robot, 4k photo""" __a = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-prior""" , torch_dtype=torch.floataa ) pipe_prior.to(__A ) __a = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( """kandinsky-community/kandinsky-2-2-controlnet-depth""" , torch_dtype=torch.floataa ) __a = pipeline.to(__A ) pipeline.set_progress_bar_config(disable=__A ) __a = torch.Generator(device="""cpu""" ).manual_seed(0 ) __a , __a = pipe_prior( __A , image=__A , strength=0.85 , generator=__A , negative_prompt="""""" , ).to_tuple() __a = pipeline( image=__A , image_embeds=__A , negative_image_embeds=__A , hint=__A , generator=__A , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type="""np""" , ) __a = output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(__A , __A )
209
1
from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[str] = logging.get_logger(__name__) snake_case : Tuple = { '''google/pegasus-large''': '''https://huggingface.co/google/pegasus-large/resolve/main/config.json''', # See all PEGASUS models at https://huggingface.co/models?filter=pegasus } class snake_case_ (_lowerCAmelCase ): UpperCAmelCase__ : Tuple = "pegasus" UpperCAmelCase__ : Optional[Any] = ["past_key_values"] UpperCAmelCase__ : int = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"} def __init__( self :Tuple ,__snake_case :str=5_02_65 ,__snake_case :Any=10_24 ,__snake_case :List[Any]=12 ,__snake_case :Dict=40_96 ,__snake_case :Tuple=16 ,__snake_case :Any=12 ,__snake_case :str=40_96 ,__snake_case :Optional[Any]=16 ,__snake_case :List[Any]=0.0 ,__snake_case :int=0.0 ,__snake_case :Any=True ,__snake_case :List[Any]=True ,__snake_case :Any="gelu" ,__snake_case :Any=10_24 ,__snake_case :Optional[int]=0.1 ,__snake_case :int=0.0 ,__snake_case :int=0.0 ,__snake_case :str=0.02 ,__snake_case :str=0 ,__snake_case :Optional[Any]=False ,__snake_case :Union[str, Any]=0 ,__snake_case :Union[str, Any]=1 ,__snake_case :str=1 ,**__snake_case :Optional[Any] ,) -> int: a__ = vocab_size a__ = max_position_embeddings a__ = d_model a__ = encoder_ffn_dim a__ = encoder_layers a__ = encoder_attention_heads a__ = decoder_ffn_dim a__ = decoder_layers a__ = decoder_attention_heads a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = activation_function a__ = init_std a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = use_cache a__ = encoder_layers a__ = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( pad_token_id=A_ ,eos_token_id=A_ ,is_encoder_decoder=A_ ,decoder_start_token_id=A_ ,forced_eos_token_id=A_ ,**A_ ,) @property def lowerCamelCase__( self :Union[str, Any] ) -> int: return self.encoder_attention_heads @property def lowerCamelCase__( self :Any ) -> int: return self.d_model
335
'''simple docstring''' import warnings from ...utils import logging from .image_processing_yolos import YolosImageProcessor UpperCAmelCase = logging.get_logger(__name__) class __snake_case( _lowerCAmelCase ): '''simple docstring''' def __init__( self , *A_ , **A_ ) -> None: warnings.warn( """The class YolosFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use YolosImageProcessor instead.""" , A_ , ) super().__init__(*A_ , **A_ )
433
0
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() UpperCamelCase__ = logging.get_logger(__name__) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False , SCREAMING_SNAKE_CASE_=False ) -> int: """simple docstring""" _SCREAMING_SNAKE_CASE = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"transformer.blocks.{i}.norm1.weight", F"vilt.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((F"transformer.blocks.{i}.norm1.bias", F"vilt.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (F"transformer.blocks.{i}.attn.proj.weight", F"vilt.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append( (F"transformer.blocks.{i}.attn.proj.bias", F"vilt.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((F"transformer.blocks.{i}.norm2.weight", F"vilt.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((F"transformer.blocks.{i}.norm2.bias", F"vilt.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append( (F"transformer.blocks.{i}.mlp.fc1.weight", F"vilt.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc1.bias", F"vilt.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc2.weight", F"vilt.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((F"transformer.blocks.{i}.mlp.fc2.bias", F"vilt.encoder.layer.{i}.output.dense.bias") ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: """simple docstring""" for i in range(config.num_hidden_layers ): _SCREAMING_SNAKE_CASE = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) _SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.blocks.{i}.attn.qkv.weight" ) _SCREAMING_SNAKE_CASE = state_dict.pop(F"transformer.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict _SCREAMING_SNAKE_CASE = in_proj_weight[ : config.hidden_size, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[: config.hidden_size] _SCREAMING_SNAKE_CASE = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] _SCREAMING_SNAKE_CASE = in_proj_weight[ -config.hidden_size :, : ] _SCREAMING_SNAKE_CASE = in_proj_bias[-config.hidden_size :] def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> Any: """simple docstring""" _SCREAMING_SNAKE_CASE = dct.pop(SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = val @torch.no_grad() def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> str: """simple docstring""" _SCREAMING_SNAKE_CASE = ViltConfig(image_size=3_84 , patch_size=32 , tie_word_embeddings=SCREAMING_SNAKE_CASE_ ) _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False _SCREAMING_SNAKE_CASE = False if "vqa" in checkpoint_url: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 31_29 _SCREAMING_SNAKE_CASE = """huggingface/label-files""" _SCREAMING_SNAKE_CASE = """vqa2-id2label.json""" _SCREAMING_SNAKE_CASE = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="""dataset""" ) , """r""" ) ) _SCREAMING_SNAKE_CASE = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = idalabel _SCREAMING_SNAKE_CASE = {v: k for k, v in idalabel.items()} _SCREAMING_SNAKE_CASE = ViltForQuestionAnswering(SCREAMING_SNAKE_CASE_ ) elif "nlvr" in checkpoint_url: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = 2 _SCREAMING_SNAKE_CASE = {0: """False""", 1: """True"""} _SCREAMING_SNAKE_CASE = {v: k for k, v in config.idalabel.items()} _SCREAMING_SNAKE_CASE = 3 _SCREAMING_SNAKE_CASE = ViltForImagesAndTextClassification(SCREAMING_SNAKE_CASE_ ) elif "irtr" in checkpoint_url: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = ViltForImageAndTextRetrieval(SCREAMING_SNAKE_CASE_ ) elif "mlm_itm" in checkpoint_url: _SCREAMING_SNAKE_CASE = True _SCREAMING_SNAKE_CASE = ViltForMaskedLM(SCREAMING_SNAKE_CASE_ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys _SCREAMING_SNAKE_CASE = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location="""cpu""" )["""state_dict"""] _SCREAMING_SNAKE_CASE = create_rename_keys(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) read_in_q_k_v(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if mlm_model or irtr_model: _SCREAMING_SNAKE_CASE = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load state dict into HuggingFace model model.eval() if mlm_model: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = model.load_state_dict(SCREAMING_SNAKE_CASE_ , strict=SCREAMING_SNAKE_CASE_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # Define processor _SCREAMING_SNAKE_CASE = ViltImageProcessor(size=3_84 ) _SCREAMING_SNAKE_CASE = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _SCREAMING_SNAKE_CASE = ViltProcessor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Forward pass on example inputs (image + text) if nlvr_model: _SCREAMING_SNAKE_CASE = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=SCREAMING_SNAKE_CASE_ ).raw ) _SCREAMING_SNAKE_CASE = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=SCREAMING_SNAKE_CASE_ ).raw ) _SCREAMING_SNAKE_CASE = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) _SCREAMING_SNAKE_CASE = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: _SCREAMING_SNAKE_CASE = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=SCREAMING_SNAKE_CASE_ ).raw ) if mlm_model: _SCREAMING_SNAKE_CASE = """a bunch of [MASK] laying on a [MASK].""" else: _SCREAMING_SNAKE_CASE = """How many cats are there?""" _SCREAMING_SNAKE_CASE = processor(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , return_tensors="""pt""" ) _SCREAMING_SNAKE_CASE = model(**SCREAMING_SNAKE_CASE_ ) # Verify outputs if mlm_model: _SCREAMING_SNAKE_CASE = torch.Size([1, 11, 3_05_22] ) _SCREAMING_SNAKE_CASE = torch.tensor([-12.5061, -12.5123, -12.5174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) # verify masked token prediction equals "cats" _SCREAMING_SNAKE_CASE = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: _SCREAMING_SNAKE_CASE = torch.Size([1, 31_29] ) _SCREAMING_SNAKE_CASE = torch.tensor([-15.9495, -18.1472, -10.3041] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) # verify vqa prediction equals "2" _SCREAMING_SNAKE_CASE = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: _SCREAMING_SNAKE_CASE = torch.Size([1, 2] ) _SCREAMING_SNAKE_CASE = torch.tensor([-2.8721, 2.1291] ) assert torch.allclose(outputs.logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) assert outputs.logits.shape == expected_shape Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if __name__ == "__main__": UpperCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt", type=str, help="URL of the checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) UpperCamelCase__ = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
710
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class _a (_lowerCamelCase): """simple docstring""" def __init__( self , A__ , A__ ) -> Any: _SCREAMING_SNAKE_CASE = params _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array([len(A__ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self , A__ ) -> Dict: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Tuple: return len(self.lengths ) def UpperCamelCase ( self ) -> Dict: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = self.params.max_model_input_size _SCREAMING_SNAKE_CASE = self.lengths > max_len logger.info(F"Splitting {sum(A__ )} too long sequences." ) def divide_chunks(A__ , A__ ): return [l[i : i + n] for i in range(0 , len(A__ ) , A__ )] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] if self.params.mlm: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""cls_token"""], self.params.special_tok_ids["""sep_token"""] else: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""bos_token"""], self.params.special_tok_ids["""eos_token"""] for seq_, len_ in zip(self.token_ids , self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: _SCREAMING_SNAKE_CASE = [] for sub_s in divide_chunks(seq_ , max_len - 2 ): if sub_s[0] != cls_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , 0 , A__ ) if sub_s[-1] != sep_id: _SCREAMING_SNAKE_CASE = np.insert(A__ , len(A__ ) , A__ ) assert len(A__ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(A__ ) new_tok_ids.extend(A__ ) new_lengths.extend([len(A__ ) for l in sub_seqs] ) _SCREAMING_SNAKE_CASE = np.array(A__ ) _SCREAMING_SNAKE_CASE = np.array(A__ ) def UpperCamelCase ( self ) -> List[str]: _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = self.lengths > 11 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} too short (<=11 tokens) sequences." ) def UpperCamelCase ( self ) -> int: if "unk_token" not in self.params.special_tok_ids: return else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = len(self ) _SCREAMING_SNAKE_CASE = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) _SCREAMING_SNAKE_CASE = (unk_occs / self.lengths) < 0.5 _SCREAMING_SNAKE_CASE = self.token_ids[indices] _SCREAMING_SNAKE_CASE = self.lengths[indices] _SCREAMING_SNAKE_CASE = len(self ) logger.info(F"Remove {init_size - new_size} sequences with a high level of unknown tokens (50%)." ) def UpperCamelCase ( self ) -> Optional[Any]: if not self.params.is_master: return logger.info(F"{len(self )} sequences" ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def UpperCamelCase ( self , A__ ) -> Any: _SCREAMING_SNAKE_CASE = [t[0] for t in batch] _SCREAMING_SNAKE_CASE = [t[1] for t in batch] assert len(A__ ) == len(A__ ) # Max for paddings _SCREAMING_SNAKE_CASE = max(A__ ) # Pad token ids if self.params.mlm: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""pad_token"""] else: _SCREAMING_SNAKE_CASE = self.params.special_tok_ids["""unk_token"""] _SCREAMING_SNAKE_CASE = [list(t.astype(A__ ) ) + [pad_idx] * (max_seq_len_ - len(A__ )) for t in token_ids] assert len(tk_ ) == len(A__ ) assert all(len(A__ ) == max_seq_len_ for t in tk_ ) _SCREAMING_SNAKE_CASE = torch.tensor(tk_ ) # (bs, max_seq_len_) _SCREAMING_SNAKE_CASE = torch.tensor(A__ ) # (bs) return tk_t, lg_t
0
0
import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :Any = logging.get_logger(__name__) set_seed(770) SCREAMING_SNAKE_CASE :Any = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } SCREAMING_SNAKE_CASE :Union[str, Any] = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } SCREAMING_SNAKE_CASE :List[str] = os.path.dirname(os.path.abspath(__file__)) SCREAMING_SNAKE_CASE :Optional[int] = os.path.join(os.path.expanduser('~'), '.cache') SCREAMING_SNAKE_CASE :Any = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def UpperCAmelCase ( a_ , a_=False ) -> Optional[Any]: """simple docstring""" __A = model_type if use_small: key += "_small" return os.path.join(a_ , REMOTE_MODEL_PATHS[key]["file_name"] ) def UpperCAmelCase ( a_ , a_ ) -> List[str]: """simple docstring""" os.makedirs(a_ , exist_ok=a_ ) hf_hub_download(repo_id=a_ , filename=a_ , local_dir=a_ ) def UpperCAmelCase ( a_ , a_ , a_=False , a_="text" ) -> List[Any]: """simple docstring""" if model_type == "text": __A = BarkSemanticModel __A = BarkSemanticConfig __A = BarkSemanticGenerationConfig elif model_type == "coarse": __A = BarkCoarseModel __A = BarkCoarseConfig __A = BarkCoarseGenerationConfig elif model_type == "fine": __A = BarkFineModel __A = BarkFineConfig __A = BarkFineGenerationConfig else: raise NotImplementedError() __A = F'''{model_type}_small''' if use_small else model_type __A = REMOTE_MODEL_PATHS[model_key] if not os.path.exists(a_ ): logger.info(F'''{model_type} model not found, downloading into `{CACHE_DIR}`.''' ) _download(model_info["repo_id"] , model_info["file_name"] ) __A = torch.load(a_ , map_location=a_ ) # this is a hack __A = checkpoint["model_args"] if "input_vocab_size" not in model_args: __A = model_args["vocab_size"] __A = model_args["vocab_size"] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __A = model_args.pop("n_head" ) __A = model_args.pop("n_embd" ) __A = model_args.pop("n_layer" ) __A = ConfigClass(**checkpoint["model_args"] ) __A = ModelClass(config=a_ ) __A = GenerationConfigClass() __A = model_generation_config __A = checkpoint["model"] # fixup checkpoint __A = "_orig_mod." for k, v in list(state_dict.items() ): if k.startswith(a_ ): # replace part of the key with corresponding layer name in HF implementation __A = k[len(a_ ) :] for old_layer_name in new_layer_name_dict: __A = new_k.replace(a_ , new_layer_name_dict[old_layer_name] ) __A = state_dict.pop(a_ ) __A = set(state_dict.keys() ) - set(model.state_dict().keys() ) __A = {k for k in extra_keys if not k.endswith(".attn.bias" )} __A = set(model.state_dict().keys() ) - set(state_dict.keys() ) __A = {k for k in missing_keys if not k.endswith(".attn.bias" )} if len(a_ ) != 0: raise ValueError(F'''extra keys found: {extra_keys}''' ) if len(a_ ) != 0: raise ValueError(F'''missing keys: {missing_keys}''' ) model.load_state_dict(a_ , strict=a_ ) __A = model.num_parameters(exclude_embeddings=a_ ) __A = checkpoint["best_val_loss"].item() logger.info(F'''model loaded: {round(n_params/1E6 , 1 )}M params, {round(a_ , 3 )} loss''' ) model.eval() model.to(a_ ) del checkpoint, state_dict return model def UpperCAmelCase ( a_ , a_=False , a_="text" ) -> List[Any]: """simple docstring""" if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __A = "cpu" # do conversion on cpu __A = _get_ckpt_path(a_ , use_small=a_ ) __A = _load_model(a_ , a_ , model_type=a_ , use_small=a_ ) # load bark initial model __A = _bark_load_model(a_ , "cpu" , model_type=a_ , use_small=a_ ) if model_type == "text": __A = bark_model["model"] if model.num_parameters(exclude_embeddings=a_ ) != bark_model.get_num_params(): raise ValueError("initial and new models don't have the same number of parameters" ) # check if same output as the bark model __A = 5 __A = 1_0 if model_type in ["text", "coarse"]: __A = torch.randint(2_5_6 , (batch_size, sequence_length) , dtype=torch.int ) __A = bark_model(a_ )[0] __A = model(a_ ) # take last logits __A = output_new_model_total.logits[:, [-1], :] else: __A = 3 __A = 8 __A = torch.randint(2_5_6 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __A = model(a_ , a_ ) __A = bark_model(a_ , a_ ) __A = output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError("initial and new outputs don't have the same shape" ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError("initial and new outputs are not equal" ) Path(a_ ).mkdir(exist_ok=a_ ) model.save_pretrained(a_ ) def UpperCAmelCase ( a_ , a_ , a_ , a_ , a_ , a_ , ) -> Union[str, Any]: """simple docstring""" __A = os.path.join(a_ , a_ ) __A = BarkSemanticConfig.from_pretrained(os.path.join(a_ , "config.json" ) ) __A = BarkCoarseConfig.from_pretrained(os.path.join(a_ , "config.json" ) ) __A = BarkFineConfig.from_pretrained(os.path.join(a_ , "config.json" ) ) __A = EncodecConfig.from_pretrained("facebook/encodec_24khz" ) __A = BarkSemanticModel.from_pretrained(a_ ) __A = BarkCoarseModel.from_pretrained(a_ ) __A = BarkFineModel.from_pretrained(a_ ) __A = EncodecModel.from_pretrained("facebook/encodec_24khz" ) __A = BarkConfig.from_sub_model_configs( a_ , a_ , a_ , a_ ) __A = BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __A = BarkModel(a_ ) __A = semantic __A = coarseAcoustic __A = fineAcoustic __A = codec __A = bark_generation_config Path(a_ ).mkdir(exist_ok=a_ ) bark.save_pretrained(a_ , repo_id=a_ , push_to_hub=a_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') SCREAMING_SNAKE_CASE :Union[str, Any] = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
55
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase : '''simple docstring''' def __init__( self : str ,A : int ,A : int=2 ,A : Optional[Any]=3 ,A : Dict=4 ,A : Optional[int]=2 ,A : Union[str, Any]=7 ,A : List[str]=True ,A : Union[str, Any]=True ,A : Optional[int]=True ,A : Optional[int]=True ,A : Tuple=99 ,A : Optional[int]=36 ,A : Dict=3 ,A : str=4 ,A : Optional[Any]=37 ,A : Dict="gelu" ,A : Dict=0.1 ,A : Union[str, Any]=0.1 ,A : Union[str, Any]=5_12 ,A : Any=16 ,A : Union[str, Any]=2 ,A : List[Any]=0.02 ,A : List[Any]=6 ,A : Optional[int]=6 ,A : List[Any]=3 ,A : Union[str, Any]=4 ,A : Tuple=None ,A : List[str]=10_00 ,): __A = parent __A = batch_size __A = num_channels __A = image_size __A = patch_size __A = text_seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = coordinate_size __A = shape_size __A = num_labels __A = num_choices __A = scope __A = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __A = text_seq_length __A = (image_size // patch_size) ** 2 + 1 __A = self.text_seq_length + self.image_seq_length def UpperCamelCase_ ( self : int ): __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.vocab_size ) __A = ids_tensor([self.batch_size, self.text_seq_length, 4] ,self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __A = bbox[i, j, 3] __A = bbox[i, j, 1] __A = t if bbox[i, j, 2] < bbox[i, j, 0]: __A = bbox[i, j, 2] __A = bbox[i, j, 0] __A = t __A = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.text_seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.type_vocab_size ) __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.text_seq_length] ,self.num_labels ) __A = LayoutLMvaConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,initializer_range=self.initializer_range ,coordinate_size=self.coordinate_size ,shape_size=self.shape_size ,input_size=self.image_size ,patch_size=self.patch_size ,) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def UpperCamelCase_ ( self : Optional[int] ,A : List[str] ,A : Any ,A : Dict ,A : List[Any] ,A : Optional[int] ,A : Any ,A : Dict ,A : List[Any] ): __A = LayoutLMvaModel(config=A ) model.to(A ) model.eval() # text + image __A = model(A ,pixel_values=A ) __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ,token_type_ids=A ) __A = model(A ,bbox=A ,pixel_values=A ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.seq_length, self.hidden_size) ) # text only __A = model(A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __A = model(pixel_values=A ) self.parent.assertEqual( result.last_hidden_state.shape ,(self.batch_size, self.image_seq_length, self.hidden_size) ) def UpperCamelCase_ ( self : Optional[int] ,A : Dict ,A : List[str] ,A : Any ,A : List[Any] ,A : Any ,A : Any ,A : Dict ,A : Optional[Any] ): __A = self.num_labels __A = LayoutLMvaForSequenceClassification(A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self : str ,A : Optional[Any] ,A : Dict ,A : str ,A : Tuple ,A : Union[str, Any] ,A : List[Any] ,A : Any ,A : Union[str, Any] ): __A = self.num_labels __A = LayoutLMvaForTokenClassification(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,labels=A ,) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.text_seq_length, self.num_labels) ) def UpperCamelCase_ ( self : Optional[int] ,A : Optional[Any] ,A : int ,A : str ,A : List[str] ,A : int ,A : List[str] ,A : List[str] ,A : Dict ): __A = LayoutLMvaForQuestionAnswering(config=A ) model.to(A ) model.eval() __A = model( A ,bbox=A ,pixel_values=A ,attention_mask=A ,token_type_ids=A ,start_positions=A ,end_positions=A ,) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self : str ): __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = { "input_ids": input_ids, "bbox": bbox, "pixel_values": pixel_values, "token_type_ids": token_type_ids, "attention_mask": input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case_ = False snake_case_ = False snake_case_ = False snake_case_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) snake_case_ = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def UpperCamelCase_ ( self : str ,A : Any ,A : Any ,A : Tuple ,A : List[Any] ,A : Optional[Any] ): # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def UpperCamelCase_ ( self : Union[str, Any] ): __A = LayoutLMvaModelTester(self ) __A = ConfigTester(self ,config_class=A ,hidden_size=37 ) def UpperCamelCase_ ( self : List[Any] ,A : int ,A : List[str] ,A : Dict=False ): __A = copy.deepcopy(A ) if model_class in get_values(A ): __A = { k: v.unsqueeze(1 ).expand(-1 ,self.model_tester.num_choices ,-1 ).contiguous() if isinstance(A ,torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A ): __A = torch.ones(self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in get_values(A ): __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( self.model_tester.batch_size ,dtype=torch.long ,device=A ) elif model_class in [ *get_values(A ), ]: __A = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) ,dtype=torch.long ,device=A ,) return inputs_dict def UpperCamelCase_ ( self : List[Any] ): self.config_tester.run_common_tests() def UpperCamelCase_ ( self : Union[str, Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A ) def UpperCamelCase_ ( self : Optional[Any] ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A ) def UpperCamelCase_ ( self : str ): __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A ) @slow def UpperCamelCase_ ( self : Optional[int] ): for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = LayoutLMvaModel.from_pretrained(A ) self.assertIsNotNone(A ) def UpperCAmelCase ( ) -> Dict: """simple docstring""" __A = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def UpperCamelCase_ ( self : Any ): return LayoutLMvaImageProcessor(apply_ocr=A ) if is_vision_available() else None @slow def UpperCamelCase_ ( self : Dict ): __A = LayoutLMvaModel.from_pretrained("microsoft/layoutlmv3-base" ).to(A ) __A = self.default_image_processor __A = prepare_img() __A = image_processor(images=A ,return_tensors="pt" ).pixel_values.to(A ) __A = torch.tensor([[1, 2]] ) __A = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __A = model( input_ids=input_ids.to(A ) ,bbox=bbox.to(A ) ,pixel_values=pixel_values.to(A ) ,) # verify the logits __A = torch.Size((1, 1_99, 7_68) ) self.assertEqual(outputs.last_hidden_state.shape ,A ) __A = torch.tensor( [[-0.05_29, 0.36_18, 0.16_32], [-0.15_87, -0.16_67, -0.04_00], [-0.15_57, -0.16_71, -0.05_05]] ).to(A ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] ,A ,atol=1E-4 ) )
55
1
from __future__ import annotations from math import pi def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" if (inductance, frequency, reactance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if inductance < 0: raise ValueError('''Inductance cannot be negative''' ) if frequency < 0: raise ValueError('''Frequency cannot be negative''' ) if reactance < 0: raise ValueError('''Inductive reactance cannot be negative''' ) if inductance == 0: return {"inductance": reactance / (2 * pi * frequency)} elif frequency == 0: return {"frequency": reactance / (2 * pi * inductance)} elif reactance == 0: return {"reactance": 2 * pi * frequency * inductance} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
718
"""simple docstring""" lowercase_ = {'a': ['c', 'b'], 'b': ['d', 'e'], 'c': [], 'd': [], 'e': []} lowercase_ = ['a', 'b', 'c', 'd', 'e'] def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase , __UpperCamelCase ): """simple docstring""" __A = start # add current to visited visited.append(__UpperCamelCase ) __A = edges[current] for neighbor in neighbors: # if neighbor not in visited, visit if neighbor not in visited: __A = topological_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # if all neighbors visited add current to sort sort.append(__UpperCamelCase ) # if all vertices haven't been visited select a new one to visit if len(__UpperCamelCase ) != len(__UpperCamelCase ): for vertice in vertices: if vertice not in visited: __A = topological_sort(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) # return sort return sort if __name__ == "__main__": lowercase_ = topological_sort('a', [], []) print(sort)
215
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline _UpperCAmelCase : str = logging.get_logger(__name__) class lowercase ( lowercase_ ): def a ( self , snake_case ): if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case_ = [label.strip() for label in labels.split(',' ) if label.strip()] return labels def __call__( self , snake_case , snake_case , snake_case ): if len(__lowerCAmelCase ) == 0 or len(__lowerCAmelCase ) == 0: raise ValueError('You must include at least one label and at least one sequence.' ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( 'The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. ' 'Make sure the passed template includes formatting syntax such as {{}} where the label should go.' ).format(__lowerCAmelCase ) ) if isinstance(__lowerCAmelCase , __lowerCAmelCase ): snake_case_ = [sequences] snake_case_ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(__lowerCAmelCase )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(lowercase_ ) class lowercase ( lowercase_ ): def __init__( self , snake_case=ZeroShotClassificationArgumentHandler() , *snake_case , **snake_case ): snake_case_ = args_parser super().__init__(*__lowerCAmelCase , **__lowerCAmelCase ) if self.entailment_id == -1: logger.warning( 'Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to ' '-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.' ) @property def a ( self ): for label, ind in self.model.config.labelaid.items(): if label.lower().startswith('entail' ): return ind return -1 def a ( self , snake_case , snake_case=True , snake_case=True , snake_case=TruncationStrategy.ONLY_FIRST , **snake_case ): snake_case_ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( 'Tokenizer was not supporting padding necessary for zero-shot, attempting to use ' ' `pad_token=eos_token`' ) snake_case_ = self.tokenizer.eos_token try: snake_case_ = self.tokenizer( __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , ) except Exception as e: if "too short" in str(__lowerCAmelCase ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. snake_case_ = self.tokenizer( __lowerCAmelCase , add_special_tokens=__lowerCAmelCase , return_tensors=__lowerCAmelCase , padding=__lowerCAmelCase , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def a ( self , **snake_case ): if kwargs.get('multi_class' , __lowerCAmelCase ) is not None: snake_case_ = kwargs['multi_class'] logger.warning( 'The `multi_class` argument has been deprecated and renamed to `multi_label`. ' '`multi_class` will be removed in a future version of Transformers.' ) snake_case_ = {} if "candidate_labels" in kwargs: snake_case_ = self._args_parser._parse_labels(kwargs['candidate_labels'] ) if "hypothesis_template" in kwargs: snake_case_ = kwargs['hypothesis_template'] snake_case_ = {} if "multi_label" in kwargs: snake_case_ = kwargs['multi_label'] return preprocess_params, {}, postprocess_params def __call__( self , snake_case , *snake_case , **snake_case , ): if len(__lowerCAmelCase ) == 0: pass elif len(__lowerCAmelCase ) == 1 and "candidate_labels" not in kwargs: snake_case_ = args[0] else: raise ValueError(F'''Unable to understand extra arguments {args}''' ) return super().__call__(__lowerCAmelCase , **__lowerCAmelCase ) def a ( self , snake_case , snake_case=None , snake_case="This example is {}." ): snake_case_ , snake_case_ = self._args_parser(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) for i, (candidate_label, sequence_pair) in enumerate(zip(__lowerCAmelCase , __lowerCAmelCase ) ): snake_case_ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(__lowerCAmelCase ) - 1, **model_input, } def a ( self , snake_case ): snake_case_ = inputs['candidate_label'] snake_case_ = inputs['sequence'] snake_case_ = {k: inputs[k] for k in self.tokenizer.model_input_names} snake_case_ = self.model(**__lowerCAmelCase ) snake_case_ = { 'candidate_label': candidate_label, 'sequence': sequence, 'is_last': inputs['is_last'], **outputs, } return model_outputs def a ( self , snake_case , snake_case=False ): snake_case_ = [outputs['candidate_label'] for outputs in model_outputs] snake_case_ = [outputs['sequence'] for outputs in model_outputs] snake_case_ = np.concatenate([output['logits'].numpy() for output in model_outputs] ) snake_case_ = logits.shape[0] snake_case_ = len(__lowerCAmelCase ) snake_case_ = N // n snake_case_ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(__lowerCAmelCase ) == 1: # softmax over the entailment vs. contradiction dim for each label independently snake_case_ = self.entailment_id snake_case_ = -1 if entailment_id == 0 else 0 snake_case_ = reshaped_outputs[..., [contradiction_id, entailment_id]] snake_case_ = np.exp(__lowerCAmelCase ) / np.exp(__lowerCAmelCase ).sum(-1 , keepdims=__lowerCAmelCase ) snake_case_ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels snake_case_ = reshaped_outputs[..., self.entailment_id] snake_case_ = np.exp(__lowerCAmelCase ) / np.exp(__lowerCAmelCase ).sum(-1 , keepdims=__lowerCAmelCase ) snake_case_ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
362
"""simple docstring""" from __future__ import annotations def UpperCAmelCase__ ( lowerCAmelCase__ :dict , lowerCAmelCase__ :str ) -> set[str]: '''simple docstring''' lowercase , lowercase = set(lowerCAmelCase__ ), [start] while stack: lowercase = stack.pop() explored.add(lowerCAmelCase__ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(lowerCAmelCase__ ) return explored __lowerCAmelCase : str ={ """A""": ["""B""", """C""", """D"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F"""], """D""": ["""B""", """D"""], """E""": ["""B""", """F"""], """F""": ["""C""", """E""", """G"""], """G""": ["""F"""], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, """A"""))
359
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) UpperCamelCase = { 'configuration_trocr': ['TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP', 'TrOCRConfig'], 'processing_trocr': ['TrOCRProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ 'TROCR_PRETRAINED_MODEL_ARCHIVE_LIST', 'TrOCRForCausalLM', 'TrOCRPreTrainedModel', ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys UpperCamelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
515
from sklearn.metrics import fa_score import datasets UpperCamelCase = '\nThe F1 score is the harmonic mean of the precision and recall. It can be computed with the equation:\nF1 = 2 * (precision * recall) / (precision + recall)\n' UpperCamelCase = '\nArgs:\n predictions (`list` of `int`): Predicted labels.\n references (`list` of `int`): Ground truth labels.\n labels (`list` of `int`): The set of labels to include when `average` is not set to `\'binary\'`, and the order of the labels if `average` is `None`. Labels present in the data can be excluded, for example to calculate a multiclass average ignoring a majority negative class. Labels not present in the data will result in 0 components in a macro average. For multilabel targets, labels are column indices. By default, all labels in `predictions` and `references` are used in sorted order. Defaults to None.\n pos_label (`int`): The class to be considered the positive class, in the case where `average` is set to `binary`. Defaults to 1.\n average (`string`): This parameter is required for multiclass/multilabel targets. If set to `None`, the scores for each class are returned. Otherwise, this determines the type of averaging performed on the data. Defaults to `\'binary\'`.\n\n - \'binary\': Only report results for the class specified by `pos_label`. This is applicable only if the classes found in `predictions` and `references` are binary.\n - \'micro\': Calculate metrics globally by counting the total true positives, false negatives and false positives.\n - \'macro\': Calculate metrics for each label, and find their unweighted mean. This does not take label imbalance into account.\n - \'weighted\': Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label). This alters `\'macro\'` to account for label imbalance. This option can result in an F-score that is not between precision and recall.\n - \'samples\': Calculate metrics for each instance, and find their average (only meaningful for multilabel classification).\n sample_weight (`list` of `float`): Sample weights Defaults to None.\n\nReturns:\n f1 (`float` or `array` of `float`): F1 score or list of f1 scores, depending on the value passed to `average`. Minimum possible value is 0. Maximum possible value is 1. Higher f1 scores are better.\n\nExamples:\n\n Example 1-A simple binary example\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0])\n >>> print(results)\n {\'f1\': 0.5}\n\n Example 2-The same simple binary example as in Example 1, but with `pos_label` set to `0`.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], pos_label=0)\n >>> print(round(results[\'f1\'], 2))\n 0.67\n\n Example 3-The same simple binary example as in Example 1, but with `sample_weight` included.\n >>> f1_metric = datasets.load_metric("f1")\n >>> results = f1_metric.compute(references=[0, 1, 0, 1, 0], predictions=[0, 0, 1, 1, 0], sample_weight=[0.9, 0.5, 3.9, 1.2, 0.3])\n >>> print(round(results[\'f1\'], 2))\n 0.35\n\n Example 4-A multiclass example, with different values for the `average` input.\n >>> predictions = [0, 2, 1, 0, 0, 1]\n >>> references = [0, 1, 2, 0, 1, 2]\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="macro")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="micro")\n >>> print(round(results[\'f1\'], 2))\n 0.33\n >>> results = f1_metric.compute(predictions=predictions, references=references, average="weighted")\n >>> print(round(results[\'f1\'], 2))\n 0.27\n >>> results = f1_metric.compute(predictions=predictions, references=references, average=None)\n >>> print(results)\n {\'f1\': array([0.8, 0. , 0. ])}\n' UpperCamelCase = '\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def a ( self : Optional[int] ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Sequence(datasets.Value("""int32""" ) ), """references""": datasets.Sequence(datasets.Value("""int32""" ) ), } if self.config_name == """multilabel""" else { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=["""https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html"""] , ) def a ( self : Any , lowerCamelCase__ : Dict , lowerCamelCase__ : str , lowerCamelCase__ : Tuple=None , lowerCamelCase__ : Tuple=1 , lowerCamelCase__ : Tuple="binary" , lowerCamelCase__ : Dict=None ): """simple docstring""" __UpperCamelCase : Optional[Any] = fa_score( lowerCamelCase__ , lowerCamelCase__ , labels=lowerCamelCase__ , pos_label=lowerCamelCase__ , average=lowerCamelCase__ , sample_weight=lowerCamelCase__ ) return {"f1": float(lowerCamelCase__ ) if score.size == 1 else score}
515
1
lowerCAmelCase__ :Tuple = ''' # Transformers installation ! pip install transformers datasets # To install from source instead of the last release, comment the command above and uncomment the following one. # ! pip install git+https://github.com/huggingface/transformers.git ''' lowerCAmelCase__ :Union[str, Any] = [{'''type''': '''code''', '''content''': INSTALL_CONTENT}] lowerCAmelCase__ :Tuple = { '''{processor_class}''': '''FakeProcessorClass''', '''{model_class}''': '''FakeModelClass''', '''{object_class}''': '''FakeObjectClass''', }
618
import inspect import unittest import numpy as np from transformers import ViTConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor if is_flax_available(): import jax from transformers.models.vit.modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel class __a ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=30 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=3 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=10 , _SCREAMING_SNAKE_CASE=0.02 , ) -> int: """simple docstring""" _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = image_size _UpperCAmelCase = patch_size _UpperCAmelCase = num_channels _UpperCAmelCase = is_training _UpperCAmelCase = use_labels _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (image_size // patch_size) ** 2 _UpperCAmelCase = num_patches + 1 def UpperCAmelCase__ ( self ) -> Optional[int]: """simple docstring""" _UpperCAmelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _UpperCAmelCase = ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, pixel_values def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" _UpperCAmelCase = FlaxViTModel(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) _UpperCAmelCase = (self.image_size, self.image_size) _UpperCAmelCase = (self.patch_size, self.patch_size) _UpperCAmelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, num_patches + 1, self.hidden_size) ) def UpperCAmelCase__ ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> Any: """simple docstring""" _UpperCAmelCase = self.type_sequence_label_size _UpperCAmelCase = FlaxViTForImageClassification(config=_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _UpperCAmelCase = 1 _UpperCAmelCase = FlaxViTForImageClassification(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _UpperCAmelCase = model(_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_flax class __a ( UpperCAmelCase , unittest.TestCase ): _a : List[str] = (FlaxViTModel, FlaxViTForImageClassification) if is_flax_available() else () def UpperCAmelCase__ ( self ) -> None: """simple docstring""" _UpperCAmelCase = FlaxViTModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=_SCREAMING_SNAKE_CASE , has_text_modality=_SCREAMING_SNAKE_CASE , hidden_size=37 ) def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" self.config_tester.run_common_tests() def UpperCAmelCase__ ( self ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> List[Any]: """simple docstring""" _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> str: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) _UpperCAmelCase = inspect.signature(model.__call__ ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _UpperCAmelCase = [*signature.parameters.keys()] _UpperCAmelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , _SCREAMING_SNAKE_CASE ) def UpperCAmelCase__ ( self ) -> int: """simple docstring""" _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase = self._prepare_for_class(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _UpperCAmelCase = model_class(_SCREAMING_SNAKE_CASE ) @jax.jit def model_jitted(_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): return model(pixel_values=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) with self.subTest('JIT Enabled' ): _UpperCAmelCase = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _UpperCAmelCase = model_jitted(**_SCREAMING_SNAKE_CASE ).to_tuple() self.assertEqual(len(_SCREAMING_SNAKE_CASE ) , len(_SCREAMING_SNAKE_CASE ) ) for jitted_output, output in zip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): self.assertEqual(jitted_output.shape , output.shape ) @slow def UpperCAmelCase__ ( self ) -> Dict: """simple docstring""" for model_class_name in self.all_model_classes: _UpperCAmelCase = model_class_name.from_pretrained('google/vit-base-patch16-224' ) _UpperCAmelCase = model(np.ones((1, 3, 224, 224) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE )
618
1
from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def a ( A__ : bool = True , *A__ : Dict , **A__ : Any ) -> int: """simple docstring""" if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) _lowercase =False if main_process_only: _lowercase =PartialState().local_process_index == 0 return _tqdm(*_UpperCamelCase , **_UpperCamelCase , disable=_UpperCamelCase )
716
print((lambda quine: quine % quine)('print((lambda quine: quine %% quine)(%r))'))
380
0
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __magic_name__ : List[str] = logging.get_logger(__name__) __magic_name__ : List[str] = { '''google/vit-base-patch16-224''': '''https://huggingface.co/vit-base-patch16-224/resolve/main/config.json''', # See all ViT models at https://huggingface.co/models?filter=vit } class SCREAMING_SNAKE_CASE__ (_UpperCamelCase ): lowercase_ : List[Any] = "vit" def __init__( self : List[str] , __lowerCamelCase : Optional[int]=7_68 , __lowerCamelCase : Union[str, Any]=12 , __lowerCamelCase : str=12 , __lowerCamelCase : int=30_72 , __lowerCamelCase : List[str]="gelu" , __lowerCamelCase : Dict=0.0 , __lowerCamelCase : str=0.0 , __lowerCamelCase : List[Any]=0.02 , __lowerCamelCase : str=1e-12 , __lowerCamelCase : Optional[Any]=2_24 , __lowerCamelCase : Optional[Any]=16 , __lowerCamelCase : int=3 , __lowerCamelCase : Tuple=True , __lowerCamelCase : Tuple=16 , **__lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(**UpperCamelCase__ ) lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = initializer_range lowerCAmelCase__ = layer_norm_eps lowerCAmelCase__ = image_size lowerCAmelCase__ = patch_size lowerCAmelCase__ = num_channels lowerCAmelCase__ = qkv_bias lowerCAmelCase__ = encoder_stride class SCREAMING_SNAKE_CASE__ (_UpperCamelCase ): lowercase_ : List[Any] = version.parse("1.11" ) @property def A__ ( self : Union[str, Any] ): """simple docstring""" return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def A__ ( self : Optional[int] ): """simple docstring""" return 1e-4
615
'''simple docstring''' import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import DetrConfig, MaskFormerConfig, SwinConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskFormerForInstanceSegmentation, MaskFormerModel if is_vision_available(): from transformers import MaskFormerImageProcessor if is_vision_available(): from PIL import Image class lowercase_ : """simple docstring""" def __init__( self : Optional[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Any=2, UpperCamelCase__ : Union[str, Any]=True, UpperCamelCase__ : Optional[Any]=False, UpperCamelCase__ : int=10, UpperCamelCase__ : List[str]=3, UpperCamelCase__ : List[str]=32 * 4, UpperCamelCase__ : List[Any]=32 * 6, UpperCamelCase__ : Dict=4, UpperCamelCase__ : str=32, ) -> Dict: _A = parent _A = batch_size _A = is_training _A = use_auxiliary_loss _A = num_queries _A = num_channels _A = min_size _A = max_size _A = num_labels _A = mask_feature_size def __UpperCAmelCase ( self : List[Any] ) -> Tuple: _A = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( UpperCamelCase__ ) _A = torch.ones([self.batch_size, self.min_size, self.max_size], device=UpperCamelCase__ ) _A = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size], device=UpperCamelCase__ ) > 0.5 ).float() _A = (torch.rand((self.batch_size, self.num_labels), device=UpperCamelCase__ ) > 0.5).long() _A = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __UpperCAmelCase ( self : Tuple ) -> Optional[int]: return MaskFormerConfig.from_backbone_and_decoder_configs( backbone_config=SwinConfig( depths=[1, 1, 1, 1], ), decoder_config=DetrConfig( decoder_ffn_dim=1_28, num_queries=self.num_queries, decoder_attention_heads=2, d_model=self.mask_feature_size, ), mask_feature_size=self.mask_feature_size, fpn_feature_size=self.mask_feature_size, num_channels=self.num_channels, num_labels=self.num_labels, ) def __UpperCAmelCase ( self : int ) -> Tuple: _A , _A , _A , _A , _A = self.prepare_config_and_inputs() _A = {'pixel_values': pixel_values, 'pixel_mask': pixel_mask} return config, inputs_dict def __UpperCAmelCase ( self : Optional[int], UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Dict ) -> List[Any]: _A = output.encoder_hidden_states _A = output.pixel_decoder_hidden_states _A = output.transformer_decoder_hidden_states self.parent.assertTrue(len(UpperCamelCase__ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase__ ), len(config.backbone_config.depths ) ) self.parent.assertTrue(len(UpperCamelCase__ ), config.decoder_config.decoder_layers ) def __UpperCAmelCase ( self : Any, UpperCamelCase__ : Any, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Optional[int], UpperCamelCase__ : Optional[Any]=False ) -> Optional[Any]: with torch.no_grad(): _A = MaskFormerModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() _A = model(pixel_values=UpperCamelCase__, pixel_mask=UpperCamelCase__ ) _A = model(UpperCamelCase__, output_hidden_states=UpperCamelCase__ ) # the correct shape of output.transformer_decoder_hidden_states ensure the correcteness of the # encoder and pixel decoder self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape, (self.batch_size, self.num_queries, self.mask_feature_size), ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(UpperCamelCase__, UpperCamelCase__ ) def __UpperCAmelCase ( self : List[Any], UpperCamelCase__ : Tuple, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : int, UpperCamelCase__ : Optional[Any], UpperCamelCase__ : Tuple ) -> str: _A = MaskFormerForInstanceSegmentation(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() def comm_check_on_output(UpperCamelCase__ : Any ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape, (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4), ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape, (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): _A = model(pixel_values=UpperCamelCase__, pixel_mask=UpperCamelCase__ ) _A = model(UpperCamelCase__ ) comm_check_on_output(UpperCamelCase__ ) _A = model( pixel_values=UpperCamelCase__, pixel_mask=UpperCamelCase__, mask_labels=UpperCamelCase__, class_labels=UpperCamelCase__ ) comm_check_on_output(UpperCamelCase__ ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape, torch.Size([1] ) ) @require_torch class lowercase_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): """simple docstring""" __lowerCAmelCase = (MaskFormerModel, MaskFormerForInstanceSegmentation) if is_torch_available() else () __lowerCAmelCase = ( {"feature-extraction": MaskFormerModel, "image-segmentation": MaskFormerForInstanceSegmentation} if is_torch_available() else {} ) __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False __lowerCAmelCase = False def __UpperCAmelCase ( self : Optional[Any] ) -> Tuple: _A = MaskFormerModelTester(self ) _A = ConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> int: self.config_tester.run_common_tests() def __UpperCAmelCase ( self : Dict ) -> int: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase__, **UpperCamelCase__, output_hidden_states=UpperCamelCase__ ) def __UpperCAmelCase ( self : List[str] ) -> Optional[int]: _A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskformer_instance_segmentation_head_model(*UpperCamelCase__ ) @unittest.skip(reason='MaskFormer does not use inputs_embeds' ) def __UpperCAmelCase ( self : Optional[Any] ) -> Any: pass @unittest.skip(reason='MaskFormer does not have a get_input_embeddings method' ) def __UpperCAmelCase ( self : Dict ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer is not a generative model' ) def __UpperCAmelCase ( self : Tuple ) -> Union[str, Any]: pass @unittest.skip(reason='MaskFormer does not use token embeddings' ) def __UpperCAmelCase ( self : Optional[int] ) -> Union[str, Any]: pass @require_torch_multi_gpu @unittest.skip( reason='MaskFormer has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def __UpperCAmelCase ( self : List[Any] ) -> Union[str, Any]: pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __UpperCAmelCase ( self : Any ) -> Any: pass def __UpperCAmelCase ( self : Union[str, Any] ) -> List[str]: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ) _A = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _A = [*signature.parameters.keys()] _A = ['pixel_values'] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) @slow def __UpperCAmelCase ( self : Optional[int] ) -> Optional[int]: for model_name in ["facebook/maskformer-swin-small-coco"]: _A = MaskFormerModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCAmelCase ( self : Optional[Any] ) -> List[Any]: _A = (self.model_tester.min_size,) * 2 _A = { 'pixel_values': torch.randn((2, 3, *size), device=UpperCamelCase__ ), 'mask_labels': torch.randn((2, 10, *size), device=UpperCamelCase__ ), 'class_labels': torch.zeros(2, 10, device=UpperCamelCase__ ).long(), } _A = MaskFormerForInstanceSegmentation(MaskFormerConfig() ).to(UpperCamelCase__ ) _A = model(**UpperCamelCase__ ) self.assertTrue(outputs.loss is not None ) def __UpperCAmelCase ( self : Dict ) -> Dict: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskformer_model(UpperCamelCase__, **UpperCamelCase__, output_hidden_states=UpperCamelCase__ ) def __UpperCAmelCase ( self : int ) -> Tuple: _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _A = model_class(UpperCamelCase__ ).to(UpperCamelCase__ ) _A = model(**UpperCamelCase__, output_attentions=UpperCamelCase__ ) self.assertTrue(outputs.attentions is not None ) def __UpperCAmelCase ( self : List[Any] ) -> List[Any]: if not self.model_tester.is_training: return # only MaskFormerForInstanceSegmentation has the loss _A = self.all_model_classes[1] _A , _A , _A , _A , _A = self.model_tester.prepare_config_and_inputs() _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() _A = model(UpperCamelCase__, mask_labels=UpperCamelCase__, class_labels=UpperCamelCase__ ).loss loss.backward() def __UpperCAmelCase ( self : Dict ) -> List[str]: # only MaskFormerForInstanceSegmentation has the loss _A = self.all_model_classes[1] _A , _A , _A , _A , _A = self.model_tester.prepare_config_and_inputs() _A = True _A = True _A = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.train() _A = model(UpperCamelCase__, mask_labels=UpperCamelCase__, class_labels=UpperCamelCase__ ) _A = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() _A = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() # we requires_grad=True in inputs_embeds (line 2152), the original implementation don't _A = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() _A = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=UpperCamelCase__ ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) _UpperCAmelCase : Any = 1E-4 def _SCREAMING_SNAKE_CASE ( ): _A = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_vision @slow class lowercase_ ( unittest.TestCase ): """simple docstring""" @cached_property def __UpperCAmelCase ( self : str ) -> Optional[int]: return ( MaskFormerImageProcessor.from_pretrained('facebook/maskformer-swin-small-coco' ) if is_vision_available() else None ) def __UpperCAmelCase ( self : Any ) -> List[str]: _A = MaskFormerModel.from_pretrained('facebook/maskformer-swin-small-coco' ).to(UpperCamelCase__ ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__, (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**UpperCamelCase__ ) _A = torch.tensor( [[-0.0_482, 0.9_228, 0.4_951], [-0.2_547, 0.8_017, 0.8_527], [-0.0_069, 0.3_385, -0.0_089]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) _A = torch.tensor( [[-0.8_422, -0.8_434, -0.9_718], [-1.0_144, -0.5_565, -0.4_195], [-1.0_038, -0.4_484, -0.1_961]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) _A = torch.tensor( [[0.2_852, -0.0_159, 0.9_735], [0.6_254, 0.1_858, 0.8_529], [-0.0_680, -0.4_116, 1.8_413]] ).to(UpperCamelCase__ ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Union[str, Any] ) -> Optional[int]: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(UpperCamelCase__ ) .eval() ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__, (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**UpperCamelCase__ ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) _A = [ [-1.3_737_124, -1.7_724_937, -1.9_364_233], [-1.5_977_281, -1.9_867_939, -2.1_523_695], [-1.5_795_398, -1.9_269_832, -2.093_942], ] _A = torch.tensor(UpperCamelCase__ ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [ [1.6512e00, -5.2572e00, -3.3519e00], [3.6169e-02, -5.9025e00, -2.9313e00], [1.0766e-04, -7.7630e00, -5.1263e00], ] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-resnet101-coco-stuff' ) .to(UpperCamelCase__ ) .eval() ) _A = self.default_image_processor _A = prepare_img() _A = image_processor(UpperCamelCase__, return_tensors='pt' ).to(UpperCamelCase__ ) _A = inputs['pixel_values'].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(UpperCamelCase__, (1, 3, 8_00, 10_88) ) with torch.no_grad(): _A = model(**UpperCamelCase__ ) # masks_queries_logits _A = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape, (1, model.config.decoder_config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4), ) _A = [[-0.9_046, -2.6_366, -4.6_062], [-3.4_179, -5.7_890, -8.8_057], [-4.9_179, -7.6_560, -10.7_711]] _A = torch.tensor(UpperCamelCase__ ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) # class_queries_logits _A = outputs.class_queries_logits self.assertEqual( class_queries_logits.shape, (1, model.config.decoder_config.num_queries, model.config.num_labels + 1) ) _A = torch.tensor( [[4.7_188, -3.2_585, -2.8_857], [6.6_871, -2.9_181, -1.2_487], [7.2_449, -2.2_764, -2.1_874]] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3], UpperCamelCase__, atol=UpperCamelCase__ ) ) def __UpperCAmelCase ( self : Dict ) -> int: _A = ( MaskFormerForInstanceSegmentation.from_pretrained('facebook/maskformer-swin-small-coco' ) .to(UpperCamelCase__ ) .eval() ) _A = self.default_image_processor _A = image_processor( [np.zeros((3, 8_00, 13_33) ), np.zeros((3, 8_00, 13_33) )], segmentation_maps=[np.zeros((3_84, 3_84) ).astype(np.floataa ), np.zeros((3_84, 3_84) ).astype(np.floataa )], return_tensors='pt', ) _A = inputs['pixel_values'].to(UpperCamelCase__ ) _A = [el.to(UpperCamelCase__ ) for el in inputs['mask_labels']] _A = [el.to(UpperCamelCase__ ) for el in inputs['class_labels']] with torch.no_grad(): _A = model(**UpperCamelCase__ ) self.assertTrue(outputs.loss is not None )
107
0
'''simple docstring''' import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __magic_name__ ( unittest.TestCase ): def __init__( self , snake_case) -> Dict: '''simple docstring''' _UpperCAmelCase : Union[str, Any] =parent def lowerCAmelCase ( self) -> Optional[Any]: '''simple docstring''' return {} def lowerCamelCase__ ( ): '''simple docstring''' _UpperCAmelCase : Any ='<HTML>\n\n <HEAD>\n <TITLE>sample document</TITLE>\n </HEAD>\n\n <BODY BGCOLOR="FFFFFF">\n <HR>\n <a href="http://google.com">Goog</a>\n <H1>This is one header</H1>\n <H2>This is a another Header</H2>\n <P>Travel from\n <P>\n <B>SFO to JFK</B>\n <BR>\n <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B>\n <HR>\n <div style="color:#0000FF">\n <h3>Traveler <b> name </b> is\n <p> John Doe </p>\n </div>' _UpperCAmelCase : Optional[Any] ='\n <!DOCTYPE html>\n <html>\n <body>\n\n <h1>My First Heading</h1>\n <p>My first paragraph.</p>\n\n </body>\n </html>\n ' return [html_string_a, html_string_a] @require_bsa class __magic_name__ ( lowerCAmelCase ,unittest.TestCase ): UpperCAmelCase =MarkupLMFeatureExtractor if is_bsa_available() else None def lowerCAmelCase ( self) -> Optional[int]: '''simple docstring''' _UpperCAmelCase : Tuple =MarkupLMFeatureExtractionTester(self) @property def lowerCAmelCase ( self) -> str: '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def lowerCAmelCase ( self) -> Union[str, Any]: '''simple docstring''' _UpperCAmelCase : Optional[Any] =self.feature_extraction_class() # Test not batched input _UpperCAmelCase : Union[str, Any] =get_html_strings()[0] _UpperCAmelCase : str =feature_extractor(snake_case) # fmt: off _UpperCAmelCase : Optional[Any] =[['sample document', 'Goog', 'This is one header', 'This is a another Header', 'Travel from', 'SFO to JFK', 'on May 2, 2015 at 2:00 pm. For details go to confirm.com', 'Traveler', 'name', 'is', 'John Doe']] _UpperCAmelCase : str =[['/html/head/title', '/html/body/a', '/html/body/h1', '/html/body/h2', '/html/body/p', '/html/body/p/p/b[1]', '/html/body/p/p/b[2]/i', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/b', '/html/body/p/p/div/h3', '/html/body/p/p/div/h3/p']] # fmt: on self.assertEqual(encoding.nodes , snake_case) self.assertEqual(encoding.xpaths , snake_case) # Test batched _UpperCAmelCase : Dict =get_html_strings() _UpperCAmelCase : List[Any] =feature_extractor(snake_case) # fmt: off _UpperCAmelCase : str =expected_nodes + [['My First Heading', 'My first paragraph.']] _UpperCAmelCase : Union[str, Any] =expected_xpaths + [['/html/body/h1', '/html/body/p']] self.assertEqual(len(encoding.nodes) , 2) self.assertEqual(len(encoding.xpaths) , 2) self.assertEqual(encoding.nodes , snake_case) self.assertEqual(encoding.xpaths , snake_case)
701
'''simple docstring''' def lowerCamelCase__ ( __lowerCamelCase : int = 1_0_0 ): '''simple docstring''' _UpperCAmelCase : int =set() _UpperCAmelCase : Union[str, Any] =0 _UpperCAmelCase : Optional[Any] =n + 1 # maximum limit for a in range(2 , __lowerCamelCase ): for b in range(2 , __lowerCamelCase ): _UpperCAmelCase : Tuple =a**b # calculates the current power collect_powers.add(__lowerCamelCase ) # adds the result to the set return len(__lowerCamelCase ) if __name__ == "__main__": print('Number of terms ', solution(int(str(input()).strip())))
331
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __A =logging.get_logger(__name__) __A ={ 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _snake_case ( a__ ): lowerCAmelCase :Tuple = '''decision_transformer''' lowerCAmelCase :Union[str, Any] = ['''past_key_values'''] lowerCAmelCase :Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , _lowerCamelCase=17 , _lowerCamelCase=4 , _lowerCamelCase=128 , _lowerCamelCase=4096 , _lowerCamelCase=True , _lowerCamelCase=1 , _lowerCamelCase=1024 , _lowerCamelCase=3 , _lowerCamelCase=1 , _lowerCamelCase=None , _lowerCamelCase="relu" , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=1e-5 , _lowerCamelCase=0.02 , _lowerCamelCase=True , _lowerCamelCase=True , _lowerCamelCase=5_0256 , _lowerCamelCase=5_0256 , _lowerCamelCase=False , _lowerCamelCase=False , **_lowerCamelCase , ): UpperCAmelCase__ : Optional[Any] = state_dim UpperCAmelCase__ : Any = act_dim UpperCAmelCase__ : Any = hidden_size UpperCAmelCase__ : List[Any] = max_ep_len UpperCAmelCase__ : Any = action_tanh UpperCAmelCase__ : List[Any] = vocab_size UpperCAmelCase__ : int = n_positions UpperCAmelCase__ : Optional[Any] = n_layer UpperCAmelCase__ : Optional[int] = n_head UpperCAmelCase__ : Dict = n_inner UpperCAmelCase__ : List[Any] = activation_function UpperCAmelCase__ : int = resid_pdrop UpperCAmelCase__ : str = embd_pdrop UpperCAmelCase__ : List[Any] = attn_pdrop UpperCAmelCase__ : Optional[int] = layer_norm_epsilon UpperCAmelCase__ : List[str] = initializer_range UpperCAmelCase__ : Union[str, Any] = scale_attn_weights UpperCAmelCase__ : str = use_cache UpperCAmelCase__ : Tuple = scale_attn_by_inverse_layer_idx UpperCAmelCase__ : Optional[int] = reorder_and_upcast_attn UpperCAmelCase__ : Optional[int] = bos_token_id UpperCAmelCase__ : Dict = eos_token_id super().__init__(bos_token_id=_lowerCamelCase , eos_token_id=_lowerCamelCase , **_lowerCamelCase)
407
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin __A =get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _snake_case ( a__ , unittest.TestCase ): lowerCAmelCase :List[str] = XLNetTokenizer lowerCAmelCase :Union[str, Any] = XLNetTokenizerFast lowerCAmelCase :Union[str, Any] = True lowerCAmelCase :int = True def snake_case__ ( self): super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase__ : Optional[Any] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self): UpperCAmelCase__ : Optional[int] = """<s>""" UpperCAmelCase__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase) , _lowerCamelCase) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase) , _lowerCamelCase) def snake_case__ ( self): UpperCAmelCase__ : int = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , """<unk>""") self.assertEqual(vocab_keys[1] , """<s>""") self.assertEqual(vocab_keys[-1] , """<eod>""") self.assertEqual(len(_lowerCamelCase) , 1006) def snake_case__ ( self): self.assertEqual(self.get_tokenizer().vocab_size , 1000) def snake_case__ ( self): UpperCAmelCase__ : int = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase) UpperCAmelCase__ : str = tokenizer.tokenize("""This is a test""") self.assertListEqual(_lowerCamelCase , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase) , [285, 46, 10, 170, 382]) UpperCAmelCase__ : List[Any] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase__ : List[str] = tokenizer.convert_tokens_to_ids(_lowerCamelCase) self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4]) UpperCAmelCase__ : Optional[int] = tokenizer.convert_ids_to_tokens(_lowerCamelCase) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase) UpperCAmelCase__ : Optional[int] = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """""", """i""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""▁he""", """ll""", """o"""]) def snake_case__ ( self): UpperCAmelCase__ : Union[str, Any] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase) UpperCAmelCase__ : Dict = tokenizer.tokenize("""I was born in 92000, and this is falsé.""") self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """se""", """.""", ] , ) @slow def snake_case__ ( self): UpperCAmelCase__ : List[Any] = XLNetTokenizer.from_pretrained("""xlnet-base-cased""") UpperCAmelCase__ : Dict = tokenizer.encode("""sequence builders""" , add_special_tokens=_lowerCamelCase) UpperCAmelCase__ : Dict = tokenizer.encode("""multi-sequence build""" , add_special_tokens=_lowerCamelCase) UpperCAmelCase__ : List[Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase) UpperCAmelCase__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def snake_case__ ( self): # fmt: off UpperCAmelCase__ : List[Any] = {"""input_ids""": [[17, 2_1442, 270, 17, 10, 1_4645, 318, 34, 17, 4546, 3145, 787, 13, 7752, 2_2018, 23, 21, 17, 4546, 3145, 787, 13, 3352, 1_4431, 13, 5500, 11, 1176, 580, 13, 1_6819, 4797, 23, 17, 10, 1_7135, 658, 19, 457, 7932, 13, 184, 19, 3154, 1_7135, 6468, 19, 1404, 1_2269, 19, 4229, 5356, 1_6264, 46, 19, 17, 2_0545, 1_0395, 9, 9, 9, 11, 28, 6421, 9531, 2_0729, 17, 10, 353, 1_7022, 11, 21, 6421, 9531, 1_6949, 17, 10, 1_1509, 753, 11, 33, 95, 2421, 7385, 956, 1_4431, 2626, 25, 842, 7385, 4836, 21, 1429, 2272, 9855, 3120, 161, 2_4738, 19, 1_3203, 658, 218, 787, 21, 430, 1_8482, 847, 2637, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 322, 2_2178, 27, 1064, 22, 956, 13, 1_1101, 1429, 5854, 2_4313, 1_8953, 40, 422, 2_4366, 68, 1758, 37, 1_0483, 1_4257, 31, 207, 263, 21, 203, 3773, 25, 71, 9735, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 2049, 3442, 17, 1_3894, 3380, 23, 95, 18, 1_7634, 2288, 9, 4, 3]], """token_type_ids""": [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name="""xlnet-base-cased""" , revision="""c841166438c31ec7ca9a106dee7bb312b73ae511""" , )
407
1
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[Any] = [] _lowerCAmelCase :List[Any] = [] for i in range(self.num_layers ): _lowerCAmelCase :List[str] = self.in_channels if i == 0 else self.out_channels _lowerCAmelCase :str = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :Dict = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = resnets _lowerCAmelCase :Tuple = attentions if self.add_downsample: _lowerCAmelCase :List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: List[str]=True ): _lowerCAmelCase :Optional[int] = () for resnet, attn in zip(self.resnets , self.attentions ): _lowerCAmelCase :List[str] = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _lowerCAmelCase :int = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase :Any = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :str = [] for i in range(self.num_layers ): _lowerCAmelCase :Optional[int] = self.in_channels if i == 0 else self.out_channels _lowerCAmelCase :str = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :Tuple = resnets if self.add_downsample: _lowerCAmelCase :Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Dict , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int=True ): _lowerCAmelCase :Union[str, Any] = () for resnet in self.resnets: _lowerCAmelCase :Tuple = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase :Dict = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Dict = [] _lowerCAmelCase :Optional[Any] = [] for i in range(self.num_layers ): _lowerCAmelCase :Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase :Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase :int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _lowerCAmelCase :str = resnets _lowerCAmelCase :List[str] = attentions if self.add_upsample: _lowerCAmelCase :Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Optional[int] , _UpperCAmelCase: Any , _UpperCAmelCase: int , _UpperCAmelCase: Any , _UpperCAmelCase: str , _UpperCAmelCase: Tuple=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCAmelCase :str = res_hidden_states_tuple[-1] _lowerCAmelCase :Tuple = res_hidden_states_tuple[:-1] _lowerCAmelCase :Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCAmelCase :Any = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _lowerCAmelCase :int = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Union[str, Any] = [] for i in range(self.num_layers ): _lowerCAmelCase :List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase :Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase :int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = resnets if self.add_upsample: _lowerCAmelCase :Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any]=True ): for resnet in self.resnets: # pop res hidden states _lowerCAmelCase :List[str] = res_hidden_states_tuple[-1] _lowerCAmelCase :int = res_hidden_states_tuple[:-1] _lowerCAmelCase :Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCAmelCase :Union[str, Any] = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _lowerCAmelCase :str = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): # there is always at least one resnet _lowerCAmelCase :Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCAmelCase :List[str] = [] for _ in range(self.num_layers ): _lowerCAmelCase :Optional[int] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _lowerCAmelCase :Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :str = resnets _lowerCAmelCase :Optional[Any] = attentions def __call__( self: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict , _UpperCAmelCase: List[Any]=True ): _lowerCAmelCase :Any = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCAmelCase :Union[str, Any] = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _lowerCAmelCase :Tuple = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
707
def UpperCamelCase_( __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :Optional[Any] = [0 for i in range(len(__magic_name__ ) )] # initialize interval's left pointer and right pointer _lowerCAmelCase , _lowerCAmelCase :List[Any] = 0, 0 for i in range(1 , len(__magic_name__ ) ): # case when current index is inside the interval if i <= right_pointer: _lowerCAmelCase :Any = min(right_pointer - i + 1 , z_result[i - left_pointer] ) _lowerCAmelCase :Any = min_edge while go_next(__magic_name__ , __magic_name__ , __magic_name__ ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: _lowerCAmelCase , _lowerCAmelCase :List[Any] = i, i + z_result[i] - 1 return z_result def UpperCamelCase_( __magic_name__ : int , __magic_name__ : list[int] , __magic_name__ : str ): """simple docstring""" return i + z_result[i] < len(__magic_name__ ) and s[z_result[i]] == s[i + z_result[i]] def UpperCamelCase_( __magic_name__ : str , __magic_name__ : str ): """simple docstring""" _lowerCAmelCase :int = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string _lowerCAmelCase :Optional[Any] = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(__magic_name__ ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
382
0
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class _lowerCamelCase ( UpperCamelCase_ ): __a = (IPNDMScheduler,) __a = (("num_inference_steps", 50),) def UpperCamelCase_ ( self , **lowerCAmelCase ) -> Dict: SCREAMING_SNAKE_CASE__: Optional[int]= {'''num_train_timesteps''': 1000} config.update(**lowerCAmelCase ) return config def UpperCamelCase_ ( self , lowerCAmelCase=0 , **lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__: Optional[Any]= dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__: Optional[int]= kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[Any]= self.dummy_sample SCREAMING_SNAKE_CASE__: Tuple= 0.1 * sample SCREAMING_SNAKE_CASE__: Any= [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__: Tuple= self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__: Optional[Any]= dummy_past_residuals[:] if time_step is None: SCREAMING_SNAKE_CASE__: List[Any]= scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals SCREAMING_SNAKE_CASE__: Dict= dummy_past_residuals[:] SCREAMING_SNAKE_CASE__: Union[str, Any]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: Optional[int]= new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE__: List[str]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: str= new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self ) -> Optional[Any]: pass def UpperCamelCase_ ( self , lowerCAmelCase=0 , **lowerCAmelCase ) -> List[Any]: SCREAMING_SNAKE_CASE__: List[Any]= dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__: Optional[int]= kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Tuple= self.dummy_sample SCREAMING_SNAKE_CASE__: str= 0.1 * sample SCREAMING_SNAKE_CASE__: Dict= [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__: Optional[int]= self.get_scheduler_config() SCREAMING_SNAKE_CASE__: Tuple= scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) SCREAMING_SNAKE_CASE__: List[Any]= dummy_past_residuals[:] if time_step is None: SCREAMING_SNAKE_CASE__: Tuple= scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) SCREAMING_SNAKE_CASE__: int= dummy_past_residuals[:] SCREAMING_SNAKE_CASE__: Optional[Any]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: List[str]= new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" SCREAMING_SNAKE_CASE__: Tuple= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: List[Any]= new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def UpperCamelCase_ ( self , **lowerCAmelCase ) -> Optional[int]: SCREAMING_SNAKE_CASE__: List[str]= self.scheduler_classes[0] SCREAMING_SNAKE_CASE__: List[Any]= self.get_scheduler_config(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: List[str]= 10 SCREAMING_SNAKE_CASE__: Dict= self.dummy_model() SCREAMING_SNAKE_CASE__: Optional[int]= self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__: str= model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample for i, t in enumerate(scheduler.timesteps ): SCREAMING_SNAKE_CASE__: List[Any]= model(lowerCAmelCase , lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def UpperCamelCase_ ( self ) -> List[Any]: SCREAMING_SNAKE_CASE__: Union[str, Any]= dict(self.forward_default_kwargs ) SCREAMING_SNAKE_CASE__: List[Any]= kwargs.pop('''num_inference_steps''' , lowerCAmelCase ) for scheduler_class in self.scheduler_classes: SCREAMING_SNAKE_CASE__: List[Any]= self.get_scheduler_config() SCREAMING_SNAKE_CASE__: int= scheduler_class(**lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= self.dummy_sample SCREAMING_SNAKE_CASE__: Any= 0.1 * sample if num_inference_steps is not None and hasattr(lowerCAmelCase , '''set_timesteps''' ): scheduler.set_timesteps(lowerCAmelCase ) elif num_inference_steps is not None and not hasattr(lowerCAmelCase , '''set_timesteps''' ): SCREAMING_SNAKE_CASE__: Optional[int]= num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) SCREAMING_SNAKE_CASE__: List[str]= [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] SCREAMING_SNAKE_CASE__: List[Any]= dummy_past_residuals[:] SCREAMING_SNAKE_CASE__: List[Any]= scheduler.timesteps[5] SCREAMING_SNAKE_CASE__: str= scheduler.timesteps[6] SCREAMING_SNAKE_CASE__: List[str]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: Any= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) SCREAMING_SNAKE_CASE__: Union[str, Any]= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample SCREAMING_SNAKE_CASE__: Any= scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def UpperCamelCase_ ( self ) -> str: for timesteps in [100, 1000]: self.check_over_configs(num_train_timesteps=lowerCAmelCase , time_step=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Union[str, Any]: for t, num_inference_steps in zip([1, 5, 10] , [10, 50, 100] ): self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=lowerCAmelCase ) def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Union[str, Any]= self.full_loop() SCREAMING_SNAKE_CASE__: int= torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 2540529 ) < 10
64
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" @register_to_config def __init__(self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = False , ): super().__init__() A_ : Tuple = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : List[str] = nn.Embedding(lowerCAmelCase_ , lowerCAmelCase_ ) A_ : Any = False A_ : Tuple = nn.Dropout(p=lowerCAmelCase_ ) A_ : List[str] = TaConfig( vocab_size=lowerCAmelCase_ , d_model=lowerCAmelCase_ , num_heads=lowerCAmelCase_ , d_kv=lowerCAmelCase_ , d_ff=lowerCAmelCase_ , dropout_rate=lowerCAmelCase_ , feed_forward_proj=lowerCAmelCase_ , is_decoder=lowerCAmelCase_ , is_encoder_decoder=lowerCAmelCase_ , ) A_ : Optional[Any] = nn.ModuleList() for lyr_num in range(lowerCAmelCase_ ): A_ : Tuple = TaBlock(lowerCAmelCase_ ) self.encoders.append(lowerCAmelCase_ ) A_ : Any = TaLayerNorm(lowerCAmelCase_ ) A_ : Union[str, Any] = nn.Dropout(p=lowerCAmelCase_ ) def lowerCamelCase(self , lowerCAmelCase_ , lowerCAmelCase_ ): A_ : List[Any] = self.token_embedder(lowerCAmelCase_ ) A_ : Optional[Any] = encoder_input_tokens.shape[1] A_ : Any = torch.arange(lowerCAmelCase_ , device=encoder_input_tokens.device ) x += self.position_encoding(lowerCAmelCase_ ) A_ : Optional[Any] = self.dropout_pre(lowerCAmelCase_ ) # inverted the attention mask A_ : int = encoder_input_tokens.size() A_ : Optional[Any] = self.get_extended_attention_mask(lowerCAmelCase_ , lowerCAmelCase_ ) for lyr in self.encoders: A_ : int = lyr(lowerCAmelCase_ , lowerCAmelCase_ )[0] A_ : List[str] = self.layer_norm(lowerCAmelCase_ ) return self.dropout_post(lowerCAmelCase_ ), encoder_inputs_mask
180
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def UpperCamelCase ( ): '''simple docstring''' A_ : List[Any] = ArgumentParser('Accelerate CLI tool' ,usage='accelerate <command> [<args>]' ,allow_abbrev=__lowercase ) A_ : Any = parser.add_subparsers(help='accelerate command helpers' ) # Register commands get_config_parser(subparsers=__lowercase ) env_command_parser(subparsers=__lowercase ) launch_command_parser(subparsers=__lowercase ) tpu_command_parser(subparsers=__lowercase ) test_command_parser(subparsers=__lowercase ) # Let's go A_ : Optional[Any] = parser.parse_args() if not hasattr(__lowercase ,'func' ): parser.print_help() exit(1 ) # Run args.func(__lowercase ) if __name__ == "__main__": main()
70
from math import sqrt def UpperCamelCase ( __lowercase : int = 1_00_00_00 ): '''simple docstring''' A_ : int = 0 A_ : int = 0 A_ : int while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 ,2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(__lowercase ,sum_shortest_sides // 2 ) - max(1 ,sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"""{solution() = }""")
70
1
import warnings from typing import Any, Dict, List, Optional, Union import numpy as np from ...audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import PaddingStrategy, TensorType, logging lowercase_ = logging.get_logger(__name__) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = ['''input_values''', '''attention_mask'''] def __init__( self : Tuple , _A : int = 1 , _A : int = 1_6000 , _A : float = 0.0 , _A : bool = False , _A : int = 80 , _A : int = 16 , _A : int = 64 , _A : str = "hann_window" , _A : float = 1.0 , _A : float = 80 , _A : float = 7600 , _A : float = 1e-10 , _A : int = 2 , _A : bool = True , **_A : Optional[Any] , ): """simple docstring""" super().__init__(feature_size=_A , sampling_rate=_A , padding_value=_A , **_A ) __SCREAMING_SNAKE_CASE : List[Any] = do_normalize __SCREAMING_SNAKE_CASE : Optional[Any] = return_attention_mask __SCREAMING_SNAKE_CASE : Optional[Any] = num_mel_bins __SCREAMING_SNAKE_CASE : Dict = hop_length __SCREAMING_SNAKE_CASE : Any = win_length __SCREAMING_SNAKE_CASE : Union[str, Any] = win_function __SCREAMING_SNAKE_CASE : str = frame_signal_scale __SCREAMING_SNAKE_CASE : Tuple = fmin __SCREAMING_SNAKE_CASE : Any = fmax __SCREAMING_SNAKE_CASE : Dict = mel_floor __SCREAMING_SNAKE_CASE : Union[str, Any] = reduction_factor __SCREAMING_SNAKE_CASE : List[str] = win_length * sampling_rate // 1000 __SCREAMING_SNAKE_CASE : List[Any] = hop_length * sampling_rate // 1000 __SCREAMING_SNAKE_CASE : Union[str, Any] = optimal_fft_length(self.sample_size ) __SCREAMING_SNAKE_CASE : str = (self.n_fft // 2) + 1 __SCREAMING_SNAKE_CASE : Optional[int] = window_function(window_length=self.sample_size , name=self.win_function , periodic=_A ) __SCREAMING_SNAKE_CASE : Optional[int] = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.num_mel_bins , min_frequency=self.fmin , max_frequency=self.fmax , sampling_rate=self.sampling_rate , norm='''slaney''' , mel_scale='''slaney''' , ) if frame_signal_scale != 1.0: warnings.warn( '''The argument `frame_signal_scale` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) if reduction_factor != 2.0: warnings.warn( '''The argument `reduction_factor` is deprecated and will be removed in version 4.30.0 of Transformers''' , _A , ) @staticmethod # Copied from transformers.models.wav2vec2.feature_extraction_wav2vec2.Wav2Vec2FeatureExtractor.zero_mean_unit_var_norm def UpperCAmelCase__ ( _A : List[np.ndarray] , _A : List[np.ndarray] , _A : float = 0.0 ): """simple docstring""" if attention_mask is not None: __SCREAMING_SNAKE_CASE : Optional[int] = np.array(_A , np.intaa ) __SCREAMING_SNAKE_CASE : List[Any] = [] for vector, length in zip(_A , attention_mask.sum(-1 ) ): __SCREAMING_SNAKE_CASE : Tuple = (vector - vector[:length].mean()) / np.sqrt(vector[:length].var() + 1e-7 ) if length < normed_slice.shape[0]: __SCREAMING_SNAKE_CASE : Any = padding_value normed_input_values.append(_A ) else: __SCREAMING_SNAKE_CASE : int = [(x - x.mean()) / np.sqrt(x.var() + 1e-7 ) for x in input_values] return normed_input_values def UpperCAmelCase__ ( self : Any , _A : np.ndarray , ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = spectrogram( _A , window=self.window , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , mel_filters=self.mel_filters , mel_floor=self.mel_floor , log_mel='''log10''' , ) return log_mel_spec.T def __call__( self : Dict , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Optional[Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]]] = None , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , _A : Optional[int] = None , **_A : str , ): """simple docstring""" if audio is None and audio_target is None: raise ValueError('''You must provide either `audio` or `audio_target` values.''' ) if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' F''' {self.sampling_rate}. Please make sure that the provided audio input was sampled with''' F''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( '''It is strongly recommended to pass the ``sampling_rate`` argument to this function. ''' '''Failing to do so can result in silent errors that might be hard to debug.''' ) if audio is not None: __SCREAMING_SNAKE_CASE : str = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = None if audio_target is not None: __SCREAMING_SNAKE_CASE : List[Any] = self._process_audio( _A , _A , _A , _A , _A , _A , _A , _A , **_A , ) if inputs is None: return inputs_target else: __SCREAMING_SNAKE_CASE : str = inputs_target['''input_values'''] __SCREAMING_SNAKE_CASE : Dict = inputs_target.get('''attention_mask''' ) if decoder_attention_mask is not None: __SCREAMING_SNAKE_CASE : Tuple = decoder_attention_mask return inputs def UpperCAmelCase__ ( self : Tuple , _A : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , _A : bool = False , _A : Union[bool, str, PaddingStrategy] = False , _A : Optional[int] = None , _A : bool = False , _A : Optional[int] = None , _A : Optional[bool] = None , _A : Optional[Union[str, TensorType]] = None , **_A : str , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[str] = isinstance(_A , np.ndarray ) and len(speech.shape ) > 1 if is_batched_numpy and len(speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) __SCREAMING_SNAKE_CASE : int = is_batched_numpy or ( isinstance(_A , (list, tuple) ) and (isinstance(speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: __SCREAMING_SNAKE_CASE : Tuple = [np.asarray(_A , dtype=np.floataa ) for speech in speech] elif not is_batched and not isinstance(_A , np.ndarray ): __SCREAMING_SNAKE_CASE : Any = np.asarray(_A , dtype=np.floataa ) elif isinstance(_A , np.ndarray ) and speech.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Tuple = speech.astype(np.floataa ) # always return batch if not is_batched: __SCREAMING_SNAKE_CASE : Optional[int] = [speech] # needed to make pad() work on spectrogram inputs __SCREAMING_SNAKE_CASE : Union[str, Any] = self.feature_size # convert into correct format for padding if is_target: __SCREAMING_SNAKE_CASE : Tuple = [self._extract_mel_features(_A ) for waveform in speech] __SCREAMING_SNAKE_CASE : Tuple = BatchFeature({'''input_values''': features} ) __SCREAMING_SNAKE_CASE : Any = self.num_mel_bins else: __SCREAMING_SNAKE_CASE : Dict = BatchFeature({'''input_values''': speech} ) __SCREAMING_SNAKE_CASE : Dict = self.pad( _A , padding=_A , max_length=_A , truncation=_A , pad_to_multiple_of=_A , return_attention_mask=_A , **_A , ) __SCREAMING_SNAKE_CASE : List[Any] = feature_size_hack # convert input values to correct format __SCREAMING_SNAKE_CASE : str = padded_inputs['''input_values'''] if not isinstance(input_values[0] , np.ndarray ): __SCREAMING_SNAKE_CASE : Any = [np.asarray(_A , dtype=np.floataa ) for array in input_values] elif ( not isinstance(_A , np.ndarray ) and isinstance(input_values[0] , np.ndarray ) and input_values[0].dtype is np.dtype(np.floataa ) ): __SCREAMING_SNAKE_CASE : List[Any] = [array.astype(np.floataa ) for array in input_values] elif isinstance(_A , np.ndarray ) and input_values.dtype is np.dtype(np.floataa ): __SCREAMING_SNAKE_CASE : Any = input_values.astype(np.floataa ) # convert attention_mask to correct format __SCREAMING_SNAKE_CASE : List[str] = padded_inputs.get('''attention_mask''' ) if attention_mask is not None: __SCREAMING_SNAKE_CASE : Union[str, Any] = [np.asarray(_A , dtype=np.intaa ) for array in attention_mask] # zero-mean and unit-variance normalization if not is_target and self.do_normalize: __SCREAMING_SNAKE_CASE : Optional[Any] = ( attention_mask if self._get_padding_strategies(_A , max_length=_A ) is not PaddingStrategy.DO_NOT_PAD else None ) __SCREAMING_SNAKE_CASE : List[str] = self.zero_mean_unit_var_norm( padded_inputs['''input_values'''] , attention_mask=_A , padding_value=self.padding_value ) if return_tensors is not None: __SCREAMING_SNAKE_CASE : str = padded_inputs.convert_to_tensors(_A ) return padded_inputs def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = super().to_dict() # Don't serialize these as they are derived from the other properties. __SCREAMING_SNAKE_CASE : int = ['''window''', '''mel_filters''', '''sample_size''', '''sample_stride''', '''n_fft''', '''n_freqs'''] for name in names: if name in output: del output[name] return output
74
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def a_ ( ) -> Optional[Any]: with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(__lowercase ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def a_ ( ) -> Optional[int]: with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def a_ ( ) -> Dict: with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(__lowercase ): http_head('https://huggingface.co' )
686
0
'''simple docstring''' import argparse import os import shutil import torch from emmental.modules import MagnitudeBinarizer, ThresholdBinarizer, TopKBinarizer def snake_case_ ( SCREAMING_SNAKE_CASE__ ): '''simple docstring''' _snake_case = args.pruning_method _snake_case = args.threshold _snake_case = args.model_name_or_path.rstrip("/" ) _snake_case = args.target_model_path print(f'''Load fine-pruned model from {model_name_or_path}''' ) _snake_case = torch.load(os.path.join(__lowerCAmelCase , "pytorch_model.bin" ) ) _snake_case = {} for name, tensor in model.items(): if "embeddings" in name or "LayerNorm" in name or "pooler" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) elif "classifier" in name or "qa_output" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) elif "bias" in name: _snake_case = tensor print(f'''Copied layer {name}''' ) else: if pruning_method == "magnitude": _snake_case = MagnitudeBinarizer.apply(inputs=__lowerCAmelCase , threshold=__lowerCAmelCase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "topK": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = TopKBinarizer.apply(__lowerCAmelCase , __lowerCAmelCase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "sigmoied_threshold": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = ThresholdBinarizer.apply(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) elif pruning_method == "l0": if "mask_scores" in name: continue _snake_case = name[:-6] _snake_case = model[f'''{prefix_}mask_scores'''] _snake_case = -0.1, 1.1 _snake_case = torch.sigmoid(__lowerCAmelCase ) _snake_case = s * (r - l) + l _snake_case = s_bar.clamp(min=0.0 , max=1.0 ) _snake_case = tensor * mask print(f'''Pruned layer {name}''' ) else: raise ValueError("Unknown pruning method" ) if target_model_path is None: _snake_case = os.path.join( os.path.dirname(__lowerCAmelCase ) , f'''bertarized_{os.path.basename(__lowerCAmelCase )}''' ) if not os.path.isdir(__lowerCAmelCase ): shutil.copytree(__lowerCAmelCase , __lowerCAmelCase ) print(f'''\nCreated folder {target_model_path}''' ) torch.save(__lowerCAmelCase , os.path.join(__lowerCAmelCase , "pytorch_model.bin" ) ) print("\nPruned model saved! See you later!" ) if __name__ == "__main__": __magic_name__ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( """--pruning_method""", choices=["""l0""", """magnitude""", """topK""", """sigmoied_threshold"""], type=str, required=True, help=( """Pruning Method (l0 = L0 regularization, magnitude = Magnitude pruning, topK = Movement pruning,""" """ sigmoied_threshold = Soft movement pruning)""" ), ) parser.add_argument( """--threshold""", type=float, required=False, help=( """For `magnitude` and `topK`, it is the level of remaining weights (in %) in the fine-pruned model.""" """For `sigmoied_threshold`, it is the threshold \tau against which the (sigmoied) scores are compared.""" """Not needed for `l0`""" ), ) parser.add_argument( """--model_name_or_path""", type=str, required=True, help="""Folder containing the model that was previously fine-pruned""", ) parser.add_argument( """--target_model_path""", default=None, type=str, required=False, help="""Folder containing the model that was previously fine-pruned""", ) __magic_name__ : Union[str, Any] = parser.parse_args() main(args)
718
'''simple docstring''' import unittest from transformers import SPIECE_UNDERLINE, ReformerTokenizer, ReformerTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ : Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece @require_tokenizers class __SCREAMING_SNAKE_CASE ( __UpperCamelCase , unittest.TestCase ): '''simple docstring''' UpperCAmelCase__ : Any = ReformerTokenizer UpperCAmelCase__ : List[str] = ReformerTokenizerFast UpperCAmelCase__ : Any = True UpperCAmelCase__ : Union[str, Any] = False UpperCAmelCase__ : Optional[Any] = True def UpperCamelCase( self ): super().setUp() _snake_case = ReformerTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase( self ): _snake_case = "<s>" _snake_case = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase ) , lowerCamelCase ) def UpperCamelCase( self ): _snake_case = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , "<unk>" ) self.assertEqual(vocab_keys[1] , "<s>" ) self.assertEqual(vocab_keys[-1] , "j" ) self.assertEqual(len(lowerCamelCase ) , 1_000 ) def UpperCamelCase( self ): self.assertEqual(self.get_tokenizer().vocab_size , 1_000 ) def UpperCamelCase( self ): if not self.test_rust_tokenizer: return _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = "I was born in 92000, and this is falsé." _snake_case = tokenizer.tokenize(lowerCamelCase ) _snake_case = rust_tokenizer.tokenize(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) _snake_case = tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) _snake_case = rust_tokenizer.encode(lowerCamelCase , add_special_tokens=lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) _snake_case = self.get_rust_tokenizer() _snake_case = tokenizer.encode(lowerCamelCase ) _snake_case = rust_tokenizer.encode(lowerCamelCase ) self.assertListEqual(lowerCamelCase , lowerCamelCase ) def UpperCamelCase( self , lowerCamelCase=15 ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): _snake_case = self.rust_tokenizer_class.from_pretrained(lowerCamelCase , **lowerCamelCase ) # Simple input _snake_case = "This is a simple input" _snake_case = ["This is a simple input 1", "This is a simple input 2"] _snake_case = ("This is a simple input", "This is a pair") _snake_case = [ ("This is a simple input 1", "This is a simple input 2"), ("This is a simple pair 1", "This is a simple pair 2"), ] # Simple input tests self.assertRaises(lowerCamelCase , tokenizer_r.encode , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises(lowerCamelCase , tokenizer_r.encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Simple input self.assertRaises( lowerCamelCase , tokenizer_r.batch_encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" , ) # Pair input self.assertRaises(lowerCamelCase , tokenizer_r.encode , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises(lowerCamelCase , tokenizer_r.encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" ) # Pair input self.assertRaises( lowerCamelCase , tokenizer_r.batch_encode_plus , lowerCamelCase , max_length=lowerCamelCase , padding="max_length" , ) def UpperCamelCase( self ): pass def UpperCamelCase( self ): _snake_case = ReformerTokenizer(lowerCamelCase , keep_accents=lowerCamelCase ) _snake_case = tokenizer.tokenize("This is a test" ) self.assertListEqual(lowerCamelCase , ["▁This", "▁is", "▁a", "▁t", "est"] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase ) , [285, 46, 10, 170, 382] , ) _snake_case = tokenizer.tokenize("I was born in 92000, and this is falsé." ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "9", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "é", ".", ] , ) _snake_case = tokenizer.convert_tokens_to_ids(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _snake_case = tokenizer.convert_ids_to_tokens(lowerCamelCase ) self.assertListEqual( lowerCamelCase , [ SPIECE_UNDERLINE + "I", SPIECE_UNDERLINE + "was", SPIECE_UNDERLINE + "b", "or", "n", SPIECE_UNDERLINE + "in", SPIECE_UNDERLINE + "", "<unk>", "2", "0", "0", "0", ",", SPIECE_UNDERLINE + "and", SPIECE_UNDERLINE + "this", SPIECE_UNDERLINE + "is", SPIECE_UNDERLINE + "f", "al", "s", "<unk>", ".", ] , ) @cached_property def UpperCamelCase( self ): return ReformerTokenizer.from_pretrained("google/reformer-crime-and-punishment" ) @slow def UpperCamelCase( self ): _snake_case = "Hello World!" _snake_case = [126, 32, 262, 152, 38, 72, 287] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @slow def UpperCamelCase( self ): _snake_case = ( "This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will" " add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth" ) _snake_case = [ 108, 265, 24, 111, 4, 258, 156, 35, 28, 275, 3, 259, 297, 260, 84, 4, 35, 110, 44, 8, 259, 91, 268, 21, 11, 209, 274, 109, 266, 277, 117, 86, 93, 315, 258, 278, 258, 277, 258, 0, 258, 288, 258, 319, 258, 0, 258, 0, 258, 0, 258, 0, 258, 287, 258, 315, 258, 289, 258, 278, 99, 269, 266, 262, 8, 259, 241, 4, 217, 230, 268, 266, 55, 168, 106, 75, 193, 266, 223, 27, 49, 26, 282, 25, 264, 299, 19, 26, 0, 258, 277, 117, 86, 93, 176, 183, 270, 11, 262, 42, 61, 265, ] self.assertListEqual(lowerCamelCase , self.big_tokenizer.encode(lowerCamelCase ) ) @require_torch @slow def UpperCamelCase( self ): import torch from transformers import ReformerConfig, ReformerModel # Build sequence _snake_case = list(self.big_tokenizer.get_vocab().keys() )[:10] _snake_case = " ".join(lowerCamelCase ) _snake_case = self.big_tokenizer.encode_plus(lowerCamelCase , return_tensors="pt" ) _snake_case = self.big_tokenizer.batch_encode_plus([sequence, sequence] , return_tensors="pt" ) _snake_case = ReformerConfig() # The input gets padded during training so adjust the axial position encodings from the pretrained model value of (512, 1024) _snake_case = encoded_sequence["input_ids"].shape _snake_case = ReformerModel(lowerCamelCase ) # Reformer has config.vocab_size == tokenizer.vocab_size == len(tokenizer) - 1 = 320; len(tokenizer) is 321 (including a pad token with id 320) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**lowerCamelCase ) model(**lowerCamelCase ) @slow def UpperCamelCase( self ): # fmt: off _snake_case = {"input_ids": [[108, 265, 24, 111, 4, 258, 156, 7, 51, 279, 58, 7, 76, 25, 69, 278], [140, 243, 264, 134, 17, 267, 77, 263, 22, 262, 297, 258, 304, 177, 279, 266, 14, 89, 13, 35, 261, 299, 272, 137, 275, 278]], "attention_mask": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # This tokenizer does not know some characters like ")". # That is the reason why we use very simple texts here. # Also see https://github.com/huggingface/transformers/pull/11737#issuecomment-850769064 _snake_case = [ "This is a very simple sentence.", "The quick brown fox jumps over the lazy dog.", ] self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase , model_name="google/reformer-crime-and-punishment" , revision="0e6c3decb8211d49bf881013425dc8b0448b3f5a" , padding=lowerCamelCase , sequences=lowerCamelCase , )
368
0
from __future__ import annotations def _SCREAMING_SNAKE_CASE ( __snake_case , __snake_case ) -> list[str]: if partitions <= 0: raise ValueError("""partitions must be a positive number!""" ) if partitions > number_of_bytes: raise ValueError("""partitions can not > number_of_bytes!""" ) _UpperCAmelCase = number_of_bytes // partitions _UpperCAmelCase = [] for i in range(__snake_case ): _UpperCAmelCase = i * bytes_per_partition + 1 _UpperCAmelCase = ( number_of_bytes if i == partitions - 1 else (i + 1) * bytes_per_partition ) allocation_list.append(f"""{start_bytes}-{end_bytes}""" ) return allocation_list if __name__ == "__main__": import doctest doctest.testmod()
108
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_torch_available, ) a = { "configuration_speecht5": [ "SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP", "SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP", "SpeechT5Config", "SpeechT5HifiGanConfig", ], "feature_extraction_speecht5": ["SpeechT5FeatureExtractor"], "processing_speecht5": ["SpeechT5Processor"], } try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["SpeechT5Tokenizer"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ "SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST", "SpeechT5ForSpeechToText", "SpeechT5ForSpeechToSpeech", "SpeechT5ForTextToSpeech", "SpeechT5Model", "SpeechT5PreTrainedModel", "SpeechT5HifiGan", ] if TYPE_CHECKING: from .configuration_speechta import ( SPEECHT5_PRETRAINED_CONFIG_ARCHIVE_MAP, SPEECHT5_PRETRAINED_HIFIGAN_CONFIG_ARCHIVE_MAP, SpeechTaConfig, SpeechTaHifiGanConfig, ) from .feature_extraction_speechta import SpeechTaFeatureExtractor from .processing_speechta import SpeechTaProcessor try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_speechta import SpeechTaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speechta import ( SPEECHT5_PRETRAINED_MODEL_ARCHIVE_LIST, SpeechTaForSpeechToSpeech, SpeechTaForSpeechToText, SpeechTaForTextToSpeech, SpeechTaHifiGan, SpeechTaModel, SpeechTaPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
518
0
import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class _snake_case ( _UpperCAmelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE : List[str] = KandinskyVaaControlnetImgaImgPipeline SCREAMING_SNAKE_CASE : List[str] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] SCREAMING_SNAKE_CASE : Optional[Any] = ['''image_embeds''', '''negative_image_embeds''', '''image''', '''hint'''] SCREAMING_SNAKE_CASE : Tuple = [ '''generator''', '''height''', '''width''', '''strength''', '''guidance_scale''', '''num_inference_steps''', '''return_dict''', '''guidance_scale''', '''num_images_per_prompt''', '''output_type''', '''return_dict''', ] SCREAMING_SNAKE_CASE : Dict = False @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 32 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.time_input_dim @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return self.time_input_dim * 4 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return 1_00 @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase = { 'in_channels': 8, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image_hint', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } lowerCAmelCase = UNetaDConditionModel(**A_ ) return model @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' torch.manual_seed(0 ) lowerCAmelCase = VQModel(**self.dummy_movq_kwargs ) return model def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = self.dummy_unet lowerCAmelCase = self.dummy_movq lowerCAmelCase = { 'num_train_timesteps': 10_00, 'beta_schedule': 'linear', 'beta_start': 0.00_085, 'beta_end': 0.012, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } lowerCAmelCase = DDIMScheduler(**A_ ) lowerCAmelCase = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 ): '''simple docstring''' lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(A_ ) ).to(A_ ) lowerCAmelCase = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( A_ ) # create init_image lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) lowerCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCAmelCase = Image.fromarray(np.uinta(A_ ) ).convert('RGB' ).resize((2_56, 2_56) ) # create hint lowerCAmelCase = floats_tensor((1, 3, 64, 64) , rng=random.Random(A_ ) ).to(A_ ) if str(A_ ).startswith('mps' ): lowerCAmelCase = torch.manual_seed(A_ ) else: lowerCAmelCase = torch.Generator(device=A_ ).manual_seed(A_ ) lowerCAmelCase = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'hint': hint, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = 'cpu' lowerCAmelCase = self.get_dummy_components() lowerCAmelCase = self.pipeline_class(**A_ ) lowerCAmelCase = pipe.to(A_ ) pipe.set_progress_bar_config(disable=A_ ) lowerCAmelCase = pipe(**self.get_dummy_inputs(A_ ) ) lowerCAmelCase = output.images lowerCAmelCase = pipe( **self.get_dummy_inputs(A_ ) , return_dict=A_ , )[0] lowerCAmelCase = image[0, -3:, -3:, -1] lowerCAmelCase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowerCAmelCase = np.array( [0.54_985_034, 0.55_509_365, 0.52_561_504, 0.5_570_494, 0.5_593_818, 0.5_263_979, 0.50_285_643, 0.5_069_846, 0.51_196_736] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_slice.flatten()}' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), F' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}' @slow @require_torch_gpu class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy' ) lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) lowerCAmelCase = init_image.resize((5_12, 5_12) ) lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/hint_image_cat.png' ) lowerCAmelCase = torch.from_numpy(np.array(A_ ) ).float() / 2_55.0 lowerCAmelCase = hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowerCAmelCase = 'A robot, 4k photo' lowerCAmelCase = KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(A_ ) lowerCAmelCase = KandinskyVaaControlnetImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-controlnet-depth' , torch_dtype=torch.floataa ) lowerCAmelCase = pipeline.to(A_ ) pipeline.set_progress_bar_config(disable=A_ ) lowerCAmelCase = torch.Generator(device='cpu' ).manual_seed(0 ) lowerCAmelCase , lowerCAmelCase = pipe_prior( A_ , image=A_ , strength=0.85 , generator=A_ , negative_prompt='' , ).to_tuple() lowerCAmelCase = pipeline( image=A_ , image_embeds=A_ , negative_image_embeds=A_ , hint=A_ , generator=A_ , num_inference_steps=1_00 , height=5_12 , width=5_12 , strength=0.5 , output_type='np' , ) lowerCAmelCase = output.images[0] assert image.shape == (5_12, 5_12, 3) assert_mean_pixel_difference(A_ , A_ )
705
'''simple docstring''' import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch _UpperCamelCase : Union[str, Any] = logging.get_logger(__name__) class _snake_case : def __init__( self , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None ): '''simple docstring''' if not conversation_id: lowerCAmelCase = uuid.uuida() if past_user_inputs is None: lowerCAmelCase = [] if generated_responses is None: lowerCAmelCase = [] lowerCAmelCase = conversation_id lowerCAmelCase = past_user_inputs lowerCAmelCase = generated_responses lowerCAmelCase = text def __eq__( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = False ): '''simple docstring''' if self.new_user_input: if overwrite: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" was overwritten ' F'with: "{text}".' ) lowerCAmelCase = text else: logger.warning( F'User input added while unprocessed input was existing: "{self.new_user_input}" new input ' F'ignored: "{text}". Set `overwrite` to True to overwrite unprocessed user input' ) else: lowerCAmelCase = text def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) lowerCAmelCase = None def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' self.generated_responses.append(_SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self ): '''simple docstring''' lowerCAmelCase = F'Conversation id: {self.uuid} \n' for is_user, text in self.iter_texts(): lowerCAmelCase = 'user' if is_user else 'bot' output += F'{name} >> {text} \n' return output @add_end_docstrings( a_ , R''' min_length_for_response (`int`, *optional*, defaults to 32): The minimum length (in number of tokens) for a response. minimum_tokens (`int`, *optional*, defaults to 10): The minimum length of tokens to leave for a response. ''' , ) class _snake_case ( a_ ): def __init__( self , *_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' super().__init__(*_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.tokenizer.pad_token_id is None: lowerCAmelCase = self.tokenizer.eos_token def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = {} lowerCAmelCase = {} lowerCAmelCase = {} if min_length_for_response is not None: lowerCAmelCase = min_length_for_response if minimum_tokens is not None: lowerCAmelCase = minimum_tokens if "max_length" in generate_kwargs: lowerCAmelCase = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: lowerCAmelCase = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(_SCREAMING_SNAKE_CASE ) return preprocess_params, forward_params, postprocess_params def __call__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=0 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = super().__call__(_SCREAMING_SNAKE_CASE , num_workers=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) == 1: return outputs[0] return outputs def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=32 ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( F'Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. ' 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): lowerCAmelCase = self.tokenizer._build_conversation_input_ids(_SCREAMING_SNAKE_CASE ) else: # If the tokenizer cannot handle conversations, we default to only the old version lowerCAmelCase = self._legacy_parse_and_tokenize(_SCREAMING_SNAKE_CASE ) if self.framework == "pt": lowerCAmelCase = torch.LongTensor([input_ids] ) elif self.framework == "tf": lowerCAmelCase = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=10 , **_SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = generate_kwargs.get('max_length' , self.model.config.max_length ) lowerCAmelCase = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(F'Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})' ) lowerCAmelCase = max_length - minimum_tokens lowerCAmelCase = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: lowerCAmelCase = model_inputs['attention_mask'][:, -trim:] lowerCAmelCase = model_inputs.pop('conversation' ) lowerCAmelCase = max_length lowerCAmelCase = self.model.generate(**_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE ) if self.model.config.is_encoder_decoder: lowerCAmelCase = 1 else: lowerCAmelCase = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=True ): '''simple docstring''' lowerCAmelCase = model_outputs['output_ids'] lowerCAmelCase = self.tokenizer.decode( output_ids[0] , skip_special_tokens=_SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(_SCREAMING_SNAKE_CASE ) return conversation def _SCREAMING_SNAKE_CASE ( self , _SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCAmelCase = self.tokenizer.eos_token_id lowerCAmelCase = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(_SCREAMING_SNAKE_CASE , add_special_tokens=_SCREAMING_SNAKE_CASE ) ) if len(_SCREAMING_SNAKE_CASE ) > self.tokenizer.model_max_length: lowerCAmelCase = input_ids[-self.tokenizer.model_max_length :] return input_ids
514
0
import random from .binary_exp_mod import bin_exp_mod def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1_000 ): '''simple docstring''' if n < 2: return False if n % 2 == 0: return n == 2 # this means n is odd __UpperCamelCase :List[str] = n - 1 __UpperCamelCase :Union[str, Any] = 0 while d % 2 == 0: d /= 2 exp += 1 # n - 1=d*(2**exp) __UpperCamelCase :int = 0 while count < prec: __UpperCamelCase :int = random.randint(2 , n - 1 ) __UpperCamelCase :Union[str, Any] = bin_exp_mod(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if b != 1: __UpperCamelCase :Any = True for _ in range(SCREAMING_SNAKE_CASE ): if b == n - 1: __UpperCamelCase :int = False break __UpperCamelCase :Union[str, Any] = b * b b %= n if flag: return False count += 1 return True if __name__ == "__main__": __lowercase = abs(int(input('''Enter bound : ''').strip())) print('''Here\'s the list of primes:''') print(''', '''.join(str(i) for i in range(n + 1) if is_prime_big(i)))
167
import argparse import json from typing import List from ltp import LTP from transformers import BertTokenizer def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' if ( (cp >= 0X4_e_0_0 and cp <= 0X9_f_f_f) or (cp >= 0X3_4_0_0 and cp <= 0X4_d_b_f) # or (cp >= 0X2_0_0_0_0 and cp <= 0X2_a_6_d_f) # or (cp >= 0X2_a_7_0_0 and cp <= 0X2_b_7_3_f) # or (cp >= 0X2_b_7_4_0 and cp <= 0X2_b_8_1_f) # or (cp >= 0X2_b_8_2_0 and cp <= 0X2_c_e_a_f) # or (cp >= 0Xf_9_0_0 and cp <= 0Xf_a_f_f) or (cp >= 0X2_f_8_0_0 and cp <= 0X2_f_a_1_f) # ): # return True return False def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' for char in word: __UpperCamelCase :str = ord(SCREAMING_SNAKE_CASE ) if not _is_chinese_char(SCREAMING_SNAKE_CASE ): return 0 return 1 def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :List[Any] = set() for token in tokens: __UpperCamelCase :Tuple = len(SCREAMING_SNAKE_CASE ) > 1 and is_chinese(SCREAMING_SNAKE_CASE ) if chinese_word: word_set.add(SCREAMING_SNAKE_CASE ) __UpperCamelCase :int = list(SCREAMING_SNAKE_CASE ) return word_list def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' if not chinese_word_set: return bert_tokens __UpperCamelCase :Dict = max([len(SCREAMING_SNAKE_CASE ) for w in chinese_word_set] ) __UpperCamelCase :str = bert_tokens __UpperCamelCase , __UpperCamelCase :int = 0, len(SCREAMING_SNAKE_CASE ) while start < end: __UpperCamelCase :Optional[int] = True if is_chinese(bert_word[start] ): __UpperCamelCase :Dict = min(end - start , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE , 1 , -1 ): __UpperCamelCase :int = ''''''.join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): __UpperCamelCase :Union[str, Any] = '''##''' + bert_word[j] __UpperCamelCase :Dict = start + i __UpperCamelCase :Dict = False break if single_word: start += 1 return bert_word def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Tuple = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): __UpperCamelCase :List[str] = ltp_tokenizer.seg(lines[i : i + 100] )[0] __UpperCamelCase :int = [get_chinese_word(SCREAMING_SNAKE_CASE ) for r in res] ltp_res.extend(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Any = [] for i in range(0 , len(SCREAMING_SNAKE_CASE ) , 100 ): __UpperCamelCase :List[str] = bert_tokenizer(lines[i : i + 100] , add_special_tokens=SCREAMING_SNAKE_CASE , truncation=SCREAMING_SNAKE_CASE , max_length=512 ) bert_res.extend(res['''input_ids'''] ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) __UpperCamelCase :List[Any] = [] for input_ids, chinese_word in zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): __UpperCamelCase :str = [] for id in input_ids: __UpperCamelCase :Dict = bert_tokenizer._convert_id_to_token(SCREAMING_SNAKE_CASE ) input_tokens.append(SCREAMING_SNAKE_CASE ) __UpperCamelCase :Dict = add_sub_symbol(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCamelCase :Optional[int] = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(SCREAMING_SNAKE_CASE ): if token[:2] == "##": __UpperCamelCase :Union[str, Any] = token[2:] # save chinese tokens' pos if len(SCREAMING_SNAKE_CASE ) == 1 and _is_chinese_char(ord(SCREAMING_SNAKE_CASE ) ): ref_id.append(SCREAMING_SNAKE_CASE ) ref_ids.append(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) return ref_ids def lowerCamelCase ( SCREAMING_SNAKE_CASE ): '''simple docstring''' with open(args.file_name , '''r''' , encoding='''utf-8''' ) as f: __UpperCamelCase :Any = f.readlines() __UpperCamelCase :str = [line.strip() for line in data if len(SCREAMING_SNAKE_CASE ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' __UpperCamelCase :Optional[Any] = LTP(args.ltp ) # faster in GPU device __UpperCamelCase :Union[str, Any] = BertTokenizer.from_pretrained(args.bert ) __UpperCamelCase :Any = prepare_ref(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) with open(args.save_path , '''w''' , encoding='''utf-8''' ) as f: __UpperCamelCase :Optional[Any] = [json.dumps(SCREAMING_SNAKE_CASE ) + '''\n''' for ref in ref_ids] f.writelines(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = argparse.ArgumentParser(description='''prepare_chinese_ref''') parser.add_argument( '''--file_name''', type=str, default='''./resources/chinese-demo.txt''', help='''file need process, same as training data in lm''', ) parser.add_argument( '''--ltp''', type=str, default='''./resources/ltp''', help='''resources for LTP tokenizer, usually a path''' ) parser.add_argument('''--bert''', type=str, default='''./resources/robert''', help='''resources for Bert tokenizer''') parser.add_argument('''--save_path''', type=str, default='''./resources/ref.txt''', help='''path to save res''') __lowercase = parser.parse_args() main(args)
167
1
def snake_case__ ( __SCREAMING_SNAKE_CASE = 1000 ) -> int: UpperCAmelCase_ , UpperCAmelCase_ = 1, 1 UpperCAmelCase_ = 2 while True: UpperCAmelCase_ = 0 UpperCAmelCase_ = fa + fa UpperCAmelCase_ , UpperCAmelCase_ = fa, f index += 1 for _ in str(__SCREAMING_SNAKE_CASE ): i += 1 if i == n: break return index if __name__ == "__main__": print(solution(int(str(input()).strip())))
23
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/config.json", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/config.json", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/config.json" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/config.json" ), } class lowerCamelCase ( lowercase__ ): '''simple docstring''' lowerCAmelCase_ : List[str] = 'xlm-roberta' def __init__( self , lowerCAmelCase=3_0522 , lowerCAmelCase=768 , lowerCAmelCase=12 , lowerCAmelCase=12 , lowerCAmelCase=3072 , lowerCAmelCase="gelu" , lowerCAmelCase=0.1 , lowerCAmelCase=0.1 , lowerCAmelCase=512 , lowerCAmelCase=2 , lowerCAmelCase=0.02 , lowerCAmelCase=1e-1_2 , lowerCAmelCase=1 , lowerCAmelCase=0 , lowerCAmelCase=2 , lowerCAmelCase="absolute" , lowerCAmelCase=True , lowerCAmelCase=None , **lowerCAmelCase , ): super().__init__(pad_token_id=lowerCAmelCase , bos_token_id=lowerCAmelCase , eos_token_id=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase_ = vocab_size UpperCAmelCase_ = hidden_size UpperCAmelCase_ = num_hidden_layers UpperCAmelCase_ = num_attention_heads UpperCAmelCase_ = hidden_act UpperCAmelCase_ = intermediate_size UpperCAmelCase_ = hidden_dropout_prob UpperCAmelCase_ = attention_probs_dropout_prob UpperCAmelCase_ = max_position_embeddings UpperCAmelCase_ = type_vocab_size UpperCAmelCase_ = initializer_range UpperCAmelCase_ = layer_norm_eps UpperCAmelCase_ = position_embedding_type UpperCAmelCase_ = use_cache UpperCAmelCase_ = classifier_dropout class lowerCamelCase ( lowercase__ ): '''simple docstring''' @property def A__ ( self ): if self.task == "multiple-choice": UpperCAmelCase_ = {0: "batch", 1: "choice", 2: "sequence"} else: UpperCAmelCase_ = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
23
1
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto import CONFIG_MAPPING __snake_case : List[Any] = logging.get_logger(__name__) __snake_case : Optional[Any] = { 'ut/deta': 'https://huggingface.co/ut/deta/resolve/main/config.json', } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'deta' SCREAMING_SNAKE_CASE = { 'hidden_size': 'd_model', 'num_attention_heads': 'encoder_attention_heads', } def __init__( self: Union[str, Any] , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: int=900 , _SCREAMING_SNAKE_CASE: str=2048 , _SCREAMING_SNAKE_CASE: Any=6 , _SCREAMING_SNAKE_CASE: Tuple=2048 , _SCREAMING_SNAKE_CASE: Optional[Any]=8 , _SCREAMING_SNAKE_CASE: Union[str, Any]=6 , _SCREAMING_SNAKE_CASE: str=1024 , _SCREAMING_SNAKE_CASE: List[str]=8 , _SCREAMING_SNAKE_CASE: List[Any]=0.0 , _SCREAMING_SNAKE_CASE: Dict=True , _SCREAMING_SNAKE_CASE: List[str]="relu" , _SCREAMING_SNAKE_CASE: Any=256 , _SCREAMING_SNAKE_CASE: Tuple=0.1 , _SCREAMING_SNAKE_CASE: Optional[int]=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.0 , _SCREAMING_SNAKE_CASE: Optional[Any]=0.02 , _SCREAMING_SNAKE_CASE: Any=1.0 , _SCREAMING_SNAKE_CASE: Dict=True , _SCREAMING_SNAKE_CASE: Optional[int]=False , _SCREAMING_SNAKE_CASE: int="sine" , _SCREAMING_SNAKE_CASE: Any=5 , _SCREAMING_SNAKE_CASE: Optional[int]=4 , _SCREAMING_SNAKE_CASE: Optional[Any]=4 , _SCREAMING_SNAKE_CASE: Union[str, Any]=True , _SCREAMING_SNAKE_CASE: Any=300 , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: List[str]=True , _SCREAMING_SNAKE_CASE: str=1 , _SCREAMING_SNAKE_CASE: int=5 , _SCREAMING_SNAKE_CASE: List[str]=2 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1 , _SCREAMING_SNAKE_CASE: Any=1 , _SCREAMING_SNAKE_CASE: Any=5 , _SCREAMING_SNAKE_CASE: int=2 , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: List[str]=0.25 , **_SCREAMING_SNAKE_CASE: int , ) -> Dict: """simple docstring""" if backbone_config is None: logger.info("`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.") __lowerCAmelCase : Any = CONFIG_MAPPING["resnet"](out_features=["stage2", "stage3", "stage4"]) else: if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE): __lowerCAmelCase : List[str] = backbone_config.pop("model_type") __lowerCAmelCase : List[str] = CONFIG_MAPPING[backbone_model_type] __lowerCAmelCase : Optional[Any] = config_class.from_dict(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : int = backbone_config __lowerCAmelCase : List[Any] = num_queries __lowerCAmelCase : Any = max_position_embeddings __lowerCAmelCase : Optional[Any] = d_model __lowerCAmelCase : str = encoder_ffn_dim __lowerCAmelCase : Union[str, Any] = encoder_layers __lowerCAmelCase : int = encoder_attention_heads __lowerCAmelCase : Optional[int] = decoder_ffn_dim __lowerCAmelCase : int = decoder_layers __lowerCAmelCase : List[str] = decoder_attention_heads __lowerCAmelCase : Optional[Any] = dropout __lowerCAmelCase : str = attention_dropout __lowerCAmelCase : Tuple = activation_dropout __lowerCAmelCase : Tuple = activation_function __lowerCAmelCase : Dict = init_std __lowerCAmelCase : Optional[Any] = init_xavier_std __lowerCAmelCase : Any = encoder_layerdrop __lowerCAmelCase : Optional[int] = auxiliary_loss __lowerCAmelCase : Any = position_embedding_type # deformable attributes __lowerCAmelCase : List[str] = num_feature_levels __lowerCAmelCase : int = encoder_n_points __lowerCAmelCase : List[Any] = decoder_n_points __lowerCAmelCase : Optional[Any] = two_stage __lowerCAmelCase : Optional[int] = two_stage_num_proposals __lowerCAmelCase : Any = with_box_refine __lowerCAmelCase : Any = assign_first_stage if two_stage is True and with_box_refine is False: raise ValueError("If two_stage is True, with_box_refine must be True.") # Hungarian matcher __lowerCAmelCase : Dict = class_cost __lowerCAmelCase : Optional[Any] = bbox_cost __lowerCAmelCase : Tuple = giou_cost # Loss coefficients __lowerCAmelCase : str = mask_loss_coefficient __lowerCAmelCase : List[Any] = dice_loss_coefficient __lowerCAmelCase : List[Any] = bbox_loss_coefficient __lowerCAmelCase : Optional[int] = giou_loss_coefficient __lowerCAmelCase : List[str] = eos_coefficient __lowerCAmelCase : int = focal_alpha super().__init__(is_encoder_decoder=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) @property def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" return self.encoder_attention_heads @property def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" return self.d_model def _SCREAMING_SNAKE_CASE ( self: Optional[int]) -> List[Any]: """simple docstring""" __lowerCAmelCase : Optional[Any] = copy.deepcopy(self.__dict__) __lowerCAmelCase : Union[str, Any] = self.backbone_config.to_dict() __lowerCAmelCase : Dict = self.__class__.model_type return output
293
"""simple docstring""" import torch import torch.nn as nn from transformers.modeling_utils import ModuleUtilsMixin from transformers.models.ta.modeling_ta import TaBlock, TaConfig, TaLayerNorm from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' @register_to_config def __init__( self: List[str] , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: float , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: int , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: bool = False , ) -> Any: """simple docstring""" super().__init__() __lowerCAmelCase : str = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = nn.Embedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) __lowerCAmelCase : str = False __lowerCAmelCase : Optional[Any] = nn.Dropout(p=_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = TaConfig( vocab_size=_SCREAMING_SNAKE_CASE , d_model=_SCREAMING_SNAKE_CASE , num_heads=_SCREAMING_SNAKE_CASE , d_kv=_SCREAMING_SNAKE_CASE , d_ff=_SCREAMING_SNAKE_CASE , dropout_rate=_SCREAMING_SNAKE_CASE , feed_forward_proj=_SCREAMING_SNAKE_CASE , is_decoder=_SCREAMING_SNAKE_CASE , is_encoder_decoder=_SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : str = nn.ModuleList() for lyr_num in range(_SCREAMING_SNAKE_CASE): __lowerCAmelCase : int = TaBlock(_SCREAMING_SNAKE_CASE) self.encoders.append(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Dict = TaLayerNorm(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Any = nn.Dropout(p=_SCREAMING_SNAKE_CASE) def _SCREAMING_SNAKE_CASE ( self: Any , _SCREAMING_SNAKE_CASE: Tuple , _SCREAMING_SNAKE_CASE: str) -> List[str]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.token_embedder(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : Optional[Any] = encoder_input_tokens.shape[1] __lowerCAmelCase : List[Any] = torch.arange(_SCREAMING_SNAKE_CASE , device=encoder_input_tokens.device) x += self.position_encoding(_SCREAMING_SNAKE_CASE) __lowerCAmelCase : List[Any] = self.dropout_pre(_SCREAMING_SNAKE_CASE) # inverted the attention mask __lowerCAmelCase : List[Any] = encoder_input_tokens.size() __lowerCAmelCase : Any = self.get_extended_attention_mask(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE) for lyr in self.encoders: __lowerCAmelCase : Union[str, Any] = lyr(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE)[0] __lowerCAmelCase : int = self.layer_norm(_SCREAMING_SNAKE_CASE) return self.dropout_post(_SCREAMING_SNAKE_CASE), encoder_inputs_mask
293
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from .tokenization_electra import ElectraTokenizer UpperCamelCase = {"""vocab_file""": """vocab.txt""", """tokenizer_file""": """tokenizer.json"""} UpperCamelCase = { """vocab_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/vocab.txt""" ), """google/electra-base-generator""": """https://huggingface.co/google/electra-base-generator/resolve/main/vocab.txt""", """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/vocab.txt""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/vocab.txt""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/vocab.txt""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/vocab.txt""" ), }, """tokenizer_file""": { """google/electra-small-generator""": ( """https://huggingface.co/google/electra-small-generator/resolve/main/tokenizer.json""" ), """google/electra-base-generator""": ( """https://huggingface.co/google/electra-base-generator/resolve/main/tokenizer.json""" ), """google/electra-large-generator""": ( """https://huggingface.co/google/electra-large-generator/resolve/main/tokenizer.json""" ), """google/electra-small-discriminator""": ( """https://huggingface.co/google/electra-small-discriminator/resolve/main/tokenizer.json""" ), """google/electra-base-discriminator""": ( """https://huggingface.co/google/electra-base-discriminator/resolve/main/tokenizer.json""" ), """google/electra-large-discriminator""": ( """https://huggingface.co/google/electra-large-discriminator/resolve/main/tokenizer.json""" ), }, } UpperCamelCase = { """google/electra-small-generator""": 512, """google/electra-base-generator""": 512, """google/electra-large-generator""": 512, """google/electra-small-discriminator""": 512, """google/electra-base-discriminator""": 512, """google/electra-large-discriminator""": 512, } UpperCamelCase = { """google/electra-small-generator""": {"""do_lower_case""": True}, """google/electra-base-generator""": {"""do_lower_case""": True}, """google/electra-large-generator""": {"""do_lower_case""": True}, """google/electra-small-discriminator""": {"""do_lower_case""": True}, """google/electra-base-discriminator""": {"""do_lower_case""": True}, """google/electra-large-discriminator""": {"""do_lower_case""": True}, } class lowerCAmelCase_ ( __UpperCAmelCase ): _UpperCamelCase : Optional[int] = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Tuple = PRETRAINED_INIT_CONFIGURATION _UpperCamelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[str] = ElectraTokenizer def __init__( self , _lowerCAmelCase=None , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase="[UNK]" , _lowerCAmelCase="[SEP]" , _lowerCAmelCase="[PAD]" , _lowerCAmelCase="[CLS]" , _lowerCAmelCase="[MASK]" , _lowerCAmelCase=True , _lowerCAmelCase=None , **_lowerCAmelCase , ): super().__init__( _lowerCAmelCase , tokenizer_file=_lowerCAmelCase , do_lower_case=_lowerCAmelCase , unk_token=_lowerCAmelCase , sep_token=_lowerCAmelCase , pad_token=_lowerCAmelCase , cls_token=_lowerCAmelCase , mask_token=_lowerCAmelCase , tokenize_chinese_chars=_lowerCAmelCase , strip_accents=_lowerCAmelCase , **_lowerCAmelCase , ) _lowercase : int = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , _lowerCAmelCase ) != do_lower_case or normalizer_state.get('strip_accents' , _lowerCAmelCase ) != strip_accents or normalizer_state.get('handle_chinese_chars' , _lowerCAmelCase ) != tokenize_chinese_chars ): _lowercase : Optional[Any] = getattr(_lowerCAmelCase , normalizer_state.pop('type' ) ) _lowercase : str = do_lower_case _lowercase : List[str] = strip_accents _lowercase : Union[str, Any] = tokenize_chinese_chars _lowercase : List[Any] = normalizer_class(**_lowerCAmelCase ) _lowercase : List[str] = do_lower_case def __a ( self , _lowerCAmelCase , _lowerCAmelCase=None ): _lowercase : List[Any] = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : List[Any] = [self.sep_token_id] _lowercase : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def __a ( self , _lowerCAmelCase , _lowerCAmelCase = None ): _lowercase : Tuple = self._tokenizer.model.save(_lowerCAmelCase , name=_lowerCAmelCase ) return tuple(_lowerCAmelCase )
717
from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowerCAmelCase_ : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=1_3 , _lowerCAmelCase=7 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=9_9 , _lowerCAmelCase=3_2 , _lowerCAmelCase=2 , _lowerCAmelCase=4 , _lowerCAmelCase=3_7 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.1 , _lowerCAmelCase=0.1 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=1_6 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , _lowerCAmelCase=1_0_0_0 , ): _lowercase : List[str] = parent _lowercase : Optional[Any] = batch_size _lowercase : str = seq_length _lowercase : Dict = is_training _lowercase : Optional[int] = use_input_mask _lowercase : List[Any] = use_token_type_ids _lowercase : Union[str, Any] = use_labels _lowercase : Optional[Any] = vocab_size _lowercase : Optional[Any] = hidden_size _lowercase : str = num_hidden_layers _lowercase : Tuple = num_attention_heads _lowercase : Optional[Any] = intermediate_size _lowercase : Optional[Any] = hidden_act _lowercase : Union[str, Any] = hidden_dropout_prob _lowercase : Union[str, Any] = attention_probs_dropout_prob _lowercase : int = max_position_embeddings _lowercase : str = type_vocab_size _lowercase : Tuple = type_sequence_label_size _lowercase : Dict = initializer_range _lowercase : List[Any] = num_labels _lowercase : List[str] = num_choices _lowercase : Dict = scope _lowercase : List[Any] = range_bbox def __a ( self ): _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment _lowercase : Optional[int] = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowercase : List[str] = bbox[i, j, 3] _lowercase : Optional[int] = bbox[i, j, 1] _lowercase : int = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowercase : Dict = bbox[i, j, 2] _lowercase : Dict = bbox[i, j, 0] _lowercase : int = t _lowercase : Union[str, Any] = tf.convert_to_tensor(_lowerCAmelCase ) _lowercase : Any = None if self.use_input_mask: _lowercase : int = random_attention_mask([self.batch_size, self.seq_length] ) _lowercase : Tuple = None if self.use_token_type_ids: _lowercase : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowercase : Tuple = None _lowercase : Union[str, Any] = None _lowercase : List[str] = None if self.use_labels: _lowercase : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowercase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowercase : str = ids_tensor([self.batch_size] , self.num_choices ) _lowercase : Any = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMModel(config=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[Any] = model(_lowerCAmelCase , _lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowercase : List[str] = model(_lowerCAmelCase , _lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Optional[Any] = TFLayoutLMForMaskedLM(config=_lowerCAmelCase ) _lowercase : Any = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : str = self.num_labels _lowercase : Tuple = TFLayoutLMForSequenceClassification(config=_lowerCAmelCase ) _lowercase : int = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Any = self.num_labels _lowercase : Optional[int] = TFLayoutLMForTokenClassification(config=_lowerCAmelCase ) _lowercase : Union[str, Any] = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering(config=_lowerCAmelCase ) _lowercase : str = model(_lowerCAmelCase , _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __a ( self ): _lowercase : Union[str, Any] = self.prepare_config_and_inputs() ( ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ( _lowercase ) , ) : List[Any] = config_and_inputs _lowercase : Optional[Any] = { 'input_ids': input_ids, 'bbox': bbox, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_tf class lowerCAmelCase_ ( __snake_case , __snake_case , unittest.TestCase ): _UpperCamelCase : Optional[int] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) _UpperCamelCase : Union[str, Any] = ( { "feature-extraction": TFLayoutLMModel, "fill-mask": TFLayoutLMForMaskedLM, "text-classification": TFLayoutLMForSequenceClassification, "token-classification": TFLayoutLMForTokenClassification, "zero-shot": TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) _UpperCamelCase : str = False _UpperCamelCase : List[str] = True _UpperCamelCase : Tuple = 10 def __a ( self ): _lowercase : Optional[int] = TFLayoutLMModelTester(self ) _lowercase : str = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=3_7 ) def __a ( self ): self.config_tester.run_common_tests() def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __a ( self ): _lowercase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) @slow def __a ( self ): for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowercase : List[Any] = TFLayoutLMModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip('Onnx compliancy broke with TF 2.10' ) def __a ( self ): pass def __magic_name__ ( ) -> Optional[int]: # Here we prepare a batch of 2 sequences to test a LayoutLM forward pass on: # fmt: off _lowercase : Optional[Any] = tf.convert_to_tensor([[101,1_019,1_014,1_016,1_037,12_849,4_747,1_004,14_246,2_278,5_439,4_524,5_002,2_930,2_193,2_930,4_341,3_208,1_005,1_055,2_171,2_848,11_300,3_531,102],[101,4_070,4_034,7_020,1_024,3_058,1_015,1_013,2_861,1_013,6_070,19_274,2_772,6_205,27_814,16_147,16_147,4_343,2_047,10_283,10_969,14_389,1_012,2_338,102]] ) # noqa: E231 _lowercase : Tuple = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 _lowercase : Optional[int] = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1_000,1_000,1_000,1_000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1_000,1_000,1_000,1_000]]] ) # noqa: E231 _lowercase : int = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) _lowercase : Union[str, Any] = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowerCAmelCase_ ( unittest.TestCase ): @slow def __a ( self ): _lowercase : Tuple = TFLayoutLMModel.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[int] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Tuple = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the sequence output on [0, :3, :3] _lowercase : Optional[Any] = tf.convert_to_tensor( [[0.17_85, -0.19_47, -0.04_25], [-0.32_54, -0.28_07, 0.25_53], [-0.53_91, -0.33_22, 0.33_64]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCAmelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] _lowercase : Optional[int] = tf.convert_to_tensor([-0.65_80, -0.02_14, 0.85_52] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCAmelCase , atol=1E-3 ) ) @slow def __a ( self ): # initialize model with randomly initialized sequence classification head _lowercase : Optional[Any] = TFLayoutLMForSequenceClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=2 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Any = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar _lowercase : List[Any] = outputs.loss _lowercase : Any = (2,) self.assertEqual(loss.shape , _lowerCAmelCase ) # test the shape of the logits _lowercase : str = outputs.logits _lowercase : Dict = (2, 2) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Dict = TFLayoutLMForTokenClassification.from_pretrained('microsoft/layoutlm-base-uncased' , num_labels=1_3 ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : str = prepare_layoutlm_batch_inputs() # forward pass _lowercase : Dict = model( input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) # test the shape of the logits _lowercase : Dict = outputs.logits _lowercase : Optional[Any] = tf.convert_to_tensor((2, 2_5, 1_3) ) self.assertEqual(logits.shape , _lowerCAmelCase ) @slow def __a ( self ): # initialize model with randomly initialized token classification head _lowercase : Union[str, Any] = TFLayoutLMForQuestionAnswering.from_pretrained('microsoft/layoutlm-base-uncased' ) _lowercase , _lowercase , _lowercase , _lowercase , _lowercase : List[Any] = prepare_layoutlm_batch_inputs() # forward pass _lowercase : int = model(input_ids=_lowerCAmelCase , bbox=_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) # test the shape of the logits _lowercase : Any = tf.convert_to_tensor((2, 2_5) ) self.assertEqual(outputs.start_logits.shape , _lowerCAmelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCAmelCase )
677
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __magic_name__ : Optional[int] = { '''configuration_table_transformer''': [ '''TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TableTransformerConfig''', '''TableTransformerOnnxConfig''', ] } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __magic_name__ : Dict = [ '''TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TableTransformerForObjectDetection''', '''TableTransformerModel''', '''TableTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TableTransformerConfig, TableTransformerOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_table_transformer import ( TABLE_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TableTransformerForObjectDetection, TableTransformerModel, TableTransformerPreTrainedModel, ) else: import sys __magic_name__ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
497
'''simple docstring''' from __future__ import annotations def A__ ( A_ ) -> list[int]: # This function is recursive _lowercase = len(A_ ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else _lowercase = array[0] _lowercase = False _lowercase = 1 _lowercase = [] while not is_found and i < array_length: if array[i] < pivot: _lowercase = True _lowercase = [element for element in array[i:] if element >= array[i]] _lowercase = longest_subsequence(A_ ) if len(A_ ) > len(A_ ): _lowercase = temp_array else: i += 1 _lowercase = [element for element in array[1:] if element >= pivot] _lowercase = [pivot, *longest_subsequence(A_ )] if len(A_ ) > len(A_ ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
497
1
# Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version lowercase_: Optional[int] = get_logger(__name__) class lowercase__ : """simple docstring""" __UpperCamelCase : Union[str, Any] = 'dummy_data' __UpperCamelCase : int = 'datasets' __UpperCamelCase : Dict = False def __init__( self : str , __a : str , __a : str , __a : Union[Version, str] , __a : Optional[str] = None , __a : bool = False , __a : bool = True , __a : Optional[List[Callable]] = None , ): snake_case__ : int = 0 snake_case__ : Optional[int] = dataset_name snake_case__ : List[str] = cache_dir snake_case__ : Any = use_local_dummy_data snake_case__ : Optional[Any] = config # download_callbacks take a single url as input snake_case__ : List[Callable] = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root snake_case__ : List[Any] = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general snake_case__ : int = str(__a ) # to be downloaded snake_case__ : Optional[Any] = None snake_case__ : Dict = None @property def lowercase ( self : Tuple ): if self._dummy_file is None: snake_case__ : Tuple = self.download_dummy_data() return self._dummy_file @property def lowercase ( self : Dict ): if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowercase ( self : str ): return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowercase ( self : List[Any] ): snake_case__ : Dict = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) snake_case__ : Dict = cached_path( __a , cache_dir=self.cache_dir , extract_compressed_file=__a , force_extract=__a ) return os.path.join(__a , self.dummy_file_name ) @property def lowercase ( self : Any ): return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowercase ( self : Dict ): if self._bucket_url is None: snake_case__ : Optional[int] = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowercase ( self : Any ): # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowercase ( self : Optional[int] , __a : Union[str, Any] , *__a : Optional[int] ): if self.load_existing_dummy_data: # dummy data is downloaded and tested snake_case__ : Any = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned snake_case__ : Optional[Any] = self.dummy_file_name # special case when data_url is a dict if isinstance(__a , __a ): return self.create_dummy_data_dict(__a , __a ) elif isinstance(__a , (list, tuple) ): return self.create_dummy_data_list(__a , __a ) else: return self.create_dummy_data_single(__a , __a ) def lowercase ( self : Optional[int] , __a : Dict , *__a : Tuple ): return self.download_and_extract(__a ) def lowercase ( self : List[str] , __a : str , __a : str ): return self.download_and_extract(__a ) def lowercase ( self : Optional[int] , __a : int , *__a : str , **__a : Optional[Any] ): return path def lowercase ( self : Union[str, Any] ): return {} def lowercase ( self : Union[str, Any] , __a : Tuple , __a : Optional[Any] ): snake_case__ : str = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__a , __a ): for single_url in single_urls: download_callback(__a ) else: snake_case__ : str = single_urls download_callback(__a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__a , __a ): snake_case__ : Any = [os.path.join(__a , urllib.parse.quote_plus(Path(__a ).name ) ) for x in single_urls] else: snake_case__ : List[Any] = single_urls snake_case__ : Tuple = os.path.join(__a , urllib.parse.quote_plus(Path(__a ).name ) ) snake_case__ : List[str] = value # make sure that values are unique if all(isinstance(__a , __a ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique snake_case__ : Optional[Any] = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase ( self : List[str] , __a : str , __a : Any ): snake_case__ : Dict = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one snake_case__ : int = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __a ) ) for url in data_url ) snake_case__ : Optional[Any] = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): snake_case__ : List[Any] = [data_url[0]] * len(__a ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : Optional[Any] = os.path.join(__a , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(__a ) return dummy_data_list def lowercase ( self : Any , __a : Any , __a : Union[str, Any] ): for download_callback in self.download_callbacks: download_callback(__a ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus snake_case__ : Optional[int] = os.path.join(__a , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(__a ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase ( self : Dict ): pass def lowercase ( self : str ): pass def lowercase ( self : Optional[Any] , __a : Optional[Any] ): def _iter_archive_members(__a : Optional[int] ): # this preserves the order of the members inside the ZIP archive snake_case__ : str = Path(self.dummy_file ).parent snake_case__ : Optional[Any] = path.relative_to(__a ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: snake_case__ : Union[str, Any] = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__a ) snake_case__ : List[str] = Path(__a ) snake_case__ : Dict = _iter_archive_members(__a ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(__a ).as_posix(), file_path.open("""rb""" ) def lowercase ( self : Union[str, Any] , __a : Union[str, Any] ): if not isinstance(__a , __a ): snake_case__ : int = [paths] for path in paths: if os.path.isfile(__a ): if os.path.basename(__a ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__a ): if os.path.basename(__a ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(__a ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(__a , __a )
127
from __future__ import annotations from typing import Any def _lowercase ( UpperCAmelCase_): """simple docstring""" if not postfix_notation: return 0 snake_case__ : List[str] = {"""+""", """-""", """*""", """/"""} snake_case__ : list[Any] = [] for token in postfix_notation: if token in operations: snake_case__ , snake_case__ : Tuple = stack.pop(), stack.pop() if token == "+": stack.append(a + b) elif token == "-": stack.append(a - b) elif token == "*": stack.append(a * b) else: if a * b < 0 and a % b != 0: stack.append(a // b + 1) else: stack.append(a // b) else: stack.append(int(UpperCAmelCase_)) return stack.pop() if __name__ == "__main__": import doctest doctest.testmod()
127
1
'''simple docstring''' import numpy as np from scipy.spatial.distance import cdist from sklearn.metrics import fa_score import datasets a : List[Any] = '''\ @inproceedings{kakwani2020indicnlpsuite, title={{IndicNLPSuite: Monolingual Corpora, Evaluation Benchmarks and Pre-trained Multilingual Language Models for Indian Languages}}, author={Divyanshu Kakwani and Anoop Kunchukuttan and Satish Golla and Gokul N.C. and Avik Bhattacharyya and Mitesh M. Khapra and Pratyush Kumar}, year={2020}, booktitle={Findings of EMNLP}, } ''' a : Union[str, Any] = '''\ IndicGLUE is a natural language understanding benchmark for Indian languages. It contains a wide variety of tasks and covers 11 major Indian languages - as, bn, gu, hi, kn, ml, mr, or, pa, ta, te. ''' a : str = ''' Compute IndicGLUE evaluation metric associated to each IndicGLUE dataset. Args: predictions: list of predictions to score (as int64), except for \'cvit-mkb-clsr\' where each prediction is a vector (of float32). references: list of ground truth labels corresponding to the predictions (as int64), except for \'cvit-mkb-clsr\' where each reference is a vector (of float32). Returns: depending on the IndicGLUE subset, one or several of: "accuracy": Accuracy "f1": F1 score "precision": Precision@10 Examples: >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wnli\') # \'wnli\' or any of ["copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md"] >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'wiki-ner\') >>> references = [0, 1] >>> predictions = [0, 1] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'accuracy\': 1.0, \'f1\': 1.0} >>> indic_glue_metric = datasets.load_metric(\'indic_glue\', \'cvit-mkb-clsr\') >>> references = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> predictions = [[0.5, 0.5, 0.5], [0.1, 0.2, 0.3]] >>> results = indic_glue_metric.compute(predictions=predictions, references=references) >>> print(results) {\'precision@10\': 1.0} ''' def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Tuple: return float((preds == labels).mean() ) def __UpperCAmelCase ( _UpperCAmelCase : Dict , _UpperCAmelCase : List[str] ) -> int: __snake_case = simple_accuracy(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = float(fa_score(y_true=_UpperCAmelCase , y_pred=_UpperCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def __UpperCAmelCase ( _UpperCAmelCase : List[str] , _UpperCAmelCase : str ) -> Union[str, Any]: __snake_case = np.array(_UpperCAmelCase ) __snake_case = np.array(_UpperCAmelCase ) __snake_case = en_sentvecs.shape[0] # mean centering __snake_case = en_sentvecs - np.mean(_UpperCAmelCase , axis=0 ) __snake_case = in_sentvecs - np.mean(_UpperCAmelCase , axis=0 ) __snake_case = cdist(_UpperCAmelCase , _UpperCAmelCase , "cosine" ) __snake_case = np.array(range(_UpperCAmelCase ) ) __snake_case = sim.argsort(axis=1 )[:, :10] __snake_case = np.any(preds == actual[:, None] , axis=1 ) return float(matches.mean() ) @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class SCREAMING_SNAKE_CASE__ ( datasets.Metric ): def A ( self : Optional[Any] ): """simple docstring""" if self.config_name not in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "cvit-mkb-clsr", "iitp-mr", "iitp-pr", "actsa-sc", "md", "wiki-ner", ]: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), "references": datasets.Value("int64" ) if self.config_name != "cvit-mkb-clsr" else datasets.Sequence(datasets.Value("float32" ) ), } ) , codebase_urls=[] , reference_urls=[] , format="numpy" if self.config_name != "cvit-mkb-clsr" else None , ) def A ( self : str , a_ : Any , a_ : Optional[int] ): """simple docstring""" if self.config_name == "cvit-mkb-clsr": return {"precision@10": precision_at_aa(a_ , a_ )} elif self.config_name in ["wiki-ner"]: return acc_and_fa(a_ , a_ ) elif self.config_name in [ "wnli", "copa", "sna", "csqa", "wstp", "inltkh", "bbca", "iitp-mr", "iitp-pr", "actsa-sc", "md", ]: return {"accuracy": simple_accuracy(a_ , a_ )} else: raise KeyError( "You should supply a configuration name selected in " "[\"wnli\", \"copa\", \"sna\", \"csqa\", \"wstp\", \"inltkh\", \"bbca\", " "\"cvit-mkb-clsr\", \"iitp-mr\", \"iitp-pr\", \"actsa-sc\", \"md\", " "\"wiki-ner\"]" )
69
"""simple docstring""" from math import cos, sin, sqrt, tau from audio_filters.iir_filter import IIRFilter def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float = 1 / sqrt(2 ) ): _lowerCAmelCase:Union[str, Any] = tau * frequency / samplerate _lowerCAmelCase:str = sin(snake_case ) _lowerCAmelCase:List[str] = cos(snake_case ) _lowerCAmelCase:Optional[int] = _sin / (2 * q_factor) _lowerCAmelCase:int = (1 - _cos) / 2 _lowerCAmelCase:Any = 1 - _cos _lowerCAmelCase:Any = 1 + alpha _lowerCAmelCase:Optional[Any] = -2 * _cos _lowerCAmelCase:str = 1 - alpha _lowerCAmelCase:Optional[int] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float = 1 / sqrt(2 ) ): _lowerCAmelCase:Any = tau * frequency / samplerate _lowerCAmelCase:Dict = sin(snake_case ) _lowerCAmelCase:List[str] = cos(snake_case ) _lowerCAmelCase:Tuple = _sin / (2 * q_factor) _lowerCAmelCase:Tuple = (1 + _cos) / 2 _lowerCAmelCase:Dict = -1 - _cos _lowerCAmelCase:Optional[Any] = 1 + alpha _lowerCAmelCase:Any = -2 * _cos _lowerCAmelCase:List[str] = 1 - alpha _lowerCAmelCase:int = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float = 1 / sqrt(2 ) ): _lowerCAmelCase:Any = tau * frequency / samplerate _lowerCAmelCase:Optional[Any] = sin(snake_case ) _lowerCAmelCase:Optional[int] = cos(snake_case ) _lowerCAmelCase:List[Any] = _sin / (2 * q_factor) _lowerCAmelCase:Any = _sin / 2 _lowerCAmelCase:Tuple = 0 _lowerCAmelCase:List[str] = -ba _lowerCAmelCase:Union[str, Any] = 1 + alpha _lowerCAmelCase:List[str] = -2 * _cos _lowerCAmelCase:Any = 1 - alpha _lowerCAmelCase:Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float = 1 / sqrt(2 ) ): _lowerCAmelCase:Optional[Any] = tau * frequency / samplerate _lowerCAmelCase:Dict = sin(snake_case ) _lowerCAmelCase:Optional[Any] = cos(snake_case ) _lowerCAmelCase:Optional[Any] = _sin / (2 * q_factor) _lowerCAmelCase:Union[str, Any] = 1 - alpha _lowerCAmelCase:int = -2 * _cos _lowerCAmelCase:Tuple = 1 + alpha _lowerCAmelCase:List[Any] = IIRFilter(2 ) filt.set_coefficients([ba, ba, ba] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float , snake_case : float = 1 / sqrt(2 ) , ): _lowerCAmelCase:Dict = tau * frequency / samplerate _lowerCAmelCase:str = sin(snake_case ) _lowerCAmelCase:Optional[Any] = cos(snake_case ) _lowerCAmelCase:Optional[int] = _sin / (2 * q_factor) _lowerCAmelCase:Dict = 10 ** (gain_db / 40) _lowerCAmelCase:Optional[int] = 1 + alpha * big_a _lowerCAmelCase:Union[str, Any] = -2 * _cos _lowerCAmelCase:Optional[int] = 1 - alpha * big_a _lowerCAmelCase:List[Any] = 1 + alpha / big_a _lowerCAmelCase:Any = -2 * _cos _lowerCAmelCase:Dict = 1 - alpha / big_a _lowerCAmelCase:Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float , snake_case : float = 1 / sqrt(2 ) , ): _lowerCAmelCase:Optional[int] = tau * frequency / samplerate _lowerCAmelCase:List[str] = sin(snake_case ) _lowerCAmelCase:List[str] = cos(snake_case ) _lowerCAmelCase:Optional[int] = _sin / (2 * q_factor) _lowerCAmelCase:Dict = 10 ** (gain_db / 40) _lowerCAmelCase:List[Any] = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase:Dict = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase:Optional[Any] = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase:Tuple = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase:Dict = 2 * sqrt(snake_case ) * alpha _lowerCAmelCase:Tuple = big_a * (pmc + aaa) _lowerCAmelCase:List[str] = 2 * big_a * mpc _lowerCAmelCase:int = big_a * (pmc - aaa) _lowerCAmelCase:str = ppmc + aaa _lowerCAmelCase:List[Any] = -2 * pmpc _lowerCAmelCase:Dict = ppmc - aaa _lowerCAmelCase:Dict = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt def UpperCAmelCase ( snake_case : int , snake_case : int , snake_case : float , snake_case : float = 1 / sqrt(2 ) , ): _lowerCAmelCase:int = tau * frequency / samplerate _lowerCAmelCase:List[str] = sin(snake_case ) _lowerCAmelCase:Tuple = cos(snake_case ) _lowerCAmelCase:Dict = _sin / (2 * q_factor) _lowerCAmelCase:Any = 10 ** (gain_db / 40) _lowerCAmelCase:List[Any] = (big_a + 1) - (big_a - 1) * _cos _lowerCAmelCase:List[Any] = (big_a + 1) + (big_a - 1) * _cos _lowerCAmelCase:Any = (big_a - 1) - (big_a + 1) * _cos _lowerCAmelCase:Dict = (big_a - 1) + (big_a + 1) * _cos _lowerCAmelCase:str = 2 * sqrt(snake_case ) * alpha _lowerCAmelCase:Union[str, Any] = big_a * (ppmc + aaa) _lowerCAmelCase:Optional[int] = -2 * big_a * pmpc _lowerCAmelCase:str = big_a * (ppmc - aaa) _lowerCAmelCase:Dict = pmc + aaa _lowerCAmelCase:Optional[Any] = 2 * mpc _lowerCAmelCase:Optional[int] = pmc - aaa _lowerCAmelCase:Union[str, Any] = IIRFilter(2 ) filt.set_coefficients([aa, aa, aa] , [ba, ba, ba] ) return filt
227
0
'''simple docstring''' from __future__ import annotations __magic_name__ = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } class __lowerCAmelCase : '''simple docstring''' def __init__( self : Optional[Any] ,_a : dict[str, list[str]] ,_a : str ): '''simple docstring''' A_ : str = graph # mapping node to its parent in resulting breadth first tree A_ : dict[str, str | None] = {} A_ : List[str] = source_vertex def _a ( self : List[Any] ): '''simple docstring''' A_ : Union[str, Any] = {self.source_vertex} A_ : List[str] = None A_ : List[str] = [self.source_vertex] # first in first out queue while queue: A_ : Union[str, Any] = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(_a ) A_ : Optional[Any] = vertex queue.append(_a ) def _a ( self : Dict ,_a : str ): '''simple docstring''' if target_vertex == self.source_vertex: return self.source_vertex A_ : Dict = self.parent.get(_a ) if target_vertex_parent is None: A_ : str = ( f'No path from vertex: {self.source_vertex} to vertex: {target_vertex}' ) raise ValueError(_a ) return self.shortest_path(_a ) + f'->{target_vertex}' if __name__ == "__main__": __magic_name__ = Graph(graph, 'G') g.breath_first_search() print(g.shortest_path('D')) print(g.shortest_path('G')) print(g.shortest_path('Foo'))
27
'''simple docstring''' import argparse import logging import os import time import timeit import datasets import numpy as np import pycuda.autoinit # noqa: F401 import pycuda.driver as cuda import tensorrt as trt import torch from absl import logging as absl_logging from accelerate import Accelerator from datasets import load_dataset, load_metric from torch.utils.data import DataLoader from utils_qa import postprocess_qa_predictions import transformers from transformers import AutoTokenizer, EvalPrediction, default_data_collator, set_seed from transformers.trainer_pt_utils import nested_concat, nested_truncate __magic_name__ = trt.Logger(trt.Logger.WARNING) __magic_name__ = absl_logging.get_absl_logger() absl_logger.setLevel(logging.WARNING) __magic_name__ = logging.getLogger(__name__) __magic_name__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--onnx_model_path', default=None, type=str, required=True, help='Path to ONNX model: ', ) parser.add_argument( '--output_dir', default=None, type=str, required=True, help='The output directory where the model checkpoints and predictions will be written.', ) # Other parameters parser.add_argument( '--tokenizer_name', default='', type=str, required=True, help='Pretrained tokenizer name or path if not the same as model_name', ) parser.add_argument( '--version_2_with_negative', action='store_true', help='If true, the SQuAD examples contain some that do not have an answer.', ) parser.add_argument( '--null_score_diff_threshold', type=float, default=0.0, help='If null_score - best_non_null is greater than the threshold predict null.', ) parser.add_argument( '--max_seq_length', default=384, type=int, help=( 'The maximum total input sequence length after WordPiece tokenization. Sequences ' 'longer than this will be truncated, and sequences shorter than this will be padded.' ), ) parser.add_argument( '--doc_stride', default=128, type=int, help='When splitting up a long document into chunks, how much stride to take between chunks.', ) parser.add_argument('--per_device_eval_batch_size', default=8, type=int, help='Batch size per GPU/CPU for evaluation.') parser.add_argument( '--n_best_size', default=20, type=int, help='The total number of n-best predictions to generate in the nbest_predictions.json output file.', ) parser.add_argument( '--max_answer_length', default=30, type=int, help=( 'The maximum length of an answer that can be generated. This is needed because the start ' 'and end predictions are not conditioned on one another.' ), ) parser.add_argument('--seed', type=int, default=42, help='random seed for initialization') parser.add_argument( '--dataset_name', type=str, default=None, required=True, help='The name of the dataset to use (via the datasets library).', ) parser.add_argument( '--dataset_config_name', type=str, default=None, help='The configuration name of the dataset to use (via the datasets library).', ) parser.add_argument( '--preprocessing_num_workers', type=int, default=4, help='A csv or a json file containing the training data.' ) parser.add_argument('--overwrite_cache', action='store_true', help='Overwrite the cached training and evaluation sets') parser.add_argument( '--fp16', action='store_true', help='Whether to use 16-bit (mixed) precision instead of 32-bit', ) parser.add_argument( '--int8', action='store_true', help='Whether to use INT8', ) __magic_name__ = parser.parse_args() if args.tokenizer_name: __magic_name__ = AutoTokenizer.from_pretrained(args.tokenizer_name, use_fast=True) else: raise ValueError( 'You are instantiating a new tokenizer from scratch. This is not supported by this script.' 'You can do it from another script, save it, and load it from here, using --tokenizer_name.' ) logger.info('Training/evaluation parameters %s', args) __magic_name__ = args.per_device_eval_batch_size __magic_name__ = (args.eval_batch_size, args.max_seq_length) # TRT Engine properties __magic_name__ = True __magic_name__ = 'temp_engine/bert-fp32.engine' if args.fpaa: __magic_name__ = 'temp_engine/bert-fp16.engine' if args.inta: __magic_name__ = 'temp_engine/bert-int8.engine' # import ONNX file if not os.path.exists('temp_engine'): os.makedirs('temp_engine') __magic_name__ = 1 << (int)(trt.NetworkDefinitionCreationFlag.EXPLICIT_BATCH) with trt.Builder(TRT_LOGGER) as builder, builder.create_network(EXPLICIT_BATCH) as network, trt.OnnxParser( network, TRT_LOGGER ) as parser: with open(args.onnx_model_path, 'rb') as model: if not parser.parse(model.read()): for error in range(parser.num_errors): print(parser.get_error(error)) # Query input names and shapes from parsed TensorRT network __magic_name__ = [network.get_input(i) for i in range(network.num_inputs)] __magic_name__ = [_input.name for _input in network_inputs] # ex: ["actual_input1"] with builder.create_builder_config() as config: __magic_name__ = 1 << 50 if STRICT_TYPES: config.set_flag(trt.BuilderFlag.STRICT_TYPES) if args.fpaa: config.set_flag(trt.BuilderFlag.FPaa) if args.inta: config.set_flag(trt.BuilderFlag.INTa) __magic_name__ = builder.create_optimization_profile() config.add_optimization_profile(profile) for i in range(len(input_names)): profile.set_shape(input_names[i], INPUT_SHAPE, INPUT_SHAPE, INPUT_SHAPE) __magic_name__ = builder.build_engine(network, config) # serialize_engine and store in file (can be directly loaded and deserialized): with open(engine_name, 'wb') as f: f.write(engine.serialize()) def lowerCamelCase ( lowerCamelCase : Any , lowerCamelCase : Union[str, Any] , lowerCamelCase : str , lowerCamelCase : str , lowerCamelCase : Any , lowerCamelCase : List[Any] , lowerCamelCase : str , lowerCamelCase : List[str]): A_ : str = np.asarray(inputs["""input_ids"""] , dtype=np.intaa) A_ : int = np.asarray(inputs["""attention_mask"""] , dtype=np.intaa) A_ : Optional[int] = np.asarray(inputs["""token_type_ids"""] , dtype=np.intaa) # Copy inputs cuda.memcpy_htod_async(d_inputs[0] , input_ids.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[1] , attention_mask.ravel() , lowerCamelCase) cuda.memcpy_htod_async(d_inputs[2] , token_type_ids.ravel() , lowerCamelCase) # start time A_ : List[Any] = time.time() # Run inference context.execute_async( bindings=[int(lowerCamelCase) for d_inp in d_inputs] + [int(lowerCamelCase), int(lowerCamelCase)] , stream_handle=stream.handle) # Transfer predictions back from GPU cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) cuda.memcpy_dtoh_async(lowerCamelCase , lowerCamelCase , lowerCamelCase) # Synchronize the stream and take time stream.synchronize() # end time A_ : str = time.time() A_ : Tuple = end_time - start_time A_ : Any = (h_outputa, h_outputa) # print(outputs) return outputs, infer_time # Initialize the accelerator. We will let the accelerator handle device placement for us in this example. __magic_name__ = Accelerator() # Make one log on every process with the configuration for debugging. logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) # Setup logging, we only want one process per machine to log things on the screen. # accelerator.is_local_main_process is only True for one process per machine. logger.setLevel(logging.INFO if accelerator.is_local_main_process else logging.ERROR) if accelerator.is_local_main_process: datasets.utils.logging.set_verbosity_warning() transformers.utils.logging.set_verbosity_info() else: datasets.utils.logging.set_verbosity_error() transformers.utils.logging.set_verbosity_error() # If passed along, set the training seed now. if args.seed is not None: set_seed(args.seed) # Get the datasets: you can either provide your own CSV/JSON/TXT training and evaluation files (see below) # or just provide the name of one of the public datasets available on the hub at https://huggingface.co/datasets/ # (the dataset will be downloaded automatically from the datasets Hub). # # For CSV/JSON files, this script will use the column called 'text' or the first column if no column called # 'text' is found. You can easily tweak this behavior (see below). if args.dataset_name is not None: # Downloading and loading a dataset from the hub. __magic_name__ = load_dataset(args.dataset_name, args.dataset_config_name) else: raise ValueError('Evaluation requires a dataset name') # See more about loading any type of standard or custom dataset (from files, python dict, pandas DataFrame, etc) at # https://huggingface.co/docs/datasets/loading_datasets.html. # Preprocessing the datasets. # Preprocessing is slighlty different for training and evaluation. __magic_name__ = raw_datasets['validation'].column_names __magic_name__ = 'question' if 'question' in column_names else column_names[0] __magic_name__ = 'context' if 'context' in column_names else column_names[1] __magic_name__ = 'answers' if 'answers' in column_names else column_names[2] # Padding side determines if we do (question|context) or (context|question). __magic_name__ = tokenizer.padding_side == 'right' if args.max_seq_length > tokenizer.model_max_length: logger.warning( f"""The max_seq_length passed ({args.max_seq_length}) is larger than the maximum length for the""" f"""model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}.""" ) __magic_name__ = min(args.max_seq_length, tokenizer.model_max_length) def lowerCamelCase ( lowerCamelCase : Dict): # Some of the questions have lots of whitespace on the left, which is not useful and will make the # truncation of the context fail (the tokenized question will take a lots of space). So we remove that # left whitespace A_ : List[Any] = [q.lstrip() for q in examples[question_column_name]] # Tokenize our examples with truncation and maybe padding, but keep the overflows using a stride. This results # in one example possible giving several features when a context is long, each of those features having a # context that overlaps a bit the context of the previous feature. A_ : Optional[int] = tokenizer( examples[question_column_name if pad_on_right else context_column_name] , examples[context_column_name if pad_on_right else question_column_name] , truncation="""only_second""" if pad_on_right else """only_first""" , max_length=lowerCamelCase , stride=args.doc_stride , return_overflowing_tokens=lowerCamelCase , return_offsets_mapping=lowerCamelCase , padding="""max_length""" , ) # Since one example might give us several features if it has a long context, we need a map from a feature to # its corresponding example. This key gives us just that. A_ : List[str] = tokenized_examples.pop("""overflow_to_sample_mapping""") # For evaluation, we will need to convert our predictions to substrings of the context, so we keep the # corresponding example_id and we will store the offset mappings. A_ : Union[str, Any] = [] for i in range(len(tokenized_examples["""input_ids"""])): # Grab the sequence corresponding to that example (to know what is the context and what is the question). A_ : Any = tokenized_examples.sequence_ids(lowerCamelCase) A_ : Tuple = 1 if pad_on_right else 0 # One example can give several spans, this is the index of the example containing this span of text. A_ : Union[str, Any] = sample_mapping[i] tokenized_examples["example_id"].append(examples["""id"""][sample_index]) # Set to None the offset_mapping that are not part of the context so it's easy to determine if a token # position is part of the context or not. A_ : Dict = [ (o if sequence_ids[k] == context_index else None) for k, o in enumerate(tokenized_examples["""offset_mapping"""][i]) ] return tokenized_examples __magic_name__ = raw_datasets['validation'] # Validation Feature Creation __magic_name__ = eval_examples.map( prepare_validation_features, batched=True, num_proc=args.preprocessing_num_workers, remove_columns=column_names, load_from_cache_file=not args.overwrite_cache, desc='Running tokenizer on validation dataset', ) __magic_name__ = default_data_collator __magic_name__ = eval_dataset.remove_columns(['example_id', 'offset_mapping']) __magic_name__ = DataLoader( eval_dataset_for_model, collate_fn=data_collator, batch_size=args.per_device_eval_batch_size ) def lowerCamelCase ( lowerCamelCase : Tuple , lowerCamelCase : Union[str, Any] , lowerCamelCase : Optional[Any] , lowerCamelCase : Optional[Any]="eval"): # Post-processing: we match the start logits and end logits to answers in the original context. A_ : Tuple = postprocess_qa_predictions( examples=lowerCamelCase , features=lowerCamelCase , predictions=lowerCamelCase , version_2_with_negative=args.version_2_with_negative , n_best_size=args.n_best_size , max_answer_length=args.max_answer_length , null_score_diff_threshold=args.null_score_diff_threshold , output_dir=args.output_dir , prefix=lowerCamelCase , ) # Format the result to the format the metric expects. if args.version_2_with_negative: A_ : Dict = [ {"""id""": k, """prediction_text""": v, """no_answer_probability""": 0.0} for k, v in predictions.items() ] else: A_ : Union[str, Any] = [{"""id""": k, """prediction_text""": v} for k, v in predictions.items()] A_ : Any = [{"""id""": ex["""id"""], """answers""": ex[answer_column_name]} for ex in examples] return EvalPrediction(predictions=lowerCamelCase , label_ids=lowerCamelCase) __magic_name__ = load_metric('squad_v2' if args.version_2_with_negative else 'squad') # Evaluation! logger.info('Loading ONNX model %s for evaluation', args.onnx_model_path) with open(engine_name, 'rb') as f, trt.Runtime(TRT_LOGGER) as runtime, runtime.deserialize_cuda_engine( f.read() ) as engine, engine.create_execution_context() as context: # setup for TRT inferrence for i in range(len(input_names)): context.set_binding_shape(i, INPUT_SHAPE) assert context.all_binding_shapes_specified def lowerCamelCase ( lowerCamelCase : Union[str, Any]): return trt.volume(engine.get_binding_shape(lowerCamelCase)) * engine.get_binding_dtype(lowerCamelCase).itemsize # Allocate device memory for inputs and outputs. __magic_name__ = [cuda.mem_alloc(binding_nbytes(binding)) for binding in engine if engine.binding_is_input(binding)] # Allocate output buffer __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(3)), dtype=np.floataa) __magic_name__ = cuda.pagelocked_empty(tuple(context.get_binding_shape(4)), dtype=np.floataa) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) __magic_name__ = cuda.mem_alloc(h_outputa.nbytes) # Create a stream in which to copy inputs/outputs and run inference. __magic_name__ = cuda.Stream() # Evaluation logger.info('***** Running Evaluation *****') logger.info(f""" Num examples = {len(eval_dataset)}""") logger.info(f""" Batch size = {args.per_device_eval_batch_size}""") __magic_name__ = 0.0 __magic_name__ = 0 __magic_name__ = timeit.default_timer() __magic_name__ = None for step, batch in enumerate(eval_dataloader): __magic_name__ , __magic_name__ = model_infer(batch, context, d_inputs, h_outputa, h_outputa, d_outputa, d_outputa, stream) total_time += infer_time niter += 1 __magic_name__ , __magic_name__ = outputs __magic_name__ = torch.tensor(start_logits) __magic_name__ = torch.tensor(end_logits) # necessary to pad predictions and labels for being gathered __magic_name__ = accelerator.pad_across_processes(start_logits, dim=1, pad_index=-100) __magic_name__ = accelerator.pad_across_processes(end_logits, dim=1, pad_index=-100) __magic_name__ = (accelerator.gather(start_logits).cpu().numpy(), accelerator.gather(end_logits).cpu().numpy()) __magic_name__ = logits if all_preds is None else nested_concat(all_preds, logits, padding_index=-100) if all_preds is not None: __magic_name__ = nested_truncate(all_preds, len(eval_dataset)) __magic_name__ = timeit.default_timer() - start_time logger.info(' Evaluation done in total %f secs (%f sec per example)', evalTime, evalTime / len(eval_dataset)) # Inference time from TRT logger.info('Average Inference Time = {:.3f} ms'.format(total_time * 1_000 / niter)) logger.info('Total Inference Time = {:.3f} ms'.format(total_time * 1_000)) logger.info('Total Number of Inference = %d', niter) __magic_name__ = post_processing_function(eval_examples, eval_dataset, all_preds) __magic_name__ = metric.compute(predictions=prediction.predictions, references=prediction.label_ids) logger.info(f"""Evaluation metrics: {eval_metric}""")
27
1
"""simple docstring""" import argparse import os from pathlib import Path import torch from bark.generation import _load_model as _bark_load_model from huggingface_hub import hf_hub_download from transformers import EncodecConfig, EncodecModel, set_seed from transformers.models.bark.configuration_bark import ( BarkCoarseConfig, BarkConfig, BarkFineConfig, BarkSemanticConfig, ) from transformers.models.bark.generation_configuration_bark import ( BarkCoarseGenerationConfig, BarkFineGenerationConfig, BarkGenerationConfig, BarkSemanticGenerationConfig, ) from transformers.models.bark.modeling_bark import BarkCoarseModel, BarkFineModel, BarkModel, BarkSemanticModel from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase = logging.get_logger(__name__) set_seed(770) _UpperCamelCase = { 'c_attn': 'att_proj', 'c_proj': 'out_proj', 'c_fc': 'in_proj', 'transformer.': '', 'h.': 'layers.', 'ln_1': 'layernorm_1', 'ln_2': 'layernorm_2', 'ln_f': 'layernorm_final', 'wpe': 'position_embeds_layer', 'wte': 'input_embeds_layer', } _UpperCamelCase = { 'text_small': { 'repo_id': 'suno/bark', 'file_name': 'text.pt', }, 'coarse_small': { 'repo_id': 'suno/bark', 'file_name': 'coarse.pt', }, 'fine_small': { 'repo_id': 'suno/bark', 'file_name': 'fine.pt', }, 'text': { 'repo_id': 'suno/bark', 'file_name': 'text_2.pt', }, 'coarse': { 'repo_id': 'suno/bark', 'file_name': 'coarse_2.pt', }, 'fine': { 'repo_id': 'suno/bark', 'file_name': 'fine_2.pt', }, } _UpperCamelCase = os.path.dirname(os.path.abspath(__file__)) _UpperCamelCase = os.path.join(os.path.expanduser('~'), '.cache') _UpperCamelCase = os.path.join(os.getenv('XDG_CACHE_HOME', default_cache_dir), 'suno', 'bark_v0') def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : Dict=False ): '''simple docstring''' __lowerCamelCase : Union[str, Any] =model_type if use_small: key += "_small" return os.path.join(SCREAMING_SNAKE_CASE , REMOTE_MODEL_PATHS[key]['''file_name'''] ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : int , SCREAMING_SNAKE_CASE : Dict ): '''simple docstring''' os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) hf_hub_download(repo_id=SCREAMING_SNAKE_CASE , filename=SCREAMING_SNAKE_CASE , local_dir=SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Tuple , SCREAMING_SNAKE_CASE : Dict=False , SCREAMING_SNAKE_CASE : List[str]="text" ): '''simple docstring''' if model_type == "text": __lowerCamelCase : Union[str, Any] =BarkSemanticModel __lowerCamelCase : Union[str, Any] =BarkSemanticConfig __lowerCamelCase : int =BarkSemanticGenerationConfig elif model_type == "coarse": __lowerCamelCase : List[Any] =BarkCoarseModel __lowerCamelCase : int =BarkCoarseConfig __lowerCamelCase : Tuple =BarkCoarseGenerationConfig elif model_type == "fine": __lowerCamelCase : Optional[Any] =BarkFineModel __lowerCamelCase : str =BarkFineConfig __lowerCamelCase : Dict =BarkFineGenerationConfig else: raise NotImplementedError() __lowerCamelCase : Tuple =F'{model_type}_small' if use_small else model_type __lowerCamelCase : List[Any] =REMOTE_MODEL_PATHS[model_key] if not os.path.exists(SCREAMING_SNAKE_CASE ): logger.info(F'{model_type} model not found, downloading into `{CACHE_DIR}`.' ) _download(model_info['''repo_id'''] , model_info['''file_name'''] ) __lowerCamelCase : Optional[int] =torch.load(SCREAMING_SNAKE_CASE , map_location=SCREAMING_SNAKE_CASE ) # this is a hack __lowerCamelCase : Tuple =checkpoint['''model_args'''] if "input_vocab_size" not in model_args: __lowerCamelCase : Dict =model_args['''vocab_size'''] __lowerCamelCase : int =model_args['''vocab_size'''] del model_args["vocab_size"] # convert Bark model arguments to HF Bark model arguments __lowerCamelCase : Dict =model_args.pop('''n_head''' ) __lowerCamelCase : Dict =model_args.pop('''n_embd''' ) __lowerCamelCase : Optional[int] =model_args.pop('''n_layer''' ) __lowerCamelCase : Optional[int] =ConfigClass(**checkpoint['''model_args'''] ) __lowerCamelCase : Any =ModelClass(config=SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[str] =GenerationConfigClass() __lowerCamelCase : Optional[Any] =model_generation_config __lowerCamelCase : Any =checkpoint['''model'''] # fixup checkpoint __lowerCamelCase : Union[str, Any] ='''_orig_mod.''' for k, v in list(state_dict.items() ): if k.startswith(SCREAMING_SNAKE_CASE ): # replace part of the key with corresponding layer name in HF implementation __lowerCamelCase : List[Any] =k[len(SCREAMING_SNAKE_CASE ) :] for old_layer_name in new_layer_name_dict: __lowerCamelCase : Tuple =new_k.replace(SCREAMING_SNAKE_CASE , new_layer_name_dict[old_layer_name] ) __lowerCamelCase : Dict =state_dict.pop(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Any =set(state_dict.keys() ) - set(model.state_dict().keys() ) __lowerCamelCase : Optional[int] ={k for k in extra_keys if not k.endswith('''.attn.bias''' )} __lowerCamelCase : Optional[int] =set(model.state_dict().keys() ) - set(state_dict.keys() ) __lowerCamelCase : List[Any] ={k for k in missing_keys if not k.endswith('''.attn.bias''' )} if len(SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F'extra keys found: {extra_keys}' ) if len(SCREAMING_SNAKE_CASE ) != 0: raise ValueError(F'missing keys: {missing_keys}' ) model.load_state_dict(SCREAMING_SNAKE_CASE , strict=SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =model.num_parameters(exclude_embeddings=SCREAMING_SNAKE_CASE ) __lowerCamelCase : Union[str, Any] =checkpoint['''best_val_loss'''].item() logger.info(F'model loaded: {round(n_params/1E6 , 1 )}M params, {round(SCREAMING_SNAKE_CASE , 3 )} loss' ) model.eval() model.to(SCREAMING_SNAKE_CASE ) del checkpoint, state_dict return model def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Optional[int] , SCREAMING_SNAKE_CASE : Optional[int]=False , SCREAMING_SNAKE_CASE : Optional[Any]="text" ): '''simple docstring''' if model_type not in ("text", "coarse", "fine"): raise NotImplementedError() __lowerCamelCase : Tuple ='''cpu''' # do conversion on cpu __lowerCamelCase : Dict =_get_ckpt_path(SCREAMING_SNAKE_CASE , use_small=SCREAMING_SNAKE_CASE ) __lowerCamelCase : str =_load_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , model_type=SCREAMING_SNAKE_CASE , use_small=SCREAMING_SNAKE_CASE ) # load bark initial model __lowerCamelCase : List[str] =_bark_load_model(SCREAMING_SNAKE_CASE , '''cpu''' , model_type=SCREAMING_SNAKE_CASE , use_small=SCREAMING_SNAKE_CASE ) if model_type == "text": __lowerCamelCase : int =bark_model['''model'''] if model.num_parameters(exclude_embeddings=SCREAMING_SNAKE_CASE ) != bark_model.get_num_params(): raise ValueError('''initial and new models don\'t have the same number of parameters''' ) # check if same output as the bark model __lowerCamelCase : Dict =5 __lowerCamelCase : Optional[int] =10 if model_type in ["text", "coarse"]: __lowerCamelCase : List[Any] =torch.randint(256 , (batch_size, sequence_length) , dtype=torch.int ) __lowerCamelCase : int =bark_model(SCREAMING_SNAKE_CASE )[0] __lowerCamelCase : List[Any] =model(SCREAMING_SNAKE_CASE ) # take last logits __lowerCamelCase : str =output_new_model_total.logits[:, [-1], :] else: __lowerCamelCase : str =3 __lowerCamelCase : Union[str, Any] =8 __lowerCamelCase : Union[str, Any] =torch.randint(256 , (batch_size, sequence_length, n_codes_total) , dtype=torch.int ) __lowerCamelCase : List[Any] =model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCamelCase : int =bark_model(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCamelCase : Dict =output_new_model_total.logits # output difference should come from the difference of self-attention implementation design if output_new_model.shape != output_old_model.shape: raise ValueError('''initial and new outputs don\'t have the same shape''' ) if (output_new_model - output_old_model).abs().max().item() > 1E-3: raise ValueError('''initial and new outputs are not equal''' ) Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) model.save_pretrained(SCREAMING_SNAKE_CASE ) def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : str , SCREAMING_SNAKE_CASE : Any , SCREAMING_SNAKE_CASE : Union[str, Any] , SCREAMING_SNAKE_CASE : List[str] , SCREAMING_SNAKE_CASE : Any , ): '''simple docstring''' __lowerCamelCase : str =os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =BarkSemanticConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , '''config.json''' ) ) __lowerCamelCase : Any =BarkCoarseConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , '''config.json''' ) ) __lowerCamelCase : List[str] =BarkFineConfig.from_pretrained(os.path.join(SCREAMING_SNAKE_CASE , '''config.json''' ) ) __lowerCamelCase : Optional[Any] =EncodecConfig.from_pretrained('''facebook/encodec_24khz''' ) __lowerCamelCase : Any =BarkSemanticModel.from_pretrained(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] =BarkCoarseModel.from_pretrained(SCREAMING_SNAKE_CASE ) __lowerCamelCase : Optional[int] =BarkFineModel.from_pretrained(SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =EncodecModel.from_pretrained('''facebook/encodec_24khz''' ) __lowerCamelCase : Any =BarkConfig.from_sub_model_configs( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __lowerCamelCase : Tuple =BarkGenerationConfig.from_sub_model_configs( semantic.generation_config , coarseAcoustic.generation_config , fineAcoustic.generation_config ) __lowerCamelCase : Optional[int] =BarkModel(SCREAMING_SNAKE_CASE ) __lowerCamelCase : List[Any] =semantic __lowerCamelCase : Union[str, Any] =coarseAcoustic __lowerCamelCase : List[Any] =fineAcoustic __lowerCamelCase : str =codec __lowerCamelCase : int =bark_generation_config Path(SCREAMING_SNAKE_CASE ).mkdir(exist_ok=SCREAMING_SNAKE_CASE ) bark.save_pretrained(SCREAMING_SNAKE_CASE , repo_id=SCREAMING_SNAKE_CASE , push_to_hub=SCREAMING_SNAKE_CASE ) if __name__ == "__main__": _UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument('model_type', type=str, help='text, coarse or fine.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--is_small', action='store_true', help='convert the small version instead of the large.') _UpperCamelCase = parser.parse_args() load_model(args.pytorch_dump_folder_path, model_type=args.model_type, use_small=args.is_small)
179
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = { 'Helsinki-NLP/opus-mt-en-de': 'https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json', # See all Marian models at https://huggingface.co/models?filter=marian } class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Tuple = """marian""" __snake_case : Any = ["""past_key_values"""] __snake_case : Optional[Any] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self :List[Any] , __lowercase :Any=5_8101 , __lowercase :Tuple=None , __lowercase :Union[str, Any]=1024 , __lowercase :Dict=12 , __lowercase :int=4096 , __lowercase :int=16 , __lowercase :List[Any]=12 , __lowercase :Dict=4096 , __lowercase :Dict=16 , __lowercase :Tuple=0.0 , __lowercase :Tuple=0.0 , __lowercase :List[Any]=True , __lowercase :int=True , __lowercase :Tuple="gelu" , __lowercase :str=1024 , __lowercase :Optional[int]=0.1 , __lowercase :List[str]=0.0 , __lowercase :Union[str, Any]=0.0 , __lowercase :Dict=0.02 , __lowercase :Tuple=5_8100 , __lowercase :Optional[Any]=False , __lowercase :int=5_8100 , __lowercase :Any=0 , __lowercase :str=0 , __lowercase :str=True , **__lowercase :Any , ): __lowerCamelCase : List[Any] =vocab_size __lowerCamelCase : Optional[int] =decoder_vocab_size or vocab_size __lowerCamelCase : Tuple =max_position_embeddings __lowerCamelCase : List[Any] =d_model __lowerCamelCase : Any =encoder_ffn_dim __lowerCamelCase : str =encoder_layers __lowerCamelCase : List[str] =encoder_attention_heads __lowerCamelCase : str =decoder_ffn_dim __lowerCamelCase : Tuple =decoder_layers __lowerCamelCase : Any =decoder_attention_heads __lowerCamelCase : List[Any] =dropout __lowerCamelCase : Any =attention_dropout __lowerCamelCase : Union[str, Any] =activation_dropout __lowerCamelCase : Optional[int] =activation_function __lowerCamelCase : Dict =init_std __lowerCamelCase : List[Any] =encoder_layerdrop __lowerCamelCase : Optional[Any] =decoder_layerdrop __lowerCamelCase : Any =use_cache __lowerCamelCase : Any =encoder_layers __lowerCamelCase : Optional[int] =scale_embedding # scale factor will be sqrt(d_model) if True __lowerCamelCase : int =share_encoder_decoder_embeddings super().__init__( pad_token_id=__lowercase , eos_token_id=__lowercase , is_encoder_decoder=__lowercase , decoder_start_token_id=__lowercase , forced_eos_token_id=__lowercase , **__lowercase , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __lowercase ( self :int ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : Tuple =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowerCamelCase : Optional[Any] ={0: '''batch'''} __lowerCamelCase : Any ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __lowerCamelCase : Optional[Any] ={0: '''batch''', 1: '''decoder_sequence'''} __lowerCamelCase : List[Any] ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(__lowercase , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __lowerCamelCase : Any =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __lowerCamelCase , __lowerCamelCase : str =self.num_layers for i in range(__lowercase ): __lowerCamelCase : Optional[int] ={0: '''batch''', 2: '''past_sequence + sequence'''} __lowerCamelCase : List[str] ={0: '''batch''', 2: '''past_sequence + sequence'''} else: __lowerCamelCase : List[str] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __lowercase ( self :Optional[int] ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : Tuple =super().outputs else: __lowerCamelCase : List[str] =super(__lowercase , self ).outputs if self.use_past: __lowerCamelCase , __lowerCamelCase : int =self.num_layers for i in range(__lowercase ): __lowerCamelCase : Any ={0: '''batch''', 2: '''past_sequence + sequence'''} __lowerCamelCase : Optional[int] ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __lowercase ( self :str , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): __lowerCamelCase : List[str] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) # Generate decoder inputs __lowerCamelCase : Optional[Any] =seq_length if not self.use_past else 1 __lowerCamelCase : List[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) __lowerCamelCase : Dict ={f'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} __lowerCamelCase : str =dict(**__lowercase , **__lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowerCamelCase , __lowerCamelCase : int =common_inputs['''input_ids'''].shape __lowerCamelCase : Optional[Any] =common_inputs['''decoder_input_ids'''].shape[1] __lowerCamelCase , __lowerCamelCase : Optional[int] =self.num_attention_heads __lowerCamelCase : Any =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase : Dict =decoder_seq_length + 3 __lowerCamelCase : Tuple =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __lowerCamelCase : Optional[int] =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(__lowercase , __lowercase )] , dim=1 ) __lowerCamelCase : Any =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered __lowerCamelCase , __lowerCamelCase : str =self.num_layers __lowerCamelCase : List[Any] =min(__lowercase , __lowercase ) __lowerCamelCase : int =max(__lowercase , __lowercase ) - min_num_layers __lowerCamelCase : Any ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(__lowercase ): common_inputs["past_key_values"].append( ( torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), torch.zeros(__lowercase ), ) ) # TODO: test this. __lowerCamelCase : Dict =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(__lowercase , __lowercase ): common_inputs["past_key_values"].append((torch.zeros(__lowercase ), torch.zeros(__lowercase )) ) return common_inputs def __lowercase ( self :Dict , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): __lowerCamelCase : List[str] =self._generate_dummy_inputs_for_encoder_and_decoder( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __lowerCamelCase , __lowerCamelCase : int =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __lowerCamelCase : str =seqlen + 2 __lowerCamelCase , __lowerCamelCase : List[str] =self.num_layers __lowerCamelCase , __lowerCamelCase : Optional[Any] =self.num_attention_heads __lowerCamelCase : List[str] =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __lowerCamelCase : Any =common_inputs['''attention_mask'''].dtype __lowerCamelCase : Optional[int] =torch.cat( [common_inputs['''attention_mask'''], torch.ones(__lowercase , __lowercase , dtype=__lowercase )] , dim=1 ) __lowerCamelCase : List[str] =[ (torch.zeros(__lowercase ), torch.zeros(__lowercase )) for _ in range(__lowercase ) ] return common_inputs def __lowercase ( self :int , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX __lowerCamelCase : Union[str, Any] =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __lowerCamelCase : Optional[int] =tokenizer.num_special_tokens_to_add(__lowercase ) __lowerCamelCase : Optional[int] =compute_effective_axis_dimension( __lowercase , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=__lowercase ) # Generate dummy inputs according to compute batch and sequence __lowerCamelCase : Any =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __lowerCamelCase : Union[str, Any] =dict(tokenizer(__lowercase , return_tensors=__lowercase ) ) return common_inputs def __lowercase ( self :Tuple , __lowercase :PreTrainedTokenizer , __lowercase :int = -1 , __lowercase :int = -1 , __lowercase :bool = False , __lowercase :Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : int =self._generate_dummy_inputs_for_default_and_seqaseq_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) else: __lowerCamelCase : List[Any] =self._generate_dummy_inputs_for_causal_lm( __lowercase , batch_size=__lowercase , seq_length=__lowercase , is_pair=__lowercase , framework=__lowercase ) return common_inputs def __lowercase ( self :Optional[int] , __lowercase :Tuple , __lowercase :Tuple , __lowercase :Dict , __lowercase :List[str] ): if self.task in ["default", "seq2seq-lm"]: __lowerCamelCase : str =super()._flatten_past_key_values_(__lowercase , __lowercase , __lowercase , __lowercase ) else: __lowerCamelCase : Optional[Any] =super(__lowercase , self )._flatten_past_key_values_( __lowercase , __lowercase , __lowercase , __lowercase ) @property def __lowercase ( self :List[str] ): return 1e-4
179
1
from __future__ import annotations def __UpperCamelCase ( _A ): # This function is recursive lowerCAmelCase_ = len(__A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowerCAmelCase_ = array[0] lowerCAmelCase_ = False lowerCAmelCase_ = 1 lowerCAmelCase_ = [] while not is_found and i < array_length: if array[i] < pivot: lowerCAmelCase_ = True lowerCAmelCase_ = [element for element in array[i:] if element >= array[i]] lowerCAmelCase_ = longest_subsequence(__A ) if len(__A ) > len(__A ): lowerCAmelCase_ = temp_array else: i += 1 lowerCAmelCase_ = [element for element in array[1:] if element >= pivot] lowerCAmelCase_ = [pivot, *longest_subsequence(__A )] if len(__A ) > len(__A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
715
import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class A ( __UpperCAmelCase ): def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCamelCase__, '''embed_dim''' ) ) self.parent.assertTrue(hasattr(UpperCamelCase__, '''num_heads''' ) ) class A : def __init__( self, UpperCamelCase__, UpperCamelCase__=13, UpperCamelCase__=64, UpperCamelCase__=3, UpperCamelCase__=[16, 48, 96], UpperCamelCase__=[1, 3, 6], UpperCamelCase__=[1, 2, 10], UpperCamelCase__=[7, 3, 3], UpperCamelCase__=[4, 2, 2], UpperCamelCase__=[2, 1, 1], UpperCamelCase__=[2, 2, 2], UpperCamelCase__=[False, False, True], UpperCamelCase__=[0.0, 0.0, 0.0], UpperCamelCase__=0.02, UpperCamelCase__=1E-12, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=2, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = image_size lowerCAmelCase_ = patch_sizes lowerCAmelCase_ = patch_stride lowerCAmelCase_ = patch_padding lowerCAmelCase_ = is_training lowerCAmelCase_ = use_labels lowerCAmelCase_ = num_labels lowerCAmelCase_ = num_channels lowerCAmelCase_ = embed_dim lowerCAmelCase_ = num_heads lowerCAmelCase_ = stride_kv lowerCAmelCase_ = depth lowerCAmelCase_ = cls_token lowerCAmelCase_ = attention_drop_rate lowerCAmelCase_ = initializer_range lowerCAmelCase_ = layer_norm_eps def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCAmelCase_ = None if self.use_labels: lowerCAmelCase_ = ids_tensor([self.batch_size], self.num_labels ) lowerCAmelCase_ = self.get_config() return config, pixel_values, labels def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return CvtConfig( image_size=self.image_size, num_labels=self.num_labels, num_channels=self.num_channels, embed_dim=self.embed_dim, num_heads=self.num_heads, patch_sizes=self.patch_sizes, patch_padding=self.patch_padding, patch_stride=self.patch_stride, stride_kv=self.stride_kv, depth=self.depth, cls_token=self.cls_token, attention_drop_rate=self.attention_drop_rate, initializer_range=self.initializer_range, ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = CvtModel(config=UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__ ) lowerCAmelCase_ = (self.image_size, self.image_size) lowerCAmelCase_ , lowerCAmelCase_ = image_size[0], image_size[1] for i in range(len(self.depth ) ): lowerCAmelCase_ = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) lowerCAmelCase_ = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.embed_dim[-1], height, width) ) def SCREAMING_SNAKE_CASE__ ( self, UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): """simple docstring""" lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = CvtForImageClassification(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() lowerCAmelCase_ = model(UpperCamelCase__, labels=UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class A ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __snake_case = (CvtModel, CvtForImageClassification) if is_torch_available() else () __snake_case = ( {'feature-extraction': CvtModel, 'image-classification': CvtForImageClassification} if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CvtModelTester(self ) lowerCAmelCase_ = ConfigTester(self, config_class=UpperCamelCase__, has_text_modality=UpperCamelCase__, hidden_size=37 ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return @unittest.skip(reason='''Cvt does not output attentions''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(UpperCamelCase__ ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ['''pixel_values'''] self.assertListEqual(arg_names[:1], UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" def check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ): lowerCAmelCase_ = model_class(UpperCamelCase__ ) model.to(UpperCamelCase__ ) model.eval() with torch.no_grad(): lowerCAmelCase_ = model(**self._prepare_for_class(UpperCamelCase__, UpperCamelCase__ ) ) lowerCAmelCase_ = outputs.hidden_states lowerCAmelCase_ = len(self.model_tester.depth ) self.assertEqual(len(UpperCamelCase__ ), UpperCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCAmelCase_ = True check_hidden_states_output(UpperCamelCase__, UpperCamelCase__, UpperCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" pass @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase_ = CvtModel.from_pretrained(UpperCamelCase__ ) self.assertIsNotNone(UpperCamelCase__ ) def __UpperCamelCase ( ): lowerCAmelCase_ = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class A ( unittest.TestCase ): @cached_property def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(UpperCamelCase__ ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(images=UpperCamelCase__, return_tensors='''pt''' ).to(UpperCamelCase__ ) # forward pass with torch.no_grad(): lowerCAmelCase_ = model(**UpperCamelCase__ ) # verify the logits lowerCAmelCase_ = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape, UpperCamelCase__ ) lowerCAmelCase_ = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(UpperCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], UpperCamelCase__, atol=1E-4 ) )
325
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCAmelCase_ : Dict = logging.get_logger(__name__) def __A ( UpperCAmelCase ) -> List[List[ImageInput]]: '''simple docstring''' if isinstance(UpperCAmelCase ,(list, tuple) ) and isinstance(videos[0] ,(list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(UpperCAmelCase ,(list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(UpperCAmelCase ): return [[videos]] raise ValueError(f'''Could not make batched video from {videos}''' ) class SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): '''simple docstring''' UpperCAmelCase__ = ['''pixel_values'''] def __init__( self : Any , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : PILImageResampling = PILImageResampling.BILINEAR , lowercase__ : bool = True , lowercase__ : Dict[str, int] = None , lowercase__ : bool = True , lowercase__ : Union[int, float] = 1 / 255 , lowercase__ : bool = True , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , **lowercase__ : List[str] , ) ->None: '''simple docstring''' super().__init__(**lowercase__ ) _UpperCamelCase : Optional[int] = size if size is not None else {"shortest_edge": 224} _UpperCamelCase : Optional[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) _UpperCamelCase : Optional[int] = crop_size if crop_size is not None else {"height": 224, "width": 224} _UpperCamelCase : str = get_size_dict(lowercase__ , param_name="crop_size" ) _UpperCamelCase : Any = do_resize _UpperCamelCase : Dict = size _UpperCamelCase : List[Any] = do_center_crop _UpperCamelCase : List[str] = crop_size _UpperCamelCase : int = resample _UpperCamelCase : Tuple = do_rescale _UpperCamelCase : List[str] = rescale_factor _UpperCamelCase : Optional[int] = do_normalize _UpperCamelCase : int = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD def snake_case__ ( self : Union[str, Any] , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : PILImageResampling = PILImageResampling.BILINEAR , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Dict , ) ->np.ndarray: '''simple docstring''' _UpperCamelCase : Any = get_size_dict(lowercase__ , default_to_square=lowercase__ ) if "shortest_edge" in size: _UpperCamelCase : int = get_resize_output_image_size(lowercase__ , size["shortest_edge"] , default_to_square=lowercase__ ) elif "height" in size and "width" in size: _UpperCamelCase : Tuple = (size["height"], size["width"]) else: raise ValueError(f'''Size must have \'height\' and \'width\' or \'shortest_edge\' as keys. Got {size.keys()}''' ) return resize(lowercase__ , size=lowercase__ , resample=lowercase__ , data_format=lowercase__ , **lowercase__ ) def snake_case__ ( self : List[str] , lowercase__ : np.ndarray , lowercase__ : Dict[str, int] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Any , ) ->np.ndarray: '''simple docstring''' _UpperCamelCase : Tuple = get_size_dict(lowercase__ ) if "height" not in size or "width" not in size: raise ValueError(f'''Size must have \'height\' and \'width\' as keys. Got {size.keys()}''' ) return center_crop(lowercase__ , size=(size["height"], size["width"]) , data_format=lowercase__ , **lowercase__ ) def snake_case__ ( self : Tuple , lowercase__ : np.ndarray , lowercase__ : Union[int, float] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Tuple , ) ->str: '''simple docstring''' return rescale(lowercase__ , scale=lowercase__ , data_format=lowercase__ , **lowercase__ ) def snake_case__ ( self : Optional[int] , lowercase__ : np.ndarray , lowercase__ : Union[float, List[float]] , lowercase__ : Union[float, List[float]] , lowercase__ : Optional[Union[str, ChannelDimension]] = None , **lowercase__ : Optional[Any] , ) ->np.ndarray: '''simple docstring''' return normalize(lowercase__ , mean=lowercase__ , std=lowercase__ , data_format=lowercase__ , **lowercase__ ) def snake_case__ ( self : int , lowercase__ : ImageInput , lowercase__ : bool = None , lowercase__ : Dict[str, int] = None , lowercase__ : PILImageResampling = None , lowercase__ : bool = None , lowercase__ : Dict[str, int] = None , lowercase__ : bool = None , lowercase__ : float = None , lowercase__ : bool = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[ChannelDimension] = ChannelDimension.FIRST , ) ->np.ndarray: '''simple docstring''' if do_resize and size is None or resample is None: raise ValueError("Size and resample must be specified if do_resize is True." ) if do_center_crop and crop_size is None: raise ValueError("Crop size must be specified if do_center_crop is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("Image mean and std must be specified if do_normalize is True." ) # All transformations expect numpy arrays. _UpperCamelCase : int = to_numpy_array(lowercase__ ) if do_resize: _UpperCamelCase : Optional[Any] = self.resize(image=lowercase__ , size=lowercase__ , resample=lowercase__ ) if do_center_crop: _UpperCamelCase : Union[str, Any] = self.center_crop(lowercase__ , size=lowercase__ ) if do_rescale: _UpperCamelCase : List[Any] = self.rescale(image=lowercase__ , scale=lowercase__ ) if do_normalize: _UpperCamelCase : Union[str, Any] = self.normalize(image=lowercase__ , mean=lowercase__ , std=lowercase__ ) _UpperCamelCase : List[str] = to_channel_dimension_format(lowercase__ , lowercase__ ) return image def snake_case__ ( self : Optional[int] , lowercase__ : ImageInput , lowercase__ : bool = None , lowercase__ : Dict[str, int] = None , lowercase__ : PILImageResampling = None , lowercase__ : bool = None , lowercase__ : Dict[str, int] = None , lowercase__ : bool = None , lowercase__ : float = None , lowercase__ : bool = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[float, List[float]]] = None , lowercase__ : Optional[Union[str, TensorType]] = None , lowercase__ : ChannelDimension = ChannelDimension.FIRST , **lowercase__ : Optional[int] , ) ->PIL.Image.Image: '''simple docstring''' _UpperCamelCase : Dict = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Optional[int] = resample if resample is not None else self.resample _UpperCamelCase : Optional[int] = do_center_crop if do_center_crop is not None else self.do_center_crop _UpperCamelCase : Union[str, Any] = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase : str = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase : List[str] = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase : Optional[int] = image_mean if image_mean is not None else self.image_mean _UpperCamelCase : List[Any] = image_std if image_std is not None else self.image_std _UpperCamelCase : Optional[Any] = size if size is not None else self.size _UpperCamelCase : List[Any] = get_size_dict(lowercase__ , default_to_square=lowercase__ ) _UpperCamelCase : Tuple = crop_size if crop_size is not None else self.crop_size _UpperCamelCase : Any = get_size_dict(lowercase__ , param_name="crop_size" ) if not valid_images(lowercase__ ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) _UpperCamelCase : Optional[Any] = make_batched(lowercase__ ) _UpperCamelCase : List[Any] = [ [ self._preprocess_image( image=lowercase__ , do_resize=lowercase__ , size=lowercase__ , resample=lowercase__ , do_center_crop=lowercase__ , crop_size=lowercase__ , do_rescale=lowercase__ , rescale_factor=lowercase__ , do_normalize=lowercase__ , image_mean=lowercase__ , image_std=lowercase__ , data_format=lowercase__ , ) for img in video ] for video in videos ] _UpperCamelCase : List[str] = {"pixel_values": videos} return BatchFeature(data=lowercase__ , tensor_type=lowercase__ )
435
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowerCAmelCase_ : List[str] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : int = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase_ : Any = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys lowerCAmelCase_ : Tuple = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
435
1
"""simple docstring""" import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def snake_case_ ( A_ : Any ): '''simple docstring''' _lowerCamelCase : Optional[Any] = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(A_, A_ ) def snake_case_ ( A_ : List[str] ): '''simple docstring''' _lowerCamelCase : int = emb.weight.shape _lowerCamelCase : str = nn.Linear(A_, A_, bias=A_ ) _lowerCamelCase : List[Any] = emb.weight.data return lin_layer def snake_case_ ( A_ : Any, A_ : Dict=None ): '''simple docstring''' _lowerCamelCase : Dict = {} for old_key in state_dict.keys(): _lowerCamelCase : List[Any] = old_key if "moe_layer.experts." in key: if expert_idx is not None: _lowerCamelCase : Tuple = key.replace('''moe_layer.experts.0''', F'''ffn.experts.expert_{expert_idx}''' ) else: _lowerCamelCase : List[str] = key.replace('''moe_layer.experts.''', '''ffn.experts.expert_''' ) if "gate" in key: _lowerCamelCase : Tuple = key.replace('''.moe_layer.gate.wg''', '''.ffn.router.classifier''' ) if "fc2" and "experts" not in key: _lowerCamelCase : int = key.replace('''.fc2.''', '''.ffn.fc2.''' ) if "fc1" and "experts" not in key: _lowerCamelCase : Union[str, Any] = key.replace('''.fc1.''', '''.ffn.fc1.''' ) if ".encoder_attn." in key: _lowerCamelCase : Any = key.replace('''.encoder_attn.''', '''.cross_attention.''' ) if "encoder_attn_layer_norm" in key: _lowerCamelCase : Optional[int] = key.replace('''encoder_attn_layer_norm''', '''cross_attention_layer_norm''' ) if "final_layer_norm" in key: _lowerCamelCase : Optional[Any] = key.replace('''final_layer_norm''', '''ff_layer_norm''' ) _lowerCamelCase : Optional[int] = state_dict[old_key] return new_dict def snake_case_ ( A_ : Tuple, A_ : List[str], A_ : Optional[int], A_ : Optional[Any], A_ : str = WEIGHTS_NAME ): '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase : Union[str, Any] = 0 os.makedirs(A_, exist_ok=A_ ) for expert in range(A_ ): _lowerCamelCase : List[Any] = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(A_ ): _lowerCamelCase : str = torch.load(A_ )['''model'''] remove_ignore_keys_(A_ ) _lowerCamelCase : Union[str, Any] = rename_fairseq_keys(A_, A_ ) _lowerCamelCase : Any = os.path.join( A_, weights_name.replace('''.bin''', F'''-{len(A_ )+1:05d}-of-???.bin''' ) ) torch.save(A_, A_ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(A_ )[0]].dtype ) # Add the last block _lowerCamelCase : Any = os.path.join(A_, weights_name.replace('''.bin''', F'''-{len(A_ )+1:05d}-of-???.bin''' ) ) _lowerCamelCase : Tuple = torch.load(switch_checkpoint_path + '''-shared.pt''' )['''model'''] remove_ignore_keys_(A_ ) _lowerCamelCase : Union[str, Any] = rename_fairseq_keys(A_, A_ ) _lowerCamelCase : Any = shared_weights['''decoder.embed_tokens.weight'''] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(A_ ) == 1: _lowerCamelCase : int = os.path.join(A_, A_ ) torch.save(A_, A_ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(A_, A_ ) # Otherwise, let's build the index _lowerCamelCase : Optional[Any] = {} for idx, shard in enumerate(A_ ): _lowerCamelCase : str = weights_name.replace('''.bin''', F'''-{idx+1:05d}-of-{len(A_ ):05d}.bin''' ) _lowerCamelCase : List[Any] = os.path.join(A_, weights_name.replace('''.bin''', F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(A_, os.path.join(A_, A_ ) ) for key in shard: _lowerCamelCase : Optional[int] = shard_file # Add the metadata _lowerCamelCase : Optional[int] = {'''total_size''': total_size} _lowerCamelCase : str = {'''metadata''': metadata, '''weight_map''': weight_map} with open(os.path.join(A_, A_ ), '''w''', encoding='''utf-8''' ) as f: _lowerCamelCase : Union[str, Any] = json.dumps(A_, indent=2, sort_keys=A_ ) + '''\n''' f.write(A_ ) return metadata, index if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--nllb_moe_checkpoint_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000''', type=str, required=False, help='''Path to a directory containing a folder per layer. Follows the original Google format.''', ) parser.add_argument('''--dtype''', default='''float32''', type=str, required=False, help='''dtype of the saved model''') parser.add_argument( '''--pytorch_dump_folder_path''', default='''/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b''', type=str, required=False, help='''Path to the output pytorch model.''', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ , lowerCAmelCase__ = shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) lowerCAmelCase__ = NllbMoeConfig.from_pretrained( '''facebook/nllb-200-3.3B''', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) lowerCAmelCase__ = NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('''Done''') model.save_pretrained(args.pytorch_dump_folder_path)
700
"""simple docstring""" def snake_case_ ( A_ : int = 10, A_ : int = 22 ): '''simple docstring''' _lowerCamelCase : Union[str, Any] = range(1, A_ ) _lowerCamelCase : Dict = range(1, A_ ) return sum( 1 for power in powers for base in bases if len(str(base**power ) ) == power ) if __name__ == "__main__": print(F"""{solution(10, 22) = }""")
598
0
'''simple docstring''' from math import sqrt def _lowerCAmelCase ( __snake_case : int ) -> bool: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' must been an int and positive" __A : Optional[int] = True # 0 and 1 are none primes. if number <= 1: __A : Tuple = False for divisor in range(2 , int(round(sqrt(__snake_case ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: __A : Union[str, Any] = False break # precondition assert isinstance(__snake_case , __snake_case ), "'status' must been from type bool" return status def _lowerCAmelCase ( __snake_case : Tuple ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N __A : List[str] = list(range(2 , n + 1 ) ) __A : Any = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(__snake_case ) ): for j in range(i + 1 , len(__snake_case ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): __A : Any = 0 # filters actual prime numbers. __A : Dict = [x for x in begin_list if x != 0] # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : str ) -> Union[str, Any]: assert isinstance(__snake_case , __snake_case ) and (n > 2), "'N' must been an int and > 2" __A : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(__snake_case ): ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : List[Any] ) -> List[str]: assert isinstance(__snake_case , __snake_case ) and number >= 0, "'number' must been an int and >= 0" __A : Optional[int] = [] # this list will be returns of the function. # potential prime number factors. __A : int = 2 __A : Tuple = number if number == 0 or number == 1: ans.append(__snake_case ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(__snake_case ): while quotient != 1: if is_prime(__snake_case ) and (quotient % factor == 0): ans.append(__snake_case ) quotient /= factor else: factor += 1 else: ans.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type list" return ans def _lowerCAmelCase ( __snake_case : str ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A : Any = 0 # prime factorization of 'number' __A : Dict = prime_factorization(__snake_case ) __A : Union[str, Any] = max(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> str: assert isinstance(__snake_case , __snake_case ) and ( number >= 0 ), "'number' bust been an int and >= 0" __A : Tuple = 0 # prime factorization of 'number' __A : Any = prime_factorization(__snake_case ) __A : Any = min(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ), "'ans' must been from type int" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 == 0 , __snake_case ), "compare bust been from type bool" return number % 2 == 0 def _lowerCAmelCase ( __snake_case : List[str] ) -> str: assert isinstance(__snake_case , __snake_case ), "'number' must been an int" assert isinstance(number % 2 != 0 , __snake_case ), "compare bust been from type bool" return number % 2 != 0 def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Optional[int]: assert ( isinstance(__snake_case , __snake_case ) and (number > 2) and is_even(__snake_case ) ), "'number' must been an int, even and > 2" __A : List[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' __A : List[str] = get_prime_numbers(__snake_case ) __A : Tuple = len(__snake_case ) # run variable for while-loops. __A : Optional[int] = 0 __A : Union[str, Any] = None # exit variable. for break up the loops __A : str = True while i < len_pn and loop: __A : int = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: __A : Any = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and (len(__snake_case ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] , __snake_case : int ) -> Any: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." __A : List[str] = 0 while numbera != 0: __A : Optional[int] = numbera % numbera __A : Dict = numbera __A : List[Any] = rest # precondition assert isinstance(__snake_case , __snake_case ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : List[Any] ) -> List[Any]: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." __A : Union[str, Any] = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' __A : Optional[Any] = prime_factorization(__snake_case ) __A : Union[str, Any] = prime_factorization(__snake_case ) elif numbera == 1 or numbera == 1: __A : str = [] __A : Union[str, Any] = [] __A : Union[str, Any] = max(__snake_case , __snake_case ) __A : Union[str, Any] = 0 __A : Tuple = 0 __A : List[Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: __A : Dict = prime_fac_a.count(__snake_case ) __A : List[str] = prime_fac_a.count(__snake_case ) for _ in range(max(__snake_case , __snake_case ) ): ans *= n else: __A : int = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: __A : str = prime_fac_a.count(__snake_case ) for _ in range(__snake_case ): ans *= n done.append(__snake_case ) # precondition assert isinstance(__snake_case , __snake_case ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def _lowerCAmelCase ( __snake_case : Optional[Any] ) -> List[Any]: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'number' must been a positive int" __A : List[Any] = 0 __A : str = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(__snake_case ): ans += 1 # precondition assert isinstance(__snake_case , __snake_case ) and is_prime( __snake_case ), "'ans' must been a prime number and from type int" return ans def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : Optional[int] ) -> Dict: assert ( is_prime(__snake_case ) and is_prime(__snake_case ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" __A : Any = p_number_a + 1 # jump to the next number __A : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(__snake_case ): number += 1 while number < p_number_a: ans.append(__snake_case ) number += 1 # fetch the next prime number. while not is_prime(__snake_case ): number += 1 # precondition assert ( isinstance(__snake_case , __snake_case ) and ans[0] != p_number_a and ans[len(__snake_case ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def _lowerCAmelCase ( __snake_case : Dict ) -> str: assert isinstance(__snake_case , __snake_case ) and (n >= 1), "'n' must been int and >= 1" __A : List[str] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(__snake_case ) # precondition assert ans[0] == 1 and ans[len(__snake_case ) - 1] == n, "Error in function getDivisiors(...)" return ans def _lowerCAmelCase ( __snake_case : Union[str, Any] ) -> Dict: assert isinstance(__snake_case , __snake_case ) and ( number > 1 ), "'number' must been an int and >= 1" __A : Optional[Any] = get_divisors(__snake_case ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (divisors[0] == 1) and (divisors[len(__snake_case ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def _lowerCAmelCase ( __snake_case : Any , __snake_case : int ) -> List[Any]: assert ( isinstance(__snake_case , __snake_case ) and isinstance(__snake_case , __snake_case ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. __A : Optional[int] = gcd(abs(__snake_case ) , abs(__snake_case ) ) # precondition assert ( isinstance(__snake_case , __snake_case ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def _lowerCAmelCase ( __snake_case : Tuple ) -> int: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been a int and >= 0" __A : Optional[int] = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def _lowerCAmelCase ( __snake_case : str ) -> Dict: assert isinstance(__snake_case , __snake_case ) and (n >= 0), "'n' must been an int and >= 0" __A : Union[str, Any] = 0 __A : List[str] = 1 __A : Dict = 1 # this will be return for _ in range(n - 1 ): __A : str = ans ans += fiba __A : List[Any] = tmp return ans
8
'''simple docstring''' from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class _SCREAMING_SNAKE_CASE ( __a ): __SCREAMING_SNAKE_CASE :Optional[int] = """ClapFeatureExtractor""" __SCREAMING_SNAKE_CASE :List[Any] = ("""RobertaTokenizer""", """RobertaTokenizerFast""") def __init__( self : Optional[Any] , a__ : Dict , a__ : Dict ): super().__init__(a__ , a__ ) def __call__( self : Dict , a__ : List[str]=None , a__ : List[Any]=None , a__ : Any=None , **a__ : Tuple ): __magic_name__ = kwargs.pop('''sampling_rate''' , a__ ) if text is None and audios is None: raise ValueError('''You have to specify either text or audios. Both cannot be none.''' ) if text is not None: __magic_name__ = self.tokenizer(a__ , return_tensors=a__ , **a__ ) if audios is not None: __magic_name__ = self.feature_extractor( a__ , sampling_rate=a__ , return_tensors=a__ , **a__ ) if text is not None and audios is not None: __magic_name__ = audio_features.input_features return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**a__ ) , tensor_type=a__ ) def snake_case__ ( self : List[Any] , *a__ : str , **a__ : List[str] ): return self.tokenizer.batch_decode(*a__ , **a__ ) def snake_case__ ( self : int , *a__ : Tuple , **a__ : Tuple ): return self.tokenizer.decode(*a__ , **a__ ) @property def snake_case__ ( self : Any ): __magic_name__ = self.tokenizer.model_input_names __magic_name__ = self.feature_extractor.model_input_names return list(dict.fromkeys(tokenizer_input_names + feature_extractor_input_names ) )
432
0
import argparse import torch from transformers import BertForMaskedLM if __name__ == "__main__": __snake_case : Optional[int] = argparse.ArgumentParser( description=( 'Extraction some layers of the full BertForMaskedLM or RObertaForMaskedLM for Transfer Learned' ' Distillation' ) ) parser.add_argument('--model_type', default='bert', choices=['bert']) parser.add_argument('--model_name', default='bert-base-uncased', type=str) parser.add_argument('--dump_checkpoint', default='serialization_dir/tf_bert-base-uncased_0247911.pth', type=str) parser.add_argument('--vocab_transform', action='store_true') __snake_case : Any = parser.parse_args() if args.model_type == "bert": __snake_case : Optional[Any] = BertForMaskedLM.from_pretrained(args.model_name) __snake_case : List[Any] = 'bert' else: raise ValueError('args.model_type should be "bert".') __snake_case : Optional[int] = model.state_dict() __snake_case : List[str] = {} for w in ["word_embeddings", "position_embeddings"]: __snake_case : Any = state_dict[f"""{prefix}.embeddings.{w}.weight"""] for w in ["weight", "bias"]: __snake_case : Union[str, Any] = state_dict[f"""{prefix}.embeddings.LayerNorm.{w}"""] __snake_case : List[Any] = 0 for teacher_idx in [0, 2, 4, 7, 9, 11]: for w in ["weight", "bias"]: __snake_case : Tuple = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.query.{w}""" ] __snake_case : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.key.{w}""" ] __snake_case : Union[str, Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.self.value.{w}""" ] __snake_case : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.dense.{w}""" ] __snake_case : Dict = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.attention.output.LayerNorm.{w}""" ] __snake_case : Optional[Any] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.intermediate.dense.{w}""" ] __snake_case : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.dense.{w}""" ] __snake_case : Optional[int] = state_dict[ f"""{prefix}.encoder.layer.{teacher_idx}.output.LayerNorm.{w}""" ] std_idx += 1 __snake_case : int = state_dict['cls.predictions.decoder.weight'] __snake_case : Tuple = state_dict['cls.predictions.bias'] if args.vocab_transform: for w in ["weight", "bias"]: __snake_case : List[str] = state_dict[f"""cls.predictions.transform.dense.{w}"""] __snake_case : int = state_dict[f"""cls.predictions.transform.LayerNorm.{w}"""] print(f"""N layers selected for distillation: {std_idx}""") print(f"""Number of params transferred for distillation: {len(compressed_sd.keys())}""") print(f"""Save transferred checkpoint to {args.dump_checkpoint}.""") torch.save(compressed_sd, args.dump_checkpoint)
707
import argparse import struct import unittest class UpperCamelCase__ : '''simple docstring''' def __init__( self , A ) ->None: UpperCAmelCase__ :Dict = data # Initialize hash values UpperCAmelCase__ :str = [ 0x6a_09e_667, 0xbb_67a_e85, 0x3c_6ef_372, 0xa5_4ff_53a, 0x51_0e5_27f, 0x9b_056_88c, 0x1f_83d_9ab, 0x5b_e0c_d19, ] # Initialize round constants UpperCAmelCase__ :str = [ 0x42_8a2_f98, 0x71_374_491, 0xb5_c0f_bcf, 0xe9_b5d_ba5, 0x39_56c_25b, 0x59_f11_1f1, 0x92_3f8_2a4, 0xab_1c5_ed5, 0xd8_07a_a98, 0x12_835_b01, 0x24_318_5be, 0x55_0c7_dc3, 0x72_be5_d74, 0x80_deb_1fe, 0x9b_dc0_6a7, 0xc1_9bf_174, 0xe4_9b6_9c1, 0xef_be4_786, 0x0f_c19_dc6, 0x24_0ca_1cc, 0x2d_e92_c6f, 0x4a_748_4aa, 0x5c_b0a_9dc, 0x76_f98_8da, 0x98_3e5_152, 0xa8_31c_66d, 0xb0_032_7c8, 0xbf_597_fc7, 0xc6_e00_bf3, 0xd5_a79_147, 0x06_ca6_351, 0x14_292_967, 0x27_b70_a85, 0x2e_1b2_138, 0x4d_2c6_dfc, 0x53_380_d13, 0x65_0a7_354, 0x76_6a0_abb, 0x81_c2c_92e, 0x92_722_c85, 0xa2_bfe_8a1, 0xa8_1a6_64b, 0xc2_4b8_b70, 0xc7_6c5_1a3, 0xd1_92e_819, 0xd6_990_624, 0xf4_0e3_585, 0x10_6aa_070, 0x19_a4c_116, 0x1e_376_c08, 0x27_487_74c, 0x34_b0b_cb5, 0x39_1c0_cb3, 0x4e_d8a_a4a, 0x5b_9cc_a4f, 0x68_2e6_ff3, 0x74_8f8_2ee, 0x78_a56_36f, 0x84_c87_814, 0x8c_c70_208, 0x90_bef_ffa, 0xa4_506_ceb, 0xbe_f9a_3f7, 0xc6_717_8f2, ] UpperCAmelCase__ :Any = self.preprocessing(self.data ) self.final_hash() @staticmethod def A__ ( A ) ->bytes: UpperCAmelCase__ :List[Any] = b'\x80' + (b'\x00' * (63 - (len(A ) + 8) % 64)) UpperCAmelCase__ :Optional[int] = struct.pack('>Q' , (len(A ) * 8) ) return data + padding + big_endian_integer def A__ ( self ) ->None: # Convert into blocks of 64 bytes UpperCAmelCase__ :List[Any] = [ self.preprocessed_data[x : x + 64] for x in range(0 , len(self.preprocessed_data ) , 64 ) ] for block in self.blocks: # Convert the given block into a list of 4 byte integers UpperCAmelCase__ :Any = list(struct.unpack('>16L' , A ) ) # add 48 0-ed integers words += [0] * 48 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :List[Any] = self.hashes for index in range(0 , 64 ): if index > 15: # modify the zero-ed indexes at the end of the array UpperCAmelCase__ :Optional[Any] = ( self.ror(words[index - 15] , 7 ) ^ self.ror(words[index - 15] , 18 ) ^ (words[index - 15] >> 3) ) UpperCAmelCase__ :Any = ( self.ror(words[index - 2] , 17 ) ^ self.ror(words[index - 2] , 19 ) ^ (words[index - 2] >> 10) ) UpperCAmelCase__ :str = ( words[index - 16] + sa + words[index - 7] + sa ) % 0x100_000_000 # Compression UpperCAmelCase__ :Tuple = self.ror(A , 6 ) ^ self.ror(A , 11 ) ^ self.ror(A , 25 ) UpperCAmelCase__ :int = (e & f) ^ ((~e & 0xff_fff_fff) & g) UpperCAmelCase__ :str = ( h + sa + ch + self.round_constants[index] + words[index] ) % 0x100_000_000 UpperCAmelCase__ :Optional[int] = self.ror(A , 2 ) ^ self.ror(A , 13 ) ^ self.ror(A , 22 ) UpperCAmelCase__ :Optional[int] = (a & b) ^ (a & c) ^ (b & c) UpperCAmelCase__ :Optional[int] = (sa + maj) % 0x100_000_000 UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ :Tuple = ( g, f, e, ((d + tempa) % 0x100_000_000), c, b, a, ((tempa + tempa) % 0x100_000_000), ) UpperCAmelCase__ :str = [a, b, c, d, e, f, g, h] # Modify final values UpperCAmelCase__ :Tuple = [ ((element + mutated_hash_values[index]) % 0x100_000_000) for index, element in enumerate(self.hashes ) ] UpperCAmelCase__ :Dict = ''.join([hex(A )[2:].zfill(8 ) for value in self.hashes] ) def A__ ( self , A , A ) ->int: return 0xff_fff_fff & (value << (32 - rotations)) | (value >> rotations) class UpperCamelCase__ ( unittest.TestCase): '''simple docstring''' def A__ ( self ) ->None: import hashlib UpperCAmelCase__ :Optional[Any] = bytes('Test String' , 'utf-8' ) self.assertEqual(SHAaaa(A ).hash , hashlib.shaaaa(A ).hexdigest() ) def A ( ): """simple docstring""" import doctest doctest.testmod() UpperCAmelCase__ :Union[str, Any] = argparse.ArgumentParser() parser.add_argument( '-s' , '--string' , dest='input_string' , default='Hello World!! Welcome to Cryptography' , help='Hash the string' , ) parser.add_argument( '-f' , '--file' , dest='input_file' , help='Hash contents of a file' ) UpperCAmelCase__ :List[Any] = parser.parse_args() UpperCAmelCase__ :List[Any] = args.input_string # hash input should be a bytestring if args.input_file: with open(args.input_file , 'rb' ) as f: UpperCAmelCase__ :Optional[Any] = f.read() else: UpperCAmelCase__ :Any = bytes(SCREAMING_SNAKE_CASE , 'utf-8' ) print(SHAaaa(SCREAMING_SNAKE_CASE ).hash ) if __name__ == "__main__": main()
433
0
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowerCAmelCase : List[str] = 0b101_100_111_110_110_010_010_000_011_110_111_011_000_110_011_110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowerCAmelCase : Optional[int] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowerCAmelCase__ : def __init__( self : List[str] ): '''simple docstring''' UpperCAmelCase__ : Tuple = WATERMARK_BITS UpperCAmelCase__ : Dict = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark ) def __a ( self : Optional[Any] , snake_case__ : torch.FloatTensor ): '''simple docstring''' # can't encode images that are smaller than 256 if images.shape[-1] < 2_5_6: return images UpperCAmelCase__ : str = (2_5_5 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase__ : Tuple = [self.encoder.encode(snake_case__ , "dwtDct" ) for image in images] UpperCAmelCase__ : List[str] = torch.from_numpy(np.array(snake_case__ ) ).permute(0 , 3 , 1 , 2 ) UpperCAmelCase__ : Tuple = torch.clamp(2 * (images / 2_5_5 - 0.5) , min=-1.0 , max=1.0 ) return images
438
"""simple docstring""" import json from typing import Dict, List, Optional, Tuple, Union from tokenizers import pre_tokenizers, processors from ...tokenization_utils_base import AddedToken, BatchEncoding, EncodedInput from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import PaddingStrategy, logging from .tokenization_led import LEDTokenizer _lowerCAmelCase : str = logging.get_logger(__name__) _lowerCAmelCase : int = {"""vocab_file""": """vocab.json""", """merges_file""": """merges.txt""", """tokenizer_file""": """tokenizer.json"""} _lowerCAmelCase : List[Any] = { """vocab_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/vocab.json""", }, """merges_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/merges.txt""", }, """tokenizer_file""": { """allenai/led-base-16384""": """https://huggingface.co/allenai/led-base-16384/resolve/main/tokenizer.json""", }, } _lowerCAmelCase : List[str] = { """allenai/led-base-16384""": 16_384, } class lowerCAmelCase__ ( __magic_name__ ): SCREAMING_SNAKE_CASE_ =VOCAB_FILES_NAMES SCREAMING_SNAKE_CASE_ =PRETRAINED_VOCAB_FILES_MAP SCREAMING_SNAKE_CASE_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES SCREAMING_SNAKE_CASE_ =LEDTokenizer SCREAMING_SNAKE_CASE_ =['''input_ids''', '''attention_mask'''] def __init__( self : Optional[Any] , snake_case__ : str=None , snake_case__ : List[Any]=None , snake_case__ : Dict=None , snake_case__ : List[str]="replace" , snake_case__ : Optional[int]="<s>" , snake_case__ : List[str]="</s>" , snake_case__ : Union[str, Any]="</s>" , snake_case__ : Dict="<s>" , snake_case__ : Tuple="<unk>" , snake_case__ : Any="<pad>" , snake_case__ : Dict="<mask>" , snake_case__ : int=False , snake_case__ : Optional[int]=True , **snake_case__ : List[Any] , ): '''simple docstring''' super().__init__( snake_case__ , snake_case__ , tokenizer_file=snake_case__ , errors=snake_case__ , bos_token=snake_case__ , eos_token=snake_case__ , sep_token=snake_case__ , cls_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , mask_token=snake_case__ , add_prefix_space=snake_case__ , trim_offsets=snake_case__ , **snake_case__ , ) UpperCAmelCase__ : str = json.loads(self.backend_tokenizer.pre_tokenizer.__getstate__() ) if pre_tok_state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: UpperCAmelCase__ : Dict = getattr(snake_case__ , pre_tok_state.pop("type" ) ) UpperCAmelCase__ : str = add_prefix_space UpperCAmelCase__ : Any = pre_tok_class(**snake_case__ ) UpperCAmelCase__ : Dict = add_prefix_space # the pre_tokenizer is already updated in the GPT2TokenizerFast `__init__` UpperCAmelCase__ : List[str] = "post_processor" UpperCAmelCase__ : List[Any] = getattr(self.backend_tokenizer , snake_case__ , snake_case__ ) if tokenizer_component_instance: UpperCAmelCase__ : int = json.loads(tokenizer_component_instance.__getstate__() ) # The lists 'sep' and 'cls' must be cased in tuples for the object `post_processor_class` if "sep" in state: UpperCAmelCase__ : Optional[Any] = tuple(state["sep"] ) if "cls" in state: UpperCAmelCase__ : Any = tuple(state["cls"] ) UpperCAmelCase__ : Any = False if state.get("add_prefix_space" , snake_case__ ) != add_prefix_space: UpperCAmelCase__ : Union[str, Any] = add_prefix_space UpperCAmelCase__ : List[Any] = True if state.get("trim_offsets" , snake_case__ ) != trim_offsets: UpperCAmelCase__ : Optional[int] = trim_offsets UpperCAmelCase__ : List[Any] = True if changes_to_apply: UpperCAmelCase__ : List[str] = getattr(snake_case__ , state.pop("type" ) ) UpperCAmelCase__ : Optional[int] = component_class(**snake_case__ ) setattr(self.backend_tokenizer , snake_case__ , snake_case__ ) @property # Copied from transformers.models.bart.tokenization_bart_fast.BartTokenizerFast.mask_token with BART->LED def __a ( self : Any ): '''simple docstring''' if self._mask_token is None: if self.verbose: logger.error("Using mask_token, but it is not set yet." ) return None return str(self._mask_token ) @mask_token.setter def __a ( self : Any , snake_case__ : Dict ): '''simple docstring''' UpperCAmelCase__ : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else value UpperCAmelCase__ : Dict = value def __a ( self : str , *snake_case__ : Any , **snake_case__ : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = kwargs.get("is_split_into_words" , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._batch_encode_plus(*snake_case__ , **snake_case__ ) def __a ( self : List[str] , *snake_case__ : Union[str, Any] , **snake_case__ : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = kwargs.get("is_split_into_words" , snake_case__ ) if is_split_into_words and not self.add_prefix_space: raise ValueError( f'You need to instantiate {self.__class__.__name__} with add_prefix_space=True ' "to use it with pretokenized inputs." ) return super()._encode_plus(*snake_case__ , **snake_case__ ) def __a ( self : Tuple , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self._tokenizer.model.save(snake_case__ , name=snake_case__ ) return tuple(snake_case__ ) def __a ( self : str , snake_case__ : List[Any] , snake_case__ : str=None ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = [self.bos_token_id] + token_ids_a + [self.eos_token_id] if token_ids_a is None: return output return output + [self.eos_token_id] + token_ids_a + [self.eos_token_id] def __a ( self : str , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = [self.sep_token_id] UpperCAmelCase__ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __a ( self : Any , snake_case__ : Union[Dict[str, EncodedInput], BatchEncoding] , snake_case__ : Optional[int] = None , snake_case__ : PaddingStrategy = PaddingStrategy.DO_NOT_PAD , snake_case__ : Optional[int] = None , snake_case__ : Optional[bool] = None , ): '''simple docstring''' UpperCAmelCase__ : str = super()._pad( encoded_inputs=snake_case__ , max_length=snake_case__ , padding_strategy=snake_case__ , pad_to_multiple_of=snake_case__ , return_attention_mask=snake_case__ , ) # Load from model defaults if return_attention_mask is None: UpperCAmelCase__ : Optional[int] = "attention_mask" in self.model_input_names if return_attention_mask and "global_attention_mask" in encoded_inputs: UpperCAmelCase__ : List[Any] = encoded_inputs[self.model_input_names[0]] # `global_attention_mask` need to have the same length as other (sequential) inputs. UpperCAmelCase__ : Any = len(encoded_inputs["global_attention_mask"] ) != len(snake_case__ ) if needs_to_be_padded: UpperCAmelCase__ : List[str] = len(snake_case__ ) - len(encoded_inputs["global_attention_mask"] ) if self.padding_side == "right": # Use `-1` since `0` in `global_attention_mask` means `local attention` instead of `not to attend` UpperCAmelCase__ : Dict = ( encoded_inputs["global_attention_mask"] + [-1] * difference ) elif self.padding_side == "left": UpperCAmelCase__ : Dict = [-1] * difference + encoded_inputs[ "global_attention_mask" ] else: raise ValueError("Invalid padding strategy:" + str(self.padding_side ) ) return encoded_inputs
438
1
"""simple docstring""" def UpperCAmelCase ( a_ ): '''simple docstring''' lowerCamelCase : List[Any] = 0 lowerCamelCase : str = len(_lowerCamelCase ) for i in range(n - 1 ): for j in range(i + 1, _lowerCamelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def UpperCAmelCase ( a_ ): '''simple docstring''' if len(_lowerCamelCase ) <= 1: return arr, 0 lowerCamelCase : Union[str, Any] = len(_lowerCamelCase ) // 2 lowerCamelCase : str = arr[0:mid] lowerCamelCase : int = arr[mid:] lowerCamelCase : int = count_inversions_recursive(_lowerCamelCase ) lowerCamelCase : Dict = count_inversions_recursive(_lowerCamelCase ) lowerCamelCase : Union[str, Any] = _count_cross_inversions(_lowerCamelCase, _lowerCamelCase ) lowerCamelCase : Union[str, Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def UpperCAmelCase ( a_, a_ ): '''simple docstring''' lowerCamelCase : Union[str, Any] = [] lowerCamelCase : Optional[int] = 0 while i < len(_lowerCamelCase ) and j < len(_lowerCamelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(_lowerCamelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(_lowerCamelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def UpperCAmelCase ( ): '''simple docstring''' lowerCamelCase : Optional[int] = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowerCamelCase : List[str] = count_inversions_bf(_lowerCamelCase ) lowerCamelCase : Union[str, Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('number of inversions = ', _lowerCamelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowerCamelCase : Any = count_inversions_bf(_lowerCamelCase ) lowerCamelCase : List[Any] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', _lowerCamelCase ) # an empty list should also have zero inversions lowerCamelCase : str = [] lowerCamelCase : int = count_inversions_bf(_lowerCamelCase ) lowerCamelCase : Optional[int] = count_inversions_recursive(_lowerCamelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('number of inversions = ', _lowerCamelCase ) if __name__ == "__main__": main()
706
"""simple docstring""" from __future__ import annotations import math def UpperCAmelCase ( a_ ): '''simple docstring''' if num <= 0: lowerCamelCase : Tuple = F"""{num}: Invalid input, please enter a positive integer.""" raise ValueError(a_ ) lowerCamelCase : Optional[Any] = [True] * (num + 1) lowerCamelCase : int = [] lowerCamelCase : Dict = 2 lowerCamelCase : List[str] = int(math.sqrt(a_ ) ) while start <= end: # If start is a prime if sieve[start] is True: prime.append(a_ ) # Set multiples of start be False for i in range(start * start, num + 1, a_ ): if sieve[i] is True: lowerCamelCase : Optional[int] = False start += 1 for j in range(end + 1, num + 1 ): if sieve[j] is True: prime.append(a_ ) return prime if __name__ == "__main__": print(prime_sieve(int(input('Enter a positive integer: ').strip())))
133
0