code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from __future__ import annotations from typing import Dict from ...configuration_utils import PretrainedConfig snake_case_ : Tuple = { 'susnato/ernie-m-base_pytorch': 'https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/config.json', 'susnato/ernie-m-large_pytorch': 'https://huggingface.co/susnato/ernie-m-large_pytorch/blob/main/config.json', } class lowercase__ ( lowercase ): lowercase__ = """ernie_m""" lowercase__ = {"dropout": "classifier_dropout", "num_classes": "num_labels"} def __init__( self : Union[str, Any] ,lowerCamelCase__ : int = 250002 ,lowerCamelCase__ : int = 768 ,lowerCamelCase__ : int = 12 ,lowerCamelCase__ : int = 12 ,lowerCamelCase__ : int = 3072 ,lowerCamelCase__ : str = "gelu" ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : float = 0.1 ,lowerCamelCase__ : int = 514 ,lowerCamelCase__ : float = 0.0_2 ,lowerCamelCase__ : int = 1 ,lowerCamelCase__ : float = 1E-05 ,lowerCamelCase__ : Union[str, Any]=None ,lowerCamelCase__ : Union[str, Any]=False ,lowerCamelCase__ : int=0.0 ,**lowerCamelCase__ : Tuple ,): '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : List[Any] = vocab_size _UpperCamelCase : Optional[Any] = hidden_size _UpperCamelCase : Union[str, Any] = num_hidden_layers _UpperCamelCase : Union[str, Any] = num_attention_heads _UpperCamelCase : Optional[Any] = intermediate_size _UpperCamelCase : Any = hidden_act _UpperCamelCase : Union[str, Any] = hidden_dropout_prob _UpperCamelCase : int = attention_probs_dropout_prob _UpperCamelCase : Tuple = max_position_embeddings _UpperCamelCase : Tuple = initializer_range _UpperCamelCase : Tuple = layer_norm_eps _UpperCamelCase : Tuple = classifier_dropout _UpperCamelCase : str = is_decoder _UpperCamelCase : Dict = act_dropout
195
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def A__ ( UpperCAmelCase_="" ): _UpperCamelCase : Any = tempfile.mkdtemp() return os.path.join(UpperCAmelCase_ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : int ): '''simple docstring''' _UpperCamelCase : List[str] = torch.rand(12 ,dtype=torch.floataa ) - 0.5 _UpperCamelCase : Optional[int] = AgentAudio(lowerCamelCase__ ) _UpperCamelCase : List[str] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ ,agent_type.to_raw() ,atol=1E-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(lowerCamelCase__ ) ) # Ensure that the file contains the same value as the original tensor _UpperCamelCase , _UpperCamelCase : Union[str, Any] = sf.read(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ ,torch.tensor(lowerCamelCase__ ) ,atol=1E-4 ) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : Optional[Any] = torch.rand(12 ,dtype=torch.floataa ) - 0.5 _UpperCamelCase : Any = get_new_path(suffix='.wav' ) sf.write(lowerCamelCase__ ,lowerCamelCase__ ,16000 ) _UpperCamelCase : List[Any] = AgentAudio(lowerCamelCase__ ) self.assertTrue(torch.allclose(lowerCamelCase__ ,agent_type.to_raw() ,atol=1E-4 ) ) self.assertEqual(agent_type.to_string() ,lowerCamelCase__ ) @require_vision @require_torch class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : List[Any] ): '''simple docstring''' _UpperCamelCase : int = torch.randint(0 ,256 ,(64, 64, 3) ) _UpperCamelCase : Optional[Any] = AgentImage(lowerCamelCase__ ) _UpperCamelCase : List[Any] = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(lowerCamelCase__ ,agent_type._tensor ,atol=1E-4 ) ) self.assertIsInstance(agent_type.to_raw() ,Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : str = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' _UpperCamelCase : Tuple = Image.open(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = AgentImage(lowerCamelCase__ ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = Path(get_tests_dir('fixtures/tests_samples/COCO' ) ) / '000000039769.png' _UpperCamelCase : Union[str, Any] = Image.open(lowerCamelCase__ ) _UpperCamelCase : List[Any] = AgentImage(lowerCamelCase__ ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(lowerCamelCase__ ) ) class lowercase__ ( unittest.TestCase ): def UpperCamelCase_ ( self : Any ): '''simple docstring''' _UpperCamelCase : List[Any] = 'Hey!' _UpperCamelCase : Optional[int] = AgentText(lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ ,agent_type.to_string() ) self.assertEqual(lowerCamelCase__ ,agent_type.to_raw() ) self.assertEqual(lowerCamelCase__ ,lowerCamelCase__ )
195
1
"""simple docstring""" from __future__ import annotations def A__ ( A__ , A__ , A__ , ) -> tuple: '''simple docstring''' if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
720
"""simple docstring""" import requests SCREAMING_SNAKE_CASE_ = '''''' # <-- Put your OpenWeatherMap appid here! SCREAMING_SNAKE_CASE_ = '''https://api.openweathermap.org/data/2.5/''' def A__ ( A__ = "Chicago" , A__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + "weather" , params=locals() ).json() def A__ ( A__ = "Kolkata, India" , A__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + "forecast" , params=locals() ).json() def A__ ( A__ = 55.68 , A__ = 12.57 , A__ = APPID ) -> dict: '''simple docstring''' return requests.get(URL_BASE + "onecall" , params=locals() ).json() if __name__ == "__main__": from pprint import pprint while True: SCREAMING_SNAKE_CASE_ = input('''Enter a location:''').strip() if location: pprint(current_weather(location)) else: break
579
0
from __future__ import annotations import unittest import numpy as np from transformers import OPTConfig, is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import GPTaTokenizer, TFOPTForCausalLM, TFOPTModel def SCREAMING_SNAKE_CASE ( snake_case , snake_case , snake_case=None , snake_case=None ) -> Any: if attention_mask is None: __lowercase = tf.cast(tf.math.not_equal(_lowerCamelCase , config.pad_token_id ) , tf.inta ) return {"input_ids": input_ids, "attention_mask": attention_mask} @require_tf class snake_case_ : '''simple docstring''' __UpperCamelCase = OPTConfig __UpperCamelCase = {} __UpperCamelCase = '''gelu''' def __init__( self : Dict , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any=13 , __lowerCamelCase : Tuple=7 , __lowerCamelCase : Optional[int]=True , __lowerCamelCase : str=False , __lowerCamelCase : Dict=99 , __lowerCamelCase : Tuple=16 , __lowerCamelCase : Optional[Any]=2 , __lowerCamelCase : Any=4 , __lowerCamelCase : List[str]=4 , __lowerCamelCase : Optional[Any]="gelu" , __lowerCamelCase : str=0.1 , __lowerCamelCase : Optional[Any]=0.1 , __lowerCamelCase : Dict=20 , __lowerCamelCase : Optional[int]=2 , __lowerCamelCase : Optional[int]=1 , __lowerCamelCase : Union[str, Any]=0 , __lowerCamelCase : Optional[int]=16 , __lowerCamelCase : List[Any]=16 , ) -> Dict: '''simple docstring''' __lowercase = parent __lowercase = batch_size __lowercase = seq_length __lowercase = is_training __lowercase = use_labels __lowercase = vocab_size __lowercase = hidden_size __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = intermediate_size __lowercase = hidden_act __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = max_position_embeddings __lowercase = eos_token_id __lowercase = pad_token_id __lowercase = bos_token_id __lowercase = embed_dim __lowercase = word_embed_proj_dim __lowercase = False def UpperCAmelCase ( self : Any ) -> str: '''simple docstring''' __lowercase = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __lowercase = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __lowercase = tf.concat([input_ids, eos_tensor] , axis=1 ) __lowercase = self.config_cls( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , embed_dim=self.embed_dim , word_embed_proj_dim=self.word_embed_proj_dim , is_encoder_decoder=__lowerCamelCase , **self.config_updates , ) __lowercase = prepare_opt_inputs_dict(__lowerCamelCase , __lowerCamelCase ) return config, inputs_dict def UpperCAmelCase ( self : Optional[Any] , __lowerCamelCase : Optional[Any] , __lowerCamelCase : Optional[int] ) -> Optional[int]: '''simple docstring''' __lowercase = TFOPTModel(config=__lowerCamelCase ) __lowercase = inputs_dict["input_ids"] __lowercase = input_ids[:1, :] __lowercase = inputs_dict["attention_mask"][:1, :] __lowercase = 1 # first forward pass __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , use_cache=__lowerCamelCase ) __lowercase = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __lowercase = ids_tensor((self.batch_size, 3) , config.vocab_size ) __lowercase = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __lowercase = tf.concat([input_ids, next_tokens] , axis=-1 ) __lowercase = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase )[0] __lowercase = model(__lowerCamelCase , attention_mask=__lowerCamelCase , past_key_values=__lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __lowercase = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __lowercase = output_from_no_past[:, -3:, random_slice_idx] __lowercase = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(__lowerCamelCase , __lowerCamelCase , rtol=1E-3 ) @require_tf class snake_case_ ( __lowercase , __lowercase , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = (TFOPTModel, TFOPTForCausalLM) if is_tf_available() else () __UpperCamelCase = (TFOPTForCausalLM,) if is_tf_available() else () __UpperCamelCase = ( {'''feature-extraction''': TFOPTModel, '''text-generation''': TFOPTForCausalLM} if is_tf_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = 10 def UpperCAmelCase ( self : Any ) -> List[Any]: '''simple docstring''' __lowercase = TFOPTModelTester(self ) __lowercase = ConfigTester(self , config_class=__lowerCamelCase ) def UpperCAmelCase ( self : List[str] ) -> Union[str, Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase ( self : List[Any] ) -> Any: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*__lowerCamelCase ) def UpperCAmelCase ( self : Tuple ) -> int: '''simple docstring''' __lowercase = self.model_tester.prepare_config_and_inputs_for_common() def _get_word_embedding_weight(__lowerCamelCase : Optional[int] , __lowerCamelCase : Optional[Any] ): if hasattr(__lowerCamelCase , 'weight' ): return embedding_layer.weight else: # Here we build the word embeddings weights if not exists. # And then we retry to get the attribute once built. model.build() if hasattr(__lowerCamelCase , 'weight' ): return embedding_layer.weight else: return None for model_class in self.all_model_classes: for size in [config.vocab_size - 10, config.vocab_size + 10]: # build the embeddings __lowercase = model_class(config=__lowerCamelCase ) __lowercase = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # reshape the embeddings model.resize_token_embeddings(__lowerCamelCase ) __lowercase = _get_word_embedding_weight(__lowerCamelCase , model.get_input_embeddings() ) __lowercase = _get_word_embedding_weight(__lowerCamelCase , model.get_output_embeddings() ) # check that the resized embeddings size matches the desired size. __lowercase = size if size is not None else config.vocab_size self.assertEqual(new_input_embeddings.shape[0] , __lowerCamelCase ) # check that weights remain the same after resizing __lowercase = True for pa, pa in zip(old_input_embeddings.value() , new_input_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(__lowerCamelCase ) if old_output_embeddings is not None and new_output_embeddings is not None: self.assertEqual(new_output_embeddings.shape[0] , __lowerCamelCase ) __lowercase = True for pa, pa in zip(old_output_embeddings.value() , new_output_embeddings.value() ): if tf.math.reduce_sum(tf.math.abs(pa - pa ) ) > 0: __lowercase = False self.assertTrue(__lowerCamelCase ) def SCREAMING_SNAKE_CASE ( snake_case ) -> Optional[Any]: return tf.constant(_lowerCamelCase , dtype=tf.intaa ) @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' __UpperCamelCase = 99 def UpperCAmelCase ( self : str ) -> Union[str, Any]: '''simple docstring''' __lowercase = tf.ones((4, 1) , dtype=tf.intaa ) * 2 __lowercase = tf.concat([ids_tensor((4, 6) , self.vocab_size - 3 ) + 3, eos_column_vector] , axis=1 ) __lowercase = input_ids.shape[0] __lowercase = OPTConfig( vocab_size=self.vocab_size , hidden_size=24 , num_hidden_layers=2 , num_attention_heads=2 , ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size @require_sentencepiece @require_tf class snake_case_ ( unittest.TestCase ): '''simple docstring''' @slow def UpperCAmelCase ( self : Tuple ) -> Dict: '''simple docstring''' __lowercase = TFOPTModel.from_pretrained('facebook/opt-350m' ) __lowercase = _long_tensor([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) __lowercase = tf.not_equal(__lowerCamelCase , model.config.pad_token_id ) with tf.GradientTape(): __lowercase = model(input_ids=__lowerCamelCase , attention_mask=__lowerCamelCase ).last_hidden_state __lowercase = (1, 11, 512) self.assertEqual(output.shape , __lowerCamelCase ) __lowercase = tf.constant( [[-0.2873, -1.9218, -0.3033], [-1.2710, -0.1338, -0.1902], [0.4095, 0.1214, -1.3121]] ) self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4E-3 ) ) __lowercase = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) __lowercase = xla_generate(__lowerCamelCase , __lowerCamelCase )[0] self.assertTrue(np.allclose(output[:, :3, :3] , __lowerCamelCase , atol=4E-2 ) ) @require_tf @slow class snake_case_ ( unittest.TestCase ): '''simple docstring''' def UpperCAmelCase ( self : List[Any] ) -> Optional[Any]: '''simple docstring''' super().setUp() __lowercase = "facebook/opt-350m" def UpperCAmelCase ( self : Any ) -> Optional[int]: '''simple docstring''' __lowercase = TFOPTForCausalLM.from_pretrained(self.path_model ) __lowercase = GPTaTokenizer.from_pretrained(self.path_model ) __lowercase = [ "Today is a beautiful day and I want to", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] # verify that prompt without BOS token is identical to Metaseq -> add_special_tokens=False __lowercase = tokenizer(__lowerCamelCase , return_tensors='tf' , padding=__lowerCamelCase , add_special_tokens=__lowerCamelCase ) __lowercase = tf.math.reduce_mean(model(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) __lowercase = tf.constant( [ [1.3851, -13.8923, -10.5229, -10.7533, -0.2309, -10.2384, -0.5365, -9.0947, -5.1670], [-4.7073, -10.6276, -3.9415, -21.5242, -0.2822, -0.2822, -0.2822, -0.2822, -0.2822], [0.6247, -3.4229, -8.9179, -1.4297, -14.1650, 1.4146, -9.0218, -0.2703, -0.2703], [6.4783, -1.9913, -10.7926, -2.3336, 1.5092, -0.9974, -6.8213, 1.3477, 1.3477], ] ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-4 ) ) __lowercase = tf.function(__lowerCamelCase , jit_compile=__lowerCamelCase ) __lowercase = tf.math.reduce_mean(xla_generate(inputs.input_ids , attention_mask=inputs.attention_mask )[0] , axis=-1 ) self.assertTrue(np.allclose(__lowerCamelCase , __lowerCamelCase , atol=1E-4 ) ) @require_tf @slow class snake_case_ ( unittest.TestCase ): '''simple docstring''' @property def UpperCAmelCase ( self : Optional[int] ) -> Optional[Any]: '''simple docstring''' return [ "Today is a beautiful day and I want", "In the city of", "Paris is the capital of France and", "Computers and mobile phones have taken", ] def UpperCAmelCase ( self : Any ) -> List[str]: '''simple docstring''' __lowercase = "facebook/opt-125m" __lowercase = [ "Today is a beautiful day and I want to", "In the city of New York, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(__lowerCamelCase ) __lowercase = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: __lowercase = tokenizer(__lowerCamelCase , return_tensors='tf' ).input_ids __lowercase = model.generate(__lowerCamelCase , max_length=10 ) __lowercase = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) def UpperCAmelCase ( self : Optional[int] ) -> Dict: '''simple docstring''' __lowercase = "facebook/opt-350m" __lowercase = GPTaTokenizer.from_pretrained(__lowerCamelCase ) __lowercase = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) __lowercase = "left" # use different length sentences to test batching __lowercase = [ "Hello, my dog is a little", "Today, I", ] __lowercase = tokenizer(__lowerCamelCase , return_tensors='tf' , padding=__lowerCamelCase ) __lowercase = inputs["input_ids"] __lowercase = model.generate(input_ids=__lowerCamelCase , attention_mask=inputs['attention_mask'] ) __lowercase = tokenizer(sentences[0] , return_tensors='tf' ).input_ids __lowercase = model.generate(input_ids=__lowerCamelCase ) __lowercase = inputs_non_padded.shape[-1] - tf.math.reduce_sum( tf.cast(inputs['attention_mask'][-1] , tf.intaa ) ) __lowercase = tokenizer(sentences[1] , return_tensors='tf' ).input_ids __lowercase = model.generate(input_ids=__lowerCamelCase , max_length=model.config.max_length - num_paddings ) __lowercase = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) __lowercase = tokenizer.decode(output_non_padded[0] , skip_special_tokens=__lowerCamelCase ) __lowercase = tokenizer.decode(output_padded[0] , skip_special_tokens=__lowerCamelCase ) __lowercase = [ "Hello, my dog is a little bit of a dork.\nI'm a little bit", "Today, I was in the middle of a conversation with a friend about the", ] self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) self.assertListEqual(__lowerCamelCase , [non_padded_sentence, padded_sentence] ) def UpperCAmelCase ( self : str ) -> Dict: '''simple docstring''' __lowercase = "facebook/opt-350m" __lowercase = [ "Today is a beautiful day and I want to", "In the city of San Francisco, the city", "Paris is the capital of France and the capital", "Computers and mobile phones have taken over the", ] __lowercase = [] __lowercase = GPTaTokenizer.from_pretrained(__lowerCamelCase ) __lowercase = TFOPTForCausalLM.from_pretrained(__lowerCamelCase ) for prompt in self.prompts: __lowercase = tokenizer(__lowerCamelCase , return_tensors='tf' ).input_ids __lowercase = model.generate(__lowerCamelCase , max_length=10 ) __lowercase = tokenizer.batch_decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) predicted_outputs += generated_string self.assertListEqual(__lowerCamelCase , __lowerCamelCase )
375
import math def _SCREAMING_SNAKE_CASE ( _lowerCamelCase : int) -> str: '''simple docstring''' __UpperCamelCase : Union[str, Any] = 0 __UpperCamelCase : int = 0 while num > 0: __UpperCamelCase : List[Any] = num % 8 __UpperCamelCase : Tuple = octal + (remainder * math.floor(math.pow(10 , _lowerCamelCase))) counter += 1 __UpperCamelCase : Optional[Any] = math.floor(num / 8) # basically /= 8 without remainder if any # This formatting removes trailing '.0' from `octal`. return F'0o{int(_lowerCamelCase)}' def _SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' print("\n2 in octal is:") print(decimal_to_octal(2)) # = 2 print("\n8 in octal is:") print(decimal_to_octal(8)) # = 10 print("\n65 in octal is:") print(decimal_to_octal(65)) # = 101 print("\n216 in octal is:") print(decimal_to_octal(216)) # = 330 print("\n512 in octal is:") print(decimal_to_octal(512)) # = 1000 print("\n") if __name__ == "__main__": main()
557
0
'''simple docstring''' import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class a__( unittest.TestCase ): def __init__( self : List[str] , __snake_case : Any , __snake_case : Optional[int]=13 , __snake_case : Union[str, Any]=3 , __snake_case : List[Any]=2_24 , __snake_case : int=30 , __snake_case : Tuple=4_00 , __snake_case : Optional[Any]=True , __snake_case : List[Any]=None , __snake_case : Optional[int]=True , __snake_case : Any=[0.5, 0.5, 0.5] , __snake_case : Any=[0.5, 0.5, 0.5] , ): a : int = size if size is not None else {'height': 18, 'width': 18} a : Dict = parent a : Tuple = batch_size a : List[str] = num_channels a : Any = image_size a : List[Any] = min_resolution a : List[str] = max_resolution a : Any = do_resize a : Dict = size a : Tuple = do_normalize a : Optional[Any] = image_mean a : str = image_std def lowercase_ ( self : Union[str, Any] ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class a__( lowerCamelCase__ , unittest.TestCase ): lowercase__ = ViTImageProcessor if is_vision_available() else None def lowercase_ ( self : Any ): a : List[Any] = EfficientFormerImageProcessorTester(self ) @property def lowercase_ ( self : Dict ): return self.image_proc_tester.prepare_image_processor_dict() def lowercase_ ( self : Any ): a : Any = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__snake_case , 'image_mean' ) ) self.assertTrue(hasattr(__snake_case , 'image_std' ) ) self.assertTrue(hasattr(__snake_case , 'do_normalize' ) ) self.assertTrue(hasattr(__snake_case , 'do_resize' ) ) self.assertTrue(hasattr(__snake_case , 'size' ) ) def lowercase_ ( self : List[Any] ): pass def lowercase_ ( self : List[Any] ): # Initialize image_processor a : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images a : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , Image.Image ) # Test not batched input a : str = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched a : int = image_processor(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def lowercase_ ( self : int ): # Initialize image_processor a : List[str] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors a : int = prepare_image_inputs(self.image_proc_tester , equal_resolution=__snake_case , numpify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , np.ndarray ) # Test not batched input a : Union[str, Any] = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched a : str = image_processor(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def lowercase_ ( self : int ): # Initialize image_processor a : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors a : Dict = prepare_image_inputs(self.image_proc_tester , equal_resolution=__snake_case , torchify=__snake_case ) for image in image_inputs: self.assertIsInstance(__snake_case , torch.Tensor ) # Test not batched input a : List[Any] = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched a : List[Any] = image_processor(__snake_case , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
195
'''simple docstring''' import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a__: @staticmethod def lowercase_ ( *__snake_case : int , **__snake_case : str ): pass @is_pipeline_test @require_vision @require_timm @require_torch class a__( unittest.TestCase ): lowercase__ = MODEL_FOR_OBJECT_DETECTION_MAPPING def lowercase_ ( self : Optional[Any] , __snake_case : Union[str, Any] , __snake_case : int , __snake_case : Tuple ): a : Tuple = ObjectDetectionPipeline(model=__snake_case , image_processor=__snake_case ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def lowercase_ ( self : Optional[Any] , __snake_case : str , __snake_case : Optional[Any] ): a : Any = object_detector('./tests/fixtures/tests_samples/COCO/000000039769.png' , threshold=0.0 ) self.assertGreater(len(__snake_case ) , 0 ) for detected_object in outputs: self.assertEqual( __snake_case , { 'score': ANY(__snake_case ), 'label': ANY(__snake_case ), 'box': {'xmin': ANY(__snake_case ), 'ymin': ANY(__snake_case ), 'xmax': ANY(__snake_case ), 'ymax': ANY(__snake_case )}, } , ) import datasets a : Any = datasets.load_dataset('hf-internal-testing/fixtures_image_utils' , 'image' , split='test' ) a : Tuple = [ Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ), 'http://images.cocodataset.org/val2017/000000039769.jpg', # RGBA dataset[0]['file'], # LA dataset[1]['file'], # L dataset[2]['file'], ] a : List[Any] = object_detector(__snake_case , threshold=0.0 ) self.assertEqual(len(__snake_case ) , len(__snake_case ) ) for outputs in batch_outputs: self.assertGreater(len(__snake_case ) , 0 ) for detected_object in outputs: self.assertEqual( __snake_case , { 'score': ANY(__snake_case ), 'label': ANY(__snake_case ), 'box': {'xmin': ANY(__snake_case ), 'ymin': ANY(__snake_case ), 'xmax': ANY(__snake_case ), 'ymax': ANY(__snake_case )}, } , ) @require_tf @unittest.skip('Object detection not implemented in TF' ) def lowercase_ ( self : List[str] ): pass @require_torch def lowercase_ ( self : Tuple ): a : Union[str, Any] = 'hf-internal-testing/tiny-detr-mobilenetsv3' a : str = AutoModelForObjectDetection.from_pretrained(__snake_case ) a : str = AutoFeatureExtractor.from_pretrained(__snake_case ) a : Any = ObjectDetectionPipeline(model=__snake_case , feature_extractor=__snake_case ) a : str = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=0.0 ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ] , ) a : Dict = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] , threshold=0.0 , ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], [ {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, {'score': 0.3376, 'label': 'LABEL_0', 'box': {'xmin': 1_59, 'ymin': 1_20, 'xmax': 4_80, 'ymax': 3_59}}, ], ] , ) @require_torch @slow def lowercase_ ( self : Optional[int] ): a : Union[str, Any] = 'facebook/detr-resnet-50' a : str = AutoModelForObjectDetection.from_pretrained(__snake_case ) a : List[Any] = AutoFeatureExtractor.from_pretrained(__snake_case ) a : str = ObjectDetectionPipeline(model=__snake_case , feature_extractor=__snake_case ) a : List[Any] = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) a : List[str] = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def lowercase_ ( self : Any ): a : Any = 'facebook/detr-resnet-50' a : int = pipeline('object-detection' , model=__snake_case ) a : Dict = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) a : int = object_detector( [ 'http://images.cocodataset.org/val2017/000000039769.jpg', 'http://images.cocodataset.org/val2017/000000039769.jpg', ] ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], [ {'score': 0.9982, 'label': 'remote', 'box': {'xmin': 40, 'ymin': 70, 'xmax': 1_75, 'ymax': 1_17}}, {'score': 0.9960, 'label': 'remote', 'box': {'xmin': 3_33, 'ymin': 72, 'xmax': 3_68, 'ymax': 1_87}}, {'score': 0.9955, 'label': 'couch', 'box': {'xmin': 0, 'ymin': 1, 'xmax': 6_39, 'ymax': 4_73}}, {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ], ] , ) @require_torch @slow def lowercase_ ( self : Optional[int] ): a : Optional[Any] = 0.9985 a : Optional[int] = 'facebook/detr-resnet-50' a : List[Any] = pipeline('object-detection' , model=__snake_case ) a : Any = object_detector('http://images.cocodataset.org/val2017/000000039769.jpg' , threshold=__snake_case ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.9988, 'label': 'cat', 'box': {'xmin': 13, 'ymin': 52, 'xmax': 3_14, 'ymax': 4_70}}, {'score': 0.9987, 'label': 'cat', 'box': {'xmin': 3_45, 'ymin': 23, 'xmax': 6_40, 'ymax': 3_68}}, ] , ) @require_torch @require_pytesseract @slow def lowercase_ ( self : Dict ): a : Optional[int] = 'Narsil/layoutlmv3-finetuned-funsd' a : Optional[int] = 0.9993 a : List[Any] = pipeline('object-detection' , model=__snake_case , threshold=__snake_case ) a : Union[str, Any] = object_detector( 'https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png' ) self.assertEqual( nested_simplify(__snake_case , decimals=4 ) , [ {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, {'score': 0.9993, 'label': 'I-ANSWER', 'box': {'xmin': 2_94, 'ymin': 2_54, 'xmax': 3_43, 'ymax': 2_64}}, ] , )
195
1
import argparse import torch from ...utils import logging from . import AlbertConfig, AlbertForPreTraining, load_tf_weights_in_albert logging.set_verbosity_info() def snake_case__ ( UpperCAmelCase : Tuple , UpperCAmelCase : List[Any] , UpperCAmelCase : List[Any] ): # Initialise PyTorch model lowerCAmelCase__ :Tuple = AlbertConfig.from_json_file(UpperCAmelCase ) print(F'''Building PyTorch model from configuration: {config}''' ) lowerCAmelCase__ :List[str] = AlbertForPreTraining(UpperCAmelCase ) # Load weights from tf checkpoint load_tf_weights_in_albert(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save pytorch-model print(F'''Save PyTorch model to {pytorch_dump_path}''' ) torch.save(model.state_dict() , UpperCAmelCase ) if __name__ == "__main__": _a : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--tf_checkpoint_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--albert_config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained ALBERT model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) _a : Union[str, Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.albert_config_file, args.pytorch_dump_path)
145
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate # and perform gradient accumulation # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## _a : Optional[int] = 16 _a : List[Any] = 32 def snake_case__ ( UpperCAmelCase : Accelerator , UpperCAmelCase : int = 1_6 ): lowerCAmelCase__ :Optional[int] = AutoTokenizer.from_pretrained("bert-base-cased" ) lowerCAmelCase__ :Dict = load_dataset("glue" , "mrpc" ) def tokenize_function(UpperCAmelCase : Optional[int] ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ :Any = tokenizer(examples["sentence1"] , examples["sentence2"] , truncation=UpperCAmelCase , max_length=UpperCAmelCase ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): lowerCAmelCase__ :Dict = datasets.map( UpperCAmelCase , batched=UpperCAmelCase , remove_columns=["idx", "sentence1", "sentence2"] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library lowerCAmelCase__ :str = tokenized_datasets.rename_column("label" , "labels" ) def collate_fn(UpperCAmelCase : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. lowerCAmelCase__ :Dict = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": lowerCAmelCase__ :int = 1_6 elif accelerator.mixed_precision != "no": lowerCAmelCase__ :List[str] = 8 else: lowerCAmelCase__ :Dict = None return tokenizer.pad( UpperCAmelCase , padding="longest" , max_length=UpperCAmelCase , pad_to_multiple_of=UpperCAmelCase , return_tensors="pt" , ) # Instantiate dataloaders. lowerCAmelCase__ :int = DataLoader( tokenized_datasets["train"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) lowerCAmelCase__ :List[Any] = DataLoader( tokenized_datasets["validation"] , shuffle=UpperCAmelCase , collate_fn=UpperCAmelCase , batch_size=UpperCAmelCase ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("""TESTING_MOCKED_DATALOADERS""", None) == "1": from accelerate.test_utils.training import mocked_dataloaders _a : List[str] = mocked_dataloaders # noqa: F811 def snake_case__ ( UpperCAmelCase : str , UpperCAmelCase : Dict ): # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS" , UpperCAmelCase ) == "1": lowerCAmelCase__ :Union[str, Any] = 2 # New Code # lowerCAmelCase__ :List[str] = int(args.gradient_accumulation_steps ) # Initialize accelerator lowerCAmelCase__ :List[Any] = Accelerator( cpu=args.cpu , mixed_precision=args.mixed_precision , gradient_accumulation_steps=UpperCAmelCase ) if accelerator.distributed_type == DistributedType.TPU and gradient_accumulation_steps > 1: raise NotImplementedError( "Gradient accumulation on TPUs is currently not supported. Pass `gradient_accumulation_steps=1`" ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs lowerCAmelCase__ :Union[str, Any] = config["lr"] lowerCAmelCase__ :Dict = int(config["num_epochs"] ) lowerCAmelCase__ :str = int(config["seed"] ) lowerCAmelCase__ :int = int(config["batch_size"] ) lowerCAmelCase__ :Any = evaluate.load("glue" , "mrpc" ) set_seed(UpperCAmelCase ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = get_dataloaders(UpperCAmelCase , UpperCAmelCase ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) lowerCAmelCase__ :Any = AutoModelForSequenceClassification.from_pretrained("bert-base-cased" , return_dict=UpperCAmelCase ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). lowerCAmelCase__ :str = model.to(accelerator.device ) # Instantiate optimizer lowerCAmelCase__ :Tuple = AdamW(params=model.parameters() , lr=UpperCAmelCase ) # Instantiate scheduler lowerCAmelCase__ :Optional[int] = get_linear_schedule_with_warmup( optimizer=UpperCAmelCase , num_warmup_steps=1_0_0 , num_training_steps=(len(UpperCAmelCase ) * num_epochs) , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ ,lowerCAmelCase__ :List[Any] = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Now we train the model for epoch in range(UpperCAmelCase ): model.train() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) # New code # # We use the new `accumulate` context manager to perform gradient accumulation # We also currently do not support TPUs nor advise it as bugs were found on the XLA side when running our tests. with accelerator.accumulate(UpperCAmelCase ): lowerCAmelCase__ :Optional[int] = model(**UpperCAmelCase ) lowerCAmelCase__ :Any = output.loss accelerator.backward(UpperCAmelCase ) optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() for step, batch in enumerate(UpperCAmelCase ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): lowerCAmelCase__ :Optional[int] = model(**UpperCAmelCase ) lowerCAmelCase__ :int = outputs.logits.argmax(dim=-1 ) lowerCAmelCase__ ,lowerCAmelCase__ :Dict = accelerator.gather_for_metrics((predictions, batch["labels"]) ) metric.add_batch( predictions=UpperCAmelCase , references=UpperCAmelCase , ) lowerCAmelCase__ :List[str] = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , UpperCAmelCase ) def snake_case__ ( ): lowerCAmelCase__ :str = argparse.ArgumentParser(description="Simple example of training script." ) parser.add_argument( "--mixed_precision" , type=UpperCAmelCase , default=UpperCAmelCase , choices=["no", "fp16", "bf16", "fp8"] , help="Whether to use mixed precision. Choose" "between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10." "and an Nvidia Ampere GPU." , ) # New Code # parser.add_argument( "--gradient_accumulation_steps" , type=UpperCAmelCase , default=1 , help="The number of minibatches to be ran before gradients are accumulated." , ) parser.add_argument("--cpu" , action="store_true" , help="If passed, will train on the CPU." ) lowerCAmelCase__ :int = parser.parse_args() lowerCAmelCase__ :Union[str, Any] = {"lr": 2E-5, "num_epochs": 3, "seed": 4_2, "batch_size": 1_6} training_function(UpperCAmelCase , UpperCAmelCase ) if __name__ == "__main__": main()
145
1
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class _lowercase ( __a , unittest.TestCase ): _UpperCAmelCase = CodeGenTokenizer _UpperCAmelCase = CodeGenTokenizerFast _UpperCAmelCase = True _UpperCAmelCase = {'''add_prefix_space''': True} _UpperCAmelCase = False def UpperCamelCase ( self ) -> Tuple: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt snake_case = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] snake_case = dict(zip(A__ , range(len(A__ ) ) ) ) snake_case = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] snake_case = {'''unk_token''': '''<unk>'''} snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(A__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(A__ ) ) def UpperCamelCase ( self , **A__ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase ( self , **A__ ) -> Union[str, Any]: kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **A__ ) def UpperCamelCase ( self , A__ ) -> Tuple: snake_case = '''lower newer''' snake_case = '''lower newer''' return input_text, output_text def UpperCamelCase ( self ) -> List[Any]: snake_case = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) snake_case = '''lower newer''' snake_case = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] snake_case = tokenizer.tokenize(A__ , add_prefix_space=A__ ) self.assertListEqual(A__ , A__ ) snake_case = tokens + [tokenizer.unk_token] snake_case = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(A__ ) , A__ ) def UpperCamelCase ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return snake_case = self.get_tokenizer() snake_case = self.get_rust_tokenizer(add_prefix_space=A__ ) snake_case = '''lower newer''' # Testing tokenization snake_case = tokenizer.tokenize(A__ , add_prefix_space=A__ ) snake_case = rust_tokenizer.tokenize(A__ ) self.assertListEqual(A__ , A__ ) # Testing conversion to ids without special tokens snake_case = tokenizer.encode(A__ , add_special_tokens=A__ , add_prefix_space=A__ ) snake_case = rust_tokenizer.encode(A__ , add_special_tokens=A__ ) self.assertListEqual(A__ , A__ ) # Testing conversion to ids with special tokens snake_case = self.get_rust_tokenizer(add_prefix_space=A__ ) snake_case = tokenizer.encode(A__ , add_prefix_space=A__ ) snake_case = rust_tokenizer.encode(A__ ) self.assertListEqual(A__ , A__ ) # Testing the unknown token snake_case = tokens + [rust_tokenizer.unk_token] snake_case = [14, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(A__ ) , A__ ) def UpperCamelCase ( self , *A__ , **A__ ) -> List[str]: # It's very difficult to mix/test pretokenization with byte-level # And get both CodeGen and Roberta to work at the same time (mostly an issue of adding a space before the string) pass def UpperCamelCase ( self , A__=15 ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): snake_case = self.rust_tokenizer_class.from_pretrained(A__ , **A__ ) # Simple input snake_case = '''This is a simple input''' snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] snake_case = ('''This is a simple input''', '''This is a pair''') snake_case = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(A__ , tokenizer_r.encode , A__ , max_length=A__ , padding='''max_length''' ) # Simple input self.assertRaises(A__ , tokenizer_r.encode_plus , A__ , max_length=A__ , padding='''max_length''' ) # Simple input self.assertRaises( A__ , tokenizer_r.batch_encode_plus , A__ , max_length=A__ , padding='''max_length''' , ) # Pair input self.assertRaises(A__ , tokenizer_r.encode , A__ , max_length=A__ , padding='''max_length''' ) # Pair input self.assertRaises(A__ , tokenizer_r.encode_plus , A__ , max_length=A__ , padding='''max_length''' ) # Pair input self.assertRaises( A__ , tokenizer_r.batch_encode_plus , A__ , max_length=A__ , padding='''max_length''' , ) def UpperCamelCase ( self ) -> Tuple: snake_case = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input snake_case = '''This is a simple input''' snake_case = ['''This is a simple input looooooooong''', '''This is a simple input'''] snake_case = ('''This is a simple input''', '''This is a pair''') snake_case = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] snake_case = tokenizer.pad_token_id snake_case = tokenizer(A__ , padding='''max_length''' , max_length=30 , return_tensors='''np''' ) snake_case = tokenizer(A__ , padding=A__ , truncate=A__ , return_tensors='''np''' ) snake_case = tokenizer(*A__ , padding='''max_length''' , max_length=60 , return_tensors='''np''' ) snake_case = tokenizer(A__ , padding=A__ , truncate=A__ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 30 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 33 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 60 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 52 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def UpperCamelCase ( self ) -> str: snake_case = '''$$$''' snake_case = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=A__ , add_bos_token=A__ ) snake_case = '''This is a simple input''' snake_case = ['''This is a simple input 1''', '''This is a simple input 2'''] snake_case = tokenizer.bos_token_id snake_case = tokenizer(A__ ) snake_case = tokenizer(A__ ) self.assertEqual(out_s.input_ids[0] , A__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) snake_case = tokenizer.decode(out_s.input_ids ) snake_case = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , A__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCamelCase ( self ) -> Any: snake_case = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) snake_case = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' snake_case = '''\nif len_a > len_b: result = a\nelse: result = b''' snake_case = tokenizer.encode(A__ ) snake_case = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] snake_case = tokenizer.decode(A__ , truncate_before_pattern=A__ ) self.assertEqual(A__ , A__ ) def UpperCamelCase ( self ) -> Union[str, Any]: pass
716
'''simple docstring''' import argparse import torch from torch import nn from transformers import SpeechaTextConfig, SpeechaTextForConditionalGeneration def __UpperCamelCase ( a : Optional[int] ) ->Dict: snake_case = [ '''encoder.version''', '''decoder.version''', '''model.encoder.version''', '''model.decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''encoder.embed_positions._float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(a , a ) def __UpperCamelCase ( a : Optional[Any] ) ->int: snake_case = list(s_dict.keys() ) for key in keys: if "transformer_layers" in key: snake_case = s_dict.pop(a ) elif "subsample" in key: snake_case = s_dict.pop(a ) def __UpperCamelCase ( a : Optional[int] ) ->Optional[int]: snake_case , snake_case = emb.weight.shape snake_case = nn.Linear(a , a , bias=a ) snake_case = emb.weight.data return lin_layer def __UpperCamelCase ( a : Any , a : Tuple ) ->Tuple: snake_case = torch.load(a , map_location='''cpu''' ) snake_case = mam_aaa['''args'''] snake_case = mam_aaa['''model'''] snake_case = state_dict['''decoder.output_projection.weight'''] remove_ignore_keys_(a ) rename_keys(a ) snake_case = state_dict['''decoder.embed_tokens.weight'''].shape[0] snake_case = args.share_decoder_input_output_embed snake_case = [int(a ) for i in args.conv_kernel_sizes.split(''',''' )] snake_case = SpeechaTextConfig( vocab_size=a , max_source_positions=args.max_source_positions , max_target_positions=args.max_target_positions , encoder_layers=args.encoder_layers , decoder_layers=args.decoder_layers , encoder_attention_heads=args.encoder_attention_heads , decoder_attention_heads=args.decoder_attention_heads , encoder_ffn_dim=args.encoder_ffn_embed_dim , decoder_ffn_dim=args.decoder_ffn_embed_dim , d_model=args.encoder_embed_dim , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''relu''' , num_conv_layers=len(a ) , conv_channels=args.conv_channels , conv_kernel_sizes=a , input_feat_per_channel=args.input_feat_per_channel , input_channels=args.input_channels , tie_word_embeddings=a , num_beams=5 , max_length=200 , use_cache=a , decoder_start_token_id=2 , early_stopping=a , ) snake_case = SpeechaTextForConditionalGeneration(a ) snake_case , snake_case = model.model.load_state_dict(a , strict=a ) if len(a ) > 0 and not set(a ) <= { "encoder.embed_positions.weights", "decoder.embed_positions.weights", }: raise ValueError( '''Only `encoder.embed_positions.weights` and `decoder.embed_positions.weights` are allowed to be missing,''' f""" but all the following weights are missing {missing}""" ) if tie_embeds: snake_case = make_linear_from_emb(model.model.decoder.embed_tokens ) else: snake_case = lm_head_weights model.save_pretrained(a ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() # Required parameters parser.add_argument('--fairseq_path', type=str, help='Path to the fairseq model (.pt) file.') parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') _lowercase = parser.parse_args() convert_fairseq_sat_checkpoint_to_tfms(args.fairseq_path, args.pytorch_dump_folder_path)
44
0
from collections import Counter from pathlib import Path from typing import Optional, Tuple import yaml class lowercase ( yaml.SafeLoader ): """simple docstring""" def __UpperCAmelCase ( self : Optional[int] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : Union[str, Any] = [self.constructed_objects[key_node] for key_node, _ in node.value] _snake_case : Optional[Any] = [tuple(lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else key for key in keys] _snake_case : int = Counter(lowerCamelCase_ ) _snake_case : str = [key for key in counter if counter[key] > 1] if duplicate_keys: raise TypeError(f'''Got duplicate yaml keys: {duplicate_keys}''' ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : Any , lowerCamelCase_ : Optional[Any]=False ): '''simple docstring''' _snake_case : List[Any] = super().construct_mapping(lowerCamelCase_ , deep=lowerCamelCase_ ) self._check_no_duplicates_on_constructed_node(lowerCamelCase_ ) return mapping def A__( __lowerCAmelCase ): _snake_case : Dict = list(readme_content.splitlines() ) if full_content and full_content[0] == "---" and "---" in full_content[1:]: _snake_case : Dict = full_content[1:].index('---' ) + 1 _snake_case : Optional[int] = '\n'.join(full_content[1:sep_idx] ) return yamlblock, "\n".join(full_content[sep_idx + 1 :] ) return None, "\n".join(__lowerCAmelCase ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Any = {"train_eval_index"} # train-eval-index in the YAML metadata @classmethod def __UpperCAmelCase ( cls : int , lowerCamelCase_ : Path ): '''simple docstring''' with open(lowerCamelCase_ , encoding='utf-8' ) as readme_file: _snake_case , _snake_case : Dict = _split_yaml_from_readme(readme_file.read() ) if yaml_string is not None: return cls.from_yaml_string(lowerCamelCase_ ) else: return cls() def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Path ): '''simple docstring''' if path.exists(): with open(lowerCamelCase_ , encoding='utf-8' ) as readme_file: _snake_case : Any = readme_file.read() else: _snake_case : str = None _snake_case : Any = self._to_readme(lowerCamelCase_ ) with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as readme_file: readme_file.write(lowerCamelCase_ ) def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' if readme_content is not None: _snake_case , _snake_case : Optional[Any] = _split_yaml_from_readme(lowerCamelCase_ ) _snake_case : Dict = '---\n' + self.to_yaml_string() + '---\n' + content else: _snake_case : Optional[Any] = '---\n' + self.to_yaml_string() + '---\n' return full_content @classmethod def __UpperCAmelCase ( cls : Optional[Any] , lowerCamelCase_ : str ): '''simple docstring''' _snake_case : List[Any] = yaml.load(lowerCamelCase_ , Loader=_NoDuplicateSafeLoader ) or {} # Convert the YAML keys to DatasetMetadata fields _snake_case : int = { (key.replace('-' , '_' ) if key.replace('-' , '_' ) in cls._FIELDS_WITH_DASHES else key): value for key, value in metadata_dict.items() } return cls(**lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): '''simple docstring''' return yaml.safe_dump( { (key.replace('_' , '-' ) if key in self._FIELDS_WITH_DASHES else key): value for key, value in self.items() } , sort_keys=lowerCamelCase_ , allow_unicode=lowerCamelCase_ , encoding='utf-8' , ).decode('utf-8' ) lowercase_ : Optional[Any] = { '''image-classification''': [], '''translation''': [], '''image-segmentation''': [], '''fill-mask''': [], '''automatic-speech-recognition''': [], '''token-classification''': [], '''sentence-similarity''': [], '''audio-classification''': [], '''question-answering''': [], '''summarization''': [], '''zero-shot-classification''': [], '''table-to-text''': [], '''feature-extraction''': [], '''other''': [], '''multiple-choice''': [], '''text-classification''': [], '''text-to-image''': [], '''text2text-generation''': [], '''zero-shot-image-classification''': [], '''tabular-classification''': [], '''tabular-regression''': [], '''image-to-image''': [], '''tabular-to-text''': [], '''unconditional-image-generation''': [], '''text-retrieval''': [], '''text-to-speech''': [], '''object-detection''': [], '''audio-to-audio''': [], '''text-generation''': [], '''conversational''': [], '''table-question-answering''': [], '''visual-question-answering''': [], '''image-to-text''': [], '''reinforcement-learning''': [], '''voice-activity-detection''': [], '''time-series-forecasting''': [], '''document-question-answering''': [], } if __name__ == "__main__": from argparse import ArgumentParser lowercase_ : int = ArgumentParser(usage='''Validate the yaml metadata block of a README.md file.''') ap.add_argument('''readme_filepath''') lowercase_ : Optional[int] = ap.parse_args() lowercase_ : Tuple = Path(args.readme_filepath) lowercase_ : Any = DatasetMetadata.from_readme(readme_filepath) print(dataset_metadata) dataset_metadata.to_readme(readme_filepath)
304
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[Any] = (DEISMultistepScheduler,) _UpperCamelCase : Union[str, Any] = (("num_inference_steps", 25),) def __UpperCAmelCase ( self : Dict , **lowerCamelCase_ : List[str] ): '''simple docstring''' _snake_case : Any = { 'num_train_timesteps': 10_00, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'solver_order': 2, } config.update(**lowerCamelCase_ ) return config def __UpperCAmelCase ( self : List[str] , lowerCamelCase_ : Optional[Any]=0 , **lowerCamelCase_ : Tuple ): '''simple docstring''' _snake_case : Dict = dict(self.forward_default_kwargs ) _snake_case : Tuple = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : List[Any] = self.dummy_sample _snake_case : Optional[int] = 0.1 * sample _snake_case : Union[str, Any] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Optional[Any] = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : Optional[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals _snake_case : Dict = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case , _snake_case : Optional[Any] = sample, sample for t in range(lowerCamelCase_ , time_step + scheduler.config.solver_order + 1 ): _snake_case : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Any = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' pass def __UpperCAmelCase ( self : int , lowerCamelCase_ : int=0 , **lowerCamelCase_ : Dict ): '''simple docstring''' _snake_case : Union[str, Any] = dict(self.forward_default_kwargs ) _snake_case : Optional[int] = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) _snake_case : Any = self.dummy_sample _snake_case : Union[str, Any] = 0.1 * sample _snake_case : int = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: _snake_case : Any = self.get_scheduler_config() _snake_case : Union[str, Any] = scheduler_class(**lowerCamelCase_ ) scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residuals (must be after setting timesteps) _snake_case : int = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCamelCase_ ) _snake_case : List[Any] = scheduler_class.from_pretrained(lowerCamelCase_ ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCamelCase_ ) # copy over dummy past residual (must be after setting timesteps) _snake_case : Optional[Any] = dummy_past_residuals[: new_scheduler.config.solver_order] _snake_case : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Tuple = new_scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : List[Any]=None , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' if scheduler is None: _snake_case : Dict = self.scheduler_classes[0] _snake_case : int = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Dict = scheduler_class(**lowerCamelCase_ ) _snake_case : Tuple = self.scheduler_classes[0] _snake_case : Any = self.get_scheduler_config(**lowerCamelCase_ ) _snake_case : Tuple = scheduler_class(**lowerCamelCase_ ) _snake_case : str = 10 _snake_case : Union[str, Any] = self.dummy_model() _snake_case : Union[str, Any] = self.dummy_sample_deter scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Dict = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : str = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample return sample def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : Dict = dict(self.forward_default_kwargs ) _snake_case : Any = kwargs.pop('num_inference_steps' , lowerCamelCase_ ) for scheduler_class in self.scheduler_classes: _snake_case : List[str] = self.get_scheduler_config() _snake_case : int = scheduler_class(**lowerCamelCase_ ) _snake_case : Union[str, Any] = self.dummy_sample _snake_case : Union[str, Any] = 0.1 * sample if num_inference_steps is not None and hasattr(lowerCamelCase_ , 'set_timesteps' ): scheduler.set_timesteps(lowerCamelCase_ ) elif num_inference_steps is not None and not hasattr(lowerCamelCase_ , 'set_timesteps' ): _snake_case : Optional[int] = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) _snake_case : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] _snake_case : Union[str, Any] = dummy_past_residuals[: scheduler.config.solver_order] _snake_case : Any = scheduler.timesteps[5] _snake_case : List[str] = scheduler.timesteps[6] _snake_case : List[str] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample _snake_case : Tuple = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , **lowerCamelCase_ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : Optional[int] = DEISMultistepScheduler(**self.get_scheduler_config() ) _snake_case : List[str] = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : int = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 _snake_case : List[Any] = DPMSolverSinglestepScheduler.from_config(scheduler.config ) _snake_case : Tuple = DPMSolverMultistepScheduler.from_config(scheduler.config ) _snake_case : List[Any] = UniPCMultistepScheduler.from_config(scheduler.config ) _snake_case : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) _snake_case : Dict = self.full_loop(scheduler=lowerCamelCase_ ) _snake_case : Optional[int] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCamelCase_ ) def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(thresholding=lowerCamelCase_ ) for order in [1, 2, 3]: for solver_type in ["logrho"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCamelCase_ , prediction_type=lowerCamelCase_ , sample_max_value=lowerCamelCase_ , algorithm_type='deis' , solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , ) def __UpperCAmelCase ( self : int ): '''simple docstring''' for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Any ): '''simple docstring''' for algorithm_type in ["deis"]: for solver_type in ["logrho"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) _snake_case : str = self.full_loop( solver_order=lowerCamelCase_ , solver_type=lowerCamelCase_ , prediction_type=lowerCamelCase_ , algorithm_type=lowerCamelCase_ , ) assert not torch.isnan(lowerCamelCase_ ).any(), "Samples have nan numbers" def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' self.check_over_configs(lower_order_final=lowerCamelCase_ ) self.check_over_configs(lower_order_final=lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict ): '''simple docstring''' for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCamelCase_ , time_step=0 ) def __UpperCAmelCase ( self : Union[str, Any] ): '''simple docstring''' _snake_case : str = self.full_loop() _snake_case : List[Any] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.2_3916 ) < 1e-3 def __UpperCAmelCase ( self : str ): '''simple docstring''' _snake_case : Optional[Any] = self.full_loop(prediction_type='v_prediction' ) _snake_case : List[str] = torch.mean(torch.abs(lowerCamelCase_ ) ) assert abs(result_mean.item() - 0.091 ) < 1e-3 def __UpperCAmelCase ( self : Tuple ): '''simple docstring''' _snake_case : str = self.scheduler_classes[0] _snake_case : Dict = self.get_scheduler_config(thresholding=lowerCamelCase_ , dynamic_thresholding_ratio=0 ) _snake_case : Optional[int] = scheduler_class(**lowerCamelCase_ ) _snake_case : str = 10 _snake_case : Tuple = self.dummy_model() _snake_case : Dict = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCamelCase_ ) for i, t in enumerate(scheduler.timesteps ): _snake_case : Any = model(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Optional[int] = scheduler.step(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ).prev_sample assert sample.dtype == torch.floataa
304
1
import unittest from transformers import BigBirdTokenizer, BigBirdTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin SCREAMING_SNAKE_CASE = '▁' SCREAMING_SNAKE_CASE = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class A_ ( __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = BigBirdTokenizer _SCREAMING_SNAKE_CASE : Any = BigBirdTokenizerFast _SCREAMING_SNAKE_CASE : str = True _SCREAMING_SNAKE_CASE : Optional[Any] = True def snake_case__ ( self) -> List[str]: """simple docstring""" super().setUp() _UpperCAmelCase : Dict = self.tokenizer_class(UpperCAmelCase_ , keep_accents=UpperCAmelCase_) tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = '''<s>''' _UpperCAmelCase : Dict = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(UpperCAmelCase_) , UpperCAmelCase_) self.assertEqual(self.get_tokenizer()._convert_id_to_token(UpperCAmelCase_) , UpperCAmelCase_) def snake_case__ ( self) -> List[str]: """simple docstring""" _UpperCAmelCase : Union[str, Any] = list(self.get_tokenizer().get_vocab().keys()) self.assertEqual(vocab_keys[0] , '''<unk>''') self.assertEqual(vocab_keys[1] , '''<s>''') self.assertEqual(vocab_keys[-1] , '''[MASK]''') self.assertEqual(len(UpperCAmelCase_) , 1004) def snake_case__ ( self) -> Optional[Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1000) def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" if not self.test_rust_tokenizer: return _UpperCAmelCase : str = self.get_tokenizer() _UpperCAmelCase : Union[str, Any] = self.get_rust_tokenizer() _UpperCAmelCase : Optional[Any] = '''I was born in 92000, and this is falsé.''' _UpperCAmelCase : List[Any] = tokenizer.tokenize(UpperCAmelCase_) _UpperCAmelCase : str = rust_tokenizer.tokenize(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) _UpperCAmelCase : Dict = tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) _UpperCAmelCase : Dict = rust_tokenizer.encode(UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) _UpperCAmelCase : str = self.get_rust_tokenizer() _UpperCAmelCase : List[str] = tokenizer.encode(UpperCAmelCase_) _UpperCAmelCase : Optional[Any] = rust_tokenizer.encode(UpperCAmelCase_) self.assertListEqual(UpperCAmelCase_ , UpperCAmelCase_) def snake_case__ ( self) -> Optional[int]: """simple docstring""" _UpperCAmelCase : str = BigBirdTokenizer(UpperCAmelCase_ , keep_accents=UpperCAmelCase_) _UpperCAmelCase : int = tokenizer.tokenize('''This is a test''') self.assertListEqual(UpperCAmelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''']) self.assertListEqual( tokenizer.convert_tokens_to_ids(UpperCAmelCase_) , [285, 46, 10, 170, 382] , ) _UpperCAmelCase : int = tokenizer.tokenize('''I was born in 92000, and this is falsé.''') self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) _UpperCAmelCase : Optional[int] = tokenizer.convert_tokens_to_ids(UpperCAmelCase_) self.assertListEqual( UpperCAmelCase_ , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) _UpperCAmelCase : str = tokenizer.convert_ids_to_tokens(UpperCAmelCase_) self.assertListEqual( UpperCAmelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) @cached_property def snake_case__ ( self) -> Any: """simple docstring""" return BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') @slow def snake_case__ ( self) -> List[Any]: """simple docstring""" _UpperCAmelCase : Dict = '''Hello World!''' _UpperCAmelCase : Dict = [65, 18536, 2260, 101, 66] self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_)) @slow def snake_case__ ( self) -> Optional[Any]: """simple docstring""" _UpperCAmelCase : str = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) # fmt: off _UpperCAmelCase : Any = [65, 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 34324, 497, 391, 408, 11342, 1244, 385, 100, 938, 985, 456, 574, 362, 12597, 3200, 3129, 1172, 66] # noqa: E231 # fmt: on self.assertListEqual(UpperCAmelCase_ , self.big_tokenizer.encode(UpperCAmelCase_)) @require_torch @slow def snake_case__ ( self) -> Optional[Any]: """simple docstring""" import torch from transformers import BigBirdConfig, BigBirdModel # Build sequence _UpperCAmelCase : Union[str, Any] = list(self.big_tokenizer.get_vocab().keys())[:10] _UpperCAmelCase : Optional[Any] = ''' '''.join(UpperCAmelCase_) _UpperCAmelCase : Tuple = self.big_tokenizer.encode_plus(UpperCAmelCase_ , return_tensors='''pt''' , return_token_type_ids=UpperCAmelCase_) _UpperCAmelCase : Optional[Any] = self.big_tokenizer.batch_encode_plus( [sequence + ''' ''' + sequence] , return_tensors='''pt''' , return_token_type_ids=UpperCAmelCase_) _UpperCAmelCase : Optional[Any] = BigBirdConfig(attention_type='''original_full''') _UpperCAmelCase : Any = BigBirdModel(UpperCAmelCase_) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**UpperCAmelCase_) model(**UpperCAmelCase_) @slow def snake_case__ ( self) -> str: """simple docstring""" _UpperCAmelCase : int = BigBirdTokenizer.from_pretrained('''google/bigbird-roberta-base''') _UpperCAmelCase : Optional[Any] = tokenizer.decode(tokenizer('''Paris is the [MASK].''').input_ids) self.assertTrue(decoded_text == '''[CLS] Paris is the[MASK].[SEP]''') @slow def snake_case__ ( self) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase : List[str] = {'''input_ids''': [[65, 39286, 458, 36335, 2001, 456, 13073, 13266, 455, 113, 7746, 1741, 11157, 391, 13073, 13266, 455, 113, 3967, 35412, 113, 4936, 109, 3870, 2377, 113, 30084, 45720, 458, 134, 17496, 112, 503, 11672, 113, 118, 112, 5665, 13347, 38687, 112, 1496, 31389, 112, 3268, 47264, 134, 962, 112, 16377, 8035, 23130, 430, 12169, 15518, 28592, 458, 146, 41697, 109, 391, 12169, 15518, 16689, 458, 146, 41358, 109, 452, 726, 4034, 111, 763, 35412, 5082, 388, 1903, 111, 9051, 391, 2870, 48918, 1900, 1123, 550, 998, 112, 9586, 15985, 455, 391, 410, 22955, 37636, 114, 66], [65, 448, 17496, 419, 3663, 385, 763, 113, 27533, 2870, 3283, 13043, 1639, 24713, 523, 656, 24013, 18550, 2521, 517, 27014, 21244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 11786, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [65, 484, 2169, 7687, 21932, 18146, 726, 363, 17032, 3391, 114, 66, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=UpperCAmelCase_ , model_name='''google/bigbird-roberta-base''' , revision='''215c99f1600e06f83acce68422f2035b2b5c3510''' , )
711
import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class A_ ( __lowercase , unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : int = None _SCREAMING_SNAKE_CASE : str = BloomTokenizerFast _SCREAMING_SNAKE_CASE : str = BloomTokenizerFast _SCREAMING_SNAKE_CASE : Any = True _SCREAMING_SNAKE_CASE : Optional[int] = False _SCREAMING_SNAKE_CASE : Optional[int] = "tokenizer_file" _SCREAMING_SNAKE_CASE : Optional[Any] = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def snake_case__ ( self) -> Dict: """simple docstring""" super().setUp() _UpperCAmelCase : List[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''') tokenizer.save_pretrained(self.tmpdirname) def snake_case__ ( self , **_A) -> List[Any]: """simple docstring""" kwargs.update(self.special_tokens_map) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **_A) def snake_case__ ( self) -> List[str]: """simple docstring""" _UpperCAmelCase : Optional[Any] = self.get_rust_tokenizer() _UpperCAmelCase : int = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] _UpperCAmelCase : List[Any] = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] _UpperCAmelCase : Any = tokenizer.batch_encode_plus(_A)['''input_ids'''] self.assertListEqual(_A , _A) _UpperCAmelCase : Any = tokenizer.batch_decode(_A) self.assertListEqual(_A , _A) def snake_case__ ( self , _A=6) -> Optional[Any]: """simple docstring""" for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})'''): _UpperCAmelCase : Optional[int] = self.rust_tokenizer_class.from_pretrained(_A , **_A) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input _UpperCAmelCase : List[Any] = '''This is a simple input''' _UpperCAmelCase : Any = ['''This is a simple input 1''', '''This is a simple input 2'''] _UpperCAmelCase : int = ('''This is a simple input''', '''This is a pair''') _UpperCAmelCase : Optional[int] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(_A , max_length=_A) tokenizer_r.encode_plus(_A , max_length=_A) tokenizer_r.batch_encode_plus(_A , max_length=_A) tokenizer_r.encode(_A , max_length=_A) tokenizer_r.batch_encode_plus(_A , max_length=_A) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''') _UpperCAmelCase : Tuple = None # Hotfixing padding = None self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''') # Simple input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''') # Simple input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) # Pair input self.assertRaises(_A , tokenizer_r.encode , _A , max_length=_A , padding='''max_length''') # Pair input self.assertRaises(_A , tokenizer_r.encode_plus , _A , max_length=_A , padding='''max_length''') # Pair input self.assertRaises( _A , tokenizer_r.batch_encode_plus , _A , max_length=_A , padding='''max_length''' , ) def snake_case__ ( self) -> Any: """simple docstring""" _UpperCAmelCase : Dict = self.get_rust_tokenizer() _UpperCAmelCase : int = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=_A) _UpperCAmelCase : Tuple = next(iter(_A))['''premise'''] # pick up one data _UpperCAmelCase : List[Any] = list(sample_data.values()) _UpperCAmelCase : Any = list(map(tokenizer.encode , _A)) _UpperCAmelCase : List[str] = [tokenizer.decode(_A , clean_up_tokenization_spaces=_A) for x in output_tokens] self.assertListEqual(_A , _A) def snake_case__ ( self) -> Optional[Any]: """simple docstring""" self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map) , 1) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]) , 1)
186
0
from typing import Callable, List, Optional, Tuple, Union import torch from transformers import CLIPTextModel, CLIPTokenizer from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin, TransformeraDModel, VQModel from ...schedulers import VQDiffusionScheduler from ...utils import logging from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name class __A ( UpperCamelCase__ , UpperCamelCase__ ): @register_to_config def __init__( self :List[str] , __snake_case :bool , __snake_case :Optional[int] = None , __snake_case :Optional[int] = None ): '''simple docstring''' super().__init__() __magic_name__ : int =learnable if self.learnable: assert hidden_size is not None, "learnable=True requires `hidden_size` to be set" assert length is not None, "learnable=True requires `length` to be set" __magic_name__ : Dict =torch.zeros(__snake_case , __snake_case ) else: __magic_name__ : Tuple =None __magic_name__ : int =torch.nn.Parameter(__snake_case ) class __A ( UpperCamelCase__ ): UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 UpperCamelCase = 42 def __init__( self :Dict , __snake_case :VQModel , __snake_case :CLIPTextModel , __snake_case :CLIPTokenizer , __snake_case :TransformeraDModel , __snake_case :VQDiffusionScheduler , __snake_case :LearnedClassifierFreeSamplingEmbeddings , ): '''simple docstring''' super().__init__() self.register_modules( vqvae=__snake_case , transformer=__snake_case , text_encoder=__snake_case , tokenizer=__snake_case , scheduler=__snake_case , learned_classifier_free_sampling_embeddings=__snake_case , ) def A__ ( self :Optional[int] , __snake_case :Optional[int] , __snake_case :Optional[Any] , __snake_case :Dict ): '''simple docstring''' __magic_name__ : List[str] =len(__snake_case ) if isinstance(__snake_case , __snake_case ) else 1 # get prompt text embeddings __magic_name__ : str =self.tokenizer( __snake_case , padding="""max_length""" , max_length=self.tokenizer.model_max_length , return_tensors="""pt""" , ) __magic_name__ : str =text_inputs.input_ids if text_input_ids.shape[-1] > self.tokenizer.model_max_length: __magic_name__ : int =self.tokenizer.batch_decode(text_input_ids[:, self.tokenizer.model_max_length :] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" f" {self.tokenizer.model_max_length} tokens: {removed_text}" ) __magic_name__ : List[Any] =text_input_ids[:, : self.tokenizer.model_max_length] __magic_name__ : Union[str, Any] =self.text_encoder(text_input_ids.to(self.device ) )[0] # NOTE: This additional step of normalizing the text embeddings is from VQ-Diffusion. # While CLIP does normalize the pooled output of the text transformer when combining # the image and text embeddings, CLIP does not directly normalize the last hidden state. # # CLIP normalizing the pooled output. # https://github.com/huggingface/transformers/blob/d92e22d1f28324f513f3080e5c47c071a3916721/src/transformers/models/clip/modeling_clip.py#L1052-L1053 __magic_name__ : Optional[Any] =prompt_embeds / prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate text embeddings for each generation per prompt __magic_name__ : Any =prompt_embeds.repeat_interleave(__snake_case , dim=0 ) if do_classifier_free_guidance: if self.learned_classifier_free_sampling_embeddings.learnable: __magic_name__ : Union[str, Any] =self.learned_classifier_free_sampling_embeddings.embeddings __magic_name__ : Optional[Any] =negative_prompt_embeds.unsqueeze(0 ).repeat(__snake_case , 1 , 1 ) else: __magic_name__ : Any =[""""""] * batch_size __magic_name__ : List[str] =text_input_ids.shape[-1] __magic_name__ : Tuple =self.tokenizer( __snake_case , padding="""max_length""" , max_length=__snake_case , truncation=__snake_case , return_tensors="""pt""" , ) __magic_name__ : List[Any] =self.text_encoder(uncond_input.input_ids.to(self.device ) )[0] # See comment for normalizing text embeddings __magic_name__ : Any =negative_prompt_embeds / negative_prompt_embeds.norm(dim=-1 , keepdim=__snake_case ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method __magic_name__ : Any =negative_prompt_embeds.shape[1] __magic_name__ : str =negative_prompt_embeds.repeat(1 , __snake_case , 1 ) __magic_name__ : Any =negative_prompt_embeds.view(batch_size * num_images_per_prompt , __snake_case , -1 ) # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes __magic_name__ : Optional[int] =torch.cat([negative_prompt_embeds, prompt_embeds] ) return prompt_embeds @torch.no_grad() def __call__( self :Optional[Any] , __snake_case :Union[str, List[str]] , __snake_case :int = 1_00 , __snake_case :float = 5.0 , __snake_case :float = 1.0 , __snake_case :int = 1 , __snake_case :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __snake_case :Optional[torch.FloatTensor] = None , __snake_case :Optional[str] = "pil" , __snake_case :bool = True , __snake_case :Optional[Callable[[int, int, torch.FloatTensor], None]] = None , __snake_case :int = 1 , ): '''simple docstring''' if isinstance(__snake_case , __snake_case ): __magic_name__ : str =1 elif isinstance(__snake_case , __snake_case ): __magic_name__ : List[str] =len(__snake_case ) else: raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(__snake_case )}" ) __magic_name__ : List[str] =batch_size * num_images_per_prompt __magic_name__ : Dict =guidance_scale > 1.0 __magic_name__ : Union[str, Any] =self._encode_prompt(__snake_case , __snake_case , __snake_case ) if (callback_steps is None) or ( callback_steps is not None and (not isinstance(__snake_case , __snake_case ) or callback_steps <= 0) ): raise ValueError( f"`callback_steps` has to be a positive integer but is {callback_steps} of type" f" {type(__snake_case )}." ) # get the initial completely masked latents unless the user supplied it __magic_name__ : List[Any] =(batch_size, self.transformer.num_latent_pixels) if latents is None: __magic_name__ : List[Any] =self.transformer.num_vector_embeds - 1 __magic_name__ : Union[str, Any] =torch.full(__snake_case , __snake_case ).to(self.device ) else: if latents.shape != latents_shape: raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {latents_shape}" ) if (latents < 0).any() or (latents >= self.transformer.num_vector_embeds).any(): raise ValueError( """Unexpected latents value(s). All latents be valid embedding indices i.e. in the range 0,""" f" {self.transformer.num_vector_embeds - 1} (inclusive)." ) __magic_name__ : Dict =latents.to(self.device ) # set timesteps self.scheduler.set_timesteps(__snake_case , device=self.device ) __magic_name__ : Optional[Any] =self.scheduler.timesteps.to(self.device ) __magic_name__ : List[Any] =latents for i, t in enumerate(self.progress_bar(__snake_case ) ): # expand the sample if we are doing classifier free guidance __magic_name__ : Dict =torch.cat([sample] * 2 ) if do_classifier_free_guidance else sample # predict the un-noised image # model_output == `log_p_x_0` __magic_name__ : List[str] =self.transformer(__snake_case , encoder_hidden_states=__snake_case , timestep=__snake_case ).sample if do_classifier_free_guidance: __magic_name__ , __magic_name__ : List[str] =model_output.chunk(2 ) __magic_name__ : List[Any] =model_output_uncond + guidance_scale * (model_output_text - model_output_uncond) model_output -= torch.logsumexp(__snake_case , dim=1 , keepdim=__snake_case ) __magic_name__ : Any =self.truncate(__snake_case , __snake_case ) # remove `log(0)`'s (`-inf`s) __magic_name__ : Union[str, Any] =model_output.clamp(-70 ) # compute the previous noisy sample x_t -> x_t-1 __magic_name__ : Union[str, Any] =self.scheduler.step(__snake_case , timestep=__snake_case , sample=__snake_case , generator=__snake_case ).prev_sample # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(__snake_case , __snake_case , __snake_case ) __magic_name__ : Tuple =self.vqvae.config.vq_embed_dim __magic_name__ : str =(batch_size, self.transformer.height, self.transformer.width, embedding_channels) __magic_name__ : Optional[int] =self.vqvae.quantize.get_codebook_entry(__snake_case , shape=__snake_case ) __magic_name__ : Any =self.vqvae.decode(__snake_case , force_not_quantize=__snake_case ).sample __magic_name__ : Any =(image / 2 + 0.5).clamp(0 , 1 ) __magic_name__ : Optional[Any] =image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __magic_name__ : Union[str, Any] =self.numpy_to_pil(__snake_case ) if not return_dict: return (image,) return ImagePipelineOutput(images=__snake_case ) def A__ ( self :List[str] , __snake_case :torch.FloatTensor , __snake_case :float ): '''simple docstring''' __magic_name__ , __magic_name__ : int =torch.sort(__snake_case , 1 , descending=__snake_case ) __magic_name__ : Any =torch.exp(__snake_case ) __magic_name__ : Dict =sorted_p_x_0.cumsum(dim=1 ) < truncation_rate # Ensure that at least the largest probability is not zeroed out __magic_name__ : Dict =torch.full_like(keep_mask[:, 0:1, :] , __snake_case ) __magic_name__ : str =torch.cat((all_true, keep_mask) , dim=1 ) __magic_name__ : Tuple =keep_mask[:, :-1, :] __magic_name__ : Optional[int] =keep_mask.gather(1 , indices.argsort(1 ) ) __magic_name__ : Optional[int] =log_p_x_0.clone() __magic_name__ : Union[str, Any] =-torch.inf # -inf = log(0) return rv
21
'''simple docstring''' import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin A : List[str] = get_tests_dir("""fixtures/test_sentencepiece.model""") A : int = {"""target_lang""": """fi""", """source_lang""": """en"""} A : Tuple = """>>zh<<""" A : Optional[int] = """Helsinki-NLP/""" if is_torch_available(): A : Dict = """pt""" elif is_tf_available(): A : Optional[int] = """tf""" else: A : List[str] = """jax""" @require_sentencepiece class lowerCAmelCase_ ( a_ , unittest.TestCase ): __UpperCAmelCase = MarianTokenizer __UpperCAmelCase = False __UpperCAmelCase = True def __snake_case ( self : List[str] ): '''simple docstring''' super().setUp() snake_case : Dict =['''</s>''', '''<unk>''', '''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est''', '''\u0120''', '''<pad>'''] snake_case : Optional[Any] =dict(zip(_snake_case, range(len(_snake_case ) ) ) ) snake_case : Dict =Path(self.tmpdirname ) save_json(_snake_case, save_dir / VOCAB_FILES_NAMES['''vocab'''] ) save_json(_snake_case, save_dir / VOCAB_FILES_NAMES['''tokenizer_config_file'''] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(_snake_case, save_dir / VOCAB_FILES_NAMES['''source_spm'''] ) copyfile(_snake_case, save_dir / VOCAB_FILES_NAMES['''target_spm'''] ) snake_case : Any =MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def __snake_case ( self : List[str], **_snake_case : Tuple ): '''simple docstring''' return MarianTokenizer.from_pretrained(self.tmpdirname, **_snake_case ) def __snake_case ( self : Any, _snake_case : Dict ): '''simple docstring''' return ( "This is a test", "This is a test", ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' snake_case : Optional[int] ='''</s>''' snake_case : int =0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_snake_case ), _snake_case ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_snake_case ), _snake_case ) def __snake_case ( self : Any ): '''simple docstring''' snake_case : Tuple =list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0], '''</s>''' ) self.assertEqual(vocab_keys[1], '''<unk>''' ) self.assertEqual(vocab_keys[-1], '''<pad>''' ) self.assertEqual(len(_snake_case ), 9 ) def __snake_case ( self : str ): '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size, 9 ) def __snake_case ( self : Tuple ): '''simple docstring''' snake_case : Tuple =MarianTokenizer.from_pretrained(f'''{ORG_NAME}opus-mt-en-de''' ) snake_case : List[str] =en_de_tokenizer(['''I am a small frog'''], return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) snake_case : Any =[38, 121, 14, 697, 38_848, 0] self.assertListEqual(_snake_case, batch.input_ids[0] ) snake_case : List[Any] =tempfile.mkdtemp() en_de_tokenizer.save_pretrained(_snake_case ) snake_case : List[Any] =[x.name for x in Path(_snake_case ).glob('''*''' )] self.assertIn('''source.spm''', _snake_case ) MarianTokenizer.from_pretrained(_snake_case ) def __snake_case ( self : Optional[Any] ): '''simple docstring''' snake_case : Any =self.get_tokenizer() snake_case : int =tok( ['''I am a small frog''' * 1_000, '''I am a small frog'''], padding=_snake_case, truncation=_snake_case, return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) self.assertEqual(batch.input_ids.shape, (2, 512) ) def __snake_case ( self : int ): '''simple docstring''' snake_case : List[str] =self.get_tokenizer() snake_case : int =tok(['''I am a tiny frog''', '''I am a small frog'''], padding=_snake_case, return_tensors=_snake_case ) self.assertIsInstance(_snake_case, _snake_case ) self.assertEqual(batch_smaller.input_ids.shape, (2, 10) ) @slow def __snake_case ( self : Optional[int] ): '''simple docstring''' snake_case : List[Any] ={'''input_ids''': [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_snake_case, model_name='''Helsinki-NLP/opus-mt-en-de''', revision='''1a8c2263da11e68e50938f97e10cd57820bd504c''', decode_kwargs={'''use_source_tokenizer''': True}, ) def __snake_case ( self : Optional[int] ): '''simple docstring''' snake_case : Optional[Any] =MarianTokenizer.from_pretrained('''hf-internal-testing/test-marian-two-vocabs''' ) snake_case : List[str] ='''Tämä on testi''' snake_case : Optional[int] ='''This is a test''' snake_case : Optional[Any] =[76, 7, 2_047, 2] snake_case : int =[69, 12, 11, 940, 2] snake_case : Optional[int] =tokenizer(_snake_case ).input_ids self.assertListEqual(_snake_case, _snake_case ) snake_case : Optional[Any] =tokenizer(text_target=_snake_case ).input_ids self.assertListEqual(_snake_case, _snake_case ) snake_case : Optional[int] =tokenizer.decode(_snake_case, skip_special_tokens=_snake_case ) self.assertEqual(_snake_case, _snake_case )
349
0
from math import log from scipy.constants import Boltzmann, physical_constants lowercase = 3_0_0 # TEMPERATURE (unit = K) def __lowerCAmelCase ( UpperCAmelCase__ : float , UpperCAmelCase__ : float , UpperCAmelCase__ : float , ) -> float: if donor_conc <= 0: raise ValueError("""Donor concentration should be positive""" ) elif acceptor_conc <= 0: raise ValueError("""Acceptor concentration should be positive""" ) elif intrinsic_conc <= 0: raise ValueError("""Intrinsic concentration should be positive""" ) elif donor_conc <= intrinsic_conc: raise ValueError( """Donor concentration should be greater than intrinsic concentration""" ) elif acceptor_conc <= intrinsic_conc: raise ValueError( """Acceptor concentration should be greater than intrinsic concentration""" ) else: return ( Boltzmann * T * log((donor_conc * acceptor_conc) / intrinsic_conc**2 ) / physical_constants["electron volt"][0] ) if __name__ == "__main__": import doctest doctest.testmod()
713
import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class __A( unittest.TestCase ): def lowercase__ ( self : Optional[Any] ): # For consistency across different places the DisjunctiveConstraint is called, # dc.token_ids is a list of integers. It is also initialized only by integers. lowerCamelCase_ = [[1, 2, 4], [1, 2, 3, 4]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) self.assertTrue(isinstance(dc.token_ids , __UpperCamelCase ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowercase__ ( self : List[Any] ): # We can't have constraints that are complete subsets of another. This leads to a preverse # interpretation of "constraint fulfillment": does generating [1,2,3] fulfill the constraint? # It would mean that it generated [1,2] which fulfills it, but it's in the middle of potentially # fulfilling [1,2,3,4]. If we believe that [1,2,3] does fulfill the constraint, then the algorithm # will necessarily never reach [1,2,3,4], giving users a false sense of control (better to just not allow it). lowerCamelCase_ = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(__UpperCamelCase ): DisjunctiveConstraint(__UpperCamelCase ) # fails here def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = [[1, 2, 3], [1, 2, 4]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) lowerCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) lowerCamelCase_ = stepped is True and completed is False and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(3 ) lowerCamelCase_ = stepped is True and completed is True and reset is False self.assertTrue(__UpperCamelCase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowercase__ ( self : Tuple ): lowerCamelCase_ = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] lowerCamelCase_ = DisjunctiveConstraint(__UpperCamelCase ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
103
0
'''simple docstring''' import os import shutil from pathlib import Path from typing import Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ..utils import ONNX_EXTERNAL_WEIGHTS_NAME, ONNX_WEIGHTS_NAME, is_onnx_available, logging if is_onnx_available(): import onnxruntime as ort SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = { 'tensor(bool)': np.bool_, 'tensor(int8)': np.inta, 'tensor(uint8)': np.uinta, 'tensor(int16)': np.intaa, 'tensor(uint16)': np.uintaa, 'tensor(int32)': np.intaa, 'tensor(uint32)': np.uintaa, 'tensor(int64)': np.intaa, 'tensor(uint64)': np.uintaa, 'tensor(float16)': np.floataa, 'tensor(float)': np.floataa, 'tensor(double)': np.floataa, } class lowerCAmelCase_ : """simple docstring""" def __init__( self : List[Any] , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' logger.info("""`diffusers.OnnxRuntimeModel` is experimental and might change in the future.""" ) __a = model __a = kwargs.get("""model_save_dir""" , SCREAMING_SNAKE_CASE__ ) __a = kwargs.get("""latest_model_name""" , SCREAMING_SNAKE_CASE__ ) def __call__( self : Union[str, Any] , **SCREAMING_SNAKE_CASE__ : str ): '''simple docstring''' __a = {k: np.array(SCREAMING_SNAKE_CASE__ ) for k, v in kwargs.items()} return self.model.run(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) @staticmethod def __a ( SCREAMING_SNAKE_CASE__ : Union[str, Path] , SCREAMING_SNAKE_CASE__ : Dict=None , SCREAMING_SNAKE_CASE__ : Tuple=None ): '''simple docstring''' if provider is None: logger.info("""No onnxruntime provider specified, using CPUExecutionProvider""" ) __a = """CPUExecutionProvider""" return ort.InferenceSession(SCREAMING_SNAKE_CASE__ , providers=[provider] , sess_options=SCREAMING_SNAKE_CASE__ ) def __a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Union[str, Path] , SCREAMING_SNAKE_CASE__ : Optional[str] = None , **SCREAMING_SNAKE_CASE__ : Optional[int] ): '''simple docstring''' __a = file_name if file_name is not None else ONNX_WEIGHTS_NAME __a = self.model_save_dir.joinpath(self.latest_model_name ) __a = Path(SCREAMING_SNAKE_CASE__ ).joinpath(SCREAMING_SNAKE_CASE__ ) try: shutil.copyfile(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except shutil.SameFileError: pass # copy external weights (for models >2GB) __a = self.model_save_dir.joinpath(SCREAMING_SNAKE_CASE__ ) if src_path.exists(): __a = Path(SCREAMING_SNAKE_CASE__ ).joinpath(SCREAMING_SNAKE_CASE__ ) try: shutil.copyfile(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) except shutil.SameFileError: pass def __a ( self : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, os.PathLike] , **SCREAMING_SNAKE_CASE__ : str , ): '''simple docstring''' if os.path.isfile(SCREAMING_SNAKE_CASE__ ): logger.error(f'''Provided path ({save_directory}) should be a directory, not a file''' ) return os.makedirs(SCREAMING_SNAKE_CASE__ , exist_ok=SCREAMING_SNAKE_CASE__ ) # saving model weights/files self._save_pretrained(SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def __a ( cls : int , SCREAMING_SNAKE_CASE__ : Union[str, Path] , SCREAMING_SNAKE_CASE__ : Optional[Union[bool, str, None]] = None , SCREAMING_SNAKE_CASE__ : Optional[Union[str, None]] = None , SCREAMING_SNAKE_CASE__ : bool = False , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional["ort.SessionOptions"] = None , **SCREAMING_SNAKE_CASE__ : Optional[Any] , ): '''simple docstring''' __a = file_name if file_name is not None else ONNX_WEIGHTS_NAME # load model from local directory if os.path.isdir(SCREAMING_SNAKE_CASE__ ): __a = OnnxRuntimeModel.load_model( os.path.join(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) , provider=SCREAMING_SNAKE_CASE__ , sess_options=SCREAMING_SNAKE_CASE__ ) __a = Path(SCREAMING_SNAKE_CASE__ ) # load model from hub else: # download model __a = hf_hub_download( repo_id=SCREAMING_SNAKE_CASE__ , filename=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , ) __a = Path(SCREAMING_SNAKE_CASE__ ).parent __a = Path(SCREAMING_SNAKE_CASE__ ).name __a = OnnxRuntimeModel.load_model(SCREAMING_SNAKE_CASE__ , provider=SCREAMING_SNAKE_CASE__ , sess_options=SCREAMING_SNAKE_CASE__ ) return cls(model=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) @classmethod def __a ( cls : List[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Path] , SCREAMING_SNAKE_CASE__ : bool = True , SCREAMING_SNAKE_CASE__ : Optional[str] = None , SCREAMING_SNAKE_CASE__ : Optional[str] = None , **SCREAMING_SNAKE_CASE__ : List[Any] , ): '''simple docstring''' __a = None if len(str(SCREAMING_SNAKE_CASE__ ).split("""@""" ) ) == 2: __a , __a = model_id.split("""@""" ) return cls._from_pretrained( model_id=SCREAMING_SNAKE_CASE__ , revision=SCREAMING_SNAKE_CASE__ , cache_dir=SCREAMING_SNAKE_CASE__ , force_download=SCREAMING_SNAKE_CASE__ , use_auth_token=SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ , )
582
'''simple docstring''' import numpy as np def __lowercase ( __SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return 1 / (1 + np.exp(-vector )) def __lowercase ( __SCREAMING_SNAKE_CASE ) -> np.ndarray: """simple docstring""" return vector * sigmoid(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
582
1
import copy import os import tempfile from unittest import TestCase from unittest.mock import patch import numpy as np import pyarrow as pa import pyarrow.parquet as pq import pytest from datasets.arrow_writer import ArrowWriter, OptimizedTypedSequence, ParquetWriter, TypedSequence from datasets.features import ArrayaD, ClassLabel, Features, Image, Value from datasets.features.features import ArrayaDExtensionType, cast_to_python_objects from datasets.keyhash import DuplicatedKeysError, InvalidKeyError from .utils import require_pil class lowerCAmelCase_ ( _a): def _snake_case ( self : List[Any] ) ->Optional[int]: """simple docstring""" a__ :List[Any] = pa.array(TypedSequence([1, 2, 3] ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Union[str, Any] ) ->Optional[int]: """simple docstring""" with self.assertRaises(__A ): a__ :List[str] = pa.array(TypedSequence([1, 2, 3] ) , type=pa.intaa() ) def _snake_case ( self : List[str] ) ->int: """simple docstring""" with self.assertRaises(__A ): a__ :Optional[int] = pa.array(TypedSequence([1, 2, 3] , try_type=Value("bool" ) , type=Value("int64" ) ) ) def _snake_case ( self : Any ) ->List[str]: """simple docstring""" a__ :Optional[int] = pa.array(TypedSequence([1, 2, 3] , type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Optional[int] ) ->List[str]: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): a__ :Any = pa.array(TypedSequence(["foo", "bar"] , type=Value("int64" ) ) ) def _snake_case ( self : List[str] ) ->Optional[Any]: """simple docstring""" a__ :Dict = pa.array(TypedSequence([1, 2, 3] , try_type=Value("int32" ) ) ) self.assertEqual(arr.type , pa.intaa() ) def _snake_case ( self : Dict ) ->List[str]: """simple docstring""" a__ :Tuple = pa.array(TypedSequence(["foo", "bar"] , try_type=Value("int64" ) ) ) self.assertEqual(arr.type , pa.string() ) def _snake_case ( self : int ) ->str: """simple docstring""" a__ :List[Any] = pa.array(TypedSequence([[[1, 2, 3]]] , type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _snake_case ( self : Optional[Any] ) ->int: """simple docstring""" with self.assertRaises((TypeError, pa.lib.ArrowInvalid) ): a__ :List[Any] = pa.array(TypedSequence(["foo", "bar"] , type=ArrayaD((1, 3) , "int64" ) ) ) def _snake_case ( self : Tuple ) ->Tuple: """simple docstring""" a__ :Any = pa.array(TypedSequence([[[1, 2, 3]]] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , ArrayaDExtensionType((1, 3) , "int64" ) ) def _snake_case ( self : Optional[Any] ) ->Any: """simple docstring""" a__ :Any = pa.array(TypedSequence(["foo", "bar"] , try_type=ArrayaD((1, 3) , "int64" ) ) ) self.assertEqual(arr.type , pa.string() ) @require_pil def _snake_case ( self : Dict ) ->Union[str, Any]: """simple docstring""" import PIL.Image a__ :List[Any] = PIL.Image.fromarray(np.arange(10 , dtype=np.uinta ).reshape(2 , 5 ) ) with patch( "datasets.arrow_writer.cast_to_python_objects" , side_effect=__A ) as mock_cast_to_python_objects: a__ :Optional[Any] = pa.array(TypedSequence([{"path": None, "bytes": B"image_bytes"}, pil_image] , type=Image() ) ) a__ :Tuple = mock_cast_to_python_objects.call_args_list[-1] self.assertIn("optimize_list_casting" , __A ) self.assertFalse(kwargs["optimize_list_casting"] ) def lowerCamelCase__ ( a : List[Any] , a : int ) -> Any: """simple docstring""" a__ :List[str] = pa.BufferReader(a ) if isinstance(a , pa.Buffer ) else pa.memory_map(a ) a__ :int = pa.ipc.open_stream(a ) a__ :pa.Table = f.read_all() assert len(pa_table.to_batches() ) == expected_num_chunks assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} del pa_table @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowerCamelCase__ ( a : str , a : List[Any] ) -> Tuple: """simple docstring""" a__ :Any = pa.BufferOutputStream() a__ :Any = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) a__ :str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: a__ :Union[str, Any] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase__ ( ) -> str: """simple docstring""" a__ :Optional[Any] = pa.BufferOutputStream() a__ :Any = Features({"labels": ClassLabel(names=["neg", "pos"] )} ) with ArrowWriter(stream=a , features=a ) as writer: writer.write({"labels": 0} ) writer.write({"labels": 1} ) a__ :str = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == features.arrow_schema assert writer._schema.metadata == features.arrow_schema.metadata a__ :int = pa.BufferReader(output.getvalue() ) a__ :Optional[Any] = pa.ipc.open_stream(a ) a__ :pa.Table = f.read_all() a__ :Tuple = pa_table.schema assert pa_table.num_rows == 2 assert schema == features.arrow_schema assert schema.metadata == features.arrow_schema.metadata assert features == Features.from_arrow_schema(a ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) def lowerCamelCase__ ( a : Dict ) -> Optional[int]: """simple docstring""" a__ :Union[str, Any] = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt="split_name" , check_duplicates=a , ) as writer: with pytest.raises(a ): writer.write({"col_1": "foo", "col_2": 1} , key=[1, 2] ) a__ :Any = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def lowerCamelCase__ ( a : Dict ) -> List[Any]: """simple docstring""" a__ :int = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt="split_name" , check_duplicates=a , ) as writer: with pytest.raises(a ): writer.write({"col_1": "foo", "col_2": 1} , key=10 ) writer.write({"col_1": "bar", "col_2": 2} , key=10 ) a__ :List[Any] = writer.finalize() @pytest.mark.parametrize("writer_batch_size" , [None, 2, 10] ) def lowerCamelCase__ ( a : int ) -> Dict: """simple docstring""" a__ :Dict = pa.BufferOutputStream() with ArrowWriter( stream=a , writer_batch_size=a , hash_salt="split_name" , check_duplicates=a , ) as writer: writer.write({"col_1": "foo", "col_2": 1} , key=1 ) writer.write({"col_1": "bar", "col_2": 2} , key=2 ) a__ :Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowerCamelCase__ ( a : Tuple , a : int ) -> List[str]: """simple docstring""" a__ :str = pa.BufferOutputStream() a__ :Any = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) writer.write_batch({"col_1": [], "col_2": []} ) a__ :Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: a__ :List[str] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowerCamelCase__ ( a : List[str] , a : str ) -> List[str]: """simple docstring""" a__ :str = pa.BufferOutputStream() a__ :str = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_table(pa.Table.from_pydict({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) ) a__ :Union[str, Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: a__ :Optional[int] = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) @pytest.mark.parametrize("writer_batch_size" , [None, 1, 10] ) @pytest.mark.parametrize( "fields" , [None, {"col_1": pa.string(), "col_2": pa.intaa()}, {"col_1": pa.string(), "col_2": pa.intaa()}] ) def lowerCamelCase__ ( a : int , a : Tuple ) -> List[Any]: """simple docstring""" a__ :List[str] = pa.BufferOutputStream() a__ :Dict = pa.schema(a ) if fields else None with ArrowWriter(stream=a , schema=a , writer_batch_size=a ) as writer: writer.write_row(pa.Table.from_pydict({"col_1": ["foo"], "col_2": [1]} ) ) writer.write_row(pa.Table.from_pydict({"col_1": ["bar"], "col_2": [2]} ) ) a__ :Tuple = writer.finalize() assert num_examples == 2 assert num_bytes > 0 if not fields: a__ :Any = {"col_1": pa.string(), "col_2": pa.intaa()} assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(output.getvalue() , expected_num_chunks=num_examples if writer_batch_size == 1 else 1 ) def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" with tempfile.TemporaryDirectory() as tmp_dir: a__ :Dict = {"col_1": pa.string(), "col_2": pa.intaa()} a__ :Any = os.path.join(a , "test.arrow" ) with ArrowWriter(path=a , schema=pa.schema(a ) ) as writer: writer.write_batch({"col_1": ["foo", "bar"], "col_2": [1, 2]} ) a__ :Optional[Any] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert writer._schema == pa.schema(a , metadata=writer._schema.metadata ) _check_output(a , 1 ) def lowerCamelCase__ ( a : Optional[Any] ) -> Tuple: """simple docstring""" if pa.types.is_list(a ): return get_base_dtype(arr_type.value_type ) else: return arr_type def lowerCamelCase__ ( a : List[Any] , a : Tuple ) -> Optional[int]: """simple docstring""" if isinstance(lst[0] , a ): change_first_primitive_element_in_list(lst[0] , a ) else: a__ :List[str] = value @pytest.mark.parametrize("optimized_int_type, expected_dtype" , [(None, pa.intaa()), (Value("int32" ), pa.intaa())] ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase__ ( a : Optional[Any] , a : str , a : Tuple ) -> Tuple: """simple docstring""" a__ :Dict = pa.array(TypedSequence(a , optimized_int_type=a ) ) assert get_base_dtype(arr.type ) == expected_dtype @pytest.mark.parametrize( "col, expected_dtype" , [ ("attention_mask", pa.inta()), ("special_tokens_mask", pa.inta()), ("token_type_ids", pa.inta()), ("input_ids", pa.intaa()), ("other", pa.intaa()), ] , ) @pytest.mark.parametrize("sequence" , [[1, 2, 3], [[1, 2, 3]], [[[1, 2, 3]]]] ) def lowerCamelCase__ ( a : Any , a : Optional[Any] , a : Dict ) -> Dict: """simple docstring""" a__ :int = pa.array(OptimizedTypedSequence(a , col=a ) ) assert get_base_dtype(arr.type ) == expected_dtype # not in range if col != "other": # avoids errors due to in-place modifications a__ :Optional[Any] = copy.deepcopy(a ) a__ :Optional[int] = np.iinfo(expected_dtype.to_pandas_dtype() ).max + 1 change_first_primitive_element_in_list(a , a ) a__ :Optional[Any] = pa.array(OptimizedTypedSequence(a , col=a ) ) assert get_base_dtype(arr.type ) == pa.intaa() @pytest.mark.parametrize("raise_exception" , [False, True] ) def lowerCamelCase__ ( a : Tuple , a : Tuple ) -> str: """simple docstring""" a__ :List[Any] = str(tmp_path / "dataset-train.arrow" ) try: with ArrowWriter(path=a ) as writer: if raise_exception: raise pa.lib.ArrowInvalid() else: writer.stream.close() except pa.lib.ArrowInvalid: pass finally: assert writer.stream.closed def lowerCamelCase__ ( a : Tuple ) -> Optional[int]: """simple docstring""" a__ :List[str] = "mock://dataset-train.arrow" with ArrowWriter(path=a , storage_options=mockfs.storage_options ) as writer: assert isinstance(writer._fs , type(a ) ) assert writer._fs.storage_options == mockfs.storage_options writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) a__ :Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 assert mockfs.exists(a ) def lowerCamelCase__ ( ) -> Any: """simple docstring""" a__ :List[str] = pa.BufferOutputStream() with ParquetWriter(stream=a ) as writer: writer.write({"col_1": "foo", "col_2": 1} ) writer.write({"col_1": "bar", "col_2": 2} ) a__ :Optional[int] = writer.finalize() assert num_examples == 2 assert num_bytes > 0 a__ :Optional[int] = pa.BufferReader(output.getvalue() ) a__ :pa.Table = pq.read_table(a ) assert pa_table.to_pydict() == {"col_1": ["foo", "bar"], "col_2": [1, 2]} @require_pil @pytest.mark.parametrize("embed_local_files" , [False, True] ) def lowerCamelCase__ ( a : Any , a : Tuple ) -> int: """simple docstring""" import PIL.Image a__ :Optional[Any] = str(tmp_path / "test_image_rgb.jpg" ) PIL.Image.fromarray(np.zeros((5, 5) , dtype=np.uinta ) ).save(a , format="png" ) a__ :Any = pa.BufferOutputStream() with ParquetWriter( stream=a , features=Features({"image": Image()} ) , embed_local_files=a ) as writer: writer.write({"image": image_path} ) writer.finalize() a__ :Any = pa.BufferReader(output.getvalue() ) a__ :pa.Table = pq.read_table(a ) a__ :List[str] = pa_table.to_pydict() if embed_local_files: assert isinstance(out["image"][0]["path"] , a ) with open(a , "rb" ) as f: assert out["image"][0]["bytes"] == f.read() else: assert out["image"][0]["path"] == image_path assert out["image"][0]["bytes"] is None def lowerCamelCase__ ( ) -> Union[str, Any]: """simple docstring""" a__ :Tuple = pa.schema([pa.field("col_1" , pa.string() , nullable=a )] ) a__ :Optional[Any] = pa.BufferOutputStream() with ArrowWriter(stream=a ) as writer: writer._build_writer(inferred_schema=a ) assert writer._schema == pa.schema([pa.field("col_1" , pa.string() )] )
711
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() snake_case__ = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) snake_case__ = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', f'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', f'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.weight''', f'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear1.bias''', f'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.weight''', f'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.linear2.bias''', f'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.encoder.layers.{i}.norm1.weight''', f'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.encoder.layers.{i}.norm1.bias''', f'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.weight''', f'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.encoder.layers.{i}.norm2.bias''', f'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', f'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', f'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', f'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( f'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', f'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.weight''', f'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear1.bias''', f'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.weight''', f'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.linear2.bias''', f'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm1.weight''', f'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm1.bias''', f'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.weight''', f'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.norm2.bias''', f'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.weight''', f'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((f'''transformer.decoder.layers.{i}.norm3.bias''', f'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', f'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', f'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', f'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', f'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.weight''', f'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', f'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', f'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', f'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.weight''', f'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', f'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', f'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (f'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', f'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', f'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', f'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.sa_v_proj.bias''', f'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', f'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', f'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', f'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((f'''transformer.decoder.layers.{i}.ca_v_proj.bias''', f'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (f'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', f'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def lowerCamelCase__ ( a : Any , a : Any , a : List[Any] ) -> Any: """simple docstring""" a__ :Optional[Any] = state_dict.pop(a ) a__ :Tuple = val def lowerCamelCase__ ( a : List[str] ) -> str: """simple docstring""" a__ :Any = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: a__ :List[Any] = key.replace("backbone.0.body" , "backbone.conv_encoder.model" ) a__ :List[Any] = value else: a__ :Dict = value return new_state_dict def lowerCamelCase__ ( a : str , a : Dict=False ) -> List[Any]: """simple docstring""" a__ :Optional[int] = "" if is_panoptic: a__ :str = "conditional_detr." # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) a__ :str = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight''' ) a__ :Optional[int] = state_dict.pop(F'''{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias''' ) # next, add query, keys and values (in that order) to the state dict a__ :int = in_proj_weight[:256, :] a__ :List[str] = in_proj_bias[:256] a__ :List[str] = in_proj_weight[256:512, :] a__ :Optional[Any] = in_proj_bias[256:512] a__ :Dict = in_proj_weight[-256:, :] a__ :Tuple = in_proj_bias[-256:] def lowerCamelCase__ ( ) -> Optional[Any]: """simple docstring""" a__ :str = "http://images.cocodataset.org/val2017/000000039769.jpg" a__ :Optional[Any] = Image.open(requests.get(a , stream=a ).raw ) return im @torch.no_grad() def lowerCamelCase__ ( a : Tuple , a : Union[str, Any] ) -> List[Any]: """simple docstring""" a__ :Optional[int] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: a__ :str = "resnet101" if "dc5" in model_name: a__ :Any = True a__ :Optional[int] = "panoptic" in model_name if is_panoptic: a__ :Union[str, Any] = 250 else: a__ :str = 91 a__ :Dict = "huggingface/label-files" a__ :Optional[Any] = "coco-detection-id2label.json" a__ :Dict = json.load(open(hf_hub_download(a , a , repo_type="dataset" ) , "r" ) ) a__ :str = {int(a ): v for k, v in idalabel.items()} a__ :int = idalabel a__ :Dict = {v: k for k, v in idalabel.items()} # load image processor a__ :Union[str, Any] = "coco_panoptic" if is_panoptic else "coco_detection" a__ :Any = ConditionalDetrImageProcessor(format=a ) # prepare image a__ :int = prepare_img() a__ :Optional[int] = image_processor(images=a , return_tensors="pt" ) a__ :int = encoding["pixel_values"] logger.info(F'''Converting model {model_name}...''' ) # load original model from torch hub a__ :str = torch.hub.load("DeppMeng/ConditionalDETR" , a , pretrained=a ).eval() a__ :Optional[int] = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: a__ :Optional[Any] = "conditional_detr." + src rename_key(a , a , a ) a__ :Dict = rename_backbone_keys(a ) # query, key and value matrices need special treatment read_in_q_k_v(a , is_panoptic=a ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them a__ :str = "conditional_detr.model." if is_panoptic else "model." for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith("conditional_detr" ) and not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ) ): a__ :List[Any] = state_dict.pop(a ) a__ :str = val elif "class_labels_classifier" in key or "bbox_predictor" in key: a__ :str = state_dict.pop(a ) a__ :str = val elif key.startswith("bbox_attention" ) or key.startswith("mask_head" ): continue else: a__ :int = state_dict.pop(a ) a__ :str = val else: if not key.startswith("class_labels_classifier" ) and not key.startswith("bbox_predictor" ): a__ :str = state_dict.pop(a ) a__ :Optional[Any] = val # finally, create HuggingFace model and load state dict a__ :str = ConditionalDetrForSegmentation(a ) if is_panoptic else ConditionalDetrForObjectDetection(a ) model.load_state_dict(a ) model.eval() model.push_to_hub(repo_id=a , organization="DepuMeng" , commit_message="Add model" ) # verify our conversion a__ :Union[str, Any] = conditional_detr(a ) a__ :Optional[int] = model(a ) assert torch.allclose(outputs.logits , original_outputs["pred_logits"] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs["pred_boxes"] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs["pred_masks"] , atol=1e-4 ) # Save model and image processor logger.info(F'''Saving PyTorch model and image processor to {pytorch_dump_folder_path}...''' ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) image_processor.save_pretrained(a ) if __name__ == "__main__": snake_case__ = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) snake_case__ = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
373
0
import timeit import numpy as np import datasets from datasets.arrow_writer import ArrowWriter from datasets.features.features import _ArrayXD def A__ ( SCREAMING_SNAKE_CASE_ : Optional[Any] ) -> str: """simple docstring""" def wrapper(*SCREAMING_SNAKE_CASE_ : Dict , **SCREAMING_SNAKE_CASE_ : int ): _UpperCAmelCase = timeit.default_timer() _UpperCAmelCase = func(*SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = timeit.default_timer() - starttime return delta _UpperCAmelCase = func.__name__ return wrapper def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[Any]=1_00 , SCREAMING_SNAKE_CASE_ : Tuple=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = [] _UpperCAmelCase = seq_shapes or {} for i in range(SCREAMING_SNAKE_CASE__ ): _UpperCAmelCase = {} for col_id, (k, v) in enumerate(features.items() ): if isinstance(SCREAMING_SNAKE_CASE__ , _ArrayXD ): _UpperCAmelCase = np.random.rand(*v.shape ).astype(v.dtype ) elif isinstance(SCREAMING_SNAKE_CASE__ , datasets.Value ): if v.dtype == "string": _UpperCAmelCase = 'The small grey turtle was surprisingly fast when challenged.' else: _UpperCAmelCase = np.random.randint(10 , size=1 ).astype(v.dtype ).item() elif isinstance(SCREAMING_SNAKE_CASE__ , datasets.Sequence ): while isinstance(SCREAMING_SNAKE_CASE__ , datasets.Sequence ): _UpperCAmelCase = v.feature _UpperCAmelCase = seq_shapes[k] _UpperCAmelCase = np.random.rand(*SCREAMING_SNAKE_CASE__ ).astype(v.dtype ) _UpperCAmelCase = data dummy_data.append((i, example) ) return dummy_data def A__ ( SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Any=1_00 , SCREAMING_SNAKE_CASE_ : int=None ) -> Union[str, Any]: """simple docstring""" _UpperCAmelCase = generate_examples(SCREAMING_SNAKE_CASE__ , num_examples=SCREAMING_SNAKE_CASE__ , seq_shapes=SCREAMING_SNAKE_CASE__ ) with ArrowWriter(features=SCREAMING_SNAKE_CASE__ , path=SCREAMING_SNAKE_CASE__ ) as writer: for key, record in dummy_data: _UpperCAmelCase = features.encode_example(SCREAMING_SNAKE_CASE__ ) writer.write(SCREAMING_SNAKE_CASE__ ) _UpperCAmelCase = writer.finalize() if not num_final_examples == num_examples: raise ValueError( F'''Error writing the dataset, wrote {num_final_examples} examples but should have written {num_examples}.''' ) _UpperCAmelCase = datasets.Dataset.from_file(filename=SCREAMING_SNAKE_CASE__ , info=datasets.DatasetInfo(features=SCREAMING_SNAKE_CASE__ ) ) return dataset
32
import torch from diffusers import CMStochasticIterativeScheduler from .test_schedulers import SchedulerCommonTest class A_ ( __UpperCamelCase ): '''simple docstring''' __snake_case = (CMStochasticIterativeScheduler,) __snake_case = 10 def _snake_case ( self: Any , **a: Dict ): __lowerCamelCase : Optional[Any] = { 'num_train_timesteps': 201, 'sigma_min': 0.0_0_2, 'sigma_max': 8_0.0, } config.update(**a ) return config def _snake_case ( self: List[Any] ): __lowerCamelCase : Any = 10 __lowerCamelCase : Any = self.get_scheduler_config() __lowerCamelCase : Union[str, Any] = self.scheduler_classes[0](**a ) scheduler.set_timesteps(a ) __lowerCamelCase : Any = scheduler.timesteps[0] __lowerCamelCase : List[str] = scheduler.timesteps[1] __lowerCamelCase : Union[str, Any] = self.dummy_sample __lowerCamelCase : int = 0.1 * sample __lowerCamelCase : Optional[Any] = scheduler.step(a , a , a ).prev_sample __lowerCamelCase : List[str] = scheduler.step(a , a , a ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def _snake_case ( self: Optional[Any] ): for timesteps in [10, 50, 100, 1000]: self.check_over_configs(num_train_timesteps=a ) def _snake_case ( self: List[str] ): for clip_denoised in [True, False]: self.check_over_configs(clip_denoised=a ) def _snake_case ( self: Tuple ): __lowerCamelCase : Tuple = self.scheduler_classes[0] __lowerCamelCase : Tuple = self.get_scheduler_config() __lowerCamelCase : Tuple = scheduler_class(**a ) __lowerCamelCase : int = 1 scheduler.set_timesteps(a ) __lowerCamelCase : Optional[int] = scheduler.timesteps __lowerCamelCase : List[str] = torch.manual_seed(0 ) __lowerCamelCase : Union[str, Any] = self.dummy_model() __lowerCamelCase : List[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for i, t in enumerate(a ): # 1. scale model input __lowerCamelCase : List[str] = scheduler.scale_model_input(a , a ) # 2. predict noise residual __lowerCamelCase : Optional[int] = model(a , a ) # 3. predict previous sample x_t-1 __lowerCamelCase : str = scheduler.step(a , a , a , generator=a ).prev_sample __lowerCamelCase : str = pred_prev_sample __lowerCamelCase : List[str] = torch.sum(torch.abs(a ) ) __lowerCamelCase : str = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 1_9_2.7_6_1_4 ) < 1e-2 assert abs(result_mean.item() - 0.2_5_1_0 ) < 1e-3 def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Any = self.scheduler_classes[0] __lowerCamelCase : Optional[Any] = self.get_scheduler_config() __lowerCamelCase : int = scheduler_class(**a ) __lowerCamelCase : List[Any] = [106, 0] scheduler.set_timesteps(timesteps=a ) __lowerCamelCase : Dict = scheduler.timesteps __lowerCamelCase : int = torch.manual_seed(0 ) __lowerCamelCase : Any = self.dummy_model() __lowerCamelCase : Optional[Any] = self.dummy_sample_deter * scheduler.init_noise_sigma for t in timesteps: # 1. scale model input __lowerCamelCase : Tuple = scheduler.scale_model_input(a , a ) # 2. predict noise residual __lowerCamelCase : Tuple = model(a , a ) # 3. predict previous sample x_t-1 __lowerCamelCase : Any = scheduler.step(a , a , a , generator=a ).prev_sample __lowerCamelCase : Any = pred_prev_sample __lowerCamelCase : Dict = torch.sum(torch.abs(a ) ) __lowerCamelCase : Optional[Any] = torch.mean(torch.abs(a ) ) assert abs(result_sum.item() - 3_4_7.6_3_5_7 ) < 1e-2 assert abs(result_mean.item() - 0.4_5_2_7 ) < 1e-3 def _snake_case ( self: Tuple ): __lowerCamelCase : Optional[int] = self.scheduler_classes[0] __lowerCamelCase : int = self.get_scheduler_config() __lowerCamelCase : List[Any] = scheduler_class(**a ) __lowerCamelCase : Optional[Any] = [39, 30, 12, 15, 0] with self.assertRaises(a , msg='`timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=a ) def _snake_case ( self: int ): __lowerCamelCase : Any = self.scheduler_classes[0] __lowerCamelCase : Union[str, Any] = self.get_scheduler_config() __lowerCamelCase : Union[str, Any] = scheduler_class(**a ) __lowerCamelCase : Optional[int] = [39, 30, 12, 1, 0] __lowerCamelCase : List[Any] = len(a ) with self.assertRaises(a , msg='Can only pass one of `num_inference_steps` or `timesteps`.' ): scheduler.set_timesteps(num_inference_steps=a , timesteps=a ) def _snake_case ( self: Optional[Any] ): __lowerCamelCase : Optional[int] = self.scheduler_classes[0] __lowerCamelCase : Dict = self.get_scheduler_config() __lowerCamelCase : Union[str, Any] = scheduler_class(**a ) __lowerCamelCase : Optional[int] = [scheduler.config.num_train_timesteps] with self.assertRaises( a , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=a )
669
0
def UpperCamelCase_( __magic_name__ : int , __magic_name__ : int ): """simple docstring""" return "\n".join( f"""{number} * {i} = {number * i}""" for i in range(1 , number_of_terms + 1 ) ) if __name__ == "__main__": print(multiplication_table(number=5, number_of_terms=10))
708
from __future__ import annotations from math import pow, sqrt def UpperCamelCase_( __magic_name__ : float , __magic_name__ : float , __magic_name__ : float ): """simple docstring""" if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('One and only one argument must be 0' ) if resistance == 0: return {"resistance": sqrt(pow(__magic_name__ , 2 ) - pow(__magic_name__ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(__magic_name__ , 2 ) - pow(__magic_name__ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(__magic_name__ , 2 ) + pow(__magic_name__ , 2 ) )} else: raise ValueError('Exactly one argument must be 0' ) if __name__ == "__main__": import doctest doctest.testmod()
382
0
'''simple docstring''' import random import unittest import torch from diffusers import IFInpaintingPipeline from diffusers.utils import floats_tensor from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import skip_mps, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS, TEXT_GUIDED_IMAGE_INPAINTING_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin from . import IFPipelineTesterMixin @skip_mps class lowerCAmelCase__ ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): '''simple docstring''' _lowerCamelCase =IFInpaintingPipeline _lowerCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_PARAMS - {'''width''', '''height'''} _lowerCamelCase =TEXT_GUIDED_IMAGE_INPAINTING_BATCH_PARAMS _lowerCamelCase =PipelineTesterMixin.required_optional_params - {'''latents'''} def __snake_case ( self : int ): return self._get_dummy_components() def __snake_case ( self : Union[str, Any] , a__ : Any , a__ : str=0 ): if str(_A ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(_A ) else: UpperCAmelCase = torch.Generator(device=_A ).manual_seed(_A ) UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = floats_tensor((1, 3, 32, 32) , rng=random.Random(_A ) ).to(_A ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': image, '''mask_image''': mask_image, '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def __snake_case ( self : List[str] ): self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=1e-3 ) def __snake_case ( self : Optional[int] ): self._test_save_load_optional_components() @unittest.skipIf(torch_device != '''cuda''' , reason='''float16 requires CUDA''' ) def __snake_case ( self : Optional[int] ): super().test_save_load_floataa(expected_max_diff=1e-1 ) def __snake_case ( self : str ): self._test_attention_slicing_forward_pass(expected_max_diff=1e-2 ) def __snake_case ( self : Tuple ): self._test_save_load_local() def __snake_case ( self : Any ): self._test_inference_batch_single_identical( expected_max_diff=1e-2 , )
51
import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class _A ( _lowerCamelCase , unittest.TestCase ): _UpperCamelCase : Any = XLMRobertaTokenizer _UpperCamelCase : Dict = XLMRobertaTokenizerFast _UpperCamelCase : Optional[int] = True _UpperCamelCase : Tuple = True def __a ( self : Optional[int] ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing lowercase : int = XLMRobertaTokenizer(_A , keep_accents=_A ) tokenizer.save_pretrained(self.tmpdirname ) def __a ( self : str ) -> int: """simple docstring""" lowercase : Tuple = '''<pad>''' lowercase : List[str] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_A ) , _A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_A ) , _A ) def __a ( self : Tuple ) -> Optional[Any]: """simple docstring""" lowercase : str = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(_A ) , 1_002 ) def __a ( self : Any ) -> Union[str, Any]: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 1_002 ) def __a ( self : Optional[int] ) -> Union[str, Any]: """simple docstring""" lowercase : Any = XLMRobertaTokenizer(_A , keep_accents=_A ) lowercase : List[Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_A , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(_A ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) lowercase : Any = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowercase : List[str] = tokenizer.convert_tokens_to_ids(_A ) self.assertListEqual( _A , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowercase : List[Any] = tokenizer.convert_ids_to_tokens(_A ) self.assertListEqual( _A , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __a ( self : List[str] ) -> Union[str, Any]: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowercase : Optional[Any] = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase : Optional[Any] = self.rust_tokenizer_class.from_pretrained(_A , **_A ) lowercase : List[str] = self.tokenizer_class.from_pretrained(_A , **_A ) lowercase : str = tempfile.mkdtemp() lowercase : Optional[int] = tokenizer_r.save_pretrained(_A ) lowercase : Any = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowercase : List[Any] = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way lowercase : Any = tokenizer_r.from_pretrained(_A ) lowercase : List[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=True lowercase : List[Any] = tempfile.mkdtemp() lowercase : List[str] = tokenizer_r.save_pretrained(_A , legacy_format=_A ) lowercase : Optional[Any] = tokenizer_p.save_pretrained(_A ) # Checks it save with the same files self.assertSequenceEqual(_A , _A ) # Checks everything loads correctly in the same way lowercase : str = tokenizer_r.from_pretrained(_A ) lowercase : List[str] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) # Save tokenizer rust, legacy_format=False lowercase : Union[str, Any] = tempfile.mkdtemp() lowercase : int = tokenizer_r.save_pretrained(_A , legacy_format=_A ) lowercase : str = tokenizer_p.save_pretrained(_A ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowercase : Dict = tokenizer_r.from_pretrained(_A ) lowercase : List[Any] = tokenizer_p.from_pretrained(_A ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(_A , _A ) ) shutil.rmtree(_A ) @cached_property def __a ( self : Any ) -> Any: """simple docstring""" return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __a ( self : Optional[Any] ) -> Dict: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(_A , f.name ) lowercase : List[str] = XLMRobertaTokenizer(f.name , keep_accents=_A ) lowercase : List[str] = pickle.dumps(_A ) pickle.loads(_A ) def __a ( self : Union[str, Any] ) -> Optional[int]: """simple docstring""" if not self.test_rust_tokenizer: return lowercase : Optional[Any] = self.get_tokenizer() lowercase : str = self.get_rust_tokenizer() lowercase : List[str] = '''I was born in 92000, and this is falsé.''' lowercase : Tuple = tokenizer.tokenize(_A ) lowercase : Tuple = rust_tokenizer.tokenize(_A ) self.assertListEqual(_A , _A ) lowercase : List[str] = tokenizer.encode(_A , add_special_tokens=_A ) lowercase : Optional[Any] = rust_tokenizer.encode(_A , add_special_tokens=_A ) self.assertListEqual(_A , _A ) lowercase : int = self.get_rust_tokenizer() lowercase : Tuple = tokenizer.encode(_A ) lowercase : Optional[Any] = rust_tokenizer.encode(_A ) self.assertListEqual(_A , _A ) @slow def __a ( self : str ) -> str: """simple docstring""" lowercase : int = '''Hello World!''' lowercase : Union[str, Any] = [0, 35_378, 6_661, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def __a ( self : Dict ) -> Tuple: """simple docstring""" lowercase : Tuple = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowercase : str = [ 0, 3_293, 83, 10, 4_552, 4_989, 7_986, 678, 10, 5_915, 111, 179_459, 124_850, 4, 6_044, 237, 12, 6, 5, 6, 4, 6_780, 705, 15, 1_388, 44, 378, 10_114, 711, 152, 20, 6, 5, 22_376, 642, 1_221, 15_190, 34_153, 450, 5_608, 959, 1_119, 57_702, 136, 186, 47, 1_098, 29_367, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 6_044, 237, 6_284, 50_901, 528, 31, 90, 34, 927, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(_A , self.big_tokenizer.encode(_A ) ) @slow def __a ( self : Optional[Any] ) -> List[str]: """simple docstring""" lowercase : Optional[Any] = {'''input_ids''': [[0, 11_062, 82_772, 7, 15, 82_772, 538, 51_529, 237, 17_198, 1_290, 206, 9, 215_175, 1_314, 136, 17_198, 1_290, 206, 9, 56_359, 42, 122_009, 9, 16_466, 16, 87_344, 4_537, 9, 4_717, 78_381, 6, 159_958, 7, 15, 24_480, 618, 4, 527, 22_693, 5_428, 4, 2_777, 24_480, 9_874, 4, 43_523, 594, 4, 803, 18_392, 33_189, 18, 4, 43_523, 24_447, 12_399, 100, 24_955, 83_658, 9_626, 144_057, 15, 839, 22_335, 16, 136, 24_955, 83_658, 83_479, 15, 39_102, 724, 16, 678, 645, 2_789, 1_328, 4_589, 42, 122_009, 115_774, 23, 805, 1_328, 46_876, 7, 136, 53_894, 1_940, 42_227, 41_159, 17_721, 823, 425, 4, 27_512, 98_722, 206, 136, 5_531, 4_970, 919, 17_336, 5, 2], [0, 20_080, 618, 83, 82_775, 47, 479, 9, 1_517, 73, 53_894, 333, 80_581, 110_117, 18_811, 5_256, 1_295, 51, 152_526, 297, 7_986, 390, 124_416, 538, 35_431, 214, 98, 15_044, 25_737, 136, 7_108, 43_701, 23, 756, 135_355, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 581, 63_773, 119_455, 6, 147_797, 88_203, 7, 645, 70, 21, 3_285, 10_269, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_A , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
217
0
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : list ): def merge(UpperCAmelCase_ : list , UpperCAmelCase_ : list ) -> list: def _merge(): while left and right: yield (left if left[0] <= right[0] else right).pop(0 ) yield from left yield from right return list(_merge() ) if len(UpperCAmelCase_ ) <= 1: return collection A__ = len(UpperCAmelCase_ ) // 2 return merge(merge_sort(collection[:mid] ) , merge_sort(collection[mid:] ) ) if __name__ == "__main__": import doctest doctest.testmod() SCREAMING_SNAKE_CASE_ : List[Any] = input('Enter numbers separated by a comma:\n').strip() SCREAMING_SNAKE_CASE_ : List[str] = [int(item) for item in user_input.split(',')] print(*merge_sort(unsorted), sep=',')
711
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int ): A__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def _snake_case ( UpperCAmelCase_ : int ): A__ = 0 while number > 0: A__ = number % 10 sum_of_digits += last_digit A__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case ( UpperCAmelCase_ : int = 100 ): A__ = factorial(UpperCAmelCase_ ) A__ = split_and_add(UpperCAmelCase_ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
500
0
'''simple docstring''' import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": __SCREAMING_SNAKE_CASE : List[str] = argparse.ArgumentParser() parser.add_argument("""--dump_path""", default=None, type=str, required=True, help="""Path to the output model.""") parser.add_argument( """--txt2img_unclip""", default="""kakaobrain/karlo-v1-alpha""", type=str, required=False, help="""The pretrained txt2img unclip.""", ) __SCREAMING_SNAKE_CASE : str = parser.parse_args() __SCREAMING_SNAKE_CASE : Optional[Any] = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) __SCREAMING_SNAKE_CASE : int = CLIPImageProcessor() __SCREAMING_SNAKE_CASE : Dict = CLIPVisionModelWithProjection.from_pretrained("""openai/clip-vit-large-patch14""") __SCREAMING_SNAKE_CASE : Optional[Any] = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
244
'''simple docstring''' import unittest from transformers import PegasusConfig, PegasusTokenizer, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_configuration_common import ConfigTester from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html __SCREAMING_SNAKE_CASE : Optional[int] = """platform""" import jax import jax.numpy as jnp import numpy as np from transformers import FlaxPegasusForConditionalGeneration, FlaxPegasusModel @require_flax class lowerCamelCase_ : '''simple docstring''' __UpperCamelCase: int = PegasusConfig __UpperCamelCase: List[Any] = {} __UpperCamelCase: Dict = "gelu" def __init__( self : int , A : Optional[int] , A : str=13 , A : List[str]=7 , A : Optional[int]=True , A : Union[str, Any]=False , A : List[str]=99 , A : Any=32 , A : Tuple=5 , A : Optional[int]=4 , A : Tuple=37 , A : str=0.1 , A : Optional[Any]=0.1 , A : Dict=20 , A : int=2 , A : List[str]=1 , A : Optional[Any]=0 , ): _UpperCAmelCase : List[Any] = parent _UpperCAmelCase : Union[str, Any] = batch_size _UpperCAmelCase : Optional[int] = seq_length _UpperCAmelCase : Optional[Any] = is_training _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : Union[str, Any] = vocab_size _UpperCAmelCase : Optional[int] = hidden_size _UpperCAmelCase : int = num_hidden_layers _UpperCAmelCase : Any = num_attention_heads _UpperCAmelCase : List[str] = intermediate_size _UpperCAmelCase : Dict = hidden_dropout_prob _UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob _UpperCAmelCase : Tuple = max_position_embeddings _UpperCAmelCase : List[str] = eos_token_id _UpperCAmelCase : Dict = pad_token_id _UpperCAmelCase : int = bos_token_id def _A ( self : Optional[int] ): _UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ).clip(3 , self.vocab_size ) _UpperCAmelCase : Tuple = np.expand_dims(np.array([self.eos_token_id] * self.batch_size ) , 1 ) _UpperCAmelCase : Dict = np.concatenate([input_ids, eos_tensor] , axis=1 ) _UpperCAmelCase : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : List[str] = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) _UpperCAmelCase : List[str] = prepare_pegasus_inputs_dict(A , A , A ) return config, inputs_dict def _A ( self : Any , A : str , A : Optional[Any] , A : Optional[Any] ): _UpperCAmelCase : Optional[int] = 20 _UpperCAmelCase : Optional[Any] = model_class_name(A ) _UpperCAmelCase : str = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase , _UpperCAmelCase : Any = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _UpperCAmelCase : Union[str, Any] = model.init_cache(decoder_input_ids.shape[0] , A , A ) _UpperCAmelCase : Tuple = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="i4" ) _UpperCAmelCase : Dict = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : Optional[Any] = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) _UpperCAmelCase : Dict = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : List[Any] = model.decode( decoder_input_ids[:, -1:] , A , decoder_attention_mask=A , past_key_values=outputs_cache.past_key_values , decoder_position_ids=A , ) _UpperCAmelCase : Optional[Any] = model.decode(A , A ) _UpperCAmelCase : Tuple = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def _A ( self : Tuple , A : Union[str, Any] , A : Optional[Any] , A : int ): _UpperCAmelCase : Optional[int] = 20 _UpperCAmelCase : Tuple = model_class_name(A ) _UpperCAmelCase : Dict = model.encode(inputs_dict["input_ids"] ) _UpperCAmelCase , _UpperCAmelCase : List[str] = ( inputs_dict["decoder_input_ids"], inputs_dict["decoder_attention_mask"], ) _UpperCAmelCase : Optional[int] = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _UpperCAmelCase : str = model.init_cache(decoder_input_ids.shape[0] , A , A ) _UpperCAmelCase : List[str] = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _UpperCAmelCase : Any = model.decode( decoder_input_ids[:, :-1] , A , decoder_attention_mask=A , past_key_values=A , decoder_position_ids=A , ) _UpperCAmelCase : int = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="i4" ) _UpperCAmelCase : List[str] = model.decode( decoder_input_ids[:, -1:] , A , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=A , decoder_position_ids=A , ) _UpperCAmelCase : Optional[int] = model.decode(A , A , decoder_attention_mask=A ) _UpperCAmelCase : int = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F"""Max diff is {diff}""" ) def UpperCamelCase_ ( _UpperCAmelCase : List[Any] , _UpperCAmelCase : List[str] , _UpperCAmelCase : Optional[Any] , _UpperCAmelCase : Any=None , _UpperCAmelCase : Any=None , ) -> Optional[int]: """simple docstring""" if attention_mask is None: _UpperCAmelCase : Any = np.not_equal(_UpperCAmelCase , config.pad_token_id ).astype(np.inta ) if decoder_attention_mask is None: _UpperCAmelCase : int = np.concatenate( [ np.ones(decoder_input_ids[:, :1].shape , dtype=np.inta ), np.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ).astype(np.inta ), ] , axis=-1 , ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, } @require_flax class lowerCamelCase_ (snake_case__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase: Any = ( ( FlaxPegasusForConditionalGeneration, FlaxPegasusModel, ) if is_flax_available() else () ) __UpperCamelCase: Optional[int] = (FlaxPegasusForConditionalGeneration,) if is_flax_available() else () __UpperCamelCase: List[str] = True __UpperCamelCase: List[Any] = False __UpperCamelCase: Any = False __UpperCamelCase: str = False def _A ( self : List[Any] ): _UpperCAmelCase : int = FlaxPegasusModelTester(self ) _UpperCAmelCase : Optional[int] = ConfigTester(self , config_class=A ) def _A ( self : List[str] ): self.config_tester.run_common_tests() def _A ( self : int ): _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(A , A , A ) def _A ( self : Any ): _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(A , A , A ) def _A ( self : Any ): _UpperCAmelCase , _UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Optional[Any] = self._prepare_for_class(A , A ) _UpperCAmelCase : List[Any] = model_class(A ) @jax.jit def encode_jitted(A : List[Any] , A : List[Any]=None , **A : Optional[int] ): return model.encode(input_ids=A , attention_mask=A ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : int = encode_jitted(**A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : List[Any] = encode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) def _A ( self : Optional[Any] ): _UpperCAmelCase , _UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _UpperCAmelCase : Union[str, Any] = model_class(A ) _UpperCAmelCase : Union[str, Any] = model.encode(inputs_dict["input_ids"] , inputs_dict["attention_mask"] ) _UpperCAmelCase : Optional[Any] = { "decoder_input_ids": inputs_dict["decoder_input_ids"], "decoder_attention_mask": inputs_dict["decoder_attention_mask"], "encoder_outputs": encoder_outputs, } @jax.jit def decode_jitted(A : List[Any] , A : Optional[int] , A : Optional[int] ): return model.decode( decoder_input_ids=A , decoder_attention_mask=A , encoder_outputs=A , ) with self.subTest("JIT Enabled" ): _UpperCAmelCase : Any = decode_jitted(**A ).to_tuple() with self.subTest("JIT Disabled" ): with jax.disable_jit(): _UpperCAmelCase : List[str] = decode_jitted(**A ).to_tuple() self.assertEqual(len(A ) , len(A ) ) for jitted_output, output in zip(A , A ): self.assertEqual(jitted_output.shape , output.shape ) @slow def _A ( self : List[str] ): for model_class_name in self.all_model_classes: _UpperCAmelCase : List[Any] = model_class_name.from_pretrained("google/pegasus-large" , from_pt=A ) _UpperCAmelCase : List[Any] = np.ones((1, 1) ) _UpperCAmelCase : Dict = model(A ) self.assertIsNotNone(A ) @slow def _A ( self : Optional[int] ): _UpperCAmelCase : List[Any] = FlaxPegasusForConditionalGeneration.from_pretrained("google/pegasus-xsum" ) _UpperCAmelCase : Any = PegasusTokenizer.from_pretrained("google/pegasus-xsum" ) _UpperCAmelCase : Dict = [ " PG&E stated it scheduled the blackouts in response to forecasts for high winds amid dry conditions. The aim is to reduce the risk of wildfires. Nearly 800 thousand customers were scheduled to be affected by the shutoffs which were expected to last through at least midday tomorrow.", " The London trio are up for best UK act and best album, as well as getting two nominations in the best song category.\"We got told like this morning 'Oh I think you're nominated'\", said Dappy.\"And I was like 'Oh yeah, which one?' And now we've got nominated for four awards. I mean, wow!\"Bandmate Fazer added: \"We thought it's best of us to come down and mingle with everyone and say hello to the cameras. And now we find we've got four nominations.\"The band have two shots at the best song prize, getting the nod for their Tynchy Stryder collaboration Number One, and single Strong Again.Their album Uncle B will also go up against records by the likes of Beyonce and Kanye West.N-Dubz picked up the best newcomer Mobo in 2007, but female member Tulisa said they wouldn't be too disappointed if they didn't win this time around.\"At the end of the day we're grateful to be where we are in our careers.\"If it don't happen then it don't happen - live to fight another day and keep on making albums and hits for the fans.\"Dappy also revealed they could be performing live several times on the night.The group will be doing Number One and also a possible rendition of the War Child single, I Got Soul.The charity song is a re-working of The Killers' All These Things That I've Done and is set to feature artists like Chipmunk, Ironik and Pixie Lott.This year's Mobos will be held outside of London for the first time, in Glasgow on 30 September.N-Dubz said they were looking forward to performing for their Scottish fans and boasted about their recent shows north of the border.\"We just done Edinburgh the other day,\" said Dappy.\"We smashed up an N-Dubz show over there. We done Aberdeen about three or four months ago - we smashed up that show over there! Everywhere we go we smash it up!\" ", ] _UpperCAmelCase : Dict = [ "California's largest electricity provider has turned off power to hundreds of thousands of customers.", "Pop group N-Dubz have revealed they were surprised to get four nominations for this year's Mobo Awards.", ] _UpperCAmelCase : List[str] = tokenizer(A , return_tensors="np" , truncation=A , max_length=512 , padding=A ) _UpperCAmelCase : List[str] = model.generate(**A , num_beams=2 ).sequences _UpperCAmelCase : List[str] = tokenizer.batch_decode(A , skip_special_tokens=A ) assert tgt_text == decoded
244
1
import tempfile import unittest from pathlib import Path from shutil import copyfile from transformers import BatchEncoding, MarianTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, slow from transformers.utils import is_sentencepiece_available, is_tf_available, is_torch_available if is_sentencepiece_available(): from transformers.models.marian.tokenization_marian import VOCAB_FILES_NAMES, save_json from ...test_tokenization_common import TokenizerTesterMixin UpperCAmelCase_ : List[Any] = get_tests_dir('''fixtures/test_sentencepiece.model''') UpperCAmelCase_ : int = {'''target_lang''': '''fi''', '''source_lang''': '''en'''} UpperCAmelCase_ : str = '''>>zh<<''' UpperCAmelCase_ : List[str] = '''Helsinki-NLP/''' if is_torch_available(): UpperCAmelCase_ : List[Any] = '''pt''' elif is_tf_available(): UpperCAmelCase_ : Tuple = '''tf''' else: UpperCAmelCase_ : Union[str, Any] = '''jax''' @require_sentencepiece class _SCREAMING_SNAKE_CASE ( _a , unittest.TestCase ): snake_case__ : List[Any] = MarianTokenizer snake_case__ : str = False snake_case__ : Union[str, Any] = True def _A ( self : Optional[int] ): super().setUp() UpperCamelCase :Dict = ["""</s>""", """<unk>""", """▁This""", """▁is""", """▁a""", """▁t""", """est""", """\u0120""", """<pad>"""] UpperCamelCase :int = dict(zip(__lowerCamelCase , range(len(__lowerCamelCase ) ) ) ) UpperCamelCase :Dict = Path(self.tmpdirname ) save_json(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["""vocab"""] ) save_json(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["""tokenizer_config_file"""] ) if not (save_dir / VOCAB_FILES_NAMES["source_spm"]).exists(): copyfile(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["""source_spm"""] ) copyfile(__lowerCamelCase , save_dir / VOCAB_FILES_NAMES["""target_spm"""] ) UpperCamelCase :List[str] = MarianTokenizer.from_pretrained(self.tmpdirname ) tokenizer.save_pretrained(self.tmpdirname ) def _A ( self : Optional[int] , **__lowerCamelCase : List[str] ): return MarianTokenizer.from_pretrained(self.tmpdirname , **__lowerCamelCase ) def _A ( self : str , __lowerCamelCase : Union[str, Any] ): return ( "This is a test", "This is a test", ) def _A ( self : Optional[Any] ): UpperCamelCase :Optional[int] = """</s>""" UpperCamelCase :Any = 0 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCamelCase ) , __lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCamelCase ) , __lowerCamelCase ) def _A ( self : List[str] ): UpperCamelCase :Union[str, Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """</s>""" ) self.assertEqual(vocab_keys[1] , """<unk>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__lowerCamelCase ) , 9 ) def _A ( self : int ): self.assertEqual(self.get_tokenizer().vocab_size , 9 ) def _A ( self : Optional[int] ): UpperCamelCase :Union[str, Any] = MarianTokenizer.from_pretrained(F"""{ORG_NAME}opus-mt-en-de""" ) UpperCamelCase :Any = en_de_tokenizer(["""I am a small frog"""] , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Optional[int] = [38, 121, 14, 697, 38_848, 0] self.assertListEqual(__lowerCamelCase , batch.input_ids[0] ) UpperCamelCase :List[Any] = tempfile.mkdtemp() en_de_tokenizer.save_pretrained(__lowerCamelCase ) UpperCamelCase :Tuple = [x.name for x in Path(__lowerCamelCase ).glob("""*""" )] self.assertIn("""source.spm""" , __lowerCamelCase ) MarianTokenizer.from_pretrained(__lowerCamelCase ) def _A ( self : Union[str, Any] ): UpperCamelCase :Optional[Any] = self.get_tokenizer() UpperCamelCase :Optional[int] = tok( ["""I am a small frog""" * 1_000, """I am a small frog"""] , padding=__lowerCamelCase , truncation=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(batch.input_ids.shape , (2, 512) ) def _A ( self : int ): UpperCamelCase :int = self.get_tokenizer() UpperCamelCase :List[Any] = tok(["""I am a tiny frog""", """I am a small frog"""] , padding=__lowerCamelCase , return_tensors=__lowerCamelCase ) self.assertIsInstance(__lowerCamelCase , __lowerCamelCase ) self.assertEqual(batch_smaller.input_ids.shape , (2, 10) ) @slow def _A ( self : str ): # fmt: off UpperCamelCase :List[Any] = {"""input_ids""": [[43_495, 462, 20, 42_164, 1_369, 52, 464, 132, 1_703, 492, 13, 7_491, 38_999, 6, 8, 464, 132, 1_703, 492, 13, 4_669, 37_867, 13, 7_525, 27, 1_593, 988, 13, 33_972, 7_029, 6, 20, 8_251, 383, 2, 270, 5_866, 3_788, 2, 2_353, 8_251, 12_338, 2, 13_958, 387, 2, 3_629, 6_953, 188, 2_900, 2, 13_958, 8_011, 11_501, 23, 8_460, 4_073, 34_009, 20, 435, 11_439, 27, 8, 8_460, 4_073, 6_004, 20, 9_988, 375, 27, 33, 266, 1_945, 1_076, 1_350, 37_867, 3_288, 5, 577, 1_076, 4_374, 8, 5_082, 5, 26_453, 257, 556, 403, 2, 242, 132, 383, 316, 492, 8, 10_767, 6, 316, 304, 4_239, 3, 0], [148, 15_722, 19, 1_839, 12, 1_350, 13, 22_327, 5_082, 5_418, 47_567, 35_938, 59, 318, 19_552, 108, 2_183, 54, 14_976, 4_835, 32, 547, 1_114, 8, 315, 2_417, 5, 92, 19_088, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100], [36, 6_395, 12_570, 39_147, 11_597, 6, 266, 4, 45_405, 7_296, 3, 0, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100, 58_100]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCamelCase , model_name="""Helsinki-NLP/opus-mt-en-de""" , revision="""1a8c2263da11e68e50938f97e10cd57820bd504c""" , decode_kwargs={"""use_source_tokenizer""": True} , ) def _A ( self : Dict ): UpperCamelCase :Tuple = MarianTokenizer.from_pretrained("""hf-internal-testing/test-marian-two-vocabs""" ) UpperCamelCase :Tuple = """Tämä on testi""" UpperCamelCase :str = """This is a test""" UpperCamelCase :List[str] = [76, 7, 2_047, 2] UpperCamelCase :List[str] = [69, 12, 11, 940, 2] UpperCamelCase :int = tokenizer(__lowerCamelCase ).input_ids self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Dict = tokenizer(text_target=__lowerCamelCase ).input_ids self.assertListEqual(__lowerCamelCase , __lowerCamelCase ) UpperCamelCase :Union[str, Any] = tokenizer.decode(__lowerCamelCase , skip_special_tokens=__lowerCamelCase ) self.assertEqual(__lowerCamelCase , __lowerCamelCase )
590
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging UpperCAmelCase_ : Dict = logging.get_logger(__name__) UpperCAmelCase_ : str = '''▁''' UpperCAmelCase_ : str = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', } UpperCAmelCase_ : List[str] = { '''vocab_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json''' ), }, '''spm_file''': { '''facebook/s2t-small-librispeech-asr''': ( '''https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model''' ) }, } UpperCAmelCase_ : Any = { '''facebook/s2t-small-librispeech-asr''': 10_24, } UpperCAmelCase_ : Tuple = ['''pt''', '''fr''', '''ru''', '''nl''', '''ro''', '''it''', '''es''', '''de'''] UpperCAmelCase_ : int = {'''mustc''': MUSTC_LANGS} class _SCREAMING_SNAKE_CASE ( _a ): snake_case__ : Optional[int] = VOCAB_FILES_NAMES snake_case__ : Tuple = PRETRAINED_VOCAB_FILES_MAP snake_case__ : Union[str, Any] = MAX_MODEL_INPUT_SIZES snake_case__ : Optional[int] = ["""input_ids""", """attention_mask"""] snake_case__ : List[int] = [] def __init__( self : Optional[Any] , __lowerCamelCase : int , __lowerCamelCase : Any , __lowerCamelCase : Optional[Any]="<s>" , __lowerCamelCase : List[Any]="</s>" , __lowerCamelCase : str="<pad>" , __lowerCamelCase : Optional[Any]="<unk>" , __lowerCamelCase : Union[str, Any]=False , __lowerCamelCase : Dict=False , __lowerCamelCase : Optional[int]=None , __lowerCamelCase : List[str]=None , __lowerCamelCase : Optional[Dict[str, Any]] = None , **__lowerCamelCase : int , ): UpperCamelCase :List[str] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=__lowerCamelCase , eos_token=__lowerCamelCase , unk_token=__lowerCamelCase , pad_token=__lowerCamelCase , do_upper_case=__lowerCamelCase , do_lower_case=__lowerCamelCase , tgt_lang=__lowerCamelCase , lang_codes=__lowerCamelCase , sp_model_kwargs=self.sp_model_kwargs , **__lowerCamelCase , ) UpperCamelCase :List[str] = do_upper_case UpperCamelCase :int = do_lower_case UpperCamelCase :Dict = load_json(__lowerCamelCase ) UpperCamelCase :Optional[int] = {v: k for k, v in self.encoder.items()} UpperCamelCase :Optional[Any] = spm_file UpperCamelCase :str = load_spm(__lowerCamelCase , self.sp_model_kwargs ) if lang_codes is not None: UpperCamelCase :Dict = lang_codes UpperCamelCase :List[str] = LANGUAGES[lang_codes] UpperCamelCase :List[Any] = [F"""<lang:{lang}>""" for lang in self.langs] UpperCamelCase :int = {lang: self.sp_model.PieceToId(F"""<lang:{lang}>""" ) for lang in self.langs} UpperCamelCase :Union[str, Any] = self.lang_tokens UpperCamelCase :Tuple = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: UpperCamelCase :Optional[Any] = {} @property def _A ( self : Any ): return len(self.encoder ) @property def _A ( self : int ): return self._tgt_lang @tgt_lang.setter def _A ( self : Union[str, Any] , __lowerCamelCase : int ): UpperCamelCase :str = new_tgt_lang self.set_tgt_lang_special_tokens(__lowerCamelCase ) def _A ( self : Dict , __lowerCamelCase : str ): UpperCamelCase :int = self.lang_code_to_id[tgt_lang] UpperCamelCase :Optional[int] = [lang_code_id] def _A ( self : Union[str, Any] , __lowerCamelCase : str ): return self.sp_model.encode(__lowerCamelCase , out_type=__lowerCamelCase ) def _A ( self : Optional[int] , __lowerCamelCase : List[str] ): return self.encoder.get(__lowerCamelCase , self.encoder[self.unk_token] ) def _A ( self : Optional[int] , __lowerCamelCase : int ): return self.decoder.get(__lowerCamelCase , self.unk_token ) def _A ( self : Union[str, Any] , __lowerCamelCase : List[str] ): UpperCamelCase :Any = [] UpperCamelCase :Dict = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: UpperCamelCase :Dict = self.sp_model.decode(__lowerCamelCase ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " UpperCamelCase :Dict = [] else: current_sub_tokens.append(__lowerCamelCase ) UpperCamelCase :Dict = self.sp_model.decode(__lowerCamelCase ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def _A ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Optional[int]=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def _A ( self : Optional[Any] , __lowerCamelCase : List[int] , __lowerCamelCase : Optional[List[int]] = None , __lowerCamelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowerCamelCase , token_ids_a=__lowerCamelCase , already_has_special_tokens=__lowerCamelCase ) UpperCamelCase :Tuple = [1] * len(self.prefix_tokens ) UpperCamelCase :Tuple = [1] if token_ids_a is None: return prefix_ones + ([0] * len(__lowerCamelCase )) + suffix_ones return prefix_ones + ([0] * len(__lowerCamelCase )) + ([0] * len(__lowerCamelCase )) + suffix_ones def _A ( self : Any ): UpperCamelCase :Optional[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): UpperCamelCase :Optional[int] = self.__dict__.copy() UpperCamelCase :List[str] = None return state def __setstate__( self : int , __lowerCamelCase : Dict ): UpperCamelCase :List[str] = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCamelCase :int = {} UpperCamelCase :Optional[int] = load_spm(self.spm_file , self.sp_model_kwargs ) def _A ( self : List[str] , __lowerCamelCase : str , __lowerCamelCase : Optional[str] = None ): UpperCamelCase :Union[str, Any] = Path(__lowerCamelCase ) assert save_dir.is_dir(), F"""{save_directory} should be a directory""" UpperCamelCase :Any = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""vocab_file"""] ) UpperCamelCase :str = save_dir / ( (filename_prefix + """-""" if filename_prefix else """""") + self.vocab_files_names["""spm_file"""] ) save_json(self.encoder , __lowerCamelCase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowerCamelCase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowerCamelCase ) elif not os.path.isfile(self.spm_file ): with open(__lowerCamelCase , """wb""" ) as fi: UpperCamelCase :Any = self.sp_model.serialized_model_proto() fi.write(__lowerCamelCase ) return (str(__lowerCamelCase ), str(__lowerCamelCase )) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str , __magic_name__ : Dict[str, Any] ) -> sentencepiece.SentencePieceProcessor: """simple docstring""" UpperCamelCase :int = sentencepiece.SentencePieceProcessor(**__magic_name__ ) spm.Load(str(__magic_name__ ) ) return spm def SCREAMING_SNAKE_CASE_ ( __magic_name__ : str ) -> Union[Dict, List]: """simple docstring""" with open(__magic_name__ , """r""" ) as f: return json.load(__magic_name__ ) def SCREAMING_SNAKE_CASE_ ( __magic_name__ : Dict , __magic_name__ : str ) -> None: """simple docstring""" with open(__magic_name__ , """w""" ) as f: json.dump(__magic_name__ , __magic_name__ , indent=2 )
590
1
# Copyright 2022 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os import subprocess from packaging.version import Version, parse from accelerate.commands.config.config_args import default_config_file, load_config_from_file SCREAMING_SNAKE_CASE__ = '''Run commands across TPU VMs for initial setup before running `accelerate launch`.''' def A ( __UpperCamelCase=None ) -> Union[str, Any]: if subparsers is not None: A__ = subparsers.add_parser('tpu-config' , description=_description ) else: A__ = argparse.ArgumentParser('Accelerate tpu-config command' , description=_description ) # Core arguments A__ = parser.add_argument_group( 'Config Arguments' , 'Arguments that can be configured through `accelerate config`.' ) config_args.add_argument( '--config_file' , type=__UpperCamelCase , default=__UpperCamelCase , help='Path to the config file to use for accelerate.' , ) config_args.add_argument( '--tpu_name' , default=__UpperCamelCase , help='The name of the TPU to use. If not specified, will use the TPU specified in the config file.' , ) config_args.add_argument( '--tpu_zone' , default=__UpperCamelCase , help='The zone of the TPU to use. If not specified, will use the zone specified in the config file.' , ) A__ = parser.add_argument_group('TPU Arguments' , 'Arguments for options ran inside the TPU.' ) pod_args.add_argument( '--use_alpha' , action='store_true' , help='Whether to use `gcloud alpha` when running the TPU training script instead of `gcloud`.' , ) pod_args.add_argument( '--command_file' , default=__UpperCamelCase , help='The path to the file containing the commands to run on the pod on startup.' , ) pod_args.add_argument( '--command' , action='append' , nargs='+' , help='A command to run on the pod. Can be passed multiple times.' , ) pod_args.add_argument( '--install_accelerate' , action='store_true' , help='Whether to install accelerate on the pod. Defaults to False.' , ) pod_args.add_argument( '--accelerate_version' , default='latest' , help='The version of accelerate to install on the pod. If not specified, will use the latest pypi version. Specify \'dev\' to install from GitHub.' , ) pod_args.add_argument( '--debug' , action='store_true' , help='If set, will print the command that would be run instead of running it.' ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def A ( __UpperCamelCase ) -> Optional[Any]: A__ = None # Get the default from the config file if it exists. if args.config_file is not None or os.path.isfile(__UpperCamelCase ): A__ = load_config_from_file(args.config_file ) if not args.command_file and defaults.command_file is not None and not args.command: A__ = defaults.command_file if not args.command and defaults.commands is not None: A__ = defaults.commands if not args.tpu_name: A__ = defaults.tpu_name if not args.tpu_zone: A__ = defaults.tpu_zone if args.accelerate_version == "dev": A__ = 'git+https://github.com/huggingface/accelerate.git' elif args.accelerate_version == "latest": A__ = 'accelerate -U' elif isinstance(parse(args.accelerate_version ) , __UpperCamelCase ): A__ = f'''accelerate=={args.accelerate_version}''' if not args.command_file and not args.command: raise ValueError('You must specify either a command file or a command to run on the pod.' ) if args.command_file: with open(args.command_file , 'r' ) as f: A__ = [f.read().splitlines()] # To turn list of lists into list of strings if isinstance(args.command[0] , __UpperCamelCase ): A__ = [line for cmd in args.command for line in cmd] # Default to the shared folder and install accelerate A__ = ['cd /usr/share'] if args.install_accelerate: new_cmd += [f'''pip install {args.accelerate_version}'''] new_cmd += args.command A__ = '; '.join(__UpperCamelCase ) # Then send it to gcloud # Eventually try to use google-api-core to do this instead of subprocess A__ = ['gcloud'] if args.use_alpha: cmd += ["alpha"] cmd += [ "compute", "tpus", "tpu-vm", "ssh", args.tpu_name, "--zone", args.tpu_zone, "--command", args.command, "--worker", "all", ] if args.debug: print(f'''Running {" ".join(__UpperCamelCase )}''' ) return subprocess.run(__UpperCamelCase ) print('Successfully setup pod.' ) def A ( ) -> Optional[Any]: A__ = tpu_command_parser() A__ = parser.parse_args() tpu_command_launcher(__UpperCamelCase )
9
'''simple docstring''' import cmath import math def __lowerCamelCase ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ->complex: snake_case__ = math.radians(UpperCAmelCase_ ) snake_case__ = math.radians(UpperCAmelCase_ ) # Convert voltage and current to rectangular form snake_case__ = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) snake_case__ = cmath.rect(UpperCAmelCase_ , UpperCAmelCase_ ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
368
0
import os from pathlib import Path def __lowerCamelCase ( ) -> Union[str, Any]: from torch.utils.cpp_extension import load UpperCamelCase = Path(_lowercase ).resolve().parent.parent.parent / 'kernels' / 'deformable_detr' UpperCamelCase = [ root / filename for filename in [ 'vision.cpp', os.path.join('cpu' , 'ms_deform_attn_cpu.cpp' ), os.path.join('cuda' , 'ms_deform_attn_cuda.cu' ), ] ] load( 'MultiScaleDeformableAttention' , _lowercase , with_cuda=_lowercase , extra_include_paths=[str(_lowercase )] , extra_cflags=['-DWITH_CUDA=1'] , extra_cuda_cflags=[ '-DCUDA_HAS_FP16=1', '-D__CUDA_NO_HALF_OPERATORS__', '-D__CUDA_NO_HALF_CONVERSIONS__', '-D__CUDA_NO_HALF2_OPERATORS__', ] , ) import MultiScaleDeformableAttention as MSDA return MSDA
170
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType _snake_case = None _snake_case = '''<''' if sys.byteorder == '''little''' else '''>''' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image _snake_case = [ np.dtype('''|b1'''), np.dtype('''|u1'''), np.dtype('''<u2'''), np.dtype('''>u2'''), np.dtype('''<i2'''), np.dtype('''>i2'''), np.dtype('''<u4'''), np.dtype('''>u4'''), np.dtype('''<i4'''), np.dtype('''>i4'''), np.dtype('''<f4'''), np.dtype('''>f4'''), np.dtype('''<f8'''), np.dtype('''>f8'''), ] @dataclass class _lowerCAmelCase : """simple docstring""" SCREAMING_SNAKE_CASE_ : bool =True SCREAMING_SNAKE_CASE_ : Optional[str] =None # Automatically constructed SCREAMING_SNAKE_CASE_ : ClassVar[str] ="PIL.Image.Image" SCREAMING_SNAKE_CASE_ : ClassVar[Any] =pa.struct({"bytes": pa.binary(), "path": pa.string()} ) SCREAMING_SNAKE_CASE_ : str =field(default="Image" , init=__magic_name__ , repr=__magic_name__ ) def __call__( self : Dict ): """simple docstring""" return self.pa_type def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : Union[str, bytes, dict, np.ndarray, "PIL.Image.Image"] ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): UpperCamelCase = np.array(SCREAMING_SNAKE_CASE__ ) if isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return {"path": value, "bytes": None} elif isinstance(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return {"path": None, "bytes": value} elif isinstance(SCREAMING_SNAKE_CASE__ , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(SCREAMING_SNAKE_CASE__ ) elif isinstance(SCREAMING_SNAKE_CASE__ , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(SCREAMING_SNAKE_CASE__ ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( F'An image sample should have one of \'path\' or \'bytes\' but they are missing or None in {value}.' ) def __lowerCAmelCase ( self : int , SCREAMING_SNAKE_CASE__ : dict , SCREAMING_SNAKE_CASE__ : List[Any]=None ): """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: UpperCamelCase = {} UpperCamelCase , UpperCamelCase = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(F'An image should have one of \'path\' or \'bytes\' but both are None in {value}.' ) else: if is_local_path(SCREAMING_SNAKE_CASE__ ): UpperCamelCase = PIL.Image.open(SCREAMING_SNAKE_CASE__ ) else: UpperCamelCase = path.split('::' )[-1] try: UpperCamelCase = string_to_dict(SCREAMING_SNAKE_CASE__ , config.HUB_DATASETS_URL )['repo_id'] UpperCamelCase = token_per_repo_id.get(SCREAMING_SNAKE_CASE__ ) except ValueError: UpperCamelCase = None with xopen(SCREAMING_SNAKE_CASE__ , 'rb' , use_auth_token=SCREAMING_SNAKE_CASE__ ) as f: UpperCamelCase = BytesIO(f.read() ) UpperCamelCase = PIL.Image.open(bytes_ ) else: UpperCamelCase = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def __lowerCAmelCase ( self : Any ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def __lowerCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[pa.StringArray, pa.StructArray, pa.ListArray] ): """simple docstring""" if pa.types.is_string(storage.type ): UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.binary() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: UpperCamelCase = storage.field('bytes' ) else: UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: UpperCamelCase = storage.field('path' ) else: UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): UpperCamelCase = pa.array( [encode_np_array(np.array(SCREAMING_SNAKE_CASE__ ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) UpperCamelCase = pa.array([None] * len(SCREAMING_SNAKE_CASE__ ) , type=pa.string() ) UpperCamelCase = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE__ , self.pa_type ) def __lowerCAmelCase ( self : Any , SCREAMING_SNAKE_CASE__ : pa.StructArray ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(SCREAMING_SNAKE_CASE__ : Union[str, Any] ): with xopen(SCREAMING_SNAKE_CASE__ , 'rb' ) as f: UpperCamelCase = f.read() return bytes_ UpperCamelCase = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) UpperCamelCase = pa.array( [os.path.basename(SCREAMING_SNAKE_CASE__ ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) UpperCamelCase = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(SCREAMING_SNAKE_CASE__ , self.pa_type ) def __lowerCamelCase ( ) -> List[str]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() UpperCamelCase = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def __lowerCamelCase ( _lowercase ) -> bytes: UpperCamelCase = BytesIO() if image.format in list_image_compression_formats(): UpperCamelCase = image.format else: UpperCamelCase = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(_lowercase , format=_lowercase ) return buffer.getvalue() def __lowerCamelCase ( _lowercase ) -> dict: if hasattr(_lowercase , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(_lowercase )} def __lowerCamelCase ( _lowercase ) -> dict: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) UpperCamelCase = array.dtype UpperCamelCase = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER UpperCamelCase = dtype.kind UpperCamelCase = dtype.itemsize UpperCamelCase = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: UpperCamelCase = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( F'Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays.' ) if dtype is not dest_dtype: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: UpperCamelCase = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: UpperCamelCase = dtype_byteorder + dtype_kind + str(_lowercase ) UpperCamelCase = np.dtype(_lowercase ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(F'Downcasting array dtype {dtype} to {dest_dtype} to be compatible with \'Pillow\'' ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( F'Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}' ) UpperCamelCase = PIL.Image.fromarray(array.astype(_lowercase ) ) return {"path": None, "bytes": image_to_bytes(_lowercase )} def __lowerCamelCase ( _lowercase ) -> List[dict]: if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: UpperCamelCase , UpperCamelCase = first_non_null_value(_lowercase ) if isinstance(_lowercase , _lowercase ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(_lowercase , np.ndarray ): UpperCamelCase = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] elif isinstance(_lowercase , PIL.Image.Image ): UpperCamelCase = no_op_if_value_is_null(_lowercase ) return [obj_to_image_dict_func(_lowercase ) for obj in objs] else: return objs else: return objs
170
1
import argparse import torch from safetensors.torch import load_file from diffusers import StableDiffusionPipeline def A__ ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : Dict ) -> Optional[Any]: """simple docstring""" _UpperCAmelCase = StableDiffusionPipeline.from_pretrained(SCREAMING_SNAKE_CASE_ , torch_dtype=torch.floataa ) # load LoRA weight from .safetensors _UpperCAmelCase = load_file(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = [] # directly update weight in diffusers model for key in state_dict: # it is suggested to print out the key, it usually will be something like below # "lora_te_text_model_encoder_layers_0_self_attn_k_proj.lora_down.weight" # as we have set the alpha beforehand, so just skip if ".alpha" in key or key in visited: continue if "text" in key: _UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_TEXT_ENCODER + '''_''' )[-1].split('''_''' ) _UpperCAmelCase = pipeline.text_encoder else: _UpperCAmelCase = key.split('''.''' )[0].split(LORA_PREFIX_UNET + '''_''' )[-1].split('''_''' ) _UpperCAmelCase = pipeline.unet # find the target layer _UpperCAmelCase = layer_infos.pop(0 ) while len(SCREAMING_SNAKE_CASE_ ) > -1: try: _UpperCAmelCase = curr_layer.__getattr__(SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) > 0: _UpperCAmelCase = layer_infos.pop(0 ) elif len(SCREAMING_SNAKE_CASE_ ) == 0: break except Exception: if len(SCREAMING_SNAKE_CASE_ ) > 0: temp_name += "_" + layer_infos.pop(0 ) else: _UpperCAmelCase = layer_infos.pop(0 ) _UpperCAmelCase = [] if "lora_down" in key: pair_keys.append(key.replace('''lora_down''' , '''lora_up''' ) ) pair_keys.append(SCREAMING_SNAKE_CASE_ ) else: pair_keys.append(SCREAMING_SNAKE_CASE_ ) pair_keys.append(key.replace('''lora_up''' , '''lora_down''' ) ) # update weight if len(state_dict[pair_keys[0]].shape ) == 4: _UpperCAmelCase = state_dict[pair_keys[0]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) _UpperCAmelCase = state_dict[pair_keys[1]].squeeze(3 ).squeeze(2 ).to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ).unsqueeze(2 ).unsqueeze(3 ) else: _UpperCAmelCase = state_dict[pair_keys[0]].to(torch.floataa ) _UpperCAmelCase = state_dict[pair_keys[1]].to(torch.floataa ) curr_layer.weight.data += alpha * torch.mm(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # update visited list for item in pair_keys: visited.append(SCREAMING_SNAKE_CASE_ ) return pipeline if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() parser.add_argument( "--base_model_path", default=None, type=str, required=True, help="Path to the base model in diffusers format." ) parser.add_argument( "--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." ) parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") parser.add_argument( "--lora_prefix_unet", default="lora_unet", type=str, help="The prefix of UNet weight in safetensors" ) parser.add_argument( "--lora_prefix_text_encoder", default="lora_te", type=str, help="The prefix of text encoder weight in safetensors", ) parser.add_argument("--alpha", default=0.75, type=float, help="The merging ratio in W = W0 + alpha * deltaW") parser.add_argument( "--to_safetensors", action="store_true", help="Whether to store pipeline in safetensors format or not." ) parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") UpperCAmelCase_ = parser.parse_args() UpperCAmelCase_ = args.base_model_path UpperCAmelCase_ = args.checkpoint_path UpperCAmelCase_ = args.dump_path UpperCAmelCase_ = args.lora_prefix_unet UpperCAmelCase_ = args.lora_prefix_text_encoder UpperCAmelCase_ = args.alpha UpperCAmelCase_ = convert(base_model_path, checkpoint_path, lora_prefix_unet, lora_prefix_text_encoder, alpha) UpperCAmelCase_ = pipe.to(args.device) pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
32
from collections.abc import Sequence def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: return sum(c * (x**i) for i, c in enumerate(a__ ) ) def __SCREAMING_SNAKE_CASE ( a__ : Sequence[float] ,a__ : float ) -> float: __A : Any = 0.0 for coeff in reversed(a__ ): __A : List[str] = result * x + coeff return result if __name__ == "__main__": UpperCAmelCase_ : List[str] = (0.0, 0.0, 5.0, 9.3, 7.0) UpperCAmelCase_ : str = 10.0 print(evaluate_poly(poly, x)) print(horner(poly, x))
17
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging lowercase_ : List[str] = logging.get_logger(__name__) lowercase_ : List[str] = '''▁''' lowercase_ : Union[str, Any] = {'''vocab_file''': '''sentencepiece.bpe.model''', '''monolingual_vocab_file''': '''dict.txt'''} lowercase_ : Dict = { '''vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/sentencepiece.bpe.model''', }, '''monolingual_vocab_file''': { '''vinai/bartpho-syllable''': '''https://huggingface.co/vinai/bartpho-syllable/resolve/main/dict.txt''', }, } lowercase_ : List[str] = {'''vinai/bartpho-syllable''': 1024} class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Tuple = VOCAB_FILES_NAMES _UpperCamelCase : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : Dict = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : List[Any] = ["input_ids", "attention_mask"] def __init__( self : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : int , lowerCamelCase_ : Union[str, Any]="<s>" , lowerCamelCase_ : int="</s>" , lowerCamelCase_ : Any="</s>" , lowerCamelCase_ : Optional[Any]="<s>" , lowerCamelCase_ : Union[str, Any]="<unk>" , lowerCamelCase_ : str="<pad>" , lowerCamelCase_ : Optional[Any]="<mask>" , lowerCamelCase_ : Optional[Dict[str, Any]] = None , **lowerCamelCase_ : Tuple , ): '''simple docstring''' _snake_case : List[Any] = AddedToken(lowerCamelCase_ , lstrip=lowerCamelCase_ , rstrip=lowerCamelCase_ ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ) else mask_token _snake_case : List[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=lowerCamelCase_ , eos_token=lowerCamelCase_ , unk_token=lowerCamelCase_ , sep_token=lowerCamelCase_ , cls_token=lowerCamelCase_ , pad_token=lowerCamelCase_ , mask_token=lowerCamelCase_ , sp_model_kwargs=self.sp_model_kwargs , **lowerCamelCase_ , ) _snake_case : Optional[Any] = vocab_file _snake_case : Optional[int] = monolingual_vocab_file _snake_case : Union[str, Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCamelCase_ ) ) # Load the reduced vocab # Keep order of special tokens for backward compatibility _snake_case : List[str] = {} _snake_case : Union[str, Any] = 0 for token in [bos_token, pad_token, eos_token, unk_token, sep_token, cls_token]: if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: _snake_case : Optional[Any] = cnt cnt += 1 with open(lowerCamelCase_ , 'r' , encoding='utf-8' ) as f: for line in f.readlines(): _snake_case : Tuple = line.strip().split()[0] _snake_case : Optional[int] = len(self.fairseq_tokens_to_ids ) if str(lowerCamelCase_ ) not in self.fairseq_tokens_to_ids: _snake_case : int = len(self.fairseq_tokens_to_ids ) _snake_case : Any = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self : Tuple ): '''simple docstring''' _snake_case : Tuple = self.__dict__.copy() _snake_case : Optional[int] = None _snake_case : Any = self.sp_model.serialized_model_proto() return state def __setstate__( self : int , lowerCamelCase_ : Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _snake_case : Optional[int] = {} _snake_case : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _snake_case : Any = [self.cls_token_id] _snake_case : Optional[int] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None , lowerCamelCase_ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase_ , token_ids_a=lowerCamelCase_ , already_has_special_tokens=lowerCamelCase_ ) if token_ids_a is None: return [1] + ([0] * len(lowerCamelCase_ )) + [1] return [1] + ([0] * len(lowerCamelCase_ )) + [1, 1] + ([0] * len(lowerCamelCase_ )) + [1] def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : List[int] , lowerCamelCase_ : Optional[List[int]] = None ): '''simple docstring''' _snake_case : Union[str, Any] = [self.sep_token_id] _snake_case : List[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def __UpperCAmelCase ( self : List[Any] ): '''simple docstring''' return len(self.fairseq_ids_to_tokens ) def __UpperCAmelCase ( self : int ): '''simple docstring''' _snake_case : int = {self.convert_ids_to_tokens(lowerCamelCase_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCAmelCase ( self : Union[str, Any] , lowerCamelCase_ : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase_ , out_type=lowerCamelCase_ ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict ): '''simple docstring''' if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] else: return self.unk_token_id def __UpperCAmelCase ( self : str , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return self.fairseq_ids_to_tokens[index] def __UpperCAmelCase ( self : Optional[Any] , lowerCamelCase_ : Optional[Any] ): '''simple docstring''' _snake_case : str = ''.join(lowerCamelCase_ ).replace(lowerCamelCase_ , ' ' ).strip() return out_string def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : str , lowerCamelCase_ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(lowerCamelCase_ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return _snake_case : Any = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) _snake_case : List[Any] = os.path.join( lowerCamelCase_ , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['monolingual_vocab_file'] , ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCamelCase_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.vocab_file ): with open(lowerCamelCase_ , 'wb' ) as fi: _snake_case : Optional[int] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase_ ) if os.path.abspath(self.monolingual_vocab_file ) != os.path.abspath( lowerCamelCase_ ) and os.path.isfile(self.monolingual_vocab_file ): copyfile(self.monolingual_vocab_file , lowerCamelCase_ ) elif not os.path.isfile(self.monolingual_vocab_file ): with open(lowerCamelCase_ , 'w' , encoding='utf-8' ) as fp: for token in self.fairseq_tokens_to_ids: if token not in self.all_special_tokens: fp.write(f'''{str(lowerCamelCase_ )} \n''' ) return out_vocab_file, out_monolingual_vocab_file
652
from __future__ import annotations def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Dict = list(range(len(__lowerCAmelCase ) ) ) _snake_case : Optional[int] = [v / w for v, w in zip(__lowerCAmelCase , __lowerCAmelCase )] index.sort(key=lambda __lowerCAmelCase : ratio[i] , reverse=__lowerCAmelCase ) _snake_case : float = 0 _snake_case : list[float] = [0] * len(__lowerCAmelCase ) for i in index: if weight[i] <= capacity: _snake_case : List[Any] = 1 max_value += value[i] capacity -= weight[i] else: _snake_case : Any = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
652
1
from __future__ import annotations class UpperCamelCase : def __init__( self , UpperCAmelCase__ ): A__ = data A__ = None A__ = None def UpperCamelCase ( _A : Node | None )-> None: # In Order traversal of the tree """simple docstring""" if tree: display(tree.left ) print(tree.data ) display(tree.right ) def UpperCamelCase ( _A : Node | None )-> int: """simple docstring""" return 1 + max(depth_of_tree(tree.left ) , depth_of_tree(tree.right ) ) if tree else 0 def UpperCamelCase ( _A : Node )-> bool: """simple docstring""" if not tree: return True if tree.left and tree.right: return is_full_binary_tree(tree.left ) and is_full_binary_tree(tree.right ) else: return not tree.left and not tree.right def UpperCamelCase ( )-> None: # Main function for testing. """simple docstring""" A__ = Node(1 ) A__ = Node(2 ) A__ = Node(3 ) A__ = Node(4 ) A__ = Node(5 ) A__ = Node(6 ) A__ = Node(7 ) A__ = Node(8 ) A__ = Node(9 ) print(is_full_binary_tree(_A ) ) print(depth_of_tree(_A ) ) print("Tree is: " ) display(_A ) if __name__ == "__main__": main()
491
from __future__ import annotations class UpperCamelCase : def __init__( self , UpperCAmelCase__ ): A__ = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(UpperCAmelCase__ ) != 0: A__ = len(rows[0] ) if cols == 0: raise error for row in rows: if len(UpperCAmelCase__ ) != cols: raise error for value in row: if not isinstance(UpperCAmelCase__ , (int, float) ): raise error A__ = rows else: A__ = [] def __A ( self ): return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def __A ( self ): return len(self.rows ) @property def __A ( self ): return len(self.rows[0] ) @property def __A ( self ): return (self.num_rows, self.num_columns) @property def __A ( self ): return self.order[0] == self.order[1] def __A ( self ): A__ = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(UpperCAmelCase__ ) def __A ( self ): if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def __A ( self ): return bool(self.determinant() ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): A__ = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(UpperCAmelCase__ ).determinant() def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ ): if (row + column) % 2 == 0: return self.get_minor(UpperCAmelCase__ , UpperCAmelCase__ ) return -1 * self.get_minor(UpperCAmelCase__ , UpperCAmelCase__ ) def __A ( self ): return Matrix( [ [self.get_minor(UpperCAmelCase__ , UpperCAmelCase__ ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def __A ( self ): return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def __A ( self ): A__ = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(UpperCAmelCase__ ) def __A ( self ): A__ = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self ): return str(self.rows ) def __str__( self ): if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(UpperCAmelCase__ ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise type_error for value in row: if not isinstance(UpperCAmelCase__ , (int, float) ): raise type_error if len(UpperCAmelCase__ ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(UpperCAmelCase__ ) else: A__ = self.rows[0:position] + [row] + self.rows[position:] def __A ( self , UpperCAmelCase__ , UpperCAmelCase__ = None ): A__ = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise type_error for value in column: if not isinstance(UpperCAmelCase__ , (int, float) ): raise type_error if len(UpperCAmelCase__ ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: A__ = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: A__ = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self , UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return NotImplemented return self.rows == other.rows def __ne__( self , UpperCAmelCase__ ): return not self == other def __neg__( self ): return self * -1 def __add__( self , UpperCAmelCase__ ): if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self , UpperCAmelCase__ ): if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self , UpperCAmelCase__ ): if isinstance(UpperCAmelCase__ , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(UpperCAmelCase__ , UpperCAmelCase__ ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self , UpperCAmelCase__ ): if not isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) A__ = self for _ in range(other - 1 ): result *= self return result @classmethod def __A ( cls , UpperCAmelCase__ , UpperCAmelCase__ ): return sum(row[i] * column[i] for i in range(len(UpperCAmelCase__ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
491
1
"""simple docstring""" import os from pathlib import Path def a__ ( snake_case__ , snake_case__ , snake_case__ ) -> Union[str, Any]: lowerCamelCase = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, oder?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowerCamelCase = { """ru-en""": ["""[41.3](http://matrix.statmt.org/matrix/output/1907?run_id=6937)""", """39.20"""], """en-ru""": ["""[36.4](http://matrix.statmt.org/matrix/output/1914?run_id=6724)""", """33.47"""], """en-de""": ["""[43.1](http://matrix.statmt.org/matrix/output/1909?run_id=6862)""", """42.83"""], """de-en""": ["""[42.3](http://matrix.statmt.org/matrix/output/1902?run_id=6750)""", """41.35"""], } lowerCamelCase = F'{src_lang}-{tgt_lang}' lowerCamelCase = F'\n---\nlanguage: \n- {src_lang}\n- {tgt_lang}\nthumbnail:\ntags:\n- translation\n- wmt19\n- facebook\nlicense: apache-2.0\ndatasets:\n- wmt19\nmetrics:\n- bleu\n---\n\n# FSMT\n\n## Model description\n\nThis is a ported version of [fairseq wmt19 transformer](https://github.com/pytorch/fairseq/blob/master/examples/wmt19/README.md) for {src_lang}-{tgt_lang}.\n\nFor more details, please see, [Facebook FAIR\'s WMT19 News Translation Task Submission](https://arxiv.org/abs/1907.06616).\n\nThe abbreviation FSMT stands for FairSeqMachineTranslation\n\nAll four models are available:\n\n* [wmt19-en-ru](https://huggingface.co/facebook/wmt19-en-ru)\n* [wmt19-ru-en](https://huggingface.co/facebook/wmt19-ru-en)\n* [wmt19-en-de](https://huggingface.co/facebook/wmt19-en-de)\n* [wmt19-de-en](https://huggingface.co/facebook/wmt19-de-en)\n\n## Intended uses & limitations\n\n#### How to use\n\n```python\nfrom transformers import FSMTForConditionalGeneration, FSMTTokenizer\nmname = "facebook/wmt19-{src_lang}-{tgt_lang}"\ntokenizer = FSMTTokenizer.from_pretrained(mname)\nmodel = FSMTForConditionalGeneration.from_pretrained(mname)\n\ninput = "{texts[src_lang]}"\ninput_ids = tokenizer.encode(input, return_tensors="pt")\noutputs = model.generate(input_ids)\ndecoded = tokenizer.decode(outputs[0], skip_special_tokens=True)\nprint(decoded) # {texts[tgt_lang]}\n\n```\n\n#### Limitations and bias\n\n- The original (and this ported model) doesn\'t seem to handle well inputs with repeated sub-phrases, [content gets truncated](https://discuss.huggingface.co/t/issues-with-translating-inputs-containing-repeated-phrases/981)\n\n## Training data\n\nPretrained weights were left identical to the original model released by fairseq. For more details, please, see the [paper](https://arxiv.org/abs/1907.06616).\n\n## Eval results\n\npair | fairseq | transformers\n-------|---------|----------\n{pair} | {scores[pair][0]} | {scores[pair][1]}\n\nThe score is slightly below the score reported by `fairseq`, since `transformers`` currently doesn\'t support:\n- model ensemble, therefore the best performing checkpoint was ported (``model4.pt``).\n- re-ranking\n\nThe score was calculated using this code:\n\n```bash\ngit clone https://github.com/huggingface/transformers\ncd transformers\nexport PAIR={pair}\nexport DATA_DIR=data/$PAIR\nexport SAVE_DIR=data/$PAIR\nexport BS=8\nexport NUM_BEAMS=15\nmkdir -p $DATA_DIR\nsacrebleu -t wmt19 -l $PAIR --echo src > $DATA_DIR/val.source\nsacrebleu -t wmt19 -l $PAIR --echo ref > $DATA_DIR/val.target\necho $PAIR\nPYTHONPATH="src:examples/seq2seq" python examples/seq2seq/run_eval.py facebook/wmt19-$PAIR $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS\n```\nnote: fairseq reports using a beam of 50, so you should get a slightly higher score if re-run with `--num_beams 50`.\n\n## Data Sources\n\n- [training, etc.](http://www.statmt.org/wmt19/)\n- [test set](http://matrix.statmt.org/test_sets/newstest2019.tgz?1556572561)\n\n\n### BibTeX entry and citation info\n\n```bibtex\n@inproceedings{{...,\n year={{2020}},\n title={{Facebook FAIR\'s WMT19 News Translation Task Submission}},\n author={{Ng, Nathan and Yee, Kyra and Baevski, Alexei and Ott, Myle and Auli, Michael and Edunov, Sergey}},\n booktitle={{Proc. of WMT}},\n}}\n```\n\n\n## TODO\n\n- port model ensemble (fairseq uses 4 model checkpoints)\n\n' os.makedirs(snake_case__ , exist_ok=snake_case__ ) lowerCamelCase = os.path.join(snake_case__ , """README.md""" ) print(F'Generating {path}' ) with open(snake_case__ , """w""" , encoding="""utf-8""" ) as f: f.write(snake_case__ ) # make sure we are under the root of the project lowerCAmelCase : str = Path(__file__).resolve().parent.parent.parent lowerCAmelCase : int = repo_dir / """model_cards""" for model_name in ["wmt19-ru-en", "wmt19-en-ru", "wmt19-en-de", "wmt19-de-en"]: lowerCAmelCase : Tuple = model_name.split("""-""") lowerCAmelCase : Union[str, Any] = model_cards_dir / """facebook""" / model_name write_model_card(model_card_dir, src_lang=src_lang, tgt_lang=tgt_lang)
717
"""simple docstring""" # A Bipartite Graph is a graph whose vertices can be divided into two independent sets, # U and V such that every edge (u, v) either connects a vertex from U to V or a vertex # from V to U. In other words, for every edge (u, v), either u belongs to U and v to V, # or u belongs to V and v to U. We can also say that there is no edge that connects # vertices of same set. def a__ ( snake_case__ ) -> Dict: lowerCamelCase = [False] * len(snake_case__ ) lowerCamelCase = [-1] * len(snake_case__ ) def dfs(snake_case__ , snake_case__ ): lowerCamelCase = True lowerCamelCase = c for u in graph[v]: if not visited[u]: dfs(snake_case__ , 1 - c ) for i in range(len(snake_case__ ) ): if not visited[i]: dfs(snake_case__ , 0 ) for i in range(len(snake_case__ ) ): for j in graph[i]: if color[i] == color[j]: return False return True # Adjacency list of graph lowerCAmelCase : str = {0: [1, 3], 1: [0, 2], 2: [1, 3], 3: [0, 2], 4: []} print(check_bipartite_dfs(graph))
533
0
"""simple docstring""" import torch def _snake_case ( ): """simple docstring""" if torch.cuda.is_available(): _lowerCamelCase : Tuple = torch.cuda.device_count() else: _lowerCamelCase : str = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
88
import os def __lowerCAmelCase ( ): UpperCAmelCase_ = os.path.dirname(os.path.realpath(A ) ) UpperCAmelCase_ = os.path.join(A , "triangle.txt" ) with open(A ) as f: UpperCAmelCase_ = f.readlines() UpperCAmelCase_ = [] for line in triangle: UpperCAmelCase_ = [] for number in line.strip().split(" " ): numbers_from_line.append(int(A ) ) a.append(A ) for i in range(1 , len(A ) ): for j in range(len(a[i] ) ): UpperCAmelCase_ = a[i - 1][j] if j != len(a[i - 1] ) else 0 UpperCAmelCase_ = a[i - 1][j - 1] if j > 0 else 0 a[i][j] += max(A , A ) return max(a[-1] ) if __name__ == "__main__": print(solution())
162
0
from PIL import Image def __A ( _A , _A ): """simple docstring""" __a = (259 * (level + 255)) / (255 * (259 - level)) def contrast(_A ) -> int: return int(128 + factor * (c - 128) ) return img.point(_A ) if __name__ == "__main__": # Load image with Image.open("""image_data/lena.jpg""") as img: # Change contrast to 170 SCREAMING_SNAKE_CASE : str = change_contrast(img, 170) cont_img.save("""image_data/lena_high_contrast.png""", format="""png""")
525
from __future__ import annotations SCREAMING_SNAKE_CASE : Optional[int] = [] def __A ( _A , _A , _A ): """simple docstring""" for i in range(len(_A ) ): if board[row][i] == 1: return False for i in range(len(_A ) ): if board[i][column] == 1: return False for i, j in zip(range(_A , -1 , -1 ) , range(_A , -1 , -1 ) ): if board[i][j] == 1: return False for i, j in zip(range(_A , -1 , -1 ) , range(_A , len(_A ) ) ): if board[i][j] == 1: return False return True def __A ( _A , _A ): """simple docstring""" if row >= len(_A ): solution.append(_A ) printboard(_A ) print() return True for i in range(len(_A ) ): if is_safe(_A , _A , _A ): __a = 1 solve(_A , row + 1 ) __a = 0 return False def __A ( _A ): """simple docstring""" for i in range(len(_A ) ): for j in range(len(_A ) ): if board[i][j] == 1: print("Q" , end=" " ) else: print("." , end=" " ) print() # n=int(input("The no. of queens")) SCREAMING_SNAKE_CASE : List[str] = 8 SCREAMING_SNAKE_CASE : str = [[0 for i in range(n)] for j in range(n)] solve(board, 0) print("""The total no. of solutions are :""", len(solution))
525
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class __lowerCAmelCase ( _lowerCamelCase ): lowerCamelCase_ : Optional[Any] = ['''image_processor''', '''tokenizer'''] lowerCamelCase_ : List[str] = '''FlavaImageProcessor''' lowerCamelCase_ : List[Any] = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__(self , __magic_name__=None , __magic_name__=None , **__magic_name__ ) -> List[str]: '''simple docstring''' snake_case_ : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __magic_name__ , ) snake_case_ : Optional[Any] = kwargs.pop('''feature_extractor''' ) snake_case_ : int = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__magic_name__ , __magic_name__ ) snake_case_ : Optional[int] = self.image_processor def __call__(self , __magic_name__ = None , __magic_name__ = None , __magic_name__ = True , __magic_name__ = False , __magic_name__ = False , __magic_name__ = None , __magic_name__ = 0 , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = None , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = False , __magic_name__ = True , __magic_name__ = None , **__magic_name__ , ) -> int: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: snake_case_ : Optional[int] = self.tokenizer( text=__magic_name__ , add_special_tokens=__magic_name__ , padding=__magic_name__ , truncation=__magic_name__ , max_length=__magic_name__ , stride=__magic_name__ , pad_to_multiple_of=__magic_name__ , return_token_type_ids=__magic_name__ , return_attention_mask=__magic_name__ , return_overflowing_tokens=__magic_name__ , return_special_tokens_mask=__magic_name__ , return_offsets_mapping=__magic_name__ , return_length=__magic_name__ , verbose=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if images is not None: snake_case_ : Dict = self.image_processor( __magic_name__ , return_image_mask=__magic_name__ , return_codebook_pixels=__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ , ) if text is not None and images is not None: encoding.update(__magic_name__ ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def lowerCamelCase (self , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' snake_case_ : Optional[int] = self.tokenizer.model_input_names snake_case_ : Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowerCamelCase (self ) -> List[str]: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __magic_name__ , ) return self.image_processor_class @property def lowerCamelCase (self ) -> Optional[int]: '''simple docstring''' warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __magic_name__ , ) return self.image_processor
60
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _UpperCamelCase : str = { 'configuration_groupvit': [ 'GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'GroupViTConfig', 'GroupViTOnnxConfig', 'GroupViTTextConfig', 'GroupViTVisionConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : Optional[int] = [ 'GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'GroupViTModel', 'GroupViTPreTrainedModel', 'GroupViTTextModel', 'GroupViTVisionModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase : List[str] = [ 'TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFGroupViTModel', 'TFGroupViTPreTrainedModel', 'TFGroupViTTextModel', 'TFGroupViTVisionModel', ] if TYPE_CHECKING: from .configuration_groupvit import ( GROUPVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, GroupViTConfig, GroupViTOnnxConfig, GroupViTTextConfig, GroupViTVisionConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_groupvit import ( GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, GroupViTModel, GroupViTPreTrainedModel, GroupViTTextModel, GroupViTVisionModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_groupvit import ( TF_GROUPVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFGroupViTModel, TFGroupViTPreTrainedModel, TFGroupViTTextModel, TFGroupViTVisionModel, ) else: import sys _UpperCamelCase : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
396
0
def lowerCamelCase_ ( lowerCAmelCase__ : Dict ) -> Optional[int]: '''simple docstring''' A = [0 for i in range(len(_UpperCAmelCase ) )] # initialize interval's left pointer and right pointer A , A = 0, 0 for i in range(1 , len(_UpperCAmelCase ) ): # case when current index is inside the interval if i <= right_pointer: A = min(right_pointer - i + 1 , z_result[i - left_pointer] ) A = min_edge while go_next(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): z_result[i] += 1 # if new index's result gives us more right interval, # we've to update left_pointer and right_pointer if i + z_result[i] - 1 > right_pointer: A , A = i, i + z_result[i] - 1 return z_result def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' return i + z_result[i] < len(_UpperCAmelCase ) and s[z_result[i]] == s[i + z_result[i]] def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : str ) -> Dict: '''simple docstring''' A = 0 # concatenate 'pattern' and 'input_str' and call z_function # with concatenated string A = z_function(pattern + input_str ) for val in z_result: # if value is greater then length of the pattern string # that means this index is starting position of substring # which is equal to pattern string if val >= len(_UpperCAmelCase ): answer += 1 return answer if __name__ == "__main__": import doctest doctest.testmod()
716
import argparse import json import os import torch from torch import nn from transformers import NllbMoeConfig, NllbMoeModel from transformers.modeling_utils import dtype_byte_size from transformers.utils import WEIGHTS_INDEX_NAME, WEIGHTS_NAME def lowerCamelCase_ ( lowerCAmelCase__ : int ) -> Optional[Any]: '''simple docstring''' A = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', 'decoder.output_projection.weight', '_float_tensor', 'encoder.embed_positions._float_tensor', 'decoder.embed_positions._float_tensor', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase__ , lowerCAmelCase__ ) def lowerCamelCase_ ( lowerCAmelCase__ : Optional[int] ) -> List[Any]: '''simple docstring''' A , A = emb.weight.shape A = nn.Linear(lowerCAmelCase__ , lowerCAmelCase__ , bias=lowerCAmelCase__ ) A = emb.weight.data return lin_layer def lowerCamelCase_ ( lowerCAmelCase__ : Any , lowerCAmelCase__ : Optional[int]=None ) -> Optional[int]: '''simple docstring''' A = {} for old_key in state_dict.keys(): A = old_key if "moe_layer.experts." in key: if expert_idx is not None: A = key.replace('moe_layer.experts.0' , F'''ffn.experts.expert_{expert_idx}''' ) else: A = key.replace('moe_layer.experts.' , 'ffn.experts.expert_' ) if "gate" in key: A = key.replace('.moe_layer.gate.wg' , '.ffn.router.classifier' ) if "fc2" and "experts" not in key: A = key.replace('.fc2.' , '.ffn.fc2.' ) if "fc1" and "experts" not in key: A = key.replace('.fc1.' , '.ffn.fc1.' ) if ".encoder_attn." in key: A = key.replace('.encoder_attn.' , '.cross_attention.' ) if "encoder_attn_layer_norm" in key: A = key.replace('encoder_attn_layer_norm' , 'cross_attention_layer_norm' ) if "final_layer_norm" in key: A = key.replace('final_layer_norm' , 'ff_layer_norm' ) A = state_dict[old_key] return new_dict def lowerCamelCase_ ( lowerCAmelCase__ : Tuple , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : str = WEIGHTS_NAME ) -> List[str]: '''simple docstring''' A = [] A = 0 os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) for expert in range(lowerCAmelCase__ ): A = switch_checkpoint_path + F'''-rank-{expert}.pt''' if os.path.isfile(lowerCAmelCase__ ): A = torch.load(lowerCAmelCase__ )['model'] remove_ignore_keys_(lowerCAmelCase__ ) A = rename_fairseq_keys(lowerCAmelCase__ , lowerCAmelCase__ ) A = os.path.join( lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{len(lowerCAmelCase__ )+1:05d}-of-???.bin''' ) ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) sharded_state_dicts.append(expert_state.keys() ) total_size += sum([value.numel() for key, value in expert_state.items()] ) * dtype_byte_size( expert_state[list(lowerCAmelCase__ )[0]].dtype ) # Add the last block A = os.path.join(lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{len(lowerCAmelCase__ )+1:05d}-of-???.bin''' ) ) A = torch.load(switch_checkpoint_path + '-shared.pt' )['model'] remove_ignore_keys_(lowerCAmelCase__ ) A = rename_fairseq_keys(lowerCAmelCase__ , lowerCAmelCase__ ) A = shared_weights['decoder.embed_tokens.weight'] sharded_state_dicts.append(shared_weights.keys() ) # If we only have the shared weights (dummy model/experts saved on the same file) if len(lowerCAmelCase__ ) == 1: A = os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) return {weights_name: sharded_state_dicts[0]}, None else: torch.save(lowerCAmelCase__ , lowerCAmelCase__ ) # Otherwise, let's build the index A = {} for idx, shard in enumerate(lowerCAmelCase__ ): A = weights_name.replace('.bin' , F'''-{idx+1:05d}-of-{len(lowerCAmelCase__ ):05d}.bin''' ) A = os.path.join(lowerCAmelCase__ , weights_name.replace('.bin' , F'''-{idx+1:05d}-of-???.bin''' ) ) os.rename(lowerCAmelCase__ , os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) ) for key in shard: A = shard_file # Add the metadata A = {'total_size': total_size} A = {'metadata': metadata, 'weight_map': weight_map} with open(os.path.join(lowerCAmelCase__ , lowerCAmelCase__ ) , 'w' , encoding='utf-8' ) as f: A = json.dumps(lowerCAmelCase__ , indent=2 , sort_keys=lowerCAmelCase__ ) + '\n' f.write(lowerCAmelCase__ ) return metadata, index if __name__ == "__main__": __snake_case :Optional[Any] =argparse.ArgumentParser() # Required parameters parser.add_argument( '--nllb_moe_checkpoint_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/model_moe_54b/checkpoint_2_300000', type=str, required=False, help='Path to a directory containing a folder per layer. Follows the original Google format.', ) parser.add_argument('--dtype', default='float32', type=str, required=False, help='dtype of the saved model') parser.add_argument( '--pytorch_dump_folder_path', default='/home/arthur_huggingface_co/fairseq/weights/checkpoints/hf-converted-moe-54b', type=str, required=False, help='Path to the output pytorch model.', ) __snake_case :int =parser.parse_args() __snake_case , __snake_case :List[Any] =shard_on_the_fly( args.nllb_moe_checkpoint_path, args.pytorch_dump_folder_path, 128, args.dtype, ) __snake_case :Dict =NllbMoeConfig.from_pretrained( 'facebook/nllb-200-3.3B', encoder_sparse_step=4, decoder_sparse_step=4, num_experts=128 ) config.save_pretrained(args.pytorch_dump_folder_path) __snake_case :Optional[int] =NllbMoeModel.from_pretrained(args.pytorch_dump_folder_path) print('Done') model.save_pretrained(args.pytorch_dump_folder_path)
224
0
'''simple docstring''' import json import logging import os import socket import git import numpy as np import torch logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - PID: %(process)d - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO, ) __SCREAMING_SNAKE_CASE = logging.getLogger(__name__) def __a ( lowerCAmelCase__ : str ): a__ : str = git.Repo(search_parent_directories=lowerCAmelCase__ ) a__ : Union[str, Any] = { '''repo_id''': str(lowerCAmelCase__ ), '''repo_sha''': str(repo.head.object.hexsha ), '''repo_branch''': str(repo.active_branch ), } with open(os.path.join(lowerCAmelCase__ , '''git_log.json''' ) , '''w''' ) as f: json.dump(lowerCAmelCase__ , lowerCAmelCase__ , indent=4 ) def __a ( lowerCAmelCase__ : List[Any] ): if params.n_gpu <= 0: a__ : List[Any] = 0 a__ : List[str] = -1 a__ : Optional[Any] = True a__ : Optional[Any] = False return assert torch.cuda.is_available() logger.info('''Initializing GPUs''' ) if params.n_gpu > 1: assert params.local_rank != -1 a__ : Optional[Any] = int(os.environ['''WORLD_SIZE'''] ) a__ : str = int(os.environ['''N_GPU_NODE'''] ) a__ : Optional[int] = int(os.environ['''RANK'''] ) # number of nodes / node ID a__ : List[Any] = params.world_size // params.n_gpu_per_node a__ : str = params.global_rank // params.n_gpu_per_node a__ : Union[str, Any] = True assert params.n_nodes == int(os.environ['''N_NODES'''] ) assert params.node_id == int(os.environ['''NODE_RANK'''] ) # local job (single GPU) else: assert params.local_rank == -1 a__ : List[str] = 1 a__ : Tuple = 0 a__ : Optional[int] = 0 a__ : Union[str, Any] = 0 a__ : str = 1 a__ : Any = 1 a__ : str = False # sanity checks assert params.n_nodes >= 1 assert 0 <= params.node_id < params.n_nodes assert 0 <= params.local_rank <= params.global_rank < params.world_size assert params.world_size == params.n_nodes * params.n_gpu_per_node # define whether this is the master process / if we are in multi-node distributed mode a__ : str = params.node_id == 0 and params.local_rank == 0 a__ : Optional[int] = params.n_nodes > 1 # summary a__ : str = F'--- Global rank: {params.global_rank} - ' logger.info(PREFIX + '''Number of nodes: %i''' % params.n_nodes ) logger.info(PREFIX + '''Node ID : %i''' % params.node_id ) logger.info(PREFIX + '''Local rank : %i''' % params.local_rank ) logger.info(PREFIX + '''World size : %i''' % params.world_size ) logger.info(PREFIX + '''GPUs per node : %i''' % params.n_gpu_per_node ) logger.info(PREFIX + '''Master : %s''' % str(params.is_master ) ) logger.info(PREFIX + '''Multi-node : %s''' % str(params.multi_node ) ) logger.info(PREFIX + '''Multi-GPU : %s''' % str(params.multi_gpu ) ) logger.info(PREFIX + '''Hostname : %s''' % socket.gethostname() ) # set GPU device torch.cuda.set_device(params.local_rank ) # initialize multi-GPU if params.multi_gpu: logger.info('''Initializing PyTorch distributed''' ) torch.distributed.init_process_group( init_method='''env://''' , backend='''nccl''' , ) def __a ( lowerCAmelCase__ : Union[str, Any] ): np.random.seed(args.seed ) torch.manual_seed(args.seed ) if args.n_gpu > 0: torch.cuda.manual_seed_all(args.seed )
688
'''simple docstring''' def __a ( lowerCAmelCase__ : list , lowerCAmelCase__ : list , lowerCAmelCase__ : int ): a__ : List[str] = len(lowerCAmelCase__ ) a__ : int = [[0] * n for i in range(lowerCAmelCase__ )] for i in range(lowerCAmelCase__ ): a__ : Dict = y_points[i] for i in range(2 , lowerCAmelCase__ ): for j in range(lowerCAmelCase__ , lowerCAmelCase__ ): a__ : Any = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
688
1
"""simple docstring""" def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return number | (1 << position) def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return number & ~(1 << position) def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return number ^ (1 << position) def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> bool: '''simple docstring''' return ((number >> position) & 1) == 1 def lowerCAmelCase ( UpperCamelCase_: int , UpperCamelCase_: int ) -> int: '''simple docstring''' return int((number & (1 << position)) != 0 ) if __name__ == "__main__": import doctest doctest.testmod()
705
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available UpperCamelCase = { """configuration_transfo_xl""": ["""TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TransfoXLConfig"""], """tokenization_transfo_xl""": ["""TransfoXLCorpus""", """TransfoXLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """AdaptiveEmbedding""", """TransfoXLForSequenceClassification""", """TransfoXLLMHeadModel""", """TransfoXLModel""", """TransfoXLPreTrainedModel""", """load_tf_weights_in_transfo_xl""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFAdaptiveEmbedding""", """TFTransfoXLForSequenceClassification""", """TFTransfoXLLMHeadModel""", """TFTransfoXLMainLayer""", """TFTransfoXLModel""", """TFTransfoXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_transfo_xl import TRANSFO_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, TransfoXLConfig from .tokenization_transfo_xl import TransfoXLCorpus, TransfoXLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_transfo_xl import ( TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, AdaptiveEmbedding, TransfoXLForSequenceClassification, TransfoXLLMHeadModel, TransfoXLModel, TransfoXLPreTrainedModel, load_tf_weights_in_transfo_xl, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_transfo_xl import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFAdaptiveEmbedding, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLMainLayer, TFTransfoXLModel, TFTransfoXLPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
612
0
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class UpperCAmelCase_ (_UpperCAmelCase ): """simple docstring""" lowerCamelCase : Tuple = ['image_processor', 'tokenizer'] lowerCamelCase : Union[str, Any] = 'CLIPImageProcessor' lowerCamelCase : Union[str, Any] = ('CLIPTokenizer', 'CLIPTokenizerFast') def __init__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: __lowerCamelCase : List[Any] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Dict = kwargs.pop('feature_extractor' ) __lowerCamelCase : List[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def __call__( self , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , SCREAMING_SNAKE_CASE_=None , **SCREAMING_SNAKE_CASE_ ) -> Dict: if text is None and images is None: raise ValueError('You have to specify either text or images. Both cannot be none.' ) if text is not None: __lowerCamelCase : Dict = self.tokenizer(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if images is not None: __lowerCamelCase : List[str] = self.image_processor(SCREAMING_SNAKE_CASE_ , return_tensors=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if text is not None and images is not None: __lowerCamelCase : str = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**SCREAMING_SNAKE_CASE_ ) , tensor_type=SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> List[str]: return self.tokenizer.batch_decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def lowercase_ ( self , *SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) -> Dict: return self.tokenizer.decode(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) @property def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[str] = self.tokenizer.model_input_names __lowerCamelCase : List[Any] = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def lowercase_ ( self ) -> Dict: warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor_class @property def lowercase_ ( self ) -> List[str]: warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , SCREAMING_SNAKE_CASE_ , ) return self.image_processor
13
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class a_ : def __init__( self : Union[str, Any] , snake_case__ : Dict , snake_case__ : int=13 , snake_case__ : List[str]=7 , snake_case__ : Any=True , snake_case__ : Any=True , snake_case__ : Dict=True , snake_case__ : List[Any]=True , snake_case__ : List[str]=99 , snake_case__ : Any=32 , snake_case__ : List[str]=2 , snake_case__ : Any=4 , snake_case__ : Dict=37 , snake_case__ : Optional[int]="gelu" , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=0.1 , snake_case__ : Optional[int]=512 , snake_case__ : Union[str, Any]=16 , snake_case__ : str=2 , snake_case__ : Dict=0.02 , snake_case__ : Tuple=3 , snake_case__ : List[Any]=4 , snake_case__ : List[Any]=None , snake_case__ : str=0 , ): lowerCAmelCase__ = parent lowerCAmelCase__ = batch_size lowerCAmelCase__ = seq_length lowerCAmelCase__ = is_training lowerCAmelCase__ = use_input_mask lowerCAmelCase__ = use_token_type_ids lowerCAmelCase__ = use_labels lowerCAmelCase__ = vocab_size lowerCAmelCase__ = hidden_size lowerCAmelCase__ = num_hidden_layers lowerCAmelCase__ = num_attention_heads lowerCAmelCase__ = intermediate_size lowerCAmelCase__ = hidden_act lowerCAmelCase__ = hidden_dropout_prob lowerCAmelCase__ = attention_probs_dropout_prob lowerCAmelCase__ = max_position_embeddings lowerCAmelCase__ = type_vocab_size lowerCAmelCase__ = type_sequence_label_size lowerCAmelCase__ = initializer_range lowerCAmelCase__ = num_labels lowerCAmelCase__ = num_choices lowerCAmelCase__ = scope lowerCAmelCase__ = projection_dim def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase__ = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py lowerCAmelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase__ = None if self.use_token_type_ids: lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) lowerCAmelCase__ = None lowerCAmelCase__ = None lowerCAmelCase__ = None if self.use_labels: lowerCAmelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase__ = BertConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) lowerCAmelCase__ = DPRConfig(projection_dim=self.projection_dim , **config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Optional[Any] , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : List[Any] ): lowerCAmelCase__ = TFDPRContextEncoder(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Any , snake_case__ : str , snake_case__ : Dict , snake_case__ : str , snake_case__ : Any , snake_case__ : Union[str, Any] , snake_case__ : List[str] , snake_case__ : Dict ): lowerCAmelCase__ = TFDPRQuestionEncoder(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , token_type_ids=snake_case__ ) lowerCAmelCase__ = model(snake_case__ ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.projection_dim or self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Tuple , snake_case__ : Any , snake_case__ : str , snake_case__ : Tuple , snake_case__ : List[str] , snake_case__ : List[str] , snake_case__ : Tuple ): lowerCAmelCase__ = TFDPRReader(config=snake_case__ ) lowerCAmelCase__ = model(snake_case__ , attention_mask=snake_case__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape , (self.batch_size,) ) def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = self.prepare_config_and_inputs() ( ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ( lowerCAmelCase__ ) , ) = config_and_inputs lowerCAmelCase__ = {"""input_ids""": input_ids} return config, inputs_dict @require_tf class a_ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): UpperCamelCase_ : Optional[Any] = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) UpperCamelCase_ : Any = {"feature-extraction": TFDPRQuestionEncoder} if is_tf_available() else {} UpperCamelCase_ : Optional[Any] = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Optional[Any] = False def _SCREAMING_SNAKE_CASE ( self : Any ): lowerCAmelCase__ = TFDPRModelTester(self ) lowerCAmelCase__ = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Dict ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*snake_case__ ) def _SCREAMING_SNAKE_CASE ( self : int ): lowerCAmelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRContextEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCAmelCase__ = TFDPRReader.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_tf class a_ ( unittest.TestCase ): @slow def _SCREAMING_SNAKE_CASE ( self : List[str] ): lowerCAmelCase__ = TFDPRQuestionEncoder.from_pretrained("""facebook/dpr-question_encoder-single-nq-base""" ) lowerCAmelCase__ = tf.constant( [[101, 7592, 1010, 2003, 2026, 3899, 10140, 1029, 102]] ) # [CLS] hello, is my dog cute? [SEP] lowerCAmelCase__ = model(snake_case__ )[0] # embedding shape = (1, 768) # compare the actual values for a slice. lowerCAmelCase__ = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :10].numpy() , expected_slice.numpy() , atol=1E-4 ) )
644
0
"""simple docstring""" def lowerCAmelCase_ ( SCREAMING_SNAKE_CASE : list ): '''simple docstring''' __lowerCamelCase : Optional[Any] =False while is_sorted is False: # Until all the indices are traversed keep looping __lowerCamelCase : int =True for i in range(0 , len(SCREAMING_SNAKE_CASE ) - 1 , 2 ): # iterating over all even indices if input_list[i] > input_list[i + 1]: __lowerCamelCase : Union[str, Any] =input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCamelCase : str =False for i in range(1 , len(SCREAMING_SNAKE_CASE ) - 1 , 2 ): # iterating over all odd indices if input_list[i] > input_list[i + 1]: __lowerCamelCase : str =input_list[i + 1], input_list[i] # swapping if elements not in order __lowerCamelCase : Tuple =False return input_list if __name__ == "__main__": print('Enter list to be sorted') _UpperCamelCase = [int(x) for x in input().split()] # inputing elements of the list in one line _UpperCamelCase = odd_even_sort(input_list) print('The sorted list is') print(sorted_list)
705
"""simple docstring""" from typing import Optional, Tuple, Union import tensorflow as tf from ...activations_tf import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_tf_outputs import ( TFBaseModelOutputWithNoAttention, TFBaseModelOutputWithPoolingAndNoAttention, TFSequenceClassifierOutput, ) from ...modeling_tf_utils import TFPreTrainedModel, TFSequenceClassificationLoss, keras_serializable, unpack_inputs from ...tf_utils import shape_list from ...utils import logging from .configuration_regnet import RegNetConfig _UpperCamelCase = logging.get_logger(__name__) # General docstring _UpperCamelCase = 'RegNetConfig' # Base docstring _UpperCamelCase = 'facebook/regnet-y-040' _UpperCamelCase = [1, 1088, 7, 7] # Image classification docstring _UpperCamelCase = 'facebook/regnet-y-040' _UpperCamelCase = 'tabby, tabby cat' _UpperCamelCase = [ 'facebook/regnet-y-040', # See all regnet models at https://huggingface.co/models?filter=regnet ] class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self :Dict , __lowercase :int , __lowercase :int = 3 , __lowercase :int = 1 , __lowercase :int = 1 , __lowercase :Optional[str] = "relu" , **__lowercase :int , ): super().__init__(**__lowercase ) # The padding and conv has been verified in # https://colab.research.google.com/gist/sayakpaul/854bc10eeaf21c9ee2119e0b9f3841a7/scratchpad.ipynb __lowerCamelCase : int =tf.keras.layers.ZeroPaddingaD(padding=kernel_size // 2 ) __lowerCamelCase : str =tf.keras.layers.ConvaD( filters=__lowercase , kernel_size=__lowercase , strides=__lowercase , padding='''VALID''' , groups=__lowercase , use_bias=__lowercase , name='''convolution''' , ) __lowerCamelCase : str =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) __lowerCamelCase : Optional[int] =ACTaFN[activation] if activation is not None else tf.identity def __lowercase ( self :Optional[int] , __lowercase :Any ): __lowerCamelCase : str =self.convolution(self.padding(__lowercase ) ) __lowerCamelCase : Optional[int] =self.normalization(__lowercase ) __lowerCamelCase : Any =self.activation(__lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :RegNetConfig , **__lowercase :Any ): super().__init__(**__lowercase ) __lowerCamelCase : Tuple =config.num_channels __lowerCamelCase : Union[str, Any] =TFRegNetConvLayer( out_channels=config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act , name='''embedder''' , ) def __lowercase ( self :int , __lowercase :List[str] ): __lowerCamelCase : int =shape_list(__lowercase )[1] if tf.executing_eagerly() and num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) # When running on CPU, `tf.keras.layers.Conv2D` doesn't support `NCHW` format. # So change the input format from `NCHW` to `NHWC`. # shape = (batch_size, in_height, in_width, in_channels=num_channels) __lowerCamelCase : Union[str, Any] =tf.transpose(__lowercase , perm=(0, 2, 3, 1) ) __lowerCamelCase : Optional[int] =self.embedder(__lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self :List[Any] , __lowercase :int , __lowercase :int = 2 , **__lowercase :Optional[int] ): super().__init__(**__lowercase ) __lowerCamelCase : int =tf.keras.layers.ConvaD( filters=__lowercase , kernel_size=1 , strides=__lowercase , use_bias=__lowercase , name='''convolution''' ) __lowerCamelCase : List[str] =tf.keras.layers.BatchNormalization(epsilon=1e-5 , momentum=0.9 , name='''normalization''' ) def __lowercase ( self :Optional[Any] , __lowercase :tf.Tensor , __lowercase :bool = False ): return self.normalization(self.convolution(__lowercase ) , training=__lowercase ) class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self :Dict , __lowercase :int , __lowercase :int , **__lowercase :List[str] ): super().__init__(**__lowercase ) __lowerCamelCase : int =tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase , name='''pooler''' ) __lowerCamelCase : int =[ tf.keras.layers.ConvaD(filters=__lowercase , kernel_size=1 , activation='''relu''' , name='''attention.0''' ), tf.keras.layers.ConvaD(filters=__lowercase , kernel_size=1 , activation='''sigmoid''' , name='''attention.2''' ), ] def __lowercase ( self :Dict , __lowercase :Union[str, Any] ): # [batch_size, h, w, num_channels] -> [batch_size, 1, 1, num_channels] __lowerCamelCase : Any =self.pooler(__lowercase ) for layer_module in self.attention: __lowerCamelCase : Any =layer_module(__lowercase ) __lowerCamelCase : Dict =hidden_state * pooled return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self :Optional[int] , __lowercase :RegNetConfig , __lowercase :int , __lowercase :int , __lowercase :int = 1 , **__lowercase :str ): super().__init__(**__lowercase ) __lowerCamelCase : Dict =in_channels != out_channels or stride != 1 __lowerCamelCase : int =max(1 , out_channels // config.groups_width ) __lowerCamelCase : List[str] =( TFRegNetShortCut(__lowercase , stride=__lowercase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) # `self.layers` instead of `self.layer` because that is a reserved argument. __lowerCamelCase : str =[ TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __lowercase , stride=__lowercase , groups=__lowercase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=__lowercase , name='''layer.2''' ), ] __lowerCamelCase : Optional[int] =ACTaFN[config.hidden_act] def __lowercase ( self :int , __lowercase :Optional[int] ): __lowerCamelCase : List[Any] =hidden_state for layer_module in self.layers: __lowerCamelCase : str =layer_module(__lowercase ) __lowerCamelCase : List[Any] =self.shortcut(__lowercase ) hidden_state += residual __lowerCamelCase : Optional[int] =self.activation(__lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :RegNetConfig , __lowercase :int , __lowercase :int , __lowercase :int = 1 , **__lowercase :List[str] ): super().__init__(**__lowercase ) __lowerCamelCase : Optional[Any] =in_channels != out_channels or stride != 1 __lowerCamelCase : Optional[Any] =max(1 , out_channels // config.groups_width ) __lowerCamelCase : Dict =( TFRegNetShortCut(__lowercase , stride=__lowercase , name='''shortcut''' ) if should_apply_shortcut else tf.keras.layers.Activation('''linear''' , name='''shortcut''' ) ) __lowerCamelCase : Union[str, Any] =[ TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=config.hidden_act , name='''layer.0''' ), TFRegNetConvLayer( __lowercase , stride=__lowercase , groups=__lowercase , activation=config.hidden_act , name='''layer.1''' ), TFRegNetSELayer(__lowercase , reduced_channels=int(round(in_channels / 4 ) ) , name='''layer.2''' ), TFRegNetConvLayer(__lowercase , kernel_size=1 , activation=__lowercase , name='''layer.3''' ), ] __lowerCamelCase : Tuple =ACTaFN[config.hidden_act] def __lowercase ( self :Tuple , __lowercase :Tuple ): __lowerCamelCase : List[Any] =hidden_state for layer_module in self.layers: __lowerCamelCase : int =layer_module(__lowercase ) __lowerCamelCase : List[str] =self.shortcut(__lowercase ) hidden_state += residual __lowerCamelCase : List[str] =self.activation(__lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self :int , __lowercase :RegNetConfig , __lowercase :int , __lowercase :int , __lowercase :int = 2 , __lowercase :int = 2 , **__lowercase :Union[str, Any] ): super().__init__(**__lowercase ) __lowerCamelCase : List[str] =TFRegNetXLayer if config.layer_type == '''x''' else TFRegNetYLayer __lowerCamelCase : List[Any] =[ # downsampling is done in the first layer with stride of 2 layer(__lowercase , __lowercase , __lowercase , stride=__lowercase , name='''layers.0''' ), *[layer(__lowercase , __lowercase , __lowercase , name=f'layers.{i+1}' ) for i in range(depth - 1 )], ] def __lowercase ( self :int , __lowercase :List[str] ): for layer_module in self.layers: __lowerCamelCase : int =layer_module(__lowercase ) return hidden_state class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" def __init__( self :List[Any] , __lowercase :RegNetConfig , **__lowercase :List[str] ): super().__init__(**__lowercase ) __lowerCamelCase : Optional[int] =[] # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( TFRegNetStage( __lowercase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , name='''stages.0''' , ) ) __lowerCamelCase : Any =zip(config.hidden_sizes , config.hidden_sizes[1:] ) for i, ((in_channels, out_channels), depth) in enumerate(zip(__lowercase , config.depths[1:] ) ): self.stages.append(TFRegNetStage(__lowercase , __lowercase , __lowercase , depth=__lowercase , name=f'stages.{i+1}' ) ) def __lowercase ( self :str , __lowercase :tf.Tensor , __lowercase :bool = False , __lowercase :bool = True ): __lowerCamelCase : Optional[Any] =() if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: __lowerCamelCase : Dict =hidden_states + (hidden_state,) __lowerCamelCase : List[Any] =stage_module(__lowercase ) if output_hidden_states: __lowerCamelCase : Union[str, Any] =hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return TFBaseModelOutputWithNoAttention(last_hidden_state=__lowercase , hidden_states=__lowercase ) @keras_serializable class SCREAMING_SNAKE_CASE_ ( tf.keras.layers.Layer ): """simple docstring""" __snake_case : Optional[int] = RegNetConfig def __init__( self :List[Any] , __lowercase :Dict , **__lowercase :Union[str, Any] ): super().__init__(**__lowercase ) __lowerCamelCase : int =config __lowerCamelCase : List[str] =TFRegNetEmbeddings(__lowercase , name='''embedder''' ) __lowerCamelCase : List[str] =TFRegNetEncoder(__lowercase , name='''encoder''' ) __lowerCamelCase : List[Any] =tf.keras.layers.GlobalAveragePoolingaD(keepdims=__lowercase , name='''pooler''' ) @unpack_inputs def __lowercase ( self :List[Any] , __lowercase :tf.Tensor , __lowercase :Optional[bool] = None , __lowercase :Optional[bool] = None , __lowercase :bool = False , ): __lowerCamelCase : Union[str, Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Tuple =return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Tuple =self.embedder(__lowercase , training=__lowercase ) __lowerCamelCase : Optional[Any] =self.encoder( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase ) __lowerCamelCase : str =encoder_outputs[0] __lowerCamelCase : Tuple =self.pooler(__lowercase ) # Change to NCHW output format have uniformity in the modules __lowerCamelCase : int =tf.transpose(__lowercase , perm=(0, 3, 1, 2) ) __lowerCamelCase : Any =tf.transpose(__lowercase , perm=(0, 3, 1, 2) ) # Change the other hidden state outputs to NCHW as well if output_hidden_states: __lowerCamelCase : str =tuple([tf.transpose(__lowercase , perm=(0, 3, 1, 2) ) for h in encoder_outputs[1]] ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=__lowercase , pooler_output=__lowercase , hidden_states=hidden_states if output_hidden_states else encoder_outputs.hidden_states , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" __snake_case : Optional[int] = RegNetConfig __snake_case : int = """regnet""" __snake_case : int = """pixel_values""" @property def __lowercase ( self :List[str] ): return {"pixel_values": tf.TensorSpec(shape=(None, self.config.num_channels, 224, 224) , dtype=tf.floataa )} _UpperCamelCase = r'\n Parameters:\n This model is a Tensorflow\n [tf.keras.layers.Layer](https://www.tensorflow.org/api_docs/python/tf/keras/layers/Layer) sub-class. Use it as a\n regular Tensorflow Module and refer to the Tensorflow documentation for all matter related to general usage and\n behavior.\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~TFPreTrainedModel.from_pretrained`] method to load the model weights.\n' _UpperCamelCase = r'\n Args:\n pixel_values (`tf.Tensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConveNextImageProcessor.__call__`] for details.\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.\n' @add_start_docstrings( """The bare RegNet model outputting raw features without any specific head on top.""" , snake_case__ , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :RegNetConfig , *__lowercase :List[str] , **__lowercase :int ): super().__init__(__lowercase , *__lowercase , **__lowercase ) __lowerCamelCase : Tuple =TFRegNetMainLayer(__lowercase , name='''regnet''' ) @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def __lowercase ( self :Optional[Any] , __lowercase :tf.Tensor , __lowercase :Optional[bool] = None , __lowercase :Optional[bool] = None , __lowercase :Optional[int]=False , ): __lowerCamelCase : List[Any] =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : Dict =self.regnet( pixel_values=__lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase , ) if not return_dict: return (outputs[0],) + outputs[1:] return TFBaseModelOutputWithPoolingAndNoAttention( last_hidden_state=outputs.last_hidden_state , pooler_output=outputs.pooler_output , hidden_states=outputs.hidden_states , ) @add_start_docstrings( """ RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for ImageNet. """ , snake_case__ , ) class SCREAMING_SNAKE_CASE_ ( snake_case__ , snake_case__ ): """simple docstring""" def __init__( self :Union[str, Any] , __lowercase :RegNetConfig , *__lowercase :List[Any] , **__lowercase :Dict ): super().__init__(__lowercase , *__lowercase , **__lowercase ) __lowerCamelCase : Optional[int] =config.num_labels __lowerCamelCase : Optional[int] =TFRegNetMainLayer(__lowercase , name='''regnet''' ) # classification head __lowerCamelCase : Union[str, Any] =[ tf.keras.layers.Flatten(), tf.keras.layers.Dense(config.num_labels , name='''classifier.1''' ) if config.num_labels > 0 else tf.identity, ] @unpack_inputs @add_start_docstrings_to_model_forward(__lowercase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=__lowercase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def __lowercase ( self :List[Any] , __lowercase :tf.Tensor = None , __lowercase :tf.Tensor = None , __lowercase :bool = None , __lowercase :bool = None , __lowercase :int=False , ): __lowerCamelCase : str =( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) __lowerCamelCase : Optional[int] =return_dict if return_dict is not None else self.config.use_return_dict __lowerCamelCase : str =self.regnet( __lowercase , output_hidden_states=__lowercase , return_dict=__lowercase , training=__lowercase ) __lowerCamelCase : Any =outputs.pooler_output if return_dict else outputs[1] __lowerCamelCase : List[str] =self.classifier[0](__lowercase ) __lowerCamelCase : str =self.classifier[1](__lowercase ) __lowerCamelCase : str =None if labels is None else self.hf_compute_loss(labels=__lowercase , logits=__lowercase ) if not return_dict: __lowerCamelCase : Optional[int] =(logits,) + outputs[2:] return ((loss,) + output) if loss is not None else output return TFSequenceClassifierOutput(loss=__lowercase , logits=__lowercase , hidden_states=outputs.hidden_states )
363
0
"""simple docstring""" import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..auto.configuration_auto import CONFIG_MAPPING A_ = logging.get_logger(__name__) class lowercase( __a ): '''simple docstring''' lowercase__ = "upernet" def __init__( self: str, a_: Dict=None, a_: Any=512, a_: Optional[Any]=0.02, a_: int=[1, 2, 3, 6], a_: List[Any]=True, a_: int=0.4, a_: Optional[int]=384, a_: int=256, a_: int=1, a_: str=False, a_: Optional[Any]=255, **a_: Optional[int], ): '''simple docstring''' super().__init__(**a_ ) if backbone_config is None: logger.info("""`backbone_config` is `None`. Initializing the config with the default `ResNet` backbone.""" ) _snake_case : Dict = CONFIG_MAPPING["""resnet"""](out_features=["""stage1""", """stage2""", """stage3""", """stage4"""] ) elif isinstance(a_, a_ ): _snake_case : Tuple = backbone_config.get("""model_type""" ) _snake_case : Any = CONFIG_MAPPING[backbone_model_type] _snake_case : Optional[int] = config_class.from_dict(a_ ) _snake_case : List[str] = backbone_config _snake_case : Union[str, Any] = hidden_size _snake_case : Any = initializer_range _snake_case : Optional[Any] = pool_scales _snake_case : Optional[Any] = use_auxiliary_head _snake_case : int = auxiliary_loss_weight _snake_case : Any = auxiliary_in_channels _snake_case : Optional[int] = auxiliary_channels _snake_case : List[str] = auxiliary_num_convs _snake_case : Dict = auxiliary_concat_input _snake_case : Tuple = loss_ignore_index def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : str = copy.deepcopy(self.__dict__ ) _snake_case : Dict = self.backbone_config.to_dict() _snake_case : int = self.__class__.model_type return output
609
"""simple docstring""" import argparse import json import logging import os import shutil import sys import tempfile import unittest from unittest import mock import torch from accelerate.utils import write_basic_config from transformers.testing_utils import TestCasePlus, get_gpu_count, run_command, slow, torch_device from transformers.utils import is_apex_available logging.basicConfig(level=logging.DEBUG) A_ = logging.getLogger() def UpperCAmelCase__ (): """simple docstring""" _snake_case : Any = argparse.ArgumentParser() parser.add_argument("""-f""" ) _snake_case : List[str] = parser.parse_args() return args.f def UpperCAmelCase__ (snake_case__ : Optional[Any] ): """simple docstring""" _snake_case : int = {} _snake_case : Tuple = os.path.join(snake_case__ , """all_results.json""" ) if os.path.exists(snake_case__ ): with open(snake_case__ , """r""" ) as f: _snake_case : Dict = json.load(snake_case__ ) else: raise ValueError(F"can't find {path}" ) return results def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = torch.cuda.is_available() and torch_device == """cuda""" return is_using_cuda and is_apex_available() A_ = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase( __a ): '''simple docstring''' @classmethod def UpperCamelCase_ ( cls: Optional[Any] ): '''simple docstring''' _snake_case : List[str] = tempfile.mkdtemp() _snake_case : Optional[Any] = os.path.join(cls.tmpdir, """default_config.yml""" ) write_basic_config(save_location=cls.configPath ) _snake_case : Dict = ["""accelerate""", """launch""", """--config_file""", cls.configPath] @classmethod def UpperCamelCase_ ( cls: Optional[Any] ): '''simple docstring''' shutil.rmtree(cls.tmpdir ) @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Optional[Any] = self.get_auto_remove_tmp_dir() _snake_case : str = f"\n {self.examples_dir}/pytorch/text-classification/run_glue_no_trainer.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --seed=42\n --checkpointing_steps epoch\n --with_tracking\n ".split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _snake_case : Tuple = get_results(a_ ) self.assertGreaterEqual(result["""eval_accuracy"""], 0.75 ) self.assertTrue(os.path.exists(os.path.join(a_, """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_, """glue_no_trainer""" ) ) ) @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: Tuple ): '''simple docstring''' _snake_case : Optional[int] = self.get_auto_remove_tmp_dir() _snake_case : Optional[Any] = f"\n {self.examples_dir}/pytorch/language-modeling/run_clm_no_trainer.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --block_size 128\n --per_device_train_batch_size 5\n --per_device_eval_batch_size 5\n --num_train_epochs 2\n --output_dir {tmp_dir}\n --checkpointing_steps epoch\n --with_tracking\n ".split() if torch.cuda.device_count() > 1: # Skipping because there are not enough batches to train the model + would need a drop_last to work. return run_command(self._launch_args + testargs ) _snake_case : Tuple = get_results(a_ ) self.assertLess(result["""perplexity"""], 100 ) self.assertTrue(os.path.exists(os.path.join(a_, """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_, """clm_no_trainer""" ) ) ) @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: List[str] ): '''simple docstring''' _snake_case : List[str] = self.get_auto_remove_tmp_dir() _snake_case : Dict = f"\n {self.examples_dir}/pytorch/language-modeling/run_mlm_no_trainer.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --num_train_epochs=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _snake_case : Union[str, Any] = get_results(a_ ) self.assertLess(result["""perplexity"""], 42 ) self.assertTrue(os.path.exists(os.path.join(a_, """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_, """mlm_no_trainer""" ) ) ) @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: Union[str, Any] ): '''simple docstring''' _snake_case : Tuple = 7 if get_gpu_count() > 1 else 2 _snake_case : str = self.get_auto_remove_tmp_dir() _snake_case : Any = f"\n {self.examples_dir}/pytorch/token-classification/run_ner_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _snake_case : List[str] = get_results(a_ ) self.assertGreaterEqual(result["""eval_accuracy"""], 0.75 ) self.assertLess(result["""train_loss"""], 0.5 ) self.assertTrue(os.path.exists(os.path.join(a_, """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_, """ner_no_trainer""" ) ) ) @unittest.skip(reason="""Fix me @muellerzr""" ) @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Tuple = self.get_auto_remove_tmp_dir() _snake_case : List[str] = f"\n {self.examples_dir}/pytorch/question-answering/run_qa_no_trainer.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --seed=42\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _snake_case : Union[str, Any] = get_results(a_ ) # Because we use --version_2_with_negative the testing script uses SQuAD v2 metrics. self.assertGreaterEqual(result["""eval_f1"""], 28 ) self.assertGreaterEqual(result["""eval_exact"""], 28 ) self.assertTrue(os.path.exists(os.path.join(a_, """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_, """qa_no_trainer""" ) ) ) @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : Any = self.get_auto_remove_tmp_dir() _snake_case : Optional[int] = f"\n {self.examples_dir}/pytorch/multiple-choice/run_swag_no_trainer.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/swag/sample.json\n --validation_file tests/fixtures/tests_samples/swag/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=20\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _snake_case : Tuple = get_results(a_ ) self.assertGreaterEqual(result["""eval_accuracy"""], 0.8 ) self.assertTrue(os.path.exists(os.path.join(a_, """swag_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: str ): '''simple docstring''' _snake_case : int = self.get_auto_remove_tmp_dir() _snake_case : Tuple = f"\n {self.examples_dir}/pytorch/summarization/run_summarization_no_trainer.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _snake_case : Any = get_results(a_ ) self.assertGreaterEqual(result["""eval_rouge1"""], 10 ) self.assertGreaterEqual(result["""eval_rouge2"""], 2 ) self.assertGreaterEqual(result["""eval_rougeL"""], 7 ) self.assertGreaterEqual(result["""eval_rougeLsum"""], 7 ) self.assertTrue(os.path.exists(os.path.join(a_, """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_, """summarization_no_trainer""" ) ) ) @slow @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: Optional[Any] ): '''simple docstring''' _snake_case : Dict = self.get_auto_remove_tmp_dir() _snake_case : Optional[int] = f"\n {self.examples_dir}/pytorch/translation/run_translation_no_trainer.py\n --model_name_or_path sshleifer/student_marian_en_ro_6_1\n --source_lang en\n --target_lang ro\n --train_file tests/fixtures/tests_samples/wmt16/sample.json\n --validation_file tests/fixtures/tests_samples/wmt16/sample.json\n --output_dir {tmp_dir}\n --max_train_steps=50\n --num_warmup_steps=8\n --num_beams=6\n --learning_rate=3e-3\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --source_lang en_XX\n --target_lang ro_RO\n --checkpointing_steps epoch\n --with_tracking\n ".split() run_command(self._launch_args + testargs ) _snake_case : int = get_results(a_ ) self.assertGreaterEqual(result["""eval_bleu"""], 30 ) self.assertTrue(os.path.exists(os.path.join(a_, """epoch_0""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_, """translation_no_trainer""" ) ) ) @slow def UpperCamelCase_ ( self: Dict ): '''simple docstring''' _snake_case : Dict = logging.StreamHandler(sys.stdout ) logger.addHandler(a_ ) _snake_case : Optional[Any] = self.get_auto_remove_tmp_dir() _snake_case : Optional[int] = f"\n {self.examples_dir}/pytorch/semantic-segmentation/run_semantic_segmentation_no_trainer.py\n --dataset_name huggingface/semantic-segmentation-test-sample\n --output_dir {tmp_dir}\n --max_train_steps=10\n --num_warmup_steps=2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --checkpointing_steps epoch\n ".split() run_command(self._launch_args + testargs ) _snake_case : Tuple = get_results(a_ ) self.assertGreaterEqual(result["""eval_overall_accuracy"""], 0.10 ) @mock.patch.dict(os.environ, {"""WANDB_MODE""": """offline"""} ) def UpperCamelCase_ ( self: Any ): '''simple docstring''' _snake_case : Optional[int] = self.get_auto_remove_tmp_dir() _snake_case : Union[str, Any] = f"\n {self.examples_dir}/pytorch/image-classification/run_image_classification_no_trainer.py\n --model_name_or_path google/vit-base-patch16-224-in21k\n --dataset_name hf-internal-testing/cats_vs_dogs_sample\n --learning_rate 1e-4\n --per_device_train_batch_size 2\n --per_device_eval_batch_size 1\n --max_train_steps 2\n --train_val_split 0.1\n --seed 42\n --output_dir {tmp_dir}\n --with_tracking\n --checkpointing_steps 1\n ".split() if is_cuda_and_apex_available(): testargs.append("""--fp16""" ) run_command(self._launch_args + testargs ) _snake_case : Dict = get_results(a_ ) # The base model scores a 25% self.assertGreaterEqual(result["""eval_accuracy"""], 0.6 ) self.assertTrue(os.path.exists(os.path.join(a_, """step_1""" ) ) ) self.assertTrue(os.path.exists(os.path.join(a_, """image_classification_no_trainer""" ) ) )
609
1
import flax.linen as nn import jax import jax.numpy as jnp class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Optional[int] = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: Union[str, Any] , _UpperCAmelCase: int ): _lowerCAmelCase :Union[str, Any] = hidden_states.shape _lowerCAmelCase :Optional[int] = jax.image.resize( _UpperCAmelCase , shape=(batch, height * 2, width * 2, channels) , method='nearest' , ) _lowerCAmelCase :Optional[Any] = self.conv(_UpperCAmelCase ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: Optional[Any] ): _lowerCAmelCase :Any = nn.Conv( self.out_channels , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) def __call__( self: int , _UpperCAmelCase: Optional[Any] ): # pad = ((0, 0), (0, 1), (0, 1), (0, 0)) # pad height and width dim # hidden_states = jnp.pad(hidden_states, pad_width=pad) _lowerCAmelCase :Optional[Any] = self.conv(_UpperCAmelCase ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int = None lowerCamelCase : float = 0.0 lowerCamelCase : bool = None lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: Union[str, Any] ): _lowerCAmelCase :int = self.in_channels if self.out_channels is None else self.out_channels _lowerCAmelCase :Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowerCAmelCase :Optional[int] = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCAmelCase :Tuple = nn.Dense(_UpperCAmelCase , dtype=self.dtype ) _lowerCAmelCase :Any = nn.GroupNorm(num_groups=32 , epsilon=1e-5 ) _lowerCAmelCase :Union[str, Any] = nn.Dropout(self.dropout_prob ) _lowerCAmelCase :List[str] = nn.Conv( _UpperCAmelCase , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) _lowerCAmelCase :List[str] = self.in_channels != out_channels if self.use_nin_shortcut is None else self.use_nin_shortcut _lowerCAmelCase :List[Any] = None if use_nin_shortcut: _lowerCAmelCase :Union[str, Any] = nn.Conv( _UpperCAmelCase , kernel_size=(1, 1) , strides=(1, 1) , padding='VALID' , dtype=self.dtype , ) def __call__( self: Dict , _UpperCAmelCase: List[Any] , _UpperCAmelCase: str , _UpperCAmelCase: Union[str, Any]=True ): _lowerCAmelCase :Optional[int] = hidden_states _lowerCAmelCase :List[str] = self.norma(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = nn.swish(_UpperCAmelCase ) _lowerCAmelCase :Union[str, Any] = self.conva(_UpperCAmelCase ) _lowerCAmelCase :List[str] = self.time_emb_proj(nn.swish(_UpperCAmelCase ) ) _lowerCAmelCase :Union[str, Any] = jnp.expand_dims(jnp.expand_dims(_UpperCAmelCase , 1 ) , 1 ) _lowerCAmelCase :Any = hidden_states + temb _lowerCAmelCase :List[str] = self.norma(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = nn.swish(_UpperCAmelCase ) _lowerCAmelCase :Any = self.dropout(_UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :Dict = self.conva(_UpperCAmelCase ) if self.conv_shortcut is not None: _lowerCAmelCase :str = self.conv_shortcut(_UpperCAmelCase ) return hidden_states + residual
716
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) a = { """configuration_mobilevit""": ["""MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MobileViTConfig""", """MobileViTOnnxConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = ["""MobileViTFeatureExtractor"""] a = ["""MobileViTImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """MobileViTForImageClassification""", """MobileViTForSemanticSegmentation""", """MobileViTModel""", """MobileViTPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a = [ """TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFMobileViTForImageClassification""", """TFMobileViTForSemanticSegmentation""", """TFMobileViTModel""", """TFMobileViTPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys a = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
382
0
"""simple docstring""" from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_sentencepiece, require_tf, require_tokenizers, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy as np import tensorflow as tf from transformers import ( TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST, FlaubertConfig, TFFlaubertForMultipleChoice, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForSequenceClassification, TFFlaubertForTokenClassification, TFFlaubertModel, TFFlaubertWithLMHeadModel, ) class __lowerCAmelCase : """simple docstring""" def __init__( self : Tuple , _snake_case : Any , ) -> Optional[int]: """simple docstring""" A_ = parent A_ = 13 A_ = 7 A_ = True A_ = True A_ = True A_ = True A_ = True A_ = False A_ = False A_ = False A_ = 2 A_ = 99 A_ = 0 A_ = 32 A_ = 2 A_ = 4 A_ = 0.1 A_ = 0.1 A_ = 512 A_ = 16 A_ = 2 A_ = 0.0_2 A_ = 3 A_ = 4 A_ = "last" A_ = True A_ = None A_ = 0 def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" A_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) A_ = random_attention_mask([self.batch_size, self.seq_length] , dtype=tf.floataa ) A_ = None if self.use_input_lengths: A_ = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length A_ = None if self.use_token_type_ids: A_ = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) A_ = None A_ = None A_ = None if self.use_labels: A_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ = ids_tensor([self.batch_size] , 2 , dtype=tf.floataa ) A_ = ids_tensor([self.batch_size] , self.num_choices ) A_ = FlaubertConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , bos_token_id=self.bos_token_id , ) return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def lowerCamelCase__ ( self : List[Any] , _snake_case : Dict , _snake_case : Optional[int] , _snake_case : Any , _snake_case : List[Any] , _snake_case : Optional[int] , _snake_case : int , _snake_case : int , _snake_case : str , _snake_case : int , ) -> str: """simple docstring""" A_ = TFFlaubertModel(config=lowercase_ ) A_ = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A_ = model(lowercase_ ) A_ = [input_ids, input_mask] A_ = model(lowercase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : List[str] , _snake_case : int , _snake_case : List[str] , _snake_case : Optional[Any] , _snake_case : str , _snake_case : Tuple , _snake_case : Tuple , _snake_case : Any , _snake_case : Dict , _snake_case : List[Any] , ) -> str: """simple docstring""" A_ = TFFlaubertWithLMHeadModel(lowercase_ ) A_ = {"input_ids": input_ids, "lengths": input_lengths, "langs": token_type_ids} A_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , _snake_case : Dict , _snake_case : Union[str, Any] , _snake_case : Dict , _snake_case : Any , _snake_case : str , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Union[str, Any] , _snake_case : str , ) -> Union[str, Any]: """simple docstring""" A_ = TFFlaubertForQuestionAnsweringSimple(lowercase_ ) A_ = {"input_ids": input_ids, "lengths": input_lengths} A_ = model(lowercase_ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Optional[Any] , _snake_case : Any , _snake_case : int , _snake_case : List[Any] , _snake_case : Any , _snake_case : Optional[Any] , _snake_case : str , _snake_case : int , _snake_case : int , _snake_case : Dict , ) -> List[Any]: """simple docstring""" A_ = TFFlaubertForSequenceClassification(lowercase_ ) A_ = {"input_ids": input_ids, "lengths": input_lengths} A_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCamelCase__ ( self : List[Any] , _snake_case : Optional[Any] , _snake_case : Any , _snake_case : Any , _snake_case : List[Any] , _snake_case : List[Any] , _snake_case : Dict , _snake_case : int , _snake_case : Tuple , _snake_case : Union[str, Any] , ) -> List[Any]: """simple docstring""" A_ = self.num_labels A_ = TFFlaubertForTokenClassification(config=lowercase_ ) A_ = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} A_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : Dict , _snake_case : Tuple , _snake_case : Optional[int] , _snake_case : Any , _snake_case : List[Any] , _snake_case : int , _snake_case : Tuple , _snake_case : List[str] , _snake_case : List[Any] , _snake_case : Any , ) -> Dict: """simple docstring""" A_ = self.num_choices A_ = TFFlaubertForMultipleChoice(config=lowercase_ ) A_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) A_ = tf.tile(tf.expand_dims(lowercase_ , 1 ) , (1, self.num_choices, 1) ) A_ = { "input_ids": multiple_choice_inputs_ids, "attention_mask": multiple_choice_input_mask, "token_type_ids": multiple_choice_token_type_ids, } A_ = model(lowercase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : Dict ) -> Union[str, Any]: """simple docstring""" A_ = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) = config_and_inputs A_ = { "input_ids": input_ids, "token_type_ids": token_type_ids, "langs": token_type_ids, "lengths": input_lengths, } return config, inputs_dict @require_tf class __lowerCAmelCase ( _lowerCamelCase , _lowerCamelCase , unittest.TestCase ): """simple docstring""" snake_case = ( ( TFFlaubertModel, TFFlaubertWithLMHeadModel, TFFlaubertForSequenceClassification, TFFlaubertForQuestionAnsweringSimple, TFFlaubertForTokenClassification, TFFlaubertForMultipleChoice, ) if is_tf_available() else () ) snake_case = ( (TFFlaubertWithLMHeadModel,) if is_tf_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable snake_case = ( { "feature-extraction": TFFlaubertModel, "fill-mask": TFFlaubertWithLMHeadModel, "question-answering": TFFlaubertForQuestionAnsweringSimple, "text-classification": TFFlaubertForSequenceClassification, "token-classification": TFFlaubertForTokenClassification, "zero-shot": TFFlaubertForSequenceClassification, } if is_tf_available() else {} ) snake_case = False snake_case = False def lowerCamelCase__ ( self : str , _snake_case : Optional[Any] , _snake_case : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Union[str, Any] , _snake_case : Optional[Any] ) -> List[str]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith("Fast" ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def lowerCamelCase__ ( self : int ) -> str: """simple docstring""" A_ = TFFlaubertModelTester(self ) A_ = ConfigTester(self , config_class=lowercase_ , emb_dim=37 ) def lowerCamelCase__ ( self : List[str] ) -> Union[str, Any]: """simple docstring""" self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_model(*lowercase_ ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_lm_head(*lowercase_ ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_qa(*lowercase_ ) def lowerCamelCase__ ( self : Tuple ) -> List[Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_sequence_classif(*lowercase_ ) def lowerCamelCase__ ( self : List[str] ) -> Optional[Any]: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_token_classification(*lowercase_ ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Any: """simple docstring""" A_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_flaubert_for_multiple_choice(*lowercase_ ) @slow def lowerCamelCase__ ( self : Optional[int] ) -> Tuple: """simple docstring""" for model_name in TF_FLAUBERT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ = TFFlaubertModel.from_pretrained(lowercase_ ) self.assertIsNotNone(lowercase_ ) @require_tf @require_sentencepiece @require_tokenizers class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : int ) -> List[Any]: """simple docstring""" A_ = TFFlaubertModel.from_pretrained("jplu/tf-flaubert-small-cased" ) A_ = tf.convert_to_tensor( [[0, 158, 735, 2_592, 1_424, 6_727, 82, 1]] , dtype=tf.intaa , ) # "J'aime flaubert !" A_ = model(lowercase_ )[0] A_ = tf.TensorShape((1, 8, 512) ) self.assertEqual(output.shape , lowercase_ ) # compare the actual values for a slice. A_ = tf.convert_to_tensor( [ [ [-1.8_7_6_8_7_7_3, -1.5_6_6_5_5_5, 0.2_7_0_7_2_4_1_8], [-1.6_9_2_0_0_3_8, -0.5_8_7_3_5_0_5, 1.9_3_2_9_5_9_9], [-2.9_5_6_3_9_8_5, -1.6_9_9_3_8_3_5, 1.7_9_7_2_0_5_2], ] ] , dtype=tf.floataa , ) self.assertTrue(np.allclose(output[:, :3, :3].numpy() , expected_slice.numpy() , atol=1e-4 ) )
115
'''simple docstring''' from collections.abc import Sequence from queue import Queue class a : def __init__( self : List[str] , lowercase_ : str , lowercase_ : List[Any] , lowercase_ : Dict , lowercase_ : int=None , lowercase_ : List[Any]=None ): snake_case_ = start snake_case_ = end snake_case_ = val snake_case_ = (start + end) // 2 snake_case_ = left snake_case_ = right def __repr__( self : Any ): return F"SegmentTreeNode(start={self.start}, end={self.end}, val={self.val})" class a : def __init__( self : Any , lowercase_ : Sequence , lowercase_ : List[str] ): snake_case_ = collection snake_case_ = function if self.collection: snake_case_ = self._build_tree(0 , len(lowercase_ ) - 1 ) def A_ ( self : Any , lowercase_ : Dict , lowercase_ : Dict ): self._update_tree(self.root , lowercase_ , lowercase_ ) def A_ ( self : Optional[Any] , lowercase_ : Tuple , lowercase_ : Optional[int] ): return self._query_range(self.root , lowercase_ , lowercase_ ) def A_ ( self : str , lowercase_ : int , lowercase_ : int ): if start == end: return SegmentTreeNode(lowercase_ , lowercase_ , self.collection[start] ) snake_case_ = (start + end) // 2 snake_case_ = self._build_tree(lowercase_ , lowercase_ ) snake_case_ = self._build_tree(mid + 1 , lowercase_ ) return SegmentTreeNode(lowercase_ , lowercase_ , self.fn(left.val , right.val ) , lowercase_ , lowercase_ ) def A_ ( self : Optional[int] , lowercase_ : int , lowercase_ : Optional[Any] , lowercase_ : List[str] ): if node.start == i and node.end == i: snake_case_ = val return if i <= node.mid: self._update_tree(node.left , lowercase_ , lowercase_ ) else: self._update_tree(node.right , lowercase_ , lowercase_ ) snake_case_ = self.fn(node.left.val , node.right.val ) def A_ ( self : Tuple , lowercase_ : List[Any] , lowercase_ : List[Any] , lowercase_ : Any ): if node.start == i and node.end == j: return node.val if i <= node.mid: if j <= node.mid: # range in left child tree return self._query_range(node.left , lowercase_ , lowercase_ ) else: # range in left child tree and right child tree return self.fn( self._query_range(node.left , lowercase_ , node.mid ) , self._query_range(node.right , node.mid + 1 , lowercase_ ) , ) else: # range in right child tree return self._query_range(node.right , lowercase_ , lowercase_ ) def A_ ( self : Any ): if self.root is not None: snake_case_ = Queue() queue.put(self.root ) while not queue.empty(): snake_case_ = queue.get() yield node if node.left is not None: queue.put(node.left ) if node.right is not None: queue.put(node.right ) if __name__ == "__main__": import operator for fn in [operator.add, max, min]: print('*' * 50) a : List[Any] = SegmentTree([2, 1, 5, 3, 4], fn) for node in arr.traverse(): print(node) print() arr.update(1, 5) for node in arr.traverse(): print(node) print() print(arr.query_range(3, 4)) # 7 print(arr.query_range(2, 2)) # 5 print(arr.query_range(1, 3)) # 13 print()
640
0
'''simple docstring''' def UpperCamelCase__ ( __magic_name__ : Dict = 4_00_00_00 ) -> str: '''simple docstring''' snake_case__ : List[str] = [] snake_case__ , snake_case__ : Any = 0, 1 while b <= n: if b % 2 == 0: even_fibs.append(__A ) snake_case__ , snake_case__ : int = b, a + b return sum(__A ) if __name__ == "__main__": print(F'{solution() = }')
701
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging A_ : List[str] = logging.get_logger(__name__) A_ : Optional[Any] = "▁" A_ : Optional[Any] = {"vocab_file": "sentencepiece.bpe.model"} A_ : Dict = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } A_ : Optional[int] = { "facebook/nllb-200-distilled-600M": 1024, } # fmt: off A_ : Union[str, Any] = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = VOCAB_FILES_NAMES lowerCamelCase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase__ = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase__ = ['''input_ids''', '''attention_mask'''] lowerCamelCase__ = [] lowerCamelCase__ = [] def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="</s>" , __SCREAMING_SNAKE_CASE="<s>" , __SCREAMING_SNAKE_CASE="<unk>" , __SCREAMING_SNAKE_CASE="<pad>" , __SCREAMING_SNAKE_CASE="<mask>" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=False , **__SCREAMING_SNAKE_CASE , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ : Optional[Any] = AddedToken(__SCREAMING_SNAKE_CASE , lstrip=__SCREAMING_SNAKE_CASE , rstrip=__SCREAMING_SNAKE_CASE ) if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else mask_token snake_case__ : List[str] = {} if sp_model_kwargs is None else sp_model_kwargs snake_case__ : Union[str, Any] = legacy_behaviour super().__init__( bos_token=__SCREAMING_SNAKE_CASE , eos_token=__SCREAMING_SNAKE_CASE , unk_token=__SCREAMING_SNAKE_CASE , sep_token=__SCREAMING_SNAKE_CASE , cls_token=__SCREAMING_SNAKE_CASE , pad_token=__SCREAMING_SNAKE_CASE , mask_token=__SCREAMING_SNAKE_CASE , tokenizer_file=__SCREAMING_SNAKE_CASE , src_lang=__SCREAMING_SNAKE_CASE , tgt_lang=__SCREAMING_SNAKE_CASE , additional_special_tokens=__SCREAMING_SNAKE_CASE , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE , ) snake_case__ : int = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(__SCREAMING_SNAKE_CASE ) ) snake_case__ : int = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ : Dict = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ : Union[str, Any] = 1 snake_case__ : List[Any] = len(self.sp_model ) snake_case__ : int = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(__SCREAMING_SNAKE_CASE ) } snake_case__ : Any = {v: k for k, v in self.lang_code_to_id.items()} snake_case__ : List[str] = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case__ : int = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case__ : Union[str, Any] = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) snake_case__ : List[str] = src_lang if src_lang is not None else """eng_Latn""" snake_case__ : Optional[int] = self.lang_code_to_id[self._src_lang] snake_case__ : List[str] = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self ): snake_case__ : List[str] = self.__dict__.copy() snake_case__ : Any = None snake_case__ : Tuple = self.sp_model.serialized_model_proto() return state def __setstate__( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Dict = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): snake_case__ : Any = {} snake_case__ : Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def __UpperCamelCase ( self ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def __UpperCamelCase ( self ): return self._src_lang @src_lang.setter def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[int] = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__SCREAMING_SNAKE_CASE , token_ids_a=__SCREAMING_SNAKE_CASE , already_has_special_tokens=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = [1] * len(self.prefix_tokens ) snake_case__ : Dict = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones return prefix_ones + ([0] * len(__SCREAMING_SNAKE_CASE )) + ([0] * len(__SCREAMING_SNAKE_CASE )) + suffix_ones def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): snake_case__ : Dict = [self.sep_token_id] snake_case__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): if src_lang is None or tgt_lang is None: raise ValueError("""Translation requires a `src_lang` and a `tgt_lang` for this model""" ) snake_case__ : List[Any] = src_lang snake_case__ : Optional[Any] = self(__SCREAMING_SNAKE_CASE , add_special_tokens=__SCREAMING_SNAKE_CASE , return_tensors=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : List[str] = self.convert_tokens_to_ids(__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = tgt_lang_id return inputs def __UpperCamelCase ( self ): snake_case__ : int = {self.convert_ids_to_tokens(__SCREAMING_SNAKE_CASE ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): return self.sp_model.encode(__SCREAMING_SNAKE_CASE , out_type=__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ : Optional[int] = self.sp_model.PieceToId(__SCREAMING_SNAKE_CASE ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : List[Any] = """""".join(__SCREAMING_SNAKE_CASE ).replace(__SCREAMING_SNAKE_CASE , """ """ ).strip() return out_string def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None ): if not os.path.isdir(__SCREAMING_SNAKE_CASE ): logger.error(f"Vocabulary path ({save_directory}) should be a directory" ) return snake_case__ : int = os.path.join( __SCREAMING_SNAKE_CASE , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(__SCREAMING_SNAKE_CASE ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , __SCREAMING_SNAKE_CASE ) elif not os.path.isfile(self.vocab_file ): with open(__SCREAMING_SNAKE_CASE , """wb""" ) as fi: snake_case__ : int = self.sp_model.serialized_model_proto() fi.write(__SCREAMING_SNAKE_CASE ) return (out_vocab_file,) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = "eng_Latn" , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "fra_Latn" , **__SCREAMING_SNAKE_CASE , ): snake_case__ : Optional[int] = src_lang snake_case__ : Optional[Any] = tgt_lang return super().prepare_seqaseq_batch(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): return self.set_src_lang_special_tokens(self.src_lang ) def __UpperCamelCase ( self ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : Optional[Any] = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case__ : Tuple = [] snake_case__ : int = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : Optional[int] = [self.cur_lang_code] snake_case__ : int = [self.eos_token_id] def __UpperCamelCase ( self , __SCREAMING_SNAKE_CASE ): snake_case__ : int = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case__ : str = [] snake_case__ : int = [self.eos_token_id, self.cur_lang_code] else: snake_case__ : List[Any] = [self.cur_lang_code] snake_case__ : Union[str, Any] = [self.eos_token_id]
419
0
def A__ (snake_case : list ) -> Union[str, Any]: __UpperCamelCase : Any = len(snake_case ) for _ in range(snake_case ): for i in range(_ % 2 , arr_size - 1 , 2 ): if arr[i + 1] < arr[i]: __UpperCamelCase : Any = arr[i + 1], arr[i] return arr if __name__ == "__main__": a__ = list(range(10, 0, -1)) print(f"Original: {arr}. Sorted: {odd_even_transposition(arr)}")
279
"""simple docstring""" from string import ascii_lowercase, ascii_uppercase def UpperCAmelCase ( snake_case : str ): if not sentence: return "" _lowerCAmelCase:Tuple = dict(zip(snake_case , snake_case ) ) return lower_to_upper.get(sentence[0] , sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
227
0
import argparse from collections import OrderedDict from pathlib import Path import torch from transformers import ( VisualBertConfig, VisualBertForMultipleChoice, VisualBertForPreTraining, VisualBertForQuestionAnswering, VisualBertForVisualReasoning, ) from transformers.utils import logging logging.set_verbosity_info() __a : Optional[int] = logging.get_logger(__name__) __a : List[str] = [ ("""bert.bert""", """visual_bert"""), ("""bert.cls""", """cls"""), ("""bert.classifier""", """cls"""), ("""token_type_embeddings_visual""", """visual_token_type_embeddings"""), ("""position_embeddings_visual""", """visual_position_embeddings"""), ("""projection""", """visual_projection"""), ] __a : List[Any] = [ """nlvr2_coco_pre_trained.th""", """nlvr2_fine_tuned.th""", """nlvr2_pre_trained.th""", """vcr_coco_pre_train.th""", """vcr_fine_tune.th""", """vcr_pre_train.th""", """vqa_coco_pre_trained.th""", """vqa_fine_tuned.th""", """vqa_pre_trained.th""", ] def UpperCAmelCase ( lowercase ) -> Union[str, Any]: """simple docstring""" __lowercase = torch.load(lowercase , map_location='''cpu''' ) return sd def UpperCAmelCase ( lowercase , lowercase , lowercase=rename_keys_prefix ) -> Tuple: """simple docstring""" __lowercase = OrderedDict() __lowercase = torch.arange(config.max_position_embeddings ).expand((1, -1) ) # detector_d = OrderedDict() for key in d: if "detector" in key: # detector_d[key.replace('detector.','')] = d[key] continue __lowercase = key for name_pair in rename_keys_prefix: __lowercase = new_key.replace(name_pair[0] , name_pair[1] ) __lowercase = d[key] if key == "bert.cls.predictions.decoder.weight": # Old bert code didn't have `decoder.bias`, but was added separately __lowercase = new_d['''cls.predictions.bias'''] return new_d @torch.no_grad() def UpperCAmelCase ( lowercase , lowercase ) -> List[str]: """simple docstring""" assert ( checkpoint_path.split('''/''' )[-1] in ACCEPTABLE_CHECKPOINTS ), F"The checkpoint provided must be in {ACCEPTABLE_CHECKPOINTS}." # Get Config if "pre" in checkpoint_path: __lowercase = '''pretraining''' if "vcr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 512} elif "vqa_advanced" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} elif "vqa" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} elif "nlvr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 1024} else: raise NotImplementedError(F"No implementation found for `{checkpoint_path}`." ) else: if "vcr" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 512} __lowercase = '''multichoice''' elif "vqa_advanced" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048} __lowercase = '''vqa_advanced''' elif "vqa" in checkpoint_path: __lowercase = {'''visual_embedding_dim''': 2048, '''num_labels''': 3129} __lowercase = '''vqa''' elif "nlvr" in checkpoint_path: __lowercase = { '''visual_embedding_dim''': 1024, '''num_labels''': 2, } __lowercase = '''nlvr''' __lowercase = VisualBertConfig(**lowercase ) # Load State Dict __lowercase = load_state_dict(lowercase ) __lowercase = get_new_dict(lowercase , lowercase ) if model_type == "pretraining": __lowercase = VisualBertForPreTraining(lowercase ) elif model_type == "vqa": __lowercase = VisualBertForQuestionAnswering(lowercase ) elif model_type == "nlvr": __lowercase = VisualBertForVisualReasoning(lowercase ) elif model_type == "multichoice": __lowercase = VisualBertForMultipleChoice(lowercase ) model.load_state_dict(lowercase ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) if __name__ == "__main__": __a : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument("""orig_checkpoint_path""", type=str, help="""A path to .th on local filesystem.""") parser.add_argument("""pytorch_dump_folder_path""", type=str, help="""Path to the output PyTorch model.""") __a : Optional[Any] = parser.parse_args() convert_visual_bert_checkpoint(args.orig_checkpoint_path, args.pytorch_dump_folder_path)
709
import baseaa import io import json import os from copy import deepcopy from ..optimizer import AcceleratedOptimizer from ..scheduler import AcceleratedScheduler class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> List[str]: '''simple docstring''' if isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): # Don't modify user's data should they want to reuse it (e.g. in tests), because once we # modified it, it will not be accepted here again, since `auto` values would have been overridden __lowercase = deepcopy(lowerCAmelCase__ ) elif os.path.exists(lowerCAmelCase__ ): with io.open(lowerCAmelCase__ , '''r''' , encoding='''utf-8''' ) as f: __lowercase = json.load(lowerCAmelCase__ ) else: try: __lowercase = baseaa.urlsafe_baadecode(lowerCAmelCase__ ).decode('''utf-8''' ) __lowercase = json.loads(lowerCAmelCase__ ) except (UnicodeDecodeError, AttributeError, ValueError): raise ValueError( F"Expected a string path to an existing deepspeed config, or a dictionary, or a base64 encoded string. Received: {config_file_or_dict}" ) __lowercase = config self.set_stage_and_offload() def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = self.get_value('''zero_optimization.stage''' , -1 ) # offload __lowercase = False if self.is_zeroa() or self.is_zeroa(): __lowercase = set(['''cpu''', '''nvme'''] ) __lowercase = set( [ self.get_value('''zero_optimization.offload_optimizer.device''' ), self.get_value('''zero_optimization.offload_param.device''' ), ] ) if len(offload_devices & offload_devices_valid ) > 0: __lowercase = True def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> List[Any]: '''simple docstring''' __lowercase = self.config # find the config node of interest if it exists __lowercase = ds_key_long.split('''.''' ) __lowercase = nodes.pop() for node in nodes: __lowercase = config.get(lowerCAmelCase__ ) if config is None: return None, ds_key return config, ds_key def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=None ) -> str: '''simple docstring''' __lowercase , __lowercase = self.find_config_node(lowerCAmelCase__ ) if config is None: return default return config.get(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , lowerCAmelCase__=False ) -> Any: '''simple docstring''' __lowercase = self.config # find the config node of interest if it exists __lowercase = ds_key_long.split('''.''' ) for node in nodes: __lowercase = config __lowercase = config.get(lowerCAmelCase__ ) if config is None: if must_exist: raise ValueError(F"Can't find {ds_key_long} entry in the config: {self.config}" ) else: return # if found remove it if parent_config is not None: parent_config.pop(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' __lowercase = self.get_value(lowerCAmelCase__ ) return False if value is None else bool(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ ) -> Any: '''simple docstring''' __lowercase = self.get_value(lowerCAmelCase__ ) return False if value is None else not bool(lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self._stage == 2 def _SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' return self._stage == 3 def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' return self._offload class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> Optional[Any]: '''simple docstring''' __lowercase = engine def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__ , **lowerCAmelCase__ ) -> str: '''simple docstring''' self.engine.backward(lowerCAmelCase__ , **lowerCAmelCase__ ) # Deepspeed's `engine.step` performs the following operations: # - gradient accumulation check # - gradient clipping # - optimizer step # - zero grad # - checking overflow # - lr_scheduler step (only if engine.lr_scheduler is not None) self.engine.step() # and this plugin overrides the above calls with no-ops when Accelerate runs under # Deepspeed, but allows normal functionality for non-Deepspeed cases thus enabling a simple # training loop that works transparently under many training regimes. class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' super().__init__(lowerCAmelCase__ , device_placement=lowerCAmelCase__ , scaler=lowerCAmelCase__ ) __lowercase = hasattr(self.optimizer , '''overflow''' ) def _SCREAMING_SNAKE_CASE ( self , lowerCAmelCase__=None ) -> List[Any]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed @property def _SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' if self.__has_overflow__: return self.optimizer.overflow return False class _UpperCamelCase ( _UpperCAmelCase ): """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def _SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' pass # `accelerator.backward(loss)` is doing that automatically. Therefore, its implementation is not needed class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=0.001 , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> List[str]: '''simple docstring''' __lowercase = params __lowercase = lr __lowercase = weight_decay __lowercase = kwargs class _UpperCamelCase : """simple docstring""" def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=None , lowerCAmelCase__=0 , **lowerCAmelCase__ ) -> Optional[int]: '''simple docstring''' __lowercase = optimizer __lowercase = total_num_steps __lowercase = warmup_num_steps __lowercase = kwargs
522
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available SCREAMING_SNAKE_CASE__ = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
9
"""simple docstring""" __UpperCAmelCase = frozenset( [ 'prompt', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __UpperCAmelCase = frozenset(['prompt', 'negative_prompt']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset(['image']) __UpperCAmelCase = frozenset( [ 'image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['image']) __UpperCAmelCase = frozenset( [ 'prompt', 'image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __UpperCAmelCase = frozenset(['prompt', 'image', 'negative_prompt']) __UpperCAmelCase = frozenset( [ # Text guided image variation with an image mask 'prompt', 'image', 'mask_image', 'height', 'width', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', ] ) __UpperCAmelCase = frozenset(['prompt', 'image', 'mask_image', 'negative_prompt']) __UpperCAmelCase = frozenset( [ # image variation with an image mask 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['image', 'mask_image']) __UpperCAmelCase = frozenset( [ 'example_image', 'image', 'mask_image', 'height', 'width', 'guidance_scale', ] ) __UpperCAmelCase = frozenset(['example_image', 'image', 'mask_image']) __UpperCAmelCase = frozenset(['class_labels']) __UpperCAmelCase = frozenset(['class_labels']) __UpperCAmelCase = frozenset(['batch_size']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset(['batch_size']) __UpperCAmelCase = frozenset([]) __UpperCAmelCase = frozenset( [ 'prompt', 'audio_length_in_s', 'guidance_scale', 'negative_prompt', 'prompt_embeds', 'negative_prompt_embeds', 'cross_attention_kwargs', ] ) __UpperCAmelCase = frozenset(['prompt', 'negative_prompt']) __UpperCAmelCase = frozenset(['input_tokens']) __UpperCAmelCase = frozenset(['input_tokens'])
65
0
"""simple docstring""" import math def A__ ( A__ ) -> bool: '''simple docstring''' _UpperCAmelCase = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(A__ ) def A__ ( A__ = 1 / 1_2345 ) -> int: '''simple docstring''' _UpperCAmelCase = 0 _UpperCAmelCase = 0 _UpperCAmelCase = 3 while True: _UpperCAmelCase = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(A__ ): _UpperCAmelCase = int(A__ ) total_partitions += 1 if check_partition_perfect(A__ ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(A__ ) integer += 1 if __name__ == "__main__": print(f'''{solution() = }''')
714
"""simple docstring""" from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class a ( _SCREAMING_SNAKE_CASE ): """simple docstring""" A__ : Optional[Any] = ["image_processor", "tokenizer"] A__ : List[Any] = "BlipImageProcessor" A__ : List[str] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , snake_case_ , snake_case_ ) -> Any: _UpperCAmelCase = False super().__init__(snake_case_ , snake_case_ ) _UpperCAmelCase = self.image_processor def __call__( self , snake_case_ = None , snake_case_ = None , snake_case_ = True , snake_case_ = False , snake_case_ = None , snake_case_ = None , snake_case_ = 0 , snake_case_ = None , snake_case_ = None , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = False , snake_case_ = True , snake_case_ = None , **snake_case_ , ) -> BatchEncoding: if images is None and text is None: raise ValueError("You have to specify either images or text." ) # Get only text if images is None: _UpperCAmelCase = self.tokenizer _UpperCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) return text_encoding # add pixel_values _UpperCAmelCase = self.image_processor(snake_case_ , return_tensors=snake_case_ ) if text is not None: _UpperCAmelCase = self.tokenizer( text=snake_case_ , add_special_tokens=snake_case_ , padding=snake_case_ , truncation=snake_case_ , max_length=snake_case_ , stride=snake_case_ , pad_to_multiple_of=snake_case_ , return_attention_mask=snake_case_ , return_overflowing_tokens=snake_case_ , return_special_tokens_mask=snake_case_ , return_offsets_mapping=snake_case_ , return_token_type_ids=snake_case_ , return_length=snake_case_ , verbose=snake_case_ , return_tensors=snake_case_ , **snake_case_ , ) else: _UpperCAmelCase = None if text_encoding is not None: encoding_image_processor.update(snake_case_ ) return encoding_image_processor def __A ( self , *snake_case_ , **snake_case_ ) -> Union[str, Any]: return self.tokenizer.batch_decode(*snake_case_ , **snake_case_ ) def __A ( self , *snake_case_ , **snake_case_ ) -> Optional[int]: return self.tokenizer.decode(*snake_case_ , **snake_case_ ) @property def __A ( self ) -> Any: _UpperCAmelCase = self.tokenizer.model_input_names _UpperCAmelCase = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) )
579
0
"""simple docstring""" from __future__ import annotations def _lowerCAmelCase ( UpperCamelCase_ , UpperCamelCase_ ): if len(UpperCamelCase_ ) < k or k < 0: raise ValueError("""Invalid Input""" ) __SCREAMING_SNAKE_CASE = __SCREAMING_SNAKE_CASE = sum(array[:k] ) for i in range(len(UpperCamelCase_ ) - k ): __SCREAMING_SNAKE_CASE = current_sum - array[i] + array[i + k] __SCREAMING_SNAKE_CASE = max(UpperCamelCase_ , UpperCamelCase_ ) return max_sum if __name__ == "__main__": from doctest import testmod from random import randint testmod() __magic_name__ = [randint(-1000, 1000) for i in range(100)] __magic_name__ = randint(0, 110) print(F"""The maximum sum of {k} consecutive elements is {max_sum_in_array(array,k)}""")
155
"""simple docstring""" from .data_collator import ( DataCollatorForLanguageModeling, DataCollatorForPermutationLanguageModeling, DataCollatorForSeqaSeq, DataCollatorForSOP, DataCollatorForTokenClassification, DataCollatorForWholeWordMask, DataCollatorWithPadding, DefaultDataCollator, default_data_collator, ) from .metrics import glue_compute_metrics, xnli_compute_metrics from .processors import ( DataProcessor, InputExample, InputFeatures, SingleSentenceClassificationProcessor, SquadExample, SquadFeatures, SquadVaProcessor, SquadVaProcessor, glue_convert_examples_to_features, glue_output_modes, glue_processors, glue_tasks_num_labels, squad_convert_examples_to_features, xnli_output_modes, xnli_processors, xnli_tasks_num_labels, )
155
1
"""simple docstring""" import math class lowerCamelCase__ : '''simple docstring''' def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: A = 0.0 A = 0.0 for i in range(len(UpperCAmelCase_ ) ): da += math.pow((sample[i] - weights[0][i]) ,2 ) da += math.pow((sample[i] - weights[1][i]) ,2 ) return 0 if da > da else 1 return 0 def UpperCamelCase__ ( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Tuple: for i in range(len(UpperCAmelCase_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _A ( ) -> Any: """simple docstring""" A = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) A = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training A = SelfOrganizingMap() A = 3 A = 0.5 for _ in range(_snake_case ): for j in range(len(_snake_case ) ): # training sample A = training_samples[j] # Compute the winning vector A = self_organizing_map.get_winner(_snake_case , _snake_case ) # Update the winning vector A = self_organizing_map.update(_snake_case , _snake_case , _snake_case , _snake_case ) # classify test sample A = [0, 0, 0, 1] A = self_organizing_map.get_winner(_snake_case , _snake_case ) # results print(f'Clusters that the test sample belongs to : {winner}' ) print(f'Weights that have been trained : {weights}' ) # running the main() function if __name__ == "__main__": main()
711
"""simple docstring""" import inspect import jax import jax.lax as lax import jax.numpy as jnp from ..utils import add_start_docstrings from ..utils.logging import get_logger UpperCAmelCase =get_logger(__name__) UpperCAmelCase =R"\n Args:\n input_ids (`jnp.ndarray` of shape `(batch_size, sequence_length)`):\n Indices of input sequence tokens in the vocabulary.\n\n Indices can be obtained using [`PreTrainedTokenizer`]. See [`PreTrainedTokenizer.encode`] and\n [`PreTrainedTokenizer.__call__`] for details.\n\n [What are input IDs?](../glossary#input-ids)\n scores (`jnp.ndarray` of shape `(batch_size, config.vocab_size)`):\n Prediction scores of a language modeling head. These can be logits for each vocabulary when not using beam\n search or log softmax for each vocabulary token when using beam search\n kwargs (`Dict[str, Any]`, *optional*):\n Additional logits processor specific kwargs.\n\n Return:\n `jnp.ndarray` of shape `(batch_size, config.vocab_size)`: The processed prediction scores.\n\n" class lowerCamelCase__ : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCamelCase__ : '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: raise NotImplementedError( f'{self.__class__} is an abstract class. Only classes inheriting this class can be called.' ) class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' @add_start_docstrings(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) -> jnp.ndarray: for processor in self: A = inspect.signature(processor.__call__ ).parameters if len(lowerCamelCase_ ) > 3: if not all(arg in kwargs for arg in list(function_args.keys() )[2:] ): raise ValueError( f'Make sure that all the required parameters: {list(function_args.keys() )} for ' f'{processor.__class__} are passed to the logits processor.' ) A = processor(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ,**lowerCamelCase_ ) else: A = processor(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> List[str]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or not (temperature > 0): raise ValueError(f'`temperature` has to be a strictly positive float, but is {temperature}' ) A = temperature def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = scores / self.temperature return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ = -float("""Inf""" ) ,lowerCamelCase_ = 1 ) -> Dict: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (top_p < 0 or top_p > 1.0): raise ValueError(f'`top_p` has to be a float > 0 and < 1, but is {top_p}' ) if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or (min_tokens_to_keep < 1): raise ValueError(f'`min_tokens_to_keep` has to be a positive integer, but is {min_tokens_to_keep}' ) A = top_p A = filter_value A = min_tokens_to_keep def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A , A = lax.top_k(lowerCamelCase_ ,scores.shape[-1] ) A = jnp.full_like(lowerCamelCase_ ,self.filter_value ) A = jax.nn.softmax(lowerCamelCase_ ,axis=-1 ).cumsum(axis=-1 ) A = cumulative_probs < self.top_p # include the token that is higher than top_p as well A = jnp.roll(lowerCamelCase_ ,1 ) score_mask |= score_mask.at[:, 0].set(lowerCamelCase_ ) # min tokens to keep A = score_mask.at[:, : self.min_tokens_to_keep].set(lowerCamelCase_ ) A = jnp.where(lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) A = jax.lax.sort_key_val(lowerCamelCase_ ,lowerCamelCase_ )[-1] return next_scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ = -float("""Inf""" ) ,lowerCamelCase_ = 1 ) -> List[Any]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or top_k <= 0: raise ValueError(f'`top_k` has to be a strictly positive integer, but is {top_k}' ) A = max(lowerCamelCase_ ,lowerCamelCase_ ) A = filter_value def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A , A = scores.shape A = jnp.full(batch_size * vocab_size ,self.filter_value ) A = min(self.top_k ,scores.shape[-1] ) # Safety check A , A = lax.top_k(lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.broadcast_to((jnp.arange(lowerCamelCase_ ) * vocab_size)[:, None] ,(batch_size, topk) ).flatten() A = topk_scores.flatten() A = topk_indices.flatten() + shift A = next_scores_flat.at[topk_indices_flat].set(lowerCamelCase_ ) A = next_scores_flat.reshape(lowerCamelCase_ ,lowerCamelCase_ ) return next_scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> List[Any]: A = bos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = jnp.full(scores.shape ,-float("""inf""" ) ) A = 1 - jnp.bool_(cur_len - 1 ) A = jnp.where(lowerCamelCase_ ,new_scores.at[:, self.bos_token_id].set(0 ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> Union[str, Any]: A = max_length A = eos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = jnp.full(scores.shape ,-float("""inf""" ) ) A = 1 - jnp.bool_(cur_len - self.max_length + 1 ) A = jnp.where(lowerCamelCase_ ,new_scores.at[:, self.eos_token_id].set(0 ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or min_length < 0: raise ValueError(f'`min_length` has to be a positive integer, but is {min_length}' ) if not isinstance(lowerCamelCase_ ,lowerCamelCase_ ) or eos_token_id < 0: raise ValueError(f'`eos_token_id` has to be a positive integer, but is {eos_token_id}' ) A = min_length A = eos_token_id def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: # create boolean flag to decide if min length penalty should be applied A = 1 - jnp.clip(cur_len - self.min_length ,0 ,1 ) A = jnp.where(lowerCamelCase_ ,scores.at[:, self.eos_token_id].set(-float("""inf""" ) ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[str]: A = list(lowerCamelCase_ ) A = begin_index def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Dict: A = 1 - jnp.bool_(cur_len - self.begin_index ) A = jnp.where(lowerCamelCase_ ,scores.at[:, self.begin_suppress_tokens].set(-float("""inf""" ) ) ,lowerCamelCase_ ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> str: A = list(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: A = scores.at[..., self.suppress_tokens].set(-float("""inf""" ) ) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ) -> Union[str, Any]: A = dict(lowerCamelCase_ ) # Converts the dictionary of format {index: token} containing the tokens to be forced to an array, where the # index of the array corresponds to the index of the token to be forced, for XLA compatibility. # Indexes without forced tokens will have a negative value. A = jnp.ones((max(force_token_map.keys() ) + 1) ,dtype=jnp.intaa ) * -1 for index, token in force_token_map.items(): if token is not None: A = force_token_array.at[index].set(lowerCamelCase_ ) A = jnp.intaa(lowerCamelCase_ ) def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> jnp.ndarray: def _force_token(lowerCamelCase_ ): A = scores.shape[0] A = self.force_token_array[generation_idx] A = jnp.ones_like(lowerCamelCase_ ,dtype=scores.dtype ) * -float("""inf""" ) A = jnp.zeros((batch_size, 1) ,dtype=scores.dtype ) A = lax.dynamic_update_slice(lowerCamelCase_ ,lowerCamelCase_ ,(0, current_token) ) return new_scores A = lax.cond( cur_len >= self.force_token_array.shape[0] ,lambda: scores ,lambda: lax.cond( self.force_token_array[cur_len] >= 0 ,lambda: _force_token(lowerCamelCase_ ) ,lambda: scores ,) ,) return scores class lowerCamelCase__ ( SCREAMING_SNAKE_CASE ): '''simple docstring''' def __init__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> Optional[int]: A = generate_config.eos_token_id A = generate_config.no_timestamps_token_id A = generate_config.no_timestamps_token_id + 1 A = decoder_input_length + 1 if generate_config.is_multilingual: # room for language token and task token self.begin_index += 2 if hasattr(lowerCamelCase_ ,"""max_initial_timestamp_index""" ): A = generate_config.max_initial_timestamp_index else: A = model_config.vocab_size if self.max_initial_timestamp_index is None: A = model_config.vocab_size def __call__( self ,lowerCamelCase_ ,lowerCamelCase_ ,lowerCamelCase_ ) -> List[Any]: # suppress <|notimestamps|> which is handled by without_timestamps A = scores.at[:, self.no_timestamps_token_id].set(-float("""inf""" ) ) def handle_pairs(lowerCamelCase_ ,lowerCamelCase_ ): A = jnp.where((cur_len - self.begin_index) >= 1 ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( input_ids_k[cur_len - 1] >= self.timestamp_begin ,True and last_was_timestamp ,lowerCamelCase_ ,) A = jnp.where((cur_len - self.begin_index) < 2 ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( input_ids_k[cur_len - 2] >= self.timestamp_begin ,lowerCamelCase_ ,lowerCamelCase_ ,) return jnp.where( lowerCamelCase_ ,jnp.where( penultimate_was_timestamp > 0 ,scores_k.at[self.timestamp_begin :].set(-float("""inf""" ) ) ,scores_k.at[: self.eos_token_id].set(-float("""inf""" ) ) ,) ,lowerCamelCase_ ,) A = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where(cur_len == self.begin_index ,lowerCamelCase_ ,lowerCamelCase_ ) A = jnp.where( self.max_initial_timestamp_index is not None ,True and apply_max_initial_timestamp ,lowerCamelCase_ ,) A = self.timestamp_begin + self.max_initial_timestamp_index A = jnp.where( lowerCamelCase_ ,scores.at[:, last_allowed + 1 :].set(-float("""inf""" ) ) ,lowerCamelCase_ ,) # if sum of probability over timestamps is above any other token, sample timestamp A = jax.nn.log_softmax(lowerCamelCase_ ,axis=-1 ) def handle_cumulative_probs(lowerCamelCase_ ,lowerCamelCase_ ): A = jax.nn.logsumexp(logprobs_k[self.timestamp_begin :] ,axis=-1 ) A = jnp.max(logprobs_k[: self.timestamp_begin] ) return jnp.where( timestamp_logprob > max_text_token_logprob ,scores_k.at[: self.timestamp_begin].set(-float("""inf""" ) ) ,lowerCamelCase_ ,) A = jax.vmap(lowerCamelCase_ )(lowerCamelCase_ ,lowerCamelCase_ ) return scores
255
0
"""simple docstring""" from __future__ import annotations import numpy as np def A_ (__a ): '''simple docstring''' A_ , A_ = np.shape(__a ) if rows != columns: A_ = ( "'table' has to be of square shaped array but got a " f'{rows}x{columns} array:\n{table}' ) raise ValueError(__a ) A_ = np.zeros((rows, columns) ) A_ = np.zeros((rows, columns) ) for i in range(__a ): for j in range(__a ): A_ = sum(lower[i][k] * upper[k][j] for k in range(__a ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) A_ = (table[i][j] - total) / upper[j][j] A_ = 1 for j in range(__a , __a ): A_ = sum(lower[i][k] * upper[k][j] for k in range(__a ) ) A_ = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
115
"""simple docstring""" from typing import TYPE_CHECKING from ..utils import _LazyModule UpperCamelCase_ : Dict = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys UpperCamelCase_ : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
115
1
import torch from diffusers import DDPMScheduler from .test_schedulers import SchedulerCommonTest class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = (DDPMScheduler,) def _snake_case ( self : Tuple , **snake_case__ : str ) -> List[str]: _lowerCamelCase = { 'num_train_timesteps': 1_0_0_0, 'beta_start': 0.0001, 'beta_end': 0.02, 'beta_schedule': 'linear', 'variance_type': 'fixed_small', 'clip_sample': True, } config.update(**snake_case__ ) return config def _snake_case ( self : Dict ) -> Optional[Any]: for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=snake_case__ ) def _snake_case ( self : Union[str, Any] ) -> List[str]: for beta_start, beta_end in zip([0.0001, 0.001, 0.01, 0.1] , [0.002, 0.02, 0.2, 2] ): self.check_over_configs(beta_start=snake_case__ , beta_end=snake_case__ ) def _snake_case ( self : List[Any] ) -> Optional[int]: for schedule in ["linear", "squaredcos_cap_v2"]: self.check_over_configs(beta_schedule=snake_case__ ) def _snake_case ( self : Any ) -> List[str]: for variance in ["fixed_small", "fixed_large", "other"]: self.check_over_configs(variance_type=snake_case__ ) def _snake_case ( self : Any ) -> List[str]: for clip_sample in [True, False]: self.check_over_configs(clip_sample=snake_case__ ) def _snake_case ( self : List[Any] ) -> Optional[int]: self.check_over_configs(thresholding=snake_case__ ) for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs( thresholding=snake_case__ , prediction_type=snake_case__ , sample_max_value=snake_case__ , ) def _snake_case ( self : List[str] ) -> Dict: for prediction_type in ["epsilon", "sample", "v_prediction"]: self.check_over_configs(prediction_type=snake_case__ ) def _snake_case ( self : str ) -> Tuple: for t in [0, 5_0_0, 9_9_9]: self.check_over_forward(time_step=snake_case__ ) def _snake_case ( self : Optional[Any] ) -> Union[str, Any]: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**snake_case__ ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 0.0 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7 ) - 0.0_0979 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9 ) - 0.02 ) ) < 1e-5 def _snake_case ( self : Optional[Any] ) -> List[Any]: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**snake_case__ ) _lowerCamelCase = len(snake_case__ ) _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter _lowerCamelCase = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual _lowerCamelCase = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCamelCase = pred_prev_sample _lowerCamelCase = torch.sum(torch.abs(snake_case__ ) ) _lowerCamelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 258.9606 ) < 1e-2 assert abs(result_mean.item() - 0.3372 ) < 1e-3 def _snake_case ( self : Any ) -> List[Any]: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config(prediction_type='v_prediction' ) _lowerCamelCase = scheduler_class(**snake_case__ ) _lowerCamelCase = len(snake_case__ ) _lowerCamelCase = self.dummy_model() _lowerCamelCase = self.dummy_sample_deter _lowerCamelCase = torch.manual_seed(0 ) for t in reversed(range(snake_case__ ) ): # 1. predict noise residual _lowerCamelCase = model(snake_case__ , snake_case__ ) # 2. predict previous mean of sample x_t-1 _lowerCamelCase = scheduler.step(snake_case__ , snake_case__ , snake_case__ , generator=snake_case__ ).prev_sample # if t > 0: # noise = self.dummy_sample_deter # variance = scheduler.get_variance(t) ** (0.5) * noise # # sample = pred_prev_sample + variance _lowerCamelCase = pred_prev_sample _lowerCamelCase = torch.sum(torch.abs(snake_case__ ) ) _lowerCamelCase = torch.mean(torch.abs(snake_case__ ) ) assert abs(result_sum.item() - 202.0296 ) < 1e-2 assert abs(result_mean.item() - 0.2631 ) < 1e-3 def _snake_case ( self : int ) -> Any: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**snake_case__ ) _lowerCamelCase = [1_0_0, 8_7, 5_0, 1, 0] scheduler.set_timesteps(timesteps=snake_case__ ) _lowerCamelCase = scheduler.timesteps for i, timestep in enumerate(snake_case__ ): if i == len(snake_case__ ) - 1: _lowerCamelCase = -1 else: _lowerCamelCase = timesteps[i + 1] _lowerCamelCase = scheduler.previous_timestep(snake_case__ ) _lowerCamelCase = prev_t.item() self.assertEqual(snake_case__ , snake_case__ ) def _snake_case ( self : Tuple ) -> List[str]: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**snake_case__ ) _lowerCamelCase = [1_0_0, 8_7, 5_0, 5_1, 0] with self.assertRaises(snake_case__ , msg='`custom_timesteps` must be in descending order.' ): scheduler.set_timesteps(timesteps=snake_case__ ) def _snake_case ( self : int ) -> Dict: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**snake_case__ ) _lowerCamelCase = [1_0_0, 8_7, 5_0, 1, 0] _lowerCamelCase = len(snake_case__ ) with self.assertRaises(snake_case__ , msg='Can only pass one of `num_inference_steps` or `custom_timesteps`.' ): scheduler.set_timesteps(num_inference_steps=snake_case__ , timesteps=snake_case__ ) def _snake_case ( self : List[Any] ) -> Dict: _lowerCamelCase = self.scheduler_classes[0] _lowerCamelCase = self.get_scheduler_config() _lowerCamelCase = scheduler_class(**snake_case__ ) _lowerCamelCase = [scheduler.config.num_train_timesteps] with self.assertRaises( snake_case__ , msg='`timesteps` must start before `self.config.train_timesteps`: {scheduler.config.num_train_timesteps}}' , ): scheduler.set_timesteps(timesteps=snake_case__ )
234
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) A = { 'configuration_layoutlmv2': ['LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'LayoutLMv2Config'], 'processing_layoutlmv2': ['LayoutLMv2Processor'], 'tokenization_layoutlmv2': ['LayoutLMv2Tokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['LayoutLMv2TokenizerFast'] try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = ['LayoutLMv2FeatureExtractor'] A = ['LayoutLMv2ImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A = [ 'LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST', 'LayoutLMv2ForQuestionAnswering', 'LayoutLMv2ForSequenceClassification', 'LayoutLMv2ForTokenClassification', 'LayoutLMv2Layer', 'LayoutLMv2Model', 'LayoutLMv2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_layoutlmva import LAYOUTLMV2_PRETRAINED_CONFIG_ARCHIVE_MAP, LayoutLMvaConfig from .processing_layoutlmva import LayoutLMvaProcessor from .tokenization_layoutlmva import LayoutLMvaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_layoutlmva_fast import LayoutLMvaTokenizerFast try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_layoutlmva import LayoutLMvaFeatureExtractor, LayoutLMvaImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_layoutlmva import ( LAYOUTLMV2_PRETRAINED_MODEL_ARCHIVE_LIST, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaLayer, LayoutLMvaModel, LayoutLMvaPreTrainedModel, ) else: import sys A = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
234
1
"""simple docstring""" from jiwer import compute_measures import datasets SCREAMING_SNAKE_CASE__ : str ="""\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ SCREAMING_SNAKE_CASE__ : Optional[int] ="""\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. """ SCREAMING_SNAKE_CASE__ : Optional[Any] =""" Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> wer = datasets.load_metric(\"wer\") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _UpperCAmelCase ( datasets.Metric ): """simple docstring""" def a__ ( self ) -> Optional[int]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/jitsi/jiwer/'''] , reference_urls=[ '''https://en.wikipedia.org/wiki/Word_error_rate''', ] , ) def a__ ( self , _lowercase=None , _lowercase=None , _lowercase=False ) -> Any: if concatenate_texts: return compute_measures(_lowercase , _lowercase )["wer"] else: _lowerCamelCase : Optional[Any] = 0 _lowerCamelCase : List[str] = 0 for prediction, reference in zip(_lowercase , _lowercase ): _lowerCamelCase : Tuple = compute_measures(_lowercase , _lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
434
'''simple docstring''' def UpperCamelCase_ ( _UpperCAmelCase : int , _UpperCAmelCase : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def UpperCamelCase_ ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
244
0
'''simple docstring''' def lowerCAmelCase_ ( _lowerCamelCase: int ): return number & 1 == 0 if __name__ == "__main__": import doctest doctest.testmod()
178
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ : List[Any] = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ : List[Any] = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ : Dict = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
178
1
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class A ( unittest.TestCase ): def __init__( self, UpperCamelCase__, UpperCamelCase__=13, UpperCamelCase__=7, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=True, UpperCamelCase__=99, UpperCamelCase__=32, UpperCamelCase__=5, UpperCamelCase__=4, UpperCamelCase__=37, UpperCamelCase__="gelu", UpperCamelCase__=0.1, UpperCamelCase__=0.1, UpperCamelCase__=512, UpperCamelCase__=16, UpperCamelCase__=2, UpperCamelCase__=0.02, UpperCamelCase__=4, ): """simple docstring""" lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = seq_length lowerCAmelCase_ = is_training lowerCAmelCase_ = use_attention_mask lowerCAmelCase_ = use_token_type_ids lowerCAmelCase_ = use_labels lowerCAmelCase_ = vocab_size lowerCAmelCase_ = hidden_size lowerCAmelCase_ = num_hidden_layers lowerCAmelCase_ = num_attention_heads lowerCAmelCase_ = intermediate_size lowerCAmelCase_ = hidden_act lowerCAmelCase_ = hidden_dropout_prob lowerCAmelCase_ = attention_probs_dropout_prob lowerCAmelCase_ = max_position_embeddings lowerCAmelCase_ = type_vocab_size lowerCAmelCase_ = type_sequence_label_size lowerCAmelCase_ = initializer_range lowerCAmelCase_ = num_choices def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) lowerCAmelCase_ = None if self.use_attention_mask: lowerCAmelCase_ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase_ = None if self.use_token_type_ids: lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) lowerCAmelCase_ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=UpperCamelCase__, initializer_range=self.initializer_range, ) return config, input_ids, token_type_ids, attention_mask def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': attention_mask} return config, inputs_dict def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = config_and_inputs lowerCAmelCase_ = True lowerCAmelCase_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) lowerCAmelCase_ = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class A ( __UpperCAmelCase , unittest.TestCase ): __snake_case = True __snake_case = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = FlaxRobertaPreLayerNormModelTester(self ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase_ = model_class_name.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=UpperCamelCase__ ) lowerCAmelCase_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(UpperCamelCase__ ) @require_flax class A ( unittest.TestCase ): @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=UpperCamelCase__ ) lowerCAmelCase_ = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]], dtype=jnp.intaa ) lowerCAmelCase_ = model(UpperCamelCase__ )[0] lowerCAmelCase_ = [1, 11, 5_0265] self.assertEqual(list(output.shape ), UpperCamelCase__ ) # compare the actual values for a slice. lowerCAmelCase_ = np.array( [[[40.4_880, 18.0_199, -5.2_367], [-1.8_877, -4.0_885, 10.7_085], [-2.2_613, -5.6_110, 7.2_665]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], UpperCamelCase__, atol=1E-4 ) ) @slow def SCREAMING_SNAKE_CASE__ ( self ): """simple docstring""" lowerCAmelCase_ = FlaxRobertaPreLayerNormModel.from_pretrained('''andreasmadsen/efficient_mlm_m0.40''', from_pt=UpperCamelCase__ ) lowerCAmelCase_ = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]], dtype=jnp.intaa ) lowerCAmelCase_ = model(UpperCamelCase__ )[0] # compare the actual values for a slice. lowerCAmelCase_ = np.array( [[[0.0_208, -0.0_356, 0.0_237], [-0.1_569, -0.0_411, -0.2_626], [0.1_879, 0.0_125, -0.0_089]]], dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3], UpperCamelCase__, atol=1E-4 ) )
431
from collections.abc import Sequence def __UpperCamelCase ( _A , _A = False ): if not arr: return 0 lowerCAmelCase_ = 0 if allow_empty_subarrays else float('''-inf''' ) lowerCAmelCase_ = 0.0 for num in arr: lowerCAmelCase_ = max(0 if allow_empty_subarrays else num , curr_sum + num ) lowerCAmelCase_ = max(_A , _A ) return max_sum if __name__ == "__main__": from doctest import testmod testmod() _A = [-2, 1, -3, 4, -1, 2, 1, -5, 4] print(f"{max_subarray_sum(nums) = }")
431
1
'''simple docstring''' def lowerCAmelCase( __lowerCamelCase , __lowerCamelCase ): return int((input_a, input_a).count(0 ) != 0 ) def lowerCAmelCase( ): assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
720
def lowerCAmelCase( __lowerCamelCase ): __a = hex_num.strip() if not hex_num: raise ValueError('No value was passed to the function' ) __a = hex_num[0] == '-' if is_negative: __a = hex_num[1:] try: __a = int(__lowerCamelCase , 16 ) except ValueError: raise ValueError('Invalid value was passed to the function' ) __a = '' while int_num > 0: __a = str(int_num % 2 ) + bin_str int_num >>= 1 return int(('-' + bin_str) if is_negative else bin_str ) if __name__ == "__main__": import doctest doctest.testmod()
246
0
'''simple docstring''' import argparse import re from typing import Dict import torch from datasets import Audio, Dataset, load_dataset, load_metric from transformers import AutoFeatureExtractor, pipeline def lowercase_ ( __A : Dataset , __A : Dict[str, str] ) -> int: """simple docstring""" lowercase : List[Any] =args.log_outputs lowercase : Optional[int] ='''_'''.join(args.dataset.split('''/''' ) + [args.config, args.split] ) # load metric lowercase : Dict =load_metric('''wer''' ) lowercase : Optional[int] =load_metric('''cer''' ) # compute metrics lowercase : Optional[Any] =wer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) lowercase : List[str] =cer.compute(references=result['''target'''] , predictions=result['''prediction'''] ) # print & log results lowercase : Tuple =F'WER: {wer_result}\nCER: {cer_result}' print(snake_case_ ) with open(F'{dataset_id}_eval_results.txt' , '''w''' ) as f: f.write(snake_case_ ) # log all results in text file. Possibly interesting for analysis if log_outputs is not None: lowercase : Tuple =F'log_{dataset_id}_predictions.txt' lowercase : Any =F'log_{dataset_id}_targets.txt' with open(snake_case_ , '''w''' ) as p, open(snake_case_ , '''w''' ) as t: # mapping function to write output def write_to_file(__A : Optional[Any] , __A : Optional[Any] ): p.write(F'{i}' + '''\n''' ) p.write(batch['''prediction'''] + '''\n''' ) t.write(F'{i}' + '''\n''' ) t.write(batch['''target'''] + '''\n''' ) result.map(snake_case_ , with_indices=snake_case_ ) def lowercase_ ( __A : str ) -> List[Any]: """simple docstring""" lowercase : Optional[int] ='''[,?.!\-\;\:"“%‘”�—’…–]''' # noqa: W605 IMPORTANT: this should correspond to the chars that were ignored during training lowercase : Optional[Any] =re.sub(snake_case_ , '''''' , text.lower() ) # In addition, we can normalize the target text, e.g. removing new lines characters etc... # note that order is important here! lowercase : Tuple =['''\n\n''', '''\n''', ''' ''', ''' '''] for t in token_sequences_to_ignore: lowercase : str =''' '''.join(text.split(snake_case_ ) ) return text def lowercase_ ( __A : Tuple ) -> Tuple: """simple docstring""" lowercase : Union[str, Any] =load_dataset(args.dataset , args.config , split=args.split , use_auth_token=snake_case_ ) # for testing: only process the first two examples as a test # dataset = dataset.select(range(10)) # load processor lowercase : Dict =AutoFeatureExtractor.from_pretrained(args.model_id ) lowercase : Dict =feature_extractor.sampling_rate # resample audio lowercase : Tuple =dataset.cast_column('''audio''' , Audio(sampling_rate=snake_case_ ) ) # load eval pipeline if args.device is None: lowercase : Tuple =0 if torch.cuda.is_available() else -1 lowercase : int =pipeline('''automatic-speech-recognition''' , model=args.model_id , device=args.device ) # map function to decode audio def map_to_pred(__A : Dict ): lowercase : Optional[Any] =asr( batch['''audio''']['''array'''] , chunk_length_s=args.chunk_length_s , stride_length_s=args.stride_length_s ) lowercase : int =prediction['''text'''] lowercase : Dict =normalize_text(batch['''sentence'''] ) return batch # run inference on all examples lowercase : Tuple =dataset.map(snake_case_ , remove_columns=dataset.column_names ) # compute and log_results # do not change function below log_results(snake_case_ , snake_case_ ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( '--model_id', type=str, required=True, help='Model identifier. Should be loadable with 🤗 Transformers' ) parser.add_argument( '--dataset', type=str, required=True, help='Dataset name to evaluate the `model_id`. Should be loadable with 🤗 Datasets', ) parser.add_argument( '--config', type=str, required=True, help='Config of the dataset. *E.g.* `\'en\'` for Common Voice' ) parser.add_argument('--split', type=str, required=True, help='Split of the dataset. *E.g.* `\'test\'`') parser.add_argument( '--chunk_length_s', type=float, default=None, help='Chunk length in seconds. Defaults to 5 seconds.' ) parser.add_argument( '--stride_length_s', type=float, default=None, help='Stride of the audio chunks. Defaults to 1 second.' ) parser.add_argument( '--log_outputs', action='store_true', help='If defined, write outputs to log file for analysis.' ) parser.add_argument( '--device', type=int, default=None, help='The device to run the pipeline on. -1 for CPU (default), 0 for the first GPU and so on.', ) SCREAMING_SNAKE_CASE = parser.parse_args() main(args)
94
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase_ : Any = { 'configuration_blip_2': [ 'BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Blip2Config', 'Blip2QFormerConfig', 'Blip2VisionConfig', ], 'processing_blip_2': ['Blip2Processor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : int = [ 'BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Blip2Model', 'Blip2QFormerModel', 'Blip2PreTrainedModel', 'Blip2ForConditionalGeneration', 'Blip2VisionModel', ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys lowercase_ : List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
0
# DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch import math from dataclasses import dataclass from typing import Optional, Tuple, Union import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin, SchedulerOutput @dataclass class lowercase__( snake_case__ ): '''simple docstring''' snake_case__ = 42 snake_case__ = 42 class lowercase__( snake_case__ , snake_case__ ): '''simple docstring''' snake_case__ = 1 @register_to_config def __init__( self , __SCREAMING_SNAKE_CASE = 20_00 , __SCREAMING_SNAKE_CASE = 0.15 , __SCREAMING_SNAKE_CASE = 0.01 , __SCREAMING_SNAKE_CASE = 13_48.0 , __SCREAMING_SNAKE_CASE = 1E-5 , __SCREAMING_SNAKE_CASE = 1 , ) -> str: """simple docstring""" UpperCamelCase__ : Any =sigma_max # setable values UpperCamelCase__ : int =None self.set_sigmas(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None) -> torch.FloatTensor: """simple docstring""" return sample def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None) -> int: """simple docstring""" UpperCamelCase__ : Dict =sampling_eps if sampling_eps is not None else self.config.sampling_eps UpperCamelCase__ : Union[str, Any] =torch.linspace(1 , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , device=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = None) -> List[Any]: """simple docstring""" UpperCamelCase__ : List[str] =sigma_min if sigma_min is not None else self.config.sigma_min UpperCamelCase__ : Optional[Any] =sigma_max if sigma_max is not None else self.config.sigma_max UpperCamelCase__ : Optional[int] =sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) UpperCamelCase__ : Any =sigma_min * (sigma_max / sigma_min) ** (self.timesteps / sampling_eps) UpperCamelCase__ : Optional[int] =torch.exp(torch.linspace(math.log(__SCREAMING_SNAKE_CASE) , math.log(__SCREAMING_SNAKE_CASE) , __SCREAMING_SNAKE_CASE)) UpperCamelCase__ : Any =torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE) -> Optional[Any]: """simple docstring""" return torch.where( timesteps == 0 , torch.zeros_like(t.to(timesteps.device)) , self.discrete_sigmas[timesteps - 1].to(timesteps.device) , ) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , ) -> Union[SdeVeOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") UpperCamelCase__ : Optional[Any] =timestep * torch.ones( sample.shape[0] , device=sample.device) # torch.repeat_interleave(timestep, sample.shape[0]) UpperCamelCase__ : Optional[int] =(timestep * (len(self.timesteps) - 1)).long() # mps requires indices to be in the same device, so we use cpu as is the default with cuda UpperCamelCase__ : Any =timesteps.to(self.discrete_sigmas.device) UpperCamelCase__ : str =self.discrete_sigmas[timesteps].to(sample.device) UpperCamelCase__ : int =self.get_adjacent_sigma(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE).to(sample.device) UpperCamelCase__ : Optional[int] =torch.zeros_like(__SCREAMING_SNAKE_CASE) UpperCamelCase__ : Union[str, Any] =(sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods UpperCamelCase__ : Union[str, Any] =diffusion.flatten() while len(diffusion.shape) < len(sample.shape): UpperCamelCase__ : Union[str, Any] =diffusion.unsqueeze(-1) UpperCamelCase__ : Tuple =drift - diffusion**2 * model_output # equation 6: sample noise for the diffusion term of UpperCamelCase__ : List[str] =randn_tensor( sample.shape , layout=sample.layout , generator=__SCREAMING_SNAKE_CASE , device=sample.device , dtype=sample.dtype) UpperCamelCase__ : Optional[Any] =sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? UpperCamelCase__ : List[Any] =prev_sample_mean + diffusion * noise # add impact of diffusion field g if not return_dict: return (prev_sample, prev_sample_mean) return SdeVeOutput(prev_sample=__SCREAMING_SNAKE_CASE , prev_sample_mean=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = True , ) -> Union[SchedulerOutput, Tuple]: """simple docstring""" if self.timesteps is None: raise ValueError( "`self.timesteps` is not set, you need to run 'set_timesteps' after creating the scheduler") # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction UpperCamelCase__ : Union[str, Any] =randn_tensor(sample.shape , layout=sample.layout , generator=__SCREAMING_SNAKE_CASE).to(sample.device) # compute step size from the model_output, the noise, and the snr UpperCamelCase__ : Union[str, Any] =torch.norm(model_output.reshape(model_output.shape[0] , -1) , dim=-1).mean() UpperCamelCase__ : Union[str, Any] =torch.norm(noise.reshape(noise.shape[0] , -1) , dim=-1).mean() UpperCamelCase__ : Union[str, Any] =(self.config.snr * noise_norm / grad_norm) ** 2 * 2 UpperCamelCase__ : List[Any] =step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term UpperCamelCase__ : Tuple =step_size.flatten() while len(step_size.shape) < len(sample.shape): UpperCamelCase__ : List[Any] =step_size.unsqueeze(-1) UpperCamelCase__ : str =sample + step_size * model_output UpperCamelCase__ : List[str] =prev_sample_mean + ((step_size * 2) ** 0.5) * noise if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__SCREAMING_SNAKE_CASE) def UpperCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , ) -> torch.FloatTensor: """simple docstring""" UpperCamelCase__ : List[Any] =timesteps.to(original_samples.device) UpperCamelCase__ : Tuple =self.discrete_sigmas.to(original_samples.device)[timesteps] UpperCamelCase__ : List[str] =( noise * sigmas[:, None, None, None] if noise is not None else torch.randn_like(__SCREAMING_SNAKE_CASE) * sigmas[:, None, None, None] ) UpperCamelCase__ : str =noise + original_samples return noisy_samples def __len__( self) -> Any: """simple docstring""" return self.config.num_train_timesteps
582
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __UpperCAmelCase = { """configuration_squeezebert""": [ """SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """SqueezeBertConfig""", """SqueezeBertOnnxConfig""", ], """tokenization_squeezebert""": ["""SqueezeBertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["""SqueezeBertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ """SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """SqueezeBertForMaskedLM""", """SqueezeBertForMultipleChoice""", """SqueezeBertForQuestionAnswering""", """SqueezeBertForSequenceClassification""", """SqueezeBertForTokenClassification""", """SqueezeBertModel""", """SqueezeBertModule""", """SqueezeBertPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_squeezebert import ( SQUEEZEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, SqueezeBertConfig, SqueezeBertOnnxConfig, ) from .tokenization_squeezebert import SqueezeBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_squeezebert_fast import SqueezeBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_squeezebert import ( SQUEEZEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, SqueezeBertForMaskedLM, SqueezeBertForMultipleChoice, SqueezeBertForQuestionAnswering, SqueezeBertForSequenceClassification, SqueezeBertForTokenClassification, SqueezeBertModel, SqueezeBertModule, SqueezeBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
582
1
'''simple docstring''' import importlib import os from dataclasses import dataclass from enum import Enum from typing import Any, Dict, Optional, Union import torch from ..utils import BaseOutput lowerCAmelCase : List[Any] = 'scheduler_config.json' class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 lowerCAmelCase_ = 3 lowerCAmelCase_ = 4 lowerCAmelCase_ = 5 lowerCAmelCase_ = 6 lowerCAmelCase_ = 7 lowerCAmelCase_ = 8 lowerCAmelCase_ = 9 lowerCAmelCase_ = 10 lowerCAmelCase_ = 11 lowerCAmelCase_ = 12 lowerCAmelCase_ = 13 lowerCAmelCase_ = 14 @dataclass class SCREAMING_SNAKE_CASE__ ( snake_case_): lowerCAmelCase_ = 42 class SCREAMING_SNAKE_CASE__ : lowerCAmelCase_ = SCHEDULER_CONFIG_NAME lowerCAmelCase_ = [] lowerCAmelCase_ = True @classmethod def UpperCAmelCase_ ( cls , A_ = None , A_ = None , A_=False , **A_ , )-> List[Any]: '''simple docstring''' UpperCamelCase , UpperCamelCase , UpperCamelCase = cls.load_config( pretrained_model_name_or_path=A_ , subfolder=A_ , return_unused_kwargs=A_ , return_commit_hash=A_ , **A_ , ) return cls.from_config(A_ , return_unused_kwargs=A_ , **A_ ) def UpperCAmelCase_ ( self , A_ , A_ = False , **A_ )-> Any: '''simple docstring''' self.save_config(save_directory=A_ , push_to_hub=A_ , **A_ ) @property def UpperCAmelCase_ ( self )-> Optional[Any]: '''simple docstring''' return self._get_compatibles() @classmethod def UpperCAmelCase_ ( cls )-> Any: '''simple docstring''' UpperCamelCase = list(set([cls.__name__] + cls._compatibles ) ) UpperCamelCase = importlib.import_module(__name__.split('.' )[0] ) UpperCamelCase = [ getattr(A_ , A_ ) for c in compatible_classes_str if hasattr(A_ , A_ ) ] return compatible_classes
3
'''simple docstring''' lowerCAmelCase : Optional[Any] = { 'A': ['B', 'C', 'E'], 'B': ['A', 'D', 'E'], 'C': ['A', 'F', 'G'], 'D': ['B'], 'E': ['A', 'B', 'D'], 'F': ['C'], 'G': ['C'], } def A_( A : dict , A : str , A : Optional[Any]): UpperCamelCase = set() # keep track of all the paths to be checked UpperCamelCase = [[start]] # return path if start is goal if start == goal: return [start] # keeps looping until all possible paths have been checked while queue: # pop the first path from the queue UpperCamelCase = queue.pop(0) # get the last node from the path UpperCamelCase = path[-1] if node not in explored: UpperCamelCase = graph[node] # go through all neighbour nodes, construct a new path and # push it into the queue for neighbour in neighbours: UpperCamelCase = list(A) new_path.append(A) queue.append(A) # return path if neighbour is goal if neighbour == goal: return new_path # mark node as explored explored.add(A) # in case there's no path between the 2 nodes return [] def A_( A : dict , A : str , A : Tuple): if not graph or start not in graph or target not in graph: return -1 if start == target: return 0 UpperCamelCase = [start] UpperCamelCase = set(A) # Keep tab on distances from `start` node. UpperCamelCase = {start: 0, target: -1} while queue: UpperCamelCase = queue.pop(0) if node == target: UpperCamelCase = ( dist[node] if dist[target] == -1 else min(dist[target] , dist[node]) ) for adjacent in graph[node]: if adjacent not in visited: visited.add(A) queue.append(A) UpperCamelCase = dist[node] + 1 return dist[target] if __name__ == "__main__": print(bfs_shortest_path(demo_graph, 'G', 'D')) # returns ['G', 'C', 'A', 'B', 'D'] print(bfs_shortest_path_distance(demo_graph, 'G', 'D')) # returns 4
3
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase = {"configuration_vit": ["VIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTConfig", "ViTOnnxConfig"]} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ["ViTFeatureExtractor"] __UpperCAmelCase = ["ViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "VIT_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTForImageClassification", "ViTForMaskedImageModeling", "ViTModel", "ViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "TFViTForImageClassification", "TFViTModel", "TFViTPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ "FlaxViTForImageClassification", "FlaxViTModel", "FlaxViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit import VIT_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTConfig, ViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_vit import ViTFeatureExtractor from .image_processing_vit import ViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit import ( VIT_PRETRAINED_MODEL_ARCHIVE_LIST, ViTForImageClassification, ViTForMaskedImageModeling, ViTModel, ViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit import TFViTForImageClassification, TFViTModel, TFViTPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_vit import FlaxViTForImageClassification, FlaxViTModel, FlaxViTPreTrainedModel else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
259
import argparse from pathlib import Path import torch from packaging import version from torch.onnx import export from diffusers import AutoencoderKL __UpperCAmelCase = version.parse(version.parse(torch.__version__).base_version) < version.parse("1.11") def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_=False , ) ->str: """simple docstring""" output_path.parent.mkdir(parents=lowercase_ , exist_ok=lowercase_ ) # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11, # so we check the torch version for backwards compatibility if is_torch_less_than_1_11: export( lowercase_ , lowercase_ , f=output_path.as_posix() , input_names=lowercase_ , output_names=lowercase_ , dynamic_axes=lowercase_ , do_constant_folding=lowercase_ , use_external_data_format=lowercase_ , enable_onnx_checker=lowercase_ , opset_version=lowercase_ , ) else: export( lowercase_ , lowercase_ , f=output_path.as_posix() , input_names=lowercase_ , output_names=lowercase_ , dynamic_axes=lowercase_ , do_constant_folding=lowercase_ , opset_version=lowercase_ , ) @torch.no_grad() def A_ ( lowercase_ , lowercase_ , lowercase_ , lowercase_ = False ) ->Optional[int]: """simple docstring""" SCREAMING_SNAKE_CASE = torch.floataa if fpaa else torch.floataa if fpaa and torch.cuda.is_available(): SCREAMING_SNAKE_CASE = 'cuda' elif fpaa and not torch.cuda.is_available(): raise ValueError('`float16` model export is only supported on GPUs with CUDA' ) else: SCREAMING_SNAKE_CASE = 'cpu' SCREAMING_SNAKE_CASE = Path(lowercase_ ) # VAE DECODER SCREAMING_SNAKE_CASE = AutoencoderKL.from_pretrained(model_path + '/vae' ) SCREAMING_SNAKE_CASE = vae_decoder.config.latent_channels # forward only through the decoder part SCREAMING_SNAKE_CASE = vae_decoder.decode onnx_export( lowercase_ , model_args=( torch.randn(1 , lowercase_ , 2_5 , 2_5 ).to(device=lowercase_ , dtype=lowercase_ ), False, ) , output_path=output_path / 'vae_decoder' / 'model.onnx' , ordered_input_names=['latent_sample', 'return_dict'] , output_names=['sample'] , dynamic_axes={ 'latent_sample': {0: 'batch', 1: 'channels', 2: 'height', 3: 'width'}, } , opset=lowercase_ , ) del vae_decoder if __name__ == "__main__": __UpperCAmelCase = argparse.ArgumentParser() parser.add_argument( "--model_path", type=str, required=True, help="Path to the `diffusers` checkpoint to convert (either a local directory or on the Hub).", ) parser.add_argument("--output_path", type=str, required=True, help="Path to the output model.") parser.add_argument( "--opset", default=1_4, type=int, help="The version of the ONNX operator set to use.", ) parser.add_argument("--fp16", action="store_true", default=False, help="Export the models in `float16` mode") __UpperCAmelCase = parser.parse_args() print(args.output_path) convert_models(args.model_path, args.output_path, args.opset, args.fpaa) print("SD: Done: ONNX")
259
1
import unittest from diffusers import FlaxAutoencoderKL from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import require_flax from .test_modeling_common_flax import FlaxModelTesterMixin if is_flax_available(): import jax @require_flax class lowercase ( UpperCamelCase_,unittest.TestCase ): _a = FlaxAutoencoderKL @property def a__ ( self ) -> Tuple: _A : str = 4 _A : Any = 3 _A : Dict = (32, 32) _A : Optional[Any] = jax.random.PRNGKey(0 ) _A : Tuple = jax.random.uniform(UpperCamelCase__ , ((batch_size, num_channels) + sizes) ) return {"sample": image, "prng_key": prng_key} def a__ ( self ) -> int: _A : List[Any] = { '''block_out_channels''': [32, 64], '''in_channels''': 3, '''out_channels''': 3, '''down_block_types''': ['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''], '''up_block_types''': ['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''], '''latent_channels''': 4, } _A : Dict = self.dummy_input return init_dict, inputs_dict
307
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = OmegaConf.load(_lowercase ) SCREAMING_SNAKE_CASE : int = torch.load(_lowercase , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE : int = list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : List[str] = '''first_stage_model.''' for key in keys: if key.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Any = '''model.diffusion_model.''' for key in keys: if key.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] SCREAMING_SNAKE_CASE : int = config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE : Tuple = config.model.params.unet_config.params SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**_lowercase ).eval() vqvae.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = UNetLDMModel(**_lowercase ).eval() unet.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_lowercase , ) SCREAMING_SNAKE_CASE : Optional[Any] = LDMPipeline(_lowercase , _lowercase , _lowercase ) pipeline.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) __UpperCamelCase : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
248
0
'''simple docstring''' import os from datetime import datetime as dt from github import Github snake_case_ : Any = [ 'good first issue', 'feature request', 'wip', ] def __snake_case ( ): UpperCamelCase = Github(os.environ['''GITHUB_TOKEN''']) UpperCamelCase = g.get_repo('''huggingface/accelerate''') UpperCamelCase = repo.get_issues(state='''open''') for issue in open_issues: UpperCamelCase = sorted([comment for comment in issue.get_comments()], key=lambda _UpperCAmelCase: i.created_at, reverse=_UpperCAmelCase) UpperCamelCase = comments[0] if len(_UpperCAmelCase) > 0 else None UpperCamelCase = dt.utcnow() UpperCamelCase = (current_time - issue.updated_at).days UpperCamelCase = (current_time - issue.created_at).days if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and days_since_updated > 7 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Close issue since it has been 7 days of inactivity since bot mention. issue.edit(state='''closed''') elif ( days_since_updated > 23 and days_since_creation >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels()) ): # Add stale comment issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/accelerate/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''') if __name__ == "__main__": main()
715
'''simple docstring''' import tensorflow as tf from ...tf_utils import shape_list class lowercase__ ( tf.keras.layers.Layer ): '''simple docstring''' def __init__( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=1 , lowerCamelCase__=False , **lowerCamelCase__ ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) UpperCamelCase = vocab_size UpperCamelCase = d_embed UpperCamelCase = d_proj UpperCamelCase = cutoffs + [vocab_size] UpperCamelCase = [0] + self.cutoffs UpperCamelCase = div_val UpperCamelCase = self.cutoffs[0] UpperCamelCase = len(self.cutoffs ) - 1 UpperCamelCase = self.shortlist_size + self.n_clusters UpperCamelCase = keep_order UpperCamelCase = [] UpperCamelCase = [] def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' if self.n_clusters > 0: UpperCamelCase = self.add_weight( shape=(self.n_clusters, self.d_embed) , initializer='''zeros''' , trainable=lowerCamelCase__ , name='''cluster_weight''' ) UpperCamelCase = self.add_weight( shape=(self.n_clusters,) , initializer='''zeros''' , trainable=lowerCamelCase__ , name='''cluster_bias''' ) if self.div_val == 1: for i in range(len(self.cutoffs ) ): if self.d_proj != self.d_embed: UpperCamelCase = self.add_weight( shape=(self.d_embed, self.d_proj) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_projs_._{i}' , ) self.out_projs.append(lowerCamelCase__ ) else: self.out_projs.append(lowerCamelCase__ ) UpperCamelCase = self.add_weight( shape=(self.vocab_size, self.d_embed) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_layers_._{i}_._weight' , ) UpperCamelCase = self.add_weight( shape=(self.vocab_size,) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) else: for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] UpperCamelCase = self.d_embed // (self.div_val**i) UpperCamelCase = self.add_weight( shape=(d_emb_i, self.d_proj) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_projs_._{i}' ) self.out_projs.append(lowerCamelCase__ ) UpperCamelCase = self.add_weight( shape=(r_idx - l_idx, d_emb_i) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_layers_._{i}_._weight' , ) UpperCamelCase = self.add_weight( shape=(r_idx - l_idx,) , initializer='''zeros''' , trainable=lowerCamelCase__ , name=f'out_layers_._{i}_._bias' , ) self.out_layers.append((weight, bias) ) super().build(lowerCamelCase__ ) @staticmethod def UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): '''simple docstring''' UpperCamelCase = x if proj is not None: UpperCamelCase = tf.einsum('''ibd,ed->ibe''' , lowerCamelCase__ , lowerCamelCase__ ) return tf.einsum('''ibd,nd->ibn''' , lowerCamelCase__ , lowerCamelCase__ ) + b @staticmethod def UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = shape_list(lowerCamelCase__ ) UpperCamelCase = tf.range(lp_size[0] , dtype=target.dtype ) UpperCamelCase = tf.stack([r, target] , 1 ) return tf.gather_nd(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__=False ): '''simple docstring''' UpperCamelCase = 0 if self.n_clusters == 0: UpperCamelCase = self._logit(lowerCamelCase__ , self.out_layers[0][0] , self.out_layers[0][1] , self.out_projs[0] ) if target is not None: UpperCamelCase = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=lowerCamelCase__ , logits=lowerCamelCase__ ) UpperCamelCase = tf.nn.log_softmax(lowerCamelCase__ , axis=-1 ) else: UpperCamelCase = shape_list(lowerCamelCase__ ) UpperCamelCase = [] UpperCamelCase = tf.zeros(hidden_sizes[:2] ) for i in range(len(self.cutoffs ) ): UpperCamelCase , UpperCamelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] if target is not None: UpperCamelCase = (target >= l_idx) & (target < r_idx) UpperCamelCase = tf.where(lowerCamelCase__ ) UpperCamelCase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) - l_idx if self.div_val == 1: UpperCamelCase = self.out_layers[0][0][l_idx:r_idx] UpperCamelCase = self.out_layers[0][1][l_idx:r_idx] else: UpperCamelCase = self.out_layers[i][0] UpperCamelCase = self.out_layers[i][1] if i == 0: UpperCamelCase = tf.concat([cur_W, self.cluster_weight] , 0 ) UpperCamelCase = tf.concat([cur_b, self.cluster_bias] , 0 ) UpperCamelCase = self._logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.out_projs[0] ) UpperCamelCase = tf.nn.log_softmax(lowerCamelCase__ ) out.append(head_logprob[..., : self.cutoffs[0]] ) if target is not None: UpperCamelCase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = self._gather_logprob(lowerCamelCase__ , lowerCamelCase__ ) else: UpperCamelCase = self._logit(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , self.out_projs[i] ) UpperCamelCase = tf.nn.log_softmax(lowerCamelCase__ ) UpperCamelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster UpperCamelCase = head_logprob[..., cluster_prob_idx, None] + tail_logprob out.append(lowerCamelCase__ ) if target is not None: UpperCamelCase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = tf.boolean_mask(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = self._gather_logprob(lowerCamelCase__ , lowerCamelCase__ ) cur_logprob += cur_head_logprob[:, self.cutoff_ends[1] + i - 1] if target is not None: loss += tf.scatter_nd(lowerCamelCase__ , -cur_logprob , shape_list(lowerCamelCase__ ) ) UpperCamelCase = tf.concat(lowerCamelCase__ , axis=-1 ) if target is not None: if return_mean: UpperCamelCase = tf.reduce_mean(lowerCamelCase__ ) # Add the training-time loss value to the layer using `self.add_loss()`. self.add_loss(lowerCamelCase__ ) # Log the loss as a metric (we could log arbitrary metrics, # including different metrics for training and inference. self.add_metric(lowerCamelCase__ , name=self.name , aggregation='''mean''' if return_mean else '''''' ) return out
350
0
import unittest import numpy as np import torch from diffusers import DDIMPipeline, DDIMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, slow, torch_device from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __magic_name__ ( _UpperCamelCase , unittest.TestCase ): """simple docstring""" lowerCAmelCase : Union[str, Any] = DDIMPipeline lowerCAmelCase : str = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowerCAmelCase : List[Any] = PipelineTesterMixin.required_optional_params - { '''num_images_per_prompt''', '''latents''', '''callback''', '''callback_steps''', } lowerCAmelCase : List[Any] = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS lowerCAmelCase : Optional[int] = False def lowerCAmelCase ( self : List[str] ): """simple docstring""" torch.manual_seed(0 ) _UpperCamelCase: Dict = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) _UpperCamelCase: Dict = DDIMScheduler() _UpperCamelCase: Dict = {"unet": unet, "scheduler": scheduler} return components def lowerCAmelCase ( self : str , _lowercase : List[str] , _lowercase : Tuple=0 ): """simple docstring""" if str(_lowercase ).startswith('''mps''' ): _UpperCamelCase: Tuple = torch.manual_seed(_lowercase ) else: _UpperCamelCase: Dict = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _UpperCamelCase: str = { "batch_size": 1, "generator": generator, "num_inference_steps": 2, "output_type": "numpy", } return inputs def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: str = "cpu" _UpperCamelCase: Tuple = self.get_dummy_components() _UpperCamelCase: Dict = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _UpperCamelCase: int = self.get_dummy_inputs(_lowercase ) _UpperCamelCase: Any = pipe(**_lowercase ).images _UpperCamelCase: Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 32, 32, 3) ) _UpperCamelCase: Optional[int] = np.array( [1.0_00E00, 5.7_17E-01, 4.7_17E-01, 1.0_00E00, 0.0_00E00, 1.0_00E00, 3.0_00E-04, 0.0_00E00, 9.0_00E-04] ) _UpperCamelCase: str = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1E-3 ) def lowerCAmelCase ( self : Dict ): """simple docstring""" super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" super().test_save_load_local(expected_max_difference=3E-3 ) def lowerCAmelCase ( self : List[Any] ): """simple docstring""" super().test_save_load_optional_components(expected_max_difference=3E-3 ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: List[str] = "google/ddpm-cifar10-32" _UpperCamelCase: Optional[int] = UNetaDModel.from_pretrained(_lowercase ) _UpperCamelCase: Union[str, Any] = DDIMScheduler() _UpperCamelCase: Any = DDIMPipeline(unet=_lowercase , scheduler=_lowercase ) ddim.to(_lowercase ) ddim.set_progress_bar_config(disable=_lowercase ) _UpperCamelCase: Optional[int] = torch.manual_seed(0 ) _UpperCamelCase: Optional[Any] = ddim(generator=_lowercase , eta=0.0 , output_type='''numpy''' ).images _UpperCamelCase: Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) _UpperCamelCase: str = np.array([0.1723, 0.1617, 0.1600, 0.1626, 0.1497, 0.1513, 0.1505, 0.1442, 0.1453] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: int = "google/ddpm-ema-bedroom-256" _UpperCamelCase: List[Any] = UNetaDModel.from_pretrained(_lowercase ) _UpperCamelCase: Dict = DDIMScheduler.from_pretrained(_lowercase ) _UpperCamelCase: List[str] = DDIMPipeline(unet=_lowercase , scheduler=_lowercase ) ddpm.to(_lowercase ) ddpm.set_progress_bar_config(disable=_lowercase ) _UpperCamelCase: str = torch.manual_seed(0 ) _UpperCamelCase: List[str] = ddpm(generator=_lowercase , output_type='''numpy''' ).images _UpperCamelCase: str = image[0, -3:, -3:, -1] assert image.shape == (1, 256, 256, 3) _UpperCamelCase: List[str] = np.array([0.0060, 0.0201, 0.0344, 0.0024, 0.0018, 0.0002, 0.0022, 0.0000, 0.0069] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
271
import argparse import json import os import numpy as np import PIL import requests import tensorflow.keras.applications.efficientnet as efficientnet import torch from huggingface_hub import hf_hub_download from PIL import Image from tensorflow.keras.preprocessing import image from transformers import ( EfficientNetConfig, EfficientNetForImageClassification, EfficientNetImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = { '''b0''': efficientnet.EfficientNetBa, '''b1''': efficientnet.EfficientNetBa, '''b2''': efficientnet.EfficientNetBa, '''b3''': efficientnet.EfficientNetBa, '''b4''': efficientnet.EfficientNetBa, '''b5''': efficientnet.EfficientNetBa, '''b6''': efficientnet.EfficientNetBa, '''b7''': efficientnet.EfficientNetBa, } lowerCAmelCase__ = { '''b0''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.0, '''image_size''': 2_2_4, '''dropout_rate''': 0.2, '''dw_padding''': [], }, '''b1''': { '''hidden_dim''': 1_2_8_0, '''width_coef''': 1.0, '''depth_coef''': 1.1, '''image_size''': 2_4_0, '''dropout_rate''': 0.2, '''dw_padding''': [1_6], }, '''b2''': { '''hidden_dim''': 1_4_0_8, '''width_coef''': 1.1, '''depth_coef''': 1.2, '''image_size''': 2_6_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 8, 1_6], }, '''b3''': { '''hidden_dim''': 1_5_3_6, '''width_coef''': 1.2, '''depth_coef''': 1.4, '''image_size''': 3_0_0, '''dropout_rate''': 0.3, '''dw_padding''': [5, 1_8], }, '''b4''': { '''hidden_dim''': 1_7_9_2, '''width_coef''': 1.4, '''depth_coef''': 1.8, '''image_size''': 3_8_0, '''dropout_rate''': 0.4, '''dw_padding''': [6], }, '''b5''': { '''hidden_dim''': 2_0_4_8, '''width_coef''': 1.6, '''depth_coef''': 2.2, '''image_size''': 4_5_6, '''dropout_rate''': 0.4, '''dw_padding''': [1_3, 2_7], }, '''b6''': { '''hidden_dim''': 2_3_0_4, '''width_coef''': 1.8, '''depth_coef''': 2.6, '''image_size''': 5_2_8, '''dropout_rate''': 0.5, '''dw_padding''': [3_1], }, '''b7''': { '''hidden_dim''': 2_5_6_0, '''width_coef''': 2.0, '''depth_coef''': 3.1, '''image_size''': 6_0_0, '''dropout_rate''': 0.5, '''dw_padding''': [1_8], }, } def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : str = EfficientNetConfig() lowercase__ : str = CONFIG_MAP[model_name]["hidden_dim"] lowercase__ : Union[str, Any] = CONFIG_MAP[model_name]["width_coef"] lowercase__ : List[Any] = CONFIG_MAP[model_name]["depth_coef"] lowercase__ : Optional[int] = CONFIG_MAP[model_name]["image_size"] lowercase__ : Tuple = CONFIG_MAP[model_name]["dropout_rate"] lowercase__ : Dict = CONFIG_MAP[model_name]["dw_padding"] lowercase__ : str = "huggingface/label-files" lowercase__ : List[Any] = "imagenet-1k-id2label.json" lowercase__ : Any = 1_000 lowercase__ : Any = json.load(open(hf_hub_download(lowerCamelCase__ , lowerCamelCase__ , repo_type="dataset" ) , "r" ) ) lowercase__ : Optional[int] = {int(lowerCamelCase__ ): v for k, v in idalabel.items()} lowercase__ : Tuple = idalabel lowercase__ : Dict = {v: k for k, v in idalabel.items()} return config def __lowerCamelCase ( ): """simple docstring""" lowercase__ : List[Any] = "http://images.cocodataset.org/val2017/000000039769.jpg" lowercase__ : Optional[int] = Image.open(requests.get(lowerCamelCase__ , stream=lowerCamelCase__ ).raw ) return im def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Any = CONFIG_MAP[model_name]["image_size"] lowercase__ : List[str] = EfficientNetImageProcessor( size={"height": size, "width": size} , image_mean=[0.485, 0.456, 0.406] , image_std=[0.47853944, 0.4732864, 0.47434163] , do_center_crop=lowerCamelCase__ , ) return preprocessor def __lowerCamelCase ( lowerCamelCase__ ): """simple docstring""" lowercase__ : Tuple = [v.split("_" )[0].split("block" )[1] for v in original_param_names if v.startswith("block" )] lowercase__ : List[str] = sorted(set(lowerCamelCase__ ) ) lowercase__ : Optional[int] = len(lowerCamelCase__ ) lowercase__ : Optional[int] = {b: str(lowerCamelCase__ ) for b, i in zip(lowerCamelCase__ , range(lowerCamelCase__ ) )} lowercase__ : Tuple = [] rename_keys.append(("stem_conv/kernel:0", "embeddings.convolution.weight") ) rename_keys.append(("stem_bn/gamma:0", "embeddings.batchnorm.weight") ) rename_keys.append(("stem_bn/beta:0", "embeddings.batchnorm.bias") ) rename_keys.append(("stem_bn/moving_mean:0", "embeddings.batchnorm.running_mean") ) rename_keys.append(("stem_bn/moving_variance:0", "embeddings.batchnorm.running_var") ) for b in block_names: lowercase__ : Optional[Any] = block_name_mapping[b] rename_keys.append((F"""block{b}_expand_conv/kernel:0""", F"""encoder.blocks.{hf_b}.expansion.expand_conv.weight""") ) rename_keys.append((F"""block{b}_expand_bn/gamma:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.weight""") ) rename_keys.append((F"""block{b}_expand_bn/beta:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.bias""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_mean""") ) rename_keys.append( (F"""block{b}_expand_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.expansion.expand_bn.running_var""") ) rename_keys.append( (F"""block{b}_dwconv/depthwise_kernel:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_conv.weight""") ) rename_keys.append((F"""block{b}_bn/gamma:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.weight""") ) rename_keys.append((F"""block{b}_bn/beta:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.bias""") ) rename_keys.append( (F"""block{b}_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_mean""") ) rename_keys.append( (F"""block{b}_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.depthwise_conv.depthwise_norm.running_var""") ) rename_keys.append((F"""block{b}_se_reduce/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.weight""") ) rename_keys.append((F"""block{b}_se_reduce/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.reduce.bias""") ) rename_keys.append((F"""block{b}_se_expand/kernel:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.weight""") ) rename_keys.append((F"""block{b}_se_expand/bias:0""", F"""encoder.blocks.{hf_b}.squeeze_excite.expand.bias""") ) rename_keys.append( (F"""block{b}_project_conv/kernel:0""", F"""encoder.blocks.{hf_b}.projection.project_conv.weight""") ) rename_keys.append((F"""block{b}_project_bn/gamma:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.weight""") ) rename_keys.append((F"""block{b}_project_bn/beta:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.bias""") ) rename_keys.append( (F"""block{b}_project_bn/moving_mean:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_mean""") ) rename_keys.append( (F"""block{b}_project_bn/moving_variance:0""", F"""encoder.blocks.{hf_b}.projection.project_bn.running_var""") ) rename_keys.append(("top_conv/kernel:0", "encoder.top_conv.weight") ) rename_keys.append(("top_bn/gamma:0", "encoder.top_bn.weight") ) rename_keys.append(("top_bn/beta:0", "encoder.top_bn.bias") ) rename_keys.append(("top_bn/moving_mean:0", "encoder.top_bn.running_mean") ) rename_keys.append(("top_bn/moving_variance:0", "encoder.top_bn.running_var") ) lowercase__ : Any = {} for item in rename_keys: if item[0] in original_param_names: lowercase__ : Optional[Any] = "efficientnet." + item[1] lowercase__ : str = "classifier.weight" lowercase__ : Optional[int] = "classifier.bias" return key_mapping def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" for key, value in tf_params.items(): if "normalization" in key: continue lowercase__ : List[Any] = key_mapping[key] if "_conv" in key and "kernel" in key: lowercase__ : Optional[int] = torch.from_numpy(lowerCamelCase__ ).permute(3 , 2 , 0 , 1 ) elif "depthwise_kernel" in key: lowercase__ : str = torch.from_numpy(lowerCamelCase__ ).permute(2 , 3 , 0 , 1 ) elif "kernel" in key: lowercase__ : Tuple = torch.from_numpy(np.transpose(lowerCamelCase__ ) ) else: lowercase__ : Optional[Any] = torch.from_numpy(lowerCamelCase__ ) # Replace HF parameters with original TF model parameters assert hf_params[hf_key].shape == new_hf_value.shape hf_params[hf_key].copy_(lowerCamelCase__ ) @torch.no_grad() def __lowerCamelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowercase__ : str = model_classes[model_name]( include_top=lowerCamelCase__ , weights="imagenet" , input_tensor=lowerCamelCase__ , input_shape=lowerCamelCase__ , pooling=lowerCamelCase__ , classes=1_000 , classifier_activation="softmax" , ) lowercase__ : List[str] = original_model.trainable_variables lowercase__ : Optional[int] = original_model.non_trainable_variables lowercase__ : str = {param.name: param.numpy() for param in tf_params} for param in tf_non_train_params: lowercase__ : List[Any] = param.numpy() lowercase__ : Optional[Any] = list(tf_params.keys() ) # Load HuggingFace model lowercase__ : List[Any] = get_efficientnet_config(lowerCamelCase__ ) lowercase__ : Union[str, Any] = EfficientNetForImageClassification(lowerCamelCase__ ).eval() lowercase__ : List[Any] = hf_model.state_dict() # Create src-to-dst parameter name mapping dictionary print("Converting parameters..." ) lowercase__ : Optional[Any] = rename_keys(lowerCamelCase__ ) replace_params(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # Initialize preprocessor and preprocess input image lowercase__ : str = convert_image_processor(lowerCamelCase__ ) lowercase__ : int = preprocessor(images=prepare_img() , return_tensors="pt" ) # HF model inference hf_model.eval() with torch.no_grad(): lowercase__ : Optional[Any] = hf_model(**lowerCamelCase__ ) lowercase__ : Dict = outputs.logits.detach().numpy() # Original model inference lowercase__ : Tuple = False lowercase__ : Dict = CONFIG_MAP[model_name]["image_size"] lowercase__ : Any = prepare_img().resize((image_size, image_size) , resample=PIL.Image.NEAREST ) lowercase__ : Dict = image.img_to_array(lowerCamelCase__ ) lowercase__ : Optional[int] = np.expand_dims(lowerCamelCase__ , axis=0 ) lowercase__ : Dict = original_model.predict(lowerCamelCase__ ) # Check whether original and HF model outputs match -> np.allclose assert np.allclose(lowerCamelCase__ , lowerCamelCase__ , atol=1e-3 ), "The predicted logits are not the same." print("Model outputs match!" ) if save_model: # Create folder to save model if not os.path.isdir(lowerCamelCase__ ): os.mkdir(lowerCamelCase__ ) # Save converted model and image processor hf_model.save_pretrained(lowerCamelCase__ ) preprocessor.save_pretrained(lowerCamelCase__ ) if push_to_hub: # Push model and image processor to hub print(F"""Pushing converted {model_name} to the hub...""" ) lowercase__ : List[Any] = F"""efficientnet-{model_name}""" preprocessor.push_to_hub(lowerCamelCase__ ) hf_model.push_to_hub(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''b0''', type=str, help='''Version name of the EfficientNet model you want to convert, select from [b0, b1, b2, b3, b4, b5, b6, b7].''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default='''hf_model''', type=str, help='''Path to the output PyTorch model directory.''', ) parser.add_argument('''--save_model''', action='''store_true''', help='''Save model to local''') parser.add_argument('''--push_to_hub''', action='''store_true''', help='''Push model and image processor to the hub''') lowerCAmelCase__ = parser.parse_args() convert_efficientnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.save_model, args.push_to_hub)
496
0
from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : Union[str, Any] = { 'google/bit-50': 'https://huggingface.co/google/bit-50/resolve/main/config.json', } class lowerCamelCase ( __snake_case , __snake_case ): __lowerCamelCase = 'bit' __lowerCamelCase = ['preactivation', 'bottleneck'] __lowerCamelCase = ['SAME', 'VALID'] def __init__( self , __lowerCamelCase=3 , __lowerCamelCase=64 , __lowerCamelCase=[2_56, 5_12, 10_24, 20_48] , __lowerCamelCase=[3, 4, 6, 3] , __lowerCamelCase="preactivation" , __lowerCamelCase="relu" , __lowerCamelCase=None , __lowerCamelCase=32 , __lowerCamelCase=0.0 , __lowerCamelCase=False , __lowerCamelCase=32 , __lowerCamelCase=1 , __lowerCamelCase=None , __lowerCamelCase=None , **__lowerCamelCase , ) -> Tuple: '''simple docstring''' super().__init__(**__lowerCamelCase ) if layer_type not in self.layer_types: raise ValueError(F"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case: Any = global_padding.upper() else: raise ValueError(F"Padding strategy {global_padding} not supported" ) snake_case: str = num_channels snake_case: Any = embedding_size snake_case: int = hidden_sizes snake_case: Tuple = depths snake_case: Union[str, Any] = layer_type snake_case: Tuple = hidden_act snake_case: Optional[int] = global_padding snake_case: List[str] = num_groups snake_case: Optional[int] = drop_path_rate snake_case: Optional[int] = embedding_dynamic_padding snake_case: Tuple = output_stride snake_case: str = width_factor snake_case: List[str] = ["""stem"""] + [F"stage{idx}" for idx in range(1 , len(__lowerCamelCase ) + 1 )] snake_case , snake_case: Union[str, Any] = get_aligned_output_features_output_indices( out_features=__lowerCamelCase , out_indices=__lowerCamelCase , stage_names=self.stage_names )
164
import argparse import torch from diffusers.pipelines.stable_diffusion.convert_from_ckpt import download_from_original_stable_diffusion_ckpt if __name__ == "__main__": __lowerCAmelCase : Any = argparse.ArgumentParser() parser.add_argument( '--checkpoint_path', default=None, type=str, required=True, help='Path to the checkpoint to convert.' ) # !wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml parser.add_argument( '--original_config_file', default=None, type=str, help='The YAML config file corresponding to the original architecture.', ) parser.add_argument( '--num_in_channels', default=None, type=int, help='The number of input channels. If `None` number of input channels will be automatically inferred.', ) parser.add_argument( '--scheduler_type', default='pndm', type=str, help='Type of scheduler to use. Should be one of [\'pndm\', \'lms\', \'ddim\', \'euler\', \'euler-ancestral\', \'dpm\']', ) parser.add_argument( '--pipeline_type', default=None, type=str, help=( 'The pipeline type. One of \'FrozenOpenCLIPEmbedder\', \'FrozenCLIPEmbedder\', \'PaintByExample\'' '. If `None` pipeline will be automatically inferred.' ), ) parser.add_argument( '--image_size', default=None, type=int, help=( 'The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2' ' Base. Use 768 for Stable Diffusion v2.' ), ) parser.add_argument( '--prediction_type', default=None, type=str, help=( 'The prediction type that the model was trained on. Use \'epsilon\' for Stable Diffusion v1.X and Stable' ' Diffusion v2 Base. Use \'v_prediction\' for Stable Diffusion v2.' ), ) parser.add_argument( '--extract_ema', action='store_true', help=( 'Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights' ' or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield' ' higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning.' ), ) parser.add_argument( '--upcast_attention', action='store_true', help=( 'Whether the attention computation should always be upcasted. This is necessary when running stable' ' diffusion 2.1.' ), ) parser.add_argument( '--from_safetensors', action='store_true', help='If `--checkpoint_path` is in `safetensors` format, load checkpoint with safetensors instead of PyTorch.', ) parser.add_argument( '--to_safetensors', action='store_true', help='Whether to store pipeline in safetensors format or not.', ) parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument('--device', type=str, help='Device to use (e.g. cpu, cuda:0, cuda:1, etc.)') parser.add_argument( '--stable_unclip', type=str, default=None, required=False, help='Set if this is a stable unCLIP model. One of \'txt2img\' or \'img2img\'.', ) parser.add_argument( '--stable_unclip_prior', type=str, default=None, required=False, help='Set if this is a stable unCLIP txt2img model. Selects which prior to use. If `--stable_unclip` is set to `txt2img`, the karlo prior (https://huggingface.co/kakaobrain/karlo-v1-alpha/tree/main/prior) is selected by default.', ) parser.add_argument( '--clip_stats_path', type=str, help='Path to the clip stats file. Only required if the stable unclip model\'s config specifies `model.params.noise_aug_config.params.clip_stats_path`.', required=False, ) parser.add_argument( '--controlnet', action='store_true', default=None, help='Set flag if this is a controlnet checkpoint.' ) parser.add_argument('--half', action='store_true', help='Save weights in half precision.') parser.add_argument( '--vae_path', type=str, default=None, required=False, help='Set to a path, hub id to an already converted vae to not convert it again.', ) __lowerCAmelCase : str = parser.parse_args() __lowerCAmelCase : Union[str, Any] = download_from_original_stable_diffusion_ckpt( checkpoint_path=args.checkpoint_path, original_config_file=args.original_config_file, image_size=args.image_size, prediction_type=args.prediction_type, model_type=args.pipeline_type, extract_ema=args.extract_ema, scheduler_type=args.scheduler_type, num_in_channels=args.num_in_channels, upcast_attention=args.upcast_attention, from_safetensors=args.from_safetensors, device=args.device, stable_unclip=args.stable_unclip, stable_unclip_prior=args.stable_unclip_prior, clip_stats_path=args.clip_stats_path, controlnet=args.controlnet, vae_path=args.vae_path, ) if args.half: pipe.to(torch_dtype=torch.floataa) if args.controlnet: # only save the controlnet model pipe.controlnet.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors) else: pipe.save_pretrained(args.dump_path, safe_serialization=args.to_safetensors)
164
1
from ...configuration_utils import PretrainedConfig from ...utils import logging _lowercase = logging.get_logger(__name__) _lowercase = {"ctrl": "https://huggingface.co/ctrl/resolve/main/config.json"} class _UpperCAmelCase ( A__ ): UpperCamelCase__ = '''ctrl''' UpperCamelCase__ = ['''past_key_values'''] UpperCamelCase__ = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self , a__=2_4_6_5_3_4 , a__=2_5_6 , a__=1_2_8_0 , a__=8_1_9_2 , a__=4_8 , a__=1_6 , a__=0.1 , a__=0.1 , a__=1e-6 , a__=0.0_2 , a__=True , **a__ , ): A__ = vocab_size A__ = n_positions A__ = n_embd A__ = n_layer A__ = n_head A__ = dff A__ = resid_pdrop A__ = embd_pdrop A__ = layer_norm_epsilon A__ = initializer_range A__ = use_cache super().__init__(**a__)
632
from __future__ import annotations def lowerCAmelCase__ ( UpperCamelCase_ : dict , UpperCamelCase_ : str )-> set[str]: A__ , A__ = set(UpperCamelCase_ ), [start] while stack: A__ = stack.pop() explored.add(UpperCamelCase_ ) # Differences from BFS: # 1) pop last element instead of first one # 2) add adjacent elements to stack without exploring them for adj in reversed(graph[v] ): if adj not in explored: stack.append(UpperCamelCase_ ) return explored _lowercase = { "A": ["B", "C", "D"], "B": ["A", "D", "E"], "C": ["A", "F"], "D": ["B", "D"], "E": ["B", "F"], "F": ["C", "E", "G"], "G": ["F"], } if __name__ == "__main__": import doctest doctest.testmod() print(depth_first_search(G, "A"))
632
1
'''simple docstring''' from __future__ import annotations from collections.abc import Iterator class __A : """simple docstring""" def __init__( self , _lowerCamelCase )-> None: lowercase__ = value lowercase__ = None lowercase__ = None class __A : """simple docstring""" def __init__( self , _lowerCamelCase )-> None: lowercase__ = tree def snake_case_( self , _lowerCamelCase )-> int: if node is None: return 0 return node.value + ( self.depth_first_search(node.left ) + self.depth_first_search(node.right ) ) def __iter__( self )-> Iterator[int]: yield self.depth_first_search(self.tree ) if __name__ == "__main__": import doctest doctest.testmod()
709
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _lowerCAmelCase ( lowercase : int ) ->Tuple: """simple docstring""" def is_in_circle(lowercase : float , lowercase : float ) -> bool: lowercase__ = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle lowercase__ = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(lowercase ) ) # The ratio of the area for circle to square is pi/4. lowercase__ = proportion * 4 print(F'''The estimated value of pi is {pi_estimate}''' ) print(F'''The numpy value of pi is {pi}''' ) print(F'''The total error is {abs(pi - pi_estimate )}''' ) def _lowerCAmelCase ( lowercase : int , lowercase : Callable[[float], float] , lowercase : float = 0.0 , lowercase : float = 1.0 , ) ->float: """simple docstring""" return mean( function_to_integrate(uniform(lowercase , lowercase ) ) for _ in range(lowercase ) ) * (max_value - min_value) def _lowerCAmelCase ( lowercase : int , lowercase : float = 0.0 , lowercase : float = 1.0 ) ->None: """simple docstring""" def identity_function(lowercase : float ) -> float: return x lowercase__ = area_under_curve_estimator( lowercase , lowercase , lowercase , lowercase ) lowercase__ = (max_value * max_value - min_value * min_value) / 2 print('''******************''' ) print(F'''Estimating area under y=x where x varies from {min_value} to {max_value}''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {expected_value}''' ) print(F'''Total error is {abs(estimated_value - expected_value )}''' ) print('''******************''' ) def _lowerCAmelCase ( lowercase : int ) ->None: """simple docstring""" def function_to_integrate(lowercase : float ) -> float: return sqrt(4.0 - x * x ) lowercase__ = area_under_curve_estimator( lowercase , lowercase , 0.0 , 2.0 ) print('''******************''' ) print('''Estimating pi using area_under_curve_estimator''' ) print(F'''Estimated value is {estimated_value}''' ) print(F'''Expected value is {pi}''' ) print(F'''Total error is {abs(estimated_value - pi )}''' ) print('''******************''' ) if __name__ == "__main__": import doctest doctest.testmod()
318
0
'''simple docstring''' from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging UpperCAmelCase__ : int = logging.get_logger(__name__) class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :List[str] = ['pixel_values'] def __init__( self : Union[str, Any] , __magic_name__ : bool = True , __magic_name__ : int = 32 , __magic_name__ : Optional[Any]=PILImageResampling.BILINEAR , __magic_name__ : bool = True , **__magic_name__ : List[Any] , ): """simple docstring""" lowerCAmelCase__ = do_resize lowerCAmelCase__ = do_rescale lowerCAmelCase__ = size_divisor lowerCAmelCase__ = resample super().__init__(**__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : int , __magic_name__ : Optional[Any] , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Union[str, Any] ): """simple docstring""" lowerCAmelCase__ ,lowerCAmelCase__ = get_image_size(__magic_name__ ) # Rounds the height and width down to the closest multiple of size_divisor lowerCAmelCase__ = height // size_divisor * size_divisor lowerCAmelCase__ = width // size_divisor * size_divisor lowerCAmelCase__ = resize(__magic_name__ , (new_h, new_w) , resample=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) return image def __SCREAMING_SNAKE_CASE ( self : List[str] , __magic_name__ : np.ndarray , __magic_name__ : float , __magic_name__ : Optional[ChannelDimension] = None , **__magic_name__ : Optional[int] ): """simple docstring""" return rescale(image=__magic_name__ , scale=__magic_name__ , data_format=__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : int , __magic_name__ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[int] = None , __magic_name__ : int=None , __magic_name__ : Optional[bool] = None , __magic_name__ : Optional[Union[TensorType, str]] = None , __magic_name__ : ChannelDimension = ChannelDimension.FIRST , **__magic_name__ : Optional[Any] , ): """simple docstring""" lowerCAmelCase__ = do_resize if do_resize is not None else self.do_resize lowerCAmelCase__ = do_rescale if do_rescale is not None else self.do_rescale lowerCAmelCase__ = size_divisor if size_divisor is not None else self.size_divisor lowerCAmelCase__ = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError("size_divisor is required for resizing" ) lowerCAmelCase__ = make_list_of_images(__magic_name__ ) if not valid_images(__magic_name__ ): raise ValueError("Invalid image(s)" ) # All transformations expect numpy arrays. lowerCAmelCase__ = [to_numpy_array(__magic_name__ ) for img in images] if do_resize: lowerCAmelCase__ = [self.resize(__magic_name__ , size_divisor=__magic_name__ , resample=__magic_name__ ) for image in images] if do_rescale: lowerCAmelCase__ = [self.rescale(__magic_name__ , scale=1 / 255 ) for image in images] lowerCAmelCase__ = [to_channel_dimension_format(__magic_name__ , __magic_name__ ) for image in images] lowerCAmelCase__ = {"pixel_values": images} return BatchFeature(data=__magic_name__ , tensor_type=__magic_name__ )
48
"""simple docstring""" import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def __magic_name__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : int , _lowerCamelCase : str=True , _lowerCamelCase : Optional[int]="pt" ): __a : List[str] = {"""add_prefix_space""": True} if isinstance(_lowerCamelCase , _lowerCamelCase ) and not line.startswith(""" """ ) else {} __a : List[Any] = padding_side return tokenizer( [line] , max_length=_lowerCamelCase , padding="""max_length""" if pad_to_max_length else None , truncation=_lowerCamelCase , return_tensors=_lowerCamelCase , add_special_tokens=_lowerCamelCase , **_lowerCamelCase , ) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : List[Any] , _lowerCamelCase : Tuple=None , ): __a : Optional[Any] = input_ids.ne(_lowerCamelCase ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class SCREAMING_SNAKE_CASE__ ( __snake_case ): def __init__(self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase="train" , _lowercase=None , _lowercase=None , _lowercase=None , _lowercase="" , ): '''simple docstring''' super().__init__() __a : Union[str, Any] = Path(_lowercase ).joinpath(type_path + """.source""" ) __a : List[Any] = Path(_lowercase ).joinpath(type_path + """.target""" ) __a : Union[str, Any] = self.get_char_lens(self.src_file ) __a : int = max_source_length __a : Optional[int] = max_target_length assert min(self.src_lens ) > 0, F'''found empty line in {self.src_file}''' __a : Tuple = tokenizer __a : int = prefix if n_obs is not None: __a : Optional[Any] = self.src_lens[:n_obs] __a : Dict = src_lang __a : Union[str, Any] = tgt_lang def __len__(self ): '''simple docstring''' return len(self.src_lens ) def __getitem__(self , _lowercase ): '''simple docstring''' __a : Tuple = index + 1 # linecache starts at 1 __a : Optional[Any] = self.prefix + linecache.getline(str(self.src_file ) , _lowercase ).rstrip("""\n""" ) __a : Dict = linecache.getline(str(self.tgt_file ) , _lowercase ).rstrip("""\n""" ) assert source_line, F'''empty source line for index {index}''' assert tgt_line, F'''empty tgt line for index {index}''' # Need to add eos token manually for T5 if isinstance(self.tokenizer , _lowercase ): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __a : Optional[Any] = ( self.tokenizer.question_encoder if isinstance(self.tokenizer , _lowercase ) else self.tokenizer ) __a : str = self.tokenizer.generator if isinstance(self.tokenizer , _lowercase ) else self.tokenizer __a : Dict = encode_line(_lowercase , _lowercase , self.max_source_length , """right""" ) __a : Dict = encode_line(_lowercase , _lowercase , self.max_target_length , """right""" ) __a : Dict = source_inputs["""input_ids"""].squeeze() __a : Tuple = target_inputs["""input_ids"""].squeeze() __a : List[str] = source_inputs["""attention_mask"""].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase__(_lowercase ): '''simple docstring''' return [len(_lowercase ) for x in Path(_lowercase ).open().readlines()] def lowerCAmelCase__(self , _lowercase ): '''simple docstring''' __a : Optional[int] = torch.stack([x["""input_ids"""] for x in batch] ) __a : Any = torch.stack([x["""attention_mask"""] for x in batch] ) __a : Optional[Any] = torch.stack([x["""decoder_input_ids"""] for x in batch] ) __a : str = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) __a : Tuple = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer , _lowercase ) else self.tokenizer.pad_token_id ) __a : Union[str, Any] = trim_batch(_lowercase , _lowercase ) __a , __a : Tuple = trim_batch(_lowercase , _lowercase , attention_mask=_lowercase ) __a : Optional[Any] = { """input_ids""": source_ids, """attention_mask""": source_mask, """decoder_input_ids""": y, } return batch lowercase__ = getLogger(__name__) def __magic_name__ ( _lowerCamelCase : List[List] ): return list(itertools.chain.from_iterable(_lowerCamelCase ) ) def __magic_name__ ( _lowerCamelCase : str ): __a : Dict = get_git_info() save_json(_lowerCamelCase , os.path.join(_lowerCamelCase , """git_log.json""" ) ) def __magic_name__ ( _lowerCamelCase : List[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str]=4 , **_lowerCamelCase : List[str] ): with open(_lowerCamelCase , """w""" ) as f: json.dump(_lowerCamelCase , _lowerCamelCase , indent=_lowerCamelCase , **_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Optional[int] ): with open(_lowerCamelCase ) as f: return json.load(_lowerCamelCase ) def __magic_name__ ( ): __a : Dict = git.Repo(search_parent_directories=_lowerCamelCase ) __a : Any = { """repo_id""": str(_lowerCamelCase ), """repo_sha""": str(repo.head.object.hexsha ), """repo_branch""": str(repo.active_branch ), """hostname""": str(socket.gethostname() ), } return repo_infos def __magic_name__ ( _lowerCamelCase : Callable , _lowerCamelCase : Iterable ): return list(map(_lowerCamelCase , _lowerCamelCase ) ) def __magic_name__ ( _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] ): with open(_lowerCamelCase , """wb""" ) as f: return pickle.dump(_lowerCamelCase , _lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : Any ): def remove_articles(_lowerCamelCase : Optional[Any] ): return re.sub(r"""\b(a|an|the)\b""" , """ """ , _lowerCamelCase ) def white_space_fix(_lowerCamelCase : Union[str, Any] ): return " ".join(text.split() ) def remove_punc(_lowerCamelCase : Dict ): __a : List[str] = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(_lowerCamelCase : List[str] ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(_lowerCamelCase ) ) ) ) def __magic_name__ ( _lowerCamelCase : Optional[Any] , _lowerCamelCase : Dict ): __a : Tuple = normalize_answer(_lowerCamelCase ).split() __a : Tuple = normalize_answer(_lowerCamelCase ).split() __a : Tuple = Counter(_lowerCamelCase ) & Counter(_lowerCamelCase ) __a : Any = sum(common.values() ) if num_same == 0: return 0 __a : Union[str, Any] = 1.0 * num_same / len(_lowerCamelCase ) __a : Tuple = 1.0 * num_same / len(_lowerCamelCase ) __a : Tuple = (2 * precision * recall) / (precision + recall) return fa def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : Dict ): return normalize_answer(_lowerCamelCase ) == normalize_answer(_lowerCamelCase ) def __magic_name__ ( _lowerCamelCase : List[str] , _lowerCamelCase : List[str] ): assert len(_lowerCamelCase ) == len(_lowerCamelCase ) __a : Any = 0 for hypo, pred in zip(_lowerCamelCase , _lowerCamelCase ): em += exact_match_score(_lowerCamelCase , _lowerCamelCase ) if len(_lowerCamelCase ) > 0: em /= len(_lowerCamelCase ) return {"em": em} def __magic_name__ ( _lowerCamelCase : List[Any] ): return model_prefix.startswith("""rag""" ) def __magic_name__ ( _lowerCamelCase : Tuple , _lowerCamelCase : int , _lowerCamelCase : Tuple ): __a : Union[str, Any] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __a : Dict = """dropout_rate""" for p in extra_params: if getattr(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ): if not hasattr(_lowerCamelCase , _lowerCamelCase ) and not hasattr(_lowerCamelCase , equivalent_param[p] ): logger.info("""config doesn't have a `{}` attribute""".format(_lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) continue __a : Any = p if hasattr(_lowerCamelCase , _lowerCamelCase ) else equivalent_param[p] setattr(_lowerCamelCase , _lowerCamelCase , getattr(_lowerCamelCase , _lowerCamelCase ) ) delattr(_lowerCamelCase , _lowerCamelCase ) return hparams, config
581
0
"""simple docstring""" import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html a = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def _snake_case ( _snake_case : Any , _snake_case : str , _snake_case : int=None , _snake_case : Optional[int]=None , _snake_case : List[Any]=None , _snake_case : Any=None , _snake_case : List[str]=None , _snake_case : Dict=None , ) -> List[str]: '''simple docstring''' if attention_mask is None: _A = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: _A = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: _A = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: _A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: _A = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , _UpperCAmelCase : str , _UpperCAmelCase : List[str]=13 , _UpperCAmelCase : Dict=7 , _UpperCAmelCase : Union[str, Any]=True , _UpperCAmelCase : Optional[Any]=False , _UpperCAmelCase : Union[str, Any]=99 , _UpperCAmelCase : int=16 , _UpperCAmelCase : Optional[int]=2 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : Dict=4 , _UpperCAmelCase : List[Any]="gelu" , _UpperCAmelCase : str=0.1 , _UpperCAmelCase : List[Any]=0.1 , _UpperCAmelCase : List[Any]=32 , _UpperCAmelCase : List[str]=2 , _UpperCAmelCase : Dict=1 , _UpperCAmelCase : Optional[Any]=0 , _UpperCAmelCase : int=0.02 , ): _A = parent _A = batch_size _A = seq_length _A = is_training _A = use_labels _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = intermediate_size _A = hidden_act _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = eos_token_id _A = pad_token_id _A = bos_token_id _A = initializer_range def lowerCAmelCase_ ( self : Any ): _A = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) _A = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) _A = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) _A = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=_UpperCAmelCase , ) _A = prepare_blenderbot_inputs_dict(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return config, inputs_dict def lowerCAmelCase_ ( self : Any ): _A , _A = self.prepare_config_and_inputs() return config, inputs_dict def lowerCAmelCase_ ( self : str , _UpperCAmelCase : List[str] , _UpperCAmelCase : Dict , _UpperCAmelCase : List[Any] ): _A = 20 _A = model_class_name(_UpperCAmelCase ) _A = model.encode(inputs_dict['input_ids'] ) _A , _A = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _A = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) _A = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype='i4' ) _A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) _A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _A = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_position_ids=_UpperCAmelCase , ) _A = model.decode(_UpperCAmelCase , _UpperCAmelCase ) _A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Union[str, Any] , _UpperCAmelCase : Tuple , _UpperCAmelCase : Union[str, Any] ): _A = 20 _A = model_class_name(_UpperCAmelCase ) _A = model.encode(inputs_dict['input_ids'] ) _A , _A = ( inputs_dict['decoder_input_ids'], inputs_dict['decoder_attention_mask'], ) _A = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) _A = model.init_cache(decoder_input_ids.shape[0] , _UpperCAmelCase , _UpperCAmelCase ) _A = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) _A = model.decode( decoder_input_ids[:, :-1] , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , past_key_values=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) _A = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype='i4' ) _A = model.decode( decoder_input_ids[:, -1:] , _UpperCAmelCase , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=_UpperCAmelCase , decoder_position_ids=_UpperCAmelCase , ) _A = model.decode(_UpperCAmelCase , _UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase ) _A = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'''Max diff is {diff}''' ) @require_flax class lowercase_ ( unittest.TestCase ): '''simple docstring''' UpperCAmelCase : Optional[int] = 99 def lowerCAmelCase_ ( self : Optional[Any] ): _A = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) _A = input_ids.shape[0] _A = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def lowerCAmelCase_ ( self : int ): _A , _A , _A = self._get_config_and_data() _A = FlaxBlenderbotSmallForConditionalGeneration(_UpperCAmelCase ) _A = lm_model(input_ids=_UpperCAmelCase ) _A = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs['logits'].shape , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple ): _A = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) _A = FlaxBlenderbotSmallForConditionalGeneration(_UpperCAmelCase ) _A = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) _A = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) _A = lm_model(input_ids=_UpperCAmelCase , decoder_input_ids=_UpperCAmelCase ) _A = (*summary.shape, config.vocab_size) self.assertEqual(outputs['logits'].shape , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Any ): _A = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) _A = shift_tokens_right(_UpperCAmelCase , 1 , 2 ) _A = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() _A = np.equal(_UpperCAmelCase , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(_UpperCAmelCase , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class lowercase_ ( __lowerCAmelCase , unittest.TestCase , __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Dict = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) UpperCAmelCase : Optional[int] = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def lowerCAmelCase_ ( self : Any ): _A = FlaxBlenderbotSmallModelTester(self ) def lowerCAmelCase_ ( self : Dict ): _A , _A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] ): _A , _A = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) def lowerCAmelCase_ ( self : Optional[int] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = self._prepare_for_class(_UpperCAmelCase , _UpperCAmelCase ) _A = model_class(_UpperCAmelCase ) @jax.jit def encode_jitted(_UpperCAmelCase : List[str] , _UpperCAmelCase : Union[str, Any]=None , **_UpperCAmelCase : Optional[int] ): return model.encode(input_ids=_UpperCAmelCase , attention_mask=_UpperCAmelCase ) with self.subTest('JIT Enabled' ): _A = encode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _A = encode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) def lowerCAmelCase_ ( self : Optional[Any] ): _A , _A = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): _A = model_class(_UpperCAmelCase ) _A = model.encode(inputs_dict['input_ids'] , inputs_dict['attention_mask'] ) _A = { 'decoder_input_ids': inputs_dict['decoder_input_ids'], 'decoder_attention_mask': inputs_dict['decoder_attention_mask'], 'encoder_outputs': encoder_outputs, } @jax.jit def decode_jitted(_UpperCAmelCase : Any , _UpperCAmelCase : Tuple , _UpperCAmelCase : Any ): return model.decode( decoder_input_ids=_UpperCAmelCase , decoder_attention_mask=_UpperCAmelCase , encoder_outputs=_UpperCAmelCase , ) with self.subTest('JIT Enabled' ): _A = decode_jitted(**_UpperCAmelCase ).to_tuple() with self.subTest('JIT Disabled' ): with jax.disable_jit(): _A = decode_jitted(**_UpperCAmelCase ).to_tuple() self.assertEqual(len(_UpperCAmelCase ) , len(_UpperCAmelCase ) ) for jitted_output, output in zip(_UpperCAmelCase , _UpperCAmelCase ): self.assertEqual(jitted_output.shape , output.shape ) @slow def lowerCAmelCase_ ( self : Any ): for model_class_name in self.all_model_classes: _A = model_class_name.from_pretrained('facebook/blenderbot_small-90M' ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids _A = np.ones((1, 1) ) * model.config.eos_token_id _A = model(_UpperCAmelCase ) self.assertIsNotNone(_UpperCAmelCase )
505
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''spiece.model'''} a = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } a = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } a = '''▁''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : int="[CLS]" , _UpperCAmelCase : Dict="[SEP]" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : int="[SEP]" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="[CLS]" , _UpperCAmelCase : Dict="[MASK]" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.sp_model ) def lowerCAmelCase_ ( self : Optional[int] ): _A = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): _A = self.__dict__.copy() _A = None return state def __setstate__( self : str , _UpperCAmelCase : Optional[Any] ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[str] ): if self.remove_space: _A = ' '.join(inputs.strip().split() ) else: _A = inputs _A = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _A = unicodedata.normalize('NFKD' , _UpperCAmelCase ) _A = ''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: _A = outputs.lower() return outputs def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str ): _A = self.preprocess_text(_UpperCAmelCase ) _A = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) _A = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _A = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A = cur_pieces[1:] else: _A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] ): return self.sp_model.PieceToId(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[Any] ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Any] ): _A = [] _A = '' _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token _A = True _A = [] else: current_sub_tokens.append(_UpperCAmelCase ) _A = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
505
1
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST, OpenAIGPTConfig, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification, OpenAIGPTLMHeadModel, OpenAIGPTModel, ) class lowerCamelCase_ : def __init__( self : List[str] , _A : Union[str, Any] , _A : Tuple=13 , _A : Optional[int]=7 , _A : Optional[Any]=True , _A : Tuple=True , _A : Union[str, Any]=True , _A : Any=99 , _A : Optional[int]=32 , _A : Optional[Any]=5 , _A : Optional[Any]=4 , _A : Tuple=37 , _A : Tuple="gelu" , _A : int=0.1 , _A : Dict=0.1 , _A : Any=512 , _A : Union[str, Any]=16 , _A : Optional[int]=2 , _A : List[str]=0.0_2 , _A : Optional[Any]=3 , _A : Dict=4 , _A : int=None , ): '''simple docstring''' UpperCAmelCase__ : int = parent UpperCAmelCase__ : List[Any] = batch_size UpperCAmelCase__ : Optional[int] = seq_length UpperCAmelCase__ : Union[str, Any] = is_training UpperCAmelCase__ : Any = use_token_type_ids UpperCAmelCase__ : Any = use_labels UpperCAmelCase__ : Tuple = vocab_size UpperCAmelCase__ : Optional[int] = hidden_size UpperCAmelCase__ : Union[str, Any] = num_hidden_layers UpperCAmelCase__ : List[Any] = num_attention_heads UpperCAmelCase__ : Tuple = intermediate_size UpperCAmelCase__ : int = hidden_act UpperCAmelCase__ : Union[str, Any] = hidden_dropout_prob UpperCAmelCase__ : List[Any] = attention_probs_dropout_prob UpperCAmelCase__ : Dict = max_position_embeddings UpperCAmelCase__ : Any = type_vocab_size UpperCAmelCase__ : Optional[Any] = type_sequence_label_size UpperCAmelCase__ : Dict = initializer_range UpperCAmelCase__ : Dict = num_labels UpperCAmelCase__ : Optional[Any] = num_choices UpperCAmelCase__ : int = scope UpperCAmelCase__ : List[Any] = self.vocab_size - 1 def lowercase_ ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase__ : Optional[int] = None if self.use_token_type_ids: UpperCAmelCase__ : Dict = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase__ : List[str] = None UpperCAmelCase__ : str = None UpperCAmelCase__ : Any = None if self.use_labels: UpperCAmelCase__ : Tuple = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase__ : str = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase__ : Optional[int] = OpenAIGPTConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , pad_token_id=self.pad_token_id , ) UpperCAmelCase__ : str = ids_tensor([self.num_hidden_layers, self.num_attention_heads] , 2 ) return ( config, input_ids, head_mask, token_type_ids, sequence_labels, token_labels, choice_labels, ) def lowercase_ ( self : Tuple , _A : Tuple , _A : Optional[int] , _A : int , _A : Tuple , *_A : int ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = OpenAIGPTModel(config=_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Optional[int] = model(_A , token_type_ids=_A , head_mask=_A ) UpperCAmelCase__ : Union[str, Any] = model(_A , token_type_ids=_A ) UpperCAmelCase__ : Optional[int] = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase_ ( self : Union[str, Any] , _A : str , _A : Dict , _A : List[str] , _A : int , *_A : str ): '''simple docstring''' UpperCAmelCase__ : Any = OpenAIGPTLMHeadModel(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[str] = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : List[Any] , _A : Union[str, Any] , _A : Dict , _A : Dict , _A : List[Any] , *_A : str ): '''simple docstring''' UpperCAmelCase__ : Dict = OpenAIGPTDoubleHeadsModel(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : Union[str, Any] = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase_ ( self : str , _A : int , _A : Tuple , _A : Optional[int] , _A : Tuple , *_A : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.num_labels UpperCAmelCase__ : List[str] = OpenAIGPTForSequenceClassification(_A ) model.to(_A ) model.eval() UpperCAmelCase__ : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase__ : str = model(_A , token_type_ids=_A , labels=_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Any = self.prepare_config_and_inputs() ( ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ( UpperCAmelCase__ ) , ) : List[str] = config_and_inputs UpperCAmelCase__ : Union[str, Any] = { '''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''head_mask''': head_mask, } return config, inputs_dict @require_torch class lowerCamelCase_ ( __a , __a , __a , unittest.TestCase ): lowerCAmelCase__ = ( (OpenAIGPTModel, OpenAIGPTLMHeadModel, OpenAIGPTDoubleHeadsModel, OpenAIGPTForSequenceClassification) if is_torch_available() else () ) lowerCAmelCase__ = ( (OpenAIGPTLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly lowerCAmelCase__ = ( { 'feature-extraction': OpenAIGPTModel, 'text-classification': OpenAIGPTForSequenceClassification, 'text-generation': OpenAIGPTLMHeadModel, 'zero-shot': OpenAIGPTForSequenceClassification, } if is_torch_available() else {} ) def lowercase_ ( self : str , _A : Tuple , _A : Union[str, Any] , _A : Tuple , _A : Tuple , _A : Dict ): '''simple docstring''' if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests": # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers. # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a # tiny config could not be created. return True return False def lowercase_ ( self : Union[str, Any] , _A : List[Any] , _A : int , _A : Union[str, Any]=False ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = super()._prepare_for_class(_A , _A , return_labels=_A ) if return_labels: if model_class.__name__ == "OpenAIGPTDoubleHeadsModel": UpperCAmelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices, self.model_tester.seq_length) , dtype=torch.long , device=_A , ) UpperCAmelCase__ : List[str] = inputs_dict['''labels'''] UpperCAmelCase__ : Optional[Any] = inputs_dict['''labels'''] UpperCAmelCase__ : Union[str, Any] = torch.zeros( (self.model_tester.batch_size, self.model_tester.num_choices) , dtype=torch.long , device=_A , ) UpperCAmelCase__ : List[Any] = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=_A ) return inputs_dict def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[int] = OpenAIGPTModelTester(self ) UpperCAmelCase__ : int = ConfigTester(self , config_class=_A , n_embd=37 ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' self.config_tester.run_common_tests() def lowercase_ ( self : str ): '''simple docstring''' UpperCAmelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_model(*_A ) def lowercase_ ( self : int ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head_model(*_A ) def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_double_lm_head_model(*_A ) def lowercase_ ( self : Optional[int] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*_A ) @slow def lowercase_ ( self : Dict ): '''simple docstring''' for model_name in OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ : Union[str, Any] = OpenAIGPTModel.from_pretrained(_A ) self.assertIsNotNone(_A ) @require_torch class lowerCamelCase_ ( unittest.TestCase ): @slow def lowercase_ ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : int = OpenAIGPTLMHeadModel.from_pretrained('''openai-gpt''' ) model.to(_A ) UpperCAmelCase__ : List[str] = torch.tensor([[481, 4_735, 544]] , dtype=torch.long , device=_A ) # the president is UpperCAmelCase__ : str = [ 481, 4_735, 544, 246, 963, 870, 762, 239, 244, 40_477, 244, 249, 719, 881, 487, 544, 240, 244, 603, 481, ] # the president is a very good man. " \n " i\'m sure he is, " said the UpperCAmelCase__ : Tuple = model.generate(_A , do_sample=_A ) self.assertListEqual(output_ids[0].tolist() , _A )
75
'''simple docstring''' import numpy as np from transformers import BatchFeature from transformers.testing_utils import require_tf, require_torch from .test_feature_extraction_common import FeatureExtractionSavingTestMixin class lowercase__ ( snake_case_ ): '''simple docstring''' _snake_case = None _snake_case = None @property def UpperCAmelCase ( self ): '''simple docstring''' return self.feat_extract_tester.prepare_feat_extract_dict() def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) self.assertTrue(hasattr(lowerCamelCase__ , '''feature_size''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''sampling_rate''' ) ) self.assertTrue(hasattr(lowerCamelCase__ , '''padding_value''' ) ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) self.assertTrue(all(len(lowerCamelCase__ ) == len(lowerCamelCase__ ) for x, y in zip(lowerCamelCase__ , processed_features[input_name] ) ) ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase__ ) UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''np''' ) UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_torch def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase__ ) UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''pt''' ) UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) @require_tf def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(equal_length=lowerCamelCase__ ) UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} , tensor_type='''tf''' ) UpperCamelCase = processed_features[input_name] if len(batch_features_input.shape ) < 3: UpperCamelCase = batch_features_input[:, :, None] self.assertTrue( batch_features_input.shape == (self.feat_extract_tester.batch_size, len(speech_inputs[0] ), self.feat_extract_tester.feature_size) ) def UpperCAmelCase ( self , lowerCamelCase__=False ): '''simple docstring''' def _inputs_have_equal_length(lowerCamelCase__ ): UpperCamelCase = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase__ ) != length: return False return True def _inputs_are_equal(lowerCamelCase__ , lowerCamelCase__ ): if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase__ , lowerCamelCase__ ): if not np.allclose(np.asarray(lowerCamelCase__ ) , np.asarray(lowerCamelCase__ ) , atol=1e-3 ): return False return True UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase__ ) UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) UpperCamelCase = self.feat_extract_tester.seq_length_diff UpperCamelCase = self.feat_extract_tester.max_seq_length + pad_diff UpperCamelCase = self.feat_extract_tester.min_seq_length UpperCamelCase = self.feat_extract_tester.batch_size UpperCamelCase = self.feat_extract_tester.feature_size # test padding for List[int] + numpy UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding=lowerCamelCase__ ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''longest''' ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[-1] ) ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''longest''' , return_tensors='''np''' ) UpperCamelCase = input_a[input_name] # max_length parameter has to be provided when setting `padding="max_length"` with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , padding='''max_length''' )[input_name] UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase = input_a[input_name] self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase__ , lowerCamelCase__ ) ) self.assertTrue(len(input_a[0] ) == pad_min_length ) self.assertTrue(len(input_a[1] ) == pad_min_length + pad_diff ) self.assertTrue(input_a.shape[:2] == (batch_size, len(input_a[0] )) ) self.assertTrue(input_a.shape[:2] == (batch_size, pad_max_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == input_a.shape[2] == feature_size ) # test padding for `pad_to_multiple_of` for List[int] + numpy UpperCamelCase = feat_extract.pad(lowerCamelCase__ , pad_to_multiple_of=1_0 ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''longest''' , pad_to_multiple_of=1_0 ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , pad_to_multiple_of=1_0 , max_length=lowerCamelCase__ ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , pad_to_multiple_of=1_0 , max_length=lowerCamelCase__ , return_tensors='''np''' , ) UpperCamelCase = input_a[input_name] self.assertTrue(all(len(lowerCamelCase__ ) % 1_0 == 0 for x in input_a ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase__ , lowerCamelCase__ ) ) UpperCamelCase = pad_max_length if pad_max_length % 1_0 == 0 else (pad_max_length // 1_0 + 1) * 1_0 self.assertTrue(all(len(lowerCamelCase__ ) == expected_mult_pad_length for x in input_a ) ) self.assertEqual(input_a.shape[:2] , (batch_size, expected_mult_pad_length) ) if feature_size > 1: self.assertTrue(input_a.shape[2] == feature_size ) # Check padding value is correct UpperCamelCase = (np.ones(self.feat_extract_tester.feature_size ) * feat_extract.padding_value).sum() self.assertTrue( abs(np.asarray(input_a[0] )[pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[1] )[pad_min_length + pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - pad_diff) ) < 1e-3 ) self.assertTrue( abs( np.asarray(input_a[2] )[pad_min_length + 2 * pad_diff :].sum() - padding_vector_sum * (pad_max_length - pad_min_length - 2 * pad_diff) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (pad_max_length - pad_min_length) ) < 1e-3 ) self.assertTrue( abs(input_a[0, pad_min_length:].sum() - padding_vector_sum * (expected_mult_pad_length - pad_min_length) ) < 1e-3 ) def UpperCAmelCase ( self , lowerCamelCase__=False ): '''simple docstring''' def _inputs_have_equal_length(lowerCamelCase__ ): UpperCamelCase = len(input[0] ) for input_slice in input[1:]: if len(lowerCamelCase__ ) != length: return False return True def _inputs_are_equal(lowerCamelCase__ , lowerCamelCase__ ): if len(lowerCamelCase__ ) != len(lowerCamelCase__ ): return False for input_slice_a, input_slice_a in zip(lowerCamelCase__ , lowerCamelCase__ ): if not np.allclose(np.asarray(lowerCamelCase__ ) , np.asarray(lowerCamelCase__ ) , atol=1e-3 ): return False return True UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common(numpify=lowerCamelCase__ ) UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) # truncate to smallest UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , truncation=lowerCamelCase__ ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[0] ) ) UpperCamelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) # truncate to smallest with np UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' , truncation=lowerCamelCase__ , ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , return_tensors='''np''' ) UpperCamelCase = input_a[input_name] self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(input_a.shape[1] == len(speech_inputs[0] ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) # truncate to middle UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase__ , return_tensors='''np''' , ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , truncation=lowerCamelCase__ ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[1] ) , return_tensors='''np''' ) UpperCamelCase = input_a[input_name] self.assertTrue(input_a.shape[1] == len(speech_inputs[1] ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(_inputs_are_equal(lowerCamelCase__ , lowerCamelCase__ ) ) # since truncation forces padding to be smaller than longest input # function can't return `np.ndarray`, but has to return list self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertTrue(len(input_a[-1] ) == len(speech_inputs[-1] ) ) # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , truncation=lowerCamelCase__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , padding='''longest''' , truncation=lowerCamelCase__ )[input_name] # padding has to be max_length when setting `truncation=True` with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , padding='''longest''' , truncation=lowerCamelCase__ )[input_name] # max_length parameter has to be provided when setting `truncation=True` and padding="max_length" with self.assertRaises(lowerCamelCase__ ): feat_extract.pad(lowerCamelCase__ , padding='''max_length''' , truncation=lowerCamelCase__ )[input_name] # test truncation for `pad_to_multiple_of` for List[int] + numpy UpperCamelCase = 1_2 UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase__ , truncation=lowerCamelCase__ , ) UpperCamelCase = input_a[input_name] UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=len(speech_inputs[0] ) , pad_to_multiple_of=lowerCamelCase__ , ) UpperCamelCase = input_a[input_name] # retrieve expected_length as multiple of pad_to_multiple_of UpperCamelCase = len(speech_inputs[0] ) if expected_length % pad_to_multiple_of != 0: UpperCamelCase = ((len(speech_inputs[0] ) // pad_to_multiple_of) + 1) * pad_to_multiple_of self.assertTrue(len(input_a[0] ) == expected_length ) self.assertTrue(_inputs_have_equal_length(lowerCamelCase__ ) ) self.assertFalse(_inputs_have_equal_length(lowerCamelCase__ ) ) def UpperCAmelCase ( self ): '''simple docstring''' self._check_padding(numpify=lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' self._check_padding(numpify=lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' self._check_truncation(numpify=lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' self._check_truncation(numpify=lowerCamelCase__ ) @require_torch def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''longest''' , return_tensors='''np''' )[input_name] UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''longest''' , return_tensors='''pt''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_pt.numpy().astype(np.floataa ).sum() ) < 1e-2 ) @require_tf def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feature_extraction_class(**self.feat_extract_dict ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''longest''' , return_tensors='''np''' )[input_name] UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''longest''' , return_tensors='''tf''' )[input_name] self.assertTrue(abs(input_np.astype(np.floataa ).sum() - input_tf.numpy().astype(np.floataa ).sum() ) < 1e-2 ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feat_extract_dict UpperCamelCase = True UpperCamelCase = self.feature_extraction_class(**lowerCamelCase__ ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase = [len(lowerCamelCase__ ) for x in speech_inputs] UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) UpperCamelCase = feat_extract.pad(lowerCamelCase__ , padding='''longest''' , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowerCamelCase__ ) self.assertListEqual(list(processed.attention_mask.shape ) , list(processed[input_name].shape[:2] ) ) self.assertListEqual(processed.attention_mask.sum(-1 ).tolist() , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.feat_extract_dict UpperCamelCase = True UpperCamelCase = self.feature_extraction_class(**lowerCamelCase__ ) UpperCamelCase = self.feat_extract_tester.prepare_inputs_for_common() UpperCamelCase = [len(lowerCamelCase__ ) for x in speech_inputs] UpperCamelCase = feat_extract.model_input_names[0] UpperCamelCase = BatchFeature({input_name: speech_inputs} ) UpperCamelCase = min(lowerCamelCase__ ) UpperCamelCase = feat_extract.pad( lowerCamelCase__ , padding='''max_length''' , max_length=lowerCamelCase__ , truncation=lowerCamelCase__ , return_tensors='''np''' ) self.assertIn('''attention_mask''' , lowerCamelCase__ ) self.assertListEqual( list(processed_pad.attention_mask.shape ) , [processed_pad[input_name].shape[0], max_length] ) self.assertListEqual( processed_pad.attention_mask[:, :max_length].sum(-1 ).tolist() , [max_length for x in speech_inputs] )
212
0
"""simple docstring""" from __future__ import annotations import os from typing import Any import requests A_ : Optional[Any] ="""https://api.github.com""" # https://docs.github.com/en/free-pro-team@latest/rest/reference/users#get-the-authenticated-user A_ : Union[str, Any] =BASE_URL + """/user""" # https://github.com/settings/tokens A_ : List[Any] =os.environ.get("""USER_TOKEN""", """""") def SCREAMING_SNAKE_CASE_ ( snake_case : str )-> dict[Any, Any]: _lowerCamelCase = { 'Authorization': f'token {auth_token}', 'Accept': 'application/vnd.github.v3+json', } return requests.get(snake_case , headers=snake_case ).json() if __name__ == "__main__": # pragma: no cover if USER_TOKEN: for key, value in fetch_github_info(USER_TOKEN).items(): print(f'{key}: {value}') else: raise ValueError("""'USER_TOKEN' field cannot be empty.""")
222
"""simple docstring""" from collections import OrderedDict from typing import Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...feature_extraction_utils import FeatureExtractionMixin from ...onnx import OnnxConfig from ...onnx.utils import compute_effective_axis_dimension from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType, logging A_ : List[str] =logging.get_logger(__name__) A_ : Optional[int] ={ """deepmind/language-perceiver""": """https://huggingface.co/deepmind/language-perceiver/resolve/main/config.json""", # See all Perceiver models at https://huggingface.co/models?filter=perceiver } class __a ( lowerCAmelCase__ ): SCREAMING_SNAKE_CASE__ : Any = "perceiver" def __init__( self , a__=2_56 , a__=12_80 , a__=7_68 , a__=1 , a__=26 , a__=8 , a__=8 , a__=None , a__=None , a__="kv" , a__=1 , a__=1 , a__="gelu" , a__=0.1 , a__=0.02 , a__=1e-12 , a__=True , a__=2_62 , a__=20_48 , a__=56 , a__=[3_68, 4_96] , a__=16 , a__=19_20 , a__=16 , a__=[1, 16, 2_24, 2_24] , **a__ , ): super().__init__(**a__ ) _lowerCamelCase = num_latents _lowerCamelCase = d_latents _lowerCamelCase = d_model _lowerCamelCase = num_blocks _lowerCamelCase = num_self_attends_per_block _lowerCamelCase = num_self_attention_heads _lowerCamelCase = num_cross_attention_heads _lowerCamelCase = qk_channels _lowerCamelCase = v_channels _lowerCamelCase = cross_attention_shape_for_attention _lowerCamelCase = self_attention_widening_factor _lowerCamelCase = cross_attention_widening_factor _lowerCamelCase = hidden_act _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = initializer_range _lowerCamelCase = layer_norm_eps _lowerCamelCase = use_query_residual # masked language modeling attributes _lowerCamelCase = vocab_size _lowerCamelCase = max_position_embeddings # image classification attributes _lowerCamelCase = image_size # flow attributes _lowerCamelCase = train_size # multimodal autoencoding attributes _lowerCamelCase = num_frames _lowerCamelCase = audio_samples_per_frame _lowerCamelCase = samples_per_patch _lowerCamelCase = output_shape class __a ( lowerCAmelCase__ ): @property def snake_case_ ( self ): if self.task == "multiple-choice": _lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: _lowerCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('inputs', dynamic_axis), ('attention_mask', dynamic_axis), ] ) @property def snake_case_ ( self ): return 1e-4 def snake_case_ ( self , a__ , a__ = -1 , a__ = -1 , a__ = -1 , a__ = False , a__ = None , a__ = 3 , a__ = 40 , a__ = 40 , ): # copied from `transformers.onnx.config.OnnxConfig` and slightly altered/simplified if isinstance(a__ , a__ ): # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX _lowerCamelCase = preprocessor.num_special_tokens_to_add(a__ ) _lowerCamelCase = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a__ ) # Generate dummy inputs according to compute batch and sequence _lowerCamelCase = [' '.join(['a'] ) * seq_length] * batch_size _lowerCamelCase = dict(preprocessor(a__ , return_tensors=a__ ) ) _lowerCamelCase = inputs.pop('input_ids' ) return inputs elif isinstance(a__ , a__ ) and preprocessor.model_input_names[0] == "pixel_values": # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX _lowerCamelCase = compute_effective_axis_dimension(a__ , fixed_dimension=OnnxConfig.default_fixed_batch ) _lowerCamelCase = self._generate_dummy_images(a__ , a__ , a__ , a__ ) _lowerCamelCase = dict(preprocessor(images=a__ , return_tensors=a__ ) ) _lowerCamelCase = inputs.pop('pixel_values' ) return inputs else: raise ValueError( 'Unable to generate dummy inputs for the model. Please provide a tokenizer or a preprocessor.' )
222
1
'''simple docstring''' import argparse import gc import json import os import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType from accelerate.utils.deepspeed import DummyOptim, DummyScheduler __SCREAMING_SNAKE_CASE = 1_6 __SCREAMING_SNAKE_CASE = 3_2 def __a ( lowerCAmelCase__ : Optional[int] ): return int(x / 2**20 ) class lowerCAmelCase__ : """simple docstring""" def __enter__( self : Any ) -> Optional[int]: '''simple docstring''' gc.collect() torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() # reset the peak gauge to zero a__ : List[Any] = torch.cuda.memory_allocated() return self def __exit__( self : int , *A__ : Optional[int] ) -> int: '''simple docstring''' gc.collect() torch.cuda.empty_cache() a__ : Any = torch.cuda.memory_allocated() a__ : str = torch.cuda.max_memory_allocated() a__ : Union[str, Any] = bamb(self.end - self.begin ) a__ : Any = bamb(self.peak - self.begin ) # print(f"delta used/peak {self.used:4d}/{self.peaked:4d}") def __a ( lowerCAmelCase__ : Dict , lowerCAmelCase__ : Union[str, Any] = 16 , lowerCAmelCase__ : Optional[int] = "bert-base-cased" , lowerCAmelCase__ : str = 320 , lowerCAmelCase__ : str = 160 , ): a__ : Optional[int] = AutoTokenizer.from_pretrained(snake_case__ ) a__ : Dict = load_dataset( '''glue''' , '''mrpc''' , split={'''train''': F'train[:{n_train}]', '''validation''': F'validation[:{n_val}]'} ) def tokenize_function(lowerCAmelCase__ : int ): # max_length=None => use the model max length (it's actually the default) a__ : Dict = tokenizer(examples['''sentence1'''] , examples['''sentence2'''] , truncation=snake_case__ , max_length=snake_case__ ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset a__ : List[str] = datasets.map( snake_case__ , batched=snake_case__ , remove_columns=['''idx''', '''sentence1''', '''sentence2'''] , load_from_cache_file=snake_case__ ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library a__ : Optional[Any] = tokenized_datasets.rename_column('''label''' , '''labels''' ) def collate_fn(lowerCAmelCase__ : Dict ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(snake_case__ , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(snake_case__ , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. a__ : Dict = DataLoader( tokenized_datasets['''train'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) a__ : List[str] = DataLoader( tokenized_datasets['''validation'''] , shuffle=snake_case__ , collate_fn=snake_case__ , batch_size=snake_case__ ) return train_dataloader, eval_dataloader def __a ( lowerCAmelCase__ : Optional[Any] , lowerCAmelCase__ : int ): # Initialize accelerator a__ : List[str] = Accelerator() # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs a__ : List[str] = config['''lr'''] a__ : Dict = int(config['''num_epochs'''] ) a__ : Dict = int(config['''seed'''] ) a__ : Tuple = int(config['''batch_size'''] ) a__ : str = args.model_name_or_path set_seed(snake_case__ ) a__ : Dict = get_dataloaders(snake_case__ , snake_case__ , snake_case__ , args.n_train , args.n_val ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) a__ : Tuple = AutoModelForSequenceClassification.from_pretrained(snake_case__ , return_dict=snake_case__ ) # Instantiate optimizer a__ : Optional[Any] = ( AdamW if accelerator.state.deepspeed_plugin is None or '''optimizer''' not in accelerator.state.deepspeed_plugin.deepspeed_config else DummyOptim ) a__ : Optional[Any] = optimizer_cls(params=model.parameters() , lr=snake_case__ ) if accelerator.state.deepspeed_plugin is not None: a__ : Any = accelerator.state.deepspeed_plugin.deepspeed_config[ '''gradient_accumulation_steps''' ] else: a__ : Dict = 1 a__ : Optional[Any] = (len(snake_case__ ) * num_epochs) // gradient_accumulation_steps # Instantiate scheduler if ( accelerator.state.deepspeed_plugin is None or "scheduler" not in accelerator.state.deepspeed_plugin.deepspeed_config ): a__ : List[Any] = get_linear_schedule_with_warmup( optimizer=snake_case__ , num_warmup_steps=0 , num_training_steps=snake_case__ , ) else: a__ : int = DummyScheduler(snake_case__ , total_num_steps=snake_case__ , warmup_num_steps=0 ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. a__ : Any = accelerator.prepare( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) # We need to keep track of how many total steps we have iterated over a__ : Any = 0 # We also need to keep track of the stating epoch so files are named properly a__ : List[Any] = 0 # Now we train the model a__ : Dict = {} for epoch in range(snake_case__ , snake_case__ ): with TorchTracemalloc() as tracemalloc: model.train() for step, batch in enumerate(snake_case__ ): a__ : List[Any] = model(**snake_case__ ) a__ : List[str] = outputs.loss a__ : str = loss / gradient_accumulation_steps accelerator.backward(snake_case__ ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() overall_step += 1 # Printing the GPU memory usage details such as allocated memory, peak memory, and total memory usage accelerator.print('''Memory before entering the train : {}'''.format(bamb(tracemalloc.begin ) ) ) accelerator.print('''Memory consumed at the end of the train (end-begin): {}'''.format(tracemalloc.used ) ) accelerator.print('''Peak Memory consumed during the train (max-begin): {}'''.format(tracemalloc.peaked ) ) accelerator.print( '''Total Peak Memory consumed during the train (max): {}'''.format( tracemalloc.peaked + bamb(tracemalloc.begin ) ) ) a__ : Dict = tracemalloc.peaked + bamb(tracemalloc.begin ) if args.peak_memory_upper_bound is not None: assert ( train_total_peak_memory[F'epoch-{epoch}'] <= args.peak_memory_upper_bound ), "Peak memory usage exceeded the upper bound" accelerator.wait_for_everyone() if accelerator.is_main_process: with open(os.path.join(args.output_dir , '''peak_memory_utilization.json''' ) , '''w''' ) as f: json.dump(snake_case__ , snake_case__ ) def __a ( ): a__ : Optional[Any] = argparse.ArgumentParser(description='''Simple example of training script tracking peak GPU memory usage.''' ) parser.add_argument( '''--model_name_or_path''' , type=snake_case__ , default='''bert-base-cased''' , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=snake_case__ , ) parser.add_argument( '''--output_dir''' , type=snake_case__ , default='''.''' , help='''Optional save directory where all checkpoint folders will be stored. Default is the current working directory.''' , ) parser.add_argument( '''--peak_memory_upper_bound''' , type=snake_case__ , default=snake_case__ , help='''The upper bound of peak memory usage in MB. If set, the training will throw an error if the peak memory usage exceeds this value.''' , ) parser.add_argument( '''--n_train''' , type=snake_case__ , default=320 , help='''Number of training examples to use.''' , ) parser.add_argument( '''--n_val''' , type=snake_case__ , default=160 , help='''Number of validation examples to use.''' , ) parser.add_argument( '''--num_epochs''' , type=snake_case__ , default=1 , help='''Number of train epochs.''' , ) a__ : Tuple = parser.parse_args() a__ : Optional[Any] = {'''lr''': 2E-5, '''num_epochs''': args.num_epochs, '''seed''': 42, '''batch_size''': 16} training_function(snake_case__ , snake_case__ ) if __name__ == "__main__": main()
688
"""simple docstring""" import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def A_ ( snake_case__ ) -> Union[str, Any]: return x + 2 class A( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :Union[str, Any] = '''x = 3''' _UpperCamelCase :List[str] = {} _UpperCamelCase :int = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3} ) _UpperCamelCase :Tuple = '''x = y''' _UpperCamelCase :Optional[int] = {'''y''': 5} _UpperCamelCase :Optional[Any] = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 5, '''y''': 5} ) def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :str = '''y = add_two(x)''' _UpperCamelCase :Optional[int] = {'''x''': 3} _UpperCamelCase :Union[str, Any] = evaluate(SCREAMING_SNAKE_CASE__ , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE__ ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: _UpperCamelCase :Union[str, Any] = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) assert result is None assert "tried to execute add_two" in out.out def _UpperCamelCase( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :Any = '''x = 3''' _UpperCamelCase :int = {} _UpperCamelCase :List[Any] = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3} ) def _UpperCamelCase( self ) -> List[Any]: """simple docstring""" _UpperCamelCase :str = '''test_dict = {\'x\': x, \'y\': add_two(x)}''' _UpperCamelCase :str = {'''x''': 3} _UpperCamelCase :Dict = evaluate(SCREAMING_SNAKE_CASE__ , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE__ ) self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :int = '''x = 3\ny = 5''' _UpperCamelCase :int = {} _UpperCamelCase :Optional[int] = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''y''': 5} ) def _UpperCamelCase( self ) -> Optional[int]: """simple docstring""" _UpperCamelCase :Union[str, Any] = '''text = f\'This is x: {x}.\'''' _UpperCamelCase :List[str] = {'''x''': 3} _UpperCamelCase :Any = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def _UpperCamelCase( self ) -> Union[str, Any]: """simple docstring""" _UpperCamelCase :Optional[Any] = '''if x <= 3:\n y = 2\nelse:\n y = 5''' _UpperCamelCase :Dict = {'''x''': 3} _UpperCamelCase :Any = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''y''': 2} ) _UpperCamelCase :Union[str, Any] = {'''x''': 8} _UpperCamelCase :Optional[int] = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 8, '''y''': 5} ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :List[str] = '''test_list = [x, add_two(x)]''' _UpperCamelCase :Optional[int] = {'''x''': 3} _UpperCamelCase :str = evaluate(SCREAMING_SNAKE_CASE__ , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE__ ) self.assertListEqual(SCREAMING_SNAKE_CASE__ , [3, 5] ) self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''test_list''': [3, 5]} ) def _UpperCamelCase( self ) -> Dict: """simple docstring""" _UpperCamelCase :List[Any] = '''y = x''' _UpperCamelCase :List[str] = {'''x''': 3} _UpperCamelCase :Union[str, Any] = evaluate(SCREAMING_SNAKE_CASE__ , {} , state=SCREAMING_SNAKE_CASE__ ) assert result == 3 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''y''': 3} ) def _UpperCamelCase( self ) -> Tuple: """simple docstring""" _UpperCamelCase :Tuple = '''test_list = [x, add_two(x)]\ntest_list[1]''' _UpperCamelCase :Optional[Any] = {'''x''': 3} _UpperCamelCase :Any = evaluate(SCREAMING_SNAKE_CASE__ , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE__ ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''test_list''': [3, 5]} ) _UpperCamelCase :str = '''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' _UpperCamelCase :Optional[int] = {'''x''': 3} _UpperCamelCase :Union[str, Any] = evaluate(SCREAMING_SNAKE_CASE__ , {'''add_two''': add_two} , state=SCREAMING_SNAKE_CASE__ ) assert result == 5 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def _UpperCamelCase( self ) -> int: """simple docstring""" _UpperCamelCase :str = '''x = 0\nfor i in range(3):\n x = i''' _UpperCamelCase :Tuple = {} _UpperCamelCase :Union[str, Any] = evaluate(SCREAMING_SNAKE_CASE__ , {'''range''': range} , state=SCREAMING_SNAKE_CASE__ ) assert result == 2 self.assertDictEqual(SCREAMING_SNAKE_CASE__ , {'''x''': 2, '''i''': 2} )
355
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _A = { "configuration_mask2former": [ "MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "Mask2FormerConfig", ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = ["Mask2FormerImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _A = [ "MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "Mask2FormerForUniversalSegmentation", "Mask2FormerModel", "Mask2FormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys _A = _LazyModule(__name__, globals()["__file__"], _import_structure)
228
"""simple docstring""" from maths.prime_factors import prime_factors def lowercase (_snake_case ) -> int: '''simple docstring''' if not isinstance(_snake_case ,_snake_case ): __UpperCamelCase = f"""Input value of [number={number}] must be an integer""" raise TypeError(_snake_case ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(_snake_case ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
228
1
'''simple docstring''' from sklearn.metrics import mean_squared_error import datasets __UpperCamelCase = "\\n@article{scikit-learn,\n title={Scikit-learn: Machine Learning in {P}ython},\n author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V.\n and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P.\n and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and\n Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.},\n journal={Journal of Machine Learning Research},\n volume={12},\n pages={2825--2830},\n year={2011}\n}\n" __UpperCamelCase = "\\nMean Squared Error(MSE) is the average of the square of difference between the predicted\nand actual values.\n" __UpperCamelCase = "\nArgs:\n predictions: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Estimated target values.\n references: array-like of shape (n_samples,) or (n_samples, n_outputs)\n Ground truth (correct) target values.\n sample_weight: array-like of shape (n_samples,), default=None\n Sample weights.\n multioutput: {\"raw_values\", \"uniform_average\"} or array-like of shape (n_outputs,), default=\"uniform_average\"\n Defines aggregating of multiple output values. Array-like value defines weights used to average errors.\n\n \"raw_values\" : Returns a full set of errors in case of multioutput input.\n\n \"uniform_average\" : Errors of all outputs are averaged with uniform weight.\n\n squared : bool, default=True\n If True returns MSE value, if False returns RMSE (Root Mean Squared Error) value.\n\nReturns:\n mse : mean squared error.\nExamples:\n\n >>> mse_metric = datasets.load_metric(\"mse\")\n >>> predictions = [2.5, 0.0, 2, 8]\n >>> references = [3, -0.5, 2, 7]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.375}\n >>> rmse_result = mse_metric.compute(predictions=predictions, references=references, squared=False)\n >>> print(rmse_result)\n {'mse': 0.6123724356957945}\n\n If you're using multi-dimensional lists, then set the config as follows :\n\n >>> mse_metric = datasets.load_metric(\"mse\", \"multilist\")\n >>> predictions = [[0.5, 1], [-1, 1], [7, -6]]\n >>> references = [[0, 2], [-1, 2], [8, -5]]\n >>> results = mse_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {'mse': 0.7083333333333334}\n >>> results = mse_metric.compute(predictions=predictions, references=references, multioutput='raw_values')\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mse': array([0.41666667, 1. ])}\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _A ( datasets.Metric ): def lowercase__ ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features(self._get_feature_types() ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html""" ] , ) def lowercase__ ( self : Union[str, Any] ) -> Tuple: """simple docstring""" if self.config_name == "multilist": return { "predictions": datasets.Sequence(datasets.Value("""float""" ) ), "references": datasets.Sequence(datasets.Value("""float""" ) ), } else: return { "predictions": datasets.Value("""float""" ), "references": datasets.Value("""float""" ), } def lowercase__ ( self : Optional[Any] , __magic_name__ : Union[str, Any] , __magic_name__ : Any , __magic_name__ : int=None , __magic_name__ : Tuple="uniform_average" , __magic_name__ : Tuple=True ) -> int: """simple docstring""" __snake_case : Union[str, Any] = mean_squared_error( __magic_name__ , __magic_name__ , sample_weight=__magic_name__ , multioutput=__magic_name__ , squared=__magic_name__ ) return {"mse": mse}
26
'''simple docstring''' def _lowercase ( UpperCamelCase__ : dict ): __A : Dict = set() # edges = list of graph's edges __A : Any = get_edges(UpperCamelCase__ ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: __A ,__A : List[Any] = edges.pop() chosen_vertices.add(UpperCamelCase__ ) chosen_vertices.add(UpperCamelCase__ ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(UpperCamelCase__ ) return chosen_vertices def _lowercase ( UpperCamelCase__ : dict ): __A : Any = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
365
0
import csv from collections import defaultdict from dataclasses import dataclass, field from typing import List, Optional import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import ScalarFormatter from transformers import HfArgumentParser def SCREAMING_SNAKE_CASE ( snake_case_ : Tuple=None , snake_case_ : Optional[Any]=None ): return field(default_factory=lambda: default , metadata=snake_case_ ) @dataclass class SCREAMING_SNAKE_CASE__ : """simple docstring""" a_ = field( metadata={"help": "The csv file to plot."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Whether to plot along batch size or sequence length. Defaults to sequence length."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Whether the csv file has time results or memory results. Defaults to memory results."} , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Disable logarithmic scale when plotting"} , ) a_ = field( default=UpperCamelCase_ , metadata={ "help": "Whether the csv file has training results or inference results. Defaults to inference results." } , ) a_ = field( default=UpperCamelCase_ , metadata={"help": "Filename under which the plot will be saved. If unused no plot is saved."} , ) a_ = list_field( default=UpperCamelCase_ , metadata={"help": "List of model names that are used instead of the ones in the csv file."} ) def SCREAMING_SNAKE_CASE ( snake_case_ : List[str] ): try: int(snake_case_ ) return True except ValueError: return False def SCREAMING_SNAKE_CASE ( snake_case_ : List[Any] ): try: float(snake_case_ ) return True except ValueError: return False class SCREAMING_SNAKE_CASE__ : """simple docstring""" def __init__( self : str , __A : List[str] ): snake_case__ : List[str] = args snake_case__ : Any = defaultdict(lambda: {"bsz": [], "seq_len": [], "result": {}} ) with open(self.args.csv_file , newline="" ) as csv_file: snake_case__ : Tuple = csv.DictReader(__A ) for row in reader: snake_case__ : List[str] = row["model"] self.result_dict[model_name]["bsz"].append(int(row["batch_size"] ) ) self.result_dict[model_name]["seq_len"].append(int(row["sequence_length"] ) ) if can_convert_to_int(row["result"] ): # value is not None snake_case__ : Tuple = int(row["result"] ) elif can_convert_to_float(row["result"] ): # value is not None snake_case__ : Any = float(row["result"] ) def _lowercase ( self : Any ): snake_case__, snake_case__ : Optional[Any] = plt.subplots() snake_case__ : Tuple = "Time usage" if self.args.is_time else "Memory usage" snake_case__ : str = title_str + " for training" if self.args.is_train else title_str + " for inference" if not self.args.no_log_scale: # set logarithm scales ax.set_xscale("log" ) ax.set_yscale("log" ) for axis in [ax.xaxis, ax.yaxis]: axis.set_major_formatter(ScalarFormatter() ) for model_name_idx, model_name in enumerate(self.result_dict.keys() ): snake_case__ : Tuple = sorted(set(self.result_dict[model_name]["bsz"] ) ) snake_case__ : Optional[int] = sorted(set(self.result_dict[model_name]["seq_len"] ) ) snake_case__ : str = self.result_dict[model_name]["result"] ((snake_case__), (snake_case__)) : List[str] = ( (batch_sizes, sequence_lengths) if self.args.plot_along_batch else (sequence_lengths, batch_sizes) ) snake_case__ : Tuple = ( model_name if self.args.short_model_names is None else self.args.short_model_names[model_name_idx] ) for inner_loop_value in inner_loop_array: if self.args.plot_along_batch: snake_case__ : Optional[Any] = np.asarray( [results[(x, inner_loop_value)] for x in x_axis_array if (x, inner_loop_value) in results] , dtype=__A , ) else: snake_case__ : str = np.asarray( [results[(inner_loop_value, x)] for x in x_axis_array if (inner_loop_value, x) in results] , dtype=np.floataa , ) ((snake_case__), (snake_case__)) : str = ( ("batch_size", "len") if self.args.plot_along_batch else ("in #tokens", "bsz") ) snake_case__ : Optional[int] = np.asarray(__A , __A )[: len(__A )] plt.scatter( __A , __A , label=f'''{label_model_name} - {inner_loop_label}: {inner_loop_value}''' ) plt.plot(__A , __A , "--" ) title_str += f''' {label_model_name} vs.''' snake_case__ : str = title_str[:-4] snake_case__ : Optional[int] = "Time in s" if self.args.is_time else "Memory in MB" # plot plt.title(__A ) plt.xlabel(__A ) plt.ylabel(__A ) plt.legend() if self.args.figure_png_file is not None: plt.savefig(self.args.figure_png_file ) else: plt.show() def SCREAMING_SNAKE_CASE ( ): snake_case__ : Union[str, Any] = HfArgumentParser(snake_case_ ) snake_case__ : Dict = parser.parse_args_into_dataclasses()[0] snake_case__ : Optional[Any] = Plot(args=snake_case_ ) plot.plot() if __name__ == "__main__": main()
25
import numpy as np from matplotlib import pyplot as plt from sklearn.datasets import load_iris from sklearn.metrics import ConfusionMatrixDisplay from sklearn.model_selection import train_test_split from xgboost import XGBClassifier def SCREAMING_SNAKE_CASE ( snake_case_ : dict ): return (data["data"], data["target"]) def SCREAMING_SNAKE_CASE ( snake_case_ : np.ndarray , snake_case_ : np.ndarray ): snake_case__ : Optional[int] = XGBClassifier() classifier.fit(snake_case_ , snake_case_ ) return classifier def SCREAMING_SNAKE_CASE ( ): snake_case__ : Any = load_iris() snake_case__, snake_case__ : str = data_handling(snake_case_ ) snake_case__, snake_case__, snake_case__, snake_case__ : int = train_test_split( snake_case_ , snake_case_ , test_size=0.25 ) snake_case__ : Dict = iris["target_names"] # Create an XGBoost Classifier from the training data snake_case__ : Dict = xgboost(snake_case_ , snake_case_ ) # Display the confusion matrix of the classifier with both training and test sets ConfusionMatrixDisplay.from_estimator( snake_case_ , snake_case_ , snake_case_ , display_labels=snake_case_ , cmap="Blues" , normalize="true" , ) plt.title("Normalized Confusion Matrix - IRIS Dataset" ) plt.show() if __name__ == "__main__": import doctest doctest.testmod(verbose=True) main()
25
1
from math import isqrt def lowerCAmelCase_ ( _lowercase : Optional[int]) -> bool: """simple docstring""" return all(number % divisor != 0 for divisor in range(2 , isqrt(a__) + 1)) def lowerCAmelCase_ ( _lowercase : Optional[int] = 10**6) -> int: """simple docstring""" a__ : Union[str, Any] = 0 a__ : Any = 1 a__ : int = 7 while prime_candidate < max_prime: primes_count += is_prime(a__) cube_index += 1 prime_candidate += 6 * cube_index return primes_count if __name__ == "__main__": print(f'{solution() = }')
136
import unittest from transformers.testing_utils import require_bsa from transformers.utils import is_bsa_available from ...test_feature_extraction_common import FeatureExtractionSavingTestMixin if is_bsa_available(): from transformers import MarkupLMFeatureExtractor class __A( unittest.TestCase ): def __init__( self , _snake_case ) -> Dict: '''simple docstring''' __a = parent def SCREAMING_SNAKE_CASE_ ( self ) -> Union[str, Any]: '''simple docstring''' return {} def __lowerCAmelCase ( ) -> Dict: __a = '''<HTML> <HEAD> <TITLE>sample document</TITLE> </HEAD> <BODY BGCOLOR="FFFFFF"> <HR> <a href="http://google.com">Goog</a> <H1>This is one header</H1> <H2>This is a another Header</H2> <P>Travel from <P> <B>SFO to JFK</B> <BR> <B><I>on May 2, 2015 at 2:00 pm. For details go to confirm.com </I></B> <HR> <div style="color:#0000FF"> <h3>Traveler <b> name </b> is <p> John Doe </p> </div>''' __a = ''' <!DOCTYPE html> <html> <body> <h1>My First Heading</h1> <p>My first paragraph.</p> </body> </html> ''' return [html_string_a, html_string_a] @require_bsa class __A( a , unittest.TestCase ): snake_case_ = MarkupLMFeatureExtractor if is_bsa_available() else None def SCREAMING_SNAKE_CASE_ ( self ) -> Any: '''simple docstring''' __a = MarkupLMFeatureExtractionTester(self ) @property def SCREAMING_SNAKE_CASE_ ( self ) -> Optional[Any]: '''simple docstring''' return self.feature_extract_tester.prepare_feat_extract_dict() def SCREAMING_SNAKE_CASE_ ( self ) -> List[str]: '''simple docstring''' __a = self.feature_extraction_class() # Test not batched input __a = get_html_strings()[0] __a = feature_extractor(_snake_case ) # fmt: off __a = [['''sample document''', '''Goog''', '''This is one header''', '''This is a another Header''', '''Travel from''', '''SFO to JFK''', '''on May 2, 2015 at 2:00 pm. For details go to confirm.com''', '''Traveler''', '''name''', '''is''', '''John Doe''']] __a = [['''/html/head/title''', '''/html/body/a''', '''/html/body/h1''', '''/html/body/h2''', '''/html/body/p''', '''/html/body/p/p/b[1]''', '''/html/body/p/p/b[2]/i''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/b''', '''/html/body/p/p/div/h3''', '''/html/body/p/p/div/h3/p''']] # fmt: on self.assertEqual(encoding.nodes , _snake_case ) self.assertEqual(encoding.xpaths , _snake_case ) # Test batched __a = get_html_strings() __a = feature_extractor(_snake_case ) # fmt: off __a = expected_nodes + [['''My First Heading''', '''My first paragraph.''']] __a = expected_xpaths + [['''/html/body/h1''', '''/html/body/p''']] self.assertEqual(len(encoding.nodes ) , 2 ) self.assertEqual(len(encoding.xpaths ) , 2 ) self.assertEqual(encoding.nodes , _snake_case ) self.assertEqual(encoding.xpaths , _snake_case )
219
0
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def __lowerCAmelCase ( lowercase : Dict , lowercase : Any , lowercase : Optional[Any]=None ) -> Any: """simple docstring""" assert torch_layer.weight.shape == weight.shape, F'{torch_layer} layer.weight does not match' snake_case : int = nn.Parameter(__lowerCAmelCase ) if bias is not None: assert torch_layer.bias.shape == bias.shape, F'{torch_layer} layer.bias does not match' snake_case : Tuple = nn.Parameter(__lowerCAmelCase ) def __lowerCAmelCase ( lowercase : Optional[int] , lowercase : Any , lowercase : Union[str, Any] ) -> str: """simple docstring""" snake_case : Optional[int] = np.asarray(weights[0] ) snake_case : List[str] = np.asarray(weights[1] ) snake_case : List[str] = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCAmelCase ).view(-1 , __lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase ( lowercase : Tuple , lowercase : List[str] , lowercase : Tuple ) -> str: """simple docstring""" snake_case : List[Any] = np.asarray(weights[0] ) snake_case : Union[str, Any] = np.asarray(weights[1] ) snake_case : Optional[Any] = np.asarray(weights[2] ) snake_case : List[Any] = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.key , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.self_attention.value , torch.tensor(__lowerCAmelCase ).transpose(1 , 2 ).contiguous().view(-1 , __lowerCAmelCase ) , ) set_param( torch_layer.output.dense , torch.tensor(__lowerCAmelCase ).view(-1 , __lowerCAmelCase ).contiguous().transpose(0 , 1 ) , ) def __lowerCAmelCase ( lowercase : List[str] , lowercase : str , lowercase : Optional[Any] ) -> int: """simple docstring""" snake_case : List[str] = weights[0][0][0] snake_case : str = np.asarray(layer_norm_a[0] ) snake_case : List[Any] = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # lsh weights + output snake_case : Union[str, Any] = weights[0][1] if len(__lowerCAmelCase ) < 4: set_layer_weights_in_torch_lsh(__lowerCAmelCase , torch_block.attention , __lowerCAmelCase ) else: set_layer_weights_in_torch_local(__lowerCAmelCase , torch_block.attention , __lowerCAmelCase ) # intermediate weighs snake_case : int = weights[2][0][1][2] # Chunked Feed Forward if len(__lowerCAmelCase ) == 4: snake_case : int = intermediate_weights[2] # layernorm 2 snake_case : List[Any] = np.asarray(intermediate_weights[0][0] ) snake_case : List[Any] = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # intermediate dense snake_case : Tuple = np.asarray(intermediate_weights[1][0] ) snake_case : int = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) # intermediate out snake_case : str = np.asarray(intermediate_weights[4][0] ) snake_case : Union[str, Any] = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) def __lowerCAmelCase ( lowercase : List[str] , lowercase : Optional[Any] , lowercase : Dict ) -> List[Any]: """simple docstring""" snake_case : Optional[Any] = torch_model.reformer # word embeds snake_case : int = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(__lowerCAmelCase ) , ) if isinstance(weights[3] , __lowerCAmelCase ): snake_case : List[Any] = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): snake_case : int = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), F'{position_embeddings[emb_idx]} emb does not match' snake_case : Tuple = nn.Parameter(torch.tensor(__lowerCAmelCase ) ) snake_case : str = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( __lowerCAmelCase ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): snake_case : Union[str, Any] = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) # output layer norm snake_case : Union[str, Any] = np.asarray(weights[7][0] ) snake_case : Tuple = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(__lowerCAmelCase ) , torch.tensor(__lowerCAmelCase ) , ) # output embeddings snake_case : Any = np.asarray(weights[9][0] ) snake_case : Dict = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(__lowerCAmelCase ).transpose(0 , 1 ).contiguous() , torch.tensor(__lowerCAmelCase ) , ) def __lowerCAmelCase ( lowercase : int , lowercase : Dict , lowercase : List[str] ) -> Optional[int]: """simple docstring""" snake_case : Optional[int] = ReformerConfig.from_json_file(__lowerCAmelCase ) print(F'Building PyTorch model from configuration: {config}' ) snake_case : Optional[int] = ReformerModelWithLMHead(__lowerCAmelCase ) with open(__lowerCAmelCase , "rb" ) as f: snake_case : Optional[Any] = pickle.load(__lowerCAmelCase )["""weights"""] set_model_weights_in_torch(__lowerCAmelCase , __lowerCAmelCase , config.hidden_size ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , __lowerCAmelCase ) if __name__ == "__main__": __snake_case = argparse.ArgumentParser() # Required parameters parser.add_argument( """--trax_model_pkl_path""", default=None, type=str, required=True, help="""Path to the TensorFlow checkpoint path.""" ) parser.add_argument( """--config_file""", default=None, type=str, required=True, help=( """The config json file corresponding to the pre-trained Reformer model. \n""" """This specifies the model architecture.""" ), ) parser.add_argument( """--pytorch_dump_path""", default=None, type=str, required=True, help="""Path to the output PyTorch model.""" ) __snake_case = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
712
"""simple docstring""" import unittest import numpy as np import torch from diffusers import PNDMPipeline, PNDMScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _lowerCAmelCase ( unittest.TestCase ): @property def lowerCamelCase ( self ) -> Any: '''simple docstring''' torch.manual_seed(0 ) snake_case : Tuple = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=("DownBlock2D", "AttnDownBlock2D") , up_block_types=("AttnUpBlock2D", "UpBlock2D") , ) return model def lowerCamelCase ( self ) -> Optional[Any]: '''simple docstring''' snake_case : Optional[Any] = self.dummy_uncond_unet snake_case : str = PNDMScheduler() snake_case : List[Any] = PNDMPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pndm.to(UpperCamelCase__ ) pndm.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : str = torch.manual_seed(0 ) snake_case : Union[str, Any] = pndm(generator=UpperCamelCase__ , num_inference_steps=20 , output_type="numpy" ).images snake_case : Optional[int] = torch.manual_seed(0 ) snake_case : Any = pndm(generator=UpperCamelCase__ , num_inference_steps=20 , output_type="numpy" , return_dict=UpperCamelCase__ )[0] snake_case : Optional[Any] = image[0, -3:, -3:, -1] snake_case : List[str] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : int = np.array([1.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @slow @require_torch class _lowerCAmelCase ( unittest.TestCase ): def lowerCamelCase ( self ) -> Optional[int]: '''simple docstring''' snake_case : Dict = "google/ddpm-cifar10-32" snake_case : Optional[int] = UNetaDModel.from_pretrained(UpperCamelCase__ ) snake_case : List[str] = PNDMScheduler() snake_case : Union[str, Any] = PNDMPipeline(unet=UpperCamelCase__ , scheduler=UpperCamelCase__ ) pndm.to(UpperCamelCase__ ) pndm.set_progress_bar_config(disable=UpperCamelCase__ ) snake_case : int = torch.manual_seed(0 ) snake_case : str = pndm(generator=UpperCamelCase__ , output_type="numpy" ).images snake_case : Union[str, Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) snake_case : Optional[Any] = np.array([0.1564, 0.14645, 0.1406, 0.14715, 0.12425, 0.14045, 0.13115, 0.12175, 0.125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
117
0
"""simple docstring""" # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class lowerCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = StableDiffusionControlNetImgaImgPipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) a = IMAGE_TO_IMAGE_IMAGE_PARAMS def lowerCAmelCase_ ( self : str ) -> List[str]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(_snake_case ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE__ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase_ ( self : Optional[int] , _snake_case : Optional[int] , _snake_case : int=0 ) -> Any: if str(_snake_case ).startswith("mps" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(_snake_case ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ) SCREAMING_SNAKE_CASE__ = floats_tensor(control_image.shape , rng=random.Random(_snake_case ) ).to(_snake_case ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) SCREAMING_SNAKE_CASE__ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def lowerCAmelCase_ ( self : Union[str, Any] ) -> Union[str, Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase_ ( self : Optional[int] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowerCAmelCase_ ( self : Any ) -> Tuple: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) class lowerCamelCase (_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' a = StableDiffusionControlNetImgaImgPipeline a = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} a = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS a = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def lowerCAmelCase_ ( self : Optional[int] ) -> Optional[int]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(_snake_case : Dict ): if isinstance(_snake_case , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) SCREAMING_SNAKE_CASE__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D") , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(_snake_case ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = DDIMScheduler( beta_start=0.0_0085 , beta_end=0.012 , beta_schedule="scaled_linear" , clip_sample=_snake_case , set_alpha_to_one=_snake_case , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) SCREAMING_SNAKE_CASE__ = CLIPTextModel(_snake_case ) SCREAMING_SNAKE_CASE__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) SCREAMING_SNAKE_CASE__ = MultiControlNetModel([controlneta, controlneta] ) SCREAMING_SNAKE_CASE__ = { "unet": unet, "controlnet": controlnet, "scheduler": scheduler, "vae": vae, "text_encoder": text_encoder, "tokenizer": tokenizer, "safety_checker": None, "feature_extractor": None, } return components def lowerCAmelCase_ ( self : Any , _snake_case : Optional[Any] , _snake_case : Optional[int]=0 ) -> Dict: if str(_snake_case ).startswith("mps" ): SCREAMING_SNAKE_CASE__ = torch.manual_seed(_snake_case ) else: SCREAMING_SNAKE_CASE__ = torch.Generator(device=_snake_case ).manual_seed(_snake_case ) SCREAMING_SNAKE_CASE__ = 2 SCREAMING_SNAKE_CASE__ = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=_snake_case , device=torch.device(_snake_case ) , ), ] SCREAMING_SNAKE_CASE__ = floats_tensor(control_image[0].shape , rng=random.Random(_snake_case ) ).to(_snake_case ) SCREAMING_SNAKE_CASE__ = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE__ = Image.fromarray(np.uinta(_snake_case ) ).convert("RGB" ).resize((64, 64) ) SCREAMING_SNAKE_CASE__ = { "prompt": "A painting of a squirrel eating a burger", "generator": generator, "num_inference_steps": 2, "guidance_scale": 6.0, "output_type": "numpy", "image": image, "control_image": control_image, } return inputs def lowerCAmelCase_ ( self : Union[str, Any] ) -> str: SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) SCREAMING_SNAKE_CASE__ = 10.0 SCREAMING_SNAKE_CASE__ = 4 SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_snake_case ) SCREAMING_SNAKE_CASE__ = steps SCREAMING_SNAKE_CASE__ = scale SCREAMING_SNAKE_CASE__ = pipe(**_snake_case )[0] SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_snake_case ) SCREAMING_SNAKE_CASE__ = steps SCREAMING_SNAKE_CASE__ = scale SCREAMING_SNAKE_CASE__ = pipe(**_snake_case , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_snake_case ) SCREAMING_SNAKE_CASE__ = steps SCREAMING_SNAKE_CASE__ = scale SCREAMING_SNAKE_CASE__ = pipe(**_snake_case , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] SCREAMING_SNAKE_CASE__ = self.get_dummy_inputs(_snake_case ) SCREAMING_SNAKE_CASE__ = steps SCREAMING_SNAKE_CASE__ = scale SCREAMING_SNAKE_CASE__ = pipe(**_snake_case , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 assert np.sum(np.abs(output_a - output_a ) ) > 1e-3 def lowerCAmelCase_ ( self : Tuple ) -> Optional[Any]: return self._test_attention_slicing_forward_pass(expected_max_diff=2e-3 ) @unittest.skipIf( torch_device != "cuda" or not is_xformers_available() , reason="XFormers attention is only available with CUDA and `xformers` installed" , ) def lowerCAmelCase_ ( self : List[str] ) -> List[str]: self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2e-3 ) def lowerCAmelCase_ ( self : Tuple ) -> Dict: self._test_inference_batch_single_identical(expected_max_diff=2e-3 ) def lowerCAmelCase_ ( self : Dict ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ = self.get_dummy_components() SCREAMING_SNAKE_CASE__ = self.pipeline_class(**_snake_case ) pipe.to(_snake_case ) pipe.set_progress_bar_config(disable=_snake_case ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(_snake_case ) except NotImplementedError: pass @slow @require_torch_gpu class lowerCamelCase (unittest.TestCase ): '''simple docstring''' def lowerCAmelCase_ ( self : Any ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny" ) SCREAMING_SNAKE_CASE__ = StableDiffusionControlNetImgaImgPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5" , safety_checker=_snake_case , controlnet=_snake_case ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=_snake_case ) SCREAMING_SNAKE_CASE__ = torch.Generator(device="cpu" ).manual_seed(0 ) SCREAMING_SNAKE_CASE__ = "evil space-punk bird" SCREAMING_SNAKE_CASE__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png" ).resize((512, 512) ) SCREAMING_SNAKE_CASE__ = load_image( "https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png" ).resize((512, 512) ) SCREAMING_SNAKE_CASE__ = pipe( _snake_case , _snake_case , control_image=_snake_case , generator=_snake_case , output_type="np" , num_inference_steps=50 , strength=0.6 , ) SCREAMING_SNAKE_CASE__ = output.images[0] assert image.shape == (512, 512, 3) SCREAMING_SNAKE_CASE__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy" ) assert np.abs(expected_image - image ).max() < 9e-2
159
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __a: int = { '''configuration_mvp''': ['''MVP_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''MvpConfig''', '''MvpOnnxConfig'''], '''tokenization_mvp''': ['''MvpTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Dict = ['''MvpTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Tuple = [ '''MVP_PRETRAINED_MODEL_ARCHIVE_LIST''', '''MvpForCausalLM''', '''MvpForConditionalGeneration''', '''MvpForQuestionAnswering''', '''MvpForSequenceClassification''', '''MvpModel''', '''MvpPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys __a: Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
0
from math import factorial UpperCamelCase__ : Optional[Any] = {str(d): factorial(d) for d in range(10)} def __UpperCAmelCase ( lowerCamelCase_ : int ) -> int: """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(lowerCamelCase_ ) ) def __UpperCAmelCase ( ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE_ : Union[str, Any] = 7 * factorial(9 ) + 1 return sum(i for i in range(3 , lowerCamelCase_ ) if sum_of_digit_factorial(lowerCamelCase_ ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
712
import qiskit def __UpperCAmelCase ( lowerCamelCase_ : int = 2 ) -> qiskit.result.counts.Counts: """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = qubits # Using Aer's simulator SCREAMING_SNAKE_CASE_ : Optional[int] = qiskit.Aer.get_backend('aer_simulator' ) # Creating a Quantum Circuit acting on the q register SCREAMING_SNAKE_CASE_ : str = qiskit.QuantumCircuit(lowerCamelCase_ , lowerCamelCase_ ) # Adding a H gate on qubit 0 (now q0 in superposition) circuit.h(0 ) for i in range(1 , lowerCamelCase_ ): # Adding CX (CNOT) gate circuit.cx(i - 1 , lowerCamelCase_ ) # Mapping the quantum measurement to the classical bits circuit.measure(list(range(lowerCamelCase_ ) ) , list(range(lowerCamelCase_ ) ) ) # Now measuring any one qubit would affect other qubits to collapse # their super position and have same state as the measured one. # Executing the circuit on the simulator SCREAMING_SNAKE_CASE_ : Tuple = qiskit.execute(lowerCamelCase_ , lowerCamelCase_ , shots=10_00 ) return job.result().get_counts(lowerCamelCase_ ) if __name__ == "__main__": print(F"""Total count for various states are: {quantum_entanglement(3)}""")
685
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { "uclanlp/visualbert-vqa": "https://huggingface.co/uclanlp/visualbert-vqa/resolve/main/config.json", "uclanlp/visualbert-vqa-pre": "https://huggingface.co/uclanlp/visualbert-vqa-pre/resolve/main/config.json", "uclanlp/visualbert-vqa-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vqa-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-vcr": "https://huggingface.co/uclanlp/visualbert-vcr/resolve/main/config.json", "uclanlp/visualbert-vcr-pre": "https://huggingface.co/uclanlp/visualbert-vcr-pre/resolve/main/config.json", "uclanlp/visualbert-vcr-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-vcr-coco-pre/resolve/main/config.json" ), "uclanlp/visualbert-nlvr2": "https://huggingface.co/uclanlp/visualbert-nlvr2/resolve/main/config.json", "uclanlp/visualbert-nlvr2-pre": "https://huggingface.co/uclanlp/visualbert-nlvr2-pre/resolve/main/config.json", "uclanlp/visualbert-nlvr2-coco-pre": ( "https://huggingface.co/uclanlp/visualbert-nlvr2-coco-pre/resolve/main/config.json" ) # See all VisualBERT models at https://huggingface.co/models?filter=visual_bert } class _A ( __lowercase ): lowercase__: Optional[Any] = '''visual_bert''' def __init__( self : Union[str, Any] , __magic_name__ : Any=3_05_22 , __magic_name__ : Union[str, Any]=7_68 , __magic_name__ : Any=5_12 , __magic_name__ : Dict=12 , __magic_name__ : Optional[Any]=12 , __magic_name__ : Optional[Any]=30_72 , __magic_name__ : Tuple="gelu" , __magic_name__ : Any=0.1 , __magic_name__ : Optional[Any]=0.1 , __magic_name__ : List[str]=5_12 , __magic_name__ : int=2 , __magic_name__ : str=0.02 , __magic_name__ : Dict=1E-12 , __magic_name__ : Any=False , __magic_name__ : List[str]=True , __magic_name__ : Union[str, Any]=1 , __magic_name__ : Dict=0 , __magic_name__ : Union[str, Any]=2 , **__magic_name__ : Tuple , ) -> str: """simple docstring""" super().__init__(pad_token_id=__magic_name__ , bos_token_id=__magic_name__ , eos_token_id=__magic_name__ , **__magic_name__ ) __snake_case : Dict = vocab_size __snake_case : Tuple = max_position_embeddings __snake_case : int = hidden_size __snake_case : Dict = visual_embedding_dim __snake_case : Tuple = num_hidden_layers __snake_case : str = num_attention_heads __snake_case : str = intermediate_size __snake_case : int = hidden_act __snake_case : Tuple = hidden_dropout_prob __snake_case : int = attention_probs_dropout_prob __snake_case : List[str] = initializer_range __snake_case : Optional[Any] = type_vocab_size __snake_case : Union[str, Any] = layer_norm_eps __snake_case : Any = bypass_transformer __snake_case : Dict = special_visual_initialize
26
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : Dict = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : str, lowerCamelCase__ : Optional[int]=None, lowerCamelCase__ : Any=None, lowerCamelCase__ : Tuple=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any]=[], lowerCamelCase__ : int=None, lowerCamelCase__ : str=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : List[str] ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Optional[int] ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : Union[str, Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : int ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> Any: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
131
0
def __lowercase( ) -> int: return [ a * b * (10_00 - a - b) for a in range(1 ,9_99 ) for b in range(__snake_case ,9_99 ) if (a * a + b * b == (10_00 - a - b) ** 2) ][0] if __name__ == "__main__": print(f"""{solution() = }""")
711
lowerCamelCase_ : List[str] = { "meter": "m", "kilometer": "km", "megametre": "Mm", "gigametre": "Gm", "terametre": "Tm", "petametre": "Pm", "exametre": "Em", "zettametre": "Zm", "yottametre": "Ym", } # Exponent of the factor(meter) lowerCamelCase_ : List[str] = { "m": 0, "km": 3, "Mm": 6, "Gm": 9, "Tm": 12, "Pm": 15, "Em": 18, "Zm": 21, "Ym": 24, } def __lowercase( __snake_case : float ,__snake_case : str ,__snake_case : str ) -> float: __snake_case = from_type.lower().strip('s' ) __snake_case = to_type.lower().strip('s' ) __snake_case = UNIT_SYMBOL.get(__snake_case ,__snake_case ) __snake_case = UNIT_SYMBOL.get(__snake_case ,__snake_case ) if from_sanitized not in METRIC_CONVERSION: __snake_case = ( f'''Invalid \'from_type\' value: {from_type!r}.\n''' f'''Conversion abbreviations are: {', '.join(__snake_case )}''' ) raise ValueError(__snake_case ) if to_sanitized not in METRIC_CONVERSION: __snake_case = ( f'''Invalid \'to_type\' value: {to_type!r}.\n''' f'''Conversion abbreviations are: {', '.join(__snake_case )}''' ) raise ValueError(__snake_case ) __snake_case = METRIC_CONVERSION[from_sanitized] __snake_case = METRIC_CONVERSION[to_sanitized] __snake_case = 1 if from_exponent > to_exponent: __snake_case = from_exponent - to_exponent else: __snake_case = -(to_exponent - from_exponent) return value * pow(10 ,__snake_case ) if __name__ == "__main__": from doctest import testmod testmod()
345
0
import uuid from typing import Any, Dict, List, Optional, Union from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf if is_torch_available(): import torch lowercase_ = logging.get_logger(__name__) class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : str = None , SCREAMING_SNAKE_CASE_ : uuid.UUID = None , SCREAMING_SNAKE_CASE_ : List[Any]=None , SCREAMING_SNAKE_CASE_ : List[Any]=None ): if not conversation_id: _a = uuid.uuida() if past_user_inputs is None: _a = [] if generated_responses is None: _a = [] _a = conversation_id _a = past_user_inputs _a = generated_responses _a = text def __eq__( self : Any , SCREAMING_SNAKE_CASE_ : Any ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): return False if self.uuid == other.uuid: return True return ( self.new_user_input == other.new_user_input and self.past_user_inputs == other.past_user_inputs and self.generated_responses == other.generated_responses ) def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : str , SCREAMING_SNAKE_CASE_ : bool = False ): if self.new_user_input: if overwrite: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" was overwritten """ f"""with: \"{text}\".""" ) _a = text else: logger.warning( f"""User input added while unprocessed input was existing: \"{self.new_user_input}\" new input """ f"""ignored: \"{text}\". Set `overwrite` to True to overwrite unprocessed user input""" ) else: _a = text def _UpperCAmelCase ( self : int ): if self.new_user_input: self.past_user_inputs.append(self.new_user_input ) _a = None def _UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str ): self.generated_responses.append(SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : str ): for user_input, generated_response in zip(self.past_user_inputs , self.generated_responses ): yield True, user_input yield False, generated_response if self.new_user_input: yield True, self.new_user_input def __repr__( self : str ): _a = f"""Conversation id: {self.uuid} \n""" for is_user, text in self.iter_texts(): _a = 'user' if is_user else 'bot' output += f"""{name} >> {text} \n""" return output @add_end_docstrings( lowerCamelCase__ , R"\n min_length_for_response (`int`, *optional*, defaults to 32):\n The minimum length (in number of tokens) for a response.\n minimum_tokens (`int`, *optional*, defaults to 10):\n The minimum length of tokens to leave for a response.\n " , ) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def __init__( self : int , *SCREAMING_SNAKE_CASE_ : Optional[Any] , **SCREAMING_SNAKE_CASE_ : str ): super().__init__(*SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.tokenizer.pad_token_id is None: _a = self.tokenizer.eos_token def _UpperCAmelCase ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : int=None , SCREAMING_SNAKE_CASE_ : int=None , **SCREAMING_SNAKE_CASE_ : Dict ): _a = {} _a = {} _a = {} if min_length_for_response is not None: _a = min_length_for_response if minimum_tokens is not None: _a = minimum_tokens if "max_length" in generate_kwargs: _a = generate_kwargs['max_length'] # self.max_length = generate_kwargs.get("max_length", self.model.config.max_length) if clean_up_tokenization_spaces is not None: _a = clean_up_tokenization_spaces if generate_kwargs: forward_params.update(SCREAMING_SNAKE_CASE_ ) return preprocess_params, forward_params, postprocess_params def __call__( self : List[str] , SCREAMING_SNAKE_CASE_ : Union[Conversation, List[Conversation]] , SCREAMING_SNAKE_CASE_ : str=0 , **SCREAMING_SNAKE_CASE_ : Union[str, Any] ): _a = super().__call__(SCREAMING_SNAKE_CASE_ , num_workers=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) and len(SCREAMING_SNAKE_CASE_ ) == 1: return outputs[0] return outputs def _UpperCAmelCase ( self : Any , SCREAMING_SNAKE_CASE_ : Conversation , SCREAMING_SNAKE_CASE_ : Optional[int]=3_2 ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise ValueError('ConversationalPipeline, expects Conversation as inputs' ) if conversation.new_user_input is None: raise ValueError( f"""Conversation with UUID {type(conversation.uuid )} does not contain new user input to process. """ 'Add user inputs with the conversation\'s `add_user_input` method' ) if hasattr(self.tokenizer , '_build_conversation_input_ids' ): _a = self.tokenizer._build_conversation_input_ids(SCREAMING_SNAKE_CASE_ ) else: # If the tokenizer cannot handle conversations, we default to only the old version _a = self._legacy_parse_and_tokenize(SCREAMING_SNAKE_CASE_ ) if self.framework == "pt": _a = torch.LongTensor([input_ids] ) elif self.framework == "tf": _a = tf.constant([input_ids] ) return {"input_ids": input_ids, "conversation": conversation} def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str]=1_0 , **SCREAMING_SNAKE_CASE_ : int ): _a = generate_kwargs.get('max_length' , self.model.config.max_length ) _a = model_inputs['input_ids'].shape[1] if max_length - minimum_tokens < n: logger.warning(f"""Conversation input is to long ({n}), trimming it to ({max_length} - {minimum_tokens})""" ) _a = max_length - minimum_tokens _a = model_inputs['input_ids'][:, -trim:] if "attention_mask" in model_inputs: _a = model_inputs['attention_mask'][:, -trim:] _a = model_inputs.pop('conversation' ) _a = max_length _a = self.model.generate(**SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) if self.model.config.is_encoder_decoder: _a = 1 else: _a = n return {"output_ids": output_ids[:, start_position:], "conversation": conversation} def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int]=True ): _a = model_outputs['output_ids'] _a = self.tokenizer.decode( output_ids[0] , skip_special_tokens=SCREAMING_SNAKE_CASE_ , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE_ , ) _a = model_outputs['conversation'] conversation.mark_processed() conversation.append_response(SCREAMING_SNAKE_CASE_ ) return conversation def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Conversation ): _a = self.tokenizer.eos_token_id _a = [] for is_user, text in conversation.iter_texts(): if eos_token_id is not None: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) + [eos_token_id] ) else: input_ids.extend(self.tokenizer.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ ) ) if len(SCREAMING_SNAKE_CASE_ ) > self.tokenizer.model_max_length: _a = input_ids[-self.tokenizer.model_max_length :] return input_ids
562
from typing import List, Optional, Union import numpy as np import PIL.Image from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import rescale, resize, to_channel_dimension_format from ...image_utils import ( ChannelDimension, PILImageResampling, get_image_size, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, logging lowercase_ = logging.get_logger(__name__) class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' _A = ["pixel_values"] def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE_ : bool = True , SCREAMING_SNAKE_CASE_ : int = 3_2 , SCREAMING_SNAKE_CASE_ : Tuple=PILImageResampling.BILINEAR , SCREAMING_SNAKE_CASE_ : bool = True , **SCREAMING_SNAKE_CASE_ : Optional[int] , ): _a = do_resize _a = do_rescale _a = size_divisor _a = resample super().__init__(**SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Optional[ChannelDimension] = None , **SCREAMING_SNAKE_CASE_ : Dict ): _a , _a = get_image_size(SCREAMING_SNAKE_CASE_ ) # Rounds the height and width down to the closest multiple of size_divisor _a = height // size_divisor * size_divisor _a = width // size_divisor * size_divisor _a = resize(SCREAMING_SNAKE_CASE_ , (new_h, new_w) , resample=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) return image def _UpperCAmelCase ( self : str , SCREAMING_SNAKE_CASE_ : np.ndarray , SCREAMING_SNAKE_CASE_ : float , SCREAMING_SNAKE_CASE_ : Optional[ChannelDimension] = None , **SCREAMING_SNAKE_CASE_ : Dict ): return rescale(image=SCREAMING_SNAKE_CASE_ , scale=SCREAMING_SNAKE_CASE_ , data_format=SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Dict , SCREAMING_SNAKE_CASE_ : Union["PIL.Image.Image", TensorType, List["PIL.Image.Image"], List[TensorType]] , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[int] = None , SCREAMING_SNAKE_CASE_ : str=None , SCREAMING_SNAKE_CASE_ : Optional[bool] = None , SCREAMING_SNAKE_CASE_ : Optional[Union[TensorType, str]] = None , SCREAMING_SNAKE_CASE_ : ChannelDimension = ChannelDimension.FIRST , **SCREAMING_SNAKE_CASE_ : List[str] , ): _a = do_resize if do_resize is not None else self.do_resize _a = do_rescale if do_rescale is not None else self.do_rescale _a = size_divisor if size_divisor is not None else self.size_divisor _a = resample if resample is not None else self.resample if do_resize and size_divisor is None: raise ValueError('size_divisor is required for resizing' ) _a = make_list_of_images(SCREAMING_SNAKE_CASE_ ) if not valid_images(SCREAMING_SNAKE_CASE_ ): raise ValueError('Invalid image(s)' ) # All transformations expect numpy arrays. _a = [to_numpy_array(SCREAMING_SNAKE_CASE_ ) for img in images] if do_resize: _a = [self.resize(SCREAMING_SNAKE_CASE_ , size_divisor=SCREAMING_SNAKE_CASE_ , resample=SCREAMING_SNAKE_CASE_ ) for image in images] if do_rescale: _a = [self.rescale(SCREAMING_SNAKE_CASE_ , scale=1 / 2_5_5 ) for image in images] _a = [to_channel_dimension_format(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) for image in images] _a = {'pixel_values': images} return BatchFeature(data=SCREAMING_SNAKE_CASE_ , tensor_type=SCREAMING_SNAKE_CASE_ )
562
1
import warnings from ...utils import logging from .image_processing_beit import BeitImageProcessor SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) class UpperCamelCase__ ( lowerCAmelCase_ ): '''simple docstring''' def __init__( self : List[Any] ,*lowerCamelCase__ : str ,**lowerCamelCase__ : List[str] ) -> None: '''simple docstring''' warnings.warn( """The class BeitFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use BeitImageProcessor instead.""" ,lowerCamelCase__ ,) super().__init__(*lowerCamelCase__ ,**lowerCamelCase__ )
715
import random import unittest import numpy as np import torch from diffusers import ( DPMSolverMultistepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler, OnnxStableDiffusionUpscalePipeline, PNDMScheduler, ) from diffusers.utils import floats_tensor from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class UpperCamelCase__ ( lowerCAmelCase_ , unittest.TestCase ): '''simple docstring''' __snake_case : Union[str, Any] = "ssube/stable-diffusion-x4-upscaler-onnx" def SCREAMING_SNAKE_CASE__ ( self : Tuple ,lowerCamelCase__ : List[str]=0 ) -> Union[str, Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = floats_tensor((1, 3, 128, 128) ,rng=random.Random(lowerCamelCase__ ) ) SCREAMING_SNAKE_CASE = torch.manual_seed(lowerCamelCase__ ) SCREAMING_SNAKE_CASE = { """prompt""": """A painting of a squirrel eating a burger""", """image""": image, """generator""": generator, """num_inference_steps""": 3, """guidance_scale""": 7.5, """output_type""": """numpy""", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1].flatten() # started as 128, should now be 512 assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self : List[str] ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE = PNDMScheduler.from_config(pipe.scheduler.config ,skip_prk_steps=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array( [0.6898892, 0.59240556, 0.52499527, 0.58866215, 0.52258235, 0.52572715, 0.62414473, 0.6174387, 0.6214964] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self : Dict ) -> str: '''simple docstring''' SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array( [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self : List[Any] ) -> int: '''simple docstring''' SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE = EulerDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array( [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint ,provider="""CPUExecutionProvider""" ) SCREAMING_SNAKE_CASE = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = self.get_dummy_inputs() SCREAMING_SNAKE_CASE = pipe(**lowerCamelCase__ ).images SCREAMING_SNAKE_CASE = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array( [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 @nightly @require_onnxruntime @require_torch_gpu class UpperCamelCase__ ( unittest.TestCase ): '''simple docstring''' @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Optional[int]: '''simple docstring''' return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' SCREAMING_SNAKE_CASE = ort.SessionOptions() SCREAMING_SNAKE_CASE = False return options def SCREAMING_SNAKE_CASE__ ( self : Tuple ) -> Tuple: '''simple docstring''' SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) SCREAMING_SNAKE_CASE = init_image.resize((128, 128) ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A fantasy landscape, trending on artstation""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase__ ,image=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=10 ,generator=lowerCamelCase__ ,output_type="""np""" ,) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def SCREAMING_SNAKE_CASE__ ( self : Any ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/img2img/sketch-mountains-input.jpg""" ) SCREAMING_SNAKE_CASE = init_image.resize((128, 128) ) SCREAMING_SNAKE_CASE = LMSDiscreteScheduler.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,subfolder="""scheduler""" ) SCREAMING_SNAKE_CASE = OnnxStableDiffusionUpscalePipeline.from_pretrained( """ssube/stable-diffusion-x4-upscaler-onnx""" ,scheduler=lowerCamelCase__ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) SCREAMING_SNAKE_CASE = """A fantasy landscape, trending on artstation""" SCREAMING_SNAKE_CASE = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE = pipe( prompt=lowerCamelCase__ ,image=lowerCamelCase__ ,guidance_scale=7.5 ,num_inference_steps=20 ,generator=lowerCamelCase__ ,output_type="""np""" ,) SCREAMING_SNAKE_CASE = output.images SCREAMING_SNAKE_CASE = images[0, 255:258, 383:386, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE = np.array( [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] ) # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2
116
0
from diffusers.utils.testing_utils import require_onnxruntime @require_onnxruntime class A_ : pass
130
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "facebook/xlm-roberta-xl": "https://huggingface.co/facebook/xlm-roberta-xl/resolve/main/config.json", "facebook/xlm-roberta-xxl": "https://huggingface.co/facebook/xlm-roberta-xxl/resolve/main/config.json", # See all XLM-RoBERTa-XL models at https://huggingface.co/models?filter=xlm-roberta-xl } class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" snake_case_ = '''xlm-roberta-xl''' def __init__( self , lowerCamelCase__=250_880 , lowerCamelCase__=2_560 , lowerCamelCase__=36 , lowerCamelCase__=32 , lowerCamelCase__=10_240 , lowerCamelCase__="gelu" , lowerCamelCase__=0.1 , lowerCamelCase__=0.1 , lowerCamelCase__=514 , lowerCamelCase__=1 , lowerCamelCase__=0.02 , lowerCamelCase__=1e-05 , lowerCamelCase__=1 , lowerCamelCase__=0 , lowerCamelCase__=2 , lowerCamelCase__="absolute" , lowerCamelCase__=True , lowerCamelCase__=None , **lowerCamelCase__ , ) -> str: '''simple docstring''' super().__init__(pad_token_id=lowerCamelCase__ , bos_token_id=lowerCamelCase__ , eos_token_id=lowerCamelCase__ , **lowerCamelCase__ ) __lowerCamelCase = vocab_size __lowerCamelCase = hidden_size __lowerCamelCase = num_hidden_layers __lowerCamelCase = num_attention_heads __lowerCamelCase = hidden_act __lowerCamelCase = intermediate_size __lowerCamelCase = hidden_dropout_prob __lowerCamelCase = attention_probs_dropout_prob __lowerCamelCase = max_position_embeddings __lowerCamelCase = type_vocab_size __lowerCamelCase = initializer_range __lowerCamelCase = layer_norm_eps __lowerCamelCase = position_embedding_type __lowerCamelCase = use_cache __lowerCamelCase = classifier_dropout class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" @property def lowercase_ ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __lowerCamelCase = {0: 'batch', 1: 'choice', 2: 'sequence'} else: __lowerCamelCase = {0: 'batch', 1: 'sequence'} return OrderedDict( [ ('input_ids', dynamic_axis), ('attention_mask', dynamic_axis), ] )
469
0
import random def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase = [], [], [] for element in data: if element < pivot: less.append(UpperCAmelCase__ ) elif element > pivot: greater.append(UpperCAmelCase__ ) else: equal.append(UpperCAmelCase__ ) return less, equal, greater def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" if index >= len(UpperCAmelCase__ ) or index < 0: return None lowerCamelCase = items[random.randint(0 , len(UpperCAmelCase__ ) - 1 )] lowerCamelCase = 0 lowerCamelCase , lowerCamelCase , lowerCamelCase = _partition(UpperCAmelCase__ , UpperCAmelCase__ ) lowerCamelCase = len(UpperCAmelCase__ ) lowerCamelCase = len(UpperCAmelCase__ ) # index is the pivot if m <= index < m + count: return pivot # must be in smaller elif m > index: return quick_select(UpperCAmelCase__ , UpperCAmelCase__ ) # must be in larger else: return quick_select(UpperCAmelCase__ , index - (m + count) )
719
from __future__ import annotations from collections import deque from collections.abc import Iterator from dataclasses import dataclass @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = 42 class lowerCamelCase__ : """simple docstring""" def __init__(self , __a ): '''simple docstring''' lowerCamelCase = [[] for _ in range(__a )] lowerCamelCase = size def __getitem__(self , __a ): '''simple docstring''' return iter(self._graph[vertex] ) @property def _a (self ): '''simple docstring''' return self._size def _a (self , __a , __a , __a ): '''simple docstring''' if weight not in (0, 1): raise ValueError("Edge weight must be either 0 or 1." ) if to_vertex < 0 or to_vertex >= self.size: raise ValueError("Vertex indexes must be in [0; size)." ) self._graph[from_vertex].append(Edge(__a , __a ) ) def _a (self , __a , __a ): '''simple docstring''' lowerCamelCase = deque([start_vertex] ) lowerCamelCase = [None] * self.size lowerCamelCase = 0 while queue: lowerCamelCase = queue.popleft() lowerCamelCase = distances[current_vertex] if current_distance is None: continue for edge in self[current_vertex]: lowerCamelCase = current_distance + edge.weight lowerCamelCase = distances[edge.destination_vertex] if ( isinstance(__a , __a ) and new_distance >= dest_vertex_distance ): continue lowerCamelCase = new_distance if edge.weight == 0: queue.appendleft(edge.destination_vertex ) else: queue.append(edge.destination_vertex ) if distances[finish_vertex] is None: raise ValueError("No path from start_vertex to finish_vertex." ) return distances[finish_vertex] if __name__ == "__main__": import doctest doctest.testmod()
484
0
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() _UpperCamelCase : Optional[Any] = logging.get_logger(__name__) def __UpperCAmelCase ( A : int , A : Optional[int] ) -> int: UpperCAmelCase_ : Any = RobertaPreLayerNormConfig.from_pretrained( A , architectures=['''RobertaPreLayerNormForMaskedLM'''] ) # convert state_dict UpperCAmelCase_ : Any = torch.load(hf_hub_download(repo_id=A , filename='''pytorch_model.bin''' ) ) UpperCAmelCase_ : Dict = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith('''roberta.''' ): UpperCAmelCase_ : Dict = 'roberta_prelayernorm.' + tensor_key[len('''roberta.''' ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith('''.self.LayerNorm.weight''' ) or tensor_key.endswith('''.self.LayerNorm.bias''' ): continue UpperCAmelCase_ : Optional[int] = tensor_value UpperCAmelCase_ : Union[str, Any] = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=A , config=A , state_dict=A ) model.save_pretrained(A ) # convert tokenizer UpperCAmelCase_ : Optional[int] = AutoTokenizer.from_pretrained(A ) tokenizer.save_pretrained(A ) if __name__ == "__main__": _UpperCamelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--checkpoint-repo', default=None, type=str, required=True, help='Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, required=True, help='Path to the output PyTorch model.' ) _UpperCamelCase : List[str] = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
541
import argparse import logging import pickle from collections import Counter logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO ) lowerCAmelCase__: List[str] = logging.getLogger(__name__) if __name__ == "__main__": lowerCAmelCase__: Optional[Any] = argparse.ArgumentParser( description="Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)" ) parser.add_argument( "--data_file", type=str, default="data/dump.bert-base-uncased.pickle", help="The binarized dataset." ) parser.add_argument( "--token_counts_dump", type=str, default="data/token_counts.bert-base-uncased.pickle", help="The dump file." ) parser.add_argument("--vocab_size", default=3_0522, type=int) lowerCAmelCase__: Union[str, Any] = parser.parse_args() logger.info(f'''Loading data from {args.data_file}''') with open(args.data_file, "rb") as fp: lowerCAmelCase__: List[Any] = pickle.load(fp) logger.info("Counting occurrences for MLM.") lowerCAmelCase__: List[Any] = Counter() for tk_ids in data: counter.update(tk_ids) lowerCAmelCase__: Union[str, Any] = [0] * args.vocab_size for k, v in counter.items(): lowerCAmelCase__: Tuple = v logger.info(f'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, "wb") as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
345
0
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import flax import jax.numpy as jnp from jax import random from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .scheduling_utils_flax import FlaxSchedulerMixin @flax.struct.dataclass class UpperCamelCase_ : lowercase = None lowercase = None lowercase = None # sigma(t_i) @classmethod def _lowercase( cls ) -> Union[str, Any]: return cls() @dataclass class UpperCamelCase_ ( __magic_name__ ): lowercase = 42 lowercase = 42 lowercase = 42 class UpperCamelCase_ ( __magic_name__ , __magic_name__ ): @property def _lowercase( self ) -> Any: return True @register_to_config def __init__( self , A = 0.0_2 , A = 100 , A = 1.0_0_7 , A = 80 , A = 0.0_5 , A = 50 , ) -> Optional[Any]: pass def _lowercase( self ) -> str: return KarrasVeSchedulerState.create() def _lowercase( self , A , A , A = () ) -> List[Any]: UpperCAmelCase : int = jnp.arange(0 , _lowerCAmelCase )[::-1].copy() UpperCAmelCase : Dict = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in timesteps ] return state.replace( num_inference_steps=_lowerCAmelCase , schedule=jnp.array(_lowerCAmelCase , dtype=jnp.floataa ) , timesteps=_lowerCAmelCase , ) def _lowercase( self , A , A , A , A , ) -> int: if self.config.s_min <= sigma <= self.config.s_max: UpperCAmelCase : Dict = min(self.config.s_churn / state.num_inference_steps , 2**0.5 - 1 ) else: UpperCAmelCase : Union[str, Any] = 0 # sample eps ~ N(0, S_noise^2 * I) UpperCAmelCase : List[Any] = random.split(_lowerCAmelCase , num=1 ) UpperCAmelCase : int = self.config.s_noise * random.normal(key=_lowerCAmelCase , shape=sample.shape ) UpperCAmelCase : str = sigma + gamma * sigma UpperCAmelCase : Any = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def _lowercase( self , A , A , A , A , A , A = True , ) -> Optional[Any]: UpperCAmelCase : str = sample_hat + sigma_hat * model_output UpperCAmelCase : str = (sample_hat - pred_original_sample) / sigma_hat UpperCAmelCase : str = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , state=_lowerCAmelCase ) def _lowercase( self , A , A , A , A , A , A , A , A = True , ) -> int: UpperCAmelCase : str = sample_prev + sigma_prev * model_output UpperCAmelCase : Any = (sample_prev - pred_original_sample) / sigma_prev UpperCAmelCase : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative, state) return FlaxKarrasVeOutput(prev_sample=_lowerCAmelCase , derivative=_lowerCAmelCase , state=_lowerCAmelCase ) def _lowercase( self , A , A , A , A ) -> str: raise NotImplementedError()
709
'''simple docstring''' from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline a : List[str] = logging.get_logger(__name__) class UpperCamelCase_ ( __magic_name__ ): def _lowercase( self , A ) -> Optional[int]: if isinstance(A , A ): UpperCAmelCase : Union[str, Any] = [label.strip() for label in labels.split(""",""" ) if label.strip()] return labels def __call__( self , A , A , A ) -> str: if len(A ) == 0 or len(A ) == 0: raise ValueError("""You must include at least one label and at least one sequence.""" ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( """The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. """ """Make sure the passed template includes formatting syntax such as {{}} where the label should go.""" ).format(A ) ) if isinstance(A , A ): UpperCAmelCase : Tuple = [sequences] UpperCAmelCase : Optional[Any] = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(A )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(__magic_name__ ) class UpperCamelCase_ ( __magic_name__ ): def __init__( self , A=ZeroShotClassificationArgumentHandler() , *A , **A ) -> Optional[int]: UpperCAmelCase : Tuple = args_parser super().__init__(*A , **A ) if self.entailment_id == -1: logger.warning( """Failed to determine 'entailment' label id from the label2id mapping in the model config. Setting to """ """-1. Define a descriptive label2id mapping in the model config to ensure correct outputs.""" ) @property def _lowercase( self ) -> List[Any]: for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("""entail""" ): return ind return -1 def _lowercase( self , A , A=True , A=True , A=TruncationStrategy.ONLY_FIRST , **A ) -> str: UpperCAmelCase : Tuple = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( """Tokenizer was not supporting padding necessary for zero-shot, attempting to use """ """ `pad_token=eos_token`""" ) UpperCAmelCase : Any = self.tokenizer.eos_token try: UpperCAmelCase : Tuple = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=A , ) except Exception as e: if "too short" in str(A ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. UpperCAmelCase : List[str] = self.tokenizer( A , add_special_tokens=A , return_tensors=A , padding=A , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def _lowercase( self , **A ) -> Tuple: if kwargs.get("""multi_class""" , A ) is not None: UpperCAmelCase : Any = kwargs["""multi_class"""] logger.warning( """The `multi_class` argument has been deprecated and renamed to `multi_label`. """ """`multi_class` will be removed in a future version of Transformers.""" ) UpperCAmelCase : int = {} if "candidate_labels" in kwargs: UpperCAmelCase : Tuple = self._args_parser._parse_labels(kwargs["""candidate_labels"""] ) if "hypothesis_template" in kwargs: UpperCAmelCase : List[Any] = kwargs["""hypothesis_template"""] UpperCAmelCase : Dict = {} if "multi_label" in kwargs: UpperCAmelCase : Union[str, Any] = kwargs["""multi_label"""] return preprocess_params, {}, postprocess_params def __call__( self , A , *A , **A , ) -> Tuple: if len(A ) == 0: pass elif len(A ) == 1 and "candidate_labels" not in kwargs: UpperCAmelCase : Optional[Any] = args[0] else: raise ValueError(f'''Unable to understand extra arguments {args}''' ) return super().__call__(A , **A ) def _lowercase( self , A , A=None , A="This example is {}." ) -> List[Any]: UpperCAmelCase , UpperCAmelCase : List[Any] = self._args_parser(A , A , A ) for i, (candidate_label, sequence_pair) in enumerate(zip(A , A ) ): UpperCAmelCase : Any = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(A ) - 1, **model_input, } def _lowercase( self , A ) -> Optional[int]: UpperCAmelCase : Optional[Any] = inputs["""candidate_label"""] UpperCAmelCase : Tuple = inputs["""sequence"""] UpperCAmelCase : List[Any] = {k: inputs[k] for k in self.tokenizer.model_input_names} UpperCAmelCase : Tuple = self.model(**A ) UpperCAmelCase : Optional[int] = { """candidate_label""": candidate_label, """sequence""": sequence, """is_last""": inputs["""is_last"""], **outputs, } return model_outputs def _lowercase( self , A , A=False ) -> List[str]: UpperCAmelCase : Dict = [outputs["""candidate_label"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = [outputs["""sequence"""] for outputs in model_outputs] UpperCAmelCase : List[Any] = np.concatenate([output["""logits"""].numpy() for output in model_outputs] ) UpperCAmelCase : Optional[Any] = logits.shape[0] UpperCAmelCase : int = len(A ) UpperCAmelCase : List[Any] = N // n UpperCAmelCase : int = logits.reshape((num_sequences, n, -1) ) if multi_label or len(A ) == 1: # softmax over the entailment vs. contradiction dim for each label independently UpperCAmelCase : str = self.entailment_id UpperCAmelCase : str = -1 if entailment_id == 0 else 0 UpperCAmelCase : Optional[Any] = reshaped_outputs[..., [contradiction_id, entailment_id]] UpperCAmelCase : int = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels UpperCAmelCase : Dict = reshaped_outputs[..., self.entailment_id] UpperCAmelCase : Optional[int] = np.exp(A ) / np.exp(A ).sum(-1 , keepdims=A ) UpperCAmelCase : int = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
672
0
"""simple docstring""" def __a ( a ): """simple docstring""" _a = len(a ) _a = sum(a ) _a = [[False for x in range(s + 1 )] for y in range(n + 1 )] for i in range(1, n + 1 ): _a = True for i in range(1, s + 1 ): _a = False for i in range(1, n + 1 ): for j in range(1, s + 1 ): _a = dp[i][j - 1] if arr[i - 1] <= j: _a = dp[i][j] or dp[i - 1][j - arr[i - 1]] for j in range(int(s / 2 ), -1, -1 ): if dp[n][j] is True: _a = s - 2 * j break return diff
388
"""simple docstring""" from __future__ import annotations import unittest from transformers import DebertaVaConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, TFDebertaVaModel, ) class __snake_case : """simple docstring""" def __init__( self :str , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Optional[int]=13 , UpperCamelCase__ :Optional[Any]=7 , UpperCamelCase__ :Dict=True , UpperCamelCase__ :Union[str, Any]=True , UpperCamelCase__ :Any=True , UpperCamelCase__ :Tuple=True , UpperCamelCase__ :Dict=99 , UpperCamelCase__ :Union[str, Any]=32 , UpperCamelCase__ :Dict=2 , UpperCamelCase__ :List[str]=4 , UpperCamelCase__ :Any=37 , UpperCamelCase__ :int="gelu" , UpperCamelCase__ :str=0.1 , UpperCamelCase__ :Union[str, Any]=0.1 , UpperCamelCase__ :Optional[Any]=512 , UpperCamelCase__ :Optional[Any]=16 , UpperCamelCase__ :Optional[Any]=2 , UpperCamelCase__ :Optional[Any]=0.02 , UpperCamelCase__ :List[Any]=False , UpperCamelCase__ :Union[str, Any]=True , UpperCamelCase__ :Optional[int]="None" , UpperCamelCase__ :Any=3 , UpperCamelCase__ :Optional[int]=4 , UpperCamelCase__ :List[str]=None , ): _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = relative_attention _a = position_biased_input _a = pos_att_type _a = scope def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , initializer_range=self.initializer_range , return_dict=UpperCamelCase__ , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def SCREAMING_SNAKE_CASE_ ( self :Dict , UpperCamelCase__ :int , UpperCamelCase__ :int , UpperCamelCase__ :Tuple , UpperCamelCase__ :List[str] , UpperCamelCase__ :Tuple , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :int ): _a = TFDebertaVaModel(config=UpperCamelCase__ ) _a = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids} _a = [input_ids, input_mask] _a = model(UpperCamelCase__ ) _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :int , UpperCamelCase__ :str , UpperCamelCase__ :str , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :str , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :List[str] ): _a = TFDebertaVaForMaskedLM(config=UpperCamelCase__ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :str , UpperCamelCase__ :Tuple , UpperCamelCase__ :List[str] , UpperCamelCase__ :str , UpperCamelCase__ :Dict , UpperCamelCase__ :Tuple , UpperCamelCase__ :Any ): _a = self.num_labels _a = TFDebertaVaForSequenceClassification(config=UpperCamelCase__ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :Union[str, Any] , UpperCamelCase__ :int , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :int , UpperCamelCase__ :Any , UpperCamelCase__ :int , UpperCamelCase__ :Optional[Any] ): _a = self.num_labels _a = TFDebertaVaForTokenClassification(config=UpperCamelCase__ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :Dict , UpperCamelCase__ :Dict , UpperCamelCase__ :str , UpperCamelCase__ :Optional[int] , UpperCamelCase__ :Tuple , UpperCamelCase__ :List[str] , UpperCamelCase__ :Any ): _a = TFDebertaVaForQuestionAnswering(config=UpperCamelCase__ ) _a = { "input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids, } _a = model(UpperCamelCase__ ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask} return config, inputs_dict @require_tf class __snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , unittest.TestCase ): """simple docstring""" lowerCAmelCase_ : Optional[Any] = ( ( TFDebertaVaModel, TFDebertaVaForMaskedLM, TFDebertaVaForQuestionAnswering, TFDebertaVaForSequenceClassification, TFDebertaVaForTokenClassification, ) if is_tf_available() else () ) lowerCAmelCase_ : str = ( { 'feature-extraction': TFDebertaVaModel, 'fill-mask': TFDebertaVaForMaskedLM, 'question-answering': TFDebertaVaForQuestionAnswering, 'text-classification': TFDebertaVaForSequenceClassification, 'token-classification': TFDebertaVaForTokenClassification, 'zero-shot': TFDebertaVaForSequenceClassification, } if is_tf_available() else {} ) lowerCAmelCase_ : Dict = False lowerCAmelCase_ : Any = False def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = TFDebertaVaModelTester(self ) _a = ConfigTester(self , config_class=UpperCamelCase__ , hidden_size=37 ) def SCREAMING_SNAKE_CASE_ ( self :str ): self.config_tester.run_common_tests() def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Any ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*UpperCamelCase__ ) @slow def SCREAMING_SNAKE_CASE_ ( self :Union[str, Any] ): _a = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) self.assertIsNotNone(UpperCamelCase__ ) @require_tf class __snake_case ( unittest.TestCase ): """simple docstring""" @unittest.skip(reason="Model not available yet" ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): pass @slow def SCREAMING_SNAKE_CASE_ ( self :str ): _a = TFDebertaVaModel.from_pretrained("kamalkraj/deberta-v2-xlarge" ) _a = tf.constant([[0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2]] ) _a = tf.constant([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) _a = model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] _a = tf.constant( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) tf.debugging.assert_near(output[:, 1:4, 1:4] , UpperCamelCase__ , atol=1E-4 )
388
1
def a (_lowerCAmelCase ): return credit_card_number.startswith(('''34''', '''35''', '''37''', '''4''', '''5''', '''6''') ) def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = credit_card_number SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = len(_lowerCAmelCase ) - 2 for i in range(_lowerCAmelCase , -1 , -2 ): # double the value of every second digit SCREAMING_SNAKE_CASE_ = int(cc_number[i] ) digit *= 2 # If doubling of a number results in a two digit number # i.e greater than 9(e.g., 6 × 2 = 12), # then add the digits of the product (e.g., 12: 1 + 2 = 3, 15: 1 + 5 = 6), # to get a single digit number. if digit > 9: digit %= 1_0 digit += 1 SCREAMING_SNAKE_CASE_ = cc_number[:i] + str(_lowerCAmelCase ) + cc_number[i + 1 :] total += digit # Sum up the remaining digits for i in range(len(_lowerCAmelCase ) - 1 , -1 , -2 ): total += int(cc_number[i] ) return total % 1_0 == 0 def a (_lowerCAmelCase ): SCREAMING_SNAKE_CASE_ = F"{credit_card_number} is an invalid credit card number because" if not credit_card_number.isdigit(): print(F"{error_message} it has nonnumerical characters." ) return False if not 1_3 <= len(_lowerCAmelCase ) <= 1_6: print(F"{error_message} of its length." ) return False if not validate_initial_digits(_lowerCAmelCase ): print(F"{error_message} of its first two digits." ) return False if not luhn_validation(_lowerCAmelCase ): print(F"{error_message} it fails the Luhn check." ) return False print(F"{credit_card_number} is a valid credit card number." ) return True if __name__ == "__main__": import doctest doctest.testmod() validate_credit_card_number("""4111111111111111""") validate_credit_card_number("""32323""")
89
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __SCREAMING_SNAKE_CASE ={ """configuration_xlm_roberta_xl""": [ """XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLMRobertaXLConfig""", """XLMRobertaXLOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __SCREAMING_SNAKE_CASE =[ """XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLMRobertaXLForCausalLM""", """XLMRobertaXLForMaskedLM""", """XLMRobertaXLForMultipleChoice""", """XLMRobertaXLForQuestionAnswering""", """XLMRobertaXLForSequenceClassification""", """XLMRobertaXLForTokenClassification""", """XLMRobertaXLModel""", """XLMRobertaXLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __SCREAMING_SNAKE_CASE =_LazyModule(__name__, globals()["""__file__"""], _import_structure)
89
1
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowerCAmelCase = logging.get_logger(__name__) _lowerCAmelCase = "▁" _lowerCAmelCase = {"vocab_file": "sentencepiece.bpe.model"} _lowerCAmelCase = { "vocab_file": { "facebook/nllb-200-distilled-600M": ( "https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model" ), } } _lowerCAmelCase = { "facebook/nllb-200-distilled-600M": 1_024, } # fmt: off _lowerCAmelCase = ["ace_Arab", "ace_Latn", "acm_Arab", "acq_Arab", "aeb_Arab", "afr_Latn", "ajp_Arab", "aka_Latn", "amh_Ethi", "apc_Arab", "arb_Arab", "ars_Arab", "ary_Arab", "arz_Arab", "asm_Beng", "ast_Latn", "awa_Deva", "ayr_Latn", "azb_Arab", "azj_Latn", "bak_Cyrl", "bam_Latn", "ban_Latn", "bel_Cyrl", "bem_Latn", "ben_Beng", "bho_Deva", "bjn_Arab", "bjn_Latn", "bod_Tibt", "bos_Latn", "bug_Latn", "bul_Cyrl", "cat_Latn", "ceb_Latn", "ces_Latn", "cjk_Latn", "ckb_Arab", "crh_Latn", "cym_Latn", "dan_Latn", "deu_Latn", "dik_Latn", "dyu_Latn", "dzo_Tibt", "ell_Grek", "eng_Latn", "epo_Latn", "est_Latn", "eus_Latn", "ewe_Latn", "fao_Latn", "pes_Arab", "fij_Latn", "fin_Latn", "fon_Latn", "fra_Latn", "fur_Latn", "fuv_Latn", "gla_Latn", "gle_Latn", "glg_Latn", "grn_Latn", "guj_Gujr", "hat_Latn", "hau_Latn", "heb_Hebr", "hin_Deva", "hne_Deva", "hrv_Latn", "hun_Latn", "hye_Armn", "ibo_Latn", "ilo_Latn", "ind_Latn", "isl_Latn", "ita_Latn", "jav_Latn", "jpn_Jpan", "kab_Latn", "kac_Latn", "kam_Latn", "kan_Knda", "kas_Arab", "kas_Deva", "kat_Geor", "knc_Arab", "knc_Latn", "kaz_Cyrl", "kbp_Latn", "kea_Latn", "khm_Khmr", "kik_Latn", "kin_Latn", "kir_Cyrl", "kmb_Latn", "kon_Latn", "kor_Hang", "kmr_Latn", "lao_Laoo", "lvs_Latn", "lij_Latn", "lim_Latn", "lin_Latn", "lit_Latn", "lmo_Latn", "ltg_Latn", "ltz_Latn", "lua_Latn", "lug_Latn", "luo_Latn", "lus_Latn", "mag_Deva", "mai_Deva", "mal_Mlym", "mar_Deva", "min_Latn", "mkd_Cyrl", "plt_Latn", "mlt_Latn", "mni_Beng", "khk_Cyrl", "mos_Latn", "mri_Latn", "zsm_Latn", "mya_Mymr", "nld_Latn", "nno_Latn", "nob_Latn", "npi_Deva", "nso_Latn", "nus_Latn", "nya_Latn", "oci_Latn", "gaz_Latn", "ory_Orya", "pag_Latn", "pan_Guru", "pap_Latn", "pol_Latn", "por_Latn", "prs_Arab", "pbt_Arab", "quy_Latn", "ron_Latn", "run_Latn", "rus_Cyrl", "sag_Latn", "san_Deva", "sat_Beng", "scn_Latn", "shn_Mymr", "sin_Sinh", "slk_Latn", "slv_Latn", "smo_Latn", "sna_Latn", "snd_Arab", "som_Latn", "sot_Latn", "spa_Latn", "als_Latn", "srd_Latn", "srp_Cyrl", "ssw_Latn", "sun_Latn", "swe_Latn", "swh_Latn", "szl_Latn", "tam_Taml", "tat_Cyrl", "tel_Telu", "tgk_Cyrl", "tgl_Latn", "tha_Thai", "tir_Ethi", "taq_Latn", "taq_Tfng", "tpi_Latn", "tsn_Latn", "tso_Latn", "tuk_Latn", "tum_Latn", "tur_Latn", "twi_Latn", "tzm_Tfng", "uig_Arab", "ukr_Cyrl", "umb_Latn", "urd_Arab", "uzn_Latn", "vec_Latn", "vie_Latn", "war_Latn", "wol_Latn", "xho_Latn", "ydd_Hebr", "yor_Latn", "yue_Hant", "zho_Hans", "zho_Hant", "zul_Latn"] class lowerCAmelCase_ ( __lowercase ): UpperCAmelCase = VOCAB_FILES_NAMES UpperCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase = ["input_ids", "attention_mask"] UpperCAmelCase = [] UpperCAmelCase = [] def __init__( self : int , _A : Union[str, Any] , _A : Optional[int]="<s>" , _A : str="</s>" , _A : Optional[int]="</s>" , _A : Tuple="<s>" , _A : Dict="<unk>" , _A : List[str]="<pad>" , _A : Dict="<mask>" , _A : Optional[Any]=None , _A : Union[str, Any]=None , _A : Any=None , _A : Optional[Dict[str, Any]] = None , _A : List[str]=None , _A : str=False , **_A : int , ): # Mask token behave like a normal word, i.e. include the space before it _UpperCamelCase = AddedToken(_A , lstrip=_A , rstrip=_A ) if isinstance(_A , _A ) else mask_token _UpperCamelCase = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCamelCase = legacy_behaviour super().__init__( bos_token=_A , eos_token=_A , unk_token=_A , sep_token=_A , cls_token=_A , pad_token=_A , mask_token=_A , tokenizer_file=_A , src_lang=_A , tgt_lang=_A , additional_special_tokens=_A , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_A , **_A , ) _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_A ) ) _UpperCamelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token _UpperCamelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab _UpperCamelCase = 1 _UpperCamelCase = len(self.sp_model ) _UpperCamelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_A ) } _UpperCamelCase = {v: k for k, v in self.lang_code_to_id.items()} _UpperCamelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) _UpperCamelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} _UpperCamelCase = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) _UpperCamelCase = src_lang if src_lang is not None else '''eng_Latn''' _UpperCamelCase = self.lang_code_to_id[self._src_lang] _UpperCamelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Union[str, Any] ): _UpperCamelCase = self.__dict__.copy() _UpperCamelCase = None _UpperCamelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self : str , _A : Any ): _UpperCamelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): _UpperCamelCase = {} _UpperCamelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def UpperCamelCase_ ( self : Optional[int] ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def UpperCamelCase_ ( self : int ): return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : int , _A : str ): _UpperCamelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : str , _A : List[int] , _A : Optional[List[int]] = None , _A : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_A , token_ids_a=_A , already_has_special_tokens=_A ) _UpperCamelCase = [1] * len(self.prefix_tokens ) _UpperCamelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_A )) + suffix_ones return prefix_ones + ([0] * len(_A )) + ([0] * len(_A )) + suffix_ones def UpperCamelCase_ ( self : Optional[int] , _A : List[int] , _A : Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : Any , _A : List[int] , _A : Optional[List[int]] = None ): _UpperCamelCase = [self.sep_token_id] _UpperCamelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def UpperCamelCase_ ( self : Optional[int] , _A : str , _A : str , _A : Optional[str] , _A : Optional[str] , **_A : Optional[int] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) _UpperCamelCase = src_lang _UpperCamelCase = self(_A , add_special_tokens=_A , return_tensors=_A , **_A ) _UpperCamelCase = self.convert_tokens_to_ids(_A ) _UpperCamelCase = tgt_lang_id return inputs def UpperCamelCase_ ( self : Union[str, Any] ): _UpperCamelCase = {self.convert_ids_to_tokens(_A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase_ ( self : int , _A : str ): return self.sp_model.encode(_A , out_type=_A ) def UpperCamelCase_ ( self : List[str] , _A : Optional[int] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] _UpperCamelCase = self.sp_model.PieceToId(_A ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def UpperCamelCase_ ( self : Union[str, Any] , _A : str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def UpperCamelCase_ ( self : List[Any] , _A : Dict ): _UpperCamelCase = ''''''.join(_A ).replace(_A , ''' ''' ).strip() return out_string def UpperCamelCase_ ( self : Union[str, Any] , _A : str , _A : Optional[str] = None ): if not os.path.isdir(_A ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return _UpperCamelCase = os.path.join( _A , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _A ) elif not os.path.isfile(self.vocab_file ): with open(_A , '''wb''' ) as fi: _UpperCamelCase = self.sp_model.serialized_model_proto() fi.write(_A ) return (out_vocab_file,) def UpperCamelCase_ ( self : Union[str, Any] , _A : List[str] , _A : str = "eng_Latn" , _A : Optional[List[str]] = None , _A : str = "fra_Latn" , **_A : Optional[int] , ): _UpperCamelCase = src_lang _UpperCamelCase = tgt_lang return super().prepare_seqaseq_batch(_A , _A , **_A ) def UpperCamelCase_ ( self : Union[str, Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : Optional[int] ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : Optional[int] , _A : Tuple ): _UpperCamelCase = self.lang_code_to_id[src_lang] if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id] def UpperCamelCase_ ( self : Optional[Any] , _A : str ): _UpperCamelCase = self.lang_code_to_id[lang] if self.legacy_behaviour: _UpperCamelCase = [] _UpperCamelCase = [self.eos_token_id, self.cur_lang_code] else: _UpperCamelCase = [self.cur_lang_code] _UpperCamelCase = [self.eos_token_id]
10
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ : str = logging.get_logger(__name__) UpperCAmelCase_ : Optional[int] = { 'SCUT-DLVCLab/lilt-roberta-en-base': ( 'https://huggingface.co/SCUT-DLVCLab/lilt-roberta-en-base/resolve/main/config.json' ), } class lowercase__ ( _snake_case ): '''simple docstring''' A_ : List[str] = """lilt""" def __init__( self , __snake_case=3_0522 , __snake_case=768 , __snake_case=12 , __snake_case=12 , __snake_case=3072 , __snake_case="gelu" , __snake_case=0.1 , __snake_case=0.1 , __snake_case=512 , __snake_case=2 , __snake_case=0.02 , __snake_case=1e-12 , __snake_case=0 , __snake_case="absolute" , __snake_case=None , __snake_case=4 , __snake_case=1024 , **__snake_case , ): super().__init__(pad_token_id=__snake_case , **__snake_case ) _SCREAMING_SNAKE_CASE : str = vocab_size _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_size _SCREAMING_SNAKE_CASE : Optional[Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Optional[int] = num_attention_heads _SCREAMING_SNAKE_CASE : Optional[Any] = hidden_act _SCREAMING_SNAKE_CASE : Dict = intermediate_size _SCREAMING_SNAKE_CASE : Tuple = hidden_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : Union[str, Any] = max_position_embeddings _SCREAMING_SNAKE_CASE : Dict = type_vocab_size _SCREAMING_SNAKE_CASE : Union[str, Any] = initializer_range _SCREAMING_SNAKE_CASE : Tuple = layer_norm_eps _SCREAMING_SNAKE_CASE : str = position_embedding_type _SCREAMING_SNAKE_CASE : List[str] = classifier_dropout _SCREAMING_SNAKE_CASE : int = channel_shrink_ratio _SCREAMING_SNAKE_CASE : str = max_ad_position_embeddings
533
0
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowercase : Any = logging.get_logger(__name__) __lowercase : Optional[int] = { '''weiweishi/roc-bert-base-zh''': '''https://huggingface.co/weiweishi/roc-bert-base-zh/resolve/main/config.json''', } class __lowercase ( _lowercase ): lowerCamelCase : List[str] = "roc_bert" def __init__(self , A=3_0_5_2_2 , A=7_6_8 , A=1_2 , A=1_2 , A=3_0_7_2 , A="gelu" , A=0.1 , A=0.1 , A=5_1_2 , A=2 , A=0.02 , A=1E-12 , A=True , A=0 , A="absolute" , A=None , A=True , A=True , A=7_6_8 , A=9_1_0 , A=5_1_2 , A=2_4_8_5_8 , A=True , **A , ): lowerCamelCase_ : Tuple = vocab_size lowerCamelCase_ : int = max_position_embeddings lowerCamelCase_ : List[Any] = hidden_size lowerCamelCase_ : List[str] = num_hidden_layers lowerCamelCase_ : Dict = num_attention_heads lowerCamelCase_ : Dict = intermediate_size lowerCamelCase_ : List[str] = hidden_act lowerCamelCase_ : Union[str, Any] = hidden_dropout_prob lowerCamelCase_ : str = attention_probs_dropout_prob lowerCamelCase_ : Union[str, Any] = initializer_range lowerCamelCase_ : Any = type_vocab_size lowerCamelCase_ : List[Any] = layer_norm_eps lowerCamelCase_ : Optional[Any] = use_cache lowerCamelCase_ : Tuple = enable_pronunciation lowerCamelCase_ : Tuple = enable_shape lowerCamelCase_ : List[Any] = pronunciation_embed_dim lowerCamelCase_ : List[Any] = pronunciation_vocab_size lowerCamelCase_ : List[str] = shape_embed_dim lowerCamelCase_ : List[Any] = shape_vocab_size lowerCamelCase_ : str = concat_input lowerCamelCase_ : Optional[Any] = position_embedding_type lowerCamelCase_ : List[str] = classifier_dropout super().__init__(pad_token_id=A , **A )
721
'''simple docstring''' import itertools import math def lowercase_ ( _lowercase ) -> bool: '''simple docstring''' if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(_lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowercase_ ( ) -> Optional[int]: '''simple docstring''' lowerCamelCase_ : Union[str, Any] = 2 while True: if is_prime(_lowercase ): yield num num += 1 def lowercase_ ( _lowercase = 10_001 ) -> int: '''simple docstring''' return next(itertools.islice(prime_generator() , nth - 1 , _lowercase ) ) if __name__ == "__main__": print(f'{solution() = }')
357
0
from collections import deque from math import floor from random import random from time import time class lowerCAmelCase_ : def __init__( self ): _lowercase : Optional[int] = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1 ): if self.graph.get(_lowerCAmelCase ): if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: _lowercase : Tuple = [[w, v]] if not self.graph.get(_lowerCAmelCase ): _lowercase : Optional[Any] = [] def __a ( self ): return list(self.graph ) def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.graph.get(_lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase=-2 , _lowerCAmelCase=-1 ): if s == d: return [] _lowercase : str = [] _lowercase : Union[str, Any] = [] if s == -2: _lowercase : str = list(self.graph )[0] stack.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) _lowercase : Optional[int] = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowercase : Optional[int] = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _lowercase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCAmelCase ) != 0: _lowercase : int = stack[len(_lowerCAmelCase ) - 1] else: _lowercase : Optional[int] = ss # check if se have reached the starting point if len(_lowerCAmelCase ) == 0: return visited def __a ( self , _lowerCAmelCase=-1 ): if c == -1: _lowercase : Dict = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(_lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _lowercase : str = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCAmelCase , _lowerCAmelCase , 1 ) def __a ( self , _lowerCAmelCase=-2 ): _lowercase : str = deque() _lowercase : Optional[Any] = [] if s == -2: _lowercase : List[Any] = list(self.graph )[0] d.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) while d: _lowercase : Tuple = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __a ( self , _lowerCAmelCase ): _lowercase : str = 0 for x in self.graph: for y in self.graph[x]: if y[1] == u: count += 1 return count def __a ( self , _lowerCAmelCase ): return len(self.graph[u] ) def __a ( self , _lowerCAmelCase=-2 ): _lowercase : Dict = [] _lowercase : Tuple = [] if s == -2: _lowercase : Union[str, Any] = list(self.graph )[0] stack.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) _lowercase : List[Any] = s _lowercase : Dict = [] while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowercase : int = s for node in self.graph[s]: if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowercase : str = node[1] break # check if all the children are visited if s == ss: sorted_nodes.append(stack.pop() ) if len(_lowerCAmelCase ) != 0: _lowercase : str = stack[len(_lowerCAmelCase ) - 1] else: _lowercase : int = ss # check if se have reached the starting point if len(_lowerCAmelCase ) == 0: return sorted_nodes def __a ( self ): _lowercase : Tuple = [] _lowercase : Tuple = [] _lowercase : Dict = list(self.graph )[0] stack.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) _lowercase : Optional[int] = -2 _lowercase : Tuple = [] _lowercase : Dict = s _lowercase : List[str] = False _lowercase : List[Any] = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowercase : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowercase : Union[str, Any] = len(_lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowercase : Any = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowercase : int = True if len(_lowerCAmelCase ) != 0: _lowercase : List[Any] = stack[len(_lowerCAmelCase ) - 1] else: _lowercase : Tuple = False indirect_parents.append(_lowerCAmelCase ) _lowercase : Dict = s _lowercase : Union[str, Any] = ss # check if se have reached the starting point if len(_lowerCAmelCase ) == 0: return list(_lowerCAmelCase ) def __a ( self ): _lowercase : Optional[Any] = [] _lowercase : Optional[Any] = [] _lowercase : List[Any] = list(self.graph )[0] stack.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) _lowercase : Dict = -2 _lowercase : Union[str, Any] = [] _lowercase : int = s _lowercase : List[str] = False _lowercase : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowercase : List[Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowercase : str = len(_lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowercase : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowercase : Dict = True if len(_lowerCAmelCase ) != 0: _lowercase : Union[str, Any] = stack[len(_lowerCAmelCase ) - 1] else: _lowercase : Any = False indirect_parents.append(_lowerCAmelCase ) _lowercase : Optional[Any] = s _lowercase : Any = ss # check if se have reached the starting point if len(_lowerCAmelCase ) == 0: return False def __a ( self , _lowerCAmelCase=-2 , _lowerCAmelCase=-1 ): _lowercase : Optional[int] = time() self.dfs(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = time() return end - begin def __a ( self , _lowerCAmelCase=-2 ): _lowercase : str = time() self.bfs(_lowerCAmelCase ) _lowercase : str = time() return end - begin class lowerCAmelCase_ : def __init__( self ): _lowercase : str = {} def __a ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase=1 ): # check if the u exists if self.graph.get(_lowerCAmelCase ): # if there already is a edge if self.graph[u].count([w, v] ) == 0: self.graph[u].append([w, v] ) else: # if u does not exist _lowercase : Any = [[w, v]] # add the other way if self.graph.get(_lowerCAmelCase ): # if there already is a edge if self.graph[v].count([w, u] ) == 0: self.graph[v].append([w, u] ) else: # if u does not exist _lowercase : List[Any] = [[w, u]] def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): if self.graph.get(_lowerCAmelCase ): for _ in self.graph[u]: if _[1] == v: self.graph[u].remove(_lowerCAmelCase ) # the other way round if self.graph.get(_lowerCAmelCase ): for _ in self.graph[v]: if _[1] == u: self.graph[v].remove(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase=-2 , _lowerCAmelCase=-1 ): if s == d: return [] _lowercase : Dict = [] _lowercase : Dict = [] if s == -2: _lowercase : Tuple = list(self.graph )[0] stack.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) _lowercase : str = s while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowercase : Any = s for node in self.graph[s]: if visited.count(node[1] ) < 1: if node[1] == d: visited.append(_lowerCAmelCase ) return visited else: stack.append(node[1] ) visited.append(node[1] ) _lowercase : Union[str, Any] = node[1] break # check if all the children are visited if s == ss: stack.pop() if len(_lowerCAmelCase ) != 0: _lowercase : Any = stack[len(_lowerCAmelCase ) - 1] else: _lowercase : Tuple = ss # check if se have reached the starting point if len(_lowerCAmelCase ) == 0: return visited def __a ( self , _lowerCAmelCase=-1 ): if c == -1: _lowercase : Dict = floor(random() * 1_0_0_0_0 ) + 1_0 for i in range(_lowerCAmelCase ): # every vertex has max 100 edges for _ in range(floor(random() * 1_0_2 ) + 1 ): _lowercase : Optional[Any] = floor(random() * c ) + 1 if n != i: self.add_pair(_lowerCAmelCase , _lowerCAmelCase , 1 ) def __a ( self , _lowerCAmelCase=-2 ): _lowercase : Optional[int] = deque() _lowercase : Any = [] if s == -2: _lowercase : Optional[int] = list(self.graph )[0] d.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) while d: _lowercase : Any = d.popleft() if len(self.graph[s] ) != 0: for node in self.graph[s]: if visited.count(node[1] ) < 1: d.append(node[1] ) visited.append(node[1] ) return visited def __a ( self , _lowerCAmelCase ): return len(self.graph[u] ) def __a ( self ): _lowercase : Any = [] _lowercase : Optional[Any] = [] _lowercase : Optional[int] = list(self.graph )[0] stack.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) _lowercase : Optional[int] = -2 _lowercase : Dict = [] _lowercase : int = s _lowercase : Dict = False _lowercase : Dict = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowercase : Any = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowercase : str = len(_lowerCAmelCase ) - 1 while len_stack >= 0: if stack[len_stack] == node[1]: anticipating_nodes.add(node[1] ) break else: anticipating_nodes.add(stack[len_stack] ) len_stack -= 1 if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowercase : str = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowercase : Any = True if len(_lowerCAmelCase ) != 0: _lowercase : List[Any] = stack[len(_lowerCAmelCase ) - 1] else: _lowercase : Union[str, Any] = False indirect_parents.append(_lowerCAmelCase ) _lowercase : int = s _lowercase : Any = ss # check if se have reached the starting point if len(_lowerCAmelCase ) == 0: return list(_lowerCAmelCase ) def __a ( self ): _lowercase : Union[str, Any] = [] _lowercase : Dict = [] _lowercase : List[str] = list(self.graph )[0] stack.append(_lowerCAmelCase ) visited.append(_lowerCAmelCase ) _lowercase : Any = -2 _lowercase : Optional[Any] = [] _lowercase : List[str] = s _lowercase : Optional[int] = False _lowercase : Tuple = set() while True: # check if there is any non isolated nodes if len(self.graph[s] ) != 0: _lowercase : Union[str, Any] = s for node in self.graph[s]: if ( visited.count(node[1] ) > 0 and node[1] != parent and indirect_parents.count(node[1] ) > 0 and not on_the_way_back ): _lowercase : Tuple = len(_lowerCAmelCase ) - 1 while len_stack_minus_one >= 0: if stack[len_stack_minus_one] == node[1]: anticipating_nodes.add(node[1] ) break else: return True if visited.count(node[1] ) < 1: stack.append(node[1] ) visited.append(node[1] ) _lowercase : Dict = node[1] break # check if all the children are visited if s == ss: stack.pop() _lowercase : str = True if len(_lowerCAmelCase ) != 0: _lowercase : List[str] = stack[len(_lowerCAmelCase ) - 1] else: _lowercase : Optional[Any] = False indirect_parents.append(_lowerCAmelCase ) _lowercase : Optional[int] = s _lowercase : List[str] = ss # check if se have reached the starting point if len(_lowerCAmelCase ) == 0: return False def __a ( self ): return list(self.graph ) def __a ( self , _lowerCAmelCase=-2 , _lowerCAmelCase=-1 ): _lowercase : Any = time() self.dfs(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Optional[int] = time() return end - begin def __a ( self , _lowerCAmelCase=-2 ): _lowercase : Dict = time() self.bfs(_lowerCAmelCase ) _lowercase : int = time() return end - begin
66
'''simple docstring''' from collections import UserDict from typing import Union import numpy as np import requests from ..utils import ( add_end_docstrings, logging, ) from .audio_classification import ffmpeg_read from .base import PIPELINE_INIT_ARGS, Pipeline snake_case_ : List[Any] = logging.get_logger(__name__) @add_end_docstrings(lowercase ) class lowercase__ ( lowercase ): def __init__( self : Tuple ,**lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' super().__init__(**lowerCamelCase__ ) if self.framework != "pt": raise ValueError(F'The {self.__class__} is only available in PyTorch.' ) # No specific FOR_XXX available yet def __call__( self : Dict ,lowerCamelCase__ : Union[np.ndarray, bytes, str] ,**lowerCamelCase__ : Any ): '''simple docstring''' return super().__call__(lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : int ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' _UpperCamelCase : List[Any] = {} if "candidate_labels" in kwargs: _UpperCamelCase : Any = kwargs['candidate_labels'] if "hypothesis_template" in kwargs: _UpperCamelCase : Any = kwargs['hypothesis_template'] return preprocess_params, {}, {} def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str=None ,lowerCamelCase__ : List[Any]="This is a sound of {}." ): '''simple docstring''' if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): if audio.startswith('http://' ) or audio.startswith('https://' ): # We need to actually check for a real protocol, otherwise it's impossible to use a local file # like http_huggingface_co.png _UpperCamelCase : Optional[Any] = requests.get(lowerCamelCase__ ).content else: with open(lowerCamelCase__ ,'rb' ) as f: _UpperCamelCase : List[str] = f.read() if isinstance(lowerCamelCase__ ,lowerCamelCase__ ): _UpperCamelCase : int = ffmpeg_read(lowerCamelCase__ ,self.feature_extractor.sampling_rate ) if not isinstance(lowerCamelCase__ ,np.ndarray ): raise ValueError('We expect a numpy ndarray as input' ) if len(audio.shape ) != 1: raise ValueError('We expect a single channel audio input for ZeroShotAudioClassificationPipeline' ) _UpperCamelCase : Dict = self.feature_extractor( [audio] ,sampling_rate=self.feature_extractor.sampling_rate ,return_tensors='pt' ) _UpperCamelCase : List[Any] = candidate_labels _UpperCamelCase : Tuple = [hypothesis_template.format(lowerCamelCase__ ) for x in candidate_labels] _UpperCamelCase : Dict = self.tokenizer(lowerCamelCase__ ,return_tensors=self.framework ,padding=lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = [text_inputs] return inputs def UpperCamelCase_ ( self : str ,lowerCamelCase__ : Tuple ): '''simple docstring''' _UpperCamelCase : Any = model_inputs.pop('candidate_labels' ) _UpperCamelCase : str = model_inputs.pop('text_inputs' ) if isinstance(text_inputs[0] ,lowerCamelCase__ ): _UpperCamelCase : Union[str, Any] = text_inputs[0] else: # Batching case. _UpperCamelCase : int = text_inputs[0][0] _UpperCamelCase : List[str] = self.model(**lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = { 'candidate_labels': candidate_labels, 'logits': outputs.logits_per_audio, } return model_outputs def UpperCamelCase_ ( self : int ,lowerCamelCase__ : Optional[Any] ): '''simple docstring''' _UpperCamelCase : Optional[Any] = model_outputs.pop('candidate_labels' ) _UpperCamelCase : int = model_outputs['logits'][0] if self.framework == "pt": _UpperCamelCase : Tuple = logits.softmax(dim=0 ) _UpperCamelCase : str = probs.tolist() else: raise ValueError('`tf` framework not supported.' ) _UpperCamelCase : Union[str, Any] = [ {'score': score, 'label': candidate_label} for score, candidate_label in sorted(zip(lowerCamelCase__ ,lowerCamelCase__ ) ,key=lambda lowerCamelCase__ : -x[0] ) ] return result
195
0
from typing import Any class A : """simple docstring""" def __init__( self : Dict,lowercase_ : Any )-> Union[str, Any]: '''simple docstring''' A__ = data A__ = None def __repr__( self : Optional[int] )-> str: '''simple docstring''' return F'Node({self.data})' class A : """simple docstring""" def __init__( self : Union[str, Any] )-> Optional[int]: '''simple docstring''' A__ = None def __iter__( self : Union[str, Any] )-> Any: '''simple docstring''' A__ = self.head while node: yield node.data A__ = node.next def __len__( self : List[str] )-> int: '''simple docstring''' return sum(1 for _ in self ) def __repr__( self : Optional[Any] )-> str: '''simple docstring''' return "->".join([str(lowercase_ ) for item in self] ) def __getitem__( self : Dict,lowercase_ : int )-> Any: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self : Union[str, Any],lowercase_ : int,lowercase_ : Any )-> None: '''simple docstring''' if not 0 <= index < len(self ): raise ValueError('list index out of range.' ) A__ = self.head for _ in range(lowercase_ ): A__ = current.next A__ = data def snake_case__ ( self : Any,lowercase_ : Any )-> None: '''simple docstring''' self.insert_nth(len(self ),lowercase_ ) def snake_case__ ( self : str,lowercase_ : Any )-> None: '''simple docstring''' self.insert_nth(0,lowercase_ ) def snake_case__ ( self : List[Any],lowercase_ : int,lowercase_ : Any )-> None: '''simple docstring''' if not 0 <= index <= len(self ): raise IndexError('list index out of range' ) A__ = Node(lowercase_ ) if self.head is None: A__ = new_node elif index == 0: A__ = self.head # link new_node to head A__ = new_node else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = new_node def snake_case__ ( self : Tuple )-> None: # print every node data '''simple docstring''' print(self ) def snake_case__ ( self : Any )-> Any: '''simple docstring''' return self.delete_nth(0 ) def snake_case__ ( self : Union[str, Any] )-> Any: # delete from tail '''simple docstring''' return self.delete_nth(len(self ) - 1 ) def snake_case__ ( self : Union[str, Any],lowercase_ : int = 0 )-> Any: '''simple docstring''' if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError('List index out of range.' ) A__ = self.head # default first node if index == 0: A__ = self.head.next else: A__ = self.head for _ in range(index - 1 ): A__ = temp.next A__ = temp.next A__ = temp.next.next return delete_node.data def snake_case__ ( self : Optional[int] )-> bool: '''simple docstring''' return self.head is None def snake_case__ ( self : Optional[Any] )-> None: '''simple docstring''' A__ = None A__ = self.head while current: # Store the current node's next node. A__ = current.next # Make the current node's next point backwards A__ = prev # Make the previous node be the current node A__ = current # Make the current node the next node (to progress iteration) A__ = next_node # Return prev in order to put the head at the end A__ = prev def _snake_case( ) -> None: '''simple docstring''' A__ = LinkedList() assert linked_list.is_empty() is True assert str(SCREAMING_SNAKE_CASE__ ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(SCREAMING_SNAKE_CASE__ ) == i linked_list.insert_nth(SCREAMING_SNAKE_CASE__ , i + 1 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(SCREAMING_SNAKE_CASE__ ) == 9 assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): A__ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(SCREAMING_SNAKE_CASE__ ) == "->".join(str(SCREAMING_SNAKE_CASE__ ) for i in range(-8 , 1 ) ) def _snake_case( ) -> None: '''simple docstring''' A__ = [ -9, 100, Node(77345112 ), 'dlrow olleH', 7, 5555, 0, -192.5_5555, 'Hello, world!', 77.9, Node(10 ), None, None, 12.20, ] A__ = LinkedList() for i in test_input: linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(SCREAMING_SNAKE_CASE__ ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head A__ = linked_list.delete_head() assert result == -9 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail A__ = linked_list.delete_tail() assert result == 12.2 assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list A__ = linked_list.delete_nth(10 ) assert result is None assert ( str(SCREAMING_SNAKE_CASE__ ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node('Hello again, world!' ) ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(SCREAMING_SNAKE_CASE__ ) assert ( str(SCREAMING_SNAKE_CASE__ ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(SCREAMING_SNAKE_CASE__ ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def _snake_case( ) -> Tuple: '''simple docstring''' from doctest import testmod testmod() A__ = LinkedList() linked_list.insert_head(input('Inserting 1st at head ' ).strip() ) linked_list.insert_head(input('Inserting 2nd at head ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() linked_list.insert_tail(input('\nInserting 1st at tail ' ).strip() ) linked_list.insert_tail(input('Inserting 2nd at tail ' ).strip() ) print('\nPrint list:' ) linked_list.print_list() print('\nDelete head' ) linked_list.delete_head() print('Delete tail' ) linked_list.delete_tail() print('\nPrint list:' ) linked_list.print_list() print('\nReverse linked list' ) linked_list.reverse() print('\nPrint list:' ) linked_list.print_list() print('\nString representation of linked list:' ) print(SCREAMING_SNAKE_CASE__ ) print('\nReading/changing Node data using indexing:' ) print(f'Element at Position 1: {linked_list[1]}' ) A__ = input('Enter New Value: ' ).strip() print('New list:' ) print(SCREAMING_SNAKE_CASE__ ) print(f'length of linked_list is : {len(SCREAMING_SNAKE_CASE__ )}' ) if __name__ == "__main__": main()
718
from ..utils import DummyObject, requires_backends class A ( metaclass=_UpperCAmelCase ): """simple docstring""" lowerCamelCase = ['transformers', 'torch', 'note_seq'] def __init__( self : Tuple,*lowercase_ : Any,**lowercase_ : Dict )-> Union[str, Any]: '''simple docstring''' requires_backends(self,['transformers', 'torch', 'note_seq'] ) @classmethod def snake_case__ ( cls : List[str],*lowercase_ : int,**lowercase_ : Optional[int] )-> Any: '''simple docstring''' requires_backends(cls,['transformers', 'torch', 'note_seq'] ) @classmethod def snake_case__ ( cls : Dict,*lowercase_ : Tuple,**lowercase_ : List[str] )-> Dict: '''simple docstring''' requires_backends(cls,['transformers', 'torch', 'note_seq'] )
586
0
'''simple docstring''' from __future__ import annotations def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase ): """simple docstring""" if days_between_payments <= 0: raise ValueError("""days_between_payments must be > 0""" ) if daily_interest_rate < 0: raise ValueError("""daily_interest_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * daily_interest_rate * days_between_payments def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" if number_of_compounding_periods <= 0: raise ValueError("""number_of_compounding_periods must be > 0""" ) if nominal_annual_interest_rate_percentage < 0: raise ValueError("""nominal_annual_interest_rate_percentage must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase , ): """simple docstring""" if number_of_years <= 0: raise ValueError("""number_of_years must be > 0""" ) if nominal_annual_percentage_rate < 0: raise ValueError("""nominal_annual_percentage_rate must be >= 0""" ) if principal <= 0: raise ValueError("""principal must be > 0""" ) return compound_interest( _snake_case , nominal_annual_percentage_rate / 365 , number_of_years * 365 ) if __name__ == "__main__": import doctest doctest.testmod()
565
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Any = ['''image_processor''', '''tokenizer'''] UpperCAmelCase : Optional[int] = '''ViTImageProcessor''' UpperCAmelCase : int = ('''CLIPTokenizer''', '''CLIPTokenizerFast''') def __init__( self : Tuple , _UpperCAmelCase : int=None , _UpperCAmelCase : Tuple=None , **_UpperCAmelCase : Dict ): _A = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.' , _UpperCAmelCase , ) _A = kwargs.pop('feature_extractor' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) super().__init__(_UpperCAmelCase , _UpperCAmelCase ) def __call__( self : Optional[Any] , _UpperCAmelCase : int=None , _UpperCAmelCase : int=None , _UpperCAmelCase : Optional[Any]=None , _UpperCAmelCase : Optional[int]=None , **_UpperCAmelCase : Union[str, Any] ): if text is None and visual_prompt is None and images is None: raise ValueError('You have to specify either text, visual prompt or images.' ) if text is not None and visual_prompt is not None: raise ValueError('You have to specify exactly one type of prompt. Either text or visual prompt.' ) if text is not None: _A = self.tokenizer(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if images is not None: _A = self.image_processor(_UpperCAmelCase , return_tensors=_UpperCAmelCase , **_UpperCAmelCase ) if visual_prompt is not None and images is not None: _A = { 'pixel_values': image_features.pixel_values, 'conditional_pixel_values': prompt_features.pixel_values, } return encoding elif text is not None and images is not None: _A = image_features.pixel_values return encoding elif text is not None: return encoding elif visual_prompt is not None: _A = { 'conditional_pixel_values': prompt_features.pixel_values, } return encoding else: return BatchEncoding(data=dict(**_UpperCAmelCase ) , tensor_type=_UpperCAmelCase ) def lowerCAmelCase_ ( self : str , *_UpperCAmelCase : List[Any] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.batch_decode(*_UpperCAmelCase , **_UpperCAmelCase ) def lowerCAmelCase_ ( self : Union[str, Any] , *_UpperCAmelCase : List[str] , **_UpperCAmelCase : Union[str, Any] ): return self.tokenizer.decode(*_UpperCAmelCase , **_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : Dict ): warnings.warn( '`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.' , _UpperCAmelCase , ) return self.image_processor_class @property def lowerCAmelCase_ ( self : Tuple ): warnings.warn( '`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.' , _UpperCAmelCase , ) return self.image_processor
7
0
import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( "The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion" ) UpperCamelCase = None UpperCamelCase = { "7B": 11_008, "13B": 13_824, "30B": 17_920, "65B": 22_016, "70B": 28_672, } UpperCamelCase = { "7B": 1, "7Bf": 1, "13B": 2, "13Bf": 2, "30B": 4, "65B": 8, "70B": 8, "70Bf": 8, } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=1 , SCREAMING_SNAKE_CASE=256 ) -> Union[str, Any]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> Any: with open(SCREAMING_SNAKE_CASE , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> List[Any]: with open(SCREAMING_SNAKE_CASE , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=True ) -> int: os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) _lowercase : Optional[int] = os.path.join(SCREAMING_SNAKE_CASE , 'tmp' ) os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) _lowercase : Dict = read_json(os.path.join(SCREAMING_SNAKE_CASE , 'params.json' ) ) _lowercase : List[Any] = NUM_SHARDS[model_size] _lowercase : Optional[int] = params['n_layers'] _lowercase : Optional[int] = params['n_heads'] _lowercase : List[Any] = n_heads // num_shards _lowercase : Any = params['dim'] _lowercase : Union[str, Any] = dim // n_heads _lowercase : Optional[int] = 1_0000.0 _lowercase : int = 1.0 / (base ** (torch.arange(0 , SCREAMING_SNAKE_CASE , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: _lowercase : Optional[Any] = params['n_kv_heads'] # for GQA / MQA _lowercase : Any = n_heads_per_shard // num_key_value_heads _lowercase : str = dim // num_key_value_heads else: # compatibility with other checkpoints _lowercase : Optional[int] = n_heads _lowercase : Tuple = n_heads_per_shard _lowercase : Tuple = dim # permute for sliced rotary def permute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=n_heads , SCREAMING_SNAKE_CASE=dim , SCREAMING_SNAKE_CASE=dim ): return w.view(SCREAMING_SNAKE_CASE , dima // n_heads // 2 , 2 , SCREAMING_SNAKE_CASE ).transpose(1 , 2 ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) print(F"""Fetching all parameters from the checkpoint at {input_base_path}.""" ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) _lowercase : Optional[int] = torch.load(os.path.join(SCREAMING_SNAKE_CASE , 'consolidated.00.pth' ) , map_location='cpu' ) else: # Sharded _lowercase : Union[str, Any] = [ torch.load(os.path.join(SCREAMING_SNAKE_CASE , F"""consolidated.{i:02d}.pth""" ) , map_location='cpu' ) for i in range(SCREAMING_SNAKE_CASE ) ] _lowercase : int = 0 _lowercase : Optional[int] = {'weight_map': {}} for layer_i in range(SCREAMING_SNAKE_CASE ): _lowercase : Optional[int] = F"""pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _lowercase : List[str] = { F"""model.layers.{layer_i}.self_attn.q_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wq.weight"""] ), F"""model.layers.{layer_i}.self_attn.k_proj.weight""": permute( loaded[F"""layers.{layer_i}.attention.wk.weight"""] ), F"""model.layers.{layer_i}.self_attn.v_proj.weight""": loaded[F"""layers.{layer_i}.attention.wv.weight"""], F"""model.layers.{layer_i}.self_attn.o_proj.weight""": loaded[F"""layers.{layer_i}.attention.wo.weight"""], F"""model.layers.{layer_i}.mlp.gate_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w1.weight"""], F"""model.layers.{layer_i}.mlp.down_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w2.weight"""], F"""model.layers.{layer_i}.mlp.up_proj.weight""": loaded[F"""layers.{layer_i}.feed_forward.w3.weight"""], F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[F"""layers.{layer_i}.attention_norm.weight"""], F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[F"""layers.{layer_i}.ffn_norm.weight"""], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. _lowercase : Tuple = { F"""model.layers.{layer_i}.input_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.attention_norm.weight""" ].clone(), F"""model.layers.{layer_i}.post_attention_layernorm.weight""": loaded[0][ F"""layers.{layer_i}.ffn_norm.weight""" ].clone(), } _lowercase : List[Any] = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wq.weight"""].view(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _lowercase : Any = permute( torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wk.weight"""].view( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) _lowercase : Dict = torch.cat( [ loaded[i][F"""layers.{layer_i}.attention.wv.weight"""].view( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) for i in range(SCREAMING_SNAKE_CASE ) ] , dim=0 , ).reshape(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) _lowercase : List[str] = torch.cat( [loaded[i][F"""layers.{layer_i}.attention.wo.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ) _lowercase : Any = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w1.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ) _lowercase : str = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w2.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ) _lowercase : List[str] = torch.cat( [loaded[i][F"""layers.{layer_i}.feed_forward.w3.weight"""] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ) _lowercase : int = inv_freq for k, v in state_dict.items(): _lowercase : Optional[int] = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) _lowercase : Optional[int] = F"""pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin""" if model_size == "7B": # Unsharded _lowercase : Optional[Any] = { 'model.embed_tokens.weight': loaded['tok_embeddings.weight'], 'model.norm.weight': loaded['norm.weight'], 'lm_head.weight': loaded['output.weight'], } else: _lowercase : Optional[Any] = { 'model.norm.weight': loaded[0]['norm.weight'], 'model.embed_tokens.weight': torch.cat( [loaded[i]['tok_embeddings.weight'] for i in range(SCREAMING_SNAKE_CASE )] , dim=1 ), 'lm_head.weight': torch.cat([loaded[i]['output.weight'] for i in range(SCREAMING_SNAKE_CASE )] , dim=0 ), } for k, v in state_dict.items(): _lowercase : Any = filename param_count += v.numel() torch.save(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) ) # Write configs _lowercase : List[Any] = {'total_size': param_count * 2} write_json(SCREAMING_SNAKE_CASE , os.path.join(SCREAMING_SNAKE_CASE , 'pytorch_model.bin.index.json' ) ) _lowercase : Dict = params['ffn_dim_multiplier'] if 'ffn_dim_multiplier' in params else 1 _lowercase : Dict = params['multiple_of'] if 'multiple_of' in params else 256 _lowercase : int = LlamaConfig( hidden_size=SCREAMING_SNAKE_CASE , intermediate_size=compute_intermediate_size(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , num_attention_heads=params['n_heads'] , num_hidden_layers=params['n_layers'] , rms_norm_eps=params['norm_eps'] , num_key_value_heads=SCREAMING_SNAKE_CASE , ) config.save_pretrained(SCREAMING_SNAKE_CASE ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print('Loading the checkpoint in a Llama model.' ) _lowercase : int = LlamaForCausalLM.from_pretrained(SCREAMING_SNAKE_CASE , torch_dtype=torch.floataa , low_cpu_mem_usage=SCREAMING_SNAKE_CASE ) # Avoid saving this as part of the config. del model.config._name_or_path print('Saving in the Transformers format.' ) model.save_pretrained(SCREAMING_SNAKE_CASE , safe_serialization=SCREAMING_SNAKE_CASE ) shutil.rmtree(SCREAMING_SNAKE_CASE ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: # Initialize the tokenizer based on the `spm` model _lowercase : Dict = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(F"""Saving a {tokenizer_class.__name__} to {tokenizer_path}.""" ) _lowercase : List[str] = tokenizer_class(SCREAMING_SNAKE_CASE ) tokenizer.save_pretrained(SCREAMING_SNAKE_CASE ) def __magic_name__ ( ) -> Union[str, Any]: _lowercase : int = argparse.ArgumentParser() parser.add_argument( '--input_dir' , help='Location of LLaMA weights, which contains tokenizer.model and model folders' , ) parser.add_argument( '--model_size' , choices=['7B', '7Bf', '13B', '13Bf', '30B', '65B', '70B', '70Bf', 'tokenizer_only'] , ) parser.add_argument( '--output_dir' , help='Location to write HF model and tokenizer' , ) parser.add_argument('--safe_serialization' , type=SCREAMING_SNAKE_CASE , help='Whether or not to save using `safetensors`.' ) _lowercase : List[str] = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) _lowercase : Optional[int] = os.path.join(args.input_dir , 'tokenizer.model' ) write_tokenizer(args.output_dir , SCREAMING_SNAKE_CASE ) if __name__ == "__main__": main()
677
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "post_extract_proj": "feature_projection.projection", "encoder.pos_conv.0": "encoder.pos_conv_embed.conv", "self_attn.k_proj": "encoder.layers.*.attention.k_proj", "self_attn.v_proj": "encoder.layers.*.attention.v_proj", "self_attn.q_proj": "encoder.layers.*.attention.q_proj", "self_attn.out_proj": "encoder.layers.*.attention.out_proj", "self_attn_layer_norm": "encoder.layers.*.layer_norm", "fc1": "encoder.layers.*.feed_forward.intermediate_dense", "fc2": "encoder.layers.*.feed_forward.output_dense", "final_layer_norm": "encoder.layers.*.final_layer_norm", "encoder.layer_norm": "encoder.layer_norm", "w2v_model.layer_norm": "feature_projection.layer_norm", "w2v_encoder.proj": "lm_head", "mask_emb": "masked_spec_embed", } def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: for attribute in key.split('.' ): _lowercase : Union[str, Any] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) if weight_type is not None: _lowercase : Optional[int] = getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ).shape else: _lowercase : Optional[Any] = hf_pointer.shape assert hf_shape == value.shape, ( F"""Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be""" F""" {value.shape} for {full_name}""" ) if weight_type == "weight": _lowercase : List[str] = value elif weight_type == "weight_g": _lowercase : Any = value elif weight_type == "weight_v": _lowercase : Tuple = value elif weight_type == "bias": _lowercase : List[str] = value else: _lowercase : Dict = value logger.info(F"""{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Optional[int] = [] _lowercase : Optional[int] = fairseq_model.state_dict() _lowercase : Dict = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _lowercase : Dict = False if "conv_layers" in name: load_conv_layer( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , hf_model.config.feat_extract_norm == 'group' , ) _lowercase : int = True else: for key, mapped_key in MAPPING.items(): _lowercase : Union[str, Any] = 'hubert.' + mapped_key if (is_finetuned and mapped_key != 'lm_head') else mapped_key if key in name or (key.split('w2v_model.' )[-1] == name.split('.' )[0] and not is_finetuned): _lowercase : Union[str, Any] = True if "*" in mapped_key: _lowercase : Dict = name.split(SCREAMING_SNAKE_CASE )[0].split('.' )[-2] _lowercase : Dict = mapped_key.replace('*' , SCREAMING_SNAKE_CASE ) if "weight_g" in name: _lowercase : Optional[int] = 'weight_g' elif "weight_v" in name: _lowercase : Optional[Any] = 'weight_v' elif "weight" in name: _lowercase : str = 'weight' elif "bias" in name: _lowercase : Any = 'bias' else: _lowercase : str = None set_recursively(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) continue if not is_used: unused_weights.append(SCREAMING_SNAKE_CASE ) logger.warning(F"""Unused weights: {unused_weights}""" ) def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Dict: _lowercase : Any = full_name.split('conv_layers.' )[-1] _lowercase : Any = name.split('.' ) _lowercase : Optional[Any] = int(items[0] ) _lowercase : List[str] = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.""" ) _lowercase : Optional[Any] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.""" ) _lowercase : List[str] = value logger.info(F"""Feat extract conv layer {layer_id} was initialized from {full_name}.""" ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F"""{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was""" " found." ) _lowercase : Union[str, Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F"""{full_name} has size {value.shape}, but""" F""" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.""" ) _lowercase : List[Any] = value logger.info(F"""Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.""" ) else: unused_weights.append(SCREAMING_SNAKE_CASE ) @torch.no_grad() def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True ) -> Optional[Any]: if config_path is not None: _lowercase : Optional[int] = HubertConfig.from_pretrained(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertConfig() if is_finetuned: if dict_path: _lowercase : List[str] = Dictionary.load(SCREAMING_SNAKE_CASE ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _lowercase : Dict = target_dict.pad_index _lowercase : Dict = target_dict.bos_index _lowercase : Tuple = target_dict.eos_index _lowercase : List[Any] = len(target_dict.symbols ) _lowercase : Union[str, Any] = os.path.join(SCREAMING_SNAKE_CASE , 'vocab.json' ) if not os.path.isdir(SCREAMING_SNAKE_CASE ): logger.error('--pytorch_dump_folder_path ({}) should be a directory'.format(SCREAMING_SNAKE_CASE ) ) return os.makedirs(SCREAMING_SNAKE_CASE , exist_ok=SCREAMING_SNAKE_CASE ) with open(SCREAMING_SNAKE_CASE , 'w' , encoding='utf-8' ) as vocab_handle: json.dump(target_dict.indices , SCREAMING_SNAKE_CASE ) _lowercase : int = WavaVecaCTCTokenizer( SCREAMING_SNAKE_CASE , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='|' , do_lower_case=SCREAMING_SNAKE_CASE , ) _lowercase : str = True if config.feat_extract_norm == 'layer' else False _lowercase : Optional[int] = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16_000 , padding_value=0 , do_normalize=SCREAMING_SNAKE_CASE , return_attention_mask=SCREAMING_SNAKE_CASE , ) _lowercase : Tuple = WavaVecaProcessor(feature_extractor=SCREAMING_SNAKE_CASE , tokenizer=SCREAMING_SNAKE_CASE ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) _lowercase : List[Any] = HubertForCTC(SCREAMING_SNAKE_CASE ) else: _lowercase : List[Any] = HubertModel(SCREAMING_SNAKE_CASE ) if is_finetuned: _lowercase , _lowercase , _lowercase : Union[str, Any] = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'data': '/'.join(dict_path.split('/' )[:-1] )} ) else: _lowercase , _lowercase , _lowercase : str = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _lowercase : int = model[0].eval() recursively_load_weights(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) hf_wavavec.save_pretrained(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) UpperCamelCase = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
677
1
'''simple docstring''' class a : '''simple docstring''' def __init__( self ) -> List[Any]: _a : Optional[int] = 0 _a : Tuple = 0 _a : str = {} def __UpperCamelCase ( self , lowerCamelCase_ ) -> Optional[int]: if vertex not in self.adjacency: _a : List[Any] = {} self.num_vertices += 1 def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) -> Dict: self.add_vertex(lowerCamelCase_ ) self.add_vertex(lowerCamelCase_ ) if head == tail: return _a : str = weight _a : Any = weight def __UpperCamelCase ( self ) -> List[str]: _a : Union[str, Any] = self.get_edges() for edge in edges: _a , _a , _a : List[Any] = edge edges.remove((tail, head, weight) ) for i in range(len(lowerCamelCase_ ) ): _a : Optional[int] = list(edges[i] ) edges.sort(key=lambda lowerCamelCase_ : e[2] ) for i in range(len(lowerCamelCase_ ) - 1 ): if edges[i][2] >= edges[i + 1][2]: _a : Optional[int] = edges[i][2] + 1 for edge in edges: _a , _a , _a : str = edge _a : List[Any] = weight _a : Optional[int] = weight def __str__( self ) -> List[str]: _a : List[str] = '' for tail in self.adjacency: for head in self.adjacency[tail]: _a : Optional[Any] = self.adjacency[head][tail] string += F'''{head} -> {tail} == {weight}\n''' return string.rstrip('\n' ) def __UpperCamelCase ( self ) -> List[str]: _a : Tuple = [] for tail in self.adjacency: for head in self.adjacency[tail]: output.append((tail, head, self.adjacency[head][tail]) ) return output def __UpperCamelCase ( self ) -> Optional[int]: return self.adjacency.keys() @staticmethod def __UpperCamelCase ( lowerCamelCase_=None , lowerCamelCase_=None ) -> Tuple: _a : List[Any] = Graph() if vertices is None: _a : int = [] if edges is None: _a : Dict = [] for vertex in vertices: g.add_vertex(lowerCamelCase_ ) for edge in edges: g.add_edge(*lowerCamelCase_ ) return g class a : '''simple docstring''' def __init__( self ) -> List[Any]: _a : Dict = {} _a : Any = {} def __len__( self ) -> Optional[Any]: return len(self.parent ) def __UpperCamelCase ( self , lowerCamelCase_ ) -> Any: if item in self.parent: return self.find(lowerCamelCase_ ) _a : Optional[Any] = item _a : Any = 0 return item def __UpperCamelCase ( self , lowerCamelCase_ ) -> str: if item not in self.parent: return self.make_set(lowerCamelCase_ ) if item != self.parent[item]: _a : Any = self.find(self.parent[item] ) return self.parent[item] def __UpperCamelCase ( self , lowerCamelCase_ , lowerCamelCase_ ) -> Tuple: _a : str = self.find(lowerCamelCase_ ) _a : Optional[int] = self.find(lowerCamelCase_ ) if roota == roota: return roota if self.rank[roota] > self.rank[roota]: _a : Tuple = roota return roota if self.rank[roota] < self.rank[roota]: _a : Optional[Any] = roota return roota if self.rank[roota] == self.rank[roota]: self.rank[roota] += 1 _a : Tuple = roota return roota return None @staticmethod def __UpperCamelCase ( lowerCamelCase_ ) -> str: _a : str = graph.num_vertices _a : List[str] = Graph.UnionFind() _a : Any = [] while num_components > 1: _a : Optional[Any] = {} for vertex in graph.get_vertices(): _a : List[str] = -1 _a : str = graph.get_edges() for edge in edges: _a , _a , _a : Tuple = edge edges.remove((tail, head, weight) ) for edge in edges: _a , _a , _a : int = edge _a : Any = union_find.find(lowerCamelCase_ ) _a : List[str] = union_find.find(lowerCamelCase_ ) if seta != seta: if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a : Any = [head, tail, weight] if cheap_edge[seta] == -1 or cheap_edge[seta][2] > weight: _a : Optional[Any] = [head, tail, weight] for vertex in cheap_edge: if cheap_edge[vertex] != -1: _a , _a , _a : Dict = cheap_edge[vertex] if union_find.find(lowerCamelCase_ ) != union_find.find(lowerCamelCase_ ): union_find.union(lowerCamelCase_ , lowerCamelCase_ ) mst_edges.append(cheap_edge[vertex] ) _a : Tuple = num_components - 1 _a : Dict = Graph.build(edges=lowerCamelCase_ ) return mst
120
'''simple docstring''' import warnings from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ : int = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { "nvidia/segformer-b0-finetuned-ade-512-512": ( "https://huggingface.co/nvidia/segformer-b0-finetuned-ade-512-512/resolve/main/config.json" ), # See all SegFormer models at https://huggingface.co/models?filter=segformer } class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : List[Any] = """segformer""" def __init__( self , lowerCamelCase_=3 , lowerCamelCase_=4 , lowerCamelCase_=[2, 2, 2, 2] , lowerCamelCase_=[8, 4, 2, 1] , lowerCamelCase_=[3_2, 6_4, 1_6_0, 2_5_6] , lowerCamelCase_=[7, 3, 3, 3] , lowerCamelCase_=[4, 2, 2, 2] , lowerCamelCase_=[1, 2, 5, 8] , lowerCamelCase_=[4, 4, 4, 4] , lowerCamelCase_="gelu" , lowerCamelCase_=0.0 , lowerCamelCase_=0.0 , lowerCamelCase_=0.1 , lowerCamelCase_=0.02 , lowerCamelCase_=0.1 , lowerCamelCase_=1e-6 , lowerCamelCase_=2_5_6 , lowerCamelCase_=2_5_5 , **lowerCamelCase_ , ) -> Union[str, Any]: super().__init__(**lowerCamelCase_ ) if "reshape_last_stage" in kwargs and kwargs["reshape_last_stage"] is False: warnings.warn( 'Reshape_last_stage is set to False in this config. This argument is deprecated and will soon be' ' removed, as the behaviour will default to that of reshape_last_stage = True.' , lowerCamelCase_ , ) _a : Union[str, Any] = num_channels _a : Any = num_encoder_blocks _a : Union[str, Any] = depths _a : int = sr_ratios _a : List[str] = hidden_sizes _a : Tuple = patch_sizes _a : Any = strides _a : List[Any] = mlp_ratios _a : str = num_attention_heads _a : str = hidden_act _a : List[Any] = hidden_dropout_prob _a : int = attention_probs_dropout_prob _a : Any = classifier_dropout_prob _a : Optional[Any] = initializer_range _a : int = drop_path_rate _a : int = layer_norm_eps _a : Optional[Any] = decoder_hidden_size _a : int = kwargs.get('reshape_last_stage' , lowerCamelCase_ ) _a : str = semantic_loss_ignore_index class a ( snake_case__ ): '''simple docstring''' __lowerCAmelCase : Any = version.parse("""1.11""" ) @property def __UpperCamelCase ( self ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ('pixel_values', {0: 'batch', 1: 'num_channels', 2: 'height', 3: 'width'}), ] ) @property def __UpperCamelCase ( self ) -> float: return 1e-4 @property def __UpperCamelCase ( self ) -> int: return 1_2
120
1
import json import os from dataclasses import dataclass from functools import partial from typing import Callable import flax.linen as nn import jax import jax.numpy as jnp import joblib import optax import wandb from flax import jax_utils, struct, traverse_util from flax.serialization import from_bytes, to_bytes from flax.training import train_state from flax.training.common_utils import shard from tqdm.auto import tqdm from transformers import BigBirdConfig, FlaxBigBirdForQuestionAnswering from transformers.models.big_bird.modeling_flax_big_bird import FlaxBigBirdForQuestionAnsweringModule class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = 42 _A = jnp.floataa _A = True def _a (self ): '''simple docstring''' super().setup() lowerCamelCase = nn.Dense(5 , dtype=self.dtype ) def __call__(self , *__a , **__a ): '''simple docstring''' lowerCamelCase = super().__call__(*__a , **__a ) lowerCamelCase = self.cls(outputs[2] ) return outputs[:2] + (cls_out,) class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = FlaxBigBirdForNaturalQuestionsModule def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" def cross_entropy(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ): lowerCamelCase = logits.shape[-1] lowerCamelCase = (labels[..., None] == jnp.arange(_snake_case )[None]).astype("f4" ) lowerCamelCase = jax.nn.log_softmax(_snake_case , axis=-1 ) lowerCamelCase = -jnp.sum(labels * logits , axis=-1 ) if reduction is not None: lowerCamelCase = reduction(_snake_case ) return loss lowerCamelCase = partial(_snake_case , reduction=jnp.mean ) lowerCamelCase = cross_entropy(_snake_case , _snake_case ) lowerCamelCase = cross_entropy(_snake_case , _snake_case ) lowerCamelCase = cross_entropy(_snake_case , _snake_case ) return (start_loss + end_loss + pooled_loss) / 3 @dataclass class lowerCamelCase__ : """simple docstring""" _A = 'google/bigbird-roberta-base' _A = 30_00 _A = 1_05_00 _A = 1_28 _A = 3 _A = 1 _A = 5 # tx_args _A = 3e-5 _A = 0.0 _A = 2_00_00 _A = 0.00_95 _A = 'bigbird-roberta-natural-questions' _A = 'training-expt' _A = 'data/nq-training.jsonl' _A = 'data/nq-validation.jsonl' def _a (self ): '''simple docstring''' os.makedirs(self.base_dir , exist_ok=__a ) lowerCamelCase = os.path.join(self.base_dir , self.save_dir ) lowerCamelCase = self.batch_size_per_device * jax.device_count() @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = 40_96 # no dynamic padding on TPUs def __call__(self , __a ): '''simple docstring''' lowerCamelCase = self.collate_fn(__a ) lowerCamelCase = jax.tree_util.tree_map(__a , __a ) return batch def _a (self , __a ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.fetch_inputs(features["input_ids"] ) lowerCamelCase = { "input_ids": jnp.array(__a , dtype=jnp.intaa ), "attention_mask": jnp.array(__a , dtype=jnp.intaa ), "start_labels": jnp.array(features["start_token"] , dtype=jnp.intaa ), "end_labels": jnp.array(features["end_token"] , dtype=jnp.intaa ), "pooled_labels": jnp.array(features["category"] , dtype=jnp.intaa ), } return batch def _a (self , __a ): '''simple docstring''' lowerCamelCase = [self._fetch_inputs(__a ) for ids in input_ids] return zip(*__a ) def _a (self , __a ): '''simple docstring''' lowerCamelCase = [1 for _ in range(len(__a ) )] while len(__a ) < self.max_length: input_ids.append(self.pad_id ) attention_mask.append(0 ) return input_ids, attention_mask def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None ): """simple docstring""" if seed is not None: lowerCamelCase = dataset.shuffle(seed=_snake_case ) for i in range(len(_snake_case ) // batch_size ): lowerCamelCase = dataset[i * batch_size : (i + 1) * batch_size] yield dict(_snake_case ) @partial(jax.pmap , axis_name="batch" ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , **UpperCAmelCase__ ): """simple docstring""" def loss_fn(UpperCAmelCase__ ): lowerCamelCase = model_inputs.pop("start_labels" ) lowerCamelCase = model_inputs.pop("end_labels" ) lowerCamelCase = model_inputs.pop("pooled_labels" ) lowerCamelCase = state.apply_fn(**_snake_case , params=_snake_case , dropout_rng=_snake_case , train=_snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase = outputs return state.loss_fn( _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case , ) lowerCamelCase , lowerCamelCase = jax.random.split(_snake_case ) lowerCamelCase = jax.value_and_grad(_snake_case ) lowerCamelCase , lowerCamelCase = grad_fn(state.params ) lowerCamelCase = jax.lax.pmean({"loss": loss} , axis_name="batch" ) lowerCamelCase = jax.lax.pmean(_snake_case , "batch" ) lowerCamelCase = state.apply_gradients(grads=_snake_case ) return state, metrics, new_drp_rng @partial(jax.pmap , axis_name="batch" ) def __lowercase( UpperCAmelCase__ , **UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = model_inputs.pop("start_labels" ) lowerCamelCase = model_inputs.pop("end_labels" ) lowerCamelCase = model_inputs.pop("pooled_labels" ) lowerCamelCase = state.apply_fn(**_snake_case , params=state.params , train=_snake_case ) lowerCamelCase , lowerCamelCase , lowerCamelCase = outputs lowerCamelCase = state.loss_fn(_snake_case , _snake_case , _snake_case , _snake_case , _snake_case , _snake_case ) lowerCamelCase = jax.lax.pmean({"loss": loss} , axis_name="batch" ) return metrics class lowerCamelCase__ ( train_state.TrainState): """simple docstring""" _A = struct.field(pytree_node=UpperCAmelCase_) @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = 42 _A = 42 _A = 42 _A = 42 _A = 42 _A = None def _a (self , __a , __a , __a , __a=None ): '''simple docstring''' lowerCamelCase = model.params lowerCamelCase = TrainState.create( apply_fn=model.__call__ , params=__a , tx=__a , loss_fn=__a , ) if ckpt_dir is not None: lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = restore_checkpoint(__a , __a ) lowerCamelCase = { "lr": args.lr, "init_lr": args.init_lr, "warmup_steps": args.warmup_steps, "num_train_steps": num_train_steps, "weight_decay": args.weight_decay, } lowerCamelCase , lowerCamelCase = build_tx(**__a ) lowerCamelCase = train_state.TrainState( step=__a , apply_fn=model.__call__ , params=__a , tx=__a , opt_state=__a , ) lowerCamelCase = args lowerCamelCase = data_collator lowerCamelCase = lr lowerCamelCase = params lowerCamelCase = jax_utils.replicate(__a ) return state def _a (self , __a , __a , __a ): '''simple docstring''' lowerCamelCase = self.args lowerCamelCase = len(__a ) // args.batch_size lowerCamelCase = jax.random.PRNGKey(0 ) lowerCamelCase = jax.random.split(__a , jax.device_count() ) for epoch in range(args.max_epochs ): lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase = get_batched_dataset(__a , args.batch_size , seed=__a ) lowerCamelCase = 0 for batch in tqdm(__a , total=__a , desc=F"""Running EPOCH-{epoch}""" ): lowerCamelCase = self.data_collator(__a ) lowerCamelCase , lowerCamelCase , lowerCamelCase = self.train_step_fn(__a , __a , **__a ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 if i % args.logging_steps == 0: lowerCamelCase = jax_utils.unreplicate(state.step ) lowerCamelCase = running_loss.item() / i lowerCamelCase = self.scheduler_fn(state_step - 1 ) lowerCamelCase = self.evaluate(__a , __a ) lowerCamelCase = { "step": state_step.item(), "eval_loss": eval_loss.item(), "tr_loss": tr_loss, "lr": lr.item(), } tqdm.write(str(__a ) ) self.logger.log(__a , commit=__a ) if i % args.save_steps == 0: self.save_checkpoint(args.save_dir + F"""-e{epoch}-s{i}""" , state=__a ) def _a (self , __a , __a ): '''simple docstring''' lowerCamelCase = get_batched_dataset(__a , self.args.batch_size ) lowerCamelCase = len(__a ) // self.args.batch_size lowerCamelCase = jnp.array(0 , dtype=jnp.floataa ) lowerCamelCase = 0 for batch in tqdm(__a , total=__a , desc="Evaluating ... " ): lowerCamelCase = self.data_collator(__a ) lowerCamelCase = self.val_step_fn(__a , **__a ) running_loss += jax_utils.unreplicate(metrics["loss"] ) i += 1 return running_loss / i def _a (self , __a , __a ): '''simple docstring''' lowerCamelCase = jax_utils.unreplicate(__a ) print(F"""SAVING CHECKPOINT IN {save_dir}""" , end=" ... " ) self.model_save_fn(__a , params=state.params ) with open(os.path.join(__a , "opt_state.msgpack" ) , "wb" ) as f: f.write(to_bytes(state.opt_state ) ) joblib.dump(self.args , os.path.join(__a , "args.joblib" ) ) joblib.dump(self.data_collator , os.path.join(__a , "data_collator.joblib" ) ) with open(os.path.join(__a , "training_state.json" ) , "w" ) as f: json.dump({"step": state.step.item()} , __a ) print("DONE" ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" print(F"""RESTORING CHECKPOINT FROM {save_dir}""" , end=" ... " ) with open(os.path.join(_snake_case , "flax_model.msgpack" ) , "rb" ) as f: lowerCamelCase = from_bytes(state.params , f.read() ) with open(os.path.join(_snake_case , "opt_state.msgpack" ) , "rb" ) as f: lowerCamelCase = from_bytes(state.opt_state , f.read() ) lowerCamelCase = joblib.load(os.path.join(_snake_case , "args.joblib" ) ) lowerCamelCase = joblib.load(os.path.join(_snake_case , "data_collator.joblib" ) ) with open(os.path.join(_snake_case , "training_state.json" ) , "r" ) as f: lowerCamelCase = json.load(_snake_case ) lowerCamelCase = training_state["step"] print("DONE" ) return params, opt_state, step, args, data_collator def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = num_train_steps - warmup_steps lowerCamelCase = optax.linear_schedule(init_value=_snake_case , end_value=_snake_case , transition_steps=_snake_case ) lowerCamelCase = optax.linear_schedule(init_value=_snake_case , end_value=1E-7 , transition_steps=_snake_case ) lowerCamelCase = optax.join_schedules(schedules=[warmup_fn, decay_fn] , boundaries=[warmup_steps] ) return lr def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" def weight_decay_mask(UpperCAmelCase__ ): lowerCamelCase = traverse_util.flatten_dict(_snake_case ) lowerCamelCase = {k: (v[-1] != "bias" and v[-2:] != ("LayerNorm", "scale")) for k, v in params.items()} return traverse_util.unflatten_dict(_snake_case ) lowerCamelCase = scheduler_fn(_snake_case , _snake_case , _snake_case , _snake_case ) lowerCamelCase = optax.adamw(learning_rate=_snake_case , weight_decay=_snake_case , mask=_snake_case ) return tx, lr
708
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ : List[str] = { 'configuration_clipseg': [ 'CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP', 'CLIPSegConfig', 'CLIPSegTextConfig', 'CLIPSegVisionConfig', ], 'processing_clipseg': ['CLIPSegProcessor'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Any = [ 'CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST', 'CLIPSegModel', 'CLIPSegPreTrainedModel', 'CLIPSegTextModel', 'CLIPSegVisionModel', 'CLIPSegForImageSegmentation', ] if TYPE_CHECKING: from .configuration_clipseg import ( CLIPSEG_PRETRAINED_CONFIG_ARCHIVE_MAP, CLIPSegConfig, CLIPSegTextConfig, CLIPSegVisionConfig, ) from .processing_clipseg import CLIPSegProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_clipseg import ( CLIPSEG_PRETRAINED_MODEL_ARCHIVE_LIST, CLIPSegForImageSegmentation, CLIPSegModel, CLIPSegPreTrainedModel, CLIPSegTextModel, CLIPSegVisionModel, ) else: import sys a_ : Dict = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
484
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase_ : Union[str, Any] = logging.get_logger(__name__) lowercase_ : Any = { '''facebook/timesformer''': '''https://huggingface.co/facebook/timesformer/resolve/main/config.json''', } class UpperCamelCase ( __SCREAMING_SNAKE_CASE ): A__ = """timesformer""" def __init__( self , snake_case__=224 , snake_case__=16 , snake_case__=3 , snake_case__=8 , snake_case__=768 , snake_case__=12 , snake_case__=12 , snake_case__=3072 , snake_case__="gelu" , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.02 , snake_case__=1E-6 , snake_case__=True , snake_case__="divided_space_time" , snake_case__=0 , **snake_case__ , ): """simple docstring""" super().__init__(**snake_case__ ) _SCREAMING_SNAKE_CASE : int = image_size _SCREAMING_SNAKE_CASE : Optional[int] = patch_size _SCREAMING_SNAKE_CASE : List[Any] = num_channels _SCREAMING_SNAKE_CASE : Any = num_frames _SCREAMING_SNAKE_CASE : Union[str, Any] = hidden_size _SCREAMING_SNAKE_CASE : Union[str, Any] = num_hidden_layers _SCREAMING_SNAKE_CASE : Any = num_attention_heads _SCREAMING_SNAKE_CASE : Tuple = intermediate_size _SCREAMING_SNAKE_CASE : Dict = hidden_act _SCREAMING_SNAKE_CASE : List[str] = hidden_dropout_prob _SCREAMING_SNAKE_CASE : Optional[Any] = attention_probs_dropout_prob _SCREAMING_SNAKE_CASE : List[str] = initializer_range _SCREAMING_SNAKE_CASE : Union[str, Any] = layer_norm_eps _SCREAMING_SNAKE_CASE : int = qkv_bias _SCREAMING_SNAKE_CASE : Optional[Any] = attention_type _SCREAMING_SNAKE_CASE : str = drop_path_rate
572
"""simple docstring""" from __future__ import annotations from cmath import sqrt def _lowerCAmelCase ( lowerCamelCase__ : int, lowerCamelCase__ : int, lowerCamelCase__ : int ) -> tuple[complex, complex]: if a == 0: raise ValueError("Coefficient 'a' must not be zero." ) _SCREAMING_SNAKE_CASE : List[Any] = b * b - 4 * a * c _SCREAMING_SNAKE_CASE : Optional[int] = (-b + sqrt(lowerCamelCase__ )) / (2 * a) _SCREAMING_SNAKE_CASE : Union[str, Any] = (-b - sqrt(lowerCamelCase__ )) / (2 * a) return ( root_a.real if not root_a.imag else root_a, root_a.real if not root_a.imag else root_a, ) def _lowerCAmelCase ( ) -> Optional[Any]: _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE : List[str] = quadratic_roots(a=5, b=6, c=1 ) print(f'''The solutions are: {solutiona} and {solutiona}''' ) if __name__ == "__main__": main()
572
1
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class __UpperCamelCase : '''simple docstring''' def __init__( self , UpperCAmelCase_ , UpperCAmelCase_=13 , UpperCAmelCase_=7 , UpperCAmelCase_=True , UpperCAmelCase_=True , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=99 , UpperCAmelCase_=64 , UpperCAmelCase_=5 , UpperCAmelCase_=4 , UpperCAmelCase_=64 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.1 , UpperCAmelCase_=0.1 , UpperCAmelCase_=5_12 , UpperCAmelCase_=16 , UpperCAmelCase_=2 , UpperCAmelCase_=0.02 , UpperCAmelCase_=3 , UpperCAmelCase_=4 , UpperCAmelCase_=None , ): lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = type_sequence_label_size lowerCAmelCase = initializer_range lowerCAmelCase = num_labels lowerCAmelCase = num_choices lowerCAmelCase = scope def __snake_case ( self ): return MPNetConfig.from_pretrained('''microsoft/mpnet-base''' ) def __snake_case ( self ): lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = None lowerCAmelCase = None lowerCAmelCase = None if self.use_labels: lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) lowerCAmelCase = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def __snake_case ( self ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase = MPNetModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase = model(UpperCAmelCase_ , UpperCAmelCase_ ) lowerCAmelCase = model(UpperCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase = MPNetForQuestionAnswering(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , start_positions=UpperCAmelCase_ , end_positions=UpperCAmelCase_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase = self.num_labels lowerCAmelCase = MPNetForSequenceClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase = self.num_choices lowerCAmelCase = MPNetForMultipleChoice(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCAmelCase = model( UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __snake_case ( self , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): lowerCAmelCase = self.num_labels lowerCAmelCase = MPNetForTokenClassification(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() lowerCAmelCase = model(UpperCAmelCase_ , attention_mask=UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __snake_case ( self ): lowerCAmelCase = self.prepare_config_and_inputs() ((lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase) , (lowerCAmelCase)) = config_and_inputs lowerCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __UpperCamelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): '''simple docstring''' __a : int =( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) __a : Any =( { """feature-extraction""": MPNetModel, """fill-mask""": MPNetForMaskedLM, """question-answering""": MPNetForQuestionAnswering, """text-classification""": MPNetForSequenceClassification, """token-classification""": MPNetForTokenClassification, """zero-shot""": MPNetForSequenceClassification, } if is_torch_available() else {} ) __a : int =False __a : List[str] =True def __snake_case ( self ): lowerCAmelCase = MPNetModelTester(self ) lowerCAmelCase = ConfigTester(self , config_class=UpperCAmelCase_ , hidden_size=37 ) def __snake_case ( self ): self.config_tester.run_common_tests() def __snake_case ( self ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*UpperCAmelCase_ ) def __snake_case ( self ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*UpperCAmelCase_ ) def __snake_case ( self ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*UpperCAmelCase_ ) def __snake_case ( self ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*UpperCAmelCase_ ) def __snake_case ( self ): lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*UpperCAmelCase_ ) @require_torch class __UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @slow def __snake_case ( self ): lowerCAmelCase = MPNetModel.from_pretrained('''microsoft/mpnet-base''' ) lowerCAmelCase = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) lowerCAmelCase = model(UpperCAmelCase_ )[0] lowerCAmelCase = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , UpperCAmelCase_ ) lowerCAmelCase = torch.tensor( [[[-0.0550, 0.1943, -0.0740], [-0.0562, 0.2211, -0.0579], [-0.0437, 0.3337, -0.0641]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , UpperCAmelCase_ , atol=1E-4 ) )
33
def UpperCAmelCase ( _snake_case , _snake_case , _snake_case ): def count_of_possible_combinations(_snake_case ) -> int: if target < 0: return 0 if target == 0: return 1 return sum(count_of_possible_combinations(target - item ) for item in array ) return count_of_possible_combinations(_snake_case ) def UpperCAmelCase ( _snake_case , _snake_case , _snake_case ): def count_of_possible_combinations_with_dp_array( _snake_case , _snake_case ) -> int: if target < 0: return 0 if target == 0: return 1 if dp_array[target] != -1: return dp_array[target] lowerCAmelCase = sum( count_of_possible_combinations_with_dp_array(target - item , _snake_case ) for item in array ) lowerCAmelCase = answer return answer lowerCAmelCase = [-1] * (target + 1) return count_of_possible_combinations_with_dp_array(_snake_case , _snake_case ) def UpperCAmelCase ( _snake_case , _snake_case , _snake_case ): lowerCAmelCase = [0] * (target + 1) lowerCAmelCase = 1 for i in range(1 , target + 1 ): for j in range(_snake_case ): if i - array[j] >= 0: dp_array[i] += dp_array[i - array[j]] return dp_array[target] if __name__ == "__main__": import doctest doctest.testmod() UpperCAmelCase_ =3 UpperCAmelCase_ =5 UpperCAmelCase_ =[1, 2, 5] print(combination_sum_iv(n, array, target))
33
1
import cmath import math def UpperCamelCase_( _A :float , _A :float , _A :float , _A :float )-> complex: UpperCamelCase__ = math.radians(_A ) UpperCamelCase__ = math.radians(_A ) # Convert voltage and current to rectangular form UpperCamelCase__ = cmath.rect(_A , _A ) UpperCamelCase__ = cmath.rect(_A , _A ) # Calculate apparent power return voltage_rect * current_rect if __name__ == "__main__": import doctest doctest.testmod()
551
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_big_bird import BigBirdTokenizer else: __UpperCamelCase = None __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = {'vocab_file': 'spiece.model', 'tokenizer_file': 'tokenizer.json'} __UpperCamelCase = { 'vocab_file': { 'google/bigbird-roberta-base': 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model', 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model' ), }, 'tokenizer_file': { 'google/bigbird-roberta-base': ( 'https://huggingface.co/google/bigbird-roberta-base/resolve/main/tokenizer.json' ), 'google/bigbird-roberta-large': ( 'https://huggingface.co/google/bigbird-roberta-large/resolve/main/tokenizer.json' ), 'google/bigbird-base-trivia-itc': ( 'https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/tokenizer.json' ), }, } __UpperCamelCase = { 'google/bigbird-roberta-base': 4_0_9_6, 'google/bigbird-roberta-large': 4_0_9_6, 'google/bigbird-base-trivia-itc': 4_0_9_6, } __UpperCamelCase = '▁' class lowerCamelCase__ ( UpperCAmelCase ): """simple docstring""" _UpperCamelCase : Dict = VOCAB_FILES_NAMES _UpperCamelCase : int = PRETRAINED_VOCAB_FILES_MAP _UpperCamelCase : List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _UpperCamelCase : Optional[Any] = BigBirdTokenizer _UpperCamelCase : Dict = ['input_ids', 'attention_mask'] _UpperCamelCase : List[int] = [] def __init__( self , snake_case=None , snake_case=None , snake_case="<unk>" , snake_case="<s>" , snake_case="</s>" , snake_case="<pad>" , snake_case="[SEP]" , snake_case="[MASK]" , snake_case="[CLS]" , **snake_case , ): '''simple docstring''' UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else bos_token UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else eos_token UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else unk_token UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else pad_token UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else cls_token UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCamelCase__ = AddedToken(snake_case , lstrip=snake_case , rstrip=snake_case ) if isinstance(snake_case , snake_case ) else mask_token super().__init__( snake_case , tokenizer_file=snake_case , bos_token=snake_case , eos_token=snake_case , unk_token=snake_case , sep_token=snake_case , pad_token=snake_case , cls_token=snake_case , mask_token=snake_case , **snake_case , ) UpperCamelCase__ = vocab_file UpperCamelCase__ = False if not self.vocab_file else True def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def snake_case__ ( self , snake_case , snake_case = None , snake_case = False ): '''simple docstring''' if already_has_special_tokens: if token_ids_a is not None: raise ValueError( "You should not supply a second sequence if the provided sequence of " "ids is already formatted with special tokens for the model." ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is None: return [1] + ([0] * len(snake_case )) + [1] return [1] + ([0] * len(snake_case )) + [1] + ([0] * len(snake_case )) + [1] def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' UpperCamelCase__ = [self.sep_token_id] UpperCamelCase__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case__ ( self , snake_case , snake_case = None ): '''simple docstring''' if not self.can_save_slow_tokenizer: raise ValueError( "Your fast tokenizer does not have the necessary information to save the vocabulary for a slow " "tokenizer." ) if not os.path.isdir(snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCamelCase__ = os.path.join( snake_case , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case ): copyfile(self.vocab_file , snake_case ) return (out_vocab_file,)
551
1
"""simple docstring""" import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models import ModelMixin class SCREAMING_SNAKE_CASE__ ( _a , _a ): @register_to_config def __init__( self : int , *, lowerCAmelCase : int = 4 , lowerCAmelCase : int = 768 , lowerCAmelCase : int , lowerCAmelCase : int , ): super().__init__() lowerCAmelCase = nn.Parameter(torch.zeros(lowerCAmelCase ) ) # parameters for additional clip time embeddings lowerCAmelCase = nn.Linear(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = nn.Linear(lowerCAmelCase , lowerCAmelCase ) # parameters for encoder hidden states lowerCAmelCase = clip_extra_context_tokens lowerCAmelCase = nn.Linear( lowerCAmelCase , self.clip_extra_context_tokens * cross_attention_dim ) lowerCAmelCase = nn.Linear(lowerCAmelCase , lowerCAmelCase ) lowerCAmelCase = nn.LayerNorm(lowerCAmelCase ) def __lowercase ( self : int , *, lowerCAmelCase : Dict , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : int , lowerCAmelCase : Tuple ): if do_classifier_free_guidance: # Add the classifier free guidance embeddings to the image embeddings lowerCAmelCase = image_embeddings.shape[0] lowerCAmelCase = self.learned_classifier_free_guidance_embeddings.unsqueeze(0 ) lowerCAmelCase = classifier_free_guidance_embeddings.expand( lowerCAmelCase , -1 ) lowerCAmelCase = torch.cat([classifier_free_guidance_embeddings, image_embeddings] , dim=0 ) # The image embeddings batch size and the text embeddings batch size are equal assert image_embeddings.shape[0] == prompt_embeds.shape[0] lowerCAmelCase = prompt_embeds.shape[0] # "Specifically, we modify the architecture described in Nichol et al. (2021) by projecting and # adding CLIP embeddings to the existing timestep embedding, ... lowerCAmelCase = self.embedding_proj(lowerCAmelCase ) lowerCAmelCase = self.clip_image_embeddings_project_to_time_embeddings(lowerCAmelCase ) lowerCAmelCase = time_projected_image_embeddings + time_projected_prompt_embeds # ... and by projecting CLIP embeddings into four # extra tokens of context that are concatenated to the sequence of outputs from the GLIDE text encoder" lowerCAmelCase = self.clip_extra_context_tokens_proj(lowerCAmelCase ) lowerCAmelCase = clip_extra_context_tokens.reshape(lowerCAmelCase , -1 , self.clip_extra_context_tokens ) lowerCAmelCase = clip_extra_context_tokens.permute(0 , 2 , 1 ) lowerCAmelCase = self.encoder_hidden_states_proj(lowerCAmelCase ) lowerCAmelCase = self.text_encoder_hidden_states_norm(lowerCAmelCase ) lowerCAmelCase = torch.cat([clip_extra_context_tokens, text_encoder_hidden_states] , dim=1 ) return text_encoder_hidden_states, additive_clip_time_embeddings
529
"""simple docstring""" import argparse import os import re import tensorflow as tf import torch from transformers import BertConfig, BertModel from transformers.utils import logging logging.set_verbosity_info() a = logging.get_logger(__name__) def lowercase (snake_case__ : str , snake_case__ : Tuple , snake_case__ : Dict ) -> int: '''simple docstring''' lowerCAmelCase = os.path.abspath(snake_case__ ) logger.info(f'''Converting TensorFlow checkpoint from {tf_path}''' ) # Load weights from TF model lowerCAmelCase = tf.train.list_variables(snake_case__ ) lowerCAmelCase = [] lowerCAmelCase = [] lowerCAmelCase = [] for full_name, shape in init_vars: # logger.info(f"Loading TF weight {name} with shape {shape}") lowerCAmelCase = full_name.split("""/""" ) if full_name == "_CHECKPOINTABLE_OBJECT_GRAPH" or name[0] in ["global_step", "save_counter"]: logger.info(f'''Skipping non-model layer {full_name}''' ) continue if "optimizer" in full_name: logger.info(f'''Skipping optimization layer {full_name}''' ) continue if name[0] == "model": # ignore initial 'model' lowerCAmelCase = name[1:] # figure out how many levels deep the name is lowerCAmelCase = 0 for _name in name: if _name.startswith("""layer_with_weights""" ): depth += 1 else: break layer_depth.append(snake_case__ ) # read data lowerCAmelCase = tf.train.load_variable(snake_case__ , snake_case__ ) names.append("""/""".join(snake_case__ ) ) arrays.append(snake_case__ ) logger.info(f'''Read a total of {len(snake_case__ ):,} layers''' ) # Sanity check if len(set(snake_case__ ) ) != 1: raise ValueError(f'''Found layer names with different depths (layer depth {list(set(snake_case__ ) )})''' ) lowerCAmelCase = list(set(snake_case__ ) )[0] if layer_depth != 1: raise ValueError( """The model contains more than just the embedding/encoder layers. This script does not handle MLM/NSP""" """ heads.""" ) # convert layers logger.info("""Converting weights...""" ) for full_name, array in zip(snake_case__ , snake_case__ ): lowerCAmelCase = full_name.split("""/""" ) lowerCAmelCase = model lowerCAmelCase = [] for i, m_name in enumerate(snake_case__ ): if m_name == ".ATTRIBUTES": # variable names end with .ATTRIBUTES/VARIABLE_VALUE break if m_name.startswith("""layer_with_weights""" ): lowerCAmelCase = int(m_name.split("""-""" )[-1] ) if layer_num <= 2: # embedding layers # layer_num 0: word_embeddings # layer_num 1: position_embeddings # layer_num 2: token_type_embeddings continue elif layer_num == 3: # embedding LayerNorm trace.extend(["""embeddings""", """LayerNorm"""] ) lowerCAmelCase = getattr(snake_case__ , """embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """LayerNorm""" ) elif layer_num > 3 and layer_num < config.num_hidden_layers + 4: # encoder layers trace.extend(["""encoder""", """layer""", str(layer_num - 4 )] ) lowerCAmelCase = getattr(snake_case__ , """encoder""" ) lowerCAmelCase = getattr(snake_case__ , """layer""" ) lowerCAmelCase = pointer[layer_num - 4] elif layer_num == config.num_hidden_layers + 4: # pooler layer trace.extend(["""pooler""", """dense"""] ) lowerCAmelCase = getattr(snake_case__ , """pooler""" ) lowerCAmelCase = getattr(snake_case__ , """dense""" ) elif m_name == "embeddings": trace.append("""embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """embeddings""" ) if layer_num == 0: trace.append("""word_embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """word_embeddings""" ) elif layer_num == 1: trace.append("""position_embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """position_embeddings""" ) elif layer_num == 2: trace.append("""token_type_embeddings""" ) lowerCAmelCase = getattr(snake_case__ , """token_type_embeddings""" ) else: raise ValueError(f'''Unknown embedding layer with name {full_name}''' ) trace.append("""weight""" ) lowerCAmelCase = getattr(snake_case__ , """weight""" ) elif m_name == "_attention_layer": # self-attention layer trace.extend(["""attention""", """self"""] ) lowerCAmelCase = getattr(snake_case__ , """attention""" ) lowerCAmelCase = getattr(snake_case__ , """self""" ) elif m_name == "_attention_layer_norm": # output attention norm trace.extend(["""attention""", """output""", """LayerNorm"""] ) lowerCAmelCase = getattr(snake_case__ , """attention""" ) lowerCAmelCase = getattr(snake_case__ , """output""" ) lowerCAmelCase = getattr(snake_case__ , """LayerNorm""" ) elif m_name == "_attention_output_dense": # output attention dense trace.extend(["""attention""", """output""", """dense"""] ) lowerCAmelCase = getattr(snake_case__ , """attention""" ) lowerCAmelCase = getattr(snake_case__ , """output""" ) lowerCAmelCase = getattr(snake_case__ , """dense""" ) elif m_name == "_output_dense": # output dense trace.extend(["""output""", """dense"""] ) lowerCAmelCase = getattr(snake_case__ , """output""" ) lowerCAmelCase = getattr(snake_case__ , """dense""" ) elif m_name == "_output_layer_norm": # output dense trace.extend(["""output""", """LayerNorm"""] ) lowerCAmelCase = getattr(snake_case__ , """output""" ) lowerCAmelCase = getattr(snake_case__ , """LayerNorm""" ) elif m_name == "_key_dense": # attention key trace.append("""key""" ) lowerCAmelCase = getattr(snake_case__ , """key""" ) elif m_name == "_query_dense": # attention query trace.append("""query""" ) lowerCAmelCase = getattr(snake_case__ , """query""" ) elif m_name == "_value_dense": # attention value trace.append("""value""" ) lowerCAmelCase = getattr(snake_case__ , """value""" ) elif m_name == "_intermediate_dense": # attention intermediate dense trace.extend(["""intermediate""", """dense"""] ) lowerCAmelCase = getattr(snake_case__ , """intermediate""" ) lowerCAmelCase = getattr(snake_case__ , """dense""" ) elif m_name == "_output_layer_norm": # output layer norm trace.append("""output""" ) lowerCAmelCase = getattr(snake_case__ , """output""" ) # weights & biases elif m_name in ["bias", "beta"]: trace.append("""bias""" ) lowerCAmelCase = getattr(snake_case__ , """bias""" ) elif m_name in ["kernel", "gamma"]: trace.append("""weight""" ) lowerCAmelCase = getattr(snake_case__ , """weight""" ) else: logger.warning(f'''Ignored {m_name}''' ) # for certain layers reshape is necessary lowerCAmelCase = """.""".join(snake_case__ ) if re.match(R"""(\S+)\.attention\.self\.(key|value|query)\.(bias|weight)""" , snake_case__ ) or re.match( R"""(\S+)\.attention\.output\.dense\.weight""" , snake_case__ ): lowerCAmelCase = array.reshape(pointer.data.shape ) if "kernel" in full_name: lowerCAmelCase = array.transpose() if pointer.shape == array.shape: lowerCAmelCase = torch.from_numpy(snake_case__ ) else: raise ValueError( f'''Shape mismatch in layer {full_name}: Model expects shape {pointer.shape} but layer contains shape:''' f''' {array.shape}''' ) logger.info(f'''Successfully set variable {full_name} to PyTorch layer {trace}''' ) return model def lowercase (snake_case__ : Tuple , snake_case__ : Any , snake_case__ : Any ) -> str: '''simple docstring''' logger.info(f'''Loading model based on config from {config_path}...''' ) lowerCAmelCase = BertConfig.from_json_file(snake_case__ ) lowerCAmelCase = BertModel(snake_case__ ) # Load weights from checkpoint logger.info(f'''Loading weights from checkpoint {tf_checkpoint_path}...''' ) load_tfa_weights_in_bert(snake_case__ , snake_case__ , snake_case__ ) # Save pytorch-model logger.info(f'''Saving PyTorch model to {pytorch_dump_path}...''' ) torch.save(model.state_dict() , snake_case__ ) if __name__ == "__main__": a = argparse.ArgumentParser() parser.add_argument( '--tf_checkpoint_path', type=str, required=True, help='Path to the TensorFlow 2.x checkpoint path.' ) parser.add_argument( '--bert_config_file', type=str, required=True, help='The config json file corresponding to the BERT model. This specifies the model architecture.', ) parser.add_argument( '--pytorch_dump_path', type=str, required=True, help='Path to the output PyTorch model (must include filename).', ) a = parser.parse_args() convert_tfa_checkpoint_to_pytorch(args.tf_checkpoint_path, args.bert_config_file, args.pytorch_dump_path)
529
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter __A : int = "Create a default config file for Accelerate with only a few flags set." def UpperCamelCase_ ( A__ : Any="no" , A__ : str = default_json_config_file , A__ : bool = False ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = Path(A__ ) path.parent.mkdir(parents=A__ , exist_ok=A__ ) if path.exists(): print( f'Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.' ) return False lowerCAmelCase_ : List[str] = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( f'`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}' ) lowerCAmelCase_ : Any = { """compute_environment""": """LOCAL_MACHINE""", """mixed_precision""": mixed_precision, } if torch.cuda.is_available(): lowerCAmelCase_ : List[str] = torch.cuda.device_count() lowerCAmelCase_ : Optional[int] = num_gpus lowerCAmelCase_ : Union[str, Any] = False if num_gpus > 1: lowerCAmelCase_ : Any = """MULTI_GPU""" else: lowerCAmelCase_ : Dict = """NO""" elif is_xpu_available() and use_xpu: lowerCAmelCase_ : Any = torch.xpu.device_count() lowerCAmelCase_ : Optional[int] = num_xpus lowerCAmelCase_ : List[str] = False if num_xpus > 1: lowerCAmelCase_ : Any = """MULTI_XPU""" else: lowerCAmelCase_ : str = """NO""" elif is_npu_available(): lowerCAmelCase_ : Tuple = torch.npu.device_count() lowerCAmelCase_ : List[Any] = num_npus lowerCAmelCase_ : str = False if num_npus > 1: lowerCAmelCase_ : Dict = """MULTI_NPU""" else: lowerCAmelCase_ : Optional[int] = """NO""" else: lowerCAmelCase_ : Dict = 0 lowerCAmelCase_ : List[Any] = True lowerCAmelCase_ : str = 1 lowerCAmelCase_ : Optional[Any] = """NO""" lowerCAmelCase_ : Optional[int] = ClusterConfig(**A__ ) config.to_json_file(A__ ) return path def UpperCamelCase_ ( A__ : Dict , A__ : Union[str, Any] ): '''simple docstring''' lowerCAmelCase_ : Optional[int] = parser.add_parser("""default""" , parents=A__ , help=A__ , formatter_class=A__ ) parser.add_argument( """--config_file""" , default=A__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , dest="""save_location""" , ) parser.add_argument( """--mixed_precision""" , choices=["""no""", """fp16""", """bf16"""] , type=A__ , help="""Whether or not to use mixed precision training. """ """Choose between FP16 and BF16 (bfloat16) training. """ """BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later.""" , default="""no""" , ) parser.set_defaults(func=A__ ) return parser def UpperCamelCase_ ( A__ : List[str] ): '''simple docstring''' lowerCAmelCase_ : Tuple = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(f'accelerate configuration saved at {config_file}' )
275
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A : List[Any] = logging.get_logger(__name__) __A : List[Any] = { "andreasmadsen/efficient_mlm_m0.40": ( "https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json" ), } class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" lowercase = 'roberta-prelayernorm' def __init__( self : Tuple , lowerCamelCase : Tuple=5_02_65 , lowerCamelCase : Optional[int]=7_68 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : Optional[int]=12 , lowerCamelCase : int=30_72 , lowerCamelCase : Optional[int]="gelu" , lowerCamelCase : List[str]=0.1 , lowerCamelCase : Tuple=0.1 , lowerCamelCase : Optional[int]=5_12 , lowerCamelCase : Union[str, Any]=2 , lowerCamelCase : int=0.02 , lowerCamelCase : Any=1E-12 , lowerCamelCase : int=1 , lowerCamelCase : List[Any]=0 , lowerCamelCase : List[Any]=2 , lowerCamelCase : Optional[Any]="absolute" , lowerCamelCase : List[Any]=True , lowerCamelCase : Tuple=None , **lowerCamelCase : int , ) -> Optional[Any]: super().__init__(pad_token_id=lowerCamelCase , bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase ) lowerCAmelCase_ : Dict = vocab_size lowerCAmelCase_ : str = hidden_size lowerCAmelCase_ : Dict = num_hidden_layers lowerCAmelCase_ : List[Any] = num_attention_heads lowerCAmelCase_ : List[str] = hidden_act lowerCAmelCase_ : Optional[Any] = intermediate_size lowerCAmelCase_ : List[str] = hidden_dropout_prob lowerCAmelCase_ : Tuple = attention_probs_dropout_prob lowerCAmelCase_ : Optional[int] = max_position_embeddings lowerCAmelCase_ : List[Any] = type_vocab_size lowerCAmelCase_ : List[Any] = initializer_range lowerCAmelCase_ : Union[str, Any] = layer_norm_eps lowerCAmelCase_ : List[str] = position_embedding_type lowerCAmelCase_ : Tuple = use_cache lowerCAmelCase_ : Union[str, Any] = classifier_dropout class __snake_case ( _SCREAMING_SNAKE_CASE): """simple docstring""" @property def __lowercase ( self : List[Any] ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCAmelCase_ : Dict = {0: """batch""", 1: """choice""", 2: """sequence"""} else: lowerCAmelCase_ : Optional[int] = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
275
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=__UpperCAmelCase ) class __UpperCAmelCase ( __UpperCAmelCase ): '''simple docstring''' lowercase : str = field(default="image-classification", metadata={"include_in_asdict_even_if_is_default": True} ) lowercase : ClassVar[Features] = Features({"image": Image()} ) lowercase : ClassVar[Features] = Features({"labels": ClassLabel} ) lowercase : str = "image" lowercase : str = "labels" def UpperCamelCase_ ( self , _A ): '''simple docstring''' if self.label_column not in features: raise ValueError(f"""Column {self.label_column} is not present in features.""" ) if not isinstance(features[self.label_column] , UpperCAmelCase_ ): raise ValueError(f"""Column {self.label_column} is not a ClassLabel.""" ) _SCREAMING_SNAKE_CASE =copy.deepcopy(self ) _SCREAMING_SNAKE_CASE =self.label_schema.copy() _SCREAMING_SNAKE_CASE =features[self.label_column] _SCREAMING_SNAKE_CASE =label_schema return task_template @property def UpperCamelCase_ ( self ): '''simple docstring''' return { self.image_column: "image", self.label_column: "labels", }
711
"""simple docstring""" import math from typing import Any, Callable, List, Optional, Tuple, Union import numpy as np import torch from ...models import TaFilmDecoder from ...schedulers import DDPMScheduler from ...utils import is_onnx_available, logging, randn_tensor if is_onnx_available(): from ..onnx_utils import OnnxRuntimeModel from ..pipeline_utils import AudioPipelineOutput, DiffusionPipeline from .continous_encoder import SpectrogramContEncoder from .notes_encoder import SpectrogramNotesEncoder UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) # pylint: disable=invalid-name UpperCAmelCase_ : List[Any] = 2_5_6 class __UpperCAmelCase ( _lowerCamelCase ): '''simple docstring''' lowercase : Any = ["melgan"] def __init__( self , _A , _A , _A , _A , _A , ): '''simple docstring''' super().__init__() # From MELGAN _SCREAMING_SNAKE_CASE =math.log(1E-5 ) # Matches MelGAN training. _SCREAMING_SNAKE_CASE =4.0 # Largest value for most examples _SCREAMING_SNAKE_CASE =1_2_8 self.register_modules( notes_encoder=_A , continuous_encoder=_A , decoder=_A , scheduler=_A , melgan=_A , ) def UpperCamelCase_ ( self , _A , _A=(-1.0, 1.0) , _A=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =output_range if clip: _SCREAMING_SNAKE_CASE =torch.clip(_A , self.min_value , self.max_value ) # Scale to [0, 1]. _SCREAMING_SNAKE_CASE =(features - self.min_value) / (self.max_value - self.min_value) # Scale to [min_out, max_out]. return zero_one * (max_out - min_out) + min_out def UpperCamelCase_ ( self , _A , _A=(-1.0, 1.0) , _A=False ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =input_range _SCREAMING_SNAKE_CASE =torch.clip(_A , _A , _A ) if clip else outputs # Scale to [0, 1]. _SCREAMING_SNAKE_CASE =(outputs - min_out) / (max_out - min_out) # Scale to [self.min_value, self.max_value]. return zero_one * (self.max_value - self.min_value) + self.min_value def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =input_tokens > 0 _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.notes_encoder( encoder_input_tokens=_A , encoder_inputs_mask=_A ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE =self.continuous_encoder( encoder_inputs=_A , encoder_inputs_mask=_A ) return [(tokens_encoded, tokens_mask), (continuous_encoded, continuous_mask)] def UpperCamelCase_ ( self , _A , _A , _A ): '''simple docstring''' _SCREAMING_SNAKE_CASE =noise_time if not torch.is_tensor(_A ): _SCREAMING_SNAKE_CASE =torch.tensor([timesteps] , dtype=torch.long , device=input_tokens.device ) elif torch.is_tensor(_A ) and len(timesteps.shape ) == 0: _SCREAMING_SNAKE_CASE =timesteps[None].to(input_tokens.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML _SCREAMING_SNAKE_CASE =timesteps * torch.ones(input_tokens.shape[0] , dtype=timesteps.dtype , device=timesteps.device ) _SCREAMING_SNAKE_CASE =self.decoder( encodings_and_masks=_A , decoder_input_tokens=_A , decoder_noise_time=_A ) return logits @torch.no_grad() def __call__( self , _A , _A = None , _A = 1_0_0 , _A = True , _A = "numpy" , _A = None , _A = 1 , ): '''simple docstring''' if (callback_steps is None) or ( callback_steps is not None and (not isinstance(_A , _A ) or callback_steps <= 0) ): raise ValueError( f"""`callback_steps` has to be a positive integer but is {callback_steps} of type""" f""" {type(_A )}.""" ) _SCREAMING_SNAKE_CASE =np.zeros([1, TARGET_FEATURE_LENGTH, self.n_dims] , dtype=np.floataa ) _SCREAMING_SNAKE_CASE =np.zeros([1, 0, self.n_dims] , np.floataa ) _SCREAMING_SNAKE_CASE =torch.ones((1, TARGET_FEATURE_LENGTH) , dtype=_A , device=self.device ) for i, encoder_input_tokens in enumerate(_A ): if i == 0: _SCREAMING_SNAKE_CASE =torch.from_numpy(pred_mel[:1].copy() ).to( device=self.device , dtype=self.decoder.dtype ) # The first chunk has no previous context. _SCREAMING_SNAKE_CASE =torch.zeros((1, TARGET_FEATURE_LENGTH) , dtype=_A , device=self.device ) else: # The full song pipeline does not feed in a context feature, so the mask # will be all 0s after the feature converter. Because we know we're # feeding in a full context chunk from the previous prediction, set it # to all 1s. _SCREAMING_SNAKE_CASE =ones _SCREAMING_SNAKE_CASE =self.scale_features( _A , output_range=[-1.0, 1.0] , clip=_A ) _SCREAMING_SNAKE_CASE =self.encode( input_tokens=torch.IntTensor([encoder_input_tokens] ).to(device=self.device ) , continuous_inputs=_A , continuous_mask=_A , ) # Sample encoder_continuous_inputs shaped gaussian noise to begin loop _SCREAMING_SNAKE_CASE =randn_tensor( shape=encoder_continuous_inputs.shape , generator=_A , device=self.device , dtype=self.decoder.dtype , ) # set step values self.scheduler.set_timesteps(_A ) # Denoising diffusion loop for j, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): _SCREAMING_SNAKE_CASE =self.decode( encodings_and_masks=_A , input_tokens=_A , noise_time=t / self.scheduler.config.num_train_timesteps , ) # Compute previous output: x_t -> x_t-1 _SCREAMING_SNAKE_CASE =self.scheduler.step(_A , _A , _A , generator=_A ).prev_sample _SCREAMING_SNAKE_CASE =self.scale_to_features(_A , input_range=[-1.0, 1.0] ) _SCREAMING_SNAKE_CASE =mel[:1] _SCREAMING_SNAKE_CASE =mel.cpu().float().numpy() _SCREAMING_SNAKE_CASE =np.concatenate([full_pred_mel, pred_mel[:1]] , axis=1 ) # call the callback, if provided if callback is not None and i % callback_steps == 0: callback(_A , _A ) logger.info('''Generated segment''' , _A ) if output_type == "numpy" and not is_onnx_available(): raise ValueError( '''Cannot return output in \'np\' format if ONNX is not available. Make sure to have ONNX installed or set \'output_type\' to \'mel\'.''' ) elif output_type == "numpy" and self.melgan is None: raise ValueError( '''Cannot return output in \'np\' format if melgan component is not defined. Make sure to define `self.melgan` or set \'output_type\' to \'mel\'.''' ) if output_type == "numpy": _SCREAMING_SNAKE_CASE =self.melgan(input_features=full_pred_mel.astype(np.floataa ) ) else: _SCREAMING_SNAKE_CASE =full_pred_mel if not return_dict: return (output,) return AudioPipelineOutput(audios=_A )
165
0
import json import os from typing import Dict, List, Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _lowerCAmelCase : int = logging.get_logger(__name__) _lowerCAmelCase : Optional[Any] = { 'vocab_file': 'vocab.json', 'tokenizer_config_file': 'tokenizer_config.json', 'merges_file': 'merges.txt', } _lowerCAmelCase : Any = { 'vocab_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/vocab.json' ), }, 'tokenizer_config_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/tokenizer_config.json' ), }, 'merges_file': { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/merges.txt' ), }, } _lowerCAmelCase : Optional[Any] = '</w>' _lowerCAmelCase : str = '@@ ' def a_ ( UpperCamelCase_ : Dict ) -> int: """simple docstring""" lowerCamelCase = set() lowerCamelCase = word[0] for char in word[1:]: pairs.add((prev_char, char) ) lowerCamelCase = char return pairs # Speech2Text2 has no max input length _lowerCAmelCase : Tuple = {'facebook/s2t-wav2vec2-large-en-de': 1_0_2_4} class lowerCAmelCase ( UpperCamelCase_ ): '''simple docstring''' snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = ['input_ids', 'attention_mask'] def __init__( self : List[Any] , __snake_case : Optional[Any] , __snake_case : int="<s>" , __snake_case : Dict="<pad>" , __snake_case : List[str]="</s>" , __snake_case : str="<unk>" , __snake_case : Optional[int]=False , __snake_case : List[Any]=None , **__snake_case : Any , ) -> Union[str, Any]: '''simple docstring''' super().__init__( unk_token=__snake_case , bos_token=__snake_case , eos_token=__snake_case , pad_token=__snake_case , do_lower_case=__snake_case , **__snake_case , ) lowerCamelCase = do_lower_case with open(__snake_case , encoding='utf-8' ) as vocab_handle: lowerCamelCase = json.load(__snake_case ) lowerCamelCase = {v: k for k, v in self.encoder.items()} if merges_file is None: logger.info(F'''No merges files provided. {self.__class__.__name__} can only be used for decoding.''' ) lowerCamelCase = None lowerCamelCase = None else: with open(__snake_case , encoding='utf-8' ) as merges_handle: lowerCamelCase = merges_handle.read().split('\n' )[:-1] lowerCamelCase = [tuple(merge.split()[:2] ) for merge in merges] lowerCamelCase = dict(zip(__snake_case , range(len(__snake_case ) ) ) ) lowerCamelCase = {} @property def lowerCamelCase__ ( self : int ) -> int: '''simple docstring''' return len(self.decoder ) def lowerCamelCase__ ( self : Optional[Any] ) -> Dict: '''simple docstring''' return dict(self.encoder , **self.added_tokens_encoder ) def lowerCamelCase__ ( self : str , __snake_case : Dict ) -> Tuple: '''simple docstring''' lowerCamelCase = tuple(token[:-1] ) + (token[-1] + BPE_TOKEN_MERGES,) if token in self.cache: return self.cache[token] lowerCamelCase = get_pairs(__snake_case ) if not pairs: return token while True: lowerCamelCase = min(__snake_case , key=lambda __snake_case : self.bpe_ranks.get(__snake_case , float('inf' ) ) ) if bigram not in self.bpe_ranks: break lowerCamelCase , lowerCamelCase = bigram lowerCamelCase = [] lowerCamelCase = 0 while i < len(__snake_case ): try: lowerCamelCase = word.index(__snake_case , __snake_case ) except ValueError: new_word.extend(word[i:] ) break else: new_word.extend(word[i:j] ) lowerCamelCase = j if word[i] == first and i < len(__snake_case ) - 1 and word[i + 1] == second: new_word.append(first + second ) i += 2 else: new_word.append(word[i] ) i += 1 lowerCamelCase = tuple(__snake_case ) lowerCamelCase = new_word if len(__snake_case ) == 1: break else: lowerCamelCase = get_pairs(__snake_case ) lowerCamelCase = ' '.join(__snake_case ) if word == "\n " + BPE_TOKEN_MERGES: lowerCamelCase = '\n' + BPE_TOKEN_MERGES if word.endswith(__snake_case ): lowerCamelCase = word.replace(__snake_case , '' ) lowerCamelCase = word.replace(' ' , __snake_case ) lowerCamelCase = word return word def lowerCamelCase__ ( self : List[Any] , __snake_case : List[Any] ) -> Tuple: '''simple docstring''' if self.bpe_ranks is None: raise ValueError( 'This tokenizer was instantiated without a `merges.txt` file, so' ' that it can only be used for decoding, not for encoding.' 'Make sure to provide `merges.txt` file at instantiation to enable ' 'encoding.' ) if self.do_lower_case: lowerCamelCase = text.lower() lowerCamelCase = text.split() lowerCamelCase = [] for token in text: if token: split_tokens.extend(list(self.bpe(__snake_case ).split(' ' ) ) ) return split_tokens def lowerCamelCase__ ( self : Any , __snake_case : str ) -> int: '''simple docstring''' return self.encoder.get(__snake_case , self.encoder.get(self.unk_token ) ) def lowerCamelCase__ ( self : Any , __snake_case : int ) -> str: '''simple docstring''' lowerCamelCase = self.decoder.get(__snake_case , self.unk_token ) return result def lowerCamelCase__ ( self : List[str] , __snake_case : List[str] ) -> str: '''simple docstring''' lowerCamelCase = ' '.join(__snake_case ) # make sure @@ tokens are concatenated lowerCamelCase = ''.join(string.split(__snake_case ) ) return string def lowerCamelCase__ ( self : int , __snake_case : str , __snake_case : Optional[str] = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(__snake_case ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return lowerCamelCase = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) lowerCamelCase = os.path.join( __snake_case , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['merges_file'] ) with open(__snake_case , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.encoder , indent=2 , sort_keys=__snake_case , ensure_ascii=__snake_case ) + '\n' ) lowerCamelCase = 0 if self.bpe_ranks is None: return (vocab_file,) with open(__snake_case , 'w' , encoding='utf-8' ) as writer: for bpe_tokens, token_index in sorted(self.bpe_ranks.items() , key=lambda __snake_case : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {merges_file}: BPE merge indices are not consecutive.''' ' Please check that the tokenizer is not corrupted!' ) lowerCamelCase = token_index writer.write(' '.join(__snake_case ) + '\n' ) index += 1 return (vocab_file, merges_file)
246
'''simple docstring''' import argparse import os import re import packaging.version lowercase : int = 'examples/' lowercase : int = { 'examples': (re.compile(r'^check_min_version\("[^"]+"\)\s*$', re.MULTILINE), 'check_min_version("VERSION")\n'), 'init': (re.compile(r'^__version__\s+=\s+"([^"]+)"\s*$', re.MULTILINE), '__version__ = "VERSION"\n'), 'setup': (re.compile(r'^(\s*)version\s*=\s*"[^"]+",', re.MULTILINE), r'\1version="VERSION",'), 'doc': (re.compile(r'^(\s*)release\s*=\s*"[^"]+"$', re.MULTILINE), 'release = "VERSION"\n'), } lowercase : Union[str, Any] = { 'init': 'src/transformers/__init__.py', 'setup': 'setup.py', } lowercase : Union[str, Any] = 'README.md' def __a ( A__ , A__ , A__ ) -> Dict: with open(A__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase = f.read() lowerCAmelCase , lowerCAmelCase = REPLACE_PATTERNS[pattern] lowerCAmelCase = replace.replace("VERSION" , A__ ) lowerCAmelCase = re_pattern.sub(A__ , A__ ) with open(A__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.write(A__ ) def __a ( A__ ) -> List[Any]: for folder, directories, fnames in os.walk(A__ ): # Removing some of the folders with non-actively maintained examples from the walk if "research_projects" in directories: directories.remove("research_projects" ) if "legacy" in directories: directories.remove("legacy" ) for fname in fnames: if fname.endswith(".py" ): update_version_in_file(os.path.join(A__ , A__ ) , A__ , pattern="examples" ) def __a ( A__ , A__=False ) -> Tuple: for pattern, fname in REPLACE_FILES.items(): update_version_in_file(A__ , A__ , A__ ) if not patch: update_version_in_examples(A__ ) def __a ( ) -> List[str]: lowerCAmelCase = "🤗 Transformers currently provides the following architectures" lowerCAmelCase = "1. Want to contribute a new model?" with open(A__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCAmelCase = f.readlines() # Find the start of the list. lowerCAmelCase = 0 while not lines[start_index].startswith(_start_prompt ): start_index += 1 start_index += 1 lowerCAmelCase = start_index # Update the lines in the model list. while not lines[index].startswith(_end_prompt ): if lines[index].startswith("1." ): lowerCAmelCase = lines[index].replace( "https://huggingface.co/docs/transformers/main/model_doc" , "https://huggingface.co/docs/transformers/model_doc" , ) index += 1 with open(A__ , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(A__ ) def __a ( ) -> Optional[Any]: with open(REPLACE_FILES["init"] , "r" ) as f: lowerCAmelCase = f.read() lowerCAmelCase = REPLACE_PATTERNS["init"][0].search(A__ ).groups()[0] return packaging.version.parse(A__ ) def __a ( A__=False ) -> Optional[int]: lowerCAmelCase = get_version() if patch and default_version.is_devrelease: raise ValueError("Can't create a patch version from the dev branch, checkout a released version!" ) if default_version.is_devrelease: lowerCAmelCase = default_version.base_version elif patch: lowerCAmelCase = f"{default_version.major}.{default_version.minor}.{default_version.micro + 1}" else: lowerCAmelCase = f"{default_version.major}.{default_version.minor + 1}.0" # Now let's ask nicely if that's the right one. lowerCAmelCase = input(f"Which version are you releasing? [{default_version}]" ) if len(A__ ) == 0: lowerCAmelCase = default_version print(f"Updating version to {version}." ) global_version_update(A__ , patch=A__ ) if not patch: print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() def __a ( ) -> Tuple: lowerCAmelCase = get_version() lowerCAmelCase = f"{current_version.major}.{current_version.minor + 1}.0.dev0" lowerCAmelCase = current_version.base_version # Check with the user we got that right. lowerCAmelCase = input(f"Which version are we developing now? [{dev_version}]" ) if len(A__ ) == 0: lowerCAmelCase = dev_version print(f"Updating version to {version}." ) global_version_update(A__ ) print("Cleaning main README, don't forget to run `make fix-copies`." ) clean_main_ref_in_model_list() if __name__ == "__main__": lowercase : Optional[Any] = argparse.ArgumentParser() parser.add_argument('--post_release', action='store_true', help='Whether this is pre or post release.') parser.add_argument('--patch', action='store_true', help='Whether or not this is a patch release.') lowercase : Optional[Any] = parser.parse_args() if not args.post_release: pre_release_work(patch=args.patch) elif args.patch: print('Nothing to do after a patch :-)') else: post_release_work()
649
0
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowerCAmelCase_ ( lowercase: Any ) -> Any: '''simple docstring''' return x + 2 class __magic_name__ ( unittest.TestCase ): """simple docstring""" def lowerCAmelCase ( self : int ): """simple docstring""" _UpperCamelCase: Union[str, Any] = """x = 3""" _UpperCamelCase: str = {} _UpperCamelCase: Optional[Any] = evaluate(a_ , {} , state=a_ ) assert result == 3 self.assertDictEqual(a_ , {'''x''': 3} ) _UpperCamelCase: Union[str, Any] = """x = y""" _UpperCamelCase: Optional[int] = {"""y""": 5} _UpperCamelCase: str = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a_ , {'''x''': 5, '''y''': 5} ) def lowerCAmelCase ( self : List[Any] ): """simple docstring""" _UpperCamelCase: Any = """y = add_two(x)""" _UpperCamelCase: Optional[Any] = {"""x""": 3} _UpperCamelCase: Union[str, Any] = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) assert result == 5 self.assertDictEqual(a_ , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: _UpperCamelCase: List[Any] = evaluate(a_ , {} , state=a_ ) assert result is None assert "tried to execute add_two" in out.out def lowerCAmelCase ( self : Optional[int] ): """simple docstring""" _UpperCamelCase: Tuple = """x = 3""" _UpperCamelCase: Dict = {} _UpperCamelCase: str = evaluate(a_ , {} , state=a_ ) assert result == 3 self.assertDictEqual(a_ , {'''x''': 3} ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Any = """test_dict = {'x': x, 'y': add_two(x)}""" _UpperCamelCase: Union[str, Any] = {"""x""": 3} _UpperCamelCase: Optional[Any] = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) self.assertDictEqual(a_ , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(a_ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: List[str] = """x = 3\ny = 5""" _UpperCamelCase: Dict = {} _UpperCamelCase: str = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a_ , {'''x''': 3, '''y''': 5} ) def lowerCAmelCase ( self : Union[str, Any] ): """simple docstring""" _UpperCamelCase: int = """text = f'This is x: {x}.'""" _UpperCamelCase: int = {"""x""": 3} _UpperCamelCase: Union[str, Any] = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(a_ , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Union[str, Any] = """if x <= 3:\n y = 2\nelse:\n y = 5""" _UpperCamelCase: Dict = {"""x""": 3} _UpperCamelCase: int = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(a_ , {'''x''': 3, '''y''': 2} ) _UpperCamelCase: Optional[Any] = {"""x""": 8} _UpperCamelCase: Dict = evaluate(a_ , {} , state=a_ ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(a_ , {'''x''': 8, '''y''': 5} ) def lowerCAmelCase ( self : str ): """simple docstring""" _UpperCamelCase: List[Any] = """test_list = [x, add_two(x)]""" _UpperCamelCase: Dict = {"""x""": 3} _UpperCamelCase: str = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) self.assertListEqual(a_ , [3, 5] ) self.assertDictEqual(a_ , {'''x''': 3, '''test_list''': [3, 5]} ) def lowerCAmelCase ( self : Tuple ): """simple docstring""" _UpperCamelCase: Optional[Any] = """y = x""" _UpperCamelCase: List[Any] = {"""x""": 3} _UpperCamelCase: List[Any] = evaluate(a_ , {} , state=a_ ) assert result == 3 self.assertDictEqual(a_ , {'''x''': 3, '''y''': 3} ) def lowerCAmelCase ( self : Any ): """simple docstring""" _UpperCamelCase: int = """test_list = [x, add_two(x)]\ntest_list[1]""" _UpperCamelCase: Any = {"""x""": 3} _UpperCamelCase: Optional[Any] = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) assert result == 5 self.assertDictEqual(a_ , {'''x''': 3, '''test_list''': [3, 5]} ) _UpperCamelCase: Any = """test_dict = {'x': x, 'y': add_two(x)}\ntest_dict['y']""" _UpperCamelCase: List[str] = {"""x""": 3} _UpperCamelCase: Union[str, Any] = evaluate(a_ , {'''add_two''': add_two} , state=a_ ) assert result == 5 self.assertDictEqual(a_ , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def lowerCAmelCase ( self : List[str] ): """simple docstring""" _UpperCamelCase: Optional[int] = """x = 0\nfor i in range(3):\n x = i""" _UpperCamelCase: Union[str, Any] = {} _UpperCamelCase: List[Any] = evaluate(a_ , {'''range''': range} , state=a_ ) assert result == 2 self.assertDictEqual(a_ , {'''x''': 2, '''i''': 2} )
706
import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''' , [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 , dataset_name='''my_dataset''' )} ), SplitDict({'''train''': SplitInfo(name='''train''' , num_bytes=1_337 , num_examples=42 )} ), SplitDict({'''train''': SplitInfo()} ), ] , ) def lowerCAmelCase_ ( lowercase: SplitDict ) -> List[str]: '''simple docstring''' _UpperCamelCase: List[str] = split_dict._to_yaml_list() assert len(lowercase ) == len(lowercase ) _UpperCamelCase: Tuple = SplitDict._from_yaml_list(lowercase ) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump _UpperCamelCase: Optional[Any] = None # the split name of split_dict takes over the name of the split info object _UpperCamelCase: Any = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''' , [SplitInfo(), SplitInfo(dataset_name=lowercase ), SplitInfo(dataset_name='''my_dataset''' )] ) def lowerCAmelCase_ ( lowercase: str ) -> Tuple: '''simple docstring''' # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files _UpperCamelCase: Optional[Any] = asdict(SplitDict({'''train''': split_info} ) ) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
264
0
"""simple docstring""" import importlib import inspect import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_config_docstrings.py UpperCamelCase : str = "src/transformers" # This is to make sure the transformers module imported is the one in the repo. UpperCamelCase : Optional[Any] = importlib.util.spec_from_file_location( "transformers", os.path.join(PATH_TO_TRANSFORMERS, "__init__.py"), submodule_search_locations=[PATH_TO_TRANSFORMERS], ) UpperCamelCase : Tuple = spec.loader.load_module() UpperCamelCase : str = transformers.models.auto.configuration_auto.CONFIG_MAPPING # Regex pattern used to find the checkpoint mentioned in the docstring of `config_class`. # For example, `[bert-base-uncased](https://huggingface.co/bert-base-uncased)` UpperCamelCase : List[str] = re.compile("\[(.+?)\]\((https://huggingface\.co/.+?)\)") UpperCamelCase : int = { "CLIPConfigMixin", "DecisionTransformerConfigMixin", "EncoderDecoderConfigMixin", "RagConfigMixin", "SpeechEncoderDecoderConfigMixin", "VisionEncoderDecoderConfigMixin", "VisionTextDualEncoderConfigMixin", } def __snake_case ( ) -> Union[str, Any]: """simple docstring""" A = [] for config_class in list(CONFIG_MAPPING.values() ): A = False # source code of `config_class` A = inspect.getsource(UpperCamelCase__ ) A = _re_checkpoint.findall(UpperCamelCase__ ) for checkpoint in checkpoints: # Each `checkpoint` is a tuple of a checkpoint name and a checkpoint link. # For example, `('bert-base-uncased', 'https://huggingface.co/bert-base-uncased')` A , A = checkpoint # verify the checkpoint name corresponds to the checkpoint link A = f'https://huggingface.co/{ckpt_name}' if ckpt_link == ckpt_link_from_name: A = True break A = config_class.__name__ if not checkpoint_found and name not in CONFIG_CLASSES_TO_IGNORE_FOR_DOCSTRING_CHECKPOINT_CHECK: configs_without_checkpoint.append(UpperCamelCase__ ) if len(UpperCamelCase__ ) > 0: A = '\n'.join(sorted(UpperCamelCase__ ) ) raise ValueError(f'The following configurations don\'t contain any valid checkpoint:\n{message}' ) if __name__ == "__main__": check_config_docstrings_have_checkpoints()
690
"""simple docstring""" import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LDMTextToImagePipeline, UNetaDConditionModel from diffusers.utils.testing_utils import ( enable_full_determinism, load_numpy, nightly, require_torch_gpu, slow, torch_device, ) from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class lowerCamelCase__ ( UpperCAmelCase_ , unittest.TestCase ): lowerCAmelCase = LDMTextToImagePipeline lowerCAmelCase = TEXT_TO_IMAGE_PARAMS - { """negative_prompt""", """negative_prompt_embeds""", """cross_attention_kwargs""", """prompt_embeds""", } lowerCAmelCase = PipelineTesterMixin.required_optional_params - { """num_images_per_prompt""", """callback""", """callback_steps""", } lowerCAmelCase = TEXT_TO_IMAGE_BATCH_PARAMS lowerCAmelCase = False def __a ( self : Dict ): torch.manual_seed(0 ) A = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) A = DDIMScheduler( beta_start=0.0_0_0_8_5 , beta_end=0.0_1_2 , beta_schedule='scaled_linear' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) A = AutoencoderKL( block_out_channels=(32, 64) , in_channels=3 , out_channels=3 , down_block_types=('DownEncoderBlock2D', 'DownEncoderBlock2D') , up_block_types=('UpDecoderBlock2D', 'UpDecoderBlock2D') , latent_channels=4 , ) torch.manual_seed(0 ) A = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) A = CLIPTextModel(_lowercase ) A = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) A = { 'unet': unet, 'scheduler': scheduler, 'vqvae': vae, 'bert': text_encoder, 'tokenizer': tokenizer, } return components def __a ( self : Union[str, Any] , _lowercase : Union[str, Any] , _lowercase : Union[str, Any]=0 ): if str(_lowercase ).startswith('mps' ): A = torch.manual_seed(_lowercase ) else: A = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'generator': generator, 'num_inference_steps': 2, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Any ): A = 'cpu' # ensure determinism for the device-dependent torch.Generator A = self.get_dummy_components() A = LDMTextToImagePipeline(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_dummy_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1] assert image.shape == (1, 16, 16, 3) A = np.array([0.6_1_0_1, 0.6_1_5_6, 0.5_6_2_2, 0.4_8_9_5, 0.6_6_6_1, 0.3_8_0_4, 0.5_7_4_8, 0.6_1_3_6, 0.5_0_1_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : Optional[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : int , _lowercase : List[Any] , _lowercase : int=torch.floataa , _lowercase : int=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 3, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : Union[str, Any] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images A = image[0, -3:, -3:, -1].flatten() assert image.shape == (1, 256, 256, 3) A = np.array([0.5_1_8_2_5, 0.5_2_8_5_0, 0.5_2_5_4_3, 0.5_4_2_5_8, 0.5_2_3_0_4, 0.5_2_5_6_9, 0.5_4_3_6_3, 0.5_5_2_7_6, 0.5_6_8_7_8] ) A = np.abs(expected_slice - image_slice ).max() assert max_diff < 1e-3 @nightly @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def __a ( self : List[Any] ): super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self : List[Any] , _lowercase : Optional[Any] , _lowercase : Tuple=torch.floataa , _lowercase : Optional[Any]=0 ): A = torch.manual_seed(_lowercase ) A = np.random.RandomState(_lowercase ).standard_normal((1, 4, 32, 32) ) A = torch.from_numpy(_lowercase ).to(device=_lowercase , dtype=_lowercase ) A = { 'prompt': 'A painting of a squirrel eating a burger', 'latents': latents, 'generator': generator, 'num_inference_steps': 50, 'guidance_scale': 6.0, 'output_type': 'numpy', } return inputs def __a ( self : List[str] ): A = LDMTextToImagePipeline.from_pretrained('CompVis/ldm-text2im-large-256' ).to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) A = self.get_inputs(_lowercase ) A = pipe(**_lowercase ).images[0] A = load_numpy( 'https://huggingface.co/datasets/diffusers/test-arrays/resolve/main/ldm_text2img/ldm_large_256_ddim.npy' ) A = np.abs(expected_image - image ).max() assert max_diff < 1e-3
690
1
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def _lowerCAmelCase ( lowercase : bool = True , *lowercase : Any , **lowercase : List[Any] ) ->Optional[Any]: """simple docstring""" if not is_tqdm_available(): raise ImportError('''Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.''' ) lowercase__ = False if main_process_only: lowercase__ = PartialState().local_process_index == 0 return _tqdm(*__a , **__a , disable=__a )
720
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tokenizers_available, is_torch_available, ) _lowerCAmelCase = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["NllbTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["NllbTokenizerFast"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb import NllbTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_nllb_fast import NllbTokenizerFast else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
318
0
'''simple docstring''' import copy import os from collections import OrderedDict from typing import TYPE_CHECKING, Any, Dict, Mapping, Optional, Union if TYPE_CHECKING: from ...processing_utils import ProcessorMixin from ...utils import TensorType from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "google/owlvit-base-patch32": "https://huggingface.co/google/owlvit-base-patch32/resolve/main/config.json", "google/owlvit-base-patch16": "https://huggingface.co/google/owlvit-base-patch16/resolve/main/config.json", "google/owlvit-large-patch14": "https://huggingface.co/google/owlvit-large-patch14/resolve/main/config.json", } class __A ( A ): '''simple docstring''' __lowerCamelCase : str = 'owlvit_text_model' def __init__(self , A=49_408 , A=512 , A=2_048 , A=12 , A=8 , A=16 , A="quick_gelu" , A=1E-5 , A=0.0 , A=0.02 , A=1.0 , A=0 , A=49_406 , A=49_407 , **A , ) -> Union[str, Any]: """simple docstring""" super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) _a = vocab_size _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = max_position_embeddings _a = hidden_act _a = layer_norm_eps _a = attention_dropout _a = initializer_range _a = initializer_factor @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) # get the text config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Dict = 'owlvit_vision_model' def __init__(self , A=768 , A=3_072 , A=12 , A=12 , A=3 , A=768 , A=32 , A="quick_gelu" , A=1E-5 , A=0.0 , A=0.02 , A=1.0 , **A , ) -> Union[str, Any]: """simple docstring""" super().__init__(**A ) _a = hidden_size _a = intermediate_size _a = num_hidden_layers _a = num_attention_heads _a = num_channels _a = image_size _a = patch_size _a = hidden_act _a = layer_norm_eps _a = attention_dropout _a = initializer_range _a = initializer_factor @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) # get the vision config dict if we are loading from OwlViTConfig if config_dict.get('''model_type''' ) == "owlvit": _a = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) class __A ( A ): '''simple docstring''' __lowerCamelCase : Optional[int] = 'owlvit' __lowerCamelCase : List[str] = True def __init__(self , A=None , A=None , A=512 , A=2.6592 , A=True , **A , ) -> Optional[int]: """simple docstring""" super().__init__(**A ) if text_config is None: _a = {} logger.info('''text_config is None. Initializing the OwlViTTextConfig with default values.''' ) if vision_config is None: _a = {} logger.info('''vision_config is None. initializing the OwlViTVisionConfig with default values.''' ) _a = OwlViTTextConfig(**A ) _a = OwlViTVisionConfig(**A ) _a = projection_dim _a = logit_scale_init_value _a = return_dict _a = 1.0 @classmethod def a__ (cls , A , **A ) -> "PretrainedConfig": """simple docstring""" cls._set_token_in_kwargs(A ) _a , _a = cls.get_config_dict(A , **A ) if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(A , **A ) @classmethod def a__ (cls , A , A , **A ) -> Any: """simple docstring""" _a = {} _a = text_config _a = vision_config return cls.from_dict(A , **A ) def a__ (self ) -> Tuple: """simple docstring""" _a = copy.deepcopy(self.__dict__ ) _a = self.text_config.to_dict() _a = self.vision_config.to_dict() _a = self.__class__.model_type return output class __A ( A ): '''simple docstring''' @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''sequence'''}), ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ('''attention_mask''', {0: '''batch''', 1: '''sequence'''}), ] ) @property def a__ (self ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" return OrderedDict( [ ('''logits_per_image''', {0: '''batch'''}), ('''logits_per_text''', {0: '''batch'''}), ('''text_embeds''', {0: '''batch'''}), ('''image_embeds''', {0: '''batch'''}), ] ) @property def a__ (self ) -> float: """simple docstring""" return 1E-4 def a__ (self , A , A = -1 , A = -1 , A = None , ) -> Mapping[str, Any]: """simple docstring""" _a = super().generate_dummy_inputs( processor.tokenizer , batch_size=A , seq_length=A , framework=A ) _a = super().generate_dummy_inputs( processor.image_processor , batch_size=A , framework=A ) return {**text_input_dict, **image_input_dict} @property def a__ (self ) -> int: """simple docstring""" return 14
11
from argparse import ArgumentParser, Namespace from ..utils import logging from . import BaseTransformersCLICommand def __UpperCamelCase ( A ): return ConvertCommand( args.model_type , args.tf_checkpoint , args.pytorch_dump_output , args.config , args.finetuning_task_name ) __magic_name__ =''' transformers can only be used from the commandline to convert TensorFlow models in PyTorch, In that case, it requires TensorFlow to be installed. Please see https://www.tensorflow.org/install/ for installation instructions. ''' class _A ( __UpperCamelCase ): @staticmethod def _a (SCREAMING_SNAKE_CASE_ ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = parser.add_parser( '''convert''' , help='''CLI tool to run convert model from original author checkpoints to Transformers PyTorch checkpoints.''' , ) train_parser.add_argument('''--model_type''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Model\'s type.''' ) train_parser.add_argument( '''--tf_checkpoint''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''TensorFlow checkpoint path or folder.''' ) train_parser.add_argument( '''--pytorch_dump_output''' , type=SCREAMING_SNAKE_CASE_ , required=SCREAMING_SNAKE_CASE_ , help='''Path to the PyTorch saved model output.''' ) train_parser.add_argument('''--config''' , type=SCREAMING_SNAKE_CASE_ , default='''''' , help='''Configuration file path or folder.''' ) train_parser.add_argument( '''--finetuning_task_name''' , type=SCREAMING_SNAKE_CASE_ , default=SCREAMING_SNAKE_CASE_ , help='''Optional fine-tuning task name if the TF model was a finetuned model.''' , ) train_parser.set_defaults(func=SCREAMING_SNAKE_CASE_ ) def __init__(self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , *SCREAMING_SNAKE_CASE_ , ) -> Dict: '''simple docstring''' UpperCamelCase__ = logging.get_logger('''transformers-cli/converting''' ) self._logger.info(F"Loading model {model_type}" ) UpperCamelCase__ = model_type UpperCamelCase__ = tf_checkpoint UpperCamelCase__ = pytorch_dump_output UpperCamelCase__ = config UpperCamelCase__ = finetuning_task_name def _a (self ) -> Tuple: '''simple docstring''' if self._model_type == "albert": try: from ..models.albert.convert_albert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "bert": try: from ..models.bert.convert_bert_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "funnel": try: from ..models.funnel.convert_funnel_original_tf_checkpoint_to_pytorch import ( convert_tf_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "t5": try: from ..models.ta.convert_ta_original_tf_checkpoint_to_pytorch import convert_tf_checkpoint_to_pytorch except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "gpt": from ..models.openai.convert_openai_original_tf_checkpoint_to_pytorch import ( convert_openai_checkpoint_to_pytorch, ) convert_openai_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "transfo_xl": try: from ..models.transfo_xl.convert_transfo_xl_original_tf_checkpoint_to_pytorch import ( convert_transfo_xl_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) if "ckpt" in self._tf_checkpoint.lower(): UpperCamelCase__ = self._tf_checkpoint UpperCamelCase__ = '''''' else: UpperCamelCase__ = self._tf_checkpoint UpperCamelCase__ = '''''' convert_transfo_xl_checkpoint_to_pytorch( SCREAMING_SNAKE_CASE_ , self._config , self._pytorch_dump_output , SCREAMING_SNAKE_CASE_ ) elif self._model_type == "gpt2": try: from ..models.gpta.convert_gpta_original_tf_checkpoint_to_pytorch import ( convert_gpta_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_gpta_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) elif self._model_type == "xlnet": try: from ..models.xlnet.convert_xlnet_original_tf_checkpoint_to_pytorch import ( convert_xlnet_checkpoint_to_pytorch, ) except ImportError: raise ImportError(SCREAMING_SNAKE_CASE_ ) convert_xlnet_checkpoint_to_pytorch( self._tf_checkpoint , self._config , self._pytorch_dump_output , self._finetuning_task_name ) elif self._model_type == "xlm": from ..models.xlm.convert_xlm_original_pytorch_checkpoint_to_pytorch import ( convert_xlm_checkpoint_to_pytorch, ) convert_xlm_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "lxmert": from ..models.lxmert.convert_lxmert_original_tf_checkpoint_to_pytorch import ( convert_lxmert_checkpoint_to_pytorch, ) convert_lxmert_checkpoint_to_pytorch(self._tf_checkpoint , self._pytorch_dump_output ) elif self._model_type == "rembert": from ..models.rembert.convert_rembert_tf_checkpoint_to_pytorch import ( convert_rembert_tf_checkpoint_to_pytorch, ) convert_rembert_tf_checkpoint_to_pytorch(self._tf_checkpoint , self._config , self._pytorch_dump_output ) else: raise ValueError( '''--model_type should be selected in the list [bert, gpt, gpt2, t5, transfo_xl, xlnet, xlm, lxmert]''' )
415
0
UpperCAmelCase = { """Pillow""": """Pillow""", """accelerate""": """accelerate>=0.11.0""", """compel""": """compel==0.1.8""", """black""": """black~=23.1""", """datasets""": """datasets""", """filelock""": """filelock""", """flax""": """flax>=0.4.1""", """hf-doc-builder""": """hf-doc-builder>=0.3.0""", """huggingface-hub""": """huggingface-hub>=0.13.2""", """requests-mock""": """requests-mock==1.10.0""", """importlib_metadata""": """importlib_metadata""", """invisible-watermark""": """invisible-watermark""", """isort""": """isort>=5.5.4""", """jax""": """jax>=0.2.8,!=0.3.2""", """jaxlib""": """jaxlib>=0.1.65""", """Jinja2""": """Jinja2""", """k-diffusion""": """k-diffusion>=0.0.12""", """torchsde""": """torchsde""", """note_seq""": """note_seq""", """librosa""": """librosa""", """numpy""": """numpy""", """omegaconf""": """omegaconf""", """parameterized""": """parameterized""", """protobuf""": """protobuf>=3.20.3,<4""", """pytest""": """pytest""", """pytest-timeout""": """pytest-timeout""", """pytest-xdist""": """pytest-xdist""", """ruff""": """ruff>=0.0.241""", """safetensors""": """safetensors""", """sentencepiece""": """sentencepiece>=0.1.91,!=0.1.92""", """scipy""": """scipy""", """onnx""": """onnx""", """regex""": """regex!=2019.12.17""", """requests""": """requests""", """tensorboard""": """tensorboard""", """torch""": """torch>=1.4""", """torchvision""": """torchvision""", """transformers""": """transformers>=4.25.1""", """urllib3""": """urllib3<=2.0.0""", }
719
# coding=utf-8 # Copyright 2020 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # this script dumps information about the environment import os import sys import transformers UpperCAmelCase = """3""" print("""Python version:""", sys.version) print("""transformers version:""", transformers.__version__) try: import torch print("""Torch version:""", torch.__version__) print("""Cuda available:""", torch.cuda.is_available()) print("""Cuda version:""", torch.version.cuda) print("""CuDNN version:""", torch.backends.cudnn.version()) print("""Number of GPUs available:""", torch.cuda.device_count()) print("""NCCL version:""", torch.cuda.nccl.version()) except ImportError: print("""Torch version:""", None) try: import deepspeed print("""DeepSpeed version:""", deepspeed.__version__) except ImportError: print("""DeepSpeed version:""", None) try: import tensorflow as tf print("""TensorFlow version:""", tf.__version__) print("""TF GPUs available:""", bool(tf.config.list_physical_devices("""GPU"""))) print("""Number of TF GPUs available:""", len(tf.config.list_physical_devices("""GPU"""))) except ImportError: print("""TensorFlow version:""", None)
351
0