code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available, is_vision_available, ) SCREAMING_SNAKE_CASE_: Optional[int] ={'configuration_beit': ['BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BeitConfig', 'BeitOnnxConfig']} try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =['BeitFeatureExtractor'] SCREAMING_SNAKE_CASE_: int =['BeitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: Optional[int] =[ 'BEIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BeitForImageClassification', 'BeitForMaskedImageModeling', 'BeitForSemanticSegmentation', 'BeitModel', 'BeitPreTrainedModel', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE_: int =[ 'FlaxBeitForImageClassification', 'FlaxBeitForMaskedImageModeling', 'FlaxBeitModel', 'FlaxBeitPreTrainedModel', ] if TYPE_CHECKING: from .configuration_beit import BEIT_PRETRAINED_CONFIG_ARCHIVE_MAP, BeitConfig, BeitOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_beit import BeitFeatureExtractor from .image_processing_beit import BeitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_beit import ( BEIT_PRETRAINED_MODEL_ARCHIVE_LIST, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, BeitPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_beit import ( FlaxBeitForImageClassification, FlaxBeitForMaskedImageModeling, FlaxBeitModel, FlaxBeitPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE_: Dict =_LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
78
"""simple docstring""" import warnings from ...configuration_utils import PretrainedConfig from ...utils import logging __snake_case : Tuple = logging.get_logger(__name__) __snake_case : Tuple = { 'xlnet-base-cased': 'https://huggingface.co/xlnet-base-cased/resolve/main/config.json', 'xlnet-large-cased': 'https://huggingface.co/xlnet-large-cased/resolve/main/config.json', } class A__ ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' SCREAMING_SNAKE_CASE = 'xlnet' SCREAMING_SNAKE_CASE = ['mems'] SCREAMING_SNAKE_CASE = { 'n_token': 'vocab_size', # Backward compatibility 'hidden_size': 'd_model', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self: Tuple , _SCREAMING_SNAKE_CASE: List[str]=3_2000 , _SCREAMING_SNAKE_CASE: Union[str, Any]=1024 , _SCREAMING_SNAKE_CASE: Dict=24 , _SCREAMING_SNAKE_CASE: Optional[int]=16 , _SCREAMING_SNAKE_CASE: List[str]=4096 , _SCREAMING_SNAKE_CASE: Tuple="gelu" , _SCREAMING_SNAKE_CASE: int=True , _SCREAMING_SNAKE_CASE: List[Any]="bi" , _SCREAMING_SNAKE_CASE: Any=0.02 , _SCREAMING_SNAKE_CASE: List[str]=1e-12 , _SCREAMING_SNAKE_CASE: Any=0.1 , _SCREAMING_SNAKE_CASE: Any=512 , _SCREAMING_SNAKE_CASE: Union[str, Any]=None , _SCREAMING_SNAKE_CASE: Any=True , _SCREAMING_SNAKE_CASE: Any=False , _SCREAMING_SNAKE_CASE: Tuple=False , _SCREAMING_SNAKE_CASE: List[Any]=-1 , _SCREAMING_SNAKE_CASE: Union[str, Any]=False , _SCREAMING_SNAKE_CASE: Optional[int]="last" , _SCREAMING_SNAKE_CASE: Tuple=True , _SCREAMING_SNAKE_CASE: Dict="tanh" , _SCREAMING_SNAKE_CASE: int=0.1 , _SCREAMING_SNAKE_CASE: Tuple=5 , _SCREAMING_SNAKE_CASE: List[str]=5 , _SCREAMING_SNAKE_CASE: Optional[Any]=5 , _SCREAMING_SNAKE_CASE: Optional[int]=1 , _SCREAMING_SNAKE_CASE: Tuple=2 , **_SCREAMING_SNAKE_CASE: str , ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : Dict = vocab_size __lowerCAmelCase : Optional[int] = d_model __lowerCAmelCase : Union[str, Any] = n_layer __lowerCAmelCase : List[Any] = n_head if d_model % n_head != 0: raise ValueError(F"""'d_model % n_head' ({d_model % n_head}) should be equal to 0""") if "d_head" in kwargs: if kwargs["d_head"] != d_model // n_head: raise ValueError( F"""`d_head` ({kwargs['d_head']}) should be equal to `d_model // n_head` ({d_model // n_head})""") __lowerCAmelCase : Optional[Any] = d_model // n_head __lowerCAmelCase : Tuple = ff_activation __lowerCAmelCase : Union[str, Any] = d_inner __lowerCAmelCase : Any = untie_r __lowerCAmelCase : int = attn_type __lowerCAmelCase : Any = initializer_range __lowerCAmelCase : List[Any] = layer_norm_eps __lowerCAmelCase : int = dropout __lowerCAmelCase : List[Any] = mem_len __lowerCAmelCase : str = reuse_len __lowerCAmelCase : Any = bi_data __lowerCAmelCase : Optional[int] = clamp_len __lowerCAmelCase : Union[str, Any] = same_length __lowerCAmelCase : List[str] = summary_type __lowerCAmelCase : Optional[int] = summary_use_proj __lowerCAmelCase : Tuple = summary_activation __lowerCAmelCase : Dict = summary_last_dropout __lowerCAmelCase : str = start_n_top __lowerCAmelCase : List[str] = end_n_top __lowerCAmelCase : str = bos_token_id __lowerCAmelCase : Optional[Any] = pad_token_id __lowerCAmelCase : Optional[Any] = eos_token_id if "use_cache" in kwargs: warnings.warn( "The `use_cache` argument is deprecated and will be removed in a future version, use `use_mems_eval`" " instead." , _SCREAMING_SNAKE_CASE , ) __lowerCAmelCase : Optional[int] = kwargs["use_cache"] __lowerCAmelCase : Optional[int] = use_mems_eval __lowerCAmelCase : Any = use_mems_train super().__init__(pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE) @property def _SCREAMING_SNAKE_CASE ( self: Any) -> int: """simple docstring""" logger.info(F"""The model {self.model_type} is one of the few models that has no sequence length limit.""") return -1 @max_position_embeddings.setter def _SCREAMING_SNAKE_CASE ( self: List[str] , _SCREAMING_SNAKE_CASE: Optional[int]) -> Optional[int]: """simple docstring""" raise NotImplementedError( F"""The model {self.model_type} is one of the few models that has no sequence length limit.""")
293
0
'''simple docstring''' from torch import nn def UpperCamelCase_ ( snake_case_ : Union[str, Any] ) -> Tuple: '''simple docstring''' if act_fn in ["swish", "silu"]: return nn.SiLU() elif act_fn == "mish": return nn.Mish() elif act_fn == "gelu": return nn.GELU() else: raise ValueError(f"""Unsupported activation function: {act_fn}""" )
330
'''simple docstring''' from collections import defaultdict class _lowercase : '''simple docstring''' def __init__( self : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Tuple ) -> Optional[Any]: __lowerCAmelCase = total # total no of tasks (N) # DP table will have a dimension of (2^M)*N # initially all values are set to -1 __lowerCAmelCase = [ [-1 for i in range(total + 1 )] for j in range(2 ** len(SCREAMING_SNAKE_CASE__ ) ) ] __lowerCAmelCase = defaultdict(SCREAMING_SNAKE_CASE__ ) # stores the list of persons for each task # final_mask is used to check if all persons are included by setting all bits # to 1 __lowerCAmelCase = (1 << len(SCREAMING_SNAKE_CASE__ )) - 1 def a ( self : Dict , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : int ) -> Optional[Any]: # if mask == self.finalmask all persons are distributed tasks, return 1 if mask == self.final_mask: return 1 # if not everyone gets the task and no more tasks are available, return 0 if task_no > self.total_tasks: return 0 # if case already considered if self.dp[mask][task_no] != -1: return self.dp[mask][task_no] # Number of ways when we don't this task in the arrangement __lowerCAmelCase = self.count_ways_until(SCREAMING_SNAKE_CASE__ , task_no + 1 ) # now assign the tasks one by one to all possible persons and recursively # assign for the remaining tasks. if task_no in self.task: for p in self.task[task_no]: # if p is already given a task if mask & (1 << p): continue # assign this task to p and change the mask value. And recursively # assign tasks with the new mask value. total_ways_util += self.count_ways_until(mask | (1 << p) , task_no + 1 ) # save the value. __lowerCAmelCase = total_ways_util return self.dp[mask][task_no] def a ( self : Any , SCREAMING_SNAKE_CASE__ : int ) -> str: # Store the list of persons for each task for i in range(len(SCREAMING_SNAKE_CASE__ ) ): for j in task_performed[i]: self.task[j].append(SCREAMING_SNAKE_CASE__ ) # call the function to fill the DP table, final answer is stored in dp[0][1] return self.count_ways_until(0 , 1 ) if __name__ == "__main__": _A : Optional[int] = 5 # total no of tasks (the value of N) # the list of tasks that can be done by M persons. _A : Union[str, Any] = [[1, 3, 4], [1, 2, 5], [3, 4]] print( AssignmentUsingBitmask(task_performed, total_tasks).count_no_of_ways( task_performed ) )
330
1
'''simple docstring''' from __future__ import annotations from random import choice def __lowercase (_SCREAMING_SNAKE_CASE :Any ): return choice(_SCREAMING_SNAKE_CASE ) def __lowercase (_SCREAMING_SNAKE_CASE :list[int] , _SCREAMING_SNAKE_CASE :int ): SCREAMING_SNAKE_CASE : str = random_pivot(_SCREAMING_SNAKE_CASE ) # partition based on pivot # linear time SCREAMING_SNAKE_CASE : List[Any] = [e for e in lst if e < pivot] SCREAMING_SNAKE_CASE : Dict = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(_SCREAMING_SNAKE_CASE ) == k - 1: return pivot # pivot is in elements bigger than k elif len(_SCREAMING_SNAKE_CASE ) < k - 1: return kth_number(_SCREAMING_SNAKE_CASE , k - len(_SCREAMING_SNAKE_CASE ) - 1 ) # pivot is in elements smaller than k else: return kth_number(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod()
507
'''simple docstring''' import io import os import unicodedata from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = """▁""" snake_case_ = {"""vocab_file""": """vocab.txt""", """sentencepiece_model_ckpt""": """sentencepiece.bpe.model"""} snake_case_ = { """sentencepiece_model_file""": """sentencepiece.bpe.model""", """vocab_file""": """vocab.txt""", } snake_case_ = { """vocab_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/vocab.txt""", }, """sentencepiece_model_file""": { """ernie-m-base""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", """ernie-m-large""": """https://huggingface.co/susnato/ernie-m-base_pytorch/blob/main/sentencepiece.bpe.model""", }, } snake_case_ = { """ernie-m-base""": 514, """ernie-m-large""": 514, } snake_case_ = { """ernie-m-base""": {"""do_lower_case""": False}, """ernie-m-large""": {"""do_lower_case""": False}, } class a__ ( _lowercase ): __magic_name__ : List[str] = ["input_ids"] __magic_name__ : Any = VOCAB_FILES_NAMES __magic_name__ : List[str] = PRETRAINED_INIT_CONFIGURATION __magic_name__ : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Union[str, Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Any = RESOURCE_FILES_NAMES def __init__(self : Optional[Any], __UpperCAmelCase : List[str], __UpperCAmelCase : List[str]=None, __UpperCAmelCase : str=False, __UpperCAmelCase : Union[str, Any]="utf8", __UpperCAmelCase : Optional[int]="[UNK]", __UpperCAmelCase : Any="[SEP]", __UpperCAmelCase : Optional[int]="[PAD]", __UpperCAmelCase : Tuple="[CLS]", __UpperCAmelCase : List[Any]="[MASK]", __UpperCAmelCase : Optional[Dict[str, Any]] = None, **__UpperCAmelCase : Tuple, ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=__UpperCAmelCase, unk_token=__UpperCAmelCase, sep_token=__UpperCAmelCase, pad_token=__UpperCAmelCase, cls_token=__UpperCAmelCase, mask_token=__UpperCAmelCase, vocab_file=__UpperCAmelCase, encoding=__UpperCAmelCase, sp_model_kwargs=self.sp_model_kwargs, **__UpperCAmelCase, ) SCREAMING_SNAKE_CASE : Union[str, Any] = do_lower_case SCREAMING_SNAKE_CASE : List[Any] = sentencepiece_model_ckpt SCREAMING_SNAKE_CASE : List[str] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(__UpperCAmelCase ) # to mimic paddlenlp.transformers.ernie_m.tokenizer.ErnieMTokenizer functioning if vocab_file is not None: SCREAMING_SNAKE_CASE : Union[str, Any] = self.load_vocab(filepath=__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE : Any = {self.sp_model.id_to_piece(__UpperCAmelCase ): id for id in range(self.sp_model.get_piece_size() )} SCREAMING_SNAKE_CASE : Optional[int] = {v: k for k, v in self.vocab.items()} def lowercase__ (self : Dict, __UpperCAmelCase : Any ) -> Dict: """simple docstring""" if text is None: return None SCREAMING_SNAKE_CASE : List[Any] = self.tokenize(__UpperCAmelCase ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = '''''', [] for i, ch in enumerate(__UpperCAmelCase ): if ch in self.SP_CHAR_MAPPING: SCREAMING_SNAKE_CASE : int = self.SP_CHAR_MAPPING.get(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE : List[Any] = unicodedata.normalize('''NFKC''', __UpperCAmelCase ) if self.is_whitespace(__UpperCAmelCase ): continue normalized_text += ch char_mapping.extend([i] * len(__UpperCAmelCase ) ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = normalized_text, [], 0 if self.do_lower_case: SCREAMING_SNAKE_CASE : List[str] = text.lower() for token in split_tokens: if token[:1] == "▁": SCREAMING_SNAKE_CASE : Optional[Any] = token[1:] SCREAMING_SNAKE_CASE : Tuple = text[offset:].index(__UpperCAmelCase ) + offset SCREAMING_SNAKE_CASE : Union[str, Any] = start + len(__UpperCAmelCase ) token_mapping.append((char_mapping[start], char_mapping[end - 1] + 1) ) SCREAMING_SNAKE_CASE : Dict = end return token_mapping @property def lowercase__ (self : int ) -> Union[str, Any]: """simple docstring""" return len(self.vocab ) def lowercase__ (self : Tuple ) -> int: """simple docstring""" return dict(self.vocab, **self.added_tokens_encoder ) def __getstate__(self : str ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = self.__dict__.copy() SCREAMING_SNAKE_CASE : Any = None return state def __setstate__(self : Union[str, Any], __UpperCAmelCase : Tuple ) -> Dict: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = d # for backward compatibility if not hasattr(self, '''sp_model_kwargs''' ): SCREAMING_SNAKE_CASE : Optional[int] = {} SCREAMING_SNAKE_CASE : Optional[Any] = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.sentencepiece_model_ckpt ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Any ) -> List[Any]: """simple docstring""" return "".join((self.SP_CHAR_MAPPING.get(__UpperCAmelCase, __UpperCAmelCase ) for c in text) ) def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Any, __UpperCAmelCase : Optional[Any]=False, __UpperCAmelCase : str=64, __UpperCAmelCase : int=0.1 ) -> int: """simple docstring""" if self.sp_model_kwargs.get('''enable_sampling''' ) is True: SCREAMING_SNAKE_CASE : int = True if self.sp_model_kwargs.get('''alpha''' ) is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.sp_model_kwargs.get('''alpha''' ) if self.sp_model_kwargs.get('''nbest_size''' ) is not None: SCREAMING_SNAKE_CASE : Tuple = self.sp_model_kwargs.get('''nbest_size''' ) if not enable_sampling: SCREAMING_SNAKE_CASE : int = self.sp_model.EncodeAsPieces(__UpperCAmelCase ) else: SCREAMING_SNAKE_CASE : Any = self.sp_model.SampleEncodeAsPieces(__UpperCAmelCase, __UpperCAmelCase, __UpperCAmelCase ) SCREAMING_SNAKE_CASE : str = [] for pi, piece in enumerate(__UpperCAmelCase ): if piece == SPIECE_UNDERLINE: if not pieces[pi + 1].startswith(__UpperCAmelCase ) and pi != 0: new_pieces.append(__UpperCAmelCase ) continue else: continue SCREAMING_SNAKE_CASE : Union[str, Any] = 0 for i, chunk in enumerate(__UpperCAmelCase ): if chunk == SPIECE_UNDERLINE: continue if self.is_ch_char(__UpperCAmelCase ) or self.is_punct(__UpperCAmelCase ): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) new_pieces.append(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Dict = i + 1 elif chunk.isdigit() and i > 0 and not piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) SCREAMING_SNAKE_CASE : List[Any] = i elif not chunk.isdigit() and i > 0 and piece[i - 1].isdigit(): if i > lst_i and piece[lst_i:i] != SPIECE_UNDERLINE: new_pieces.append(piece[lst_i:i] ) SCREAMING_SNAKE_CASE : Dict = i if len(__UpperCAmelCase ) > lst_i: new_pieces.append(piece[lst_i:] ) return new_pieces def lowercase__ (self : Optional[int], __UpperCAmelCase : Tuple ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : List[Any] = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase, ''' ''' ).strip() return out_string def lowercase__ (self : Tuple, __UpperCAmelCase : Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE : int = self.convert_ids_to_tokens(__UpperCAmelCase ) SCREAMING_SNAKE_CASE : Any = ''''''.join(__UpperCAmelCase ).replace(__UpperCAmelCase, ''' ''' ).strip() return out_string def lowercase__ (self : Optional[Any], __UpperCAmelCase : Any ) -> Union[str, Any]: """simple docstring""" return self.vocab.get(__UpperCAmelCase, self.vocab.get(self.unk_token ) ) def lowercase__ (self : Optional[Any], __UpperCAmelCase : Tuple ) -> Optional[Any]: """simple docstring""" return self.reverse_vocab.get(__UpperCAmelCase, self.unk_token ) def lowercase__ (self : List[str], __UpperCAmelCase : List[Any], __UpperCAmelCase : int=None ) -> Optional[Any]: """simple docstring""" if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] SCREAMING_SNAKE_CASE : List[Any] = [self.cls_token_id] SCREAMING_SNAKE_CASE : Tuple = [self.sep_token_id] return _cls + token_ids_a + _sep + _sep + token_ids_a + _sep def lowercase__ (self : Optional[int], __UpperCAmelCase : Any, __UpperCAmelCase : int=None ) -> Any: """simple docstring""" if offset_mapping_a is None: return [(0, 0)] + offset_mapping_a + [(0, 0)] return [(0, 0)] + offset_mapping_a + [(0, 0), (0, 0)] + offset_mapping_a + [(0, 0)] def lowercase__ (self : str, __UpperCAmelCase : Union[str, Any], __UpperCAmelCase : int=None, __UpperCAmelCase : str=False ) -> str: """simple docstring""" if already_has_special_tokens: if token_ids_a is not None: raise ValueError( '''You should not supply a second sequence if the provided sequence of ''' '''ids is already formatted with special tokens for the model.''' ) return [1 if x in [self.sep_token_id, self.cls_token_id] else 0 for x in token_ids_a] if token_ids_a is not None: return [1] + ([0] * len(__UpperCAmelCase )) + [1, 1] + ([0] * len(__UpperCAmelCase )) + [1] return [1] + ([0] * len(__UpperCAmelCase )) + [1] def lowercase__ (self : Optional[Any], __UpperCAmelCase : List[int], __UpperCAmelCase : Optional[List[int]] = None ) -> List[int]: """simple docstring""" if token_ids_a is None: # [CLS] X [SEP] return (len(__UpperCAmelCase ) + 2) * [0] # [CLS] A [SEP] [SEP] B [SEP] return [0] * (len(__UpperCAmelCase ) + 1) + [1] * (len(__UpperCAmelCase ) + 3) def lowercase__ (self : Optional[Any], __UpperCAmelCase : int ) -> Dict: """simple docstring""" if "\u4e00" <= char <= "\u9fff": return True return False def lowercase__ (self : Optional[int], __UpperCAmelCase : Dict ) -> Tuple: """simple docstring""" if ("a" <= char <= "z") or ("A" <= char <= "Z"): return True return False def lowercase__ (self : Optional[Any], __UpperCAmelCase : Union[str, Any] ) -> Any: """simple docstring""" if char in ",;:.?!~,;:。?!《》【】": return True return False def lowercase__ (self : Union[str, Any], __UpperCAmelCase : Any ) -> str: """simple docstring""" if char == " " or char == "\t" or char == "\n" or char == "\r": return True if len(__UpperCAmelCase ) == 1: SCREAMING_SNAKE_CASE : int = unicodedata.category(__UpperCAmelCase ) if cat == "Zs": return True return False def lowercase__ (self : List[Any], __UpperCAmelCase : Optional[Any] ) -> List[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = {} with io.open(__UpperCAmelCase, '''r''', encoding='''utf-8''' ) as f: for index, line in enumerate(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : List[Any] = line.rstrip('''\n''' ) SCREAMING_SNAKE_CASE : Tuple = int(__UpperCAmelCase ) return token_to_idx def lowercase__ (self : List[Any], __UpperCAmelCase : str, __UpperCAmelCase : Optional[str] = None ) -> Tuple[str]: """simple docstring""" SCREAMING_SNAKE_CASE : Optional[Any] = 0 if os.path.isdir(__UpperCAmelCase ): SCREAMING_SNAKE_CASE : str = os.path.join( __UpperCAmelCase, (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) else: SCREAMING_SNAKE_CASE : int = (filename_prefix + '''-''' if filename_prefix else '''''') + save_directory with open(__UpperCAmelCase, '''w''', encoding='''utf-8''' ) as writer: for token, token_index in sorted(self.vocab.items(), key=lambda __UpperCAmelCase : kv[1] ): if index != token_index: logger.warning( F'''Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.''' ''' Please check that the vocabulary is not corrupted!''' ) SCREAMING_SNAKE_CASE : Dict = token_index writer.write(token + '''\n''' ) index += 1 SCREAMING_SNAKE_CASE : Optional[Any] = os.path.join(__UpperCAmelCase, '''sentencepiece.bpe.model''' ) with open(__UpperCAmelCase, '''wb''' ) as fi: SCREAMING_SNAKE_CASE : List[str] = self.sp_model.serialized_model_proto() fi.write(__UpperCAmelCase ) return (vocab_file,)
507
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A =logging.get_logger(__name__) A ={ 'edbeeching/decision-transformer-gym-hopper-medium': ( 'https://huggingface.co/edbeeching/decision-transformer-gym-hopper-medium/resolve/main/config.json' ), # See all DecisionTransformer models at https://huggingface.co/models?filter=decision_transformer } class _a ( __a ): __a : List[Any] = """decision_transformer""" __a : Union[str, Any] = ["""past_key_values"""] __a : List[Any] = { """max_position_embeddings""": """n_positions""", """num_attention_heads""": """n_head""", """num_hidden_layers""": """n_layer""", } def __init__( self : str , lowercase : Any=17 , lowercase : Optional[int]=4 , lowercase : Dict=128 , lowercase : Union[str, Any]=4_096 , lowercase : List[Any]=True , lowercase : int=1 , lowercase : Optional[int]=1_024 , lowercase : Tuple=3 , lowercase : Optional[int]=1 , lowercase : Any=None , lowercase : Dict="relu" , lowercase : Tuple=0.1 , lowercase : Optional[Any]=0.1 , lowercase : List[Any]=0.1 , lowercase : List[Any]=1E-5 , lowercase : Optional[Any]=0.02 , lowercase : List[Any]=True , lowercase : List[str]=True , lowercase : str=50_256 , lowercase : int=50_256 , lowercase : int=False , lowercase : Tuple=False , **lowercase : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase = state_dim UpperCAmelCase = act_dim UpperCAmelCase = hidden_size UpperCAmelCase = max_ep_len UpperCAmelCase = action_tanh UpperCAmelCase = vocab_size UpperCAmelCase = n_positions UpperCAmelCase = n_layer UpperCAmelCase = n_head UpperCAmelCase = n_inner UpperCAmelCase = activation_function UpperCAmelCase = resid_pdrop UpperCAmelCase = embd_pdrop UpperCAmelCase = attn_pdrop UpperCAmelCase = layer_norm_epsilon UpperCAmelCase = initializer_range UpperCAmelCase = scale_attn_weights UpperCAmelCase = use_cache UpperCAmelCase = scale_attn_by_inverse_layer_idx UpperCAmelCase = reorder_and_upcast_attn UpperCAmelCase = bos_token_id UpperCAmelCase = eos_token_id super().__init__(bos_token_id=lowercase , eos_token_id=lowercase , **lowercase )
358
'''simple docstring''' import argparse import logging import os import sys import numpy as np import onnxruntime import torch from bart_onnx.generation_onnx import BARTBeamSearchGenerator from bart_onnx.reduce_onnx_size import remove_dup_initializers import transformers from transformers import BartForConditionalGeneration, BartTokenizer logging.basicConfig( format='%(asctime)s | %(levelname)s | %(name)s | [%(filename)s:%(lineno)d] %(message)s', datefmt='%Y-%m-%d %H:%M:%S', level=os.environ.get('LOGLEVEL', 'INFO').upper(), stream=sys.stdout, ) A =logging.getLogger(__name__) A ={'facebook/bart-base': BartForConditionalGeneration} A ={'facebook/bart-base': BartTokenizer} def snake_case_ (): UpperCAmelCase = argparse.ArgumentParser(description='''Export Bart model + Beam Search to ONNX graph.''' ) parser.add_argument( '''--validation_file''' , type=_a , default=_a , help='''A csv or a json file containing the validation data.''' ) parser.add_argument( '''--max_length''' , type=_a , default=5 , help='''The maximum total input sequence length after tokenization.''' , ) parser.add_argument( '''--num_beams''' , type=_a , default=_a , help=( '''Number of beams to use for evaluation. This argument will be ''' '''passed to ``model.generate``, which is used during ``evaluate`` and ``predict``.''' ) , ) parser.add_argument( '''--model_name_or_path''' , type=_a , help='''Path to pretrained model or model identifier from huggingface.co/models.''' , required=_a , ) parser.add_argument( '''--config_name''' , type=_a , default=_a , help='''Pretrained config name or path if not the same as model_name''' , ) parser.add_argument( '''--device''' , type=_a , default='''cpu''' , help='''Device where the model will be run''' , ) parser.add_argument('''--output_file_path''' , type=_a , default=_a , help='''Where to store the final ONNX file.''' ) UpperCAmelCase = parser.parse_args() return args def snake_case_ (_a : Tuple , _a : str="cpu" ): UpperCAmelCase = model_dict[model_name].from_pretrained(_a ).to(_a ) UpperCAmelCase = tokenizer_dict[model_name].from_pretrained(_a ) if model_name in ["facebook/bart-base"]: UpperCAmelCase = 0 UpperCAmelCase = None UpperCAmelCase = 0 return huggingface_model, tokenizer def snake_case_ (_a : Optional[int] , _a : List[str] , _a : str , _a : Optional[Any] , _a : str ): model.eval() UpperCAmelCase = None UpperCAmelCase = torch.jit.script(BARTBeamSearchGenerator(_a ) ) with torch.no_grad(): UpperCAmelCase = '''My friends are cool but they eat too many carbs.''' UpperCAmelCase = tokenizer([ARTICLE_TO_SUMMARIZE] , max_length=1_0_2_4 , return_tensors='''pt''' ).to(model.device ) UpperCAmelCase = model.generate( inputs['''input_ids'''] , attention_mask=inputs['''attention_mask'''] , num_beams=_a , max_length=_a , early_stopping=_a , decoder_start_token_id=model.config.decoder_start_token_id , ) torch.onnx.export( _a , ( inputs['''input_ids'''], inputs['''attention_mask'''], num_beams, max_length, model.config.decoder_start_token_id, ) , _a , opset_version=1_4 , input_names=['''input_ids''', '''attention_mask''', '''num_beams''', '''max_length''', '''decoder_start_token_id'''] , output_names=['''output_ids'''] , dynamic_axes={ '''input_ids''': {0: '''batch''', 1: '''seq'''}, '''output_ids''': {0: '''batch''', 1: '''seq_out'''}, } , example_outputs=_a , ) logger.info('''Model exported to {}'''.format(_a ) ) UpperCAmelCase = remove_dup_initializers(os.path.abspath(_a ) ) logger.info('''Deduplicated and optimized model written to {}'''.format(_a ) ) UpperCAmelCase = onnxruntime.InferenceSession(_a ) UpperCAmelCase = ort_sess.run( _a , { '''input_ids''': inputs['''input_ids'''].cpu().numpy(), '''attention_mask''': inputs['''attention_mask'''].cpu().numpy(), '''num_beams''': np.array(_a ), '''max_length''': np.array(_a ), '''decoder_start_token_id''': np.array(model.config.decoder_start_token_id ), } , ) np.testing.assert_allclose(summary_ids.cpu().numpy() , ort_out[0] , rtol=1E-3 , atol=1E-3 ) logger.info('''Model outputs from torch and ONNX Runtime are similar.''' ) logger.info('''Success.''' ) def snake_case_ (): UpperCAmelCase = parse_args() UpperCAmelCase = 5 UpperCAmelCase = 4 # Make one log on every process with the configuration for debugging. logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO , ) logger.setLevel(logging.INFO ) transformers.utils.logging.set_verbosity_error() UpperCAmelCase = torch.device(args.device ) UpperCAmelCase , UpperCAmelCase = load_model_tokenizer(args.model_name_or_path , _a ) if model.config.decoder_start_token_id is None: raise ValueError('''Make sure that `config.decoder_start_token_id` is correctly defined''' ) model.to(_a ) if args.max_length: UpperCAmelCase = args.max_length if args.num_beams: UpperCAmelCase = args.num_beams if args.output_file_path: UpperCAmelCase = args.output_file_path else: UpperCAmelCase = '''BART.onnx''' logger.info('''Exporting model to ONNX''' ) export_and_validate_model(_a , _a , _a , _a , _a ) if __name__ == "__main__": main()
358
1
'''simple docstring''' import math class UpperCAmelCase : '''simple docstring''' def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> int: '''simple docstring''' lowerCamelCase_ = 0.0 lowerCamelCase_ = 0.0 for i in range(len(SCREAMING_SNAKE_CASE_ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def UpperCamelCase( self , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> list[list[int | float]]: '''simple docstring''' for i in range(len(SCREAMING_SNAKE_CASE_ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _UpperCamelCase ( ) -> None: # Training Examples ( m, n ) lowerCamelCase_ = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) lowerCamelCase_ = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training lowerCamelCase_ = SelfOrganizingMap() lowerCamelCase_ = 3 lowerCamelCase_ = 0.5 for _ in range(__UpperCamelCase ): for j in range(len(__UpperCamelCase ) ): # training sample lowerCamelCase_ = training_samples[j] # Compute the winning vector lowerCamelCase_ = self_organizing_map.get_winner(__UpperCamelCase ,__UpperCamelCase ) # Update the winning vector lowerCamelCase_ = self_organizing_map.update(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) # classify test sample lowerCamelCase_ = [0, 0, 0, 1] lowerCamelCase_ = self_organizing_map.get_winner(__UpperCamelCase ,__UpperCamelCase ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
42
'''simple docstring''' from __future__ import annotations def lowerCAmelCase__ ( lowerCamelCase : str ,lowerCamelCase : list[str] | None = None ): _A : str = word_bank or [] # create a table _A : int = len(lowerCamelCase ) + 1 _A : list[list[list[str]]] = [] for _ in range(lowerCamelCase ): table.append([] ) # seed value _A : Tuple = [[]] # because empty string has empty combination # iterate through the indices for i in range(lowerCamelCase ): # condition if table[i] != []: for word in word_bank: # slice condition if target[i : i + len(lowerCamelCase )] == word: _A : list[list[str]] = [ [word, *way] for way in table[i] ] # adds the word to every combination the current position holds # now,push that combination to the table[i+len(word)] table[i + len(lowerCamelCase )] += new_combinations # combinations are in reverse order so reverse for better output for combination in table[len(lowerCamelCase )]: combination.reverse() return table[len(lowerCamelCase )] if __name__ == "__main__": print(all_construct('''jwajalapa''', ['''jwa''', '''j''', '''w''', '''a''', '''la''', '''lapa'''])) print(all_construct('''rajamati''', ['''s''', '''raj''', '''amat''', '''raja''', '''ma''', '''i''', '''t'''])) print( all_construct( '''hexagonosaurus''', ['''h''', '''ex''', '''hex''', '''ag''', '''ago''', '''ru''', '''auru''', '''rus''', '''go''', '''no''', '''o''', '''s'''], ) )
128
0
import enum import os from hashlib import shaaaa from typing import Optional from .. import config from .logging import get_logger lowerCAmelCase_ = get_logger(__name__) class _lowerCAmelCase ( enum.Enum ): A__ = 'all_checks' A__ = 'basic_checks' A__ = 'no_checks' class _lowerCAmelCase ( _lowercase ): pass class _lowerCAmelCase ( _lowercase ): pass class _lowerCAmelCase ( _lowercase ): pass class _lowerCAmelCase ( _lowercase ): pass def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase , UpperCamelCase=None ) -> int: if expected_checksums is None: logger.info('''Unable to verify checksums.''' ) return if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise ExpectedMoreDownloadedFiles(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise UnexpectedDownloadedFile(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) lowerCAmelCase__ : Any = [url for url in expected_checksums if expected_checksums[url] != recorded_checksums[url]] lowerCAmelCase__ : Tuple = ''' for ''' + verification_name if verification_name is not None else '''''' if len(__UpperCamelCase ) > 0: raise NonMatchingChecksumError( F"""Checksums didn't match{for_verification_name}:\n""" F"""{bad_urls}\n""" '''Set `verification_mode=\'no_checks\'` to skip checksums verification and ignore this error''' ) logger.info('''All the checksums matched successfully''' + for_verification_name ) class _lowerCAmelCase ( _lowercase ): pass class _lowerCAmelCase ( _lowercase ): pass class _lowerCAmelCase ( _lowercase ): pass class _lowerCAmelCase ( _lowercase ): pass def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase ) -> List[str]: if expected_splits is None: logger.info('''Unable to verify splits sizes.''' ) return if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise ExpectedMoreSplits(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) if len(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) > 0: raise UnexpectedSplits(str(set(__UpperCamelCase ) - set(__UpperCamelCase ) ) ) lowerCAmelCase__ : List[Any] = [ {'''expected''': expected_splits[name], '''recorded''': recorded_splits[name]} for name in expected_splits if expected_splits[name].num_examples != recorded_splits[name].num_examples ] if len(__UpperCamelCase ) > 0: raise NonMatchingSplitsSizesError(str(__UpperCamelCase ) ) logger.info('''All the splits matched successfully.''' ) def __lowerCAmelCase ( UpperCamelCase , UpperCamelCase = True ) -> dict: if record_checksum: lowerCAmelCase__ : Optional[Any] = shaaaa() with open(__UpperCamelCase , '''rb''' ) as f: for chunk in iter(lambda: f.read(1 << 20 ) , b'''''' ): m.update(__UpperCamelCase ) lowerCAmelCase__ : Dict = m.hexdigest() else: lowerCAmelCase__ : Optional[Any] = None return {"num_bytes": os.path.getsize(__UpperCamelCase ), "checksum": checksum} def __lowerCAmelCase ( UpperCamelCase ) -> List[str]: if dataset_size and config.IN_MEMORY_MAX_SIZE: return dataset_size < config.IN_MEMORY_MAX_SIZE else: return False
713
from collections import Counter from timeit import timeit def __lowerCAmelCase ( UpperCamelCase = "" , ) -> bool: return sum(c % 2 for c in Counter(input_str.replace(''' ''' , '''''' ).lower() ).values() ) < 2 def __lowerCAmelCase ( UpperCamelCase = "" ) -> bool: if len(UpperCamelCase ) == 0: return True lowerCAmelCase__ : str = input_str.replace(''' ''' , '''''' ).lower() # character_freq_dict: Stores the frequency of every character in the input string lowerCAmelCase__ : dict[str, int] = {} for character in lower_case_input_str: lowerCAmelCase__ : int = character_freq_dict.get(UpperCamelCase , 0 ) + 1 lowerCAmelCase__ : Any = 0 for character_count in character_freq_dict.values(): if character_count % 2: odd_char += 1 if odd_char > 1: return False return True def __lowerCAmelCase ( UpperCamelCase = "" ) -> None: print('''\nFor string = ''' , UpperCamelCase , ''':''' ) print( '''> can_string_be_rearranged_as_palindrome_counter()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome_counter(UpperCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome_counter(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) print( '''> can_string_be_rearranged_as_palindrome()''' , '''\tans =''' , can_string_be_rearranged_as_palindrome(UpperCamelCase ) , '''\ttime =''' , timeit( '''z.can_string_be_rearranged_as_palindrome(z.check_str)''' , setup='''import __main__ as z''' , ) , '''seconds''' , ) if __name__ == "__main__": lowerCAmelCase_ = input( """Enter string to determine if it can be rearranged as a palindrome or not: """ ).strip() benchmark(check_str) lowerCAmelCase_ = can_string_be_rearranged_as_palindrome_counter(check_str) print(F"""{check_str} can {"" if status else "not "}be rearranged as a palindrome""")
470
0
"""simple docstring""" import comet # From: unbabel-comet import torch import datasets A = datasets.logging.get_logger(__name__) A = """\ @inproceedings{rei-EtAl:2020:WMT, author = {Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon}, title = {Unbabel's Participation in the WMT20 Metrics Shared Task}, booktitle = {Proceedings of the Fifth Conference on Machine Translation}, month = {November}, year = {2020}, address = {Online}, publisher = {Association for Computational Linguistics}, pages = {909--918}, } @inproceedings{rei-etal-2020-comet, title = \"{COMET}: A Neural Framework for {MT} Evaluation\", author = \"Rei, Ricardo and Stewart, Craig and Farinha, Ana C and Lavie, Alon\", booktitle = \"Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)\", month = nov, year = \"2020\", address = \"Online\", publisher = \"Association for Computational Linguistics\", url = \"https://www.aclweb.org/anthology/2020.emnlp-main.213\", pages = \"2685--2702\", } """ A = """\ Crosslingual Optimized Metric for Evaluation of Translation (COMET) is an open-source framework used to train Machine Translation metrics that achieve high levels of correlation with different types of human judgments (HTER, DA's or MQM). With the release of the framework the authors also released fully trained models that were used to compete in the WMT20 Metrics Shared Task achieving SOTA in that years competition. See the [README.md] file at https://unbabel.github.io/COMET/html/models.html for more information. """ A = """ COMET score. Args: `sources` (list of str): Source sentences `predictions` (list of str): candidate translations `references` (list of str): reference translations `cuda` (bool): If set to True, runs COMET using GPU `show_progress` (bool): Shows progress `model`: COMET model to be used. Will default to `wmt-large-da-estimator-1719` if None. Returns: `samples`: List of dictionaries with `src`, `mt`, `ref` and `score`. `scores`: List of scores. Examples: >>> comet_metric = datasets.load_metric('comet') >>> # comet_metric = load_metric('comet', 'wmt20-comet-da') # you can also choose which model to use >>> source = [\"Dem Feuer konnte Einhalt geboten werden\", \"Schulen und Kindergärten wurden eröffnet.\"] >>> hypothesis = [\"The fire could be stopped\", \"Schools and kindergartens were open\"] >>> reference = [\"They were able to control the fire.\", \"Schools and kindergartens opened\"] >>> results = comet_metric.compute(predictions=hypothesis, references=reference, sources=source) >>> print([round(v, 2) for v in results[\"scores\"]]) [0.19, 0.92] """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def a_ ( self : Optional[int]): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage="https://unbabel.github.io/COMET/html/index.html" , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "sources": datasets.Value("string" , id="sequence"), "predictions": datasets.Value("string" , id="sequence"), "references": datasets.Value("string" , id="sequence"), }) , codebase_urls=["https://github.com/Unbabel/COMET"] , reference_urls=[ "https://github.com/Unbabel/COMET", "https://www.aclweb.org/anthology/2020.emnlp-main.213/", "http://www.statmt.org/wmt20/pdf/2020.wmt-1.101.pdf6", ] , ) def a_ ( self : str , UpperCamelCase_ : List[Any]): """simple docstring""" if self.config_name == "default": __UpperCAmelCase : str = comet.load_from_checkpoint(comet.download_model("wmt20-comet-da")) else: __UpperCAmelCase : Dict = comet.load_from_checkpoint(comet.download_model(self.config_name)) def a_ ( self : List[Any] , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : int , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Tuple=False): """simple docstring""" if gpus is None: __UpperCAmelCase : Optional[Any] = 1 if torch.cuda.is_available() else 0 __UpperCAmelCase : List[str] = {"src": sources, "mt": predictions, "ref": references} __UpperCAmelCase : str = [dict(zip(UpperCamelCase_ , UpperCamelCase_)) for t in zip(*data.values())] __UpperCAmelCase , __UpperCAmelCase : Optional[int] = self.scorer.predict(UpperCamelCase_ , gpus=UpperCamelCase_ , progress_bar=UpperCamelCase_) return {"mean_score": mean_score, "scores": scores}
77
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() snake_case_ : List[str] = logging.get_logger(__name__) snake_case_ : Dict = "https://openaipublic.azureedge.net/jukebox/models/" snake_case_ : Optional[int] = { "jukebox-1b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "1b_lyrics/prior_level_2.pth.tar", ], "jukebox-5b-lyrics": [ "5b/vqvae.pth.tar", "5b/prior_level_0.pth.tar", "5b/prior_level_1.pth.tar", "5b_lyrics/prior_level_2.pth.tar", ], } def __a ( __UpperCAmelCase : Any ) -> Dict: """simple docstring""" if key.endswith(".model.1.bias" ) and len(key.split("." ) ) > 10: lowerCamelCase_ : int = key.replace(".model.1.bias" , ".conv1d_1.bias" ) elif key.endswith(".model.1.weight" ) and len(key.split("." ) ) > 10: lowerCamelCase_ : Any = key.replace(".model.1.weight" , ".conv1d_1.weight" ) elif key.endswith(".model.3.bias" ) and len(key.split("." ) ) > 10: lowerCamelCase_ : List[Any] = key.replace(".model.3.bias" , ".conv1d_2.bias" ) elif key.endswith(".model.3.weight" ) and len(key.split("." ) ) > 10: lowerCamelCase_ : Dict = key.replace(".model.3.weight" , ".conv1d_2.weight" ) if "conditioner_blocks.0." in key: lowerCamelCase_ : Union[str, Any] = key.replace("conditioner_blocks.0" , "conditioner_blocks" ) if "prime_prior" in key: lowerCamelCase_ : Optional[Any] = key.replace("prime_prior" , "encoder" ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: lowerCamelCase_ : str = key.replace(".emb." , "." ) if key.endswith("k" ): # replace vqvae.X.k with vqvae.X.codebook return key.replace(".k" , ".codebook" ) if "y_emb." in key: return key.replace("y_emb." , "metadata_embedding." ) if "x_emb.emb." in key: lowerCamelCase_ : Tuple = key.replace("0.x_emb.emb" , "embed_tokens" ) if "prime_state_ln" in key: return key.replace("prime_state_ln" , "encoder.final_layer_norm" ) if ".ln" in key: return key.replace(".ln" , ".layer_norm" ) if "_ln" in key: return key.replace("_ln" , "_layer_norm" ) if "prime_state_proj" in key: return key.replace("prime_state_proj" , "encoder.proj_in" ) if "prime_x_out" in key: return key.replace("prime_x_out" , "encoder.lm_head" ) if "prior.x_out" in key: return key.replace("x_out" , "fc_proj_out" ) if "x_emb" in key: return key.replace("x_emb" , "embed_tokens" ) return key def __a ( __UpperCAmelCase : List[Any] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Optional[int] , __UpperCAmelCase : Any ) -> Optional[Any]: """simple docstring""" lowerCamelCase_ : str = {} import re lowerCamelCase_ : Optional[int] = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowerCamelCase_ : Dict = re.compile( R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : str = re.compile(R"encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : List[str] = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)" ) lowerCamelCase_ : str = re.compile( R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : Union[str, Any] = re.compile(R"decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : Optional[int] = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)" ) lowerCamelCase_ : str = re.compile( R"conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)" ) lowerCamelCase_ : Optional[Any] = re.compile(R"conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)" ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Any = re_encoder_block_conv_in.match(__UpperCAmelCase ) lowerCamelCase_ : Any = regex_match.groups() lowerCamelCase_ : str = int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ : str = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}" lowerCamelCase_ : Dict = re_encoder_block_conv_in.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_encoder_block_resnet.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Optional[Any] = re_encoder_block_resnet.match(__UpperCAmelCase ) lowerCamelCase_ : str = regex_match.groups() lowerCamelCase_ : List[str] = int(groups[2] ) * 2 + int(groups[3] ) lowerCamelCase_ : Any = {"1": 1, "3": 2}[groups[-2]] lowerCamelCase_ : Optional[int] = f"encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}." lowerCamelCase_ : Union[str, Any] = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" lowerCamelCase_ : Dict = prefix + resnet_block lowerCamelCase_ : Optional[int] = re_encoder_block_resnet.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_encoder_block_proj_out.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Any = re_encoder_block_proj_out.match(__UpperCAmelCase ) lowerCamelCase_ : str = regex_match.groups() lowerCamelCase_ : Any = f"encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}" lowerCamelCase_ : List[Any] = re_encoder_block_proj_out.sub(__UpperCAmelCase , __UpperCAmelCase ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Union[str, Any] = re_decoder_block_conv_out.match(__UpperCAmelCase ) lowerCamelCase_ : Optional[Any] = regex_match.groups() lowerCamelCase_ : Tuple = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ : List[str] = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}" lowerCamelCase_ : Union[str, Any] = re_decoder_block_conv_out.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_decoder_block_resnet.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : int = re_decoder_block_resnet.match(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = regex_match.groups() lowerCamelCase_ : Any = int(groups[2] ) * 2 + int(groups[3] ) - 2 lowerCamelCase_ : List[Any] = {"1": 1, "3": 2}[groups[-2]] lowerCamelCase_ : Optional[Any] = f"decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}." lowerCamelCase_ : List[str] = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" lowerCamelCase_ : Optional[Any] = prefix + resnet_block lowerCamelCase_ : str = re_decoder_block_resnet.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_decoder_block_proj_in.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : str = re_decoder_block_proj_in.match(__UpperCAmelCase ) lowerCamelCase_ : Tuple = regex_match.groups() lowerCamelCase_ : Dict = f"decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}" lowerCamelCase_ : List[Any] = re_decoder_block_proj_in.sub(__UpperCAmelCase , __UpperCAmelCase ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Union[str, Any] = re_prior_cond_conv_out.match(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = regex_match.groups() lowerCamelCase_ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ : str = f"conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}" lowerCamelCase_ : int = re_prior_cond_conv_out.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_prior_cond_resnet.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : List[Any] = re_prior_cond_resnet.match(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = regex_match.groups() lowerCamelCase_ : Optional[int] = int(groups[1] ) * 2 + int(groups[2] ) - 2 lowerCamelCase_ : Tuple = {"1": 1, "3": 2}[groups[-2]] lowerCamelCase_ : Any = f"conditioner_blocks.upsampler.upsample_block.{block_index}." lowerCamelCase_ : Any = f"resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}" lowerCamelCase_ : Optional[int] = prefix + resnet_block lowerCamelCase_ : Optional[Any] = re_prior_cond_resnet.sub(__UpperCAmelCase , __UpperCAmelCase ) elif re_prior_cond_proj_in.fullmatch(__UpperCAmelCase ): lowerCamelCase_ : Any = re_prior_cond_proj_in.match(__UpperCAmelCase ) lowerCamelCase_ : Any = regex_match.groups() lowerCamelCase_ : str = f"conditioner_blocks.upsampler.proj_in.{groups[-1]}" lowerCamelCase_ : Any = re_prior_cond_proj_in.sub(__UpperCAmelCase , __UpperCAmelCase ) # keep original key else: lowerCamelCase_ : Tuple = original_key lowerCamelCase_ : int = replace_key(__UpperCAmelCase ) if f"{key_prefix}.{key}" not in model_state_dict or key is None: print(f"failed converting {original_key} to {key}, does not match" ) # handle missmatched shape elif value.shape != model_state_dict[f"{key_prefix}.{key}"].shape: lowerCamelCase_ : str = model_state_dict[f"{key_prefix}.{key}"] print(f"{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match" ) lowerCamelCase_ : List[Any] = original_key lowerCamelCase_ : Tuple = original_key lowerCamelCase_ : Optional[Any] = value return new_dict @torch.no_grad() def __a ( __UpperCAmelCase : str=None , __UpperCAmelCase : Optional[int]=None ) -> Union[str, Any]: """simple docstring""" for file in MODEL_MAPPING[model_name]: if not os.path.isfile(f"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" ): lowerCamelCase_ : Dict = requests.get(f"{PREFIX}{file}" , allow_redirects=__UpperCAmelCase ) os.makedirs(f"{pytorch_dump_folder_path}/" , exist_ok=__UpperCAmelCase ) open(f"{pytorch_dump_folder_path}/{file.split('/' )[-1]}" , "wb" ).write(r.content ) lowerCamelCase_ : Any = MODEL_MAPPING[model_name.split("/" )[-1]] lowerCamelCase_ : Tuple = JukeboxConfig.from_pretrained(__UpperCAmelCase ) lowerCamelCase_ : Union[str, Any] = JukeboxModel(__UpperCAmelCase ) lowerCamelCase_ : str = [] lowerCamelCase_ : Union[str, Any] = {} for i, dict_name in enumerate(__UpperCAmelCase ): lowerCamelCase_ : str = torch.load(f"{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}" )["model"] lowerCamelCase_ : Dict = {} for k in old_dic.keys(): if k.endswith(".b" ): lowerCamelCase_ : Optional[int] = old_dic[k] elif k.endswith(".w" ): lowerCamelCase_ : str = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: lowerCamelCase_ : Optional[int] = old_dic[k] else: lowerCamelCase_ : int = old_dic[k] lowerCamelCase_ : Optional[Any] = "vqvae" if i == 0 else f"priors.{3 - i}" lowerCamelCase_ : Dict = fix_jukebox_keys(__UpperCAmelCase , model.state_dict() , __UpperCAmelCase , __UpperCAmelCase ) weight_dict.append(__UpperCAmelCase ) lowerCamelCase_ : Tuple = weight_dict.pop(0 ) model.vqvae.load_state_dict(__UpperCAmelCase ) for i in range(len(__UpperCAmelCase ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(__UpperCAmelCase ).mkdir(exist_ok=__UpperCAmelCase ) with open(f"{pytorch_dump_folder_path}/mapping.json" , "w" ) as txtfile: json.dump(__UpperCAmelCase , __UpperCAmelCase ) print(f"Saving model {model_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(__UpperCAmelCase ) return weight_dict if __name__ == "__main__": snake_case_ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="jukebox-5b-lyrics", type=str, help="Name of the model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="jukebox-5b-lyrics-converted", type=str, help="Path to the output PyTorch model directory.", ) snake_case_ : Dict = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
488
0
import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Dict = "Speech2TextFeatureExtractor" _UpperCamelCase : List[Any] = "Speech2TextTokenizer" def __init__( self : Optional[int] , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple ): '''simple docstring''' super().__init__(lowerCamelCase_ , lowerCamelCase_ ) _snake_case : Dict = self.feature_extractor _snake_case : Union[str, Any] = False def __call__( self : List[str] , *lowerCamelCase_ : Any , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' if self._in_target_context_manager: return self.current_processor(*lowerCamelCase_ , **lowerCamelCase_ ) if "raw_speech" in kwargs: warnings.warn('Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.' ) _snake_case : List[str] = kwargs.pop('raw_speech' ) else: _snake_case : Union[str, Any] = kwargs.pop('audio' , lowerCamelCase_ ) _snake_case : Tuple = kwargs.pop('sampling_rate' , lowerCamelCase_ ) _snake_case : Optional[Any] = kwargs.pop('text' , lowerCamelCase_ ) if len(lowerCamelCase_ ) > 0: _snake_case : Tuple = args[0] _snake_case : str = args[1:] if audio is None and text is None: raise ValueError('You need to specify either an `audio` or `text` input to process.' ) if audio is not None: _snake_case : Dict = self.feature_extractor(lowerCamelCase_ , *lowerCamelCase_ , sampling_rate=lowerCamelCase_ , **lowerCamelCase_ ) if text is not None: _snake_case : Dict = self.tokenizer(lowerCamelCase_ , **lowerCamelCase_ ) if text is None: return inputs elif audio is None: return encodings else: _snake_case : Optional[int] = encodings['input_ids'] return inputs def __UpperCAmelCase ( self : Union[str, Any] , *lowerCamelCase_ : str , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' return self.tokenizer.batch_decode(*lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : List[str] , *lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Tuple ): '''simple docstring''' return self.tokenizer.decode(*lowerCamelCase_ , **lowerCamelCase_ ) @contextmanager def __UpperCAmelCase ( self : Optional[int] ): '''simple docstring''' warnings.warn( '`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your ' 'labels by using the argument `text` of the regular `__call__` method (either in the same call as ' 'your audio inputs, or in a separate call.' ) _snake_case : Dict = True _snake_case : Union[str, Any] = self.tokenizer yield _snake_case : Union[str, Any] = self.feature_extractor _snake_case : Any = False
652
import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) lowercase_ : Optional[Any] = pytest.mark.integration @pytest.mark.parametrize('path' , ['paws', 'csv'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_dataset(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : str = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path' , ['accuracy'] ) def A__( __lowerCAmelCase , __lowerCAmelCase ): inspect_metric(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Tuple = path + '.py' assert script_name in os.listdir(__lowerCAmelCase ) assert "__pycache__" not in os.listdir(__lowerCAmelCase ) @pytest.mark.parametrize( 'path, config_name, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Union[str, Any] = get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_config_info(__lowerCAmelCase , config_name=__lowerCAmelCase ) @pytest.mark.parametrize( 'path, expected' , [ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Optional[Any] = get_dataset_config_names(__lowerCAmelCase ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config' , [ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : List[Any] = get_dataset_infos(__lowerCAmelCase ) assert list(infos.keys() ) == expected_configs _snake_case : Any = expected_configs[0] assert expected_config in infos _snake_case : str = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits' , [ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): _snake_case : Any = get_dataset_infos(__lowerCAmelCase ) assert expected_config in infos _snake_case : Any = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception' , [ ('paws', None, ValueError), ] , ) def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): with pytest.raises(__lowerCAmelCase ): get_dataset_split_names(__lowerCAmelCase , config_name=__lowerCAmelCase )
652
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging a : Optional[int] = logging.get_logger(__name__) a : Dict = { '''google/pix2struct-textcaps-base''': ( '''https://huggingface.co/google/pix2struct-textcaps-base/resolve/main/config.json''' ), } class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = "pix2struct_text_model" __UpperCAmelCase = ["past_key_values"] __UpperCAmelCase = { "hidden_size": "hidden_size", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers", } def __init__( self , snake_case_=5_0_2_4_4 , snake_case_=7_6_8 , snake_case_=6_4 , snake_case_=2_0_4_8 , snake_case_=1_2 , snake_case_=1_2 , snake_case_=3_2 , snake_case_=1_2_8 , snake_case_=0.1 , snake_case_=1e-6 , snake_case_=1.0 , snake_case_="gelu_new" , snake_case_=0 , snake_case_=False , snake_case_=0 , snake_case_=1 , snake_case_=False , snake_case_=True , **snake_case_ , ) -> Optional[int]: '''simple docstring''' __lowercase = vocab_size __lowercase = hidden_size __lowercase = d_kv __lowercase = d_ff __lowercase = num_layers __lowercase = num_heads __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = dropout_rate __lowercase = layer_norm_epsilon __lowercase = initializer_factor __lowercase = use_cache __lowercase = eos_token_id __lowercase = decoder_start_token_id # for backwards compatibility __lowercase = dense_act_fn super().__init__( pad_token_id=snake_case_ , eos_token_id=snake_case_ , decoder_start_token_id=snake_case_ , tie_word_embeddings=snake_case_ , is_decoder=snake_case_ , **snake_case_ , ) @classmethod def A ( cls , snake_case_ , **snake_case_ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case_ ) __lowercase , __lowercase = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the text config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __lowercase = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = "pix2struct_vision_model" def __init__( self , snake_case_=7_6_8 , snake_case_=7_6_8 , snake_case_=2_0_4_8 , snake_case_=6_4 , snake_case_=1_2 , snake_case_=1_2 , snake_case_="gelu_new" , snake_case_=1e-6 , snake_case_=0.0 , snake_case_=0.0 , snake_case_=1e-1_0 , snake_case_=1.0 , snake_case_=4_0_9_6 , snake_case_=3_2 , snake_case_=1_2_8 , **snake_case_ , ) -> Union[str, Any]: '''simple docstring''' super().__init__(**snake_case_ ) __lowercase = hidden_size __lowercase = patch_embed_hidden_size __lowercase = d_ff __lowercase = dropout_rate __lowercase = num_hidden_layers __lowercase = num_attention_heads __lowercase = initializer_range __lowercase = initializer_factor __lowercase = attention_dropout __lowercase = layer_norm_eps __lowercase = dense_act_fn __lowercase = seq_len __lowercase = relative_attention_num_buckets __lowercase = relative_attention_max_distance __lowercase = d_kv @classmethod def A ( cls , snake_case_ , **snake_case_ ) -> "PretrainedConfig": '''simple docstring''' cls._set_token_in_kwargs(snake_case_ ) __lowercase , __lowercase = cls.get_config_dict(snake_case_ , **snake_case_ ) # get the vision config dict if we are loading from Pix2StructConfig if config_dict.get('''model_type''' ) == "pix2struct": __lowercase = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'You are using a model of type {config_dict["model_type"]} to instantiate a model of type ' F'{cls.model_type}. This is not supported for all configurations of models and can yield errors.' ) return cls.from_dict(snake_case_ , **snake_case_ ) class lowerCamelCase_ ( lowerCAmelCase__ ): '''simple docstring''' __UpperCAmelCase = "pix2struct" __UpperCAmelCase = True def __init__( self , snake_case_=None , snake_case_=None , snake_case_=1.0 , snake_case_=0.0_2 , snake_case_=False , snake_case_=False , snake_case_=True , **snake_case_ , ) -> Optional[int]: '''simple docstring''' super().__init__(tie_word_embeddings=snake_case_ , is_encoder_decoder=snake_case_ , **snake_case_ ) if text_config is None: __lowercase = {} logger.info('''text_config is None. Initializing the Pix2StructTextConfig with default values.''' ) if vision_config is None: __lowercase = {} logger.info('''vision_config is None. Initializing the Pix2StructVisionConfig with default values.''' ) __lowercase = PixaStructTextConfig(**snake_case_ ) __lowercase = PixaStructVisionConfig(**snake_case_ ) __lowercase = self.text_config.decoder_start_token_id __lowercase = self.text_config.pad_token_id __lowercase = self.text_config.eos_token_id __lowercase = initializer_factor __lowercase = initializer_range __lowercase = self.initializer_range __lowercase = self.initializer_range __lowercase = is_vqa @classmethod def A ( cls , snake_case_ , snake_case_ , **snake_case_ ) -> List[str]: '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **snake_case_ ) def A ( self ) -> Tuple: '''simple docstring''' __lowercase = copy.deepcopy(self.__dict__ ) __lowercase = self.text_config.to_dict() __lowercase = self.vision_config.to_dict() __lowercase = self.__class__.model_type return output
639
# Lint as: python3 # pylint: enable=line-too-long # pylint: disable=g-import-not-at-top,g-bad-import-order,wrong-import-position a : Dict = '''2.13.1''' import platform import pyarrow from packaging import version if version.parse(platform.python_version()) < version.parse('''3.7'''): raise ImportWarning( '''To use `datasets`, Python>=3.7 is required, and the current version of Python doesn\'t match this condition.''' ) if version.parse(pyarrow.__version__).major < 8: raise ImportWarning( '''To use `datasets`, the module `pyarrow>=8.0.0` is required, and the current version of `pyarrow` doesn\'t match this condition.\n''' '''If you are running this in a Google Colab, you should probably just restart the runtime to use the right version of `pyarrow`.''' ) del platform del pyarrow del version from .arrow_dataset import Dataset from .arrow_reader import ReadInstruction from .builder import ArrowBasedBuilder, BeamBasedBuilder, BuilderConfig, DatasetBuilder, GeneratorBasedBuilder from .combine import concatenate_datasets, interleave_datasets from .dataset_dict import DatasetDict, IterableDatasetDict from .download import * from .features import * from .fingerprint import disable_caching, enable_caching, is_caching_enabled, set_caching_enabled from .info import DatasetInfo, MetricInfo from .inspect import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, list_datasets, list_metrics, ) from .iterable_dataset import IterableDataset from .load import load_dataset, load_dataset_builder, load_from_disk, load_metric from .metric import Metric from .splits import ( NamedSplit, NamedSplitAll, Split, SplitBase, SplitDict, SplitGenerator, SplitInfo, SubSplitInfo, percent, ) from .tasks import * from .utils import * from .utils import logging # deprecated modules from datasets import arrow_dataset as _arrow_dataset # isort:skip from datasets import utils as _utils # isort:skip from datasets.utils import download_manager as _deprecated_download_manager # isort:skip a : Optional[int] = concatenate_datasets a : List[Any] = DownloadConfig a : List[Any] = DownloadManager a : str = DownloadMode a : int = DownloadConfig a : List[str] = DownloadMode a : Optional[int] = DownloadManager del _arrow_dataset, _utils, _deprecated_download_manager
639
1
def lowerCamelCase_ ( ): """simple docstring""" for n in range(1 , 1_00_00_00 ): yield n * (n + 1) // 2 def lowerCamelCase_ ( A : str ): """simple docstring""" lowerCAmelCase_ = 1 lowerCAmelCase_ = 2 while i * i <= n: lowerCAmelCase_ = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def lowerCamelCase_ ( ): """simple docstring""" return next(i for i in triangle_number_generator() if count_divisors(A ) > 5_00 ) if __name__ == "__main__": print(solution())
718
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _snake_case = logging.get_logger(__name__) _snake_case = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class UpperCamelCase_ ( A ): '''simple docstring''' a :Union[str, Any] = 'poolformer' def __init__( self , _UpperCAmelCase=3 , _UpperCAmelCase=16 , _UpperCAmelCase=16 , _UpperCAmelCase=3 , _UpperCAmelCase=4.0 , _UpperCAmelCase=[2, 2, 6, 2] , _UpperCAmelCase=[64, 128, 320, 512] , _UpperCAmelCase=[7, 3, 3, 3] , _UpperCAmelCase=[4, 2, 2, 2] , _UpperCAmelCase=[2, 1, 1, 1] , _UpperCAmelCase=4 , _UpperCAmelCase=0.0 , _UpperCAmelCase="gelu" , _UpperCAmelCase=True , _UpperCAmelCase=1E-5 , _UpperCAmelCase=0.02 , **_UpperCAmelCase , ): lowerCAmelCase_ = num_channels lowerCAmelCase_ = patch_size lowerCAmelCase_ = stride lowerCAmelCase_ = padding lowerCAmelCase_ = pool_size lowerCAmelCase_ = hidden_sizes lowerCAmelCase_ = mlp_ratio lowerCAmelCase_ = depths lowerCAmelCase_ = patch_sizes lowerCAmelCase_ = strides lowerCAmelCase_ = num_encoder_blocks lowerCAmelCase_ = drop_path_rate lowerCAmelCase_ = hidden_act lowerCAmelCase_ = use_layer_scale lowerCAmelCase_ = layer_scale_init_value lowerCAmelCase_ = initializer_range super().__init__(**_UpperCAmelCase) class UpperCamelCase_ ( A ): '''simple docstring''' a :Optional[Any] = version.parse('1.11' ) @property def lowercase__ ( self): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ]) @property def lowercase__ ( self): return 2E-3
413
0
"""simple docstring""" from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowercase__ ( lowerCamelCase, lowerCamelCase, lowerCamelCase=1E-12 ): _SCREAMING_SNAKE_CASE : int = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(lowerCamelCase, axis=1 ), a_min=lowerCamelCase ) ).T _SCREAMING_SNAKE_CASE : str = jnp.divide(emb_a.T, jnp.clip(jnp.linalg.norm(lowerCamelCase, axis=1 ), a_min=lowerCamelCase ) ).T return jnp.matmul(lowerCamelCase, norm_emb_a.T ) class _lowerCAmelCase ( nn.Module ): SCREAMING_SNAKE_CASE_: CLIPConfig SCREAMING_SNAKE_CASE_: jnp.dtype = jnp.floataa def A ( self ) -> List[Any]: _SCREAMING_SNAKE_CASE : Optional[int] = FlaxCLIPVisionModule(self.config.vision_config ) _SCREAMING_SNAKE_CASE : int = nn.Dense(self.config.projection_dim , use_bias=lowerCAmelCase_ , dtype=self.dtype ) _SCREAMING_SNAKE_CASE : str = self.param('concept_embeds' , jax.nn.initializers.ones , (1_7, self.config.projection_dim) ) _SCREAMING_SNAKE_CASE : List[Any] = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim) ) _SCREAMING_SNAKE_CASE : Tuple = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (1_7,) ) _SCREAMING_SNAKE_CASE : List[str] = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,) ) def __call__( self , lowerCAmelCase_ ) -> Optional[Any]: _SCREAMING_SNAKE_CASE : Tuple = self.vision_model(lowerCAmelCase_ )[1] _SCREAMING_SNAKE_CASE : Optional[int] = self.visual_projection(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Dict = jax_cosine_distance(lowerCAmelCase_ , self.special_care_embeds ) _SCREAMING_SNAKE_CASE : List[str] = jax_cosine_distance(lowerCAmelCase_ , self.concept_embeds ) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs _SCREAMING_SNAKE_CASE : Optional[int] = 0.0 _SCREAMING_SNAKE_CASE : List[Any] = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment _SCREAMING_SNAKE_CASE : int = jnp.round(lowerCAmelCase_ , 3 ) _SCREAMING_SNAKE_CASE : Optional[Any] = jnp.any(special_scores > 0 , axis=1 , keepdims=lowerCAmelCase_ ) # Use a lower threshold if an image has any special care concept _SCREAMING_SNAKE_CASE : List[str] = is_special_care * 0.01 _SCREAMING_SNAKE_CASE : Union[str, Any] = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment _SCREAMING_SNAKE_CASE : Any = jnp.round(lowerCAmelCase_ , 3 ) _SCREAMING_SNAKE_CASE : List[Any] = jnp.any(concept_scores > 0 , axis=1 ) return has_nsfw_concepts class _lowerCAmelCase ( lowerCAmelCase_ ): SCREAMING_SNAKE_CASE_: List[str] = CLIPConfig SCREAMING_SNAKE_CASE_: Any = "clip_input" SCREAMING_SNAKE_CASE_: int = FlaxStableDiffusionSafetyCheckerModule def __init__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , lowerCAmelCase_ = 0 , lowerCAmelCase_ = jnp.floataa , lowerCAmelCase_ = True , **lowerCAmelCase_ , ) -> List[str]: if input_shape is None: _SCREAMING_SNAKE_CASE : int = (1, 2_2_4, 2_2_4, 3) _SCREAMING_SNAKE_CASE : Optional[Any] = self.module_class(config=lowerCAmelCase_ , dtype=lowerCAmelCase_ , **lowerCAmelCase_ ) super().__init__(lowerCAmelCase_ , lowerCAmelCase_ , input_shape=lowerCAmelCase_ , seed=lowerCAmelCase_ , dtype=lowerCAmelCase_ , _do_init=_do_init ) def A ( self , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = None ) -> FrozenDict: # init input tensor _SCREAMING_SNAKE_CASE : Dict = jax.random.normal(lowerCAmelCase_ , lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Optional[int] = jax.random.split(lowerCAmelCase_ ) _SCREAMING_SNAKE_CASE : Union[str, Any] = {'''params''': params_rng, '''dropout''': dropout_rng} _SCREAMING_SNAKE_CASE : str = self.module.init(lowerCAmelCase_ , lowerCAmelCase_ )['''params'''] return random_params def __call__( self , lowerCAmelCase_ , lowerCAmelCase_ = None , ) -> str: _SCREAMING_SNAKE_CASE : List[str] = jnp.transpose(lowerCAmelCase_ , (0, 2, 3, 1) ) return self.module.apply( {'params': params or self.params} , jnp.array(lowerCAmelCase_ , dtype=jnp.floataa ) , rngs={} , )
621
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging _A : Tuple = logging.get_logger(__name__) _A : Union[str, Any] = { 'andreasmadsen/efficient_mlm_m0.40': ( 'https://huggingface.co/andreasmadsen/efficient_mlm_m0.40/resolve/main/config.json' ), } class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): _UpperCAmelCase : Optional[int] = "roberta-prelayernorm" def __init__( self : Dict , A : Dict=5_0_2_6_5 , A : Tuple=7_6_8 , A : str=1_2 , A : Optional[Any]=1_2 , A : Union[str, Any]=3_0_7_2 , A : Dict="gelu" , A : Optional[int]=0.1 , A : Union[str, Any]=0.1 , A : str=5_1_2 , A : Any=2 , A : Optional[Any]=0.02 , A : str=1e-12 , A : Optional[Any]=1 , A : Dict=0 , A : Any=2 , A : Any="absolute" , A : str=True , A : List[str]=None , **A : Any , ) ->str: super().__init__(pad_token_id=A , bos_token_id=A , eos_token_id=A , **A ) lowerCamelCase__ : Any = vocab_size lowerCamelCase__ : Optional[Any] = hidden_size lowerCamelCase__ : List[str] = num_hidden_layers lowerCamelCase__ : Any = num_attention_heads lowerCamelCase__ : List[Any] = hidden_act lowerCamelCase__ : List[str] = intermediate_size lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : str = attention_probs_dropout_prob lowerCamelCase__ : Union[str, Any] = max_position_embeddings lowerCamelCase__ : str = type_vocab_size lowerCamelCase__ : Union[str, Any] = initializer_range lowerCamelCase__ : List[Any] = layer_norm_eps lowerCamelCase__ : Any = position_embedding_type lowerCamelCase__ : Union[str, Any] = use_cache lowerCamelCase__ : Tuple = classifier_dropout class __SCREAMING_SNAKE_CASE ( lowerCAmelCase_ ): @property def __lowerCamelCase ( self : List[str] ) ->Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": lowerCamelCase__ : int = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: lowerCamelCase__ : Tuple = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
315
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MobileNetVaImageProcessor class snake_case__ ( unittest.TestCase ): """simple docstring""" def __init__( self : List[str], _snake_case : Optional[int], _snake_case : int=7, _snake_case : Any=3, _snake_case : int=1_8, _snake_case : Union[str, Any]=3_0, _snake_case : Tuple=4_0_0, _snake_case : Tuple=True, _snake_case : List[str]=None, _snake_case : str=True, _snake_case : int=None, ) ->Union[str, Any]: snake_case__ : Dict = size if size is not None else {"""shortest_edge""": 2_0} snake_case__ : List[str] = crop_size if crop_size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : str = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Union[str, Any] = num_channels snake_case__ : Optional[int] = image_size snake_case__ : Dict = min_resolution snake_case__ : Union[str, Any] = max_resolution snake_case__ : Any = do_resize snake_case__ : Dict = size snake_case__ : Union[str, Any] = do_center_crop snake_case__ : Dict = crop_size def lowercase_ ( self : Any ) ->int: return { "do_resize": self.do_resize, "size": self.size, "do_center_crop": self.do_center_crop, "crop_size": self.crop_size, } @require_torch @require_vision class snake_case__ ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = MobileNetVaImageProcessor if is_vision_available() else None def lowercase_ ( self : List[Any] ) ->Any: snake_case__ : Union[str, Any] = MobileNetVaImageProcessingTester(self ) @property def lowercase_ ( self : int ) ->Union[str, Any]: return self.image_processor_tester.prepare_image_processor_dict() def lowercase_ ( self : Optional[int] ) ->Optional[Any]: snake_case__ : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase__, 'do_resize' ) ) self.assertTrue(hasattr(lowercase__, 'size' ) ) self.assertTrue(hasattr(lowercase__, 'do_center_crop' ) ) self.assertTrue(hasattr(lowercase__, 'crop_size' ) ) def lowercase_ ( self : Optional[int] ) ->Dict: snake_case__ : Tuple = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size, {'shortest_edge': 2_0} ) self.assertEqual(image_processor.crop_size, {'height': 1_8, 'width': 1_8} ) snake_case__ : Union[str, Any] = self.image_processing_class.from_dict(self.image_processor_dict, size=4_2, crop_size=8_4 ) self.assertEqual(image_processor.size, {'shortest_edge': 4_2} ) self.assertEqual(image_processor.crop_size, {'height': 8_4, 'width': 8_4} ) def lowercase_ ( self : Any ) ->int: pass def lowercase_ ( self : Optional[Any] ) ->Optional[int]: # Initialize image_processing snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__, Image.Image ) # Test not batched input snake_case__ : Any = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : int = image_processing(lowercase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def lowercase_ ( self : int ) ->str: # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Tuple = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase__, numpify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__, np.ndarray ) # Test not batched input snake_case__ : Dict = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : List[Any] = image_processing(lowercase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) def lowercase_ ( self : Union[str, Any] ) ->Tuple: # Initialize image_processing snake_case__ : Tuple = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : int = prepare_image_inputs(self.image_processor_tester, equal_resolution=lowercase__, torchify=lowercase__ ) for image in image_inputs: self.assertIsInstance(lowercase__, torch.Tensor ) # Test not batched input snake_case__ : Tuple = image_processing(image_inputs[0], return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), ) # Test batched snake_case__ : int = image_processing(lowercase__, return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape, ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['height'], self.image_processor_tester.crop_size['width'], ), )
704
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available a_ :str = { "configuration_instructblip": [ "INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP", "InstructBlipConfig", "InstructBlipQFormerConfig", "InstructBlipVisionConfig", ], "processing_instructblip": ["InstructBlipProcessor"], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ :Optional[int] = [ "INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST", "InstructBlipQFormerModel", "InstructBlipPreTrainedModel", "InstructBlipForConditionalGeneration", "InstructBlipVisionModel", ] if TYPE_CHECKING: from .configuration_instructblip import ( INSTRUCTBLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, InstructBlipConfig, InstructBlipQFormerConfig, InstructBlipVisionConfig, ) from .processing_instructblip import InstructBlipProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_instructblip import ( INSTRUCTBLIP_PRETRAINED_MODEL_ARCHIVE_LIST, InstructBlipForConditionalGeneration, InstructBlipPreTrainedModel, InstructBlipQFormerModel, InstructBlipVisionModel, ) else: import sys a_ :Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
243
0
import argparse import json import os from pathlib import Path import requests import torch from transformers import JukeboxConfig, JukeboxModel from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = """https://openaipublic.azureedge.net/jukebox/models/""" UpperCAmelCase_ = { """jukebox-1b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """1b_lyrics/prior_level_2.pth.tar""", ], """jukebox-5b-lyrics""": [ """5b/vqvae.pth.tar""", """5b/prior_level_0.pth.tar""", """5b/prior_level_1.pth.tar""", """5b_lyrics/prior_level_2.pth.tar""", ], } def SCREAMING_SNAKE_CASE_ ( _snake_case :List[Any] ) -> Dict: if key.endswith('''.model.1.bias''' ) and len(key.split('''.''' ) ) > 10: _A = key.replace('''.model.1.bias''' , '''.conv1d_1.bias''' ) elif key.endswith('''.model.1.weight''' ) and len(key.split('''.''' ) ) > 10: _A = key.replace('''.model.1.weight''' , '''.conv1d_1.weight''' ) elif key.endswith('''.model.3.bias''' ) and len(key.split('''.''' ) ) > 10: _A = key.replace('''.model.3.bias''' , '''.conv1d_2.bias''' ) elif key.endswith('''.model.3.weight''' ) and len(key.split('''.''' ) ) > 10: _A = key.replace('''.model.3.weight''' , '''.conv1d_2.weight''' ) if "conditioner_blocks.0." in key: _A = key.replace('''conditioner_blocks.0''' , '''conditioner_blocks''' ) if "prime_prior" in key: _A = key.replace('''prime_prior''' , '''encoder''' ) if ".emb." in key and "total" not in key and "absolute" not in key and "relative" not in key: _A = key.replace('''.emb.''' , '''.''' ) if key.endswith('''k''' ): # replace vqvae.X.k with vqvae.X.codebook return key.replace('''.k''' , '''.codebook''' ) if "y_emb." in key: return key.replace('''y_emb.''' , '''metadata_embedding.''' ) if "x_emb.emb." in key: _A = key.replace('''0.x_emb.emb''' , '''embed_tokens''' ) if "prime_state_ln" in key: return key.replace('''prime_state_ln''' , '''encoder.final_layer_norm''' ) if ".ln" in key: return key.replace('''.ln''' , '''.layer_norm''' ) if "_ln" in key: return key.replace('''_ln''' , '''_layer_norm''' ) if "prime_state_proj" in key: return key.replace('''prime_state_proj''' , '''encoder.proj_in''' ) if "prime_x_out" in key: return key.replace('''prime_x_out''' , '''encoder.lm_head''' ) if "prior.x_out" in key: return key.replace('''x_out''' , '''fc_proj_out''' ) if "x_emb" in key: return key.replace('''x_emb''' , '''embed_tokens''' ) return key def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any] , _snake_case :str , _snake_case :Any , _snake_case :Optional[int] ) -> Optional[Any]: _A = {} import re _A = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) _A = re.compile( r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''encoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).(bias|weight)''' ) _A = re.compile( r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''decoders.(\d*).level_blocks.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).(bias|weight)''' ) _A = re.compile( r'''conditioner_blocks.(\d*).cond.model.(\d*).(\d).model.(\d*).model.(\d*).(bias|weight)''' ) _A = re.compile(r'''conditioner_blocks.(\d*).cond.model.(\d*).(bias|weight)''' ) for original_key, value in state_dict.items(): # rename vqvae.encoder keys if re_encoder_block_conv_in.fullmatch(_snake_case ): _A = re_encoder_block_conv_in.match(_snake_case ) _A = regex_match.groups() _A = int(groups[2] ) * 2 + int(groups[3] ) _A = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.{groups[-1]}''' _A = re_encoder_block_conv_in.sub(_snake_case , _snake_case ) elif re_encoder_block_resnet.fullmatch(_snake_case ): _A = re_encoder_block_resnet.match(_snake_case ) _A = regex_match.groups() _A = int(groups[2] ) * 2 + int(groups[3] ) _A = {'''1''': 1, '''3''': 2}[groups[-2]] _A = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.downsample_block.{block_index}.''' _A = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _A = prefix + resnet_block _A = re_encoder_block_resnet.sub(_snake_case , _snake_case ) elif re_encoder_block_proj_out.fullmatch(_snake_case ): _A = re_encoder_block_proj_out.match(_snake_case ) _A = regex_match.groups() _A = F'''encoders.{groups[0]}.level_blocks.{groups[1]}.proj_out.{groups[-1]}''' _A = re_encoder_block_proj_out.sub(_snake_case , _snake_case ) # rename vqvae.decoder keys elif re_decoder_block_conv_out.fullmatch(_snake_case ): _A = re_decoder_block_conv_out.match(_snake_case ) _A = regex_match.groups() _A = int(groups[2] ) * 2 + int(groups[3] ) - 2 _A = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.{groups[-1]}''' _A = re_decoder_block_conv_out.sub(_snake_case , _snake_case ) elif re_decoder_block_resnet.fullmatch(_snake_case ): _A = re_decoder_block_resnet.match(_snake_case ) _A = regex_match.groups() _A = int(groups[2] ) * 2 + int(groups[3] ) - 2 _A = {'''1''': 1, '''3''': 2}[groups[-2]] _A = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.upsample_block.{block_index}.''' _A = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _A = prefix + resnet_block _A = re_decoder_block_resnet.sub(_snake_case , _snake_case ) elif re_decoder_block_proj_in.fullmatch(_snake_case ): _A = re_decoder_block_proj_in.match(_snake_case ) _A = regex_match.groups() _A = F'''decoders.{groups[0]}.level_blocks.{groups[1]}.proj_in.{groups[-1]}''' _A = re_decoder_block_proj_in.sub(_snake_case , _snake_case ) # rename prior cond.model to upsampler.upsample_block and resnet elif re_prior_cond_conv_out.fullmatch(_snake_case ): _A = re_prior_cond_conv_out.match(_snake_case ) _A = regex_match.groups() _A = int(groups[1] ) * 2 + int(groups[2] ) - 2 _A = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.{groups[-1]}''' _A = re_prior_cond_conv_out.sub(_snake_case , _snake_case ) elif re_prior_cond_resnet.fullmatch(_snake_case ): _A = re_prior_cond_resnet.match(_snake_case ) _A = regex_match.groups() _A = int(groups[1] ) * 2 + int(groups[2] ) - 2 _A = {'''1''': 1, '''3''': 2}[groups[-2]] _A = F'''conditioner_blocks.upsampler.upsample_block.{block_index}.''' _A = F'''resnet_block.{groups[-3]}.conv1d_{conv_index}.{groups[-1]}''' _A = prefix + resnet_block _A = re_prior_cond_resnet.sub(_snake_case , _snake_case ) elif re_prior_cond_proj_in.fullmatch(_snake_case ): _A = re_prior_cond_proj_in.match(_snake_case ) _A = regex_match.groups() _A = F'''conditioner_blocks.upsampler.proj_in.{groups[-1]}''' _A = re_prior_cond_proj_in.sub(_snake_case , _snake_case ) # keep original key else: _A = original_key _A = replace_key(_snake_case ) if F'''{key_prefix}.{key}''' not in model_state_dict or key is None: print(F'''failed converting {original_key} to {key}, does not match''' ) # handle missmatched shape elif value.shape != model_state_dict[F'''{key_prefix}.{key}'''].shape: _A = model_state_dict[F'''{key_prefix}.{key}'''] print(F'''{original_key}-> {key} : \nshape {val.shape} and { value.shape}, do not match''' ) _A = original_key _A = original_key _A = value return new_dict @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _snake_case :Optional[Any]=None , _snake_case :Union[str, Any]=None ) -> Dict: for file in MODEL_MAPPING[model_name]: if not os.path.isfile(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' ): _A = requests.get(F'''{PREFIX}{file}''' , allow_redirects=_snake_case ) os.makedirs(F'''{pytorch_dump_folder_path}/''' , exist_ok=_snake_case ) open(F'''{pytorch_dump_folder_path}/{file.split('/' )[-1]}''' , '''wb''' ).write(r.content ) _A = MODEL_MAPPING[model_name.split('''/''' )[-1]] _A = JukeboxConfig.from_pretrained(_snake_case ) _A = JukeboxModel(_snake_case ) _A = [] _A = {} for i, dict_name in enumerate(_snake_case ): _A = torch.load(F'''{pytorch_dump_folder_path}/{dict_name.split('/' )[-1]}''' )['''model'''] _A = {} for k in old_dic.keys(): if k.endswith('''.b''' ): _A = old_dic[k] elif k.endswith('''.w''' ): _A = old_dic[k] elif "level_2" not in dict_name and "cond.model." in k: _A = old_dic[k] else: _A = old_dic[k] _A = '''vqvae''' if i == 0 else F'''priors.{3 - i}''' _A = fix_jukebox_keys(_snake_case , model.state_dict() , _snake_case , _snake_case ) weight_dict.append(_snake_case ) _A = weight_dict.pop(0 ) model.vqvae.load_state_dict(_snake_case ) for i in range(len(_snake_case ) ): model.priors[i].load_state_dict(weight_dict[2 - i] ) Path(_snake_case ).mkdir(exist_ok=_snake_case ) with open(F'''{pytorch_dump_folder_path}/mapping.json''' , '''w''' ) as txtfile: json.dump(_snake_case , _snake_case ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_snake_case ) return weight_dict if __name__ == "__main__": UpperCAmelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( """--model_name""", default="""jukebox-5b-lyrics""", type=str, help="""Name of the model you'd like to convert.""", ) parser.add_argument( """--pytorch_dump_folder_path""", default="""jukebox-5b-lyrics-converted""", type=str, help="""Path to the output PyTorch model directory.""", ) UpperCAmelCase_ = parser.parse_args() convert_openai_checkpoint(args.model_name, args.pytorch_dump_folder_path)
2
import json import os import unittest from transformers.models.biogpt.tokenization_biogpt import VOCAB_FILES_NAMES, BioGptTokenizer from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = BioGptTokenizer lowerCamelCase__ : List[Any] = False def lowercase_ ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE__ = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''w</w>''', '''r</w>''', '''t</w>''', '''lo''', '''low''', '''er</w>''', '''low</w>''', '''lowest</w>''', '''newer</w>''', '''wider</w>''', '''<unk>''', ] SCREAMING_SNAKE_CASE__ = dict(zip(A_ , range(len(A_ ) ) ) ) SCREAMING_SNAKE_CASE__ = ['''l o 123''', '''lo w 1456''', '''e r</w> 1789''', ''''''] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' ) as fp: fp.write(json.dumps(A_ ) ) with open(self.merges_file , '''w''' ) as fp: fp.write('''\n'''.join(A_ ) ) def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = '''lower newer''' SCREAMING_SNAKE_CASE__ = '''lower newer''' return input_text, output_text def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BioGptTokenizer(self.vocab_file , self.merges_file ) SCREAMING_SNAKE_CASE__ = '''lower''' SCREAMING_SNAKE_CASE__ = ['''low''', '''er</w>'''] SCREAMING_SNAKE_CASE__ = tokenizer.tokenize(A_ ) self.assertListEqual(A_ , A_ ) SCREAMING_SNAKE_CASE__ = tokens + ['''<unk>'''] SCREAMING_SNAKE_CASE__ = [14, 15, 20] self.assertListEqual(tokenizer.convert_tokens_to_ids(A_ ) , A_ ) @slow def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = BioGptTokenizer.from_pretrained('''microsoft/biogpt''' ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''sequence builders''' , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.encode('''multi-sequence build''' , add_special_tokens=A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(A_ ) SCREAMING_SNAKE_CASE__ = tokenizer.build_inputs_with_special_tokens(A_ , A_ ) self.assertTrue(encoded_sentence == [2] + text ) self.assertTrue(encoded_pair == [2] + text + [2] + text_a )
100
0
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int=7 ): """simple docstring""" SCREAMING_SNAKE_CASE_ = None if token is not None: SCREAMING_SNAKE_CASE_ = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE_ = '636036' SCREAMING_SNAKE_CASE_ = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" SCREAMING_SNAKE_CASE_ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE_ = workflow_run['id'] break return workflow_run_id def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE_ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE_ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = {} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , f"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE_ = f.read().decode('UTF-8' ) return results
620
import os import zipfile import requests from get_ci_error_statistics import download_artifact, get_artifacts_links def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : int=7 ): """simple docstring""" SCREAMING_SNAKE_CASE_ = None if token is not None: SCREAMING_SNAKE_CASE_ = {'Accept': 'application/vnd.github+json', 'Authorization': f"""Bearer {token}"""} # The id of a workflow (not of a workflow run) SCREAMING_SNAKE_CASE_ = '636036' SCREAMING_SNAKE_CASE_ = f"""https://api.github.com/repos/huggingface/transformers/actions/workflows/{workflow_id}/runs""" # On `main` branch + event being `schedule` + not returning PRs + only `num_runs` results url += f"""?branch=main&event=schedule&exclude_pull_requests=true&per_page={num_runs}""" SCREAMING_SNAKE_CASE_ = requests.get(_SCREAMING_SNAKE_CASE , headers=_SCREAMING_SNAKE_CASE ).json() return result["workflow_runs"] def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_daily_ci_runs(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = None for workflow_run in workflow_runs: if workflow_run["status"] == "completed": SCREAMING_SNAKE_CASE_ = workflow_run['id'] break return workflow_run_id def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE_ = get_last_daily_ci_runs(_SCREAMING_SNAKE_CASE ) if workflow_run_id is not None: SCREAMING_SNAKE_CASE_ = get_artifacts_links(worflow_run_id=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) for artifact_name in artifact_names: if artifact_name in artifacts_links: SCREAMING_SNAKE_CASE_ = artifacts_links[artifact_name] download_artifact( artifact_name=_SCREAMING_SNAKE_CASE , artifact_url=_SCREAMING_SNAKE_CASE , output_dir=_SCREAMING_SNAKE_CASE , token=_SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( _SCREAMING_SNAKE_CASE : List[Any] , _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : List[Any] ): """simple docstring""" get_last_daily_ci_artifacts(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ = {} for artifact_name in artifact_names: SCREAMING_SNAKE_CASE_ = os.path.join(_SCREAMING_SNAKE_CASE , f"""{artifact_name}.zip""" ) if os.path.isfile(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ = {} with zipfile.ZipFile(_SCREAMING_SNAKE_CASE ) as z: for filename in z.namelist(): if not os.path.isdir(_SCREAMING_SNAKE_CASE ): # read the file with z.open(_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE_ = f.read().decode('UTF-8' ) return results
620
1
import argparse import os import re a_ = """src/diffusers""" # Pattern that looks at the indentation in a line. a_ = re.compile(r"""^(\s*)\S""") # Pattern that matches `"key":" and puts `key` in group 0. a_ = re.compile(r"""^\s*\"([^\"]+)\":""") # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. a_ = re.compile(r"""^\s*_import_structure\[\"([^\"]+)\"\]""") # Pattern that matches `"key",` and puts `key` in group 0. a_ = re.compile(r"""^\s*\"([^\"]+)\",\s*$""") # Pattern that matches any `[stuff]` and puts `stuff` in group 0. a_ = re.compile(r"""\[([^\]]+)\]""") def __lowerCAmelCase ( A_ : Union[str, Any] ) -> Optional[Any]: __UpperCAmelCase = _re_indent.search(A_ ) return "" if search is None else search.groups()[0] def __lowerCAmelCase ( A_ : Tuple , A_ : Dict="" , A_ : Optional[Any]=None , A_ : List[str]=None ) -> int: __UpperCAmelCase = 0 __UpperCAmelCase = code.split("\n" ) if start_prompt is not None: while not lines[index].startswith(A_ ): index += 1 __UpperCAmelCase = ["\n".join(lines[:index] )] else: __UpperCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __UpperCAmelCase = [lines[index]] index += 1 while index < len(A_ ) and (end_prompt is None or not lines[index].startswith(A_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(A_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + " " ): current_block.append(lines[index] ) blocks.append("\n".join(A_ ) ) if index < len(A_ ) - 1: __UpperCAmelCase = [lines[index + 1]] index += 1 else: __UpperCAmelCase = [] else: blocks.append("\n".join(A_ ) ) __UpperCAmelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(A_ ) > 0: blocks.append("\n".join(A_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(A_ ): blocks.append("\n".join(lines[index:] ) ) return blocks def __lowerCAmelCase ( A_ : List[str] ) -> Optional[Any]: def _inner(A_ : List[Any] ): return key(A_ ).lower().replace("_" , "" ) return _inner def __lowerCAmelCase ( A_ : Any , A_ : int=None ) -> str: # If no key is provided, we use a noop. def noop(A_ : List[Any] ): return x if key is None: __UpperCAmelCase = noop # Constants are all uppercase, they go first. __UpperCAmelCase = [obj for obj in objects if key(A_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __UpperCAmelCase = [obj for obj in objects if key(A_ )[0].isupper() and not key(A_ ).isupper()] # Functions begin with a lowercase, they go last. __UpperCAmelCase = [obj for obj in objects if not key(A_ )[0].isupper()] __UpperCAmelCase = ignore_underscore(A_ ) return sorted(A_ , key=A_ ) + sorted(A_ , key=A_ ) + sorted(A_ , key=A_ ) def __lowerCAmelCase ( A_ : Optional[int] ) -> Tuple: # This inner function sort imports between [ ]. def _replace(A_ : Union[str, Any] ): __UpperCAmelCase = match.groups()[0] if "," not in imports: return F'''[{imports}]''' __UpperCAmelCase = [part.strip().replace("\"" , "" ) for part in imports.split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __UpperCAmelCase = keys[:-1] return "[" + ", ".join([F'''"{k}"''' for k in sort_objects(A_ )] ) + "]" __UpperCAmelCase = import_statement.split("\n" ) if len(A_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __UpperCAmelCase = 2 if lines[1].strip() == "[" else 1 __UpperCAmelCase = [(i, _re_strip_line.search(A_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __UpperCAmelCase = sort_objects(A_ , key=lambda A_ : x[1] ) __UpperCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(A_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __UpperCAmelCase = _re_bracket_content.sub(_replace , lines[1] ) else: __UpperCAmelCase = [part.strip().replace("\"" , "" ) for part in lines[1].split("," )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __UpperCAmelCase = keys[:-1] __UpperCAmelCase = get_indent(lines[1] ) + ", ".join([F'''"{k}"''' for k in sort_objects(A_ )] ) return "\n".join(A_ ) else: # Finally we have to deal with imports fitting on one line __UpperCAmelCase = _re_bracket_content.sub(_replace , A_ ) return import_statement def __lowerCAmelCase ( A_ : List[str] , A_ : Any=True ) -> Tuple: with open(A_ , "r" ) as f: __UpperCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __UpperCAmelCase = split_code_in_indented_blocks( A_ , start_prompt="_import_structure = {" , end_prompt="if TYPE_CHECKING:" ) # We ignore block 0 (everything until start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(A_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __UpperCAmelCase = main_blocks[block_idx] __UpperCAmelCase = block.split("\n" ) # Get to the start of the imports. __UpperCAmelCase = 0 while line_idx < len(A_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __UpperCAmelCase = len(A_ ) else: line_idx += 1 if line_idx >= len(A_ ): continue # Ignore beginning and last line: they don't contain anything. __UpperCAmelCase = "\n".join(block_lines[line_idx:-1] ) __UpperCAmelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __UpperCAmelCase = split_code_in_indented_blocks(A_ , indent_level=A_ ) # We have two categories of import key: list or _import_structure[key].append/extend __UpperCAmelCase = _re_direct_key if "_import_structure" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __UpperCAmelCase = [(pattern.search(A_ ).groups()[0] if pattern.search(A_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __UpperCAmelCase = [(i, key) for i, key in enumerate(A_ ) if key is not None] __UpperCAmelCase = [x[0] for x in sorted(A_ , key=lambda A_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __UpperCAmelCase = 0 __UpperCAmelCase = [] for i in range(len(A_ ) ): if keys[i] is None: reordered_blocks.append(internal_blocks[i] ) else: __UpperCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reordered_blocks.append(A_ ) count += 1 # And we put our main block back together with its first and last line. __UpperCAmelCase = "\n".join(block_lines[:line_idx] + reordered_blocks + [block_lines[-1]] ) if code != "\n".join(A_ ): if check_only: return True else: print(F'''Overwriting {file}.''' ) with open(A_ , "w" ) as f: f.write("\n".join(A_ ) ) def __lowerCAmelCase ( A_ : int=True ) -> Dict: __UpperCAmelCase = [] for root, _, files in os.walk(A_ ): if "__init__.py" in files: __UpperCAmelCase = sort_imports(os.path.join(A_ , "__init__.py" ) , check_only=A_ ) if result: __UpperCAmelCase = [os.path.join(A_ , "__init__.py" )] if len(A_ ) > 0: raise ValueError(F'''Would overwrite {len(A_ )} files, run `make style`.''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() parser.add_argument("""--check_only""", action="""store_true""", help="""Whether to only check or fix style.""") a_ = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
221
def __lowerCAmelCase ( A_ : int ) -> int: __UpperCAmelCase = 0 while num > 0: digit_sum += num % 10 num //= 10 return digit_sum def __lowerCAmelCase ( A_ : int = 1_00 ) -> int: __UpperCAmelCase = 1 __UpperCAmelCase = 2 for i in range(2 , max_n + 1 ): __UpperCAmelCase = pre_numerator __UpperCAmelCase = 2 * i // 3 if i % 3 == 0 else 1 __UpperCAmelCase = cur_numerator __UpperCAmelCase = e_cont * pre_numerator + temp return sum_digits(A_ ) if __name__ == "__main__": print(F"{solution() = }")
221
1
"""simple docstring""" import math class UpperCamelCase : def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Dict = 0.0 _SCREAMING_SNAKE_CASE : int = 0.0 for i in range(len(snake_case__ ) ): da += math.pow((sample[i] - weights[0][i]) , 2 ) da += math.pow((sample[i] - weights[1][i]) , 2 ) return 0 if da > da else 1 return 0 def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" for i in range(len(snake_case__ ) ): weights[j][i] += alpha * (sample[i] - weights[j][i]) return weights def _lowerCAmelCase ( ) -> None: # Training Examples ( m, n ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [[1, 1, 0, 0], [0, 0, 0, 1], [1, 0, 0, 0], [0, 0, 1, 1]] # weight initialization ( n, C ) _SCREAMING_SNAKE_CASE : Union[str, Any] = [[0.2, 0.6, 0.5, 0.9], [0.8, 0.4, 0.7, 0.3]] # training _SCREAMING_SNAKE_CASE : int = SelfOrganizingMap() _SCREAMING_SNAKE_CASE : Union[str, Any] = 3 _SCREAMING_SNAKE_CASE : Tuple = 0.5 for _ in range(lowerCamelCase__ ): for j in range(len(lowerCamelCase__ ) ): # training sample _SCREAMING_SNAKE_CASE : List[Any] = training_samples[j] # Compute the winning vector _SCREAMING_SNAKE_CASE : List[Any] = self_organizing_map.get_winner(lowerCamelCase__, lowerCamelCase__ ) # Update the winning vector _SCREAMING_SNAKE_CASE : List[Any] = self_organizing_map.update(lowerCamelCase__, lowerCamelCase__, lowerCamelCase__, lowerCamelCase__ ) # classify test sample _SCREAMING_SNAKE_CASE : Union[str, Any] = [0, 0, 0, 1] _SCREAMING_SNAKE_CASE : Any = self_organizing_map.get_winner(lowerCamelCase__, lowerCamelCase__ ) # results print(f'''Clusters that the test sample belongs to : {winner}''' ) print(f'''Weights that have been trained : {weights}''' ) # running the main() function if __name__ == "__main__": main()
295
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu lowercase_ : Tuple = [ '''EAGER''', '''AOT_EAGER''', '''INDUCTOR''', '''NVFUSER''', '''AOT_NVFUSER''', '''AOT_CUDAGRAPHS''', '''OFI''', '''FX2TRT''', '''ONNXRT''', '''IPEX''', ] def _lowerCAmelCase ( lowerCamelCase__ : Dict, lowerCamelCase__ : int=None, lowerCamelCase__ : Any=None, lowerCamelCase__ : Any=None ) -> Tuple: _SCREAMING_SNAKE_CASE : List[Any] = True while ask_again: _SCREAMING_SNAKE_CASE : List[str] = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowerCAmelCase ( lowerCamelCase__ : Any, lowerCamelCase__ : Dict=[], lowerCamelCase__ : Optional[int]=None, lowerCamelCase__ : str=0 ) -> str: _SCREAMING_SNAKE_CASE : int = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _SCREAMING_SNAKE_CASE : str = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowerCAmelCase ( lowerCamelCase__ : Optional[int] ) -> Optional[int]: _SCREAMING_SNAKE_CASE : str = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowerCAmelCase ( lowerCamelCase__ : str ) -> List[Any]: _SCREAMING_SNAKE_CASE : str = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowerCAmelCase ( lowerCamelCase__ : Optional[Any] ) -> List[Any]: _SCREAMING_SNAKE_CASE : List[Any] = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowerCAmelCase ( lowerCamelCase__ : int ) -> Dict: _SCREAMING_SNAKE_CASE : int = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowerCAmelCase ( lowerCamelCase__ : List[Any] ) -> Any: _SCREAMING_SNAKE_CASE : Optional[Any] = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowerCAmelCase ( lowerCamelCase__ : List[Any] ) -> Optional[Any]: return {"yes": True, "no": False}[value.lower()] class UpperCamelCase ( argparse.RawDescriptionHelpFormatter ): def __SCREAMING_SNAKE_CASE ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): """simple docstring""" _SCREAMING_SNAKE_CASE : Any = super()._format_usage(snake_case__ , snake_case__ , snake_case__ , snake_case__ ) _SCREAMING_SNAKE_CASE : Any = usage.replace("<command> [<args>] " , "" ) return usage
295
1
import json import sys def A__ ( SCREAMING_SNAKE_CASE_ : Union[str, Any] , SCREAMING_SNAKE_CASE_ : List[Any] ) -> Union[str, Any]: """simple docstring""" with open(SCREAMING_SNAKE_CASE_ , encoding='''utf-8''' ) as f: _UpperCAmelCase = json.load(SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = ['''<details>''', '''<summary>Show updated benchmarks!</summary>''', ''' '''] for benchmark_name in sorted(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = results[benchmark_name] _UpperCAmelCase = benchmark_name.split('''/''' )[-1] output_md.append(F'''### Benchmark: {benchmark_file_name}''' ) _UpperCAmelCase = '''| metric |''' _UpperCAmelCase = '''|--------|''' _UpperCAmelCase = '''| new / old (diff) |''' for metric_name in sorted(SCREAMING_SNAKE_CASE_ ): _UpperCAmelCase = benchmark_res[metric_name] _UpperCAmelCase = metric_vals['''new'''] _UpperCAmelCase = metric_vals.get('''old''' , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = metric_vals.get('''diff''' , SCREAMING_SNAKE_CASE_ ) _UpperCAmelCase = F''' {new_val:f}''' if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else '''None''' if old_val is not None: val_str += F''' / {old_val:f}''' if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else "None" if dif_val is not None: val_str += F''' ({dif_val:f})''' if isinstance(SCREAMING_SNAKE_CASE_ , (int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('''</details>''' ) with open(SCREAMING_SNAKE_CASE_ , '''w''' , encoding='''utf-8''' ) as f: f.writelines('''\n'''.join(SCREAMING_SNAKE_CASE_ ) ) if __name__ == "__main__": UpperCAmelCase_ = sys.argv[1] UpperCAmelCase_ = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
32
'''simple docstring''' from math import factorial, pi def _lowercase ( __A ,__A = 30 ): '''simple docstring''' if not isinstance(__A ,(int, float) ): raise ValueError("""maclaurin_sin() requires either an int or float for theta""" ) if not isinstance(__A ,__A ) or accuracy <= 0: raise ValueError("""maclaurin_sin() requires a positive int for accuracy""" ) __UpperCamelCase = float(__A ) __UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum( (-1) ** r * theta ** (2 * r + 1) / factorial(2 * r + 1 ) for r in range(__A ) ) def _lowercase ( __A ,__A = 30 ): '''simple docstring''' if not isinstance(__A ,(int, float) ): raise ValueError("""maclaurin_cos() requires either an int or float for theta""" ) if not isinstance(__A ,__A ) or accuracy <= 0: raise ValueError("""maclaurin_cos() requires a positive int for accuracy""" ) __UpperCamelCase = float(__A ) __UpperCamelCase = theta // (2 * pi) theta -= 2 * div * pi return sum((-1) ** r * theta ** (2 * r) / factorial(2 * r ) for r in range(__A ) ) if __name__ == "__main__": import doctest doctest.testmod() print(maclaurin_sin(1_0)) print(maclaurin_sin(-1_0)) print(maclaurin_sin(1_0, 1_5)) print(maclaurin_sin(-1_0, 1_5)) print(maclaurin_cos(5)) print(maclaurin_cos(-5)) print(maclaurin_cos(1_0, 1_5)) print(maclaurin_cos(-1_0, 1_5))
601
0
'''simple docstring''' from __future__ import annotations def _lowerCAmelCase ( __snake_case : list[int] , __snake_case : list[int] , __snake_case : list[int] , __snake_case : list[list[str]] , __snake_case : int , ) -> None: __A : Any = len(__snake_case ) # If row is equal to the size of the board it means there are a queen in each row in # the current board (possible_board) if row == n: # We convert the variable possible_board that looks like this: [1, 3, 0, 2] to # this: ['. Q . . ', '. . . Q ', 'Q . . . ', '. . Q . '] boards.append(['. ' * i + 'Q ' + '. ' * (n - 1 - i) for i in possible_board] ) return # We iterate each column in the row to find all possible results in each row for col in range(__snake_case ): # We apply that we learned previously. First we check that in the current board # (possible_board) there are not other same value because if there is it means # that there are a collision in vertical. Then we apply the two formulas we # learned before: # # 45º: y - x = b or 45: row - col = b # 135º: y + x = b or row + col = b. # # And we verify if the results of this two formulas not exist in their variables # respectively. (diagonal_right_collisions, diagonal_left_collisions) # # If any or these are True it means there is a collision so we continue to the # next value in the for loop. if ( col in possible_board or row - col in diagonal_right_collisions or row + col in diagonal_left_collisions ): continue # If it is False we call dfs function again and we update the inputs depth_first_search( [*possible_board, col] , [*diagonal_right_collisions, row - col] , [*diagonal_left_collisions, row + col] , __snake_case , __snake_case , ) def _lowerCAmelCase ( __snake_case : int ) -> None: __A : list[list[str]] = [] depth_first_search([] , [] , [] , __snake_case , __snake_case ) # Print all the boards for board in boards: for column in board: print(__snake_case ) print('' ) print(len(__snake_case ) , 'solutions were found.' ) if __name__ == "__main__": import doctest doctest.testmod() n_queens_solution(4)
338
'''simple docstring''' import io import math from typing import Dict, Optional, Union import numpy as np from huggingface_hub import hf_hub_download from ...image_processing_utils import BaseImageProcessor, BatchFeature from ...image_transforms import convert_to_rgb, normalize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, get_image_size, infer_channel_dimension_format, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_torch_available, is_vision_available, logging from ...utils.import_utils import requires_backends if is_vision_available(): import textwrap from PIL import Image, ImageDraw, ImageFont if is_torch_available(): import torch from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_11 else: lowercase__ : Tuple = False lowercase__ : Optional[int] = logging.get_logger(__name__) lowercase__ : Optional[int] = '''ybelkada/fonts''' def _lowerCAmelCase ( ) -> List[Any]: if is_torch_available() and not is_torch_greater_or_equal_than_1_11: raise ImportError( f'You are using torch=={torch.__version__}, but torch>=1.11.0 is required to use ' 'Pix2StructImageProcessor. Please upgrade torch.' ) def _lowerCAmelCase ( __snake_case : Optional[int] , __snake_case : List[str] , __snake_case : Union[str, Any] ) -> Tuple: requires_backends(__snake_case , ['torch'] ) _check_torch_version() __A : Any = image_tensor.unsqueeze(0 ) __A : List[str] = torch.nn.functional.unfold(__snake_case , (patch_height, patch_width) , stride=(patch_height, patch_width) ) __A : List[str] = patches.reshape(image_tensor.size(0 ) , image_tensor.size(1 ) , __snake_case , __snake_case , -1 ) __A : List[str] = patches.permute(0 , 4 , 2 , 3 , 1 ).reshape( image_tensor.size(2 ) // patch_height , image_tensor.size(3 ) // patch_width , image_tensor.size(1 ) * patch_height * patch_width , ) return patches.unsqueeze(0 ) def _lowerCAmelCase ( __snake_case : str , __snake_case : int = 36 , __snake_case : str = "black" , __snake_case : str = "white" , __snake_case : int = 5 , __snake_case : int = 5 , __snake_case : int = 5 , __snake_case : int = 5 , __snake_case : Optional[bytes] = None , __snake_case : Optional[str] = None , ) -> Image.Image: requires_backends(__snake_case , 'vision' ) # Add new lines so that each line is no more than 80 characters. __A : Any = textwrap.TextWrapper(width=80 ) __A : Dict = wrapper.wrap(text=__snake_case ) __A : Any = '\n'.join(__snake_case ) if font_bytes is not None and font_path is None: __A : Any = io.BytesIO(__snake_case ) elif font_path is not None: __A : Optional[Any] = font_path else: __A : Optional[int] = hf_hub_download(__snake_case , 'Arial.TTF' ) __A : List[str] = ImageFont.truetype(__snake_case , encoding='UTF-8' , size=__snake_case ) # Use a temporary canvas to determine the width and height in pixels when # rendering the text. __A : Optional[Any] = ImageDraw.Draw(Image.new('RGB' , (1, 1) , __snake_case ) ) __A ,__A ,__A ,__A : List[Any] = temp_draw.textbbox((0, 0) , __snake_case , __snake_case ) # Create the actual image with a bit of padding around the text. __A : str = text_width + left_padding + right_padding __A : Union[str, Any] = text_height + top_padding + bottom_padding __A : Dict = Image.new('RGB' , (image_width, image_height) , __snake_case ) __A : Tuple = ImageDraw.Draw(__snake_case ) draw.text(xy=(left_padding, top_padding) , text=__snake_case , fill=__snake_case , font=__snake_case ) return image def _lowerCAmelCase ( __snake_case : np.ndarray , __snake_case : str , **__snake_case : Optional[Any] ) -> List[str]: requires_backends(__snake_case , 'vision' ) # Convert to PIL image if necessary __A : str = to_pil_image(__snake_case ) __A : str = render_text(__snake_case , **__snake_case ) __A : List[Any] = max(header_image.width , image.width ) __A : List[str] = int(image.height * (new_width / image.width) ) __A : int = int(header_image.height * (new_width / header_image.width) ) __A : str = Image.new('RGB' , (new_width, new_height + new_header_height) , 'white' ) new_image.paste(header_image.resize((new_width, new_header_height) ) , (0, 0) ) new_image.paste(image.resize((new_width, new_height) ) , (0, new_header_height) ) # Convert back to the original framework if necessary __A : Tuple = to_numpy_array(__snake_case ) if infer_channel_dimension_format(__snake_case ) == ChannelDimension.LAST: __A : List[str] = to_channel_dimension_format(__snake_case , ChannelDimension.LAST ) return new_image class SCREAMING_SNAKE_CASE (a__ ): lowerCAmelCase = ['''flattened_patches'''] def __init__( self , _UpperCAmelCase = True , _UpperCAmelCase = True , _UpperCAmelCase = None , _UpperCAmelCase = 2048 , _UpperCAmelCase = False , **_UpperCAmelCase , ): '''simple docstring''' super().__init__(**_UpperCAmelCase) __A : List[Any] = patch_size if patch_size is not None else {'height': 16, 'width': 16} __A : List[str] = do_normalize __A : List[Any] = do_convert_rgb __A : Dict = max_patches __A : Optional[int] = is_vqa def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , **_UpperCAmelCase): '''simple docstring''' requires_backends(self.extract_flattened_patches , 'torch') _check_torch_version() # convert to torch __A : Optional[Any] = to_channel_dimension_format(_UpperCAmelCase , ChannelDimension.FIRST) __A : Optional[int] = torch.from_numpy(_UpperCAmelCase) __A ,__A : Dict = patch_size['height'], patch_size['width'] __A ,__A : int = get_image_size(_UpperCAmelCase) # maximize scale s.t. __A : Optional[Any] = math.sqrt(max_patches * (patch_height / image_height) * (patch_width / image_width)) __A : Union[str, Any] = max(min(math.floor(scale * image_height / patch_height) , _UpperCAmelCase) , 1) __A : Tuple = max(min(math.floor(scale * image_width / patch_width) , _UpperCAmelCase) , 1) __A : Optional[Any] = max(num_feasible_rows * patch_height , 1) __A : Tuple = max(num_feasible_cols * patch_width , 1) __A : Dict = torch.nn.functional.interpolate( image.unsqueeze(0) , size=(resized_height, resized_width) , mode='bilinear' , align_corners=_UpperCAmelCase , antialias=_UpperCAmelCase , ).squeeze(0) # [1, rows, columns, patch_height * patch_width * image_channels] __A : Dict = torch_extract_patches(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) __A : List[Any] = patches.shape __A : Optional[int] = patches_shape[1] __A : List[str] = patches_shape[2] __A : Optional[Any] = patches_shape[3] # [rows * columns, patch_height * patch_width * image_channels] __A : Dict = patches.reshape([rows * columns, depth]) # [rows * columns, 1] __A : List[str] = torch.arange(_UpperCAmelCase).reshape([rows, 1]).repeat(1 , _UpperCAmelCase).reshape([rows * columns, 1]) __A : Dict = torch.arange(_UpperCAmelCase).reshape([1, columns]).repeat(_UpperCAmelCase , 1).reshape([rows * columns, 1]) # Offset by 1 so the ids do not contain zeros, which represent padding. row_ids += 1 col_ids += 1 # Prepare additional patch features. # [rows * columns, 1] __A : List[Any] = row_ids.to(torch.floataa) __A : Optional[Any] = col_ids.to(torch.floataa) # [rows * columns, 2 + patch_height * patch_width * image_channels] __A : str = torch.cat([row_ids, col_ids, patches] , -1) # [max_patches, 2 + patch_height * patch_width * image_channels] __A : Dict = torch.nn.functional.pad(_UpperCAmelCase , [0, 0, 0, max_patches - (rows * columns)]).float() __A : str = to_numpy_array(_UpperCAmelCase) return result def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , **_UpperCAmelCase): '''simple docstring''' if image.dtype == np.uinta: __A : List[str] = image.astype(np.floataa) # take mean across the whole `image` __A : Dict = np.mean(_UpperCAmelCase) __A : Optional[Any] = np.std(_UpperCAmelCase) __A : Optional[int] = max(_UpperCAmelCase , 1.0 / math.sqrt(np.prod(image.shape))) return normalize(_UpperCAmelCase , mean=_UpperCAmelCase , std=_UpperCAmelCase , **_UpperCAmelCase) def SCREAMING_SNAKE_CASE ( self , _UpperCAmelCase , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = None , _UpperCAmelCase = ChannelDimension.FIRST , **_UpperCAmelCase , ): '''simple docstring''' __A : Optional[int] = do_normalize if do_normalize is not None else self.do_normalize __A : Union[str, Any] = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb __A : List[str] = patch_size if patch_size is not None else self.patch_size __A : Any = max_patches if max_patches is not None else self.max_patches __A : int = self.is_vqa if kwargs.get('data_format' , _UpperCAmelCase) is not None: raise ValueError('data_format is not an accepted input as the outputs are ') __A : Optional[Any] = make_list_of_images(_UpperCAmelCase) if not valid_images(_UpperCAmelCase): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.') # PIL RGBA images are converted to RGB if do_convert_rgb: __A : Union[str, Any] = [convert_to_rgb(_UpperCAmelCase) for image in images] # All transformations expect numpy arrays. __A : str = [to_numpy_array(_UpperCAmelCase) for image in images] if is_vqa: if header_text is None: raise ValueError('A header text must be provided for VQA models.') __A : Optional[int] = kwargs.pop('font_bytes' , _UpperCAmelCase) __A : List[Any] = kwargs.pop('font_path' , _UpperCAmelCase) if isinstance(_UpperCAmelCase , _UpperCAmelCase): __A : int = [header_text] * len(_UpperCAmelCase) __A : str = [ render_header(_UpperCAmelCase , header_text[i] , font_bytes=_UpperCAmelCase , font_path=_UpperCAmelCase) for i, image in enumerate(_UpperCAmelCase) ] if do_normalize: __A : str = [self.normalize(image=_UpperCAmelCase) for image in images] # convert to torch tensor and permute __A : Any = [ self.extract_flattened_patches(image=_UpperCAmelCase , max_patches=_UpperCAmelCase , patch_size=_UpperCAmelCase) for image in images ] # create attention mask in numpy __A : Tuple = [(image.sum(axis=-1) != 0).astype(np.floataa) for image in images] __A : Optional[Any] = BatchFeature( data={'flattened_patches': images, 'attention_mask': attention_masks} , tensor_type=_UpperCAmelCase) return encoded_outputs
338
1
'''simple docstring''' from .imports import is_tqdm_available if is_tqdm_available(): from tqdm.auto import tqdm as _tqdm from ..state import PartialState def lowerCamelCase ( lowerCAmelCase : bool = True , *lowerCAmelCase : str , **lowerCAmelCase : Optional[int] ): """simple docstring""" if not is_tqdm_available(): raise ImportError('Accelerate\'s `tqdm` module requires `tqdm` to be installed. Please run `pip install tqdm`.' ) __magic_name__ : Any = False if main_process_only: __magic_name__ : Any = PartialState().local_process_index == 0 return _tqdm(*lowerCAmelCase , **lowerCAmelCase , disable=lowerCAmelCase )
561
'''simple docstring''' import sys def lowerCamelCase ( lowerCAmelCase : Any ): """simple docstring""" __magic_name__ : Optional[int] = len(lowerCAmelCase ) __magic_name__ : Any = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] __magic_name__ : Union[str, Any] = [[0 for x in range(lowerCAmelCase )] for x in range(lowerCAmelCase )] for chain_length in range(2 , lowerCAmelCase ): for a in range(1 , n - chain_length + 1 ): __magic_name__ : Dict = a + chain_length - 1 __magic_name__ : Any = sys.maxsize for c in range(lowerCAmelCase , lowerCAmelCase ): __magic_name__ : List[Any] = ( matrix[a][c] + matrix[c + 1][b] + array[a - 1] * array[c] * array[b] ) if cost < matrix[a][b]: __magic_name__ : Optional[int] = cost __magic_name__ : str = c return matrix, sol def lowerCamelCase ( lowerCAmelCase : Optional[Any] , lowerCAmelCase : str , lowerCAmelCase : Any ): """simple docstring""" if i == j: print('A' + str(lowerCAmelCase ) , end=' ' ) else: print('(' , end=' ' ) print_optiomal_solution(lowerCAmelCase , lowerCAmelCase , optimal_solution[i][j] ) print_optiomal_solution(lowerCAmelCase , optimal_solution[i][j] + 1 , lowerCAmelCase ) print(')' , end=' ' ) def lowerCamelCase ( ): """simple docstring""" __magic_name__ : Any = [30, 35, 15, 5, 10, 20, 25] __magic_name__ : Tuple = len(lowerCAmelCase ) # Size of matrix created from above array will be # 30*35 35*15 15*5 5*10 10*20 20*25 __magic_name__ , __magic_name__ : List[Any] = matrix_chain_order(lowerCAmelCase ) print('No. of Operation required: ' + str(matrix[1][n - 1] ) ) print_optiomal_solution(lowerCAmelCase , 1 , n - 1 ) if __name__ == "__main__": main()
561
1
import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, UNetaDConditionModel, VideoToVideoSDPipeline, ) from diffusers.utils import floats_tensor, is_xformers_available, skip_mps from diffusers.utils.testing_utils import enable_full_determinism, slow, torch_device from ..pipeline_params import ( TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() @skip_mps class __UpperCamelCase ( _snake_case , unittest.TestCase ): """simple docstring""" _lowercase : Tuple = VideoToVideoSDPipeline _lowercase : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS.union({'''video'''} ) - {'''image''', '''width''', '''height'''} _lowercase : List[Any] = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''video'''} ) - {'''image'''} _lowercase : Union[str, Any] = PipelineTesterMixin.required_optional_params - {'''latents'''} _lowercase : Dict = False # No `output_type`. _lowercase : Optional[Any] = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''return_dict''', '''callback''', '''callback_steps''', ] ) def _UpperCAmelCase ( self ) -> Dict: torch.manual_seed(0 ) a__ = UNetaDConditionModel( block_out_channels=(3_2, 6_4, 6_4, 6_4) , layers_per_block=2 , sample_size=3_2 , in_channels=4 , out_channels=4 , down_block_types=('''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''CrossAttnDownBlock3D''', '''DownBlock3D''') , up_block_types=('''UpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''', '''CrossAttnUpBlock3D''') , cross_attention_dim=3_2 , attention_head_dim=4 , ) a__ = DDIMScheduler( beta_start=0.0_00_85 , beta_end=0.0_12 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase__ , set_alpha_to_one=lowerCAmelCase__ , ) torch.manual_seed(0 ) a__ = AutoencoderKL( block_out_channels=[3_2, 6_4] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , sample_size=1_2_8 , ) torch.manual_seed(0 ) a__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=3_2 , intermediate_size=3_7 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_0_0_0 , hidden_act='''gelu''' , projection_dim=5_1_2 , ) a__ = CLIPTextModel(lowerCAmelCase__ ) a__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) a__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=0 ) -> Optional[int]: # 3 frames a__ = floats_tensor((1, 3, 3, 3_2, 3_2) , rng=random.Random(lowerCAmelCase__ ) ).to(lowerCAmelCase__ ) if str(lowerCAmelCase__ ).startswith('''mps''' ): a__ = torch.manual_seed(lowerCAmelCase__ ) else: a__ = torch.Generator(device=lowerCAmelCase__ ).manual_seed(lowerCAmelCase__ ) a__ = { '''prompt''': '''A painting of a squirrel eating a burger''', '''video''': video, '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''pt''', } return inputs def _UpperCAmelCase ( self ) -> Optional[Any]: a__ = '''cpu''' # ensure determinism for the device-dependent torch.Generator a__ = self.get_dummy_components() a__ = VideoToVideoSDPipeline(**lowerCAmelCase__ ) a__ = sd_pipe.to(lowerCAmelCase__ ) sd_pipe.set_progress_bar_config(disable=lowerCAmelCase__ ) a__ = self.get_dummy_inputs(lowerCAmelCase__ ) a__ = '''np''' a__ = sd_pipe(**lowerCAmelCase__ ).frames a__ = frames[0][-3:, -3:, -1] assert frames[0].shape == (3_2, 3_2, 3) a__ = np.array([1_0_6, 1_1_7, 1_1_3, 1_7_4, 1_3_7, 1_1_2, 1_4_8, 1_5_1, 1_3_1] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def _UpperCAmelCase ( self ) -> List[Any]: self._test_xformers_attention_forwardGenerator_pass(test_mean_pixel_difference=lowerCAmelCase__ , expected_max_diff=5e-3 ) @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCAmelCase ( self ) -> Optional[int]: pass @unittest.skip(reason='''Batching needs to be properly figured out first for this pipeline.''' ) def _UpperCAmelCase ( self ) -> Tuple: pass @unittest.skip(reason='''`num_images_per_prompt` argument is not supported for this pipeline.''' ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> int: return super().test_progress_bar() @slow @skip_mps class __UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _UpperCAmelCase ( self ) -> Optional[int]: a__ = VideoToVideoSDPipeline.from_pretrained('''cerspense/zeroscope_v2_XL''' , torch_dtype=torch.floataa ) pipe.enable_model_cpu_offload() # 10 frames a__ = torch.Generator(device='''cpu''' ).manual_seed(0 ) a__ = torch.randn((1, 1_0, 3, 1_0_2_4, 5_7_6) , generator=lowerCAmelCase__ ) a__ = video.to('''cuda''' ) a__ = '''Spiderman is surfing''' a__ = pipe(lowerCAmelCase__ , video=lowerCAmelCase__ , generator=lowerCAmelCase__ , num_inference_steps=3 , output_type='''pt''' ).frames a__ = np.array([-1.0_45_89_84, -1.1_27_92_97, -0.9_66_30_86, -0.91_50_39_06, -0.75_09_76_56] ) assert np.abs(video_frames.cpu().numpy()[0, 0, 0, 0, -5:] - expected_array ).sum() < 1e-2
701
import unittest from transformers import SPIECE_UNDERLINE from transformers.models.speechta import SpeechTaTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.tokenization_utils import AddedToken from ...test_tokenization_common import TokenizerTesterMixin a_ : List[Any] = get_tests_dir('fixtures/test_sentencepiece_bpe_char.model') @require_sentencepiece @require_tokenizers class __UpperCamelCase ( _lowercase , unittest.TestCase ): """simple docstring""" _lowercase : Dict = SpeechTaTokenizer _lowercase : Optional[int] = False _lowercase : List[Any] = True def _UpperCAmelCase ( self ) -> str: super().setUp() # We have a SentencePiece fixture for testing a__ = SpeechTaTokenizer(SCREAMING_SNAKE_CASE ) a__ = AddedToken('''<mask>''' , lstrip=SCREAMING_SNAKE_CASE , rstrip=SCREAMING_SNAKE_CASE ) a__ = mask_token tokenizer.add_special_tokens({'''mask_token''': mask_token} ) tokenizer.add_tokens(['''<ctc_blank>'''] ) tokenizer.save_pretrained(self.tmpdirname ) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> Union[str, Any]: a__ = '''this is a test''' a__ = '''this is a test''' return input_text, output_text def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=False , SCREAMING_SNAKE_CASE=2_0 , SCREAMING_SNAKE_CASE=5 ) -> Optional[Any]: a__ , a__ = self.get_input_output_texts(SCREAMING_SNAKE_CASE ) a__ = tokenizer.encode(SCREAMING_SNAKE_CASE , add_special_tokens=SCREAMING_SNAKE_CASE ) a__ = tokenizer.decode(SCREAMING_SNAKE_CASE , clean_up_tokenization_spaces=SCREAMING_SNAKE_CASE ) return text, ids def _UpperCAmelCase ( self ) -> Tuple: a__ = '''<pad>''' a__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE ) def _UpperCAmelCase ( self ) -> str: a__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-4] , '''œ''' ) self.assertEqual(vocab_keys[-2] , '''<mask>''' ) self.assertEqual(vocab_keys[-1] , '''<ctc_blank>''' ) self.assertEqual(len(SCREAMING_SNAKE_CASE ) , 8_1 ) def _UpperCAmelCase ( self ) -> List[str]: self.assertEqual(self.get_tokenizer().vocab_size , 7_9 ) def _UpperCAmelCase ( self ) -> str: a__ = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE ) for tokenizer in tokenizers: with self.subTest(f"{tokenizer.__class__.__name__}" ): a__ = tokenizer.vocab_size a__ = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) # We usually have added tokens from the start in tests because our vocab fixtures are # smaller than the original vocabs - let's not assert this # self.assertEqual(vocab_size, all_size) a__ = ['''aaaaa bbbbbb''', '''cccccccccdddddddd'''] a__ = tokenizer.add_tokens(SCREAMING_SNAKE_CASE ) a__ = tokenizer.vocab_size a__ = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) self.assertEqual(SCREAMING_SNAKE_CASE , all_size + len(SCREAMING_SNAKE_CASE ) ) a__ = tokenizer.encode('''aaaaa bbbbbb low cccccccccdddddddd l''' , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE ) , 4 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) a__ = {'''eos_token''': '''>>>>|||<||<<|<<''', '''pad_token''': '''<<<<<|||>|>>>>|>'''} a__ = tokenizer.add_special_tokens(SCREAMING_SNAKE_CASE ) a__ = tokenizer.vocab_size a__ = len(SCREAMING_SNAKE_CASE ) self.assertNotEqual(SCREAMING_SNAKE_CASE , 0 ) self.assertEqual(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.assertEqual(SCREAMING_SNAKE_CASE , len(SCREAMING_SNAKE_CASE ) ) self.assertEqual(SCREAMING_SNAKE_CASE , all_size_a + len(SCREAMING_SNAKE_CASE ) ) a__ = tokenizer.encode( '''>>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l''' , add_special_tokens=SCREAMING_SNAKE_CASE ) self.assertGreaterEqual(len(SCREAMING_SNAKE_CASE ) , 6 ) self.assertGreater(tokens[0] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[0] , tokens[1] ) self.assertGreater(tokens[-3] , tokenizer.vocab_size - 1 ) self.assertGreater(tokens[-3] , tokens[-4] ) self.assertEqual(tokens[0] , tokenizer.eos_token_id ) self.assertEqual(tokens[-3] , tokenizer.pad_token_id ) def _UpperCAmelCase ( self ) -> Dict: pass def _UpperCAmelCase ( self ) -> Optional[int]: pass def _UpperCAmelCase ( self ) -> Optional[int]: a__ = self.get_tokenizer() a__ = tokenizer.tokenize('''This is a test''' ) # fmt: off self.assertListEqual(SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, '''T''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''a''', SPIECE_UNDERLINE, '''t''', '''e''', '''s''', '''t'''] ) # fmt: on self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) , [4, 3_2, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 7, 4, 6, 5, 1_2, 6] , ) a__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''92000''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) a__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE ) # fmt: off self.assertListEqual(SCREAMING_SNAKE_CASE , [4, 3_0, 4, 2_0, 7, 1_2, 4, 2_5, 8, 1_3, 9, 4, 1_0, 9, 4, 3, 2_3, 4, 7, 9, 1_4, 4, 6, 1_1, 1_0, 1_2, 4, 1_0, 1_2, 4, 1_9, 7, 1_5, 1_2, 7_3, 2_6] ) # fmt: on a__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE ) self.assertListEqual( SCREAMING_SNAKE_CASE , [SPIECE_UNDERLINE, '''I''', SPIECE_UNDERLINE, '''w''', '''a''', '''s''', SPIECE_UNDERLINE, '''b''', '''o''', '''r''', '''n''', SPIECE_UNDERLINE, '''i''', '''n''', SPIECE_UNDERLINE, '''<unk>''', ''',''', SPIECE_UNDERLINE, '''a''', '''n''', '''d''', SPIECE_UNDERLINE, '''t''', '''h''', '''i''', '''s''', SPIECE_UNDERLINE, '''i''', '''s''', SPIECE_UNDERLINE, '''f''', '''a''', '''l''', '''s''', '''é''', '''.'''] ) @slow def _UpperCAmelCase ( self ) -> List[str]: # Use custom sequence because this tokenizer does not handle numbers. a__ = [ '''Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides ''' '''general-purpose architectures (BERT, GPT, RoBERTa, XLM, DistilBert, XLNet...) for Natural ''' '''Language Understanding (NLU) and Natural Language Generation (NLG) with over thirty-two pretrained ''' '''models in one hundred plus languages and deep interoperability between Jax, PyTorch and TensorFlow.''', '''BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly ''' '''conditioning on both left and right context in all layers.''', '''The quick brown fox jumps over the lazy dog.''', ] # fmt: off a__ = { '''input_ids''': [ [4, 3_2, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 6_4, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_5, 2_2, 4, 2_8, 9, 8, 2_0, 9, 4, 7, 1_2, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 6, 1_3, 7, 9, 1_2, 1_9, 8, 1_3, 1_8, 5, 1_3, 1_2, 4, 7, 9, 1_4, 4, 2_4, 2_2, 6, 8, 1_3, 1_7, 1_1, 3_9, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 3_9, 2_5, 5, 1_3, 6, 6_3, 4, 2_4, 1_3, 8, 2_7, 1_0, 1_4, 5, 1_2, 4, 2_1, 5, 9, 5, 1_3, 7, 1_5, 3_9, 2_4, 1_6, 1_3, 2_4, 8, 1_2, 5, 4, 7, 1_3, 1_7, 1_1, 1_0, 6, 5, 1_7, 6, 1_6, 1_3, 5, 1_2, 4, 6_4, 4_0, 4_7, 5_4, 3_2, 2_3, 4, 5_3, 4_9, 3_2, 2_3, 4, 5_4, 8, 4_0, 4_7, 5_4, 3_2, 7, 2_3, 4, 6_9, 5_2, 4_3, 2_3, 4, 5_1, 1_0, 1_2, 6, 1_0, 1_5, 4_0, 5, 1_3, 6, 2_3, 4, 6_9, 5_2, 4_8, 5, 6, 2_6, 2_6, 2_6, 6_3, 4, 1_9, 8, 1_3, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 6_1, 9, 1_4, 5, 1_3, 1_2, 6, 7, 9, 1_4, 1_0, 9, 2_1, 4, 6_4, 4_8, 5_2, 6_1, 6_3, 4, 7, 9, 1_4, 4, 4_8, 7, 6, 1_6, 1_3, 7, 1_5, 4, 5_2, 7, 9, 2_1, 1_6, 7, 2_1, 5, 4, 5_3, 5, 9, 5, 1_3, 7, 6, 1_0, 8, 9, 4, 6_4, 4_8, 5_2, 5_3, 6_3, 4, 2_0, 1_0, 6, 1_1, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 1_0, 1_3, 6, 2_2, 3_9, 6, 2_0, 8, 4, 2_4, 1_3, 5, 6, 1_3, 7, 1_0, 9, 5, 1_4, 4, 1_8, 8, 1_4, 5, 1_5, 1_2, 4, 1_0, 9, 4, 8, 9, 5, 4, 1_1, 1_6, 9, 1_4, 1_3, 5, 1_4, 4, 2_4, 1_5, 1_6, 1_2, 4, 1_5, 7, 9, 2_1, 1_6, 7, 2_1, 5, 1_2, 4, 7, 9, 1_4, 4, 1_4, 5, 5, 2_4, 4, 1_0, 9, 6, 5, 1_3, 8, 2_4, 5, 1_3, 7, 2_5, 1_0, 1_5, 1_0, 6, 2_2, 4, 2_5, 5, 6, 2_0, 5, 5, 9, 4, 5_8, 7, 3_7, 2_3, 4, 4_9, 2_2, 3_2, 8, 1_3, 1_7, 1_1, 4, 7, 9, 1_4, 4, 3_2, 5, 9, 1_2, 8, 1_3, 5_5, 1_5, 8, 2_0, 2_6, 2], [4, 4_0, 4_7, 5_4, 3_2, 4, 1_0, 1_2, 4, 1_4, 5, 1_2, 1_0, 2_1, 9, 5, 1_4, 4, 6, 8, 4, 2_4, 1_3, 5, 3_9, 6, 1_3, 7, 1_0, 9, 4, 1_4, 5, 5, 2_4, 4, 2_5, 1_0, 1_4, 1_0, 1_3, 5, 1_7, 6, 1_0, 8, 9, 7, 1_5, 4, 1_3, 5, 2_4, 1_3, 5, 1_2, 5, 9, 6, 7, 6, 1_0, 8, 9, 1_2, 4, 1_9, 1_3, 8, 1_8, 4, 1_6, 9, 1_5, 7, 2_5, 5, 1_5, 5, 1_4, 4, 6, 5, 3_7, 6, 4, 2_5, 2_2, 4, 4_6, 8, 1_0, 9, 6, 1_5, 2_2, 4, 1_7, 8, 9, 1_4, 1_0, 6, 1_0, 8, 9, 1_0, 9, 2_1, 4, 8, 9, 4, 2_5, 8, 6, 1_1, 4, 1_5, 5, 1_9, 6, 4, 7, 9, 1_4, 4, 1_3, 1_0, 2_1, 1_1, 6, 4, 1_7, 8, 9, 6, 5, 3_7, 6, 4, 1_0, 9, 4, 7, 1_5, 1_5, 4, 1_5, 7, 2_2, 5, 1_3, 1_2, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [4, 3_2, 1_1, 5, 4, 4_5, 1_6, 1_0, 1_7, 2_8, 4, 2_5, 1_3, 8, 2_0, 9, 4, 1_9, 8, 3_7, 4, 4_6, 1_6, 1_8, 2_4, 1_2, 4, 8, 2_7, 5, 1_3, 4, 6, 1_1, 5, 4, 1_5, 7, 5_7, 2_2, 4, 1_4, 8, 2_1, 2_6, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], ], '''attention_mask''': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] } # fmt: on self.tokenizer_integration_test_util( expected_encoding=SCREAMING_SNAKE_CASE , model_name='''microsoft/speecht5_asr''' , revision='''c5ef64c71905caeccde0e4462ef3f9077224c524''' , sequences=SCREAMING_SNAKE_CASE , )
148
0
'''simple docstring''' import os import re from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE = logging.get_logger(__name__) SCREAMING_SNAKE_CASE = {"""vocab_file""": """spiece.model"""} SCREAMING_SNAKE_CASE = { """vocab_file""": { """google/bigbird-roberta-base""": """https://huggingface.co/google/bigbird-roberta-base/resolve/main/spiece.model""", """google/bigbird-roberta-large""": ( """https://huggingface.co/google/bigbird-roberta-large/resolve/main/spiece.model""" ), """google/bigbird-base-trivia-itc""": ( """https://huggingface.co/google/bigbird-base-trivia-itc/resolve/main/spiece.model""" ), } } SCREAMING_SNAKE_CASE = { """google/bigbird-roberta-base""": 4_0_9_6, """google/bigbird-roberta-large""": 4_0_9_6, """google/bigbird-base-trivia-itc""": 4_0_9_6, } class UpperCAmelCase_ ( A ): '''simple docstring''' lowercase_ : Optional[Any] = VOCAB_FILES_NAMES lowercase_ : str = PRETRAINED_VOCAB_FILES_MAP lowercase_ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase_ : Union[str, Any] = ["input_ids", "attention_mask"] lowercase_ : List[int] = [] def __init__( self : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : Tuple="<unk>" , snake_case__ : Any="<s>" , snake_case__ : Any="</s>" , snake_case__ : Union[str, Any]="<pad>" , snake_case__ : Optional[Any]="[SEP]" , snake_case__ : Union[str, Any]="[MASK]" , snake_case__ : List[str]="[CLS]" , snake_case__ : Optional[Dict[str, Any]] = None , **snake_case__ : Union[str, Any] , ): '''simple docstring''' UpperCAmelCase__ : List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else bos_token UpperCAmelCase__ : List[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else eos_token UpperCAmelCase__ : Union[str, Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else unk_token UpperCAmelCase__ : Optional[Any] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else pad_token UpperCAmelCase__ : str = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else cls_token UpperCAmelCase__ : List[str] = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else sep_token # Mask token behave like a normal word, i.e. include the space before it UpperCAmelCase__ : int = AddedToken(snake_case__ , lstrip=snake_case__ , rstrip=snake_case__ ) if isinstance(snake_case__ , snake_case__ ) else mask_token UpperCAmelCase__ : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=snake_case__ , eos_token=snake_case__ , unk_token=snake_case__ , pad_token=snake_case__ , sep_token=snake_case__ , mask_token=snake_case__ , cls_token=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) UpperCAmelCase__ : Any = vocab_file UpperCAmelCase__ : Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def UpperCamelCase ( self : Any ): '''simple docstring''' return self.sp_model.get_piece_size() def UpperCamelCase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : List[Any] ): '''simple docstring''' UpperCAmelCase__ : int = self.__dict__.copy() UpperCAmelCase__ : List[str] = None return state def __setstate__( self : str , snake_case__ : Optional[Any] ): '''simple docstring''' UpperCAmelCase__ : int = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): UpperCAmelCase__ : Optional[Any] = {} UpperCAmelCase__ : str = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase ( self : int , snake_case__ : str ): '''simple docstring''' return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def UpperCamelCase ( self : str , snake_case__ : Union[str, Any] ): '''simple docstring''' return self.sp_model.piece_to_id(snake_case__ ) def UpperCamelCase ( self : Any , snake_case__ : Any ): '''simple docstring''' UpperCAmelCase__ : Any = self.sp_model.IdToPiece(snake_case__ ) return token def UpperCamelCase ( self : Any , snake_case__ : List[str] ): '''simple docstring''' UpperCAmelCase__ : int = [] UpperCAmelCase__ : str = "" UpperCAmelCase__ : Union[str, Any] = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(snake_case__ ) + token UpperCAmelCase__ : Optional[int] = True UpperCAmelCase__ : Union[str, Any] = [] else: current_sub_tokens.append(snake_case__ ) UpperCAmelCase__ : Union[str, Any] = False out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def UpperCamelCase ( self : Dict , snake_case__ : List[int] , snake_case__ : bool = False , snake_case__ : bool = None , snake_case__ : bool = True , **snake_case__ : Dict , ): '''simple docstring''' UpperCAmelCase__ : Dict = kwargs.pop("use_source_tokenizer" , snake_case__ ) UpperCAmelCase__ : Optional[Any] = self.convert_ids_to_tokens(snake_case__ , skip_special_tokens=snake_case__ ) # To avoid mixing byte-level and unicode for byte-level BPT # we need to build string separately for added tokens and byte-level tokens # cf. https://github.com/huggingface/transformers/issues/1133 UpperCAmelCase__ : Optional[Any] = [] UpperCAmelCase__ : str = [] for token in filtered_tokens: if skip_special_tokens and token in self.all_special_ids: continue if token in self.added_tokens_encoder: if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) UpperCAmelCase__ : Any = [] sub_texts.append(snake_case__ ) else: current_sub_text.append(snake_case__ ) if current_sub_text: sub_texts.append(self.convert_tokens_to_string(snake_case__ ) ) # Mimic the behavior of the Rust tokenizer: # No space before [MASK] and [SEP] if spaces_between_special_tokens: UpperCAmelCase__ : List[Any] = re.sub(R" (\[(MASK|SEP)\])" , R"\1" , " ".join(snake_case__ ) ) else: UpperCAmelCase__ : Dict = "".join(snake_case__ ) UpperCAmelCase__ : str = ( clean_up_tokenization_spaces if clean_up_tokenization_spaces is not None else self.clean_up_tokenization_spaces ) if clean_up_tokenization_spaces: UpperCAmelCase__ : Union[str, Any] = self.clean_up_tokenization(snake_case__ ) return clean_text else: return text def UpperCamelCase ( self : Optional[Any] , snake_case__ : str , snake_case__ : Optional[str] = None ): '''simple docstring''' if not os.path.isdir(snake_case__ ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase__ : Dict = os.path.join( snake_case__ , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , "wb" ) as fi: UpperCAmelCase__ : int = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,) def UpperCamelCase ( self : Dict , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] UpperCAmelCase__ : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + token_ids_a + sep def UpperCamelCase ( self : Tuple , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None , snake_case__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=snake_case__ , token_ids_a=snake_case__ , already_has_special_tokens=snake_case__ ) if token_ids_a is None: return [1] + ([0] * len(snake_case__ )) + [1] return [1] + ([0] * len(snake_case__ )) + [1] + ([0] * len(snake_case__ )) + [1] def UpperCamelCase ( self : Union[str, Any] , snake_case__ : List[int] , snake_case__ : Optional[List[int]] = None ): '''simple docstring''' UpperCAmelCase__ : str = [self.sep_token_id] UpperCAmelCase__ : int = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1]
199
'''simple docstring''' import math import numpy as np import qiskit from qiskit import Aer, ClassicalRegister, QuantumCircuit, QuantumRegister, execute def snake_case_ ( lowercase__ = 3 ): if isinstance(lowercase__ , lowercase__ ): raise TypeError("number of qubits must be a integer." ) if number_of_qubits <= 0: raise ValueError("number of qubits must be > 0." ) if math.floor(lowercase__ ) != number_of_qubits: raise ValueError("number of qubits must be exact integer." ) if number_of_qubits > 1_0: raise ValueError("number of qubits too large to simulate(>10)." ) UpperCAmelCase__ : Optional[int] = QuantumRegister(lowercase__ , "qr" ) UpperCAmelCase__ : List[Any] = ClassicalRegister(lowercase__ , "cr" ) UpperCAmelCase__ : List[str] = QuantumCircuit(lowercase__ , lowercase__ ) UpperCAmelCase__ : Union[str, Any] = number_of_qubits for i in range(lowercase__ ): quantum_circuit.h(number_of_qubits - i - 1 ) counter -= 1 for j in range(lowercase__ ): quantum_circuit.cp(np.pi / 2 ** (counter - j) , lowercase__ , lowercase__ ) for k in range(number_of_qubits // 2 ): quantum_circuit.swap(lowercase__ , number_of_qubits - k - 1 ) # measure all the qubits quantum_circuit.measure(lowercase__ , lowercase__ ) # simulate with 10000 shots UpperCAmelCase__ : Union[str, Any] = Aer.get_backend("qasm_simulator" ) UpperCAmelCase__ : Optional[int] = execute(lowercase__ , lowercase__ , shots=1_0_0_0_0 ) return job.result().get_counts(lowercase__ ) if __name__ == "__main__": print( F'Total count for quantum fourier transform state is: \ {quantum_fourier_transform(3)}' )
199
1
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_, unittest.TestCase ): '''simple docstring''' _lowerCAmelCase = RoCBertTokenizer _lowerCAmelCase = None _lowerCAmelCase = False _lowerCAmelCase = True _lowerCAmelCase = filter_non_english def __snake_case ( self ): super().setUp() A__ : Optional[Any] = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''你''', '''好''', '''是''', '''谁''', '''a''', '''b''', '''c''', '''d'''] A__ : int = {} A__ : Dict = {} for i, value in enumerate(UpperCamelCase__ ): A__ : int = i A__ : Any = i A__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) A__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_shape_file'''] ) A__ : Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''word_pronunciation_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) with open(self.word_shape_file , '''w''' , encoding='''utf-8''' ) as word_shape_writer: json.dump(UpperCamelCase__ , UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) with open(self.word_pronunciation_file , '''w''' , encoding='''utf-8''' ) as word_pronunciation_writer: json.dump(UpperCamelCase__ , UpperCamelCase__ , ensure_ascii=UpperCamelCase__ ) def __snake_case ( self ): A__ : Optional[Any] = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : Tuple = tokenizer.tokenize('''你好[SEP]你是谁''' ) self.assertListEqual(UpperCamelCase__ , ['''你''', '''好''', '''[SEP]''', '''你''', '''是''', '''谁'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase__ ) , [5, 6, 2, 5, 7, 8] ) def __snake_case ( self ): A__ : Dict = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __snake_case ( self ): A__ : List[str] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : str = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __snake_case ( self ): A__ : str = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : int = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self ): A__ : List[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Any = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , strip_accents=UpperCamelCase__ ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self ): A__ : Dict = RoCBertBasicTokenizer(do_lower_case=UpperCamelCase__ , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __snake_case ( self ): A__ : str = ['''[UNK]''', '''[CLS]''', '''[SEP]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing'''] A__ : Union[str, Any] = {} for i, token in enumerate(UpperCamelCase__ ): A__ : List[str] = i A__ : Dict = RoCBertWordpieceTokenizer(vocab=UpperCamelCase__ , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) def __snake_case ( self ): self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __snake_case ( self ): self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __snake_case ( self ): self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) def __snake_case ( self ): A__ : Tuple = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(UpperCamelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) if self.test_rust_tokenizer: A__ : Optional[int] = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(UpperCamelCase__ ) for t in ['''Test''', '''\xad''', '''test''']] , [['''[UNK]'''], [], ['''[UNK]''']] ) def __snake_case ( self ): for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[int] = F"A, naïve {tokenizer_r.mask_token} AllenNLP sentence." A__ : Dict = tokenizer_r.encode_plus( UpperCamelCase__ , return_attention_mask=UpperCamelCase__ , return_token_type_ids=UpperCamelCase__ , return_offsets_mapping=UpperCamelCase__ , add_special_tokens=UpperCamelCase__ , ) A__ : Tuple = tokenizer_r.do_lower_case if hasattr(UpperCamelCase__ , '''do_lower_case''' ) else False A__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''A'''), ((1, 2), ''','''), ((3, 5), '''na'''), ((5, 6), '''##ï'''), ((6, 8), '''##ve'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''Allen'''), ((21, 23), '''##NL'''), ((23, 24), '''##P'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), '''a'''), ((1, 2), ''','''), ((3, 8), '''naive'''), ((9, 15), tokenizer_r.mask_token), ((16, 21), '''allen'''), ((21, 23), '''##nl'''), ((23, 24), '''##p'''), ((25, 33), '''sentence'''), ((33, 34), '''.'''), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens['''input_ids'''] ) ) self.assertEqual([e[0] for e in expected_results] , tokens['''offset_mapping'''] ) def __snake_case ( self ): A__ : int = ['''的''', '''人''', '''有'''] A__ : Tuple = ''''''.join(UpperCamelCase__ ) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): A__ : List[str] = True A__ : List[str] = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Any = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : List[str] = tokenizer_p.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : str = tokenizer_r.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Union[str, Any] = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) A__ : int = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) A__ : Optional[int] = False A__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Tuple = self.tokenizer_class.from_pretrained(UpperCamelCase__ , **UpperCamelCase__ ) A__ : Any = tokenizer_r.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer_p.encode(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer_r.convert_ids_to_tokens(UpperCamelCase__ ) A__ : str = tokenizer_p.convert_ids_to_tokens(UpperCamelCase__ ) # it is expected that only the first Chinese character is not preceded by "##". A__ : Tuple = [ F"##{token}" if idx != 0 else token for idx, token in enumerate(UpperCamelCase__ ) ] self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) @slow def __snake_case ( self ): A__ : int = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file ) A__ : str = tokenizer.encode('''你好''' , add_special_tokens=UpperCamelCase__ ) A__ : List[str] = tokenizer.encode('''你是谁''' , add_special_tokens=UpperCamelCase__ ) A__ : Dict = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ ) A__ : Optional[int] = tokenizer.build_inputs_with_special_tokens(UpperCamelCase__ , UpperCamelCase__ ) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def __snake_case ( self ): A__ : Tuple = self.get_tokenizers(do_lower_case=UpperCamelCase__ ) for tokenizer in tokenizers: with self.subTest(F"{tokenizer.__class__.__name__}" ): A__ : Union[str, Any] = '''你好,你是谁''' A__ : Optional[int] = tokenizer.tokenize(UpperCamelCase__ ) A__ : Optional[Any] = tokenizer.convert_tokens_to_ids(UpperCamelCase__ ) A__ : int = tokenizer.convert_tokens_to_shape_ids(UpperCamelCase__ ) A__ : Any = tokenizer.convert_tokens_to_pronunciation_ids(UpperCamelCase__ ) A__ : Dict = tokenizer.prepare_for_model( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) A__ : Any = tokenizer.encode_plus(UpperCamelCase__ , add_special_tokens=UpperCamelCase__ ) self.assertEqual(UpperCamelCase__ , UpperCamelCase__ )
700
from dataclasses import asdict, dataclass from typing import Optional from ...configuration_utils import PretrainedConfig from ...utils import logging _SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) # TODO Update this _SCREAMING_SNAKE_CASE : Optional[int] = { 'facebook/esm-1b': 'https://huggingface.co/facebook/esm-1b/resolve/main/config.json', # See all ESM models at https://huggingface.co/models?filter=esm } class UpperCamelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' _lowerCAmelCase = "esm" def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=768 , UpperCamelCase__=12 , UpperCamelCase__=12 , UpperCamelCase__=3072 , UpperCamelCase__=0.1 , UpperCamelCase__=0.1 , UpperCamelCase__=1026 , UpperCamelCase__=0.0_2 , UpperCamelCase__=1e-12 , UpperCamelCase__="absolute" , UpperCamelCase__=True , UpperCamelCase__=None , UpperCamelCase__=False , UpperCamelCase__=False , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ , ): super().__init__(pad_token_id=UpperCamelCase__ , mask_token_id=UpperCamelCase__ , **UpperCamelCase__ ) A__ : Optional[Any] = vocab_size A__ : int = hidden_size A__ : List[str] = num_hidden_layers A__ : Tuple = num_attention_heads A__ : str = intermediate_size A__ : List[str] = hidden_dropout_prob A__ : Optional[Any] = attention_probs_dropout_prob A__ : int = max_position_embeddings A__ : List[str] = initializer_range A__ : List[Any] = layer_norm_eps A__ : int = position_embedding_type A__ : Optional[Any] = use_cache A__ : Optional[int] = emb_layer_norm_before A__ : List[str] = token_dropout A__ : Tuple = is_folding_model if is_folding_model: if esmfold_config is None: logger.info('''No esmfold_config supplied for folding model, using default values.''' ) A__ : List[Any] = EsmFoldConfig() elif isinstance(UpperCamelCase__ , UpperCamelCase__ ): A__ : Optional[int] = EsmFoldConfig(**UpperCamelCase__ ) A__ : int = esmfold_config if vocab_list is None: logger.warning('''No vocab_list supplied for folding model, assuming the ESM-2 vocabulary!''' ) A__ : Any = get_default_vocab_list() else: A__ : Dict = vocab_list else: A__ : Optional[Any] = None A__ : Tuple = None if self.esmfold_config is not None and getattr(self.esmfold_config , '''use_esm_attn_map''' , UpperCamelCase__ ): raise ValueError('''The HuggingFace port of ESMFold does not support use_esm_attn_map at this time!''' ) def __snake_case ( self ): A__ : Optional[int] = super().to_dict() if isinstance(self.esmfold_config , UpperCamelCase__ ): A__ : Dict = self.esmfold_config.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = None _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = False _lowerCAmelCase = 0 _lowerCAmelCase = True _lowerCAmelCase = False _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.trunk is None: A__ : Tuple = TrunkConfig() elif isinstance(self.trunk , UpperCamelCase__ ): A__ : List[Any] = TrunkConfig(**self.trunk ) def __snake_case ( self ): A__ : Optional[int] = asdict(self ) A__ : int = self.trunk.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 48 _lowerCAmelCase = 1_024 _lowerCAmelCase = 128 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 32 _lowerCAmelCase = 0 _lowerCAmelCase = 0 _lowerCAmelCase = False _lowerCAmelCase = 4 _lowerCAmelCase = 128 _lowerCAmelCase = None def __snake_case ( self ): if self.structure_module is None: A__ : str = StructureModuleConfig() elif isinstance(self.structure_module , UpperCamelCase__ ): A__ : str = StructureModuleConfig(**self.structure_module ) if self.max_recycles <= 0: raise ValueError(F"`max_recycles` should be positive, got {self.max_recycles}." ) if self.sequence_state_dim % self.sequence_state_dim != 0: raise ValueError( '''`sequence_state_dim` should be a round multiple of `sequence_state_dim`, got''' F" {self.sequence_state_dim} and {self.sequence_state_dim}." ) if self.pairwise_state_dim % self.pairwise_state_dim != 0: raise ValueError( '''`pairwise_state_dim` should be a round multiple of `pairwise_state_dim`, got''' F" {self.pairwise_state_dim} and {self.pairwise_state_dim}." ) A__ : Tuple = self.sequence_state_dim // self.sequence_head_width A__ : int = self.pairwise_state_dim // self.pairwise_head_width if self.sequence_state_dim != sequence_num_heads * self.sequence_head_width: raise ValueError( '''`sequence_state_dim` should be equal to `sequence_num_heads * sequence_head_width, got''' F" {self.sequence_state_dim} != {sequence_num_heads} * {self.sequence_head_width}." ) if self.pairwise_state_dim != pairwise_num_heads * self.pairwise_head_width: raise ValueError( '''`pairwise_state_dim` should be equal to `pairwise_num_heads * pairwise_head_width, got''' F" {self.pairwise_state_dim} != {pairwise_num_heads} * {self.pairwise_head_width}." ) if self.pairwise_state_dim % 2 != 0: raise ValueError(F"`pairwise_state_dim` should be even, got {self.pairwise_state_dim}." ) if self.dropout >= 0.4: raise ValueError(F"`dropout` should not be greater than 0.4, got {self.dropout}." ) def __snake_case ( self ): A__ : List[Any] = asdict(self ) A__ : Optional[int] = self.structure_module.to_dict() return output @dataclass class UpperCamelCase__ : '''simple docstring''' _lowerCAmelCase = 384 _lowerCAmelCase = 128 _lowerCAmelCase = 16 _lowerCAmelCase = 128 _lowerCAmelCase = 12 _lowerCAmelCase = 4 _lowerCAmelCase = 8 _lowerCAmelCase = 0.1 _lowerCAmelCase = 8 _lowerCAmelCase = 1 _lowerCAmelCase = 2 _lowerCAmelCase = 7 _lowerCAmelCase = 10 _lowerCAmelCase = 1e-8 _lowerCAmelCase = 1e5 def __snake_case ( self ): return asdict(self ) def SCREAMING_SNAKE_CASE ( ) -> Union[str, Any]: """simple docstring""" return ( "<cls>", "<pad>", "<eos>", "<unk>", "L", "A", "G", "V", "S", "E", "R", "T", "I", "D", "P", "K", "Q", "N", "F", "Y", "M", "H", "W", "C", "X", "B", "U", "Z", "O", ".", "-", "<null_1>", "<mask>", )
55
0
'''simple docstring''' import json import os import re import unittest from transformers import CodeGenTokenizer, CodeGenTokenizerFast from transformers.models.codegen.tokenization_codegen import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowercase__ ( snake_case_, unittest.TestCase ): '''simple docstring''' _snake_case = CodeGenTokenizer _snake_case = CodeGenTokenizerFast _snake_case = True _snake_case = {'''add_prefix_space''': True} _snake_case = False def UpperCAmelCase ( self ): '''simple docstring''' super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt UpperCamelCase = [ '''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''\u0120''', '''\u0120l''', '''\u0120n''', '''\u0120lo''', '''\u0120low''', '''er''', '''\u0120lowest''', '''\u0120newer''', '''\u0120wider''', '''<unk>''', '''<|endoftext|>''', ] UpperCamelCase = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) UpperCamelCase = ['''#version: 0.2''', '''\u0120 l''', '''\u0120l o''', '''\u0120lo w''', '''e r''', ''''''] UpperCamelCase = {'''unk_token''': '''<unk>'''} UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) UpperCamelCase = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''merges_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + '''\n''' ) with open(self.merges_file , '''w''' , encoding='''utf-8''' ) as fp: fp.write('''\n'''.join(lowerCamelCase__ ) ) def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase ( self , **lowerCamelCase__ ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return CodeGenTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def UpperCAmelCase ( self , lowerCamelCase__ ): '''simple docstring''' UpperCamelCase = '''lower newer''' UpperCamelCase = '''lower newer''' return input_text, output_text def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = CodeGenTokenizer(self.vocab_file , self.merges_file , **self.special_tokens_map ) UpperCamelCase = '''lower newer''' UpperCamelCase = ['''\u0120low''', '''er''', '''\u0120''', '''n''', '''e''', '''w''', '''er'''] UpperCamelCase = tokenizer.tokenize(lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) UpperCamelCase = tokens + [tokenizer.unk_token] UpperCamelCase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' if not self.test_rust_tokenizer: return UpperCamelCase = self.get_tokenizer() UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase__ ) UpperCamelCase = '''lower newer''' # Testing tokenization UpperCamelCase = tokenizer.tokenize(lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) UpperCamelCase = rust_tokenizer.tokenize(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing conversion to ids without special tokens UpperCamelCase = tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase__ , add_special_tokens=lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing conversion to ids with special tokens UpperCamelCase = self.get_rust_tokenizer(add_prefix_space=lowerCamelCase__ ) UpperCamelCase = tokenizer.encode(lowerCamelCase__ , add_prefix_space=lowerCamelCase__ ) UpperCamelCase = rust_tokenizer.encode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ ) # Testing the unknown token UpperCamelCase = tokens + [rust_tokenizer.unk_token] UpperCamelCase = [1_4, 1_5, 1_0, 9, 3, 2, 1_5, 1_9] self.assertListEqual(rust_tokenizer.convert_tokens_to_ids(lowerCamelCase__ ) , lowerCamelCase__ ) def UpperCAmelCase ( self , *lowerCamelCase__ , **lowerCamelCase__ ): '''simple docstring''' pass def UpperCAmelCase ( self , lowerCamelCase__=1_5 ): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): UpperCamelCase = self.rust_tokenizer_class.from_pretrained(lowerCamelCase__ , **lowerCamelCase__ ) # Simple input UpperCamelCase = '''This is a simple input''' UpperCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCamelCase = ('''This is a simple input''', '''This is a pair''') UpperCamelCase = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' ) # Simple input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' ) # Simple input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' ) # Pair input self.assertRaises(lowerCamelCase__ , tokenizer_r.encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' ) # Pair input self.assertRaises( lowerCamelCase__ , tokenizer_r.batch_encode_plus , lowerCamelCase__ , max_length=lowerCamelCase__ , padding='''max_length''' , ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , pad_token='''<pad>''' ) # Simple input UpperCamelCase = '''This is a simple input''' UpperCamelCase = ['''This is a simple input looooooooong''', '''This is a simple input'''] UpperCamelCase = ('''This is a simple input''', '''This is a pair''') UpperCamelCase = [ ('''This is a simple input loooooong''', '''This is a simple input'''), ('''This is a simple pair loooooong''', '''This is a simple pair'''), ] UpperCamelCase = tokenizer.pad_token_id UpperCamelCase = tokenizer(lowerCamelCase__ , padding='''max_length''' , max_length=3_0 , return_tensors='''np''' ) UpperCamelCase = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , truncate=lowerCamelCase__ , return_tensors='''np''' ) UpperCamelCase = tokenizer(*lowerCamelCase__ , padding='''max_length''' , max_length=6_0 , return_tensors='''np''' ) UpperCamelCase = tokenizer(lowerCamelCase__ , padding=lowerCamelCase__ , truncate=lowerCamelCase__ , return_tensors='''np''' ) # s # test single string max_length padding self.assertEqual(out_s['''input_ids'''].shape[-1] , 3_0 ) self.assertTrue(pad_token_id in out_s['''input_ids'''] ) self.assertTrue(0 in out_s['''attention_mask'''] ) # s2 # test automatic padding self.assertEqual(out_sa['''input_ids'''].shape[-1] , 3_3 ) # long slice doesn't have padding self.assertFalse(pad_token_id in out_sa['''input_ids'''][0] ) self.assertFalse(0 in out_sa['''attention_mask'''][0] ) # short slice does have padding self.assertTrue(pad_token_id in out_sa['''input_ids'''][1] ) self.assertTrue(0 in out_sa['''attention_mask'''][1] ) # p # test single pair max_length padding self.assertEqual(out_p['''input_ids'''].shape[-1] , 6_0 ) self.assertTrue(pad_token_id in out_p['''input_ids'''] ) self.assertTrue(0 in out_p['''attention_mask'''] ) # p2 # test automatic padding pair self.assertEqual(out_pa['''input_ids'''].shape[-1] , 5_2 ) # long slice pair doesn't have padding self.assertFalse(pad_token_id in out_pa['''input_ids'''][0] ) self.assertFalse(0 in out_pa['''attention_mask'''][0] ) # short slice pair does have padding self.assertTrue(pad_token_id in out_pa['''input_ids'''][1] ) self.assertTrue(0 in out_pa['''attention_mask'''][1] ) def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = '''$$$''' UpperCamelCase = CodeGenTokenizer.from_pretrained(self.tmpdirname , bos_token=lowerCamelCase__ , add_bos_token=lowerCamelCase__ ) UpperCamelCase = '''This is a simple input''' UpperCamelCase = ['''This is a simple input 1''', '''This is a simple input 2'''] UpperCamelCase = tokenizer.bos_token_id UpperCamelCase = tokenizer(lowerCamelCase__ ) UpperCamelCase = tokenizer(lowerCamelCase__ ) self.assertEqual(out_s.input_ids[0] , lowerCamelCase__ ) self.assertTrue(all(o[0] == bos_token_id for o in out_sa.input_ids ) ) UpperCamelCase = tokenizer.decode(out_s.input_ids ) UpperCamelCase = tokenizer.batch_decode(out_sa.input_ids ) self.assertEqual(decode_s.split()[0] , lowerCamelCase__ ) self.assertTrue(all(d.split()[0] == bos_token for d in decode_sa ) ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = CodeGenTokenizer.from_pretrained('''Salesforce/codegen-350M-mono''' ) UpperCamelCase = '''\nif len_a > len_b:\n result = a\nelse:\n result = b\n\n\n\n#''' UpperCamelCase = '''\nif len_a > len_b: result = a\nelse: result = b''' UpperCamelCase = tokenizer.encode(lowerCamelCase__ ) UpperCamelCase = ['''^#''', re.escape('''<|endoftext|>''' ), '''^\'\'\'''', '''^"""''', '''\n\n\n'''] UpperCamelCase = tokenizer.decode(lowerCamelCase__ , truncate_before_pattern=lowerCamelCase__ ) self.assertEqual(lowerCamelCase__ , lowerCamelCase__ ) def UpperCAmelCase ( self ): '''simple docstring''' pass
212
'''simple docstring''' import pytest from datasets.splits import SplitDict, SplitInfo from datasets.utils.py_utils import asdict @pytest.mark.parametrize( '''split_dict''', [ SplitDict(), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=1337, num_examples=42, dataset_name='''my_dataset''')}), SplitDict({'''train''': SplitInfo(name='''train''', num_bytes=1337, num_examples=42)}), SplitDict({'''train''': SplitInfo()}), ], ) def __snake_case ( _UpperCAmelCase : SplitDict): UpperCamelCase = split_dict._to_yaml_list() assert len(_UpperCAmelCase) == len(_UpperCAmelCase) UpperCamelCase = SplitDict._from_yaml_list(_UpperCAmelCase) for split_name, split_info in split_dict.items(): # dataset_name field is deprecated, and is therefore not part of the YAML dump UpperCamelCase = None # the split name of split_dict takes over the name of the split info object UpperCamelCase = split_name assert split_dict == reloaded @pytest.mark.parametrize( '''split_info''', [SplitInfo(), SplitInfo(dataset_name=_UpperCAmelCase), SplitInfo(dataset_name='''my_dataset''')]) def __snake_case ( _UpperCAmelCase : Dict): # For backward compatibility, we need asdict(split_dict) to return split info dictrionaries with the "dataset_name" # field even if it's deprecated. This way old versionso of `datasets` can still reload dataset_infos.json files UpperCamelCase = asdict(SplitDict({'''train''': split_info})) assert "dataset_name" in split_dict_asdict["train"] assert split_dict_asdict["train"]["dataset_name"] == split_info.dataset_name
212
1
import math from collections.abc import Callable def snake_case (__lowercase , __lowercase , __lowercase ) -> float: '''simple docstring''' _snake_case : float = xa _snake_case : float = xa while True: if x_n == x_na or function(__lowercase ) == function(__lowercase ): raise ZeroDivisionError("float division by zero, could not find root" ) _snake_case : float = x_na - ( function(__lowercase ) / ((function(__lowercase ) - function(__lowercase )) / (x_na - x_n)) ) if abs(x_na - x_na ) < 10**-5: return x_na _snake_case : Optional[int] = x_na _snake_case : int = x_na def snake_case (__lowercase ) -> float: '''simple docstring''' return math.pow(__lowercase , 3 ) - (2 * x) - 5 if __name__ == "__main__": print(intersection(f, 3, 3.5))
580
def snake_case (__lowercase , __lowercase , __lowercase ) -> list: '''simple docstring''' _snake_case : int = len(__lowercase ) _snake_case : int = [[0] * n for i in range(__lowercase )] for i in range(__lowercase ): _snake_case : str = y_points[i] for i in range(2 , __lowercase ): for j in range(__lowercase , __lowercase ): _snake_case : Union[str, Any] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
580
1
'''simple docstring''' from typing import TYPE_CHECKING from ..utils import _LazyModule lowerCAmelCase__ = { '''config''': [ '''EXTERNAL_DATA_FORMAT_SIZE_LIMIT''', '''OnnxConfig''', '''OnnxConfigWithPast''', '''OnnxSeq2SeqConfigWithPast''', '''PatchingSpec''', ], '''convert''': ['''export''', '''validate_model_outputs'''], '''features''': ['''FeaturesManager'''], '''utils''': ['''ParameterFormat''', '''compute_serialized_parameters_size'''], } if TYPE_CHECKING: from .config import ( EXTERNAL_DATA_FORMAT_SIZE_LIMIT, OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast, PatchingSpec, ) from .convert import export, validate_model_outputs from .features import FeaturesManager from .utils import ParameterFormat, compute_serialized_parameters_size else: import sys lowerCAmelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
41
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tensorflow_text_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCAmelCase = { '''configuration_bert''': ['''BERT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BertConfig''', '''BertOnnxConfig'''], '''tokenization_bert''': ['''BasicTokenizer''', '''BertTokenizer''', '''WordpieceTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''BertTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BertForMaskedLM''', '''BertForMultipleChoice''', '''BertForNextSentencePrediction''', '''BertForPreTraining''', '''BertForQuestionAnswering''', '''BertForSequenceClassification''', '''BertForTokenClassification''', '''BertLayer''', '''BertLMHeadModel''', '''BertModel''', '''BertPreTrainedModel''', '''load_tf_weights_in_bert''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFBertEmbeddings''', '''TFBertForMaskedLM''', '''TFBertForMultipleChoice''', '''TFBertForNextSentencePrediction''', '''TFBertForPreTraining''', '''TFBertForQuestionAnswering''', '''TFBertForSequenceClassification''', '''TFBertForTokenClassification''', '''TFBertLMHeadModel''', '''TFBertMainLayer''', '''TFBertModel''', '''TFBertPreTrainedModel''', ] try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = ['''TFBertTokenizer'''] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxBertForCausalLM''', '''FlaxBertForMaskedLM''', '''FlaxBertForMultipleChoice''', '''FlaxBertForNextSentencePrediction''', '''FlaxBertForPreTraining''', '''FlaxBertForQuestionAnswering''', '''FlaxBertForSequenceClassification''', '''FlaxBertForTokenClassification''', '''FlaxBertModel''', '''FlaxBertPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_bert import BERT_PRETRAINED_CONFIG_ARCHIVE_MAP, BertConfig, BertOnnxConfig from .tokenization_bert import BasicTokenizer, BertTokenizer, WordpieceTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_fast import BertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bert import ( BERT_PRETRAINED_MODEL_ARCHIVE_LIST, BertForMaskedLM, BertForMultipleChoice, BertForNextSentencePrediction, BertForPreTraining, BertForQuestionAnswering, BertForSequenceClassification, BertForTokenClassification, BertLayer, BertLMHeadModel, BertModel, BertPreTrainedModel, load_tf_weights_in_bert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_bert import ( TF_BERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFBertEmbeddings, TFBertForMaskedLM, TFBertForMultipleChoice, TFBertForNextSentencePrediction, TFBertForPreTraining, TFBertForQuestionAnswering, TFBertForSequenceClassification, TFBertForTokenClassification, TFBertLMHeadModel, TFBertMainLayer, TFBertModel, TFBertPreTrainedModel, ) try: if not is_tensorflow_text_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bert_tf import TFBertTokenizer try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_bert import ( FlaxBertForCausalLM, FlaxBertForMaskedLM, FlaxBertForMultipleChoice, FlaxBertForNextSentencePrediction, FlaxBertForPreTraining, FlaxBertForQuestionAnswering, FlaxBertForSequenceClassification, FlaxBertForTokenClassification, FlaxBertModel, FlaxBertPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
0
import collections import importlib.util import os import re from pathlib import Path UpperCAmelCase_ ="""src/transformers""" # Matches is_xxx_available() UpperCAmelCase_ =re.compile(R"""is\_([a-z_]*)_available()""") # Catches a one-line _import_struct = {xxx} UpperCAmelCase_ =re.compile(R"""^_import_structure\s+=\s+\{([^\}]+)\}""") # Catches a line with a key-values pattern: "bla": ["foo", "bar"] UpperCAmelCase_ =re.compile(R"""\s+\"\S*\":\s+\[([^\]]*)\]""") # Catches a line if not is_foo_available UpperCAmelCase_ =re.compile(R"""^\s*if\s+not\s+is\_[a-z_]*\_available\(\)""") # Catches a line _import_struct["bla"].append("foo") UpperCAmelCase_ =re.compile(R"""^\s*_import_structure\[\"\S*\"\]\.append\(\"(\S*)\"\)""") # Catches a line _import_struct["bla"].extend(["foo", "bar"]) or _import_struct["bla"] = ["foo", "bar"] UpperCAmelCase_ =re.compile(R"""^\s*_import_structure\[\S*\](?:\.extend\(|\s*=\s+)\[([^\]]*)\]""") # Catches a line with an object between quotes and a comma: "MyModel", UpperCAmelCase_ =re.compile("""^\s+\"([^\"]+)\",""") # Catches a line with objects between brackets only: ["foo", "bar"], UpperCAmelCase_ =re.compile("""^\s+\[([^\]]+)\]""") # Catches a line with from foo import bar, bla, boo UpperCAmelCase_ =re.compile(R"""\s+from\s+\S*\s+import\s+([^\(\s].*)\n""") # Catches a line with try: UpperCAmelCase_ =re.compile(R"""^\s*try:""") # Catches a line with else: UpperCAmelCase_ =re.compile(R"""^\s*else:""") def UpperCAmelCase ( _snake_case ): if _re_test_backend.search(_snake_case ) is None: return None lowerCAmelCase = [b[0] for b in _re_backend.findall(_snake_case )] backends.sort() return "_and_".join(_snake_case ) def UpperCAmelCase ( _snake_case ): with open(_snake_case , '''r''' , encoding='''utf-8''' , newline='''\n''' ) as f: lowerCAmelCase = f.readlines() lowerCAmelCase = 0 while line_index < len(_snake_case ) and not lines[line_index].startswith('''_import_structure = {''' ): line_index += 1 # If this is a traditional init, just return. if line_index >= len(_snake_case ): return None # First grab the objects without a specific backend in _import_structure lowerCAmelCase = [] while not lines[line_index].startswith('''if TYPE_CHECKING''' ) and find_backend(lines[line_index] ) is None: lowerCAmelCase = lines[line_index] # If we have everything on a single line, let's deal with it. if _re_one_line_import_struct.search(_snake_case ): lowerCAmelCase = _re_one_line_import_struct.search(_snake_case ).groups()[0] lowerCAmelCase = re.findall('''\[([^\]]+)\]''' , _snake_case ) for imp in imports: objects.extend([obj[1:-1] for obj in imp.split(''', ''' )] ) line_index += 1 continue lowerCAmelCase = _re_import_struct_key_value.search(_snake_case ) if single_line_import_search is not None: lowerCAmelCase = [obj[1:-1] for obj in single_line_import_search.groups()[0].split(''', ''' ) if len(_snake_case ) > 0] objects.extend(_snake_case ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) line_index += 1 lowerCAmelCase = {'''none''': objects} # Let's continue with backend-specific objects in _import_structure while not lines[line_index].startswith('''if TYPE_CHECKING''' ): # If the line is an if not is_backend_available, we grab all objects associated. lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 4 ): lowerCAmelCase = lines[line_index] if _re_import_struct_add_one.search(_snake_case ) is not None: objects.append(_re_import_struct_add_one.search(_snake_case ).groups()[0] ) elif _re_import_struct_add_many.search(_snake_case ) is not None: lowerCAmelCase = _re_import_struct_add_many.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_between_brackets.search(_snake_case ) is not None: lowerCAmelCase = _re_between_brackets.search(_snake_case ).groups()[0].split(''', ''' ) lowerCAmelCase = [obj[1:-1] for obj in imports if len(_snake_case ) > 0] objects.extend(_snake_case ) elif _re_quote_object.search(_snake_case ) is not None: objects.append(_re_quote_object.search(_snake_case ).groups()[0] ) elif line.startswith(''' ''' * 8 + '''"''' ): objects.append(line[9:-3] ) elif line.startswith(''' ''' * 12 + '''"''' ): objects.append(line[13:-3] ) line_index += 1 lowerCAmelCase = objects else: line_index += 1 # At this stage we are in the TYPE_CHECKING part, first grab the objects without a specific backend lowerCAmelCase = [] while ( line_index < len(_snake_case ) and find_backend(lines[line_index] ) is None and not lines[line_index].startswith('''else''' ) ): lowerCAmelCase = lines[line_index] lowerCAmelCase = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 lowerCAmelCase = {'''none''': objects} # Let's continue with backend-specific objects while line_index < len(_snake_case ): # If the line is an if is_backend_available, we grab all objects associated. lowerCAmelCase = find_backend(lines[line_index] ) # Check if the backend declaration is inside a try block: if _re_try.search(lines[line_index - 1] ) is None: lowerCAmelCase = None if backend is not None: line_index += 1 # Scroll until we hit the else block of try-except-else while _re_else.search(lines[line_index] ) is None: line_index += 1 line_index += 1 lowerCAmelCase = [] # Until we unindent, add backend objects to the list while len(lines[line_index] ) <= 1 or lines[line_index].startswith(''' ''' * 8 ): lowerCAmelCase = lines[line_index] lowerCAmelCase = _re_import.search(_snake_case ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 12 ): objects.append(line[12:-2] ) line_index += 1 lowerCAmelCase = objects else: line_index += 1 return import_dict_objects, type_hint_objects def UpperCAmelCase ( _snake_case , _snake_case ): def find_duplicates(_snake_case ): return [k for k, v in collections.Counter(_snake_case ).items() if v > 1] if list(import_dict_objects.keys() ) != list(type_hint_objects.keys() ): return ["Both sides of the init do not have the same backends!"] lowerCAmelCase = [] for key in import_dict_objects.keys(): lowerCAmelCase = find_duplicates(import_dict_objects[key] ) if duplicate_imports: errors.append(F"""Duplicate _import_structure definitions for: {duplicate_imports}""" ) lowerCAmelCase = find_duplicates(type_hint_objects[key] ) if duplicate_type_hints: errors.append(F"""Duplicate TYPE_CHECKING objects for: {duplicate_type_hints}""" ) if sorted(set(import_dict_objects[key] ) ) != sorted(set(type_hint_objects[key] ) ): lowerCAmelCase = '''base imports''' if key == '''none''' else F"""{key} backend""" errors.append(F"""Differences for {name}:""" ) for a in type_hint_objects[key]: if a not in import_dict_objects[key]: errors.append(F""" {a} in TYPE_HINT but not in _import_structure.""" ) for a in import_dict_objects[key]: if a not in type_hint_objects[key]: errors.append(F""" {a} in _import_structure but not in TYPE_HINT.""" ) return errors def UpperCAmelCase ( ): lowerCAmelCase = [] for root, _, files in os.walk(_snake_case ): if "__init__.py" in files: lowerCAmelCase = os.path.join(_snake_case , '''__init__.py''' ) lowerCAmelCase = parse_init(_snake_case ) if objects is not None: lowerCAmelCase = analyze_results(*_snake_case ) if len(_snake_case ) > 0: lowerCAmelCase = F"""Problem in {fname}, both halves do not define the same objects.\n{errors[0]}""" failures.append('''\n'''.join(_snake_case ) ) if len(_snake_case ) > 0: raise ValueError('''\n\n'''.join(_snake_case ) ) def UpperCAmelCase ( ): lowerCAmelCase = [] for path, directories, files in os.walk(_snake_case ): for folder in directories: # Ignore private modules if folder.startswith('''_''' ): directories.remove(_snake_case ) continue # Ignore leftovers from branches (empty folders apart from pycache) if len(list((Path(_snake_case ) / folder).glob('''*.py''' ) ) ) == 0: continue lowerCAmelCase = str((Path(_snake_case ) / folder).relative_to(_snake_case ) ) lowerCAmelCase = short_path.replace(os.path.sep , '''.''' ) submodules.append(_snake_case ) for fname in files: if fname == "__init__.py": continue lowerCAmelCase = str((Path(_snake_case ) / fname).relative_to(_snake_case ) ) lowerCAmelCase = short_path.replace('''.py''' , '''''' ).replace(os.path.sep , '''.''' ) if len(submodule.split('''.''' ) ) == 1: submodules.append(_snake_case ) return submodules UpperCAmelCase_ =[ """convert_pytorch_checkpoint_to_tf2""", """modeling_flax_pytorch_utils""", ] def UpperCAmelCase ( ): # This is to make sure the transformers module imported is the one in the repo. lowerCAmelCase = importlib.util.spec_from_file_location( '''transformers''' , os.path.join(_snake_case , '''__init__.py''' ) , submodule_search_locations=[PATH_TO_TRANSFORMERS] , ) lowerCAmelCase = spec.loader.load_module() lowerCAmelCase = [ module for module in get_transformers_submodules() if module not in IGNORE_SUBMODULES and module not in transformers._import_structure.keys() ] if len(_snake_case ) > 0: lowerCAmelCase = '''\n'''.join(F"""- {module}""" for module in module_not_registered ) raise ValueError( '''The following submodules are not properly registered in the main init of Transformers:\n''' F"""{list_of_modules}\n""" '''Make sure they appear somewhere in the keys of `_import_structure` with an empty list as value.''' ) if __name__ == "__main__": check_all_inits() check_submodules()
708
from __future__ import annotations import math from collections import Counter from string import ascii_lowercase def UpperCAmelCase ( _snake_case ): lowerCAmelCase , lowerCAmelCase = analyze_text(_snake_case ) lowerCAmelCase = list(''' ''' + ascii_lowercase ) # what is our total sum of probabilities. lowerCAmelCase = sum(single_char_strings.values() ) # one length string lowerCAmelCase = 0 # for each alpha we go in our dict and if it is in it we calculate entropy for ch in my_alphas: if ch in single_char_strings: lowerCAmelCase = single_char_strings[ch] lowerCAmelCase = my_str / all_sum my_fir_sum += prob * math.loga(_snake_case ) # entropy formula. # print entropy print(F"""{round(-1 * my_fir_sum ):.1f}""" ) # two len string lowerCAmelCase = sum(two_char_strings.values() ) lowerCAmelCase = 0 # for each alpha (two in size) calculate entropy. for cha in my_alphas: for cha in my_alphas: lowerCAmelCase = cha + cha if sequence in two_char_strings: lowerCAmelCase = two_char_strings[sequence] lowerCAmelCase = int(_snake_case ) / all_sum my_sec_sum += prob * math.loga(_snake_case ) # print second entropy print(F"""{round(-1 * my_sec_sum ):.1f}""" ) # print the difference between them print(F"""{round((-1 * my_sec_sum) - (-1 * my_fir_sum) ):.1f}""" ) def UpperCAmelCase ( _snake_case ): lowerCAmelCase = Counter() # type: ignore lowerCAmelCase = Counter() # type: ignore single_char_strings[text[-1]] += 1 # first case when we have space at start. two_char_strings[" " + text[0]] += 1 for i in range(0 , len(_snake_case ) - 1 ): single_char_strings[text[i]] += 1 two_char_strings[text[i : i + 2]] += 1 return single_char_strings, two_char_strings def UpperCAmelCase ( ): import doctest doctest.testmod() # text = ( # "Had repulsive dashwoods suspicion sincerity but advantage now him. Remark " # "easily garret nor nay. Civil those mrs enjoy shy fat merry. You greatest " # "jointure saw horrible. He private he on be imagine suppose. Fertile " # "beloved evident through no service elderly is. Blind there if every no so " # "at. Own neglected you preferred way sincerity delivered his attempted. To " # "of message cottage windows do besides against uncivil. Delightful " # "unreserved impossible few estimating men favourable see entreaties. She " # "propriety immediate was improving. He or entrance humoured likewise " # "moderate. Much nor game son say feel. Fat make met can must form into " # "gate. Me we offending prevailed discovery. " # ) # calculate_prob(text) if __name__ == "__main__": main()
33
0
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, XLMRobertaTokenizer from diffusers import AltDiffusionPipeline, AutoencoderKL, DDIMScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.alt_diffusion.modeling_roberta_series import ( RobertaSeriesConfig, RobertaSeriesModelWithTransformation, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class lowercase ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , unittest.TestCase ): lowerCamelCase : Optional[int] = AltDiffusionPipeline lowerCamelCase : List[Any] = TEXT_TO_IMAGE_PARAMS lowerCamelCase : Tuple = TEXT_TO_IMAGE_BATCH_PARAMS lowerCamelCase : Any = TEXT_TO_IMAGE_IMAGE_PARAMS lowerCamelCase : Dict = TEXT_TO_IMAGE_IMAGE_PARAMS def lowercase__ ( self : Optional[Any] ): torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) SCREAMING_SNAKE_CASE__ : List[str] = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=_lowercase , set_alpha_to_one=_lowercase , ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[int] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) # TODO: address the non-deterministic text encoder (fails for save-load tests) # torch.manual_seed(0) # text_encoder_config = RobertaSeriesConfig( # hidden_size=32, # project_dim=32, # intermediate_size=37, # layer_norm_eps=1e-05, # num_attention_heads=4, # num_hidden_layers=5, # vocab_size=5002, # ) # text_encoder = RobertaSeriesModelWithTransformation(text_encoder_config) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : int = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=50_02 , ) SCREAMING_SNAKE_CASE__ : Dict = CLIPTextModel(_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = XLMRobertaTokenizer.from_pretrained('''hf-internal-testing/tiny-xlm-roberta''' ) SCREAMING_SNAKE_CASE__ : List[str] = 77 SCREAMING_SNAKE_CASE__ : int = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowercase__ ( self : Union[str, Any] , _lowercase : int , _lowercase : List[Any]=0 ): if str(_lowercase ).startswith('''mps''' ): SCREAMING_SNAKE_CASE__ : Tuple = torch.manual_seed(_lowercase ) else: SCREAMING_SNAKE_CASE__ : str = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', } return inputs def lowercase__ ( self : Optional[Any] ): super().test_attention_slicing_forward_pass(expected_max_diff=3E-3 ) def lowercase__ ( self : Dict ): super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : str = self.get_dummy_components() torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Dict = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ : Optional[Any] = RobertaSeriesModelWithTransformation(_lowercase ) SCREAMING_SNAKE_CASE__ : Union[str, Any] = text_encoder SCREAMING_SNAKE_CASE__ : Optional[Any] = AltDiffusionPipeline(**_lowercase ) SCREAMING_SNAKE_CASE__ : Any = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = '''A photo of an astronaut''' SCREAMING_SNAKE_CASE__ : Optional[Any] = alt_pipe(**_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images SCREAMING_SNAKE_CASE__ : Dict = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : List[Any] = np.array( [0.5748162, 0.60447145, 0.48821217, 0.50100636, 0.5431185, 0.45763683, 0.49657696, 0.48132733, 0.47573093] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Tuple = '''cpu''' # ensure determinism for the device-dependent torch.Generator SCREAMING_SNAKE_CASE__ : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE__ : Any = PNDMScheduler(skip_prk_steps=_lowercase ) torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Optional[Any] = RobertaSeriesConfig( hidden_size=32 , project_dim=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=50_02 , ) # TODO: remove after fixing the non-deterministic text encoder SCREAMING_SNAKE_CASE__ : Optional[int] = RobertaSeriesModelWithTransformation(_lowercase ) SCREAMING_SNAKE_CASE__ : str = text_encoder SCREAMING_SNAKE_CASE__ : Any = AltDiffusionPipeline(**_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[int] = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : List[str] = self.get_dummy_inputs(_lowercase ) SCREAMING_SNAKE_CASE__ : int = alt_pipe(**_lowercase ) SCREAMING_SNAKE_CASE__ : Dict = output.images SCREAMING_SNAKE_CASE__ : int = image[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE__ : Union[str, Any] = np.array( [0.51605093, 0.5707241, 0.47365507, 0.50578886, 0.5633877, 0.4642503, 0.5182081, 0.48763484, 0.49084237] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch_gpu class lowercase ( unittest.TestCase ): def lowercase__ ( self : int ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase__ ( self : Dict ): # make sure here that pndm scheduler skips prk SCREAMING_SNAKE_CASE__ : Any = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , safety_checker=_lowercase ) SCREAMING_SNAKE_CASE__ : Any = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : str = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : str = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Any = alt_pipe([prompt] , generator=_lowercase , guidance_scale=6.0 , num_inference_steps=20 , output_type='''np''' ) SCREAMING_SNAKE_CASE__ : List[Any] = output.images SCREAMING_SNAKE_CASE__ : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : int = np.array([0.1010, 0.0800, 0.0794, 0.0885, 0.0843, 0.0762, 0.0769, 0.0729, 0.0586] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase__ ( self : Optional[int] ): SCREAMING_SNAKE_CASE__ : Tuple = DDIMScheduler.from_pretrained('''BAAI/AltDiffusion''' , subfolder='''scheduler''' ) SCREAMING_SNAKE_CASE__ : Optional[Any] = AltDiffusionPipeline.from_pretrained('''BAAI/AltDiffusion''' , scheduler=_lowercase , safety_checker=_lowercase ) SCREAMING_SNAKE_CASE__ : Optional[Any] = alt_pipe.to(_lowercase ) alt_pipe.set_progress_bar_config(disable=_lowercase ) SCREAMING_SNAKE_CASE__ : List[Any] = '''A painting of a squirrel eating a burger''' SCREAMING_SNAKE_CASE__ : Optional[Any] = torch.manual_seed(0 ) SCREAMING_SNAKE_CASE__ : Tuple = alt_pipe([prompt] , generator=_lowercase , num_inference_steps=2 , output_type='''numpy''' ) SCREAMING_SNAKE_CASE__ : Any = output.images SCREAMING_SNAKE_CASE__ : Optional[int] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) SCREAMING_SNAKE_CASE__ : Optional[Any] = np.array([0.4019, 0.4052, 0.3810, 0.4119, 0.3916, 0.3982, 0.4651, 0.4195, 0.5323] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
35
'''simple docstring''' import os from collections.abc import Iterator def __lowerCamelCase ( __lowerCAmelCase : str = "." ) -> Iterator[str]: for dir_path, dir_names, filenames in os.walk(__lowerCAmelCase ): snake_case = [d for d in dir_names if d != """scripts""" and d[0] not in """._"""] for filename in filenames: if filename == "__init__.py": continue if os.path.splitext(__lowerCAmelCase )[1] in (".py", ".ipynb"): yield os.path.join(__lowerCAmelCase , __lowerCAmelCase ).lstrip("""./""" ) def __lowerCamelCase ( __lowerCAmelCase : List[str] ) -> Any: return F'''{i * " "}*''' if i else "\n##" def __lowerCamelCase ( __lowerCAmelCase : str , __lowerCAmelCase : str ) -> str: snake_case = old_path.split(os.sep ) for i, new_part in enumerate(new_path.split(os.sep ) ): if (i + 1 > len(__lowerCAmelCase ) or old_parts[i] != new_part) and new_part: print(F'''{md_prefix(__lowerCAmelCase )} {new_part.replace("_" , " " ).title()}''' ) return new_path def __lowerCamelCase ( __lowerCAmelCase : str = "." ) -> None: snake_case = """""" for filepath in sorted(good_file_paths(__lowerCAmelCase ) ): snake_case , snake_case = os.path.split(__lowerCAmelCase ) if filepath != old_path: snake_case = print_path(__lowerCAmelCase , __lowerCAmelCase ) snake_case = (filepath.count(os.sep ) + 1) if filepath else 0 snake_case = F'''{filepath}/{filename}'''.replace(""" """ , """%20""" ) snake_case = os.path.splitext(filename.replace("""_""" , """ """ ).title() )[0] print(F'''{md_prefix(__lowerCAmelCase )} [{filename}]({url})''' ) if __name__ == "__main__": print_directory_md(".")
369
0
"""simple docstring""" import os from tempfile import TemporaryDirectory from unittest import TestCase import pytest from absl.testing import parameterized from datasets import config from datasets.arrow_reader import HF_GCP_BASE_URL from datasets.builder import DatasetBuilder from datasets.dataset_dict import IterableDatasetDict from datasets.iterable_dataset import IterableDataset from datasets.load import dataset_module_factory, import_main_class from datasets.utils.file_utils import cached_path UpperCAmelCase__ = [ {"dataset": "wikipedia", "config_name": "20220301.de"}, {"dataset": "wikipedia", "config_name": "20220301.en"}, {"dataset": "wikipedia", "config_name": "20220301.fr"}, {"dataset": "wikipedia", "config_name": "20220301.frr"}, {"dataset": "wikipedia", "config_name": "20220301.it"}, {"dataset": "wikipedia", "config_name": "20220301.simple"}, {"dataset": "snli", "config_name": "plain_text"}, {"dataset": "eli5", "config_name": "LFQA_reddit"}, {"dataset": "wiki40b", "config_name": "en"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.compressed"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.nq.no_index"}, {"dataset": "wiki_dpr", "config_name": "psgs_w100.multiset.no_index"}, {"dataset": "natural_questions", "config_name": "default"}, ] def __UpperCAmelCase ( lowercase=True ): """simple docstring""" if with_config: return [ { "testcase_name": d["dataset"] + "/" + d["config_name"], "dataset": d["dataset"], "config_name": d["config_name"], } for d in DATASETS_ON_HF_GCP ] else: return [ {"testcase_name": dataset, "dataset": dataset} for dataset in {d["dataset"] for d in DATASETS_ON_HF_GCP} ] @parameterized.named_parameters(list_datasets_on_hf_gcp_parameters(with_config=__UpperCAmelCase ) ) class a ( __UpperCAmelCase ): _snake_case : str = None _snake_case : List[Any] = None def lowerCAmelCase_ ( self : Any , __lowerCAmelCase : Tuple , __lowerCAmelCase : int ): with TemporaryDirectory() as tmp_dir: _UpperCAmelCase = dataset_module_factory(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) _UpperCAmelCase = import_main_class(dataset_module.module_path , dataset=lowerCAmelCase_ ) _UpperCAmelCase = builder_cls( cache_dir=lowerCAmelCase_ , config_name=lowerCAmelCase_ , hash=dataset_module.hash , ) _UpperCAmelCase = """/""".join( [ HF_GCP_BASE_URL, builder_instance._relative_data_dir(with_hash=lowerCAmelCase_ ).replace(os.sep , """/""" ), config.DATASET_INFO_FILENAME, ] ) _UpperCAmelCase = cached_path(lowerCAmelCase_ , cache_dir=lowerCAmelCase_ ) self.assertTrue(os.path.exists(lowerCAmelCase_ ) ) @pytest.mark.integration def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = tmp_path_factory.mktemp("""test_hf_gcp""" ) / """test_wikipedia_simple""" _UpperCAmelCase = dataset_module_factory("""wikipedia""" ,cache_dir=__lowerCAmelCase ) _UpperCAmelCase = import_main_class(dataset_module.module_path ) _UpperCAmelCase = builder_cls( cache_dir=__lowerCAmelCase ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) # use the HF cloud storage, not the original download_and_prepare that uses apache-beam _UpperCAmelCase = None builder_instance.download_and_prepare() _UpperCAmelCase = builder_instance.as_dataset() assert ds @pytest.mark.integration def __UpperCAmelCase ( lowercase ): """simple docstring""" _UpperCAmelCase = dataset_module_factory("""wikipedia""" ,cache_dir=__lowerCAmelCase ) _UpperCAmelCase = import_main_class(dataset_module.module_path ,dataset=__lowerCAmelCase ) _UpperCAmelCase = builder_cls( cache_dir=__lowerCAmelCase ,config_name="""20220301.frr""" ,hash=dataset_module.hash ,) _UpperCAmelCase = builder_instance.as_streaming_dataset() assert ds assert isinstance(__lowerCAmelCase ,__lowerCAmelCase ) assert "train" in ds assert isinstance(ds["""train"""] ,__lowerCAmelCase ) assert next(iter(ds["""train"""] ) )
712
"""simple docstring""" import torch from torch import nn class a ( nn.Module ): def __init__( self : List[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : str , __lowerCAmelCase : List[Any] , __lowerCAmelCase : int , __lowerCAmelCase : List[Any]=1 , __lowerCAmelCase : Tuple=False ): super().__init__() _UpperCAmelCase = n_token _UpperCAmelCase = d_embed _UpperCAmelCase = d_proj _UpperCAmelCase = cutoffs + [n_token] _UpperCAmelCase = [0] + self.cutoffs _UpperCAmelCase = div_val _UpperCAmelCase = self.cutoffs[0] _UpperCAmelCase = len(self.cutoffs ) - 1 _UpperCAmelCase = self.shortlist_size + self.n_clusters if self.n_clusters > 0: _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) _UpperCAmelCase = nn.Parameter(torch.zeros(self.n_clusters ) ) _UpperCAmelCase = nn.ModuleList() _UpperCAmelCase = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) else: self.out_projs.append(__lowerCAmelCase ) self.out_layers.append(nn.Linear(__lowerCAmelCase , __lowerCAmelCase ) ) else: for i in range(len(self.cutoffs ) ): _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(__lowerCAmelCase , __lowerCAmelCase ) ) ) self.out_layers.append(nn.Linear(__lowerCAmelCase , r_idx - l_idx ) ) _UpperCAmelCase = keep_order def lowerCAmelCase_ ( self : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Dict , __lowerCAmelCase : int , __lowerCAmelCase : Tuple ): if proj is None: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , proj.t().contiguous() ) _UpperCAmelCase = nn.functional.linear(__lowerCAmelCase , __lowerCAmelCase , bias=__lowerCAmelCase ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def lowerCAmelCase_ ( self : List[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[Any]=None , __lowerCAmelCase : Union[str, Any]=False ): if labels is not None: # Shift so that tokens < n predict n _UpperCAmelCase = hidden[..., :-1, :].contiguous() _UpperCAmelCase = labels[..., 1:].contiguous() _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) _UpperCAmelCase = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("""Input and labels should have the same size in the batch dimension.""" ) else: _UpperCAmelCase = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: _UpperCAmelCase = labels != -100 _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = ( -nn.functional.log_softmax(__lowerCAmelCase , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) if labels is None: _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: _UpperCAmelCase = torch.zeros_like(__lowerCAmelCase , dtype=hidden.dtype , device=hidden.device ) _UpperCAmelCase = 0 _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if labels is not None: _UpperCAmelCase = (labels >= l_idx) & (labels < r_idx) _UpperCAmelCase = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue _UpperCAmelCase = labels.index_select(0 , __lowerCAmelCase ) - l_idx _UpperCAmelCase = head_logprob.index_select(0 , __lowerCAmelCase ) _UpperCAmelCase = hidden.index_select(0 , __lowerCAmelCase ) else: _UpperCAmelCase = hidden if i == 0: if labels is not None: _UpperCAmelCase = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: _UpperCAmelCase = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: _UpperCAmelCase = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i _UpperCAmelCase = logprob_i if labels is not None: if (hasattr(self , """keep_order""" ) and self.keep_order) or keep_order: out.index_copy_(0 , __lowerCAmelCase , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def lowerCAmelCase_ ( self : Union[str, Any] , __lowerCAmelCase : List[Any] ): if self.n_clusters == 0: _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(__lowerCAmelCase , dim=-1 ) else: # construct weights and biases _UpperCAmelCase , _UpperCAmelCase = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: _UpperCAmelCase , _UpperCAmelCase = self.cutoff_ends[i], self.cutoff_ends[i + 1] _UpperCAmelCase = self.out_layers[0].weight[l_idx:r_idx] _UpperCAmelCase = self.out_layers[0].bias[l_idx:r_idx] else: _UpperCAmelCase = self.out_layers[i].weight _UpperCAmelCase = self.out_layers[i].bias if i == 0: _UpperCAmelCase = torch.cat([weight_i, self.cluster_weight] , dim=0 ) _UpperCAmelCase = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(__lowerCAmelCase ) biases.append(__lowerCAmelCase ) _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[0], biases[0], self.out_projs[0] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = hidden.new_empty((head_logit.size(0 ), self.n_token) ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = [0] + self.cutoffs for i in range(len(__lowerCAmelCase ) - 1 ): _UpperCAmelCase , _UpperCAmelCase = cutoff_values[i], cutoff_values[i + 1] if i == 0: _UpperCAmelCase = head_logprob[:, : self.cutoffs[0]] else: _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase = weights[i], biases[i], self.out_projs[i] _UpperCAmelCase = self._compute_logit(__lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ) _UpperCAmelCase = nn.functional.log_softmax(__lowerCAmelCase , dim=1 ) _UpperCAmelCase = head_logprob[:, -i] + tail_logprob_i _UpperCAmelCase = logprob_i return out
275
0
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow if is_torch_available(): import torch from transformers import XLMRobertaModel @require_sentencepiece @require_tokenizers @require_torch class lowerCAmelCase_ ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> str: A = XLMRobertaModel.from_pretrained('xlm-roberta-base' ) A = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house A = torch.Size((1, 12, 768) ) # batch_size, sequence_length, embedding_vector_dim A = torch.tensor( [[-0.01_01, 0.12_18, -0.08_03, 0.08_01, 0.13_27, 0.07_76, -0.12_15, 0.23_83, 0.33_38, 0.31_06, 0.03_00, 0.02_52]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A = model(A_ )['last_hidden_state'].detach() self.assertEqual(output.shape ,A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,A_ ,atol=1e-3 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Dict ) -> Dict: A = XLMRobertaModel.from_pretrained('xlm-roberta-large' ) A = torch.tensor([[0, 581, 1_0269, 83, 9_9942, 136, 6_0742, 23, 70, 8_0583, 1_8276, 2]] ) # The dog is cute and lives in the garden house A = torch.Size((1, 12, 1024) ) # batch_size, sequence_length, embedding_vector_dim A = torch.tensor( [[-0.06_99, -0.03_18, 0.07_05, -0.12_41, 0.09_99, -0.05_20, 0.10_04, -0.18_38, -0.47_04, 0.14_37, 0.08_21, 0.01_26]] ) # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.large') # xlmr.eval() # expected_output_values_last_dim = xlmr.extract_features(input_ids[0])[:, :, -1] with torch.no_grad(): A = model(A_ )['last_hidden_state'].detach() self.assertEqual(output.shape ,A_ ) # compare the actual values for a slice of last dim self.assertTrue(torch.allclose(output[:, :, -1] ,A_ ,atol=1e-3 ) )
91
def A__ ( SCREAMING_SNAKE_CASE_ : int , SCREAMING_SNAKE_CASE_ : int ) -> str: """simple docstring""" if a < 0 or b < 0: raise ValueError('''the value of both inputs must be positive''' ) _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = str(bin(SCREAMING_SNAKE_CASE_ ) )[2:] # remove the leading "0b" _UpperCAmelCase = max(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) return "0b" + "".join( str(int(char_a == '''1''' and char_b == '''1''' ) ) for char_a, char_b in zip(a_binary.zfill(SCREAMING_SNAKE_CASE_ ) , b_binary.zfill(SCREAMING_SNAKE_CASE_ ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
32
0
def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> float: """simple docstring""" return 10 - x * x def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> float: """simple docstring""" if equation(lowercase_ ) * equation(lowercase_ ) >= 0: raise ValueError('''Wrong space!''' ) __UpperCamelCase = a while (b - a) >= 0.01: # Find middle point __UpperCamelCase = (a + b) / 2 # Check if middle point is root if equation(lowercase_ ) == 0.0: break # Decide the side to repeat the steps if equation(lowercase_ ) * equation(lowercase_ ) < 0: __UpperCamelCase = c else: __UpperCamelCase = c return c if __name__ == "__main__": import doctest doctest.testmod() print(bisection(-2, 5)) print(bisection(0, 6))
375
import argparse import torch from datasets import load_dataset from donut import DonutModel from transformers import ( DonutImageProcessor, DonutProcessor, DonutSwinConfig, DonutSwinModel, MBartConfig, MBartForCausalLM, VisionEncoderDecoderModel, XLMRobertaTokenizerFast, ) def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Optional[int]: """simple docstring""" __UpperCamelCase = model.config __UpperCamelCase = DonutSwinConfig( image_size=original_config.input_size , patch_size=4 , depths=original_config.encoder_layer , num_heads=[4, 8, 16, 32] , window_size=original_config.window_size , embed_dim=1_28 , ) __UpperCamelCase = MBartConfig( is_decoder=lowercase_ , is_encoder_decoder=lowercase_ , add_cross_attention=lowercase_ , decoder_layers=original_config.decoder_layer , max_position_embeddings=original_config.max_position_embeddings , vocab_size=len( model.decoder.tokenizer ) , scale_embedding=lowercase_ , add_final_layer_norm=lowercase_ , ) return encoder_config, decoder_config def __SCREAMING_SNAKE_CASE ( lowercase_ ) -> Any: """simple docstring""" if "encoder.model" in name: __UpperCamelCase = name.replace('''encoder.model''' , '''encoder''' ) if "decoder.model" in name: __UpperCamelCase = name.replace('''decoder.model''' , '''decoder''' ) if "patch_embed.proj" in name: __UpperCamelCase = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "patch_embed.norm" in name: __UpperCamelCase = name.replace('''patch_embed.norm''' , '''embeddings.norm''' ) if name.startswith('''encoder''' ): if "layers" in name: __UpperCamelCase = '''encoder.''' + name if "attn.proj" in name: __UpperCamelCase = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name and "mask" not in name: __UpperCamelCase = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __UpperCamelCase = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __UpperCamelCase = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __UpperCamelCase = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __UpperCamelCase = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __UpperCamelCase = '''encoder.layernorm.weight''' if name == "encoder.norm.bias": __UpperCamelCase = '''encoder.layernorm.bias''' return name def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> int: """simple docstring""" for key in orig_state_dict.copy().keys(): __UpperCamelCase = orig_state_dict.pop(lowercase_ ) if "qkv" in key: __UpperCamelCase = key.split('''.''' ) __UpperCamelCase = int(key_split[3] ) __UpperCamelCase = int(key_split[5] ) __UpperCamelCase = model.encoder.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __UpperCamelCase = val[:dim, :] __UpperCamelCase = val[dim : dim * 2, :] __UpperCamelCase = val[-dim:, :] else: __UpperCamelCase = val[:dim] __UpperCamelCase = val[dim : dim * 2] __UpperCamelCase = val[-dim:] elif "attn_mask" in key or key in ["encoder.model.norm.weight", "encoder.model.norm.bias"]: # HuggingFace implementation doesn't use attn_mask buffer # and model doesn't use final LayerNorms for the encoder pass else: __UpperCamelCase = val return orig_state_dict def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_=None , lowercase_=False ) -> Dict: """simple docstring""" __UpperCamelCase = DonutModel.from_pretrained(lowercase_ ).eval() # load HuggingFace model __UpperCamelCase , __UpperCamelCase = get_configs(lowercase_ ) __UpperCamelCase = DonutSwinModel(lowercase_ ) __UpperCamelCase = MBartForCausalLM(lowercase_ ) __UpperCamelCase = VisionEncoderDecoderModel(encoder=lowercase_ , decoder=lowercase_ ) model.eval() __UpperCamelCase = original_model.state_dict() __UpperCamelCase = convert_state_dict(lowercase_ , lowercase_ ) model.load_state_dict(lowercase_ ) # verify results on scanned document __UpperCamelCase = load_dataset('''hf-internal-testing/example-documents''' ) __UpperCamelCase = dataset['''test'''][0]['''image'''].convert('''RGB''' ) __UpperCamelCase = XLMRobertaTokenizerFast.from_pretrained(lowercase_ , from_slow=lowercase_ ) __UpperCamelCase = DonutImageProcessor( do_align_long_axis=original_model.config.align_long_axis , size=original_model.config.input_size[::-1] ) __UpperCamelCase = DonutProcessor(lowercase_ , lowercase_ ) __UpperCamelCase = processor(lowercase_ , return_tensors='''pt''' ).pixel_values if model_name == "naver-clova-ix/donut-base-finetuned-docvqa": __UpperCamelCase = '''<s_docvqa><s_question>{user_input}</s_question><s_answer>''' __UpperCamelCase = '''When is the coffee break?''' __UpperCamelCase = task_prompt.replace('''{user_input}''' , lowercase_ ) elif model_name == "naver-clova-ix/donut-base-finetuned-rvlcdip": __UpperCamelCase = '''<s_rvlcdip>''' elif model_name in [ "naver-clova-ix/donut-base-finetuned-cord-v1", "naver-clova-ix/donut-base-finetuned-cord-v1-2560", ]: __UpperCamelCase = '''<s_cord>''' elif model_name == "naver-clova-ix/donut-base-finetuned-cord-v2": __UpperCamelCase = '''s_cord-v2>''' elif model_name == "naver-clova-ix/donut-base-finetuned-zhtrainticket": __UpperCamelCase = '''<s_zhtrainticket>''' elif model_name in ["naver-clova-ix/donut-proto", "naver-clova-ix/donut-base"]: # use a random prompt __UpperCamelCase = '''hello world''' else: raise ValueError('''Model name not supported''' ) __UpperCamelCase = original_model.decoder.tokenizer(lowercase_ , add_special_tokens=lowercase_ , return_tensors='''pt''' )[ '''input_ids''' ] __UpperCamelCase = original_model.encoder.model.patch_embed(lowercase_ ) __UpperCamelCase , __UpperCamelCase = model.encoder.embeddings(lowercase_ ) assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) # verify encoder hidden states __UpperCamelCase = original_model.encoder(lowercase_ ) __UpperCamelCase = model.encoder(lowercase_ ).last_hidden_state assert torch.allclose(lowercase_ , lowercase_ , atol=1E-2 ) # verify decoder hidden states __UpperCamelCase = original_model(lowercase_ , lowercase_ , lowercase_ ).logits __UpperCamelCase = model(lowercase_ , decoder_input_ids=lowercase_ ).logits assert torch.allclose(lowercase_ , lowercase_ , atol=1E-3 ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(F"Saving model and processor to {pytorch_dump_folder_path}" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if push_to_hub: model.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) processor.push_to_hub('''nielsr/''' + model_name.split('''/''' )[-1] , commit_message='''Update model''' ) if __name__ == "__main__": a_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="naver-clova-ix/donut-base-finetuned-docvqa", required=False, type=str, help="Name of the original model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, required=False, type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model and processor to the 🤗 hub.", ) a_ = parser.parse_args() convert_donut_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
375
1
import argparse import torch from transformers import FunnelBaseModel, FunnelConfig, FunnelModel, load_tf_weights_in_funnel from transformers.utils import logging logging.set_verbosity_info() def _lowerCamelCase ( snake_case , snake_case , snake_case , snake_case ): # Initialise PyTorch model _lowerCAmelCase = FunnelConfig.from_json_file(snake_case ) print(F'Building PyTorch model from configuration: {config}' ) _lowerCAmelCase = FunnelBaseModel(snake_case ) if base_model else FunnelModel(snake_case ) # Load weights from tf checkpoint load_tf_weights_in_funnel(snake_case , snake_case , snake_case ) # Save pytorch-model print(F'Save PyTorch model to {pytorch_dump_path}' ) torch.save(model.state_dict() , snake_case ) if __name__ == "__main__": _lowercase: Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--tf_checkpoint_path''', default=None, type=str, required=True, help='''Path to the TensorFlow checkpoint path.''' ) parser.add_argument( '''--config_file''', default=None, type=str, required=True, help='''The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.''', ) parser.add_argument( '''--pytorch_dump_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--base_model''', action='''store_true''', help='''Whether you want just the base model (no decoder) or not.''' ) _lowercase: List[Any] = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path, args.base_model )
192
from math import ceil, sqrt def _lowerCamelCase ( snake_case = 1_000_000 ): _lowerCAmelCase = 0 for outer_width in range(3 , (limit // 4) + 2 ): if outer_width**2 > limit: _lowerCAmelCase = max(ceil(sqrt(outer_width**2 - limit ) ) , 1 ) else: _lowerCAmelCase = 1 if (outer_width - hole_width_lower_bound) % 2: hole_width_lower_bound += 1 answer += (outer_width - hole_width_lower_bound - 2) // 2 + 1 return answer if __name__ == "__main__": print(f"""{solution() = }""")
192
1
"""simple docstring""" import itertools import os import random import tempfile import unittest import numpy as np from datasets import load_dataset from transformers import is_speech_available from transformers.testing_utils import check_json_file_has_correct_format, require_torch, require_torchaudio from transformers.utils.import_utils import is_torch_available from ...test_sequence_feature_extraction_common import SequenceFeatureExtractionTestMixin if is_speech_available(): from transformers import WhisperFeatureExtractor if is_torch_available(): import torch SCREAMING_SNAKE_CASE = random.Random() def __lowerCAmelCase( __UpperCAmelCase ,__UpperCAmelCase=1.0 ,__UpperCAmelCase=None ,__UpperCAmelCase=None ): """simple docstring""" if rng is None: _lowercase : List[str] = global_rng _lowercase : List[Any] = [] for batch_idx in range(shape[0] ): values.append([] ) for _ in range(shape[1] ): values[-1].append(rng.random() * scale ) return values @require_torch @require_torchaudio class _lowerCamelCase (unittest.TestCase ): def __init__( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[Any]=7 , lowerCamelCase_ : Any=4_0_0 , lowerCamelCase_ : int=2_0_0_0 , lowerCamelCase_ : str=1_0 , lowerCamelCase_ : List[str]=1_6_0 , lowerCamelCase_ : Optional[Any]=8 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Union[str, Any]=4_0_0_0 , lowerCamelCase_ : Union[str, Any]=False , lowerCamelCase_ : Optional[Any]=True , ): """simple docstring""" _lowercase : str = parent _lowercase : List[Any] = batch_size _lowercase : Union[str, Any] = min_seq_length _lowercase : Dict = max_seq_length _lowercase : List[str] = (self.max_seq_length - self.min_seq_length) // (self.batch_size - 1) _lowercase : str = padding_value _lowercase : Dict = sampling_rate _lowercase : Any = return_attention_mask _lowercase : Union[str, Any] = do_normalize _lowercase : Optional[Any] = feature_size _lowercase : Optional[Any] = chunk_length _lowercase : List[Any] = hop_length def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" return { "feature_size": self.feature_size, "hop_length": self.hop_length, "chunk_length": self.chunk_length, "padding_value": self.padding_value, "sampling_rate": self.sampling_rate, "return_attention_mask": self.return_attention_mask, "do_normalize": self.do_normalize, } def __UpperCAmelCase ( self : Tuple , lowerCamelCase_ : Any=False , lowerCamelCase_ : Union[str, Any]=False ): """simple docstring""" def _flatten(lowerCamelCase_ : str ): return list(itertools.chain(*lowerCamelCase_ ) ) if equal_length: _lowercase : Optional[Any] = [floats_list((self.max_seq_length, self.feature_size) ) for _ in range(self.batch_size )] else: # make sure that inputs increase in size _lowercase : Optional[int] = [ floats_list((x, self.feature_size) ) for x in range(self.min_seq_length , self.max_seq_length , self.seq_length_diff ) ] if numpify: _lowercase : List[str] = [np.asarray(lowerCamelCase_ ) for x in speech_inputs] return speech_inputs @require_torch @require_torchaudio class _lowerCamelCase (__lowerCamelCase , unittest.TestCase ): _snake_case = WhisperFeatureExtractor if is_speech_available() else None def __UpperCAmelCase ( self : List[str] ): """simple docstring""" _lowercase : str = WhisperFeatureExtractionTester(self ) def __UpperCAmelCase ( self : Optional[int] ): """simple docstring""" _lowercase : List[Any] = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Optional[Any] = feat_extract_first.save_pretrained(lowerCamelCase_ )[0] check_json_file_has_correct_format(lowerCamelCase_ ) _lowercase : Optional[int] = self.feature_extraction_class.from_pretrained(lowerCamelCase_ ) _lowercase : str = feat_extract_first.to_dict() _lowercase : Optional[int] = feat_extract_second.to_dict() _lowercase : Tuple = feat_extract_first.mel_filters _lowercase : int = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): """simple docstring""" _lowercase : Any = self.feature_extraction_class(**self.feat_extract_dict ) with tempfile.TemporaryDirectory() as tmpdirname: _lowercase : Dict = os.path.join(lowerCamelCase_ , 'feat_extract.json' ) feat_extract_first.to_json_file(lowerCamelCase_ ) _lowercase : Tuple = self.feature_extraction_class.from_json_file(lowerCamelCase_ ) _lowercase : Tuple = feat_extract_first.to_dict() _lowercase : List[str] = feat_extract_second.to_dict() _lowercase : List[str] = feat_extract_first.mel_filters _lowercase : Tuple = feat_extract_second.mel_filters self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ ) ) self.assertEqual(lowerCamelCase_ , lowerCamelCase_ ) def __UpperCAmelCase ( self : int ): """simple docstring""" _lowercase : Any = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) # create three inputs of length 800, 1000, and 1200 _lowercase : Union[str, Any] = [floats_list((1, x) )[0] for x in range(8_0_0 , 1_4_0_0 , 2_0_0 )] _lowercase : Optional[Any] = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] # Test feature size _lowercase : List[Any] = feature_extractor(lowerCamelCase_ , padding='max_length' , return_tensors='np' ).input_features self.assertTrue(input_features.ndim == 3 ) self.assertTrue(input_features.shape[-1] == feature_extractor.nb_max_frames ) self.assertTrue(input_features.shape[-2] == feature_extractor.feature_size ) # Test not batched input _lowercase : str = feature_extractor(speech_inputs[0] , return_tensors='np' ).input_features _lowercase : List[str] = feature_extractor(np_speech_inputs[0] , return_tensors='np' ).input_features self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) # Test batched _lowercase : Optional[Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _lowercase : str = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) # Test 2-D numpy arrays are batched. _lowercase : List[Any] = [floats_list((1, x) )[0] for x in (8_0_0, 8_0_0, 8_0_0)] _lowercase : Optional[int] = np.asarray(lowerCamelCase_ ) _lowercase : int = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _lowercase : Optional[Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) # Test truncation required _lowercase : Optional[int] = [floats_list((1, x) )[0] for x in range(2_0_0 , (feature_extractor.n_samples + 5_0_0) , 2_0_0 )] _lowercase : int = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs] _lowercase : List[Any] = [x[: feature_extractor.n_samples] for x in speech_inputs] _lowercase : Optional[int] = [np.asarray(lowerCamelCase_ ) for speech_input in speech_inputs_truncated] _lowercase : Union[str, Any] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features _lowercase : Optional[int] = feature_extractor(lowerCamelCase_ , return_tensors='np' ).input_features for enc_seq_a, enc_seq_a in zip(lowerCamelCase_ , lowerCamelCase_ ): self.assertTrue(np.allclose(lowerCamelCase_ , lowerCamelCase_ , atol=1E-3 ) ) def __UpperCAmelCase ( self : Tuple ): """simple docstring""" import torch _lowercase : Optional[int] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase : Any = np.random.rand(1_0_0 , 3_2 ).astype(np.floataa ) _lowercase : str = np_speech_inputs.tolist() for inputs in [py_speech_inputs, np_speech_inputs]: _lowercase : str = feature_extractor.pad([{'input_features': inputs}] , return_tensors='np' ) self.assertTrue(np_processed.input_features.dtype == np.floataa ) _lowercase : List[str] = feature_extractor.pad([{'input_features': inputs}] , return_tensors='pt' ) self.assertTrue(pt_processed.input_features.dtype == torch.floataa ) def __UpperCAmelCase ( self : Any , lowerCamelCase_ : Dict ): """simple docstring""" _lowercase : List[Any] = load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) # automatic decoding with librispeech _lowercase : List[str] = ds.sort('id' ).select(range(lowerCamelCase_ ) )[:num_samples]['audio'] return [x["array"] for x in speech_samples] def __UpperCAmelCase ( self : Any ): """simple docstring""" _lowercase : List[str] = torch.tensor( [ 0.1193, -0.0946, -0.1098, -0.0196, 0.0225, -0.0690, -0.1736, 0.0951, 0.0971, -0.0817, -0.0702, 0.0162, 0.0260, 0.0017, -0.0192, -0.1678, 0.0709, -0.1867, -0.0655, -0.0274, -0.0234, -0.1884, -0.0516, -0.0554, -0.0274, -0.1425, -0.1423, 0.0837, 0.0377, -0.0854 ] ) # fmt: on _lowercase : Optional[Any] = self._load_datasamples(1 ) _lowercase : str = WhisperFeatureExtractor() _lowercase : Tuple = feature_extractor(lowerCamelCase_ , return_tensors='pt' ).input_features self.assertEqual(input_features.shape , (1, 8_0, 3_0_0_0) ) self.assertTrue(torch.allclose(input_features[0, 0, :3_0] , lowerCamelCase_ , atol=1E-4 ) ) def __UpperCAmelCase ( self : Optional[Any] ): """simple docstring""" _lowercase : Optional[Any] = self.feature_extraction_class(**self.feat_extract_tester.prepare_feat_extract_dict() ) _lowercase : Union[str, Any] = self._load_datasamples(1 )[0] _lowercase : str = ((audio - audio.min()) / (audio.max() - audio.min())) * 6_5_5_3_5 # Rescale to [0, 65535] to show issue _lowercase : List[Any] = feat_extract.zero_mean_unit_var_norm([audio] , attention_mask=lowerCamelCase_ )[0] self.assertTrue(np.all(np.mean(lowerCamelCase_ ) < 1E-3 ) ) self.assertTrue(np.all(np.abs(np.var(lowerCamelCase_ ) - 1 ) < 1E-3 ) )
283
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available SCREAMING_SNAKE_CASE = { 'configuration_biogpt': ['BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'BioGptConfig'], 'tokenization_biogpt': ['BioGptTokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ 'BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST', 'BioGptForCausalLM', 'BioGptForTokenClassification', 'BioGptForSequenceClassification', 'BioGptModel', 'BioGptPreTrainedModel', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
283
1
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCamelCase__ = logging.get_logger(__name__) lowerCamelCase__ = { """distilbert-base-uncased""": """https://huggingface.co/distilbert-base-uncased/resolve/main/config.json""", """distilbert-base-uncased-distilled-squad""": ( """https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-cased""": """https://huggingface.co/distilbert-base-cased/resolve/main/config.json""", """distilbert-base-cased-distilled-squad""": ( """https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json""" ), """distilbert-base-german-cased""": """https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json""", """distilbert-base-multilingual-cased""": ( """https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json""" ), """distilbert-base-uncased-finetuned-sst-2-english""": ( """https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json""" ), } class snake_case__ ( lowercase_): '''simple docstring''' lowerCamelCase : List[str] = "distilbert" lowerCamelCase : Tuple = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self , a__=3_05_22 , a__=5_12 , a__=False , a__=6 , a__=12 , a__=7_68 , a__=4 * 7_68 , a__=0.1 , a__=0.1 , a__="gelu" , a__=0.02 , a__=0.1 , a__=0.2 , a__=0 , **a__ , ) -> str: '''simple docstring''' __snake_case :List[Any] = vocab_size __snake_case :Dict = max_position_embeddings __snake_case :Optional[int] = sinusoidal_pos_embds __snake_case :int = n_layers __snake_case :Any = n_heads __snake_case :Dict = dim __snake_case :str = hidden_dim __snake_case :Tuple = dropout __snake_case :Dict = attention_dropout __snake_case :int = activation __snake_case :str = initializer_range __snake_case :Dict = qa_dropout __snake_case :Dict = seq_classif_dropout super().__init__(**a__ , pad_token_id=a__ ) class snake_case__ ( lowercase_): '''simple docstring''' @property def __lowercase ( self ) -> Mapping[str, Mapping[int, str]]: '''simple docstring''' if self.task == "multiple-choice": __snake_case :List[str] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case :Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
455
lowerCamelCase__ = 8.3_1_4_4_5_9_8 def UpperCamelCase ( snake_case__ : float ,snake_case__ : float ): '''simple docstring''' if temperature < 0: raise Exception("""Temperature cannot be less than 0 K""" ) if molar_mass <= 0: raise Exception("""Molar mass cannot be less than or equal to 0 kg/mol""" ) else: return (3 * UNIVERSAL_GAS_CONSTANT * temperature / molar_mass) ** 0.5 if __name__ == "__main__": import doctest # run doctest doctest.testmod() # example lowerCamelCase__ = 300 lowerCamelCase__ = 28 lowerCamelCase__ = rms_speed_of_molecule(temperature, molar_mass) print(f'''Vrms of Nitrogen gas at 300 K is {vrms} m/s''')
455
1
'''simple docstring''' import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class _snake_case ( lowerCAmelCase_ ): """simple docstring""" def __init__( self : Tuple , UpperCamelCase_ : List[str] , UpperCamelCase_ : Tuple=None , UpperCamelCase_ : Optional[int]=True , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : Any ): lowerCAmelCase_ : Tuple =parent lowerCAmelCase_ : int =config_class lowerCAmelCase_ : int =has_text_modality lowerCAmelCase_ : Union[str, Any] =kwargs lowerCAmelCase_ : List[str] =common_properties def __A ( self : List[Any] ): lowerCAmelCase_ : Optional[Any] =self.config_class(**self.inputs_dict ) lowerCAmelCase_ : int =( ['''hidden_size''', '''num_attention_heads''', '''num_hidden_layers'''] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(['''vocab_size'''] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(UpperCamelCase_ , UpperCamelCase_ ) , msg=F'`{prop}` does not exist' ) # Test that config has the common properties as setter for idx, name in enumerate(UpperCamelCase_ ): try: setattr(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) self.parent.assertEqual( getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ , msg=F'`{name} value {idx} expected, but was {getattr(UpperCamelCase_ , UpperCamelCase_ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(UpperCamelCase_ ): try: lowerCAmelCase_ : int =self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(UpperCamelCase_ , UpperCamelCase_ ) , UpperCamelCase_ , msg=F'`{name} value {idx} expected, but was {getattr(UpperCamelCase_ , UpperCamelCase_ )}' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __A ( self : Optional[Any] ): lowerCAmelCase_ : Union[str, Any] =self.config_class(**self.inputs_dict ) lowerCAmelCase_ : Dict =json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , UpperCamelCase_ ) def __A ( self : Optional[Any] ): lowerCAmelCase_ : str =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : str =os.path.join(UpperCamelCase_ , '''config.json''' ) config_first.to_json_file(UpperCamelCase_ ) lowerCAmelCase_ : Dict =self.config_class.from_json_file(UpperCamelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __A ( self : List[str] ): lowerCAmelCase_ : int =self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(UpperCamelCase_ ) lowerCAmelCase_ : Any =self.config_class.from_pretrained(UpperCamelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __A ( self : str ): lowerCAmelCase_ : Dict =self.config_class(**self.inputs_dict ) lowerCAmelCase_ : Dict ='''test''' with tempfile.TemporaryDirectory() as tmpdirname: lowerCAmelCase_ : List[Any] =os.path.join(UpperCamelCase_ , UpperCamelCase_ ) config_first.save_pretrained(UpperCamelCase_ ) lowerCAmelCase_ : List[Any] =self.config_class.from_pretrained(UpperCamelCase_ , subfolder=UpperCamelCase_ ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __A ( self : Tuple ): lowerCAmelCase_ : Optional[Any] =self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) lowerCAmelCase_ : List[str] =3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __A ( self : List[Any] ): if self.config_class.is_composition: return lowerCAmelCase_ : Any =self.config_class() self.parent.assertIsNotNone(UpperCamelCase_ ) def __A ( self : Union[str, Any] ): lowerCAmelCase_ : int =copy.deepcopy(UpperCamelCase_ ) lowerCAmelCase_ : Dict =self.config_class(**UpperCamelCase_ ) lowerCAmelCase_ : Optional[int] =[] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(('''torch_dtype''', config.torch_dtype, torch.floataa) ) elif getattr(UpperCamelCase_ , UpperCamelCase_ ) != value: wrong_values.append((key, getattr(UpperCamelCase_ , UpperCamelCase_ ), value) ) if len(UpperCamelCase_ ) > 0: lowerCAmelCase_ : List[str] ='''\n'''.join([F'- {v[0]}: got {v[1]} instead of {v[2]}' for v in wrong_values] ) raise ValueError(F'The following keys were not properly set in the config:\n{errors}' ) def __A ( self : Dict ): self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
702
'''simple docstring''' from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging __lowercase = logging.get_logger(__name__) __lowercase = { '''Helsinki-NLP/opus-mt-en-de''': '''https://huggingface.co/Helsinki-NLP/opus-mt-en-de/resolve/main/config.json''', # See all Marian models at https://huggingface.co/models?filter=marian } class _snake_case ( lowerCAmelCase_ ): """simple docstring""" _UpperCamelCase : Dict = '''marian''' _UpperCamelCase : List[str] = ['''past_key_values'''] _UpperCamelCase : Tuple = {'''num_attention_heads''': '''encoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self : Optional[int] , UpperCamelCase_ : Tuple=58101 , UpperCamelCase_ : int=None , UpperCamelCase_ : str=1024 , UpperCamelCase_ : List[str]=12 , UpperCamelCase_ : List[Any]=4096 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : int=12 , UpperCamelCase_ : Optional[Any]=4096 , UpperCamelCase_ : Union[str, Any]=16 , UpperCamelCase_ : Optional[int]=0.0 , UpperCamelCase_ : Optional[Any]=0.0 , UpperCamelCase_ : Dict=True , UpperCamelCase_ : Union[str, Any]=True , UpperCamelCase_ : Optional[int]="gelu" , UpperCamelCase_ : int=1024 , UpperCamelCase_ : Optional[Any]=0.1 , UpperCamelCase_ : Dict=0.0 , UpperCamelCase_ : List[str]=0.0 , UpperCamelCase_ : Optional[int]=0.0_2 , UpperCamelCase_ : Union[str, Any]=58100 , UpperCamelCase_ : Union[str, Any]=False , UpperCamelCase_ : Union[str, Any]=58100 , UpperCamelCase_ : Dict=0 , UpperCamelCase_ : int=0 , UpperCamelCase_ : int=True , **UpperCamelCase_ : Union[str, Any] , ): lowerCAmelCase_ : Tuple =vocab_size lowerCAmelCase_ : int =decoder_vocab_size or vocab_size lowerCAmelCase_ : int =max_position_embeddings lowerCAmelCase_ : Any =d_model lowerCAmelCase_ : List[Any] =encoder_ffn_dim lowerCAmelCase_ : List[Any] =encoder_layers lowerCAmelCase_ : Any =encoder_attention_heads lowerCAmelCase_ : Optional[int] =decoder_ffn_dim lowerCAmelCase_ : List[str] =decoder_layers lowerCAmelCase_ : Union[str, Any] =decoder_attention_heads lowerCAmelCase_ : List[str] =dropout lowerCAmelCase_ : int =attention_dropout lowerCAmelCase_ : Optional[int] =activation_dropout lowerCAmelCase_ : Union[str, Any] =activation_function lowerCAmelCase_ : List[str] =init_std lowerCAmelCase_ : List[Any] =encoder_layerdrop lowerCAmelCase_ : Optional[int] =decoder_layerdrop lowerCAmelCase_ : int =use_cache lowerCAmelCase_ : Tuple =encoder_layers lowerCAmelCase_ : Any =scale_embedding # scale factor will be sqrt(d_model) if True lowerCAmelCase_ : Union[str, Any] =share_encoder_decoder_embeddings super().__init__( pad_token_id=UpperCamelCase_ , eos_token_id=UpperCamelCase_ , is_encoder_decoder=UpperCamelCase_ , decoder_start_token_id=UpperCamelCase_ , forced_eos_token_id=UpperCamelCase_ , **UpperCamelCase_ , ) class _snake_case ( lowerCAmelCase_ ): """simple docstring""" @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.inputs def __A ( self : str ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : List[str] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase_ : Any ={0: '''batch'''} lowerCAmelCase_ : Any ={0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: lowerCAmelCase_ : List[Any] ={0: '''batch''', 1: '''decoder_sequence'''} lowerCAmelCase_ : int ={0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(UpperCamelCase_ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. lowerCAmelCase_ : List[str] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: lowerCAmelCase_ , lowerCAmelCase_ : Optional[Any] =self.num_layers for i in range(UpperCamelCase_ ): lowerCAmelCase_ : int ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCAmelCase_ : List[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} else: lowerCAmelCase_ : Optional[Any] =OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property # Copied from transformers.models.bart.configuration_bart.BartOnnxConfig.outputs def __A ( self : Union[str, Any] ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : List[str] =super().outputs else: lowerCAmelCase_ : Optional[Any] =super(UpperCamelCase_ , self ).outputs if self.use_past: lowerCAmelCase_ , lowerCAmelCase_ : Dict =self.num_layers for i in range(UpperCamelCase_ ): lowerCAmelCase_ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} lowerCAmelCase_ : Optional[Any] ={0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def __A ( self : int , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): lowerCAmelCase_ : Optional[Any] =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) # Generate decoder inputs lowerCAmelCase_ : List[Any] =seq_length if not self.use_past else 1 lowerCAmelCase_ : Dict =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Union[str, Any] ={F'decoder_{name}': tensor for name, tensor in decoder_inputs.items()} lowerCAmelCase_ : List[Any] =dict(**UpperCamelCase_ , **UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : Dict =common_inputs['''input_ids'''].shape lowerCAmelCase_ : Tuple =common_inputs['''decoder_input_ids'''].shape[1] lowerCAmelCase_ , lowerCAmelCase_ : Any =self.num_attention_heads lowerCAmelCase_ : Optional[int] =( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase_ : Optional[int] =decoder_seq_length + 3 lowerCAmelCase_ : List[Any] =( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) lowerCAmelCase_ : Dict =torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ )] , dim=1 ) lowerCAmelCase_ : int =[] # If the number of encoder and decoder layers are present in the model configuration, both are considered lowerCAmelCase_ , lowerCAmelCase_ : Dict =self.num_layers lowerCAmelCase_ : Union[str, Any] =min(UpperCamelCase_ , UpperCamelCase_ ) lowerCAmelCase_ : Optional[Any] =max(UpperCamelCase_ , UpperCamelCase_ ) - min_num_layers lowerCAmelCase_ : Union[str, Any] ='''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(UpperCamelCase_ ): common_inputs["past_key_values"].append( ( torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ ), ) ) # TODO: test this. lowerCAmelCase_ : List[str] =encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(UpperCamelCase_ , UpperCamelCase_ ): common_inputs["past_key_values"].append((torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) ) return common_inputs def __A ( self : Optional[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): lowerCAmelCase_ : str =self._generate_dummy_inputs_for_encoder_and_decoder( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch lowerCAmelCase_ , lowerCAmelCase_ : List[Any] =common_inputs['''input_ids'''].shape # Not using the same length for past_key_values lowerCAmelCase_ : int =seqlen + 2 lowerCAmelCase_ , lowerCAmelCase_ : Optional[int] =self.num_layers lowerCAmelCase_ , lowerCAmelCase_ : List[Any] =self.num_attention_heads lowerCAmelCase_ : Tuple =( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) lowerCAmelCase_ : Any =common_inputs['''attention_mask'''].dtype lowerCAmelCase_ : List[str] =torch.cat( [common_inputs['''attention_mask'''], torch.ones(UpperCamelCase_ , UpperCamelCase_ , dtype=UpperCamelCase_ )] , dim=1 ) lowerCAmelCase_ : List[str] =[ (torch.zeros(UpperCamelCase_ ), torch.zeros(UpperCamelCase_ )) for _ in range(UpperCamelCase_ ) ] return common_inputs def __A ( self : List[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): # Copied from OnnxConfig.generate_dummy_inputs # Did not use super(OnnxConfigWithPast, self).generate_dummy_inputs for code clarity. # If dynamic axis (-1) we forward with a fixed dimension of 2 samples to avoid optimizations made by ONNX lowerCAmelCase_ : Tuple =compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX lowerCAmelCase_ : List[Any] =tokenizer.num_special_tokens_to_add(UpperCamelCase_ ) lowerCAmelCase_ : Tuple =compute_effective_axis_dimension( UpperCamelCase_ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=UpperCamelCase_ ) # Generate dummy inputs according to compute batch and sequence lowerCAmelCase_ : List[Any] =[''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size lowerCAmelCase_ : Any =dict(tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ ) ) return common_inputs def __A ( self : List[Any] , UpperCamelCase_ : PreTrainedTokenizer , UpperCamelCase_ : int = -1 , UpperCamelCase_ : int = -1 , UpperCamelCase_ : bool = False , UpperCamelCase_ : Optional[TensorType] = None , ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : Optional[Any] =self._generate_dummy_inputs_for_default_and_seqaseq_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) else: lowerCAmelCase_ : int =self._generate_dummy_inputs_for_causal_lm( UpperCamelCase_ , batch_size=UpperCamelCase_ , seq_length=UpperCamelCase_ , is_pair=UpperCamelCase_ , framework=UpperCamelCase_ ) return common_inputs def __A ( self : Any , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[str] , UpperCamelCase_ : List[Any] , UpperCamelCase_ : int ): if self.task in ["default", "seq2seq-lm"]: lowerCAmelCase_ : Optional[Any] =super()._flatten_past_key_values_(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) else: lowerCAmelCase_ : Dict =super(UpperCamelCase_ , self )._flatten_past_key_values_( UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) @property def __A ( self : Union[str, Any] ): return 1E-4
305
0
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : Dict = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : int = { "facebook/vit-mae-base": "https://huggingface.co/facebook/vit-mae-base/resolve/main/config.json", # See all ViT MAE models at https://huggingface.co/models?filter=vit-mae } class UpperCamelCase ( __a ): a__ :Union[str, Any] = '''vit_mae''' def __init__(self , __UpperCamelCase=768 , __UpperCamelCase=12 , __UpperCamelCase=12 , __UpperCamelCase=3_072 , __UpperCamelCase="gelu" , __UpperCamelCase=0.0 , __UpperCamelCase=0.0 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-1_2 , __UpperCamelCase=224 , __UpperCamelCase=16 , __UpperCamelCase=3 , __UpperCamelCase=True , __UpperCamelCase=16 , __UpperCamelCase=512 , __UpperCamelCase=8 , __UpperCamelCase=2_048 , __UpperCamelCase=0.75 , __UpperCamelCase=False , **__UpperCamelCase , ) -> Optional[int]: super().__init__(**__UpperCamelCase ) UpperCamelCase_ : str = hidden_size UpperCamelCase_ : List[Any] = num_hidden_layers UpperCamelCase_ : int = num_attention_heads UpperCamelCase_ : Tuple = intermediate_size UpperCamelCase_ : Union[str, Any] = hidden_act UpperCamelCase_ : Tuple = hidden_dropout_prob UpperCamelCase_ : Tuple = attention_probs_dropout_prob UpperCamelCase_ : Tuple = initializer_range UpperCamelCase_ : Tuple = layer_norm_eps UpperCamelCase_ : List[str] = image_size UpperCamelCase_ : List[Any] = patch_size UpperCamelCase_ : int = num_channels UpperCamelCase_ : int = qkv_bias UpperCamelCase_ : Union[str, Any] = decoder_num_attention_heads UpperCamelCase_ : Dict = decoder_hidden_size UpperCamelCase_ : Optional[int] = decoder_num_hidden_layers UpperCamelCase_ : str = decoder_intermediate_size UpperCamelCase_ : Dict = mask_ratio UpperCamelCase_ : Tuple = norm_pix_loss
635
from ...configuration_utils import PretrainedConfig from ...utils import logging SCREAMING_SNAKE_CASE : int = logging.get_logger(__name__) SCREAMING_SNAKE_CASE : Union[str, Any] = { # See all MEGATRON_BERT models at https://huggingface.co/models?filter=bert } class UpperCamelCase ( __a ): a__ :List[str] = '''megatron-bert''' def __init__(self , __UpperCamelCase=29_056 , __UpperCamelCase=1_024 , __UpperCamelCase=24 , __UpperCamelCase=16 , __UpperCamelCase=4_096 , __UpperCamelCase="gelu" , __UpperCamelCase=0.1 , __UpperCamelCase=0.1 , __UpperCamelCase=512 , __UpperCamelCase=2 , __UpperCamelCase=0.02 , __UpperCamelCase=1E-1_2 , __UpperCamelCase=0 , __UpperCamelCase="absolute" , __UpperCamelCase=True , **__UpperCamelCase , ) -> List[Any]: super().__init__(pad_token_id=__UpperCamelCase , **__UpperCamelCase ) UpperCamelCase_ : Union[str, Any] = vocab_size UpperCamelCase_ : Union[str, Any] = hidden_size UpperCamelCase_ : Any = num_hidden_layers UpperCamelCase_ : str = num_attention_heads UpperCamelCase_ : List[Any] = hidden_act UpperCamelCase_ : Dict = intermediate_size UpperCamelCase_ : Optional[int] = hidden_dropout_prob UpperCamelCase_ : Dict = attention_probs_dropout_prob UpperCamelCase_ : Any = max_position_embeddings UpperCamelCase_ : str = type_vocab_size UpperCamelCase_ : Tuple = initializer_range UpperCamelCase_ : List[str] = layer_norm_eps UpperCamelCase_ : Tuple = position_embedding_type UpperCamelCase_ : Tuple = use_cache
635
1
class __snake_case : def __init__( self : Union[str, Any] , _lowercase : Optional[Any] , _lowercase : str , _lowercase : List[str] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = None SCREAMING_SNAKE_CASE__ = graph self._normalize_graph(_lowercase , _lowercase ) SCREAMING_SNAKE_CASE__ = len(_lowercase ) SCREAMING_SNAKE_CASE__ = None def __a ( self : Any , _lowercase : Optional[Any] , _lowercase : str ): """simple docstring""" if sources is int: SCREAMING_SNAKE_CASE__ = [sources] if sinks is int: SCREAMING_SNAKE_CASE__ = [sinks] if len(_lowercase ) == 0 or len(_lowercase ) == 0: return SCREAMING_SNAKE_CASE__ = sources[0] SCREAMING_SNAKE_CASE__ = sinks[0] # make fake vertex if there are more # than one source or sink if len(_lowercase ) > 1 or len(_lowercase ) > 1: SCREAMING_SNAKE_CASE__ = 0 for i in sources: max_input_flow += sum(self.graph[i] ) SCREAMING_SNAKE_CASE__ = len(self.graph ) + 1 for room in self.graph: room.insert(0 , 0 ) self.graph.insert(0 , [0] * size ) for i in sources: SCREAMING_SNAKE_CASE__ = max_input_flow SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = len(self.graph ) + 1 for room in self.graph: room.append(0 ) self.graph.append([0] * size ) for i in sinks: SCREAMING_SNAKE_CASE__ = max_input_flow SCREAMING_SNAKE_CASE__ = size - 1 def __a ( self : Dict ): """simple docstring""" if self.maximum_flow_algorithm is None: raise Exception("""You need to set maximum flow algorithm before.""" ) if self.source_index is None or self.sink_index is None: return 0 self.maximum_flow_algorithm.execute() return self.maximum_flow_algorithm.getMaximumFlow() def __a ( self : List[Any] , _lowercase : Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = algorithm(self ) class __snake_case : def __init__( self : List[Any] , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = flow_network SCREAMING_SNAKE_CASE__ = flow_network.verticesCount SCREAMING_SNAKE_CASE__ = flow_network.sourceIndex SCREAMING_SNAKE_CASE__ = flow_network.sinkIndex # it's just a reference, so you shouldn't change # it in your algorithms, use deep copy before doing that SCREAMING_SNAKE_CASE__ = flow_network.graph SCREAMING_SNAKE_CASE__ = False def __a ( self : Optional[Any] ): """simple docstring""" if not self.executed: self._algorithm() SCREAMING_SNAKE_CASE__ = True def __a ( self : List[str] ): """simple docstring""" pass class __snake_case ( lowerCamelCase_ ): def __init__( self : Tuple , _lowercase : Any ): """simple docstring""" super().__init__(_lowercase ) # use this to save your result SCREAMING_SNAKE_CASE__ = -1 def __a ( self : Any ): """simple docstring""" if not self.executed: raise Exception("""You should execute algorithm before using its result!""" ) return self.maximum_flow class __snake_case ( lowerCamelCase_ ): def __init__( self : List[Any] , _lowercase : str ): """simple docstring""" super().__init__(_lowercase ) SCREAMING_SNAKE_CASE__ = [[0] * self.verticies_count for i in range(self.verticies_count )] SCREAMING_SNAKE_CASE__ = [0] * self.verticies_count SCREAMING_SNAKE_CASE__ = [0] * self.verticies_count def __a ( self : Optional[int] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = self.verticies_count # push some substance to graph for nextvertex_index, bandwidth in enumerate(self.graph[self.source_index] ): self.preflow[self.source_index][nextvertex_index] += bandwidth self.preflow[nextvertex_index][self.source_index] -= bandwidth self.excesses[nextvertex_index] += bandwidth # Relabel-to-front selection rule SCREAMING_SNAKE_CASE__ = [ i for i in range(self.verticies_count ) if i != self.source_index and i != self.sink_index ] # move through list SCREAMING_SNAKE_CASE__ = 0 while i < len(_lowercase ): SCREAMING_SNAKE_CASE__ = vertices_list[i] SCREAMING_SNAKE_CASE__ = self.heights[vertex_index] self.process_vertex(_lowercase ) if self.heights[vertex_index] > previous_height: # if it was relabeled, swap elements # and start from 0 index vertices_list.insert(0 , vertices_list.pop(_lowercase ) ) SCREAMING_SNAKE_CASE__ = 0 else: i += 1 SCREAMING_SNAKE_CASE__ = sum(self.preflow[self.source_index] ) def __a ( self : str , _lowercase : List[str] ): """simple docstring""" while self.excesses[vertex_index] > 0: for neighbour_index in range(self.verticies_count ): # if it's neighbour and current vertex is higher if ( self.graph[vertex_index][neighbour_index] - self.preflow[vertex_index][neighbour_index] > 0 and self.heights[vertex_index] > self.heights[neighbour_index] ): self.push(_lowercase , _lowercase ) self.relabel(_lowercase ) def __a ( self : Optional[int] , _lowercase : Dict , _lowercase : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE__ = min( self.excesses[from_index] , self.graph[from_index][to_index] - self.preflow[from_index][to_index] , ) self.preflow[from_index][to_index] += preflow_delta self.preflow[to_index][from_index] -= preflow_delta self.excesses[from_index] -= preflow_delta self.excesses[to_index] += preflow_delta def __a ( self : Tuple , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = None for to_index in range(self.verticies_count ): if ( self.graph[vertex_index][to_index] - self.preflow[vertex_index][to_index] > 0 ) and (min_height is None or self.heights[to_index] < min_height): SCREAMING_SNAKE_CASE__ = self.heights[to_index] if min_height is not None: SCREAMING_SNAKE_CASE__ = min_height + 1 if __name__ == "__main__": __lowerCamelCase : Union[str, Any] = [0] __lowerCamelCase : List[Any] = [3] # graph = [ # [0, 0, 4, 6, 0, 0], # [0, 0, 5, 2, 0, 0], # [0, 0, 0, 0, 4, 4], # [0, 0, 0, 0, 6, 6], # [0, 0, 0, 0, 0, 0], # [0, 0, 0, 0, 0, 0], # ] __lowerCamelCase : int = [[0, 7, 0, 0], [0, 0, 6, 0], [0, 0, 0, 8], [9, 0, 0, 0]] # prepare our network __lowerCamelCase : List[str] = FlowNetwork(graph, entrances, exits) # set algorithm flow_network.set_maximum_flow_algorithm(PushRelabelExecutor) # and calculate __lowerCamelCase : Tuple = flow_network.find_maximum_flow() print(F"""maximum flow is {maximum_flow}""")
379
import collections import os from typing import List, Optional, Tuple from transformers.utils import is_jieba_available, requires_backends if is_jieba_available(): import jieba from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : Optional[Any] = {'''vocab_file''': '''vocab.txt'''} __lowerCamelCase : Union[str, Any] = { '''vocab_file''': { '''openbmb/cpm-ant-10b''': '''https://huggingface.co/openbmb/cpm-ant-10b/blob/main/vocab.txt''', }, } __lowerCamelCase : Optional[Any] = { '''openbmb/cpm-ant-10b''': 1024, } def __SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> Optional[Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = collections.OrderedDict() with open(__UpperCamelCase , """r""" , encoding="""utf-8""" ) as reader: SCREAMING_SNAKE_CASE__ = reader.readlines() for index, token in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE__ = token.rstrip("""\n""" ) SCREAMING_SNAKE_CASE__ = index return vocab class __snake_case ( lowerCamelCase_ ): def __init__( self : Optional[int] , _lowercase : Optional[Any] , _lowercase : int="<unk>" , _lowercase : int=2_00 ): """simple docstring""" SCREAMING_SNAKE_CASE__ = vocab SCREAMING_SNAKE_CASE__ = unk_token SCREAMING_SNAKE_CASE__ = max_input_chars_per_word def __a ( self : Optional[int] , _lowercase : List[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE__ = list(_lowercase ) if len(_lowercase ) > self.max_input_chars_per_word: return [self.unk_token] SCREAMING_SNAKE_CASE__ = 0 SCREAMING_SNAKE_CASE__ = [] while start < len(_lowercase ): SCREAMING_SNAKE_CASE__ = len(_lowercase ) SCREAMING_SNAKE_CASE__ = None while start < end: SCREAMING_SNAKE_CASE__ = """""".join(chars[start:end] ) if substr in self.vocab: SCREAMING_SNAKE_CASE__ = substr break end -= 1 if cur_substr is None: sub_tokens.append(self.unk_token ) start += 1 else: sub_tokens.append(_lowercase ) SCREAMING_SNAKE_CASE__ = end return sub_tokens class __snake_case ( lowerCamelCase_ ): lowerCAmelCase_ = VOCAB_FILES_NAMES lowerCAmelCase_ = PRETRAINED_VOCAB_FILES_MAP lowerCAmelCase_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCAmelCase_ = ["input_ids", "attention_mask"] lowerCAmelCase_ = False def __init__( self : int , _lowercase : str , _lowercase : List[Any]="<d>" , _lowercase : List[Any]="</d>" , _lowercase : Union[str, Any]="<s>" , _lowercase : List[str]="</s>" , _lowercase : str="<pad>" , _lowercase : int="<unk>" , _lowercase : List[str]="</n>" , _lowercase : Tuple="</_>" , _lowercase : Any="left" , **_lowercase : Any , ): """simple docstring""" requires_backends(self , ["""jieba"""] ) super().__init__( bod_token=_lowercase , eod_token=_lowercase , bos_token=_lowercase , eos_token=_lowercase , pad_token=_lowercase , unk_token=_lowercase , line_token=_lowercase , space_token=_lowercase , padding_side=_lowercase , **_lowercase , ) SCREAMING_SNAKE_CASE__ = bod_token SCREAMING_SNAKE_CASE__ = eod_token SCREAMING_SNAKE_CASE__ = load_vocab(_lowercase ) SCREAMING_SNAKE_CASE__ = self.encoder[space_token] SCREAMING_SNAKE_CASE__ = self.encoder[line_token] del self.encoder[space_token] del self.encoder[line_token] SCREAMING_SNAKE_CASE__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) SCREAMING_SNAKE_CASE__ = {v: k for k, v in self.encoder.items()} SCREAMING_SNAKE_CASE__ = WordpieceTokenizer(vocab=self.encoder , unk_token=self.unk_token ) @property def __a ( self : Optional[Any] ): """simple docstring""" return self.encoder[self.bod_token] @property def __a ( self : List[Any] ): """simple docstring""" return self.encoder[self.eod_token] @property def __a ( self : Any ): """simple docstring""" return self.encoder["\n"] @property def __a ( self : Union[str, Any] ): """simple docstring""" return len(self.encoder ) def __a ( self : int ): """simple docstring""" return dict(self.encoder , **self.added_tokens_encoder ) def __a ( self : Union[str, Any] , _lowercase : str ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [] for x in jieba.cut(_lowercase , cut_all=_lowercase ): output_tokens.extend(self.wordpiece_tokenizer.tokenize(_lowercase ) ) return output_tokens def __a ( self : int , _lowercase : Any , **_lowercase : Any ): """simple docstring""" SCREAMING_SNAKE_CASE__ = [i for i in token_ids if i >= 0] SCREAMING_SNAKE_CASE__ = [ x for x in token_ids if x != self.pad_token_id and x != self.eos_token_id and x != self.bos_token_id ] return super()._decode(_lowercase , **_lowercase ) def __a ( self : Optional[int] , _lowercase : List[Any] ): """simple docstring""" return token in self.encoder def __a ( self : List[str] , _lowercase : List[str] ): """simple docstring""" return "".join(_lowercase ) def __a ( self : Optional[int] , _lowercase : Any ): """simple docstring""" return self.encoder.get(_lowercase , self.encoder.get(self.unk_token ) ) def __a ( self : Tuple , _lowercase : List[Any] ): """simple docstring""" return self.decoder.get(_lowercase , self.unk_token ) def __a ( self : Optional[Any] , _lowercase : str , _lowercase : Optional[str] = None ): """simple docstring""" if os.path.isdir(_lowercase ): SCREAMING_SNAKE_CASE__ = os.path.join( _lowercase , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) else: SCREAMING_SNAKE_CASE__ = (filename_prefix + """-""" if filename_prefix else """""") + save_directory SCREAMING_SNAKE_CASE__ = 0 if " " in self.encoder: SCREAMING_SNAKE_CASE__ = self.encoder[""" """] del self.encoder[" "] if "\n" in self.encoder: SCREAMING_SNAKE_CASE__ = self.encoder["""\n"""] del self.encoder["\n"] SCREAMING_SNAKE_CASE__ = collections.OrderedDict(sorted(self.encoder.items() , key=lambda _lowercase : x[1] ) ) with open(_lowercase , """w""" , encoding="""utf-8""" ) as writer: for token, token_index in self.encoder.items(): if index != token_index: logger.warning( f"""Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive.""" """ Please check that the vocabulary is not corrupted!""" ) SCREAMING_SNAKE_CASE__ = token_index writer.write(token + """\n""" ) index += 1 return (vocab_file,) def __a ( self : int , _lowercase : List[int] , _lowercase : List[int] = None ): """simple docstring""" if token_ids_a is None: return [self.bos_token_id] + token_ids_a return [self.bos_token_id] + token_ids_a + [self.bos_token_id] + token_ids_a def __a ( self : Union[str, Any] , _lowercase : List[int] , _lowercase : Optional[List[int]] = None , _lowercase : bool = False ): """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_lowercase , token_ids_a=_lowercase , already_has_special_tokens=_lowercase ) if token_ids_a is not None: return [1] + ([0] * len(_lowercase )) + [1] + ([0] * len(_lowercase )) return [1] + ([0] * len(_lowercase ))
379
1
"""simple docstring""" from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase_ : torch.FloatTensor lowerCAmelCase_ : torch.FloatTensor lowerCAmelCase_ : Optional[torch.FloatTensor] = None class __snake_case ( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" lowerCAmelCase_ : Union[str, Any] = 2 @register_to_config def __init__( self :Tuple , UpperCamelCase__ :float = 0.02 , UpperCamelCase__ :float = 100 , UpperCamelCase__ :float = 1.007 , UpperCamelCase__ :float = 80 , UpperCamelCase__ :float = 0.05 , UpperCamelCase__ :float = 50 , ): # standard deviation of the initial noise distribution _a = sigma_max # setable values _a = None _a = None _a = None # sigma(t_i) def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :torch.FloatTensor , UpperCamelCase__ :Optional[int] = None ): return sample def SCREAMING_SNAKE_CASE_ ( self :Dict , UpperCamelCase__ :int , UpperCamelCase__ :Union[str, torch.device] = None ): _a = num_inference_steps _a = np.arange(0 , self.num_inference_steps )[::-1].copy() _a = torch.from_numpy(UpperCamelCase__ ).to(UpperCamelCase__ ) _a = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] _a = torch.tensor(UpperCamelCase__ , dtype=torch.floataa , device=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :int , UpperCamelCase__ :torch.FloatTensor , UpperCamelCase__ :float , UpperCamelCase__ :Optional[torch.Generator] = None ): if self.config.s_min <= sigma <= self.config.s_max: _a = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: _a = 0 # sample eps ~ N(0, S_noise^2 * I) _a = self.config.s_noise * randn_tensor(sample.shape , generator=UpperCamelCase__ ).to(sample.device ) _a = sigma + gamma * sigma _a = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def SCREAMING_SNAKE_CASE_ ( self :Any , UpperCamelCase__ :torch.FloatTensor , UpperCamelCase__ :float , UpperCamelCase__ :float , UpperCamelCase__ :torch.FloatTensor , UpperCamelCase__ :bool = True , ): _a = sample_hat + sigma_hat * model_output _a = (sample_hat - pred_original_sample) / sigma_hat _a = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCamelCase__ , derivative=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] , UpperCamelCase__ :torch.FloatTensor , UpperCamelCase__ :float , UpperCamelCase__ :float , UpperCamelCase__ :torch.FloatTensor , UpperCamelCase__ :torch.FloatTensor , UpperCamelCase__ :torch.FloatTensor , UpperCamelCase__ :bool = True , ): _a = sample_prev + sigma_prev * model_output _a = (sample_prev - pred_original_sample) / sigma_prev _a = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=UpperCamelCase__ , derivative=UpperCamelCase__ , pred_original_sample=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Dict , UpperCamelCase__ :Tuple , UpperCamelCase__ :Dict , UpperCamelCase__ :Optional[Any] ): raise NotImplementedError()
388
"""simple docstring""" import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __snake_case ( _SCREAMING_SNAKE_CASE ): """simple docstring""" def __init__( self :List[str] , UpperCamelCase__ :Dict=0.01 , UpperCamelCase__ :Union[str, Any]=1_000 ): _a = p_stop _a = max_length def __iter__( self :Dict ): _a = 0 _a = False while not stop and count < self.max_length: yield count count += 1 _a = random.random() < self.p_stop class __snake_case ( unittest.TestCase ): """simple docstring""" def SCREAMING_SNAKE_CASE_ ( self :Tuple , UpperCamelCase__ :Tuple , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :str=False , UpperCamelCase__ :int=True ): _a = [ BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) for i in range(2 ) ] _a = [list(UpperCamelCase__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(UpperCamelCase__ ) for shard in batch_sampler_shards] , [len(UpperCamelCase__ ) for e in expected] ) self.assertListEqual(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): # Check the shards when the dataset is a round multiple of total batch size. _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [0, 1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 0]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [1, 2, 3]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): # Check the shards when the dataset is a round multiple of batch size. _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [0, 1]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 0]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [1, 2]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :List[Any] ): # Check the shards when the dataset is a round multiple of total batch size. _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21, 22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=3 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19, 20]], [[3, 4, 5], [9, 10, 11], [15, 16, 17], [21]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14], [18, 19]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(20 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1, 2], [6, 7, 8], [12, 13, 14]], [[3, 4, 5], [9, 10, 11], [15, 16, 17]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=3 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , even_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): # Check the shards when the dataset is a round multiple of batch size. _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19], [22, 23]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(24 ) , batch_size=4 , drop_last=UpperCamelCase__ ) # Expected shouldn't change self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size. _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20, 21]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(22 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17], [20]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(21 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [ [[0, 1], [4, 5], [8, 9], [12, 13], [16, 17]], [[2, 3], [6, 7], [10, 11], [14, 15], [18, 19]], ] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) # Check the shards when the dataset is very small. _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[[0, 1]], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) _a = BatchSampler(range(2 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = [[], []] self.check_batch_sampler_shards(UpperCamelCase__ , UpperCamelCase__ , split_batches=UpperCamelCase__ , even_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :int ): _a = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 10, 11], [12, 13]] _a = [BatchSamplerShard(UpperCamelCase__ , 2 , UpperCamelCase__ , even_batches=UpperCamelCase__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [12, 13]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 10, 11]] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] , UpperCamelCase__ :int , UpperCamelCase__ :Optional[Any] , UpperCamelCase__ :Any , UpperCamelCase__ :str=False , UpperCamelCase__ :Optional[Any]=2 , UpperCamelCase__ :int=False ): random.seed(UpperCamelCase__ ) _a = list(UpperCamelCase__ ) _a = [ IterableDatasetShard( UpperCamelCase__ , batch_size=UpperCamelCase__ , drop_last=UpperCamelCase__ , num_processes=UpperCamelCase__ , process_index=UpperCamelCase__ , split_batches=UpperCamelCase__ , ) for i in range(UpperCamelCase__ ) ] _a = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(UpperCamelCase__ ) iterable_dataset_lists.append(list(UpperCamelCase__ ) ) _a = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size _a = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) self.assertTrue(len(UpperCamelCase__ ) % shard_batch_size == 0 ) _a = [] for idx in range(0 , len(UpperCamelCase__ ) , UpperCamelCase__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(UpperCamelCase__ ) < len(UpperCamelCase__ ): reference += reference self.assertListEqual(UpperCamelCase__ , reference[: len(UpperCamelCase__ )] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = 42 _a = RandomIterableDataset() self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) # Edge case with a very small dataset _a = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) self.check_iterable_dataset_shards(UpperCamelCase__ , UpperCamelCase__ , batch_size=4 , drop_last=UpperCamelCase__ , split_batches=UpperCamelCase__ ) def SCREAMING_SNAKE_CASE_ ( self :Optional[Any] ): _a = BatchSampler(range(16 ) , batch_size=4 , drop_last=UpperCamelCase__ ) _a = SkipBatchSampler(UpperCamelCase__ , 2 ) self.assertListEqual(list(UpperCamelCase__ ) , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :Dict ): _a = SkipDataLoader(list(range(16 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): _a = DataLoader(list(range(16 ) ) , batch_size=4 ) _a = skip_first_batches(UpperCamelCase__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 10, 11], [12, 13, 14, 15]] ) def SCREAMING_SNAKE_CASE_ ( self :List[str] ): _a = DataLoaderShard(list(range(16 ) ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def SCREAMING_SNAKE_CASE_ ( self :Tuple ): Accelerator() _a = DataLoaderDispatcher(range(16 ) , batch_size=4 ) for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(UpperCamelCase__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
388
1
from typing import List, Optional, Union from ...configuration_utils import PretrainedConfig from ...utils import logging snake_case : List[Any] = logging.get_logger(__name__) snake_case : Any = { '''huggingface/time-series-transformer-tourism-monthly''': ( '''https://huggingface.co/huggingface/time-series-transformer-tourism-monthly/resolve/main/config.json''' ), # See all TimeSeriesTransformer models at https://huggingface.co/models?filter=time_series_transformer } class snake_case_ (lowerCamelCase_ ): UpperCAmelCase__ : Optional[int] = '''time_series_transformer''' UpperCAmelCase__ : Optional[int] = { '''hidden_size''': '''d_model''', '''num_attention_heads''': '''encoder_attention_heads''', '''num_hidden_layers''': '''encoder_layers''', } def __init__( self :Any ,__snake_case :Optional[int] = None ,__snake_case :Optional[int] = None ,__snake_case :str = "student_t" ,__snake_case :str = "nll" ,__snake_case :int = 1 ,__snake_case :List[int] = [1, 2, 3, 4, 5, 6, 7] ,__snake_case :Optional[Union[str, bool]] = "mean" ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :int = 0 ,__snake_case :Optional[List[int]] = None ,__snake_case :Optional[List[int]] = None ,__snake_case :int = 32 ,__snake_case :int = 32 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :int = 2 ,__snake_case :bool = True ,__snake_case :str = "gelu" ,__snake_case :int = 64 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :float = 0.1 ,__snake_case :int = 1_00 ,__snake_case :float = 0.02 ,__snake_case :Optional[int]=True ,**__snake_case :Optional[Any] ,) -> str: # time series specific configuration a__ = prediction_length a__ = context_length or prediction_length a__ = distribution_output a__ = loss a__ = input_size a__ = num_time_features a__ = lags_sequence a__ = scaling a__ = num_dynamic_real_features a__ = num_static_real_features a__ = num_static_categorical_features if cardinality and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( 'The cardinality should be a list of the same length as `num_static_categorical_features`' ) a__ = cardinality else: a__ = [0] if embedding_dimension and num_static_categorical_features > 0: if len(__snake_case ) != num_static_categorical_features: raise ValueError( 'The embedding dimension should be a list of the same length as `num_static_categorical_features`' ) a__ = embedding_dimension else: a__ = [min(50 ,(cat + 1) // 2 ) for cat in self.cardinality] a__ = num_parallel_samples # Transformer architecture configuration a__ = input_size * len(__snake_case ) + self._number_of_features a__ = d_model a__ = encoder_attention_heads a__ = decoder_attention_heads a__ = encoder_ffn_dim a__ = decoder_ffn_dim a__ = encoder_layers a__ = decoder_layers a__ = dropout a__ = attention_dropout a__ = activation_dropout a__ = encoder_layerdrop a__ = decoder_layerdrop a__ = activation_function a__ = init_std a__ = use_cache super().__init__(is_encoder_decoder=__snake_case ,**__snake_case ) @property def lowerCamelCase__( self :Dict ) -> int: return ( sum(self.embedding_dimension ) + self.num_dynamic_real_features + self.num_time_features + self.num_static_real_features + self.input_size * 2 # the log1p(abs(loc)) and log(scale) features )
716
import unittest from knapsack import greedy_knapsack as kp class snake_case_ (unittest.TestCase ): def lowerCamelCase__( self :Optional[Any] ) -> Union[str, Any]: a__ = [10, 20, 30, 40, 50, 60] a__ = [2, 4, 6, 8, 10, 12] a__ = 1_00 self.assertEqual(kp.calc_profit(__snake_case ,__snake_case ,__snake_case ) ,2_10 ) def lowerCamelCase__( self :str ) -> Optional[int]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :Optional[Any] ) -> int: self.assertRaisesRegex(__snake_case ,'Weight can not be negative.' ) def lowerCamelCase__( self :str ) -> List[str]: self.assertRaisesRegex(__snake_case ,'Profit can not be negative.' ) def lowerCamelCase__( self :str ) -> Optional[Any]: self.assertRaisesRegex(__snake_case ,'max_weight must greater than zero.' ) def lowerCamelCase__( self :int ) -> List[Any]: self.assertRaisesRegex( __snake_case ,'The length of profit and weight must be same.' ) if __name__ == "__main__": unittest.main()
657
0
'''simple docstring''' import gc import unittest import numpy as np import torch from diffusers import StableDiffusionKDiffusionPipeline from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() @slow @require_torch_gpu class UpperCAmelCase_ (unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> Tuple: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self ) -> Optional[Any]: __lowerCamelCase : str = StableDiffusionKDiffusionPipeline.from_pretrained('CompVis/stable-diffusion-v1-4' ) __lowerCamelCase : Dict = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) sd_pipe.set_scheduler('sample_euler' ) __lowerCamelCase : int = 'A painting of a squirrel eating a burger' __lowerCamelCase : Tuple = torch.manual_seed(0 ) __lowerCamelCase : Tuple = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __lowerCamelCase : Union[str, Any] = output.images __lowerCamelCase : List[Any] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : List[str] = np.array([0.0_4_4_7, 0.0_4_9_2, 0.0_4_6_8, 0.0_4_0_8, 0.0_3_8_3, 0.0_4_0_8, 0.0_3_5_4, 0.0_3_8_0, 0.0_3_3_9] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def lowercase_ ( self ) -> Dict: __lowerCamelCase : List[Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowerCamelCase : List[Any] = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) sd_pipe.set_scheduler('sample_euler' ) __lowerCamelCase : Union[str, Any] = 'A painting of a squirrel eating a burger' __lowerCamelCase : Any = torch.manual_seed(0 ) __lowerCamelCase : List[str] = sd_pipe([prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=9.0 , num_inference_steps=20 , output_type='np' ) __lowerCamelCase : List[str] = output.images __lowerCamelCase : List[str] = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : Tuple = np.array([0.1_2_3_7, 0.1_3_2_0, 0.1_4_3_8, 0.1_3_5_9, 0.1_3_9_0, 0.1_1_3_2, 0.1_2_7_7, 0.1_1_7_5, 0.1_1_1_2] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-1 def lowercase_ ( self ) -> List[Any]: __lowerCamelCase : List[Any] = StableDiffusionKDiffusionPipeline.from_pretrained('stabilityai/stable-diffusion-2-1-base' ) __lowerCamelCase : Dict = sd_pipe.to(SCREAMING_SNAKE_CASE_ ) sd_pipe.set_progress_bar_config(disable=SCREAMING_SNAKE_CASE_ ) sd_pipe.set_scheduler('sample_dpmpp_2m' ) __lowerCamelCase : Any = 'A painting of a squirrel eating a burger' __lowerCamelCase : Optional[Any] = torch.manual_seed(0 ) __lowerCamelCase : Optional[int] = sd_pipe( [prompt] , generator=SCREAMING_SNAKE_CASE_ , guidance_scale=7.5 , num_inference_steps=15 , output_type='np' , use_karras_sigmas=SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase : Optional[Any] = output.images __lowerCamelCase : Any = image[0, -3:, -3:, -1] assert image.shape == (1, 5_12, 5_12, 3) __lowerCamelCase : List[Any] = np.array( [0.1_1_3_8_1_6_8_9, 0.1_2_1_1_2_9_2_1, 0.1_3_8_9_4_5_7, 0.1_2_5_4_9_6_0_6, 0.1_2_4_4_9_6_4, 0.1_0_8_3_1_5_1_7, 0.1_1_5_6_2_8_6_6, 0.1_0_8_6_7_8_1_6, 0.1_0_4_9_9_0_4_8] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
13
from typing import Any, Dict, List, Union from ..utils import add_end_docstrings, is_torch_available, is_vision_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from ..image_utils import load_image if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_OBJECT_DETECTION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING __a :str = logging.get_logger(__name__) __a :Any = Dict[str, Any] __a :int = List[Prediction] @add_end_docstrings(snake_case_ ) class _a ( snake_case_ ): """simple docstring""" def __init__( self : Tuple , *UpperCAmelCase : Optional[int] , **UpperCAmelCase : Optional[Any] ): super().__init__(*UpperCAmelCase , **UpperCAmelCase ) if self.framework == "tf": raise ValueError(f'''The {self.__class__} is only available in PyTorch.''' ) requires_backends(self , "vision" ) self.check_model_type( dict(MODEL_FOR_OBJECT_DETECTION_MAPPING.items() + MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING.items() ) ) def __A ( self : str , **UpperCAmelCase : str ): A_ = {} if "threshold" in kwargs: A_ = kwargs["threshold"] return {}, {}, postprocess_kwargs def __call__( self : Union[str, Any] , *UpperCAmelCase : Union[str, Any] , **UpperCAmelCase : Optional[Any] ): return super().__call__(*UpperCAmelCase , **UpperCAmelCase ) def __A ( self : str , UpperCAmelCase : Any ): A_ = load_image(UpperCAmelCase ) A_ = torch.IntTensor([[image.height, image.width]] ) A_ = self.image_processor(images=[image] , return_tensors="pt" ) if self.tokenizer is not None: A_ = self.tokenizer(text=inputs["words"] , boxes=inputs["boxes"] , return_tensors="pt" ) A_ = target_size return inputs def __A ( self : Optional[Any] , UpperCAmelCase : Optional[int] ): A_ = model_inputs.pop("target_size" ) A_ = self.model(**UpperCAmelCase ) A_ = outputs.__class__({"target_size": target_size, **outputs} ) if self.tokenizer is not None: A_ = model_inputs["bbox"] return model_outputs def __A ( self : str , UpperCAmelCase : Optional[int] , UpperCAmelCase : Union[str, Any]=0.9 ): A_ = model_outputs["target_size"] if self.tokenizer is not None: # This is a LayoutLMForTokenClassification variant. # The OCR got the boxes and the model classified the words. A_ , A_ = target_size[0].tolist() def unnormalize(UpperCAmelCase : Any ): return self._get_bounding_box( torch.Tensor( [ (width * bbox[0] / 1000), (height * bbox[1] / 1000), (width * bbox[2] / 1000), (height * bbox[3] / 1000), ] ) ) A_ , A_ = model_outputs["logits"].squeeze(0 ).softmax(dim=-1 ).max(dim=-1 ) A_ = [self.model.config.idalabel[prediction] for prediction in classes.tolist()] A_ = [unnormalize(UpperCAmelCase ) for bbox in model_outputs["bbox"].squeeze(0 )] A_ = ["score", "label", "box"] A_ = [dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for vals in zip(scores.tolist() , UpperCAmelCase , UpperCAmelCase ) if vals[0] > threshold] else: # This is a regular ForObjectDetectionModel A_ = self.image_processor.post_process_object_detection(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) A_ = raw_annotations[0] A_ = raw_annotation["scores"] A_ = raw_annotation["labels"] A_ = raw_annotation["boxes"] A_ = scores.tolist() A_ = [self.model.config.idalabel[label.item()] for label in labels] A_ = [self._get_bounding_box(UpperCAmelCase ) for box in boxes] # {"scores": [...], ...} --> [{"score":x, ...}, ...] A_ = ["score", "label", "box"] A_ = [ dict(zip(UpperCAmelCase , UpperCAmelCase ) ) for vals in zip(raw_annotation["scores"] , raw_annotation["labels"] , raw_annotation["boxes"] ) ] return annotation def __A ( self : Tuple , UpperCAmelCase : "torch.Tensor" ): if self.framework != "pt": raise ValueError("The ObjectDetectionPipeline is only available in PyTorch." ) A_ , A_ , A_ , A_ = box.int().tolist() A_ = { "xmin": xmin, "ymin": ymin, "xmax": xmax, "ymax": ymax, } return bbox
86
0
from pathlib import Path import fire def UpperCamelCase__ ( A__ , A__ , A__ ) -> Tuple: snake_case__ : List[str] = Path(lowerCamelCase_ ) snake_case__ : Any = Path(lowerCamelCase_ ) dest_dir.mkdir(exist_ok=lowerCamelCase_ ) for path in src_dir.iterdir(): snake_case__ : List[str] = [x.rstrip() for x in list(path.open().readlines() )][:n] snake_case__ : Optional[Any] = dest_dir.joinpath(path.name ) print(lowerCamelCase_ ) dest_path.open('w' ).write('\n'.join(lowerCamelCase_ ) ) if __name__ == "__main__": fire.Fire(minify)
706
import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( ConditionalDetrConfig, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ : Dict = logging.get_logger(__name__) # here we list all keys to be renamed (original name on the left, our name on the right) lowerCAmelCase__ : Optional[Any] = [] for i in range(6): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.weight''', F'''encoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.encoder.layers.{i}.self_attn.out_proj.bias''', F'''encoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.weight''', F'''encoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear1.bias''', F'''encoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.weight''', F'''encoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.linear2.bias''', F'''encoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.encoder.layers.{i}.norm1.weight''', F'''encoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.encoder.layers.{i}.norm1.bias''', F'''encoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.weight''', F'''encoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.encoder.layers.{i}.norm2.bias''', F'''encoder.layers.{i}.final_layer_norm.bias''')) # decoder layers: 2 times output projection, 2 feedforward neural networks and 3 layernorms rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.weight''', F'''decoder.layers.{i}.self_attn.out_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.self_attn.out_proj.bias''', F'''decoder.layers.{i}.self_attn.out_proj.bias''') ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.weight''', F'''decoder.layers.{i}.encoder_attn.out_proj.weight''', ) ) rename_keys.append( ( F'''transformer.decoder.layers.{i}.cross_attn.out_proj.bias''', F'''decoder.layers.{i}.encoder_attn.out_proj.bias''', ) ) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.weight''', F'''decoder.layers.{i}.fc1.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear1.bias''', F'''decoder.layers.{i}.fc1.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.weight''', F'''decoder.layers.{i}.fc2.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.linear2.bias''', F'''decoder.layers.{i}.fc2.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm1.weight''', F'''decoder.layers.{i}.self_attn_layer_norm.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm1.bias''', F'''decoder.layers.{i}.self_attn_layer_norm.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.weight''', F'''decoder.layers.{i}.encoder_attn_layer_norm.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.norm2.bias''', F'''decoder.layers.{i}.encoder_attn_layer_norm.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.weight''', F'''decoder.layers.{i}.final_layer_norm.weight''')) rename_keys.append((F'''transformer.decoder.layers.{i}.norm3.bias''', F'''decoder.layers.{i}.final_layer_norm.bias''')) # q, k, v projections in self/cross-attention in decoder for conditional DETR rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.weight''', F'''decoder.layers.{i}.sa_qcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.weight''', F'''decoder.layers.{i}.sa_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qpos_proj.weight''', F'''decoder.layers.{i}.sa_qpos_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kpos_proj.weight''', F'''decoder.layers.{i}.sa_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.weight''', F'''decoder.layers.{i}.sa_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.weight''', F'''decoder.layers.{i}.ca_qcontent_proj.weight''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.weight", f"decoder.layers.{i}.ca_qpos_proj.weight")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.weight''', F'''decoder.layers.{i}.ca_kcontent_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kpos_proj.weight''', F'''decoder.layers.{i}.ca_kpos_proj.weight''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.weight''', F'''decoder.layers.{i}.ca_v_proj.weight''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.weight''', F'''decoder.layers.{i}.ca_qpos_sine_proj.weight''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_qcontent_proj.bias''', F'''decoder.layers.{i}.sa_qcontent_proj.bias''') ) rename_keys.append( (F'''transformer.decoder.layers.{i}.sa_kcontent_proj.bias''', F'''decoder.layers.{i}.sa_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_qpos_proj.bias''', F'''decoder.layers.{i}.sa_qpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_kpos_proj.bias''', F'''decoder.layers.{i}.sa_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.sa_v_proj.bias''', F'''decoder.layers.{i}.sa_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qcontent_proj.bias''', F'''decoder.layers.{i}.ca_qcontent_proj.bias''') ) # rename_keys.append((f"transformer.decoder.layers.{i}.ca_qpos_proj.bias", f"decoder.layers.{i}.ca_qpos_proj.bias")) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_kcontent_proj.bias''', F'''decoder.layers.{i}.ca_kcontent_proj.bias''') ) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_kpos_proj.bias''', F'''decoder.layers.{i}.ca_kpos_proj.bias''')) rename_keys.append((F'''transformer.decoder.layers.{i}.ca_v_proj.bias''', F'''decoder.layers.{i}.ca_v_proj.bias''')) rename_keys.append( (F'''transformer.decoder.layers.{i}.ca_qpos_sine_proj.bias''', F'''decoder.layers.{i}.ca_qpos_sine_proj.bias''') ) # convolutional projection + query embeddings + layernorm of decoder + class and bounding box heads # for conditional DETR, also convert reference point head and query scale MLP rename_keys.extend( [ ('''input_proj.weight''', '''input_projection.weight'''), ('''input_proj.bias''', '''input_projection.bias'''), ('''query_embed.weight''', '''query_position_embeddings.weight'''), ('''transformer.decoder.norm.weight''', '''decoder.layernorm.weight'''), ('''transformer.decoder.norm.bias''', '''decoder.layernorm.bias'''), ('''class_embed.weight''', '''class_labels_classifier.weight'''), ('''class_embed.bias''', '''class_labels_classifier.bias'''), ('''bbox_embed.layers.0.weight''', '''bbox_predictor.layers.0.weight'''), ('''bbox_embed.layers.0.bias''', '''bbox_predictor.layers.0.bias'''), ('''bbox_embed.layers.1.weight''', '''bbox_predictor.layers.1.weight'''), ('''bbox_embed.layers.1.bias''', '''bbox_predictor.layers.1.bias'''), ('''bbox_embed.layers.2.weight''', '''bbox_predictor.layers.2.weight'''), ('''bbox_embed.layers.2.bias''', '''bbox_predictor.layers.2.bias'''), ('''transformer.decoder.ref_point_head.layers.0.weight''', '''decoder.ref_point_head.layers.0.weight'''), ('''transformer.decoder.ref_point_head.layers.0.bias''', '''decoder.ref_point_head.layers.0.bias'''), ('''transformer.decoder.ref_point_head.layers.1.weight''', '''decoder.ref_point_head.layers.1.weight'''), ('''transformer.decoder.ref_point_head.layers.1.bias''', '''decoder.ref_point_head.layers.1.bias'''), ('''transformer.decoder.query_scale.layers.0.weight''', '''decoder.query_scale.layers.0.weight'''), ('''transformer.decoder.query_scale.layers.0.bias''', '''decoder.query_scale.layers.0.bias'''), ('''transformer.decoder.query_scale.layers.1.weight''', '''decoder.query_scale.layers.1.weight'''), ('''transformer.decoder.query_scale.layers.1.bias''', '''decoder.query_scale.layers.1.bias'''), ('''transformer.decoder.layers.0.ca_qpos_proj.weight''', '''decoder.layers.0.ca_qpos_proj.weight'''), ('''transformer.decoder.layers.0.ca_qpos_proj.bias''', '''decoder.layers.0.ca_qpos_proj.bias'''), ] ) def UpperCamelCase__ ( A__ , A__ , A__ ) -> List[str]: snake_case__ : int = state_dict.pop(A__ ) snake_case__ : Union[str, Any] = val def UpperCamelCase__ ( A__ ) -> int: snake_case__ : List[Any] = OrderedDict() for key, value in state_dict.items(): if "backbone.0.body" in key: snake_case__ : Any = key.replace('backbone.0.body' , 'backbone.conv_encoder.model' ) snake_case__ : Optional[int] = value else: snake_case__ : Optional[int] = value return new_state_dict def UpperCamelCase__ ( A__ , A__=False ) -> Optional[int]: snake_case__ : Optional[int] = '' if is_panoptic: snake_case__ : Tuple = 'conditional_detr.' # first: transformer encoder for i in range(6 ): # read in weights + bias of input projection layer (in PyTorch's MultiHeadAttention, this is a single matrix + bias) snake_case__ : int = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_weight""" ) snake_case__ : str = state_dict.pop(F"""{prefix}transformer.encoder.layers.{i}.self_attn.in_proj_bias""" ) # next, add query, keys and values (in that order) to the state dict snake_case__ : Union[str, Any] = in_proj_weight[:256, :] snake_case__ : Union[str, Any] = in_proj_bias[:256] snake_case__ : Union[str, Any] = in_proj_weight[256:512, :] snake_case__ : Optional[Any] = in_proj_bias[256:512] snake_case__ : List[str] = in_proj_weight[-256:, :] snake_case__ : Tuple = in_proj_bias[-256:] def UpperCamelCase__ ( ) -> Tuple: snake_case__ : int = 'http://images.cocodataset.org/val2017/000000039769.jpg' snake_case__ : str = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def UpperCamelCase__ ( A__ , A__ ) -> str: snake_case__ : List[Any] = ConditionalDetrConfig() # set backbone and dilation attributes if "resnet101" in model_name: snake_case__ : Any = 'resnet101' if "dc5" in model_name: snake_case__ : Any = True snake_case__ : int = 'panoptic' in model_name if is_panoptic: snake_case__ : str = 250 else: snake_case__ : Union[str, Any] = 91 snake_case__ : Optional[int] = 'huggingface/label-files' snake_case__ : Optional[Any] = 'coco-detection-id2label.json' snake_case__ : str = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) snake_case__ : List[Any] = {int(A__ ): v for k, v in idalabel.items()} snake_case__ : Any = idalabel snake_case__ : int = {v: k for k, v in idalabel.items()} # load image processor snake_case__ : List[Any] = 'coco_panoptic' if is_panoptic else 'coco_detection' snake_case__ : List[Any] = ConditionalDetrImageProcessor(format=A__ ) # prepare image snake_case__ : List[str] = prepare_img() snake_case__ : Any = image_processor(images=A__ , return_tensors='pt' ) snake_case__ : Dict = encoding['pixel_values'] logger.info(F"""Converting model {model_name}...""" ) # load original model from torch hub snake_case__ : Any = torch.hub.load('DeppMeng/ConditionalDETR' , A__ , pretrained=A__ ).eval() snake_case__ : Tuple = conditional_detr.state_dict() # rename keys for src, dest in rename_keys: if is_panoptic: snake_case__ : List[Any] = 'conditional_detr.' + src rename_key(A__ , A__ , A__ ) snake_case__ : Dict = rename_backbone_keys(A__ ) # query, key and value matrices need special treatment read_in_q_k_v(A__ , is_panoptic=A__ ) # important: we need to prepend a prefix to each of the base model keys as the head models use different attributes for them snake_case__ : Optional[int] = 'conditional_detr.model.' if is_panoptic else 'model.' for key in state_dict.copy().keys(): if is_panoptic: if ( key.startswith('conditional_detr' ) and not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ) ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val elif "class_labels_classifier" in key or "bbox_predictor" in key: snake_case__ : str = state_dict.pop(A__ ) snake_case__ : List[Any] = val elif key.startswith('bbox_attention' ) or key.startswith('mask_head' ): continue else: snake_case__ : Union[str, Any] = state_dict.pop(A__ ) snake_case__ : Dict = val else: if not key.startswith('class_labels_classifier' ) and not key.startswith('bbox_predictor' ): snake_case__ : List[Any] = state_dict.pop(A__ ) snake_case__ : Optional[int] = val # finally, create HuggingFace model and load state dict snake_case__ : Union[str, Any] = ConditionalDetrForSegmentation(A__ ) if is_panoptic else ConditionalDetrForObjectDetection(A__ ) model.load_state_dict(A__ ) model.eval() model.push_to_hub(repo_id=A__ , organization='DepuMeng' , commit_message='Add model' ) # verify our conversion snake_case__ : Tuple = conditional_detr(A__ ) snake_case__ : str = model(A__ ) assert torch.allclose(outputs.logits , original_outputs['pred_logits'] , atol=1e-4 ) assert torch.allclose(outputs.pred_boxes , original_outputs['pred_boxes'] , atol=1e-4 ) if is_panoptic: assert torch.allclose(outputs.pred_masks , original_outputs['pred_masks'] , atol=1e-4 ) # Save model and image processor logger.info(F"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(A__ ).mkdir(exist_ok=A__ ) model.save_pretrained(A__ ) image_processor.save_pretrained(A__ ) if __name__ == "__main__": lowerCAmelCase__ : Any = argparse.ArgumentParser() parser.add_argument( '''--model_name''', default='''conditional_detr_resnet50''', type=str, help='''Name of the CONDITIONAL_DETR model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the folder to output PyTorch model.''' ) lowerCAmelCase__ : int = parser.parse_args() convert_conditional_detr_checkpoint(args.model_name, args.pytorch_dump_folder_path)
699
0
import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline a_ :Union[str, Any] = { 'n_samples': 64, 'horizon': 32, 'num_inference_steps': 20, 'n_guide_steps': 2, # can set to 0 for faster sampling, does not use value network 'scale_grad_by_std': True, 'scale': 0.1, 'eta': 0.0, 't_grad_cutoff': 2, 'device': 'cpu', } if __name__ == "__main__": a_ :int = 'hopper-medium-v2' a_ :Any = gym.make(env_name) a_ :List[str] = ValueGuidedRLPipeline.from_pretrained( 'bglick13/hopper-medium-v2-value-function-hor32', env=env, ) env.seed(0) a_ :Optional[Any] = env.reset() a_ :Optional[int] = 0 a_ :List[str] = 0 a_ :List[Any] = 10_00 a_ :Dict = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy a_ :int = pipeline(obs, planning_horizon=32) # execute action in environment a_ , a_ , a_ , a_ :List[Any] = env.step(denorm_actions) a_ :Tuple = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( F'''Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:''' F''' {total_score}''' ) # save observations for rendering rollout.append(next_observation.copy()) a_ :List[Any] = next_observation except KeyboardInterrupt: pass print(F'''Total reward: {total_reward}''')
35
import inspect import os import unittest from pathlib import Path import torch import accelerate from accelerate.test_utils import execute_subprocess_async from accelerate.test_utils.testing import run_command class lowercase ( unittest.TestCase ): lowerCamelCase : List[Any] = inspect.getfile(accelerate.test_utils ) lowerCamelCase : Optional[int] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''test_cli.py'''] ) lowerCamelCase : Any = ['''accelerate''', '''launch'''] lowerCamelCase : Dict = Path.home() / '''.cache/huggingface/accelerate''' lowerCamelCase : Optional[int] = '''default_config.yaml''' lowerCamelCase : Optional[Any] = config_folder / config_file lowerCamelCase : Optional[Any] = config_folder / '''_default_config.yaml''' lowerCamelCase : Optional[Any] = Path('''tests/test_configs''' ) @classmethod def lowercase__ ( cls : Any ): if cls.config_path.is_file(): cls.config_path.rename(cls.changed_path ) @classmethod def lowercase__ ( cls : List[Any] ): if cls.changed_path.is_file(): cls.changed_path.rename(cls.config_path ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Dict = self.base_cmd if torch.cuda.is_available() and (torch.cuda.device_count() > 1): cmd += ["--multi_gpu"] execute_subprocess_async(cmd + [self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Tuple ): for config in sorted(self.test_config_path.glob('''**/*.yaml''' ) ): with self.subTest(config_file=_lowercase ): execute_subprocess_async( self.base_cmd + ['''--config_file''', str(_lowercase ), self.test_file_path] , env=os.environ.copy() ) def lowercase__ ( self : Optional[int] ): execute_subprocess_async(['''accelerate''', '''test'''] , env=os.environ.copy() ) class lowercase ( unittest.TestCase ): lowerCamelCase : str = '''test-tpu''' lowerCamelCase : Tuple = '''us-central1-a''' lowerCamelCase : Optional[int] = '''ls''' lowerCamelCase : Dict = ['''accelerate''', '''tpu-config'''] lowerCamelCase : Tuple = '''cd /usr/share''' lowerCamelCase : List[Any] = '''tests/test_samples/test_command_file.sh''' lowerCamelCase : Any = '''Running gcloud compute tpus tpu-vm ssh''' def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Union[str, Any] = run_command( self.cmd + ['''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : List[str] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command''', self.command, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : str ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--debug'''] , return_stdout=_lowercase ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : List[Any] ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : str = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--command''', self.command, '''--command''', '''echo "Hello World"''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; ls; echo \"Hello World\" --worker all""" , _lowercase , ) def lowercase__ ( self : Optional[Any] ): SCREAMING_SNAKE_CASE__ : Any = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--command_file''', self.command_file, '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Tuple ): SCREAMING_SNAKE_CASE__ : Optional[int] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/0_12_0.yaml''', '''--command_file''', self.command_file, '''--tpu_zone''', self.tpu_zone, '''--tpu_name''', self.tpu_name, '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : Any ): SCREAMING_SNAKE_CASE__ : List[Any] = run_command( self.cmd + ['''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--debug'''] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate -U; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , ) def lowercase__ ( self : int ): SCREAMING_SNAKE_CASE__ : Optional[Any] = run_command( self.cmd + [ '''--config_file''', '''tests/test_configs/latest.yaml''', '''--install_accelerate''', '''--accelerate_version''', '''12.0.0''', '''--debug''', ] , return_stdout=_lowercase , ) self.assertIn( f"""{self.gcloud} test-tpu --zone us-central1-a --command {self.base_output}; pip install accelerate==12.0.0; echo \"hello world\"; echo \"this is a second command\" --worker all""" , _lowercase , )
35
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) _a : Dict = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = ['ConvNextFeatureExtractor'] _a : Any = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Any = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys _a : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure)
663
"""simple docstring""" from __future__ import annotations import random import unittest from transformers import TransfoXLConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST, TFTransfoXLForSequenceClassification, TFTransfoXLLMHeadModel, TFTransfoXLModel, ) class __A : def __init__( self , a__ , ): _lowerCAmelCase : Optional[Any] = parent _lowerCAmelCase : Tuple = 13 _lowerCAmelCase : Tuple = 7 _lowerCAmelCase : Any = 30 _lowerCAmelCase : Optional[int] = self.seq_length + self.mem_len _lowerCAmelCase : Dict = 15 _lowerCAmelCase : List[Any] = True _lowerCAmelCase : Any = True _lowerCAmelCase : List[str] = 99 _lowerCAmelCase : List[Any] = [10, 50, 80] _lowerCAmelCase : Tuple = 32 _lowerCAmelCase : int = 32 _lowerCAmelCase : Dict = 4 _lowerCAmelCase : List[str] = 8 _lowerCAmelCase : Tuple = 128 _lowerCAmelCase : Any = 2 _lowerCAmelCase : List[Any] = 2 _lowerCAmelCase : List[Any] = None _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Tuple = 0 _lowerCAmelCase : List[Any] = 3 _lowerCAmelCase : Optional[int] = self.vocab_size - 1 _lowerCAmelCase : Dict = 0.0_1 def __A ( self ): _lowerCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : List[str] = None if self.use_labels: _lowerCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase : Union[str, Any] = TransfoXLConfig( vocab_size=self.vocab_size , mem_len=self.mem_len , clamp_len=self.clamp_len , cutoffs=self.cutoffs , d_model=self.hidden_size , d_embed=self.d_embed , n_head=self.num_attention_heads , d_head=self.d_head , d_inner=self.d_inner , div_val=self.div_val , n_layer=self.num_hidden_layers , eos_token_id=self.eos_token_id , pad_token_id=self.vocab_size - 1 , init_range=self.init_range , num_labels=self.num_labels , ) return (config, input_ids_a, input_ids_a, lm_labels) def __A ( self ): random.seed(self.seed ) tf.random.set_seed(self.seed ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Optional[int] = TFTransfoXLModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() _lowerCAmelCase : Optional[Any] = {"""input_ids""": input_ids_a, """mems""": mems_a} _lowerCAmelCase , _lowerCAmelCase : List[Any] = model(a__ ).to_tuple() self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(hidden_states_a.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : int = TFTransfoXLLMHeadModel(a__ ) _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase : Dict = {"""input_ids""": input_ids_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : str = model(a__ ).to_tuple() _lowerCAmelCase , _lowerCAmelCase : Optional[Any] = model([input_ids_a, mems_a] ).to_tuple() _lowerCAmelCase : Any = {"""input_ids""": input_ids_a, """mems""": mems_a, """labels""": lm_labels} _lowerCAmelCase , _lowerCAmelCase : Optional[int] = model(a__ ).to_tuple() self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) self.parent.assertEqual(lm_logits_a.shape , (self.batch_size, self.seq_length, self.vocab_size) ) self.parent.assertListEqual( [mem.shape for mem in mems_a] , [(self.mem_len, self.batch_size, self.hidden_size)] * self.num_hidden_layers , ) def __A ( self , a__ , a__ , a__ , a__ ): _lowerCAmelCase : Tuple = TFTransfoXLForSequenceClassification(a__ ) _lowerCAmelCase : int = model(a__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __A ( self ): _lowerCAmelCase : str = self.prepare_config_and_inputs() ((_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase) , (_lowerCAmelCase)) : Dict = config_and_inputs _lowerCAmelCase : List[Any] = {"""input_ids""": input_ids_a} return config, inputs_dict @require_tf class __A ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): _UpperCamelCase : Dict = ( (TFTransfoXLModel, TFTransfoXLLMHeadModel, TFTransfoXLForSequenceClassification) if is_tf_available() else () ) _UpperCamelCase : Tuple = () if is_tf_available() else () _UpperCamelCase : Any = ( { "feature-extraction": TFTransfoXLModel, "text-classification": TFTransfoXLForSequenceClassification, "text-generation": TFTransfoXLLMHeadModel, "zero-shot": TFTransfoXLForSequenceClassification, } if is_tf_available() else {} ) # TODO: add this test when TFTransfoXLLMHead has a linear output layer implemented _UpperCamelCase : str = False _UpperCamelCase : str = False _UpperCamelCase : Tuple = False _UpperCamelCase : Any = False def __A ( self , a__ , a__ , a__ , a__ , a__ ): if pipeline_test_casse_name == "TextGenerationPipelineTests": # Get `ValueError: AttributeError: 'NoneType' object has no attribute 'new_ones'` or `AssertionError`. # `TransfoXLConfig` was never used in pipeline tests: cannot create a simple # tokenizer. return True return False def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLModelTester(self ) _lowerCAmelCase : List[Any] = ConfigTester(self , config_class=a__ , d_embed=37 ) def __A ( self ): self.config_tester.run_common_tests() def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_model(*a__ ) def __A ( self ): self.model_tester.set_seed() _lowerCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_lm_head(*a__ ) def __A ( self ): _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_transfo_xl_for_sequence_classification(*a__ ) def __A ( self ): _lowerCAmelCase , _lowerCAmelCase : Any = self.model_tester.prepare_config_and_inputs_for_common() _lowerCAmelCase : List[Any] = [TFTransfoXLForSequenceClassification] for model_class in self.all_model_classes: _lowerCAmelCase : Optional[Any] = model_class(a__ ) assert isinstance(model.get_input_embeddings() , tf.keras.layers.Layer ) if model_class in list_other_models_with_output_ebd: _lowerCAmelCase : str = model.get_output_embeddings() assert isinstance(a__ , tf.keras.layers.Layer ) _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None else: _lowerCAmelCase : Union[str, Any] = model.get_output_embeddings() assert x is None _lowerCAmelCase : Optional[int] = model.get_bias() assert name is None def __A ( self ): # TODO JP: Make TransfoXL XLA compliant pass @slow def __A ( self ): for model_name in TF_TRANSFO_XL_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase : Union[str, Any] = TFTransfoXLModel.from_pretrained(a__ ) self.assertIsNotNone(a__ ) @unittest.skip(reason="""This model doesn't play well with fit() due to not returning a single loss.""" ) def __A ( self ): pass @require_tf class __A ( unittest.TestCase ): @unittest.skip("""Skip test until #12651 is resolved.""" ) @slow def __A ( self ): _lowerCAmelCase : Tuple = TFTransfoXLLMHeadModel.from_pretrained("""transfo-xl-wt103""" ) # fmt: off _lowerCAmelCase : List[str] = tf.convert_to_tensor([[33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0]] , dtype=tf.intaa ) # noqa: E231 # fmt: on # In 1991 , the remains of Russian Tsar Nicholas II and his family # ( except for Alexei and Maria ) are discovered . # The voice of Nicholas's young son , Tsarevich Alexei Nikolaevich , narrates the # remainder of the story . 1883 Western Siberia , # a young Grigori Rasputin is asked by his father and a group of men to perform magic . # Rasputin has a vision and denounces one of the men as a horse thief . Although his # father initially slaps him for making such an accusation , Rasputin watches as the # man is chased outside and beaten . Twenty years later , Rasputin sees a vision of # the Virgin Mary , prompting him to become a priest . Rasputin quickly becomes famous , # with people , even a bishop , begging for his blessing . <eod> </s> <eos> # fmt: off _lowerCAmelCase : List[Any] = [33,1297,2,1,1009,4,1109,11739,4762,358,5,25,245,22,1706,17,20098,5,3215,21,37,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,6224,831,16002,2,8,603,78967,29546,23,803,20,25,416,5,8,232,4,277,6,1855,4601,3,29546,54,8,3609,5,57211,49,4,1,277,18,8,1755,15691,3,341,25,416,693,42573,71,17,401,94,31,17919,2,29546,7873,18,1,435,23,11011,755,5,5167,3,7983,98,84,2,29546,3267,8,3609,4,1,4865,1075,2,6087,71,6,346,8,5854,3,29546,824,1400,1868,2,19,160,2,311,8,5496,2,20920,17,25,15097,3,24,24,0,33,1,1857,2,1,1009,4,1109,11739,4762,358,5,25,245,28,1110,3,13,1041,4,24,603,490,2,71477,20098,104447,2,20961,1,2604,4,1,329,3,0] # noqa: E231 # fmt: on # In 1991, the remains of Russian Tsar Nicholas II and his family ( # except for Alexei and Maria ) are discovered. The voice of young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story. # 1883 Western Siberia, a young Grigori Rasputin is asked by his father # and a group of men to perform magic. Rasputin has a vision and # denounces one of the men as a horse thief. Although his father initially # slaps him for making such an accusation, Rasputin watches as the man # is chased outside and beaten. Twenty years later, Rasputin sees a vision # of the Virgin Mary, prompting him to become a priest. # Rasputin quickly becomes famous, with people, even a bishop, begging for # his blessing. <unk> <unk> <eos> In the 1990s, the remains of Russian Tsar # Nicholas II and his family were discovered. The voice of <unk> young son, # Tsarevich Alexei Nikolaevich, narrates the remainder of the story.<eos> _lowerCAmelCase : Tuple = model.generate(a__ , max_length=200 , do_sample=a__ ) self.assertListEqual(output_ids[0].numpy().tolist() , a__ )
663
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __UpperCAmelCase = { 'configuration_mobilebert': [ 'MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MobileBertConfig', 'MobileBertOnnxConfig', ], 'tokenization_mobilebert': ['MobileBertTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = ['MobileBertTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'MobileBertForMaskedLM', 'MobileBertForMultipleChoice', 'MobileBertForNextSentencePrediction', 'MobileBertForPreTraining', 'MobileBertForQuestionAnswering', 'MobileBertForSequenceClassification', 'MobileBertForTokenClassification', 'MobileBertLayer', 'MobileBertModel', 'MobileBertPreTrainedModel', 'load_tf_weights_in_mobilebert', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase = [ 'TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFMobileBertForMaskedLM', 'TFMobileBertForMultipleChoice', 'TFMobileBertForNextSentencePrediction', 'TFMobileBertForPreTraining', 'TFMobileBertForQuestionAnswering', 'TFMobileBertForSequenceClassification', 'TFMobileBertForTokenClassification', 'TFMobileBertMainLayer', 'TFMobileBertModel', 'TFMobileBertPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mobilebert import ( MOBILEBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileBertConfig, MobileBertOnnxConfig, ) from .tokenization_mobilebert import MobileBertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mobilebert_fast import MobileBertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilebert import ( MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileBertForMaskedLM, MobileBertForMultipleChoice, MobileBertForNextSentencePrediction, MobileBertForPreTraining, MobileBertForQuestionAnswering, MobileBertForSequenceClassification, MobileBertForTokenClassification, MobileBertLayer, MobileBertModel, MobileBertPreTrainedModel, load_tf_weights_in_mobilebert, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilebert import ( TF_MOBILEBERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileBertForMaskedLM, TFMobileBertForMultipleChoice, TFMobileBertForNextSentencePrediction, TFMobileBertForPreTraining, TFMobileBertForQuestionAnswering, TFMobileBertForSequenceClassification, TFMobileBertForTokenClassification, TFMobileBertMainLayer, TFMobileBertModel, TFMobileBertPreTrainedModel, ) else: import sys __UpperCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
406
import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class lowerCamelCase (ctypes.Structure ): '''simple docstring''' _snake_case : str = [('''size''', ctypes.c_int), ('''visible''', ctypes.c_byte)] def lowercase__ ( ): '''simple docstring''' if os.name == "nt": UpperCAmelCase_ : Optional[int] = CursorInfo() UpperCAmelCase_ : List[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__snake_case , ctypes.byref(__snake_case ) ) UpperCAmelCase_ : Any = False ctypes.windll.kernelaa.SetConsoleCursorInfo(__snake_case , ctypes.byref(__snake_case ) ) elif os.name == "posix": sys.stdout.write('\033[?25l' ) sys.stdout.flush() def lowercase__ ( ): '''simple docstring''' if os.name == "nt": UpperCAmelCase_ : Tuple = CursorInfo() UpperCAmelCase_ : Optional[Any] = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(__snake_case , ctypes.byref(__snake_case ) ) UpperCAmelCase_ : Optional[Any] = True ctypes.windll.kernelaa.SetConsoleCursorInfo(__snake_case , ctypes.byref(__snake_case ) ) elif os.name == "posix": sys.stdout.write('\033[?25h' ) sys.stdout.flush() @contextmanager def lowercase__ ( ): '''simple docstring''' try: hide_cursor() yield finally: show_cursor()
406
1
"""simple docstring""" from __future__ import annotations def lowerCAmelCase (__UpperCamelCase : list[float] ): """simple docstring""" if len(__UpperCamelCase ) < 2: raise ValueError('''Monogons and Digons are not polygons in the Euclidean space''' ) if any(i <= 0 for i in nums ): raise ValueError('''All values must be greater than 0''' ) __UpperCamelCase =nums.copy() copy_nums.sort() return copy_nums[-1] < sum(copy_nums[:-1] ) if __name__ == "__main__": import doctest doctest.testmod()
717
"""simple docstring""" from __future__ import annotations import unittest from transformers import LEDConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFLEDForConditionalGeneration, TFLEDModel @require_tf class _lowercase : """simple docstring""" lowercase__ = LEDConfig lowercase__ = {} lowercase__ = '''gelu''' def __init__( self : Any , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : List[Any]=13 , UpperCamelCase__ : Optional[int]=7 , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : Optional[Any]=False , UpperCamelCase__ : List[str]=99 , UpperCamelCase__ : Dict=32 , UpperCamelCase__ : List[Any]=2 , UpperCamelCase__ : Tuple=4 , UpperCamelCase__ : int=37 , UpperCamelCase__ : str=0.1 , UpperCamelCase__ : Optional[int]=0.1 , UpperCamelCase__ : Optional[int]=20 , UpperCamelCase__ : str=2 , UpperCamelCase__ : Dict=1 , UpperCamelCase__ : Optional[Any]=0 , UpperCamelCase__ : Tuple=4 , ) -> str: '''simple docstring''' __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =seq_length __UpperCamelCase =is_training __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =eos_token_id __UpperCamelCase =pad_token_id __UpperCamelCase =bos_token_id __UpperCamelCase =attention_window # `ModelTesterMixin.test_attention_outputs` is expecting attention tensors to be of size # [num_attention_heads, encoder_seq_length, encoder_key_length], but TFLongformerSelfAttention # returns attention of shape [num_attention_heads, encoder_seq_length, self.attention_window + 1] # because its local attention only attends to `self.attention_window` and one before and one after __UpperCamelCase =self.attention_window + 2 # because of padding `encoder_seq_length`, is different from `seq_length`. Relevant for # the `test_attention_outputs` and `test_hidden_states_output` tests __UpperCamelCase =( self.seq_length + (self.attention_window - self.seq_length % self.attention_window) % self.attention_window ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Dict: '''simple docstring''' __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) __UpperCamelCase =tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) __UpperCamelCase =tf.concat([input_ids, eos_tensor] , axis=1 ) __UpperCamelCase =ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCamelCase =self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , attention_window=self.attention_window , **self.config_updates , ) __UpperCamelCase =prepare_led_inputs_dict(UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =tf.concat( [tf.zeros_like(UpperCamelCase__ )[:, :-1], tf.ones_like(UpperCamelCase__ )[:, -1:]] , axis=-1 , ) __UpperCamelCase =global_attention_mask return config, inputs_dict def UpperCAmelCase_ ( self : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict ) -> Any: '''simple docstring''' __UpperCamelCase =TFLEDModel(config=UpperCamelCase__ ).get_decoder() __UpperCamelCase =inputs_dict['''input_ids'''] __UpperCamelCase =input_ids[:1, :] __UpperCamelCase =inputs_dict['''attention_mask'''][:1, :] __UpperCamelCase =1 # first forward pass __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , use_cache=UpperCamelCase__ ) __UpperCamelCase , __UpperCamelCase =outputs.to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCamelCase =ids_tensor((self.batch_size, 3) , config.vocab_size ) __UpperCamelCase =tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and __UpperCamelCase =tf.concat([input_ids, next_tokens] , axis=-1 ) __UpperCamelCase =tf.concat([attention_mask, next_attn_mask] , axis=-1 ) __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ )[0] __UpperCamelCase =model(UpperCamelCase__ , attention_mask=UpperCamelCase__ , past_key_values=UpperCamelCase__ )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice __UpperCamelCase =int(ids_tensor((1,) , output_from_past.shape[-1] ) ) __UpperCamelCase =output_from_no_past[:, -3:, random_slice_idx] __UpperCamelCase =output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(UpperCamelCase__ , UpperCamelCase__ , rtol=1E-3 ) def lowerCAmelCase (__UpperCamelCase : Any , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : Any=None , __UpperCamelCase : List[str]=None , __UpperCamelCase : int=None , __UpperCamelCase : Tuple=None , ): """simple docstring""" if attention_mask is None: __UpperCamelCase =tf.cast(tf.math.not_equal(__UpperCamelCase , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: __UpperCamelCase =tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: __UpperCamelCase =tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __UpperCamelCase =tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "attention_mask": attention_mask, "decoder_input_ids": decoder_input_ids, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, } @require_tf class _lowercase ( __a , __a , unittest.TestCase ): """simple docstring""" lowercase__ = (TFLEDForConditionalGeneration, TFLEDModel) if is_tf_available() else () lowercase__ = (TFLEDForConditionalGeneration,) if is_tf_available() else () lowercase__ = ( { '''conversational''': TFLEDForConditionalGeneration, '''feature-extraction''': TFLEDModel, '''summarization''': TFLEDForConditionalGeneration, '''text2text-generation''': TFLEDForConditionalGeneration, '''translation''': TFLEDForConditionalGeneration, } if is_tf_available() else {} ) lowercase__ = True lowercase__ = False lowercase__ = False lowercase__ = False def UpperCAmelCase_ ( self : int ) -> List[Any]: '''simple docstring''' __UpperCamelCase =TFLEDModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=UpperCamelCase__ ) def UpperCAmelCase_ ( self : Optional[Any] ) -> Optional[Any]: '''simple docstring''' self.config_tester.run_common_tests() def UpperCAmelCase_ ( self : Dict ) -> Any: '''simple docstring''' __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*UpperCamelCase__ ) def UpperCAmelCase_ ( self : Union[str, Any] ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase , __UpperCamelCase =self.model_tester.prepare_config_and_inputs_for_common() __UpperCamelCase =tf.zeros_like(inputs_dict['''attention_mask'''] ) __UpperCamelCase =2 __UpperCamelCase =tf.where( tf.range(self.model_tester.seq_length )[None, :] < num_global_attn_indices , 1 , inputs_dict['''global_attention_mask'''] , ) __UpperCamelCase =True __UpperCamelCase =self.model_tester.seq_length __UpperCamelCase =self.model_tester.encoder_seq_length def check_decoder_attentions_output(UpperCamelCase__ : Tuple ): __UpperCamelCase =outputs.decoder_attentions self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(decoder_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) def check_encoder_attentions_output(UpperCamelCase__ : Dict ): __UpperCamelCase =[t.numpy() for t in outputs.encoder_attentions] __UpperCamelCase =[t.numpy() for t in outputs.encoder_global_attentions] self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertEqual(len(UpperCamelCase__ ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_length, seq_length] , ) self.assertListEqual( list(global_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, encoder_seq_length, num_global_attn_indices] , ) for model_class in self.all_model_classes: __UpperCamelCase =True __UpperCamelCase =False __UpperCamelCase =False __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) __UpperCamelCase =len(UpperCamelCase__ ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) if self.is_encoder_decoder: __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_decoder_attentions_output(UpperCamelCase__ ) # Check that output attentions can also be changed via the config del inputs_dict["output_attentions"] __UpperCamelCase =True __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) # Check attention is always last and order is fine __UpperCamelCase =True __UpperCamelCase =True __UpperCamelCase =model_class(UpperCamelCase__ ) __UpperCamelCase =model(self._prepare_for_class(UpperCamelCase__ , UpperCamelCase__ ) ) self.assertEqual(out_len + (2 if self.is_encoder_decoder else 1) , len(UpperCamelCase__ ) ) self.assertEqual(model.config.output_hidden_states , UpperCamelCase__ ) check_encoder_attentions_output(UpperCamelCase__ ) @unittest.skip('''LED keeps using potentially symbolic tensors in conditionals and breaks tracing.''' ) def UpperCAmelCase_ ( self : Dict ) -> Dict: '''simple docstring''' pass def UpperCAmelCase_ ( self : Any ) -> Union[str, Any]: '''simple docstring''' pass def lowerCAmelCase (__UpperCamelCase : str ): """simple docstring""" return tf.constant(__UpperCamelCase , dtype=tf.intaa ) __lowercase = 1e-4 @slow @require_tf class _lowercase ( unittest.TestCase ): """simple docstring""" def UpperCAmelCase_ ( self : str ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ).led # change to intended input here __UpperCamelCase =_long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __UpperCamelCase =_long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __UpperCamelCase =prepare_led_inputs_dict(model.config , UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =model(**UpperCamelCase__ )[0] __UpperCamelCase =(1, 1024, 768) self.assertEqual(output.shape , UpperCamelCase__ ) # change to expected output here __UpperCamelCase =tf.convert_to_tensor( [[2.30_50, 2.82_79, 0.65_31], [-1.84_57, -0.14_55, -3.56_61], [-1.01_86, 0.45_86, -2.20_43]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1E-3 ) def UpperCAmelCase_ ( self : Dict ) -> Optional[Any]: '''simple docstring''' __UpperCamelCase =TFLEDForConditionalGeneration.from_pretrained('''allenai/led-base-16384''' ) # change to intended input here __UpperCamelCase =_long_tensor([512 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __UpperCamelCase =_long_tensor([128 * [0, 31414, 232, 328, 740, 1140, 12695, 69]] ) __UpperCamelCase =prepare_led_inputs_dict(model.config , UpperCamelCase__ , UpperCamelCase__ ) __UpperCamelCase =model(**UpperCamelCase__ )[0] __UpperCamelCase =(1, 1024, model.config.vocab_size) self.assertEqual(output.shape , UpperCamelCase__ ) # change to expected output here __UpperCamelCase =tf.convert_to_tensor( [[33.65_07, 6.45_72, 16.80_89], [5.87_39, -2.42_38, 11.29_02], [-3.21_39, -4.31_49, 4.27_83]] , ) tf.debugging.assert_near(output[:, :3, :3] , UpperCamelCase__ , atol=1E-3 , rtol=1E-3 )
296
0
def lowerCAmelCase_ ( _snake_case : int ) -> Optional[Any]: '''simple docstring''' if not isinstance(lowerCamelCase__ , lowerCamelCase__ ) or number < 0: raise ValueError("Input must be a non-negative integer" ) __magic_name__ : List[Any] = 0 while number: # This way we arrive at next set bit (next 1) instead of looping # through each bit and checking for 1s hence the # loop won't run 32 times it will only run the number of `1` times number &= number - 1 count += 1 return count if __name__ == "__main__": import doctest doctest.testmod()
124
'''simple docstring''' import numpy as np def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : List[Any] , lowerCamelCase__ : List[str] , lowerCamelCase__ : Optional[Any] , lowerCamelCase__ : Dict , lowerCamelCase__ : Optional[int] ): '''simple docstring''' A: Any = int(np.ceil((x_end - xa) / h ) ) A: Union[str, Any] = np.zeros((n + 1,) ) A: Optional[int] = ya A: int = xa for k in range(lowerCamelCase__ ): A: Optional[int] = f(lowerCamelCase__ , y[k] ) A: int = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A: List[str] = f(x + 0.5 * h , y[k] + 0.5 * h * ka ) A: Optional[int] = f(x + h , y[k] + h * ka ) A: Optional[Any] = y[k] + (1 / 6) * h * (ka + 2 * ka + 2 * ka + ka) x += h return y if __name__ == "__main__": import doctest doctest.testmod()
135
0
'''simple docstring''' A__ : Tuple =[4, 1, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : Optional[int] =[3, 7, 7, 4, 2, 6, 4, 1, 5, 3, 7, 5] A__ : Optional[int] ={ 0: 'Sunday', 1: 'Monday', 2: 'Tuesday', 3: 'Wednesday', 4: 'Thursday', 5: 'Friday', 6: 'Saturday', } def A_ ( __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : int ) -> str: """simple docstring""" assert len(str(__SCREAMING_SNAKE_CASE ) ) > 2, "year should be in YYYY format" assert 1 <= month <= 12, "month should be between 1 to 12" assert 1 <= day <= 31, "day should be between 1 to 31" # Doomsday algorithm: __A : Union[str, Any] = year // 100 __A : Optional[Any] = (5 * (century % 4) + 2) % 7 __A : List[str] = year % 100 __A : Tuple = centurian % 12 __A : int = ( (centurian // 12) + centurian_m + (centurian_m // 4) + century_anchor ) % 7 __A : List[Any] = ( DOOMSDAY_NOT_LEAP[month - 1] if (year % 4 != 0) or (centurian == 0 and (year % 400) == 0) else DOOMSDAY_LEAP[month - 1] ) __A : int = (dooms_day + day - day_anchor) % 7 return WEEK_DAY_NAMES[week_day] if __name__ == "__main__": import doctest doctest.testmod()
716
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging A__ : int =logging.get_logger(__name__) A__ : Union[str, Any] ={ 'facebook/dpr-ctx_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-single-nq-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-reader-single-nq-base': ( 'https://huggingface.co/facebook/dpr-reader-single-nq-base/resolve/main/config.json' ), 'facebook/dpr-ctx_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-ctx_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-question_encoder-multiset-base': ( 'https://huggingface.co/facebook/dpr-question_encoder-multiset-base/resolve/main/config.json' ), 'facebook/dpr-reader-multiset-base': ( 'https://huggingface.co/facebook/dpr-reader-multiset-base/resolve/main/config.json' ), } class __A ( _SCREAMING_SNAKE_CASE ): lowerCamelCase ='''dpr''' def __init__( self : Optional[int] , lowerCamelCase : Tuple=3_05_22 , lowerCamelCase : List[str]=7_68 , lowerCamelCase : Union[str, Any]=12 , lowerCamelCase : Tuple=12 , lowerCamelCase : Dict=30_72 , lowerCamelCase : List[Any]="gelu" , lowerCamelCase : List[Any]=0.1 , lowerCamelCase : Union[str, Any]=0.1 , lowerCamelCase : Optional[Any]=5_12 , lowerCamelCase : List[Any]=2 , lowerCamelCase : int=0.02 , lowerCamelCase : Union[str, Any]=1e-1_2 , lowerCamelCase : int=0 , lowerCamelCase : List[str]="absolute" , lowerCamelCase : int = 0 , **lowerCamelCase : List[Any] , ): """simple docstring""" super().__init__(pad_token_id=lowerCamelCase , **lowerCamelCase ) __A : Dict = vocab_size __A : int = hidden_size __A : str = num_hidden_layers __A : Union[str, Any] = num_attention_heads __A : Union[str, Any] = hidden_act __A : Optional[Any] = intermediate_size __A : str = hidden_dropout_prob __A : int = attention_probs_dropout_prob __A : int = max_position_embeddings __A : Dict = type_vocab_size __A : Dict = initializer_range __A : Union[str, Any] = layer_norm_eps __A : int = projection_dim __A : List[Any] = position_embedding_type
499
0
import copy from ...configuration_utils import PretrainedConfig from ...utils import logging from ..bit import BitConfig UpperCAmelCase_ : List[str] = logging.get_logger(__name__) UpperCAmelCase_ : Optional[Any] = { '''Intel/dpt-large''': '''https://huggingface.co/Intel/dpt-large/resolve/main/config.json''', # See all DPT models at https://huggingface.co/models?filter=dpt } class lowerCamelCase_ ( _lowercase ): _lowercase : Tuple = '''dpt''' def __init__( self : Tuple , __A : int=768 , __A : List[str]=12 , __A : Tuple=12 , __A : List[str]=3072 , __A : List[str]="gelu" , __A : str=0.0 , __A : Optional[Any]=0.0 , __A : List[str]=0.0_2 , __A : Dict=1e-1_2 , __A : List[Any]=384 , __A : Dict=16 , __A : Union[str, Any]=3 , __A : Any=False , __A : Tuple=True , __A : List[Any]=[2, 5, 8, 11] , __A : Union[str, Any]="project" , __A : Tuple=[4, 2, 1, 0.5] , __A : Any=[96, 192, 384, 768] , __A : Dict=256 , __A : Optional[int]=-1 , __A : Any=False , __A : Dict=True , __A : Optional[int]=0.4 , __A : Any=255 , __A : Any=0.1 , __A : Dict=[1, 1024, 24, 24] , __A : Dict=[0, 1] , __A : int=None , **__A : Dict , ): super().__init__(**__A ) __A : List[str] = hidden_size __A : List[Any] = is_hybrid if self.is_hybrid: if backbone_config is None: logger.info("""Initializing the config with a `BiT` backbone.""" ) __A : Union[str, Any] = { """global_padding""": """same""", """layer_type""": """bottleneck""", """depths""": [3, 4, 9], """out_features""": ["""stage1""", """stage2""", """stage3"""], """embedding_dynamic_padding""": True, } __A : List[str] = BitConfig(**__A ) elif isinstance(__A , __A ): logger.info("""Initializing the config with a `BiT` backbone.""" ) __A : int = BitConfig(**__A ) elif isinstance(__A , __A ): __A : Optional[Any] = backbone_config else: raise ValueError( F"""backbone_config must be a dictionary or a `PretrainedConfig`, got {backbone_config.__class__}.""" ) __A : Optional[Any] = backbone_featmap_shape __A : Optional[int] = neck_ignore_stages if readout_type != "project": raise ValueError("""Readout type must be 'project' when using `DPT-hybrid` mode.""" ) else: __A : str = None __A : Union[str, Any] = None __A : List[str] = [] __A : Union[str, Any] = num_hidden_layers __A : Dict = num_attention_heads __A : Union[str, Any] = intermediate_size __A : Dict = hidden_act __A : Tuple = hidden_dropout_prob __A : Optional[int] = attention_probs_dropout_prob __A : Optional[int] = initializer_range __A : Optional[int] = layer_norm_eps __A : List[str] = image_size __A : Optional[int] = patch_size __A : int = num_channels __A : Tuple = qkv_bias __A : Tuple = backbone_out_indices if readout_type not in ["ignore", "add", "project"]: raise ValueError("""Readout_type must be one of ['ignore', 'add', 'project']""" ) __A : Optional[int] = readout_type __A : List[str] = reassemble_factors __A : Dict = neck_hidden_sizes __A : Dict = fusion_hidden_size __A : Dict = head_in_index __A : Dict = use_batch_norm_in_fusion_residual # auxiliary head attributes (semantic segmentation) __A : int = use_auxiliary_head __A : List[Any] = auxiliary_loss_weight __A : List[Any] = semantic_loss_ignore_index __A : List[str] = semantic_classifier_dropout def lowerCAmelCase_ ( self : Union[str, Any] ): __A : List[Any] = copy.deepcopy(self.__dict__ ) if output["backbone_config"] is not None: __A : Dict = self.backbone_config.to_dict() __A : Optional[int] = self.__class__.model_type return output
17
from __future__ import annotations import json import requests from bsa import BeautifulSoup from fake_useragent import UserAgent __A : List[Any] = {'UserAgent': UserAgent().random} def __a ( A__ : List[Any] ): SCREAMING_SNAKE_CASE = script.contents[0] SCREAMING_SNAKE_CASE = json.loads(data[data.find("{\"config\"" ) : -1] ) return info["entry_data"]["ProfilePage"][0]["graphql"]["user"] class _SCREAMING_SNAKE_CASE : '''simple docstring''' def __init__( self : List[str] , __lowerCamelCase : Optional[Any] ): SCREAMING_SNAKE_CASE = f"https://www.instagram.com/{username}/" SCREAMING_SNAKE_CASE = self.get_json() def _snake_case ( self : Tuple ): SCREAMING_SNAKE_CASE = requests.get(self.url , headers=__lowerCamelCase ).text SCREAMING_SNAKE_CASE = BeautifulSoup(__lowerCamelCase , "html.parser" ).find_all("script" ) try: return extract_user_profile(scripts[4] ) except (json.decoder.JSONDecodeError, KeyError): return extract_user_profile(scripts[3] ) def __repr__( self : Union[str, Any] ): return f"{self.__class__.__name__}('{self.username}')" def __str__( self : str ): return f"{self.fullname} ({self.username}) is {self.biography}" @property def _snake_case ( self : Optional[int] ): return self.user_data["username"] @property def _snake_case ( self : List[Any] ): return self.user_data["full_name"] @property def _snake_case ( self : List[str] ): return self.user_data["biography"] @property def _snake_case ( self : Tuple ): return self.user_data["business_email"] @property def _snake_case ( self : Optional[Any] ): return self.user_data["external_url"] @property def _snake_case ( self : int ): return self.user_data["edge_followed_by"]["count"] @property def _snake_case ( self : List[str] ): return self.user_data["edge_follow"]["count"] @property def _snake_case ( self : List[Any] ): return self.user_data["edge_owner_to_timeline_media"]["count"] @property def _snake_case ( self : Any ): return self.user_data["profile_pic_url_hd"] @property def _snake_case ( self : Optional[int] ): return self.user_data["is_verified"] @property def _snake_case ( self : Dict ): return self.user_data["is_private"] def __a ( A__ : str = "github" ): import os if os.environ.get("CI" ): return # test failing on GitHub Actions SCREAMING_SNAKE_CASE = InstagramUser(A__ ) assert instagram_user.user_data assert isinstance(instagram_user.user_data , A__ ) assert instagram_user.username == username if username != "github": return assert instagram_user.fullname == "GitHub" assert instagram_user.biography == "Built for developers." assert instagram_user.number_of_posts > 150 assert instagram_user.number_of_followers > 120000 assert instagram_user.number_of_followings > 15 assert instagram_user.email == "[email protected]" assert instagram_user.website == "https://github.com/readme" assert instagram_user.profile_picture_url.startswith("https://instagram." ) assert instagram_user.is_verified is True assert instagram_user.is_private is False if __name__ == "__main__": import doctest doctest.testmod() __A : Dict = InstagramUser('github') print(instagram_user) print(f'{instagram_user.number_of_posts = }') print(f'{instagram_user.number_of_followers = }') print(f'{instagram_user.number_of_followings = }') print(f'{instagram_user.email = }') print(f'{instagram_user.website = }') print(f'{instagram_user.profile_picture_url = }') print(f'{instagram_user.is_verified = }') print(f'{instagram_user.is_private = }')
16
0
import inspect import unittest from datasets import load_dataset from packaging import version from transformers import BeitConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_MAPPING, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation, BeitModel, ) from transformers.models.beit.modeling_beit import BEIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): import PIL from PIL import Image from transformers import BeitImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[Any]=1_0_0 , snake_case__ : Union[str, Any]=1_3 , snake_case__ : List[str]=3_0 , snake_case__ : int=2 , snake_case__ : Dict=3 , snake_case__ : List[Any]=True , snake_case__ : Any=True , snake_case__ : str=3_2 , snake_case__ : Optional[Any]=4 , snake_case__ : List[str]=4 , snake_case__ : Tuple=3_7 , snake_case__ : Optional[int]="gelu" , snake_case__ : Union[str, Any]=0.1 , snake_case__ : Any=0.1 , snake_case__ : Union[str, Any]=1_0 , snake_case__ : str=0.02 , snake_case__ : List[Any]=3 , snake_case__ : Any=None , snake_case__ : List[Any]=[0, 1, 2, 3] , ) -> Any: _lowerCamelCase = parent _lowerCamelCase = 1_0_0 _lowerCamelCase = batch_size _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = num_channels _lowerCamelCase = is_training _lowerCamelCase = use_labels _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = scope _lowerCamelCase = out_indices _lowerCamelCase = num_labels # in BeiT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) _lowerCamelCase = (image_size // patch_size) ** 2 _lowerCamelCase = num_patches + 1 def _snake_case ( self : Optional[Any] ) -> List[Any]: _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) _lowerCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _snake_case ( self : str ) -> str: return BeitConfig( vocab_size=self.vocab_size , image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_indices=self.out_indices , ) def _snake_case ( self : Dict , snake_case__ : Dict , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Tuple ) -> List[Any]: _lowerCamelCase = BeitModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _snake_case ( self : Optional[int] , snake_case__ : Any , snake_case__ : int , snake_case__ : int , snake_case__ : Union[str, Any] ) -> Optional[int]: _lowerCamelCase = BeitForMaskedImageModeling(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model(snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length - 1, self.vocab_size) ) def _snake_case ( self : Tuple , snake_case__ : Optional[int] , snake_case__ : Any , snake_case__ : Any , snake_case__ : int ) -> Tuple: _lowerCamelCase = self.type_sequence_label_size _lowerCamelCase = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images _lowerCamelCase = 1 _lowerCamelCase = BeitForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) _lowerCamelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _snake_case ( self : Optional[int] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Dict , snake_case__ : List[str] ) -> Tuple: _lowerCamelCase = self.num_labels _lowerCamelCase = BeitForSemanticSegmentation(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model(snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) _lowerCamelCase = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size * 2, self.image_size * 2) ) def _snake_case ( self : List[Any] ) -> str: _lowerCamelCase = self.prepare_config_and_inputs() _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = config_and_inputs _lowerCamelCase = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ( (BeitModel, BeitForImageClassification, BeitForMaskedImageModeling, BeitForSemanticSegmentation) if is_torch_available() else () ) lowerCAmelCase_ = ( { 'feature-extraction': BeitModel, 'image-classification': BeitForImageClassification, 'image-segmentation': BeitForSemanticSegmentation, } if is_torch_available() else {} ) lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False def _snake_case ( self : Union[str, Any] ) -> List[str]: _lowerCamelCase = BeitModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=3_7 ) def _snake_case ( self : str ) -> Optional[int]: self.config_tester.run_common_tests() @unittest.skip(reason='BEiT does not use inputs_embeds' ) def _snake_case ( self : str ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip(reason='BEiT has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`' ) def _snake_case ( self : Any ) -> Union[str, Any]: pass def _snake_case ( self : List[Any] ) -> Union[str, Any]: _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(snake_case__ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) _lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(snake_case__ , nn.Linear ) ) def _snake_case ( self : Tuple ) -> Any: _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _lowerCamelCase = model_class(snake_case__ ) _lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _lowerCamelCase = [*signature.parameters.keys()] _lowerCamelCase = ['pixel_values'] self.assertListEqual(arg_names[:1] , snake_case__ ) def _snake_case ( self : Tuple ) -> List[str]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _snake_case ( self : Optional[Any] ) -> Tuple: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def _snake_case ( self : Any ) -> Optional[int]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) def _snake_case ( self : Any ) -> Tuple: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*snake_case__ ) def _snake_case ( self : Union[str, Any] ) -> Any: if not self.model_tester.is_training: return _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling]: continue _lowerCamelCase = model_class(snake_case__ ) model.to(snake_case__ ) model.train() _lowerCamelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) _lowerCamelCase = model(**snake_case__ ).loss loss.backward() def _snake_case ( self : int ) -> List[Any]: _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() if not self.model_tester.is_training: return _lowerCamelCase = False _lowerCamelCase = True for model_class in self.all_model_classes: # we don't test BeitForMaskedImageModeling if ( model_class in [*get_values(snake_case__ ), BeitForMaskedImageModeling] or not model_class.supports_gradient_checkpointing ): continue _lowerCamelCase = model_class(snake_case__ ) model.gradient_checkpointing_enable() model.to(snake_case__ ) model.train() _lowerCamelCase = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) _lowerCamelCase = model(**snake_case__ ).loss loss.backward() def _snake_case ( self : List[str] ) -> Optional[Any]: _lowerCamelCase , _lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() _lowerCamelCase = _config_zero_init(snake_case__ ) for model_class in self.all_model_classes: _lowerCamelCase = model_class(config=snake_case__ ) for name, param in model.named_parameters(): # we skip lambda parameters as these require special initial values # determined by config.layer_scale_init_value if "lambda" in name: continue if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=f"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @slow def _snake_case ( self : List[str] ) -> Any: for model_name in BEIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = BeitModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase ( ) -> str: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : Optional[int] ) -> Dict: return BeitImageProcessor.from_pretrained('microsoft/beit-base-patch16-224' ) if is_vision_available() else None @slow def _snake_case ( self : str ) -> List[str]: _lowerCamelCase = BeitForMaskedImageModeling.from_pretrained('microsoft/beit-base-patch16-224-pt22k' ).to(snake_case__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) # prepare bool_masked_pos _lowerCamelCase = torch.ones((1, 1_9_6) , dtype=torch.bool ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(pixel_values=snake_case__ , bool_masked_pos=snake_case__ ) _lowerCamelCase = outputs.logits # verify the logits _lowerCamelCase = torch.Size((1, 1_9_6, 8_1_9_2) ) self.assertEqual(logits.shape , snake_case__ ) _lowerCamelCase = torch.tensor( [[-3.2437, 0.5072, -13.9174], [-3.2456, 0.4948, -13.9401], [-3.2033, 0.5121, -13.8550]] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[bool_masked_pos][:3, :3] , snake_case__ , atol=1e-2 ) ) @slow def _snake_case ( self : Union[str, Any] ) -> Dict: _lowerCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-base-patch16-224' ).to(snake_case__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**snake_case__ ) _lowerCamelCase = outputs.logits # verify the logits _lowerCamelCase = torch.Size((1, 1_0_0_0) ) self.assertEqual(logits.shape , snake_case__ ) _lowerCamelCase = torch.tensor([-1.2385, -1.0987, -1.0108] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) _lowerCamelCase = 2_8_1 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def _snake_case ( self : Any ) -> Optional[Any]: _lowerCamelCase = BeitForImageClassification.from_pretrained('microsoft/beit-large-patch16-224-pt22k-ft22k' ).to( snake_case__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**snake_case__ ) _lowerCamelCase = outputs.logits # verify the logits _lowerCamelCase = torch.Size((1, 2_1_8_4_1) ) self.assertEqual(logits.shape , snake_case__ ) _lowerCamelCase = torch.tensor([1.6881, -0.2787, 0.5901] ).to(snake_case__ ) self.assertTrue(torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) ) _lowerCamelCase = 2_3_9_6 self.assertEqual(logits.argmax(-1 ).item() , snake_case__ ) @slow def _snake_case ( self : Any ) -> Union[str, Any]: _lowerCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _lowerCamelCase = model.to(snake_case__ ) _lowerCamelCase = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) _lowerCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowerCamelCase = Image.open(ds[0]['file'] ) _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**snake_case__ ) _lowerCamelCase = outputs.logits # verify the logits _lowerCamelCase = torch.Size((1, 1_5_0, 1_6_0, 1_6_0) ) self.assertEqual(logits.shape , snake_case__ ) _lowerCamelCase = version.parse(PIL.__version__ ) < version.parse('9.0.0' ) if is_pillow_less_than_a: _lowerCamelCase = torch.tensor( [ [[-4.9225, -2.3954, -3.0522], [-2.8822, -1.0046, -1.7561], [-2.9549, -1.3228, -2.1347]], [[-5.8168, -3.4129, -4.0778], [-3.8651, -2.2214, -3.0277], [-3.8356, -2.4643, -3.3535]], [[-0.0078, 3.9952, 4.0754], [2.9856, 4.6944, 5.0035], [3.2413, 4.7813, 4.9969]], ] , device=snake_case__ , ) else: _lowerCamelCase = torch.tensor( [ [[-4.8960, -2.3688, -3.0355], [-2.8478, -0.9836, -1.7418], [-2.9449, -1.3332, -2.1456]], [[-5.8081, -3.4124, -4.1006], [-3.8561, -2.2081, -3.0323], [-3.8365, -2.4601, -3.3669]], [[-0.0309, 3.9868, 4.0540], [2.9640, 4.6877, 4.9976], [3.2081, 4.7690, 4.9942]], ] , device=snake_case__ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def _snake_case ( self : List[Any] ) -> Any: _lowerCamelCase = BeitForSemanticSegmentation.from_pretrained('microsoft/beit-base-finetuned-ade-640-640' ) _lowerCamelCase = model.to(snake_case__ ) _lowerCamelCase = BeitImageProcessor(do_resize=snake_case__ , size=6_4_0 , do_center_crop=snake_case__ ) _lowerCamelCase = load_dataset('hf-internal-testing/fixtures_ade20k' , split='test' ) _lowerCamelCase = Image.open(ds[0]['file'] ) _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='pt' ).to(snake_case__ ) # forward pass with torch.no_grad(): _lowerCamelCase = model(**snake_case__ ) _lowerCamelCase = outputs.logits.detach().cpu() _lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=snake_case__ , target_sizes=[(5_0_0, 3_0_0)] ) _lowerCamelCase = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape , snake_case__ ) _lowerCamelCase = image_processor.post_process_semantic_segmentation(outputs=snake_case__ ) _lowerCamelCase = torch.Size((1_6_0, 1_6_0) ) self.assertEqual(segmentation[0].shape , snake_case__ )
234
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' def __init__( self : Tuple , snake_case__ : Optional[Any] , snake_case__ : str=1_3 , snake_case__ : List[Any]=3 , snake_case__ : Union[str, Any]=2_2_4 , snake_case__ : Optional[int]=3_0 , snake_case__ : Tuple=4_0_0 , snake_case__ : Dict=True , snake_case__ : str=None , snake_case__ : Tuple=True , snake_case__ : Optional[int]=[0.5, 0.5, 0.5] , snake_case__ : Dict=[0.5, 0.5, 0.5] , ) -> List[Any]: _lowerCamelCase = size if size is not None else {'height': 1_8, 'width': 1_8} _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = min_resolution _lowerCamelCase = max_resolution _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = do_normalize _lowerCamelCase = image_mean _lowerCamelCase = image_std def _snake_case ( self : int ) -> int: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = ViTImageProcessor if is_vision_available() else None def _snake_case ( self : List[Any] ) -> Dict: _lowerCamelCase = EfficientFormerImageProcessorTester(self ) @property def _snake_case ( self : List[str] ) -> Union[str, Any]: return self.image_proc_tester.prepare_image_processor_dict() def _snake_case ( self : str ) -> List[str]: _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , 'image_mean' ) ) self.assertTrue(hasattr(snake_case__ , 'image_std' ) ) self.assertTrue(hasattr(snake_case__ , 'do_normalize' ) ) self.assertTrue(hasattr(snake_case__ , 'do_resize' ) ) self.assertTrue(hasattr(snake_case__ , 'size' ) ) def _snake_case ( self : Tuple ) -> str: pass def _snake_case ( self : List[Any] ) -> Any: # Initialize image_processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL images _lowerCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input _lowerCamelCase = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _lowerCamelCase = image_processor(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def _snake_case ( self : Any ) -> Dict: # Initialize image_processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input _lowerCamelCase = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _lowerCamelCase = image_processor(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) def _snake_case ( self : Dict ) -> str: # Initialize image_processor _lowerCamelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCamelCase = prepare_image_inputs(self.image_proc_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input _lowerCamelCase = image_processor(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , ) # Test batched _lowerCamelCase = image_processor(snake_case__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_proc_tester.batch_size, self.image_proc_tester.num_channels, self.image_proc_tester.size['height'], self.image_proc_tester.size['width'], ) , )
234
1
'''simple docstring''' import argparse import json from dataclasses import dataclass, field from functools import partial from pathlib import Path from typing import Callable, Dict, List, Tuple import timm import torch import torch.nn as nn from classy_vision.models.regnet import RegNet, RegNetParams, RegNetYaagf, RegNetYaagf, RegNetYaaagf from huggingface_hub import cached_download, hf_hub_url from torch import Tensor from vissl.models.model_helpers import get_trunk_forward_outputs from transformers import AutoImageProcessor, RegNetConfig, RegNetForImageClassification, RegNetModel from transformers.utils import logging logging.set_verbosity_info() lowerCAmelCase__ = logging.get_logger() @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = field(default_factory=__lowerCamelCase ) _lowerCamelCase = field(default_factory=__lowerCamelCase ) def __UpperCamelCase ( self : List[Any] , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Tensor , UpperCAmelCase_ : Tensor): UpperCamelCase__ : str = len(list(m.modules())) == 1 or isinstance(UpperCAmelCase_ , nn.Convad) or isinstance(UpperCAmelCase_ , nn.BatchNormad) if has_not_submodules: self.traced.append(UpperCAmelCase_) def __call__( self : List[str] , UpperCAmelCase_ : Tensor): for m in self.module.modules(): self.handles.append(m.register_forward_hook(self._forward_hook)) self.module(UpperCAmelCase_) [x.remove() for x in self.handles] return self @property def __UpperCamelCase ( self : Union[str, Any]): # check the len of the state_dict keys to see if we have learnable params return list(filter(lambda UpperCAmelCase_: len(list(x.state_dict().keys())) > 0 , self.traced)) @dataclass class __lowercase : _lowerCamelCase = 42 _lowerCamelCase = 42 _lowerCamelCase = 1 _lowerCamelCase = field(default_factory=__lowerCamelCase ) _lowerCamelCase = field(default_factory=__lowerCamelCase ) _lowerCamelCase = True def __call__( self : Optional[Any] , UpperCAmelCase_ : Tensor): UpperCamelCase__ : int = Tracker(self.dest)(UpperCAmelCase_).parametrized UpperCamelCase__ : Any = Tracker(self.src)(UpperCAmelCase_).parametrized UpperCamelCase__ : Any = list(filter(lambda UpperCAmelCase_: type(UpperCAmelCase_) not in self.src_skip , UpperCAmelCase_)) UpperCamelCase__ : Optional[int] = list(filter(lambda UpperCAmelCase_: type(UpperCAmelCase_) not in self.dest_skip , UpperCAmelCase_)) if len(UpperCAmelCase_) != len(UpperCAmelCase_) and self.raise_if_mismatch: raise Exception( F'Numbers of operations are different. Source module has {len(UpperCAmelCase_)} operations while' F' destination module has {len(UpperCAmelCase_)}.') for dest_m, src_m in zip(UpperCAmelCase_ , UpperCAmelCase_): dest_m.load_state_dict(src_m.state_dict()) if self.verbose == 1: print(F'Transfered from={src_m} to={dest_m}') class __lowercase (nn.Module ): def __init__( self : Any , UpperCAmelCase_ : nn.Module): super().__init__() UpperCamelCase__ : List[Tuple[str, nn.Module]] = [] # - get the stem feature_blocks.append(('conv1', model.stem)) # - get all the feature blocks for k, v in model.trunk_output.named_children(): assert k.startswith('block'), F'Unexpected layer name {k}' UpperCamelCase__ : Optional[Any] = len(UpperCAmelCase_) + 1 feature_blocks.append((F'res{block_index}', v)) UpperCamelCase__ : Any = nn.ModuleDict(UpperCAmelCase_) def __UpperCamelCase ( self : Optional[int] , UpperCAmelCase_ : Tensor): return get_trunk_forward_outputs( UpperCAmelCase_ , out_feat_keys=UpperCAmelCase_ , feature_blocks=self._feature_blocks , ) class __lowercase (__lowerCamelCase ): def __UpperCamelCase ( self : Tuple , UpperCAmelCase_ : str): UpperCamelCase__ : int = x.split('-') return x_split[0] + x_split[1] + "_" + "".join(x_split[2:]) def __getitem__( self : Optional[Any] , UpperCAmelCase_ : str): # default to timm! if x not in self: UpperCamelCase__ : List[Any] = self.convert_name_to_timm(UpperCAmelCase_) UpperCamelCase__ : Optional[Any] = partial(lambda: (timm.create_model(UpperCAmelCase_ , pretrained=UpperCAmelCase_).eval(), None)) else: UpperCamelCase__ : List[str] = super().__getitem__(UpperCAmelCase_) return val class __lowercase (__lowerCamelCase ): def __getitem__( self : Tuple , UpperCAmelCase_ : str): if "seer" in x and "in1k" not in x: UpperCamelCase__ : Optional[Any] = RegNetModel else: UpperCamelCase__ : Optional[Any] = RegNetForImageClassification return val def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_) -> Union[str, Any]: for from_key, to_key in keys: UpperCamelCase__ : str = from_state_dict[from_key].clone() print(f'Copied key={from_key} to={to_key}') return to_state_dict def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = True , ) -> List[Any]: print(f'Converting {name}...') with torch.no_grad(): UpperCamelCase__, UpperCamelCase__ : Any = from_model_func() UpperCamelCase__ : int = our_model_func(lowerCamelCase_).eval() UpperCamelCase__ : Union[str, Any] = ModuleTransfer(src=lowerCamelCase_ , dest=lowerCamelCase_ , raise_if_mismatch=lowerCamelCase_) UpperCamelCase__ : Dict = torch.randn((1, 3, 224, 224)) module_transfer(lowerCamelCase_) if from_state_dict is not None: UpperCamelCase__ : Any = [] # for seer - in1k finetuned we have to manually copy the head if "seer" in name and "in1k" in name: UpperCamelCase__ : Optional[int] = [('0.clf.0.weight', 'classifier.1.weight'), ('0.clf.0.bias', 'classifier.1.bias')] UpperCamelCase__ : Optional[Any] = manually_copy_vissl_head(lowerCamelCase_ , our_model.state_dict() , lowerCamelCase_) our_model.load_state_dict(lowerCamelCase_) UpperCamelCase__ : Optional[Any] = our_model(lowerCamelCase_ , output_hidden_states=lowerCamelCase_) UpperCamelCase__ : Dict = ( our_outputs.logits if isinstance(lowerCamelCase_ , lowerCamelCase_) else our_outputs.last_hidden_state ) UpperCamelCase__ : Optional[int] = from_model(lowerCamelCase_) UpperCamelCase__ : Optional[int] = from_output[-1] if type(lowerCamelCase_) is list else from_output # now since I don't want to use any config files, vissl seer model doesn't actually have an head, so let's just check the last hidden state if "seer" in name and "in1k" in name: UpperCamelCase__ : Any = our_outputs.hidden_states[-1] assert torch.allclose(lowerCamelCase_ , lowerCamelCase_), "The model logits don't match the original one." if push_to_hub: our_model.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add model' , use_temp_dir=lowerCamelCase_ , ) UpperCamelCase__ : Tuple = 224 if 'seer' not in name else 384 # we can use the convnext one UpperCamelCase__ : int = AutoImageProcessor.from_pretrained('facebook/convnext-base-224-22k-1k' , size=lowerCamelCase_) image_processor.push_to_hub( repo_path_or_name=save_directory / name , commit_message='Add image processor' , use_temp_dir=lowerCamelCase_ , ) print(f'Pushed {name}') def __UpperCAmelCase ( lowerCamelCase_ , lowerCamelCase_ = None , lowerCamelCase_ = True) -> int: UpperCamelCase__ : Any = 'imagenet-1k-id2label.json' UpperCamelCase__ : int = 1_000 UpperCamelCase__ : Tuple = (1, num_labels) UpperCamelCase__ : Dict = 'huggingface/label-files' UpperCamelCase__ : str = num_labels UpperCamelCase__ : Optional[int] = json.load(open(cached_download(hf_hub_url(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset')) , 'r')) UpperCamelCase__ : Dict = {int(lowerCamelCase_): v for k, v in idalabel.items()} UpperCamelCase__ : Dict = idalabel UpperCamelCase__ : List[Any] = {v: k for k, v in idalabel.items()} UpperCamelCase__ : int = partial(lowerCamelCase_ , num_labels=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_) UpperCamelCase__ : Tuple = { 'regnet-x-002': ImageNetPreTrainedConfig( depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8 , layer_type='x'), 'regnet-x-004': ImageNetPreTrainedConfig( depths=[1, 2, 7, 12] , hidden_sizes=[32, 64, 160, 384] , groups_width=16 , layer_type='x'), 'regnet-x-006': ImageNetPreTrainedConfig( depths=[1, 3, 5, 7] , hidden_sizes=[48, 96, 240, 528] , groups_width=24 , layer_type='x'), 'regnet-x-008': ImageNetPreTrainedConfig( depths=[1, 3, 7, 5] , hidden_sizes=[64, 128, 288, 672] , groups_width=16 , layer_type='x'), 'regnet-x-016': ImageNetPreTrainedConfig( depths=[2, 4, 10, 2] , hidden_sizes=[72, 168, 408, 912] , groups_width=24 , layer_type='x'), 'regnet-x-032': ImageNetPreTrainedConfig( depths=[2, 6, 15, 2] , hidden_sizes=[96, 192, 432, 1_008] , groups_width=48 , layer_type='x'), 'regnet-x-040': ImageNetPreTrainedConfig( depths=[2, 5, 14, 2] , hidden_sizes=[80, 240, 560, 1_360] , groups_width=40 , layer_type='x'), 'regnet-x-064': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 392, 784, 1_624] , groups_width=56 , layer_type='x'), 'regnet-x-080': ImageNetPreTrainedConfig( depths=[2, 5, 15, 1] , hidden_sizes=[80, 240, 720, 1_920] , groups_width=120 , layer_type='x'), 'regnet-x-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112 , layer_type='x'), 'regnet-x-160': ImageNetPreTrainedConfig( depths=[2, 6, 13, 1] , hidden_sizes=[256, 512, 896, 2_048] , groups_width=128 , layer_type='x'), 'regnet-x-320': ImageNetPreTrainedConfig( depths=[2, 7, 13, 1] , hidden_sizes=[336, 672, 1_344, 2_520] , groups_width=168 , layer_type='x'), # y variant 'regnet-y-002': ImageNetPreTrainedConfig(depths=[1, 1, 4, 7] , hidden_sizes=[24, 56, 152, 368] , groups_width=8), 'regnet-y-004': ImageNetPreTrainedConfig( depths=[1, 3, 6, 6] , hidden_sizes=[48, 104, 208, 440] , groups_width=8), 'regnet-y-006': ImageNetPreTrainedConfig( depths=[1, 3, 7, 4] , hidden_sizes=[48, 112, 256, 608] , groups_width=16), 'regnet-y-008': ImageNetPreTrainedConfig( depths=[1, 3, 8, 2] , hidden_sizes=[64, 128, 320, 768] , groups_width=16), 'regnet-y-016': ImageNetPreTrainedConfig( depths=[2, 6, 17, 2] , hidden_sizes=[48, 120, 336, 888] , groups_width=24), 'regnet-y-032': ImageNetPreTrainedConfig( depths=[2, 5, 13, 1] , hidden_sizes=[72, 216, 576, 1_512] , groups_width=24), 'regnet-y-040': ImageNetPreTrainedConfig( depths=[2, 6, 12, 2] , hidden_sizes=[128, 192, 512, 1_088] , groups_width=64), 'regnet-y-064': ImageNetPreTrainedConfig( depths=[2, 7, 14, 2] , hidden_sizes=[144, 288, 576, 1_296] , groups_width=72), 'regnet-y-080': ImageNetPreTrainedConfig( depths=[2, 4, 10, 1] , hidden_sizes=[168, 448, 896, 2_016] , groups_width=56), 'regnet-y-120': ImageNetPreTrainedConfig( depths=[2, 5, 11, 1] , hidden_sizes=[224, 448, 896, 2_240] , groups_width=112), 'regnet-y-160': ImageNetPreTrainedConfig( depths=[2, 4, 11, 1] , hidden_sizes=[224, 448, 1_232, 3_024] , groups_width=112), 'regnet-y-320': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232), # models created by SEER -> https://arxiv.org/abs/2202.08360 'regnet-y-320-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232), 'regnet-y-640-seer': RegNetConfig(depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328), 'regnet-y-1280-seer': RegNetConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264), 'regnet-y-2560-seer': RegNetConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640), 'regnet-y-10b-seer': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010), # finetuned on imagenet 'regnet-y-320-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[232, 696, 1_392, 3_712] , groups_width=232), 'regnet-y-640-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 5, 12, 1] , hidden_sizes=[328, 984, 1_968, 4_920] , groups_width=328), 'regnet-y-1280-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[528, 1_056, 2_904, 7_392] , groups_width=264), 'regnet-y-2560-seer-in1k': ImageNetPreTrainedConfig( depths=[3, 7, 16, 1] , hidden_sizes=[640, 1_696, 2_544, 5_088] , groups_width=640), 'regnet-y-10b-seer-in1k': ImageNetPreTrainedConfig( depths=[2, 7, 17, 1] , hidden_sizes=[2_020, 4_040, 11_110, 28_280] , groups_width=1_010), } UpperCamelCase__ : Dict = NameToOurModelFuncMap() UpperCamelCase__ : Optional[int] = NameToFromModelFuncMap() # add seer weights logic def load_using_classy_vision(lowerCamelCase_ , lowerCamelCase_) -> Tuple[nn.Module, Dict]: UpperCamelCase__ : Optional[Any] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , model_dir=str(lowerCamelCase_) , map_location='cpu') UpperCamelCase__ : List[str] = model_func() # check if we have a head, if yes add it UpperCamelCase__ : str = files['classy_state_dict']['base_model']['model'] UpperCamelCase__ : str = model_state_dict['trunk'] model.load_state_dict(lowerCamelCase_) return model.eval(), model_state_dict["heads"] # pretrained UpperCamelCase__ : Dict = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet32d/seer_regnet32gf_model_iteration244000.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase__ : Any = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet64/seer_regnet64gf_model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase__ : int = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/swav_ig1b_regnet128Gf_cnstant_bs32_node16_sinkhorn10_proto16k_syncBN64_warmup8k/model_final_checkpoint_phase0.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf()) , ) UpperCamelCase__ : List[str] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_regnet10B/model_iteration124500_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52))) , ) # IN1K finetuned UpperCamelCase__ : Tuple = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet32_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase__ : Optional[Any] = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet64_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaagf()) , ) UpperCamelCase__ : Any = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_regnet128_finetuned_in1k_model_final_checkpoint_phase78.torch' , lambda: FakeRegNetVisslWrapper(RegNetYaaagf()) , ) UpperCamelCase__ : Tuple = partial( lowerCamelCase_ , 'https://dl.fbaipublicfiles.com/vissl/model_zoo/seer_finetuned/seer_10b_finetuned_in1k_model_phase28_conso.torch' , lambda: FakeRegNetVisslWrapper( RegNet(RegNetParams(depth=27 , group_width=1_010 , w_a=1_744 , w_a=620.83 , w_m=2.52))) , ) if model_name: convert_weight_and_push( lowerCamelCase_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , names_to_config[model_name] , lowerCamelCase_ , lowerCamelCase_ , ) else: for model_name, config in names_to_config.items(): convert_weight_and_push( lowerCamelCase_ , names_to_from_model_map[model_name] , names_to_ours_model_map[model_name] , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , ) return config, expected_shape if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help=( 'The name of the model you wish to convert, it must be one of the supported regnet* architecture,' ' currently: regnetx-*, regnety-*. If `None`, all of them will the converted.' ), ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=Path, required=True, help='Path to the output PyTorch model directory.', ) parser.add_argument( '--push_to_hub', default=True, type=bool, required=False, help='If True, push model and image processor to the hub.', ) lowerCAmelCase__ = parser.parse_args() lowerCAmelCase__ = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
596
'''simple docstring''' import argparse import shlex import runhouse as rh if __name__ == "__main__": # Refer to https://runhouse-docs.readthedocs-hosted.com/en/latest/api/python/cluster.html#hardware-setup for cloud access # setup instructions, if using on-demand hardware # If user passes --user <user> --host <host> --key_path <key_path> <example> <args>, fill them in as BYO cluster # If user passes --instance <instance> --provider <provider> <example> <args>, fill them in as on-demand cluster # Throw an error if user passes both BYO and on-demand cluster args # Otherwise, use default values lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument('--user', type=str, default='ubuntu') parser.add_argument('--host', type=str, default='localhost') parser.add_argument('--key_path', type=str, default=None) parser.add_argument('--instance', type=str, default='V100:1') parser.add_argument('--provider', type=str, default='cheapest') parser.add_argument('--use_spot', type=bool, default=False) parser.add_argument('--example', type=str, default='pytorch/text-generation/run_generation.py') lowerCAmelCase__ , lowerCAmelCase__ = parser.parse_known_args() if args.host != "localhost": if args.instance != "V100:1" or args.provider != "cheapest": raise ValueError('Cannot specify both BYO and on-demand cluster args') lowerCAmelCase__ = rh.cluster( name='rh-cluster', ips=[args.host], ssh_creds={'ssh_user': args.user, 'ssh_private_key': args.key_path} ) else: lowerCAmelCase__ = rh.cluster( name='rh-cluster', instance_type=args.instance, provider=args.provider, use_spot=args.use_spot ) lowerCAmelCase__ = args.example.rsplit('/', 1)[0] # Set up remote environment cluster.install_packages(['pip:./']) # Installs transformers from local source # Note transformers is copied into the home directory on the remote machine, so we can install from there cluster.run([f'''pip install -r transformers/examples/{example_dir}/requirements.txt''']) cluster.run(['pip install torch --upgrade --extra-index-url https://download.pytorch.org/whl/cu117']) # Run example. You can bypass the CLI wrapper and paste your own code here. cluster.run([f'''python transformers/examples/{args.example} {" ".join(shlex.quote(arg) for arg in unknown)}''']) # Alternatively, we can just import and run a training function (especially if there's no wrapper CLI): # from my_script... import train # reqs = ['pip:./', 'torch', 'datasets', 'accelerate', 'evaluate', 'tqdm', 'scipy', 'scikit-learn', 'tensorboard'] # launch_train_gpu = rh.function(fn=train, # system=gpu, # reqs=reqs, # name='train_bert_glue') # # We can pass in arguments just like we would to a function: # launch_train_gpu(num_epochs = 3, lr = 2e-5, seed = 42, batch_size = 16 # stream_logs=True)
596
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available snake_case_ : Dict = { """configuration_ctrl""": ["""CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP""", """CTRLConfig"""], """tokenization_ctrl""": ["""CTRLTokenizer"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : str = [ """CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """CTRLForSequenceClassification""", """CTRLLMHeadModel""", """CTRLModel""", """CTRLPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[str] = [ """TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFCTRLForSequenceClassification""", """TFCTRLLMHeadModel""", """TFCTRLModel""", """TFCTRLPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_ctrl import CTRL_PRETRAINED_CONFIG_ARCHIVE_MAP, CTRLConfig from .tokenization_ctrl import CTRLTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ctrl import ( CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, CTRLForSequenceClassification, CTRLLMHeadModel, CTRLModel, CTRLPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_ctrl import ( TF_CTRL_PRETRAINED_MODEL_ARCHIVE_LIST, TFCTRLForSequenceClassification, TFCTRLLMHeadModel, TFCTRLModel, TFCTRLPreTrainedModel, ) else: import sys snake_case_ : str = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
292
"""simple docstring""" # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. snake_case_ : Union[str, Any] = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def lowercase_ ( _lowercase : List[str] ): '''simple docstring''' config.addinivalue_line( "markers" , "is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" , "is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" , "is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" , "is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" , "accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" , "tool_tests: mark the tool tests that are run on their specific schedule" ) def lowercase_ ( _lowercase : List[str] ): '''simple docstring''' from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(_lowercase ) def lowercase_ ( _lowercase : Tuple ): '''simple docstring''' from transformers.testing_utils import pytest_terminal_summary_main UpperCAmelCase : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(_lowercase , id=_lowercase ) def lowercase_ ( _lowercase : str , _lowercase : Dict ): '''simple docstring''' if exitstatus == 5: UpperCAmelCase : List[str] = 0 # Doctest custom flag to ignore output. snake_case_ : Union[str, Any] = doctest.register_optionflag("""IGNORE_RESULT""") snake_case_ : Optional[int] = doctest.OutputChecker class snake_case__ ( lowerCAmelCase_ ): def __lowerCAmelCase ( self : List[Any] , lowercase : Tuple , lowercase : Optional[Any] , lowercase : int ): '''simple docstring''' if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , lowercase , lowercase , lowercase ) snake_case_ : List[str] = CustomOutputChecker snake_case_ : Optional[Any] = HfDoctestModule snake_case_ : List[str] = HfDocTestParser
292
1
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { "t5-small": "https://huggingface.co/t5-small/resolve/main/config.json", "t5-base": "https://huggingface.co/t5-base/resolve/main/config.json", "t5-large": "https://huggingface.co/t5-large/resolve/main/config.json", "t5-3b": "https://huggingface.co/t5-3b/resolve/main/config.json", "t5-11b": "https://huggingface.co/t5-11b/resolve/main/config.json", } class lowerCAmelCase_ ( __snake_case ): _UpperCamelCase : Union[str, Any] = "t5" _UpperCamelCase : Any = ["past_key_values"] _UpperCamelCase : Dict = {"hidden_size": "d_model", "num_attention_heads": "num_heads", "num_hidden_layers": "num_layers"} def __init__( self , _lowerCAmelCase=3_2_1_2_8 , _lowerCAmelCase=5_1_2 , _lowerCAmelCase=6_4 , _lowerCAmelCase=2_0_4_8 , _lowerCAmelCase=6 , _lowerCAmelCase=None , _lowerCAmelCase=8 , _lowerCAmelCase=3_2 , _lowerCAmelCase=1_2_8 , _lowerCAmelCase=0.1 , _lowerCAmelCase=1E-6 , _lowerCAmelCase=1.0 , _lowerCAmelCase="relu" , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=0 , _lowerCAmelCase=1 , **_lowerCAmelCase , ): _lowercase : Tuple = vocab_size _lowercase : Union[str, Any] = d_model _lowercase : Tuple = d_kv _lowercase : str = d_ff _lowercase : Union[str, Any] = num_layers _lowercase : int = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry _lowercase : List[Any] = num_heads _lowercase : List[Any] = relative_attention_num_buckets _lowercase : Any = relative_attention_max_distance _lowercase : str = dropout_rate _lowercase : Any = layer_norm_epsilon _lowercase : str = initializer_factor _lowercase : int = feed_forward_proj _lowercase : Union[str, Any] = use_cache _lowercase : List[str] = self.feed_forward_proj.split('-' ) _lowercase : str = act_info[-1] _lowercase : Optional[int] = act_info[0] == 'gated' if len(_lowerCAmelCase ) > 1 and act_info[0] != "gated" or len(_lowerCAmelCase ) > 2: raise ValueError( F"""`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.""" 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) # for backwards compatibility if feed_forward_proj == "gated-gelu": _lowercase : Dict = 'gelu_new' super().__init__( pad_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , is_encoder_decoder=_lowerCAmelCase , **_lowerCAmelCase , ) class lowerCAmelCase_ ( __snake_case ): @property def __a ( self ): _lowercase : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: _lowercase : Optional[int] = 'past_encoder_sequence + sequence' _lowercase : Tuple = {0: 'batch'} _lowercase : Tuple = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: _lowercase : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} _lowercase : List[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_lowerCAmelCase , direction='inputs' ) return common_inputs @property def __a ( self ): return 1_3
66
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : int = 384 if "tiny" in model_name: _lowercase : Tuple = [3, 3, 9, 3] _lowercase : List[str] = [96, 192, 384, 768] if "small" in model_name: _lowercase : List[str] = [3, 3, 27, 3] _lowercase : Union[str, Any] = [96, 192, 384, 768] if "base" in model_name: _lowercase : List[Any] = [3, 3, 27, 3] _lowercase : Dict = [128, 256, 512, 1_024] _lowercase : Optional[int] = 512 if "large" in model_name: _lowercase : List[str] = [3, 3, 27, 3] _lowercase : List[Any] = [192, 384, 768, 1_536] _lowercase : Tuple = 768 if "xlarge" in model_name: _lowercase : str = [3, 3, 27, 3] _lowercase : List[str] = [256, 512, 1_024, 2_048] _lowercase : Tuple = 1_024 # set label information _lowercase : Dict = 150 _lowercase : Union[str, Any] = 'huggingface/label-files' _lowercase : str = 'ade20k-id2label.json' _lowercase : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _lowercase : Dict = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowercase : Tuple = {v: k for k, v in idalabel.items()} _lowercase : List[str] = ConvNextConfig( depths=SCREAMING_SNAKE_CASE , hidden_sizes=SCREAMING_SNAKE_CASE , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) _lowercase : Union[str, Any] = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE , auxiliary_in_channels=SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , ) return config def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Any = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Any = dct.pop(SCREAMING_SNAKE_CASE ) _lowercase : Any = val def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : List[Any] = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } _lowercase : Optional[int] = model_name_to_url[model_name] _lowercase : str = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['state_dict'] _lowercase : Optional[int] = get_upernet_config(SCREAMING_SNAKE_CASE ) _lowercase : Tuple = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowercase : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE ) if "bn" in key: _lowercase : Any = key.replace('bn' , 'batch_norm' ) _lowercase : Any = val # rename keys _lowercase : int = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify on image _lowercase : Union[str, Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' _lowercase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) _lowercase : Tuple = SegformerImageProcessor() _lowercase : Tuple = processor(SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values with torch.no_grad(): _lowercase : Dict = model(SCREAMING_SNAKE_CASE ) if model_name == "upernet-convnext-tiny": _lowercase : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": _lowercase : Union[str, Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": _lowercase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": _lowercase : Optional[int] = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": _lowercase : str = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
66
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available SCREAMING_SNAKE_CASE : Dict = {'configuration_sew': ['SEW_PRETRAINED_CONFIG_ARCHIVE_MAP', 'SEWConfig']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE : str = [ 'SEW_PRETRAINED_MODEL_ARCHIVE_LIST', 'SEWForCTC', 'SEWForSequenceClassification', 'SEWModel', 'SEWPreTrainedModel', ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE : Any = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
709
from math import sqrt def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' must been an int and positive" UpperCamelCase_ : Union[str, Any] = True # 0 and 1 are none primes. if number <= 1: UpperCamelCase_ : Tuple = False for divisor in range(2 , int(round(sqrt(_SCREAMING_SNAKE_CASE ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: UpperCamelCase_ : Union[str, Any] = False break # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'status' must been from type bool" return status def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Tuple ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N UpperCamelCase_ : Dict = list(range(2 , n + 1 ) ) UpperCamelCase_ : Union[str, Any] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_SCREAMING_SNAKE_CASE ) ): for j in range(i + 1 , len(_SCREAMING_SNAKE_CASE ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): UpperCamelCase_ : Optional[int] = 0 # filters actual prime numbers. UpperCamelCase_ : Union[str, Any] = [x for x in begin_list if x != 0] # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n > 2), "'N' must been an int and > 2" UpperCamelCase_ : List[Any] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_SCREAMING_SNAKE_CASE ): ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and number >= 0, "'number' must been an int and >= 0" UpperCamelCase_ : Union[str, Any] = [] # this list will be returns of the function. # potential prime number factors. UpperCamelCase_ : Optional[int] = 2 UpperCamelCase_ : Dict = number if number == 0 or number == 1: ans.append(_SCREAMING_SNAKE_CASE ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_SCREAMING_SNAKE_CASE ): while quotient != 1: if is_prime(_SCREAMING_SNAKE_CASE ) and (quotient % factor == 0): ans.append(_SCREAMING_SNAKE_CASE ) quotient /= factor else: factor += 1 else: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type list" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase_ : Tuple = 0 # prime factorization of 'number' UpperCamelCase_ : int = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Any = max(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number >= 0 ), "'number' bust been an int and >= 0" UpperCamelCase_ : Any = 0 # prime factorization of 'number' UpperCamelCase_ : Dict = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Union[str, Any] = min(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'ans' must been from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : str ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 == 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 == 0 def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ), "'number' must been an int" assert isinstance(number % 2 != 0 , _SCREAMING_SNAKE_CASE ), "compare bust been from type bool" return number % 2 != 0 def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[int] ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (number > 2) and is_even(_SCREAMING_SNAKE_CASE ) ), "'number' must been an int, even and > 2" UpperCamelCase_ : Tuple = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' UpperCamelCase_ : int = get_prime_numbers(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : str = len(_SCREAMING_SNAKE_CASE ) # run variable for while-loops. UpperCamelCase_ : Optional[int] = 0 UpperCamelCase_ : Union[str, Any] = None # exit variable. for break up the loops UpperCamelCase_ : Any = True while i < len_pn and loop: UpperCamelCase_ : Optional[Any] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: UpperCamelCase_ : Union[str, Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (len(_SCREAMING_SNAKE_CASE ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[int] , _SCREAMING_SNAKE_CASE : Optional[int] ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." UpperCamelCase_ : List[Any] = 0 while numbera != 0: UpperCamelCase_ : List[str] = numbera % numbera UpperCamelCase_ : Optional[Any] = numbera UpperCamelCase_ : Optional[Any] = rest # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : Any ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." UpperCamelCase_ : int = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' UpperCamelCase_ : Optional[Any] = prime_factorization(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : Optional[Any] = prime_factorization(_SCREAMING_SNAKE_CASE ) elif numbera == 1 or numbera == 1: UpperCamelCase_ : int = [] UpperCamelCase_ : Dict = [] UpperCamelCase_ : List[Any] = max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) UpperCamelCase_ : int = 0 UpperCamelCase_ : int = 0 UpperCamelCase_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: UpperCamelCase_ : List[str] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) UpperCamelCase_ : List[Any] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(max(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ): ans *= n else: UpperCamelCase_ : Tuple = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: UpperCamelCase_ : List[Any] = prime_fac_a.count(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ): ans *= n done.append(_SCREAMING_SNAKE_CASE ) # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[Any] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'number' must been a positive int" UpperCamelCase_ : str = 0 UpperCamelCase_ : Tuple = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): ans += 1 # precondition assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and is_prime( _SCREAMING_SNAKE_CASE ), "'ans' must been a prime number and from type int" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Union[str, Any] , _SCREAMING_SNAKE_CASE : Optional[Any] ): assert ( is_prime(_SCREAMING_SNAKE_CASE ) and is_prime(_SCREAMING_SNAKE_CASE ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" UpperCamelCase_ : Optional[int] = p_number_a + 1 # jump to the next number UpperCamelCase_ : List[Any] = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 while number < p_number_a: ans.append(_SCREAMING_SNAKE_CASE ) number += 1 # fetch the next prime number. while not is_prime(_SCREAMING_SNAKE_CASE ): number += 1 # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ans[0] != p_number_a and ans[len(_SCREAMING_SNAKE_CASE ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : List[str] ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 1), "'n' must been int and >= 1" UpperCamelCase_ : Any = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_SCREAMING_SNAKE_CASE ) # precondition assert ans[0] == 1 and ans[len(_SCREAMING_SNAKE_CASE ) - 1] == n, "Error in function getDivisiors(...)" return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Dict ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and ( number > 1 ), "'number' must been an int and >= 1" UpperCamelCase_ : Dict = get_divisors(_SCREAMING_SNAKE_CASE ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (divisors[0] == 1) and (divisors[len(_SCREAMING_SNAKE_CASE ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Optional[Any] , _SCREAMING_SNAKE_CASE : Dict ): assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. UpperCamelCase_ : List[Any] = gcd(abs(_SCREAMING_SNAKE_CASE ) , abs(_SCREAMING_SNAKE_CASE ) ) # precondition assert ( isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : int ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been a int and >= 0" UpperCamelCase_ : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def lowerCAmelCase_ ( _SCREAMING_SNAKE_CASE : Tuple ): assert isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and (n >= 0), "'n' must been an int and >= 0" UpperCamelCase_ : Tuple = 0 UpperCamelCase_ : Optional[int] = 1 UpperCamelCase_ : List[str] = 1 # this will be return for _ in range(n - 1 ): UpperCamelCase_ : List[Any] = ans ans += fiba UpperCamelCase_ : Any = tmp return ans
138
0
"""simple docstring""" from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { "sail/poolformer_s12": "https://huggingface.co/sail/poolformer_s12/resolve/main/config.json", # See all PoolFormer models at https://huggingface.co/models?filter=poolformer } class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : Optional[Any] = """poolformer""" def __init__( self : List[Any] , UpperCamelCase__ : List[str]=3 , UpperCamelCase__ : Any=1_6 , UpperCamelCase__ : Dict=1_6 , UpperCamelCase__ : Dict=3 , UpperCamelCase__ : Optional[Any]=4.0 , UpperCamelCase__ : Optional[Any]=[2, 2, 6, 2] , UpperCamelCase__ : str=[6_4, 1_2_8, 3_2_0, 5_1_2] , UpperCamelCase__ : Dict=[7, 3, 3, 3] , UpperCamelCase__ : int=[4, 2, 2, 2] , UpperCamelCase__ : List[str]=[2, 1, 1, 1] , UpperCamelCase__ : List[Any]=4 , UpperCamelCase__ : List[Any]=0.0 , UpperCamelCase__ : Tuple="gelu" , UpperCamelCase__ : List[Any]=True , UpperCamelCase__ : int=1e-5 , UpperCamelCase__ : Any=0.02 , **UpperCamelCase__ : Optional[int] , )-> List[Any]: '''simple docstring''' __lowerCAmelCase: Optional[int] = num_channels __lowerCAmelCase: int = patch_size __lowerCAmelCase: Any = stride __lowerCAmelCase: int = padding __lowerCAmelCase: Any = pool_size __lowerCAmelCase: Optional[int] = hidden_sizes __lowerCAmelCase: List[str] = mlp_ratio __lowerCAmelCase: Union[str, Any] = depths __lowerCAmelCase: Union[str, Any] = patch_sizes __lowerCAmelCase: Optional[int] = strides __lowerCAmelCase: Optional[int] = num_encoder_blocks __lowerCAmelCase: Any = drop_path_rate __lowerCAmelCase: int = hidden_act __lowerCAmelCase: List[Any] = use_layer_scale __lowerCAmelCase: Optional[Any] = layer_scale_init_value __lowerCAmelCase: Optional[Any] = initializer_range super().__init__(**UpperCamelCase__) class snake_case ( __snake_case ): SCREAMING_SNAKE_CASE_ : int = version.parse("""1.11""" ) @property def lowercase_ ( self : Union[str, Any])-> Mapping[str, Mapping[int, str]]: '''simple docstring''' return OrderedDict( [ ("pixel_values", {0: "batch", 1: "num_channels", 2: "height", 3: "width"}), ]) @property def lowercase_ ( self : str)-> float: '''simple docstring''' return 2e-3
346
"""simple docstring""" def a__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> float: if principal <= 0: raise Exception("Principal borrowed must be > 0" ) if rate_per_annum < 0: raise Exception("Rate of interest must be >= 0" ) if years_to_repay <= 0 or not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise Exception("Years to repay must be an integer > 0" ) # Yearly rate is divided by 12 to get monthly rate __lowerCAmelCase: str = rate_per_annum / 1_2 # Years to repay is multiplied by 12 to get number of payments as payment is monthly __lowerCAmelCase: Optional[Any] = years_to_repay * 1_2 return ( principal * rate_per_month * (1 + rate_per_month) ** number_of_payments / ((1 + rate_per_month) ** number_of_payments - 1) ) if __name__ == "__main__": import doctest doctest.testmod()
346
1
'''simple docstring''' def _UpperCAmelCase ( _UpperCamelCase : int ) -> bool: if not isinstance(_UpperCamelCase, _UpperCamelCase ): A_ = F'''Input value of [number={number}] must be an integer''' raise TypeError(_UpperCamelCase ) if number < 0: return False A_ = number * number while number > 0: if number % 10 != number_square % 10: return False number //= 10 number_square //= 10 return True if __name__ == "__main__": import doctest doctest.testmod()
174
'''simple docstring''' from __future__ import annotations import collections import pprint from pathlib import Path def _UpperCAmelCase ( _UpperCamelCase : str ) -> str: return "".join(sorted(_UpperCamelCase ) ) def _UpperCAmelCase ( _UpperCamelCase : str ) -> list[str]: return word_by_signature[signature(_UpperCamelCase )] __snake_case : str = Path(__file__).parent.joinpath('words.txt').read_text(encoding='utf-8') __snake_case : Tuple = sorted({word.strip().lower() for word in data.splitlines()}) __snake_case : Union[str, Any] = collections.defaultdict(list) for word in word_list: word_by_signature[signature(word)].append(word) if __name__ == "__main__": __snake_case : str = {word: anagram(word) for word in word_list if len(anagram(word)) > 1} with open('anagrams.txt', 'w') as file: file.write('all_anagrams = \n ') file.write(pprint.pformat(all_anagrams))
174
1
_lowerCAmelCase = "0.21.0" from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
10
import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) _lowerCamelCase = 'bert-base-cased' _lowerCamelCase = 'fp16' _lowerCamelCase = 'bf16' _lowerCamelCase = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Optional[Any] ) -> Optional[Any]: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = dict( ACCELERATE_USE_FSDP="""true""" , MASTER_ADDR="""localhost""" , MASTER_PORT="""10999""" , RANK="""0""" , LOCAL_RANK="""0""" , WORLD_SIZE="""1""" , ) def _snake_case ( self :List[Any] ) -> Tuple: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = f'''{i + 1}''' SCREAMING_SNAKE_CASE__ = strategy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def _snake_case ( self :int ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = prefetch_policy with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def _snake_case ( self :List[str] ) -> List[str]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(__A ): SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = state_dict_type with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def _snake_case ( self :str ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = AutoModel.from_pretrained(__A ) for policy in FSDP_AUTO_WRAP_POLICY: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = policy if policy == "TRANSFORMER_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """BertLayer""" elif policy == "SIZE_BASED_WRAP": SCREAMING_SNAKE_CASE__ = """2000""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """TRANSFORMER_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """T5Layer""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() with self.assertRaises(__A ) as cm: fsdp_plugin.set_auto_wrap_policy(__A ) self.assertTrue("""Could not find the transformer layer class to wrap in the model.""" in str(cm.exception ) ) SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = """SIZE_BASED_WRAP""" SCREAMING_SNAKE_CASE__ = """0""" with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(__A ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def _snake_case ( self :Optional[Any] ) -> Optional[int]: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = mp_dtype with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = Accelerator() if mp_dtype == "fp16": SCREAMING_SNAKE_CASE__ = torch.floataa elif mp_dtype == "bf16": SCREAMING_SNAKE_CASE__ = torch.bfloataa SCREAMING_SNAKE_CASE__ = MixedPrecision(param_dtype=__A , reduce_dtype=__A , buffer_dtype=__A ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , __A ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , __A ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(__A ) def _snake_case ( self :str ) -> str: """simple docstring""" from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: SCREAMING_SNAKE_CASE__ = self.dist_env.copy() SCREAMING_SNAKE_CASE__ = str(__A ).lower() with mockenv_context(**__A ): SCREAMING_SNAKE_CASE__ = FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=__A ) ) @require_fsdp @require_multi_gpu @slow class UpperCamelCase_ ( UpperCamelCase__ ): def _snake_case ( self :Any ) -> Any: """simple docstring""" super().setUp() SCREAMING_SNAKE_CASE__ = 0.8_2 SCREAMING_SNAKE_CASE__ = [ """fsdp_shard_grad_op_transformer_based_wrap""", """fsdp_full_shard_transformer_based_wrap""", ] SCREAMING_SNAKE_CASE__ = { """multi_gpu_fp16""": 3200, """fsdp_shard_grad_op_transformer_based_wrap_fp16""": 2000, """fsdp_full_shard_transformer_based_wrap_fp16""": 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = 160 SCREAMING_SNAKE_CASE__ = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE__ = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ["""scripts""", """external_deps"""] ) def _snake_case ( self :Union[str, Any] ) -> int: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_performance.py""" ) SCREAMING_SNAKE_CASE__ = ["""accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp"""] for config in self.performance_configs: SCREAMING_SNAKE_CASE__ = cmd.copy() for i, strategy in enumerate(__A ): if strategy.lower() in config: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append("""--mixed_precision=no""" ) else: cmd_config.append("""--mixed_precision=fp16""" ) if "cpu_offload" in config: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Dict ) -> Union[str, Any]: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_checkpointing.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", """--use_fsdp""", """--mixed_precision=fp16""", """--fsdp_transformer_layer_cls_to_wrap=BertLayer""", ] for i, strategy in enumerate(__A ): SCREAMING_SNAKE_CASE__ = cmd.copy() cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue SCREAMING_SNAKE_CASE__ = len(__A ) for state_dict_type in FSDP_STATE_DICT_TYPE: SCREAMING_SNAKE_CASE__ = cmd_config[:state_dict_config_index] cmd_config.append(f'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', """--partial_train_epoch=1""", ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) SCREAMING_SNAKE_CASE__ = cmd_config[:-1] SCREAMING_SNAKE_CASE__ = os.path.join(self.tmpdir , """epoch_0""" ) cmd_config.extend( [ f'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() ) def _snake_case ( self :Tuple ) -> str: """simple docstring""" SCREAMING_SNAKE_CASE__ = os.path.join(self.test_scripts_folder , """test_peak_memory_usage.py""" ) SCREAMING_SNAKE_CASE__ = [ """accelerate""", """launch""", """--num_processes=2""", """--num_machines=1""", """--machine_rank=0""", ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): SCREAMING_SNAKE_CASE__ = cmd.copy() if "fp16" in spec: cmd_config.extend(["""--mixed_precision=fp16"""] ) else: cmd_config.extend(["""--mixed_precision=no"""] ) if "multi_gpu" in spec: continue else: cmd_config.extend(["""--use_fsdp"""] ) for i, strategy in enumerate(__A ): if strategy.lower() in spec: cmd_config.append(f'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append("""--fsdp_offload_params=True""" ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(f'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append("""--fsdp_transformer_layer_cls_to_wrap=BertLayer""" ) elif policy == "SIZE_BASED_WRAP": cmd_config.append("""--fsdp_min_num_params=2000""" ) cmd_config.extend( [ self.test_file_path, f'''--output_dir={self.tmpdir}''', f'''--peak_memory_upper_bound={peak_mem_upper_bound}''', f'''--n_train={self.n_train}''', f'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(__A , env=os.environ.copy() )
6
0
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __SCREAMING_SNAKE_CASE : Any = True except ImportError: __SCREAMING_SNAKE_CASE : List[str] = False __SCREAMING_SNAKE_CASE : List[str] = logging.get_logger(__name__) # pylint: disable=invalid-name def snake_case_ ( lowercase__ : Namespace ): '''simple docstring''' return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class __lowerCamelCase ( lowerCamelCase_ ): """simple docstring""" @staticmethod def lowerCAmelCase__ ( lowerCamelCase_ : ArgumentParser ): _lowerCAmelCase =parser.add_parser("""add-new-model""" ) add_new_model_parser.add_argument("""--testing""" , action="""store_true""" , help="""If in testing mode.""" ) add_new_model_parser.add_argument("""--testing_file""" , type=lowerCamelCase_ , help="""Configuration file on which to run.""" ) add_new_model_parser.add_argument( """--path""" , type=lowerCamelCase_ , help="""Path to cookiecutter. Should only be used for testing purposes.""" ) add_new_model_parser.set_defaults(func=lowerCamelCase_ ) def __init__( self : Optional[Any] , lowerCamelCase_ : bool , lowerCamelCase_ : str , lowerCamelCase_ : Tuple=None , *lowerCamelCase_ : Union[str, Any] ): _lowerCAmelCase =testing _lowerCAmelCase =testing_file _lowerCAmelCase =path def lowerCAmelCase__ ( self : List[Any] ): warnings.warn( """The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. """ """It is not actively maintained anymore, so might give a result that won't pass all tests and quality """ """checks, you should use `transformers-cli add-new-model-like` instead.""" ) if not _has_cookiecutter: raise ImportError( """Model creation dependencies are required to use the `add_new_model` command. Install them by running """ """the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n""" ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory _lowerCAmelCase =[directory for directory in os.listdir() if """cookiecutter-template-""" == directory[:22]] if len(lowerCamelCase_ ) > 0: raise ValueError( """Several directories starting with `cookiecutter-template-` in current working directory. """ """Please clean your directory by removing all folders starting with `cookiecutter-template-` or """ """change your working directory.""" ) _lowerCAmelCase =( Path(lowerCamelCase_ ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) _lowerCAmelCase =path_to_transformer_root / """templates""" / """adding_a_new_model""" # Execute cookiecutter if not self._testing: cookiecutter(str(lowerCamelCase_ ) ) else: with open(self._testing_file , """r""" ) as configuration_file: _lowerCAmelCase =json.load(lowerCamelCase_ ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=lowerCamelCase_ , extra_context=lowerCamelCase_ , ) _lowerCAmelCase =[directory for directory in os.listdir() if """cookiecutter-template-""" in directory[:22]][0] # Retrieve configuration with open(directory + """/configuration.json""" , """r""" ) as configuration_file: _lowerCAmelCase =json.load(lowerCamelCase_ ) _lowerCAmelCase =configuration["""lowercase_modelname"""] _lowerCAmelCase =configuration["""generate_tensorflow_pytorch_and_flax"""] os.remove(F"{directory}/configuration.json" ) _lowerCAmelCase ="""PyTorch""" in generate_tensorflow_pytorch_and_flax _lowerCAmelCase ="""TensorFlow""" in generate_tensorflow_pytorch_and_flax _lowerCAmelCase ="""Flax""" in generate_tensorflow_pytorch_and_flax _lowerCAmelCase =F"{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}" os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) os.makedirs(F"{path_to_transformer_root}/tests/models/{lowercase_model_name}" , exist_ok=lowerCamelCase_ ) # Tests require submodules as they have parent imports with open(F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py" , """w""" ): pass shutil.move( F"{directory}/__init__.py" , F"{model_dir}/__init__.py" , ) shutil.move( F"{directory}/configuration_{lowercase_model_name}.py" , F"{model_dir}/configuration_{lowercase_model_name}.py" , ) def remove_copy_lines(lowerCamelCase_ : int ): with open(lowerCamelCase_ , """r""" ) as f: _lowerCAmelCase =f.readlines() with open(lowerCamelCase_ , """w""" ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(lowerCamelCase_ ) if output_pytorch: if not self._testing: remove_copy_lines(F"{directory}/modeling_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_{lowercase_model_name}.py" , F"{model_dir}/modeling_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_{lowercase_model_name}.py" ) if output_tensorflow: if not self._testing: remove_copy_lines(F"{directory}/modeling_tf_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_tf_{lowercase_model_name}.py" , F"{model_dir}/modeling_tf_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_tf_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_tf_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_tf_{lowercase_model_name}.py" ) if output_flax: if not self._testing: remove_copy_lines(F"{directory}/modeling_flax_{lowercase_model_name}.py" ) shutil.move( F"{directory}/modeling_flax_{lowercase_model_name}.py" , F"{model_dir}/modeling_flax_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/test_modeling_flax_{lowercase_model_name}.py" , F"{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py" , ) else: os.remove(F"{directory}/modeling_flax_{lowercase_model_name}.py" ) os.remove(F"{directory}/test_modeling_flax_{lowercase_model_name}.py" ) shutil.move( F"{directory}/{lowercase_model_name}.md" , F"{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md" , ) shutil.move( F"{directory}/tokenization_{lowercase_model_name}.py" , F"{model_dir}/tokenization_{lowercase_model_name}.py" , ) shutil.move( F"{directory}/tokenization_fast_{lowercase_model_name}.py" , F"{model_dir}/tokenization_{lowercase_model_name}_fast.py" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(lowerCamelCase_ : str , lowerCamelCase_ : str , lowerCamelCase_ : List[str] ): # Create temp file _lowerCAmelCase , _lowerCAmelCase =mkstemp() _lowerCAmelCase =False with fdopen(lowerCamelCase_ , """w""" ) as new_file: with open(lowerCamelCase_ ) as old_file: for line in old_file: new_file.write(lowerCamelCase_ ) if line_to_copy_below in line: _lowerCAmelCase =True for line_to_copy in lines_to_copy: new_file.write(lowerCamelCase_ ) if not line_found: raise ValueError(F"Line {line_to_copy_below} was not found in file." ) # Copy the file permissions from the old file to the new file copymode(lowerCamelCase_ , lowerCamelCase_ ) # Remove original file remove(lowerCamelCase_ ) # Move new file move(lowerCamelCase_ , lowerCamelCase_ ) def skip_units(lowerCamelCase_ : Dict ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(lowerCamelCase_ : Dict ): with open(lowerCamelCase_ ) as datafile: _lowerCAmelCase =[] _lowerCAmelCase =False _lowerCAmelCase =False for line in datafile: if "# To replace in: " in line and "##" not in line: _lowerCAmelCase =line.split("""\"""" )[1] _lowerCAmelCase =skip_units(lowerCamelCase_ ) elif "# Below: " in line and "##" not in line: _lowerCAmelCase =line.split("""\"""" )[1] _lowerCAmelCase =skip_units(lowerCamelCase_ ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) _lowerCAmelCase =[] elif "# Replace with" in line and "##" not in line: _lowerCAmelCase =[] elif "##" not in line: lines_to_copy.append(lowerCamelCase_ ) remove(lowerCamelCase_ ) replace_in_files(F"{directory}/to_replace_{lowercase_model_name}.py" ) os.rmdir(lowerCamelCase_ )
149
from maths.prime_factors import prime_factors def snake_case_ ( lowercase__ : int ): '''simple docstring''' if not isinstance(lowercase__ , lowercase__ ): _lowerCAmelCase =f"Input value of [number={number}] must be an integer" raise TypeError(lowercase__ ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(lowercase__ ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
149
1
'''simple docstring''' import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class A ( SCREAMING_SNAKE_CASE__ ): snake_case__ :Tuple = ['image_processor', 'tokenizer'] snake_case__ :List[Any] = 'ChineseCLIPImageProcessor' snake_case__ :Optional[int] = ('BertTokenizer', 'BertTokenizerFast') def __init__( self : Dict , __magic_name__ : List[str]=None , __magic_name__ : List[Any]=None , **__magic_name__ : Optional[Any] ): """simple docstring""" lowerCAmelCase__ = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , __magic_name__ , ) lowerCAmelCase__ = kwargs.pop("feature_extractor" ) lowerCAmelCase__ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`." ) if tokenizer is None: raise ValueError("You need to specify a `tokenizer`." ) super().__init__(__magic_name__ , __magic_name__ ) lowerCAmelCase__ = self.image_processor def __call__( self : List[Any] , __magic_name__ : Tuple=None , __magic_name__ : Any=None , __magic_name__ : str=None , **__magic_name__ : List[str] ): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none." ) if text is not None: lowerCAmelCase__ = self.tokenizer(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if images is not None: lowerCAmelCase__ = self.image_processor(__magic_name__ , return_tensors=__magic_name__ , **__magic_name__ ) if text is not None and images is not None: lowerCAmelCase__ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__magic_name__ ) , tensor_type=__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Tuple , *__magic_name__ : Union[str, Any] , **__magic_name__ : List[str] ): """simple docstring""" return self.tokenizer.batch_decode(*__magic_name__ , **__magic_name__ ) def __SCREAMING_SNAKE_CASE ( self : Any , *__magic_name__ : str , **__magic_name__ : Union[str, Any] ): """simple docstring""" return self.tokenizer.decode(*__magic_name__ , **__magic_name__ ) @property def __SCREAMING_SNAKE_CASE ( self : str ): """simple docstring""" lowerCAmelCase__ = self.tokenizer.model_input_names lowerCAmelCase__ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __SCREAMING_SNAKE_CASE ( self : Tuple ): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , __magic_name__ , ) return self.image_processor_class
48
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ViTImageProcessor, ViTMSNConfig, ViTMSNModel from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD torch.set_grad_enabled(False) def __magic_name__ ( __a : int , __a : List[str]=False ): '''simple docstring''' UpperCamelCase__ = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((f"module.blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight") ) rename_keys.append((f"module.blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias") ) rename_keys.append( (f"module.blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias") ) rename_keys.append((f"module.blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight") ) rename_keys.append((f"module.blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight") ) rename_keys.append((f"module.blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias") ) # projection layer + position embeddings rename_keys.extend( [ ("""module.cls_token""", """vit.embeddings.cls_token"""), ("""module.patch_embed.proj.weight""", """vit.embeddings.patch_embeddings.projection.weight"""), ("""module.patch_embed.proj.bias""", """vit.embeddings.patch_embeddings.projection.bias"""), ("""module.pos_embed""", """vit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""module.norm.weight""", """layernorm.weight"""), ("""module.norm.bias""", """layernorm.bias"""), ] ) # if just the base model, we should remove "vit" from all keys that start with "vit" UpperCamelCase__ = [(pair[0], pair[1][4:]) if pair[1].startswith("""vit""" ) else pair for pair in rename_keys] else: # layernorm + classification head rename_keys.extend( [ ("""norm.weight""", """vit.layernorm.weight"""), ("""norm.bias""", """vit.layernorm.bias"""), ("""head.weight""", """classifier.weight"""), ("""head.bias""", """classifier.bias"""), ] ) return rename_keys def __magic_name__ ( __a : Optional[int] , __a : Tuple , __a : List[str]=False ): '''simple docstring''' for i in range(config.num_hidden_layers ): if base_model: UpperCamelCase__ = """""" else: UpperCamelCase__ = """vit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) UpperCamelCase__ = state_dict.pop(f"module.blocks.{i}.attn.qkv.weight" ) UpperCamelCase__ = state_dict.pop(f"module.blocks.{i}.attn.qkv.bias" ) # next, add query, keys and values (in that order) to the state dict UpperCamelCase__ = in_proj_weight[ : config.hidden_size, : ] UpperCamelCase__ = in_proj_bias[: config.hidden_size] UpperCamelCase__ = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] UpperCamelCase__ = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] UpperCamelCase__ = in_proj_weight[ -config.hidden_size :, : ] UpperCamelCase__ = in_proj_bias[-config.hidden_size :] def __magic_name__ ( __a : Any ): '''simple docstring''' UpperCamelCase__ = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(__a , __a ) def __magic_name__ ( __a : Optional[int] ): '''simple docstring''' UpperCamelCase__ = [ """module.fc.fc1.weight""", """module.fc.fc1.bias""", """module.fc.bn1.weight""", """module.fc.bn1.bias""", """module.fc.bn1.running_mean""", """module.fc.bn1.running_var""", """module.fc.bn1.num_batches_tracked""", """module.fc.fc2.weight""", """module.fc.fc2.bias""", """module.fc.bn2.weight""", """module.fc.bn2.bias""", """module.fc.bn2.running_mean""", """module.fc.bn2.running_var""", """module.fc.bn2.num_batches_tracked""", """module.fc.fc3.weight""", """module.fc.fc3.bias""", ] for k in ignore_keys: state_dict.pop(__a , __a ) def __magic_name__ ( __a : int , __a : Any , __a : List[str] ): '''simple docstring''' UpperCamelCase__ = dct.pop(__a ) UpperCamelCase__ = val def __magic_name__ ( __a : int , __a : Any ): '''simple docstring''' UpperCamelCase__ = ViTMSNConfig() UpperCamelCase__ = 1_000 UpperCamelCase__ = """datasets/huggingface/label-files""" UpperCamelCase__ = """imagenet-1k-id2label.json""" UpperCamelCase__ = json.load(open(hf_hub_download(__a , __a ) , """r""" ) ) UpperCamelCase__ = {int(__a ): v for k, v in idalabel.items()} UpperCamelCase__ = idalabel UpperCamelCase__ = {v: k for k, v in idalabel.items()} if "s16" in checkpoint_url: UpperCamelCase__ = 384 UpperCamelCase__ = 1_536 UpperCamelCase__ = 6 elif "l16" in checkpoint_url: UpperCamelCase__ = 1_024 UpperCamelCase__ = 4_096 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 0.1 elif "b4" in checkpoint_url: UpperCamelCase__ = 4 elif "l7" in checkpoint_url: UpperCamelCase__ = 7 UpperCamelCase__ = 1_024 UpperCamelCase__ = 4_096 UpperCamelCase__ = 24 UpperCamelCase__ = 16 UpperCamelCase__ = 0.1 UpperCamelCase__ = ViTMSNModel(__a ) UpperCamelCase__ = torch.hub.load_state_dict_from_url(__a , map_location="""cpu""" )["""target_encoder"""] UpperCamelCase__ = ViTImageProcessor(size=config.image_size ) remove_projection_head(__a ) UpperCamelCase__ = create_rename_keys(__a , base_model=__a ) for src, dest in rename_keys: rename_key(__a , __a , __a ) read_in_q_k_v(__a , __a , base_model=__a ) model.load_state_dict(__a ) model.eval() UpperCamelCase__ = """http://images.cocodataset.org/val2017/000000039769.jpg""" UpperCamelCase__ = Image.open(requests.get(__a , stream=__a ).raw ) UpperCamelCase__ = ViTImageProcessor( size=config.image_size , image_mean=__a , image_std=__a ) UpperCamelCase__ = image_processor(images=__a , return_tensors="""pt""" ) # forward pass torch.manual_seed(2 ) UpperCamelCase__ = model(**__a ) UpperCamelCase__ = outputs.last_hidden_state # The following Colab Notebook was used to generate these outputs: # https://colab.research.google.com/gist/sayakpaul/3672419a04f5997827503fd84079bdd1/scratchpad.ipynb if "s16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[-1.0_915, -1.4_876, -1.1_809]] ) elif "b16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[14.2_889, -18.9_045, 11.7_281]] ) elif "l16" in checkpoint_url: UpperCamelCase__ = torch.tensor([[41.5_028, -22.8_681, 45.6_475]] ) elif "b4" in checkpoint_url: UpperCamelCase__ = torch.tensor([[-4.3_868, 5.2_932, -0.4_137]] ) else: UpperCamelCase__ = torch.tensor([[-0.1_792, -0.6_465, 2.4_263]] ) # verify logits assert torch.allclose(last_hidden_state[:, 0, :3] , __a , atol=1E-4 ) print(f"Saving model to {pytorch_dump_folder_path}" ) model.save_pretrained(__a ) print(f"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(__a ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://dl.fbaipublicfiles.com/msn/vits16_800ep.pth.tar''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowerCamelCase_ = parser.parse_args() convert_vit_msn_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
513
0
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : Any = logging.get_logger(__name__) lowerCamelCase : Tuple = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase ='blip_text_model' def __init__( self : str , _lowerCamelCase : Optional[Any]=3_0_5_2_4 , _lowerCamelCase : Tuple=7_6_8 , _lowerCamelCase : int=7_6_8 , _lowerCamelCase : Optional[int]=3_0_7_2 , _lowerCamelCase : Optional[int]=7_6_8 , _lowerCamelCase : str=1_2 , _lowerCamelCase : Optional[int]=8 , _lowerCamelCase : Tuple=5_1_2 , _lowerCamelCase : Optional[Any]="gelu" , _lowerCamelCase : Dict=1E-12 , _lowerCamelCase : Any=0.0 , _lowerCamelCase : Optional[Any]=0.0 , _lowerCamelCase : Optional[Any]=0.02 , _lowerCamelCase : Optional[int]=3_0_5_2_2 , _lowerCamelCase : List[Any]=2 , _lowerCamelCase : Dict=0 , _lowerCamelCase : Union[str, Any]=1_0_2 , _lowerCamelCase : Dict=True , _lowerCamelCase : Union[str, Any]=True , **_lowerCamelCase : Tuple , ): super().__init__( pad_token_id=UpperCAmelCase__ , bos_token_id=UpperCAmelCase__ , eos_token_id=UpperCAmelCase__ , sep_token_id=UpperCAmelCase__ , **UpperCAmelCase__ , ) snake_case__ : str = vocab_size snake_case__ : List[Any] = hidden_size snake_case__ : int = encoder_hidden_size snake_case__ : Optional[Any] = intermediate_size snake_case__ : Optional[int] = projection_dim snake_case__ : str = hidden_dropout_prob snake_case__ : Dict = num_hidden_layers snake_case__ : Dict = num_attention_heads snake_case__ : Tuple = max_position_embeddings snake_case__ : Optional[int] = layer_norm_eps snake_case__ : Optional[Any] = hidden_act snake_case__ : Optional[int] = initializer_range snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = is_decoder snake_case__ : Tuple = use_cache @classmethod def UpperCAmelCase__ ( cls : Dict , _lowerCamelCase : Union[str, os.PathLike] , **_lowerCamelCase : str ): cls._set_token_in_kwargs(UpperCAmelCase__ ) snake_case__ : int = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": snake_case__ : Optional[Any] = config_dict['''text_config'''] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase ='blip_vision_model' def __init__( self : str , _lowerCamelCase : Optional[int]=7_6_8 , _lowerCamelCase : Optional[Any]=3_0_7_2 , _lowerCamelCase : List[Any]=5_1_2 , _lowerCamelCase : Any=1_2 , _lowerCamelCase : Optional[int]=1_2 , _lowerCamelCase : Any=3_8_4 , _lowerCamelCase : Optional[Any]=1_6 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : int=1E-5 , _lowerCamelCase : Optional[int]=0.0 , _lowerCamelCase : Any=1E-10 , **_lowerCamelCase : Dict , ): super().__init__(**UpperCAmelCase__ ) snake_case__ : List[str] = hidden_size snake_case__ : Union[str, Any] = intermediate_size snake_case__ : Tuple = projection_dim snake_case__ : Dict = num_hidden_layers snake_case__ : str = num_attention_heads snake_case__ : Dict = patch_size snake_case__ : Optional[Any] = image_size snake_case__ : Union[str, Any] = initializer_range snake_case__ : Dict = attention_dropout snake_case__ : Union[str, Any] = layer_norm_eps snake_case__ : Optional[int] = hidden_act @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , _lowerCamelCase : Union[str, os.PathLike] , **_lowerCamelCase : Optional[Any] ): cls._set_token_in_kwargs(UpperCAmelCase__ ) snake_case__ : Union[str, Any] = cls.get_config_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": snake_case__ : Tuple = config_dict['''vision_config'''] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict["model_type"]} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(UpperCAmelCase__ , **UpperCAmelCase__ ) class snake_case__ ( UpperCamelCase_ ): _lowerCAmelCase ='blip' _lowerCAmelCase =True def __init__( self : Optional[Any] , _lowerCamelCase : Dict=None , _lowerCamelCase : Any=None , _lowerCamelCase : Optional[int]=5_1_2 , _lowerCamelCase : Any=2.6592 , _lowerCamelCase : Any=2_5_6 , **_lowerCamelCase : Any , ): super().__init__(**UpperCAmelCase__ ) if text_config is None: snake_case__ : Union[str, Any] = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: snake_case__ : Tuple = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) snake_case__ : List[Any] = BlipTextConfig(**UpperCAmelCase__ ) snake_case__ : List[str] = BlipVisionConfig(**UpperCAmelCase__ ) snake_case__ : Dict = self.vision_config.hidden_size snake_case__ : Any = projection_dim snake_case__ : Optional[int] = logit_scale_init_value snake_case__ : List[Any] = 1.0 snake_case__ : int = 0.02 snake_case__ : Optional[Any] = image_text_hidden_size @classmethod def UpperCAmelCase__ ( cls : Union[str, Any] , _lowerCamelCase : BlipTextConfig , _lowerCamelCase : BlipVisionConfig , **_lowerCamelCase : int ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCAmelCase__ ) def UpperCAmelCase__ ( self : int ): snake_case__ : Optional[int] = copy.deepcopy(self.__dict__ ) snake_case__ : Tuple = self.text_config.to_dict() snake_case__ : Optional[int] = self.vision_config.to_dict() snake_case__ : List[str] = self.__class__.model_type return output
718
import logging import re import pytorch_quantization import pytorch_quantization.nn as quant_nn import torch from pytorch_quantization import calib from pytorch_quantization.tensor_quant import QuantDescriptor lowerCamelCase : Tuple = logging.getLogger(__name__) lowerCamelCase : Union[str, Any] = 5_0 # max width of layer names lowerCamelCase : Any = 7_0 # max width of quantizer names def lowercase__( A ): snake_case__ : Optional[int] = parser.add_argument_group('quant_trainer arguments' ) group.add_argument('--wprec' , type=A , default=8 , help='weight precision' ) group.add_argument('--aprec' , type=A , default=8 , help='activation precision' ) group.add_argument('--quant-per-tensor' , action='store_true' , help='per tensor weight scaling' ) group.add_argument('--quant-disable' , action='store_true' , help='disable all quantizers' ) group.add_argument('--quant-disable-embeddings' , action='store_true' , help='disable all embeddings quantizers' ) group.add_argument('--quant-disable-keyword' , type=A , nargs='+' , help='disable quantizers by keyword' ) group.add_argument('--quant-disable-layer-module' , type=A , help='disable quantizers by keyword under layer.' ) group.add_argument('--quant-enable-layer-module' , type=A , help='enable quantizers by keyword under layer' ) group.add_argument('--calibrator' , default='max' , help='which quantization range calibrator to use' ) group.add_argument('--percentile' , default=A , type=A , help='percentile for PercentileCalibrator' ) group.add_argument('--fuse-qkv' , action='store_true' , help='use the same scale factor for qkv' ) group.add_argument('--clip-gelu' , metavar='N' , type=A , help='clip gelu output maximum value to N' ) group.add_argument( '--recalibrate-weights' , action='store_true' , help=( 'recalibrate weight amaxes by taking the max of the weights.' ' amaxes will be computed with the current quantization granularity (axis).' ) , ) def lowercase__( A ): if args.calibrator == "max": snake_case__ : Any = 'max' elif args.calibrator == "percentile": if args.percentile is None: raise ValueError('Specify --percentile when using percentile calibrator' ) snake_case__ : List[Any] = 'histogram' elif args.calibrator == "mse": snake_case__ : str = 'histogram' else: raise ValueError(f'''Invalid calibrator {args.calibrator}''' ) snake_case__ : Union[str, Any] = QuantDescriptor(num_bits=args.aprec , calib_method=A ) snake_case__ : List[Any] = QuantDescriptor(num_bits=args.wprec , axis=(None if args.quant_per_tensor else (0,)) ) quant_nn.QuantLinear.set_default_quant_desc_input(A ) quant_nn.QuantLinear.set_default_quant_desc_weight(A ) def lowercase__( A , A , A=False , A=False ): logger.info('Configuring Model for Quantization' ) logger.info(f'''using quantization package {pytorch_quantization.__file__}''' ) if not calib: if args.quant_disable_embeddings: set_quantizer_by_name(A , ['embeddings'] , which='weight' , _disabled=A ) if args.quant_disable: set_quantizer_by_name(A , [''] , _disabled=A ) if args.quant_disable_keyword: set_quantizer_by_name(A , args.quant_disable_keyword , _disabled=A ) if args.quant_disable_layer_module: set_quantizer_by_name(A , [R'layer.\d+.' + args.quant_disable_layer_module] , _disabled=A ) if args.quant_enable_layer_module: set_quantizer_by_name(A , [R'layer.\d+.' + args.quant_enable_layer_module] , _disabled=A ) if args.recalibrate_weights: recalibrate_weights(A ) if args.fuse_qkv: fuse_qkv(A , A ) if args.clip_gelu: clip_gelu(A , args.clip_gelu ) # if args.local_rank in [-1, 0] and not calib: print_quant_summary(A ) def lowercase__( A ): logger.info('Enabling Calibration' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: module.disable_quant() module.enable_calib() else: module.disable() logger.info(f'''{name:80}: {module}''' ) def lowercase__( A , A ): logger.info('Loading calibrated amax' ) for name, module in model.named_modules(): if name.endswith('_quantizer' ): if module._calibrator is not None: if isinstance(module._calibrator , calib.MaxCalibrator ): module.load_calib_amax() else: module.load_calib_amax('percentile' , percentile=args.percentile ) module.enable_quant() module.disable_calib() else: module.enable() model.cuda() print_quant_summary(A ) def lowercase__( A , A ): def fusea(A , A , A ): for mod in [qq, qk, qv]: if not hasattr(A , '_amax' ): print(' WARNING: NO AMAX BUFFER' ) return snake_case__ : Optional[int] = qq._amax.detach().item() snake_case__ : Union[str, Any] = qk._amax.detach().item() snake_case__ : Dict = qv._amax.detach().item() snake_case__ : Optional[int] = max(A , A , A ) qq._amax.fill_(A ) qk._amax.fill_(A ) qv._amax.fill_(A ) logger.info(f''' q={q:5.2f} k={k:5.2f} v={v:5.2f} -> {amax:5.2f}''' ) for name, mod in model.named_modules(): if name.endswith('.attention.self' ): logger.info(f'''FUSE_QKV: {name:{name_width}}''' ) fusea(mod.matmul_q_input_quantizer , mod.matmul_k_input_quantizer , mod.matmul_v_input_quantizer ) if args.quant_per_tensor: fusea(mod.query._weight_quantizer , mod.key._weight_quantizer , mod.value._weight_quantizer ) def lowercase__( A , A ): for name, mod in model.named_modules(): if name.endswith('.output.dense' ) and not name.endswith('attention.output.dense' ): snake_case__ : List[str] = mod._input_quantizer._amax.data.detach().item() mod._input_quantizer._amax.data.detach().clamp_(max=A ) snake_case__ : Optional[int] = mod._input_quantizer._amax.data.detach().item() logger.info(f'''CLIP_GELU: {name:{name_width}} amax: {amax_init:5.2f} -> {amax:5.2f}''' ) def lowercase__( A ): for name, mod in model.named_modules(): if hasattr(A , '_weight_quantizer' ) and mod._weight_quantizer.axis is not None: snake_case__ : str = mod.weight.shape[0] snake_case__ : List[Any] = mod._weight_quantizer._amax.detach() snake_case__ : int = torch.ones(A , dtype=amax.dtype , device=amax.device ) * amax print(f'''expanding {name} {amax} -> {mod._weight_quantizer._amax}''' ) def lowercase__( A ): for name, mod in model.named_modules(): if hasattr(A , '_weight_quantizer' ): if not hasattr(mod.weight_quantizer , '_amax' ): print('RECALIB: {name:{name_width}} WARNING: NO AMAX BUFFER' ) continue # determine which axes to reduce across # e.g. a 4D tensor quantized per axis 0 should reduce over (1,2,3) snake_case__ : int = set() if mod._weight_quantizer.axis is None else set(mod._weight_quantizer.axis ) snake_case__ : int = set(range(len(mod.weight.size() ) ) ) - axis_set snake_case__ : Optional[Any] = pytorch_quantization.utils.reduce_amax(mod.weight , axis=A , keepdims=A ).detach() logger.info(f'''RECALIB: {name:{name_width}} {mod._weight_quantizer._amax.flatten()} -> {amax.flatten()}''' ) snake_case__ : str = amax def lowercase__( A , A=2_5 , A=1_8_0 , A=None ): if ignore is None: snake_case__ : List[str] = [] elif not isinstance(A , A ): snake_case__ : Optional[int] = [ignore] snake_case__ : List[Any] = 0 for name, mod in model.named_modules(): if not hasattr(A , 'weight' ): continue snake_case__ : int = max(A , len(A ) ) for name, mod in model.named_modules(): snake_case__ : Optional[int] = getattr(A , '_input_quantizer' , A ) snake_case__ : Tuple = getattr(A , '_weight_quantizer' , A ) if not hasattr(A , 'weight' ): continue if type(A ) in ignore: continue if [True for s in ignore if type(A ) is str and s in name]: continue snake_case__ : Dict = f'''Act:{input_q.extra_repr()}''' snake_case__ : str = f'''Wgt:{weight_q.extra_repr()}''' snake_case__ : Any = f'''{name:{name_width}} {act_str} {wgt_str}''' if len(A ) <= line_width: logger.info(A ) else: logger.info(f'''{name:{name_width}} {act_str}''' ) logger.info(f'''{" ":{name_width}} {wgt_str}''' ) def lowercase__( A ): snake_case__ : Optional[Any] = 0 for name, mod in model.named_modules(): if isinstance(A , pytorch_quantization.nn.TensorQuantizer ): print(f'''{name:80} {mod}''' ) count += 1 print(f'''{count} TensorQuantizers found in model''' ) def lowercase__( A , A , A , A , A ): snake_case__ : str = getattr(A , A , A ) if quantizer_mod is not None: assert hasattr(A , A ) setattr(A , A , A ) else: logger.warning(f'''{name} has no {quantizer}''' ) def lowercase__( A , A , A="both" , **A ): snake_case__ : Union[str, Any] = f'''Warning: changing {which} quantizers of {name:{qname_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' if which in ["input", "both"]: set_quantizer(A , A , '_input_quantizer' , A , A ) if which in ["weight", "both"]: set_quantizer(A , A , '_weight_quantizer' , A , A ) logger.info(A ) def lowercase__( A , A , **A ): for name, mod in model.named_modules(): if hasattr(A , '_input_quantizer' ) or hasattr(A , '_weight_quantizer' ): for n in names: if re.search(A , A ): set_quantizers(A , A , **A ) elif name.endswith('_quantizer' ): for n in names: if re.search(A , A ): snake_case__ : Any = f'''Warning: changing {name:{name_width}}''' for k, v in kwargs.items(): s += f''' {k}={v}''' setattr(A , A , A ) logger.info(A )
303
0
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging lowerCAmelCase_ : Any = logging.get_logger(__name__) lowerCAmelCase_ : Optional[int] = '''▁''' lowerCAmelCase_ : Dict = {'''vocab_file''': '''spiece.model'''} lowerCAmelCase_ : Optional[Any] = { '''vocab_file''': { '''google/reformer-crime-and-punishment''': ( '''https://huggingface.co/google/reformer-crime-and-punishment/resolve/main/spiece.model''' ) } } lowerCAmelCase_ : Optional[int] = { '''google/reformer-crime-and-punishment''': 5_2_4_2_8_8, } class UpperCamelCase_ ( a_ ): _A : Optional[Any] = VOCAB_FILES_NAMES _A : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP _A : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _A : Optional[int] = ['input_ids', 'attention_mask'] def __init__( self , snake_case__ , snake_case__="</s>" , snake_case__="<unk>" , snake_case__=[] , snake_case__ = None , **snake_case__ , ) -> None: """simple docstring""" UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( eos_token=snake_case__ , unk_token=snake_case__ , additional_special_tokens=snake_case__ , sp_model_kwargs=self.sp_model_kwargs , **snake_case__ , ) UpperCAmelCase = vocab_file UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(snake_case__ ) @property def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" return self.sp_model.get_piece_size() def UpperCamelCase_ ( self ) -> Dict[str, int]: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(snake_case__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self , snake_case__ ) -> Optional[int]: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def UpperCamelCase_ ( self , snake_case__ ) -> List[str]: """simple docstring""" return self.sp_model.encode(snake_case__ , out_type=snake_case__ ) def UpperCamelCase_ ( self , snake_case__ ) -> Union[str, Any]: """simple docstring""" return self.sp_model.piece_to_id(snake_case__ ) def UpperCamelCase_ ( self , snake_case__ ) -> Union[str, Any]: """simple docstring""" if index < self.sp_model.get_piece_size(): UpperCAmelCase = self.sp_model.IdToPiece(snake_case__ ) return token def UpperCamelCase_ ( self , snake_case__ ) -> List[Any]: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = """""" for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(snake_case__ ) + token UpperCAmelCase = [] else: current_sub_tokens.append(snake_case__ ) out_string += self.sp_model.decode(snake_case__ ) return out_string.strip() def UpperCamelCase_ ( self , snake_case__ , snake_case__ = None ) -> Tuple[str]: """simple docstring""" if not os.path.isdir(snake_case__ ): logger.error(f'''Vocabulary path ({save_directory}) should be a directory''' ) return UpperCAmelCase = os.path.join( snake_case__ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(snake_case__ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , snake_case__ ) elif not os.path.isfile(self.vocab_file ): with open(snake_case__ , """wb""" ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(snake_case__ ) return (out_vocab_file,)
673
"""simple docstring""" import socket def _lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase = socket.socket(socket.AF_INET , socket.SOCK_STREAM ) UpperCAmelCase = socket.gethostname() UpperCAmelCase = 12312 sock.connect((host, port) ) sock.send(b"""Hello server!""" ) with open("""Received_file""" , """wb""" ) as out_file: print("""File opened""" ) print("""Receiving data...""" ) while True: UpperCAmelCase = sock.recv(1024 ) if not data: break out_file.write(lowerCAmelCase ) print("""Successfully received the file""" ) sock.close() print("""Connection closed""" ) if __name__ == "__main__": main()
673
1
import fire from torch.utils.data import DataLoader from tqdm import tqdm from transformers import AutoTokenizer from utils import SeqaSeqDataset, pickle_save def lowerCAmelCase__ ( _a : List[str] , _a : str , _a : List[str]=10_24 , _a : int=10_24 , _a : int=False , **_a : Optional[Any] ): snake_case_ : Optional[Any] = AutoTokenizer.from_pretrained(_a ) snake_case_ : List[Any] = SeqaSeqDataset(_a , _a , _a , _a , type_path="train" , **_a ) snake_case_ : Tuple = tok.pad_token_id def get_lens(_a : str ): snake_case_ : Optional[int] = tqdm( DataLoader(_a , batch_size=5_12 , num_workers=8 , shuffle=_a , collate_fn=ds.collate_fn ) , desc=str(ds.len_file ) , ) snake_case_ : List[Any] = [] for batch in dl: snake_case_ : Dict = batch["input_ids"].ne(_a ).sum(1 ).tolist() snake_case_ : Optional[int] = batch["labels"].ne(_a ).sum(1 ).tolist() if consider_target: for src, tgt in zip(_a , _a ): max_lens.append(max(_a , _a ) ) else: max_lens.extend(_a ) return max_lens snake_case_ : str = get_lens(_a ) snake_case_ : Tuple = SeqaSeqDataset(_a , _a , _a , _a , type_path="val" , **_a ) snake_case_ : Optional[int] = get_lens(_a ) pickle_save(_a , train_ds.len_file ) pickle_save(_a , val_ds.len_file ) if __name__ == "__main__": fire.Fire(save_len_file)
114
import heapq import sys import numpy as np lowercase : str = tuple[int, int] class UpperCAmelCase_ : '''simple docstring''' def __init__( self ) -> Optional[int]: snake_case_ : int = [] snake_case_ : int = set() def _lowerCAmelCase ( self ) -> List[Any]: if not self.empty(): return self.elements[0][0] else: return float("inf" ) def _lowerCAmelCase ( self ) -> Optional[int]: return len(self.elements ) == 0 def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) -> str: if item not in self.set: heapq.heappush(self.elements , (priority, item) ) self.set.add(_SCREAMING_SNAKE_CASE ) else: # update # print("update", item) snake_case_ : Any = [] ((snake_case_) , (snake_case_)) : Optional[Any] = heapq.heappop(self.elements ) while x != item: temp.append((pri, x) ) ((snake_case_) , (snake_case_)) : Optional[int] = heapq.heappop(self.elements ) temp.append((priority, item) ) for pro, xxx in temp: heapq.heappush(self.elements , (pro, xxx) ) def _lowerCAmelCase ( self , _SCREAMING_SNAKE_CASE ) -> Any: if item in self.set: self.set.remove(_SCREAMING_SNAKE_CASE ) snake_case_ : Optional[Any] = [] ((snake_case_) , (snake_case_)) : Tuple = heapq.heappop(self.elements ) while x != item: temp.append((pro, x) ) ((snake_case_) , (snake_case_)) : Dict = heapq.heappop(self.elements ) for prito, yyy in temp: heapq.heappush(self.elements , (prito, yyy) ) def _lowerCAmelCase ( self ) -> Optional[Any]: return self.elements[0][1] def _lowerCAmelCase ( self ) -> Optional[int]: ((snake_case_) , (snake_case_)) : Any = heapq.heappop(self.elements ) self.set.remove(_SCREAMING_SNAKE_CASE ) return (priority, item) def lowerCAmelCase__ ( _a : TPos , _a : TPos ): # euclidean distance snake_case_ : Optional[Any] = np.array(_a ) snake_case_ : Dict = np.array(_a ) return np.linalg.norm(a - b ) def lowerCAmelCase__ ( _a : TPos , _a : TPos ): # integer division by time variable return consistent_heuristic(_a , _a ) // t def lowerCAmelCase__ ( _a : TPos , _a : TPos ): # manhattan distance return abs(p[0] - goal[0] ) + abs(p[1] - goal[1] ) def lowerCAmelCase__ ( _a : TPos , _a : int , _a : TPos , _a : dict[TPos, float] ): snake_case_ : List[Any] = g_function[start] + Wa * heuristics[i](_a , _a ) return ans def lowerCAmelCase__ ( _a : Tuple , _a : Union[str, Any] , _a : List[Any] ): snake_case_ : Dict = np.chararray((n, n) ) for i in range(_a ): for j in range(_a ): snake_case_ : List[str] = "*" for i in range(_a ): for j in range(_a ): if (j, (n - 1) - i) in blocks: snake_case_ : Optional[Any] = "#" snake_case_ : Optional[int] = "-" snake_case_ : Tuple = back_pointer[goal] while x != start: ((snake_case_) , (snake_case_)) : Any = x # print(x) snake_case_ : List[str] = "-" snake_case_ : Dict = back_pointer[x] snake_case_ : str = "-" for i in range(_a ): for j in range(_a ): if (i, j) == (0, n - 1): print(grid[i][j] , end=" " ) print("<-- End position" , end=" " ) else: print(grid[i][j] , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) print("PATH TAKEN BY THE ALGORITHM IS:-" ) snake_case_ : List[Any] = back_pointer[goal] while x != start: print(_a , end=" " ) snake_case_ : int = back_pointer[x] print(_a ) sys.exit() def lowerCAmelCase__ ( _a : TPos ): if p[0] < 0 or p[0] > n - 1: return False if p[1] < 0 or p[1] > n - 1: return False return True def lowerCAmelCase__ ( _a : int , _a : str , _a : Optional[int] , _a : List[str] , _a : Optional[Any] , _a : Dict , _a : Tuple , _a : Any , ): for itera in range(_a ): open_list[itera].remove_element(_a ) # print("s", s) # print("j", j) ((snake_case_) , (snake_case_)) : Tuple = s snake_case_ : Dict = (x - 1, y) snake_case_ : Union[str, Any] = (x + 1, y) snake_case_ : List[str] = (x, y + 1) snake_case_ : int = (x, y - 1) for neighbours in [left, right, up, down]: if neighbours not in blocks: if valid(_a ) and neighbours not in visited: # print("neighbour", neighbours) visited.add(_a ) snake_case_ : Optional[int] = -1 snake_case_ : int = float("inf" ) if valid(_a ) and g_function[neighbours] > g_function[s] + 1: snake_case_ : int = g_function[s] + 1 snake_case_ : Any = s if neighbours not in close_list_anchor: open_list[0].put(_a , key(_a , 0 , _a , _a ) ) if neighbours not in close_list_inad: for var in range(1 , _a ): if key(_a , _a , _a , _a ) <= Wa * key( _a , 0 , _a , _a ): open_list[j].put( _a , key(_a , _a , _a , _a ) ) def lowerCAmelCase__ ( ): snake_case_ : Union[str, Any] = [] for x in range(1 , 5 ): for y in range(1 , 6 ): some_list.append((x, y) ) for x in range(15 , 20 ): some_list.append((x, 17) ) for x in range(10 , 19 ): for y in range(1 , 15 ): some_list.append((x, y) ) # L block for x in range(1 , 4 ): for y in range(12 , 19 ): some_list.append((x, y) ) for x in range(3 , 13 ): for y in range(16 , 19 ): some_list.append((x, y) ) return some_list lowercase : Union[str, Any] = {0: consistent_heuristic, 1: heuristic_a, 2: heuristic_a} lowercase : Union[str, Any] = [ (0, 1), (1, 1), (2, 1), (3, 1), (4, 1), (5, 1), (6, 1), (7, 1), (8, 1), (9, 1), (10, 1), (11, 1), (12, 1), (13, 1), (14, 1), (15, 1), (16, 1), (17, 1), (18, 1), (19, 1), ] lowercase : int = make_common_ground() lowercase : Optional[Any] = blocks_blk # hyper parameters lowercase : Optional[Any] = 1 lowercase : str = 1 lowercase : Any = 20 lowercase : str = 3 # one consistent and two other inconsistent # start and end destination lowercase : Any = (0, 0) lowercase : int = (n - 1, n - 1) lowercase : str = 1 def lowerCAmelCase__ ( _a : TPos , _a : TPos , _a : int ): snake_case_ : List[str] = {start: 0, goal: float("inf" )} snake_case_ : List[Any] = {start: -1, goal: -1} snake_case_ : Optional[Any] = [] snake_case_ : Dict = set() for i in range(_a ): open_list.append(PriorityQueue() ) open_list[i].put(_a , key(_a , _a , _a , _a ) ) snake_case_ : list[int] = [] snake_case_ : list[int] = [] while open_list[0].minkey() < float("inf" ): for i in range(1 , _a ): # print(open_list[0].minkey(), open_list[i].minkey()) if open_list[i].minkey() <= Wa * open_list[0].minkey(): global t t += 1 if g_function[goal] <= open_list[i].minkey(): if g_function[goal] < float("inf" ): do_something(_a , _a , _a ) else: snake_case_ , snake_case_ : Optional[Any] = open_list[i].top_show() visited.add(_a ) expand_state( _a , _a , _a , _a , _a , _a , _a , _a , ) close_list_inad.append(_a ) else: if g_function[goal] <= open_list[0].minkey(): if g_function[goal] < float("inf" ): do_something(_a , _a , _a ) else: snake_case_ : Tuple = open_list[0].top_show() visited.add(_a ) expand_state( _a , 0 , _a , _a , _a , _a , _a , _a , ) close_list_anchor.append(_a ) print("No path found to goal" ) print() for i in range(n - 1 , -1 , -1 ): for j in range(_a ): if (j, i) in blocks: print("#" , end=" " ) elif (j, i) in back_pointer: if (j, i) == (n - 1, n - 1): print("*" , end=" " ) else: print("-" , end=" " ) else: print("*" , end=" " ) if (j, i) == (n - 1, n - 1): print("<-- End position" , end=" " ) print() print("^" ) print("Start position" ) print() print("# is an obstacle" ) print("- is the path taken by algorithm" ) if __name__ == "__main__": multi_a_star(start, goal, n_heuristic)
114
1
def __lowerCamelCase ( __lowerCAmelCase : int ) -> bool: return str(__lowerCAmelCase ) == str(__lowerCAmelCase )[::-1] def __lowerCamelCase ( __lowerCAmelCase : int ) -> int: return int(__lowerCAmelCase ) + int(str(__lowerCAmelCase )[::-1] ) def __lowerCamelCase ( __lowerCAmelCase : int = 10000 ) -> int: __UpperCamelCase : Any = [] for num in range(1 , __lowerCAmelCase ): __UpperCamelCase : int = 0 __UpperCamelCase : Dict = num while iterations < 50: __UpperCamelCase : str = sum_reverse(__lowerCAmelCase ) iterations += 1 if is_palindrome(__lowerCAmelCase ): break else: lychrel_nums.append(__lowerCAmelCase ) return len(__lowerCAmelCase ) if __name__ == "__main__": print(F"""{solution() = }""")
269
import os from collections import namedtuple import pytest from datasets import ClassLabel, Features, Sequence, Value from datasets.commands.test import TestCommand from datasets.info import DatasetInfo, DatasetInfosDict UpperCamelCase = namedtuple( '_TestCommandArgs', [ 'dataset', 'name', 'cache_dir', 'data_dir', 'all_configs', 'save_infos', 'ignore_verifications', 'force_redownload', 'clear_cache', ], defaults=[None, None, None, False, False, False, False, False], ) def __lowerCamelCase ( __lowerCAmelCase : List[Any] , __lowerCAmelCase : Any ) -> Optional[int]: return (abs(source - target ) / target) < 0.01 @pytest.mark.integration def __lowerCamelCase ( __lowerCAmelCase : str ) -> Union[str, Any]: __UpperCamelCase : Dict = _TestCommandArgs(dataset=__lowerCAmelCase , all_configs=__lowerCAmelCase , save_infos=__lowerCAmelCase ) __UpperCamelCase : List[Any] = TestCommand(*__lowerCAmelCase ) test_command.run() __UpperCamelCase : Any = os.path.join(__lowerCAmelCase , """README.md""" ) assert os.path.exists(__lowerCAmelCase ) __UpperCamelCase : Optional[int] = DatasetInfosDict.from_directory(__lowerCAmelCase ) __UpperCamelCase : List[Any] = DatasetInfosDict( { """default""": DatasetInfo( features=Features( { """tokens""": Sequence(Value("""string""" ) ), """ner_tags""": Sequence( ClassLabel(names=["""O""", """B-PER""", """I-PER""", """B-ORG""", """I-ORG""", """B-LOC""", """I-LOC"""] ) ), """langs""": Sequence(Value("""string""" ) ), """spans""": Sequence(Value("""string""" ) ), } ) , splits=[ { """name""": """train""", """num_bytes""": 2351563, """num_examples""": 10000, }, { """name""": """validation""", """num_bytes""": 238418, """num_examples""": 1000, }, ] , download_size=3940680 , dataset_size=2589981 , ) } ) assert dataset_infos.keys() == expected_dataset_infos.keys() for key in DatasetInfo._INCLUDED_INFO_IN_YAML: __UpperCamelCase , __UpperCamelCase : Union[str, Any] = getattr(dataset_infos["""default"""] , __lowerCAmelCase ), getattr(expected_dataset_infos["""default"""] , __lowerCAmelCase ) if key == "num_bytes": assert is_apercent_close(__lowerCAmelCase , __lowerCAmelCase ) elif key == "splits": assert list(__lowerCAmelCase ) == list(__lowerCAmelCase ) for split in result: assert result[split].name == expected[split].name assert result[split].num_examples == expected[split].num_examples assert is_apercent_close(result[split].num_bytes , expected[split].num_bytes ) else: result == expected
269
1
SCREAMING_SNAKE_CASE__ = { "joule": 1.0, "kilojoule": 1_0_0_0, "megajoule": 1_0_0_0_0_0_0, "gigajoule": 1_0_0_0_0_0_0_0_0_0, "wattsecond": 1.0, "watthour": 3_6_0_0, "kilowatthour": 3_6_0_0_0_0_0, "newtonmeter": 1.0, "calorie_nutr": 4_1_8_6.8, "kilocalorie_nutr": 4_1_8_6_8_0_0.0_0, "electronvolt": 1.6_0_2_1_7_6_6_3_4E-1_9, "britishthermalunit_it": 1_0_5_5.0_5_5_8_5, "footpound": 1.355818, } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: str , __lowerCamelCase: str , __lowerCamelCase: float ): '''simple docstring''' if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION: lowercase_ = ( F'Incorrect \'from_type\' or \'to_type\' value: {from_type!r}, {to_type!r}\n' F'Valid values are: {", ".join(__lowerCamelCase )}' ) raise ValueError(__lowerCamelCase ) return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type] if __name__ == "__main__": import doctest doctest.testmod()
601
import inspect import logging import os import random import shutil import tempfile import unittest import pytest import torch from torch import nn from torch.utils.data import DataLoader, TensorDataset from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_cuda from accelerate.utils import ProjectConfiguration, set_seed SCREAMING_SNAKE_CASE__ = logging.getLogger(__name__) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str]=2 , __lowerCamelCase: List[Any]=3 , __lowerCamelCase: Optional[int]=16 , __lowerCamelCase: int = 10 , __lowerCamelCase: int = 2 ): '''simple docstring''' def get_dataset(__lowerCamelCase: List[Any] ): lowercase_ = torch.randn(batch_size * n_batches , 1 ) return TensorDataset(__lowerCamelCase , a * x + b + 0.1 * torch.randn(batch_size * n_batches , 1 ) ) lowercase_ = get_dataset(__lowerCamelCase ) lowercase_ = get_dataset(__lowerCamelCase ) lowercase_ = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) lowercase_ = DataLoader(__lowerCamelCase , shuffle=__lowerCamelCase , batch_size=__lowerCamelCase , num_workers=4 ) return (train_dataloader, valid_dataloader) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[int] , __lowerCamelCase: str , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Any , __lowerCamelCase: Union[str, Any] , __lowerCamelCase: str=None ): '''simple docstring''' lowercase_ = [] for epoch in range(__lowerCamelCase ): # Train quickly model.train() for batch in dataloader: lowercase_ , lowercase_ = batch lowercase_ = model(__lowerCamelCase ) lowercase_ = torch.nn.functional.mse_loss(__lowerCamelCase , __lowerCamelCase ) accelerator.backward(__lowerCamelCase ) optimizer.step() optimizer.zero_grad() rands.append(random.random() ) # Introduce some randomness if scheduler is not None: scheduler.step() return rands class __lowerCamelCase ( nn.Module ): """simple docstring""" def __init__( self ) -> List[Any]: '''simple docstring''' super().__init__() lowercase_ = nn.Parameter(torch.randn(1 ) ) lowercase_ = nn.Parameter(torch.randn(1 ) ) def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' return x * self.a + self.b class __lowerCamelCase ( unittest.TestCase ): """simple docstring""" def A__ ( self ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(total_limit=1 , project_dir=UpperCAmelCase , automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() # Save second state accelerator.save_state() self.assertEqual(len(os.listdir(accelerator.project_dir ) ) , 1 ) def A__ ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() # Train baseline lowercase_ = Accelerator() lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial lowercase_ = os.path.join(UpperCAmelCase , "initial" ) accelerator.save_state(UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() lowercase_ = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = Accelerator() lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.load_state(UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save everything lowercase_ = os.path.join(UpperCAmelCase , "checkpoint" ) accelerator.save_state(UpperCAmelCase ) # Load everything back in and make sure all states work accelerator.load_state(UpperCAmelCase ) test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() lowercase_ = train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() # Train partially set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(iteration=1 , automatic_checkpoint_naming=UpperCAmelCase ) lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) lowercase_ = train(2 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save everything accelerator.save_state() # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_1" ) ) test_rands += train(1 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) ((lowercase_) , (lowercase_)) = model.a.item(), model.b.item() lowercase_ = optimizer.state_dict() self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) self.assertEqual(UpperCAmelCase , UpperCAmelCase ) def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = torch.tensor([1, 2, 3] ) lowercase_ = torch.tensor([2, 3, 4] ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(net.parameters() ) lowercase_ = Accelerator() with self.assertRaises(UpperCAmelCase ) as ve: accelerator.register_for_checkpointing(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) lowercase_ = str(ve.exception ) self.assertTrue("Item at index 0" in message ) self.assertTrue("Item at index 1" in message ) self.assertFalse("Item at index 2" in message ) self.assertFalse("Item at index 3" in message ) def A__ ( self ) -> int: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = torch.optim.Adam(params=model.parameters() , lr=1e-3 ) lowercase_ = torch.optim.lr_scheduler.StepLR(UpperCAmelCase , step_size=1 , gamma=0.99 ) lowercase_ , lowercase_ = dummy_dataloaders() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = accelerator.prepare( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) # Save initial accelerator.save_state() lowercase_ = scheduler.state_dict() train(3 , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) self.assertNotEqual(UpperCAmelCase , scheduler.state_dict() ) # Load everything back in and make sure all states work accelerator.load_state(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) self.assertEqual(UpperCAmelCase , scheduler.state_dict() ) def A__ ( self ) -> Optional[int]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmpdir: set_seed(42 ) lowercase_ = DummyModel() lowercase_ = ProjectConfiguration(automatic_checkpoint_naming=UpperCAmelCase , total_limit=2 ) # Train baseline lowercase_ = Accelerator(project_dir=UpperCAmelCase , project_config=UpperCAmelCase ) lowercase_ = accelerator.prepare(UpperCAmelCase ) # Save 3 states: for _ in range(11 ): accelerator.save_state() self.assertTrue(not os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_0" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_9" ) ) ) self.assertTrue(os.path.exists(os.path.join(UpperCAmelCase , "checkpoints" , "checkpoint_10" ) ) ) @require_cuda def A__ ( self ) -> List[Any]: '''simple docstring''' lowercase_ = ["torchrun", F'--nproc_per_node={torch.cuda.device_count()}', inspect.getfile(self.__class__ )] execute_subprocess_async(UpperCAmelCase , env=os.environ.copy() ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = """/tmp/accelerate/state_checkpointing""" SCREAMING_SNAKE_CASE__ = DummyModel() SCREAMING_SNAKE_CASE__ = torch.optim.Adam(params=model.parameters(), lr=1E-3) SCREAMING_SNAKE_CASE__ = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=0.99) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = dummy_dataloaders() SCREAMING_SNAKE_CASE__ = ProjectConfiguration(automatic_checkpoint_naming=True) # Train baseline SCREAMING_SNAKE_CASE__ = Accelerator(project_dir=savedir, project_config=project_config, mixed_precision="""no""") if accelerator.process_index == 0: if os.path.exists(savedir): shutil.rmtree(savedir) os.makedirs(savedir) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare( model, optimizer, train_dataloader, valid_dataloader, scheduler ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = accelerator.prepare(model, optimizer) train(3, model, train_dataloader, optimizer, accelerator, scheduler) # Check that the intial optimizer is loaded on the GPU for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert param_device.type == accelerator.device.type SCREAMING_SNAKE_CASE__ = model.cpu() accelerator.wait_for_everyone() accelerator.save_state() accelerator.wait_for_everyone() # Check CPU state accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""cpu""") for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert ( param_device.type == torch.device("""cpu""").type ), f"Loaded optimizer states did not match, expected to be loaded on the CPU but got {param_device}" # Check device state model.to(accelerator.device) accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""on_device""") for group in optimizer.param_groups: SCREAMING_SNAKE_CASE__ = group["""params"""][0].device break assert ( param_device.type == accelerator.device.type ), f"Loaded optimizer states did not match, expected to be loaded on {accelerator.device} but got {param_device}" # Check error with pytest.raises(TypeError, match="""Unsupported optimizer map location passed"""): accelerator.load_state(os.path.join(savedir, """checkpoints""", """checkpoint_0"""), map_location="""invalid""") accelerator.wait_for_everyone() if accelerator.process_index == 0: shutil.rmtree(savedir) accelerator.wait_for_everyone()
601
1
'''simple docstring''' import unittest from transformers import XLMConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMWithLMHeadModel, ) from transformers.models.xlm.modeling_xlm import XLM_PRETRAINED_MODEL_ARCHIVE_LIST class A : def __init__( self : List[str] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Dict=13 , lowerCAmelCase_ : int=7 , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : Any=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Union[str, Any]=False , lowerCAmelCase_ : Optional[Any]=False , lowerCAmelCase_ : int=False , lowerCAmelCase_ : Tuple=2 , lowerCAmelCase_ : Optional[Any]=99 , lowerCAmelCase_ : Tuple=0 , lowerCAmelCase_ : List[Any]=32 , lowerCAmelCase_ : List[Any]=5 , lowerCAmelCase_ : str=4 , lowerCAmelCase_ : List[Any]=0.1 , lowerCAmelCase_ : Optional[int]=0.1 , lowerCAmelCase_ : Tuple=5_12 , lowerCAmelCase_ : Union[str, Any]=2 , lowerCAmelCase_ : List[Any]=0.0_2 , lowerCAmelCase_ : Optional[Any]=2 , lowerCAmelCase_ : Tuple=4 , lowerCAmelCase_ : str="last" , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : int=None , lowerCAmelCase_ : Tuple=0 , ) -> List[Any]: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_lengths _a = use_token_type_ids _a = use_labels _a = gelu_activation _a = sinusoidal_embeddings _a = causal _a = asm _a = n_langs _a = vocab_size _a = n_special _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = summary_type _a = use_proj _a = scope _a = bos_token_id def __lowerCAmelCase ( self : Tuple ) -> Union[str, Any]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_input_lengths: _a = ( ids_tensor([self.batch_size] , vocab_size=2 ) + self.seq_length - 2 ) # small variation of seq_length _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.n_langs ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , 2 ).float() _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return ( config, input_ids, token_type_ids, input_lengths, sequence_labels, token_labels, is_impossible_labels, choice_labels, input_mask, ) def __lowerCAmelCase ( self : List[str] ) -> Dict: """simple docstring""" return XLMConfig( vocab_size=self.vocab_size , n_special=self.n_special , emb_dim=self.hidden_size , n_layers=self.num_hidden_layers , n_heads=self.num_attention_heads , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , gelu_activation=self.gelu_activation , sinusoidal_embeddings=self.sinusoidal_embeddings , asm=self.asm , causal=self.causal , n_langs=self.n_langs , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , summary_type=self.summary_type , use_proj=self.use_proj , num_labels=self.num_labels , bos_token_id=self.bos_token_id , ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , ) -> str: """simple docstring""" _a = XLMModel(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , lengths=lowerCAmelCase_ , langs=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , langs=lowerCAmelCase_ ) _a = model(lowerCAmelCase_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self : int , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , ) -> int: """simple docstring""" _a = XLMWithLMHeadModel(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , ) -> int: """simple docstring""" _a = XLMForQuestionAnsweringSimple(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) _a = outputs self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : Any , ) -> Tuple: """simple docstring""" _a = XLMForQuestionAnswering(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) _a = model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , p_mask=lowerCAmelCase_ , ) _a = model( lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ , cls_index=lowerCAmelCase_ , is_impossible=lowerCAmelCase_ , ) ((_a) , ) = result_with_labels.to_tuple() _a = model(lowerCAmelCase_ , start_positions=lowerCAmelCase_ , end_positions=lowerCAmelCase_ ) ((_a) , ) = result_with_labels.to_tuple() self.parent.assertEqual(result_with_labels.loss.shape , () ) self.parent.assertEqual(result.start_top_log_probs.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual(result.start_top_index.shape , (self.batch_size, model.config.start_n_top) ) self.parent.assertEqual( result.end_top_log_probs.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual( result.end_top_index.shape , (self.batch_size, model.config.start_n_top * model.config.end_n_top) ) self.parent.assertEqual(result.cls_logits.shape , (self.batch_size,) ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Tuple , ) -> Dict: """simple docstring""" _a = XLMForSequenceClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ ) _a = model(lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : str , ) -> Optional[Any]: """simple docstring""" _a = self.num_labels _a = XLMForTokenClassification(lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = model(lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , labels=lowerCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , ) -> Any: """simple docstring""" _a = self.num_choices _a = XLMForMultipleChoice(config=lowerCAmelCase_ ) model.to(lowerCAmelCase_ ) model.eval() _a = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _a = model( lowerCAmelCase_ , attention_mask=lowerCAmelCase_ , token_type_ids=lowerCAmelCase_ , labels=lowerCAmelCase_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''lengths''': input_lengths} return config, inputs_dict @require_torch class A ( _a ,_a ,_a ,unittest.TestCase ): lowercase_ = ( ( XLMModel, XLMWithLMHeadModel, XLMForQuestionAnswering, XLMForSequenceClassification, XLMForQuestionAnsweringSimple, XLMForTokenClassification, XLMForMultipleChoice, ) if is_torch_available() else () ) lowercase_ = ( (XLMWithLMHeadModel,) if is_torch_available() else () ) # TODO (PVP): Check other models whether language generation is also applicable lowercase_ = ( { 'feature-extraction': XLMModel, 'fill-mask': XLMWithLMHeadModel, 'question-answering': XLMForQuestionAnsweringSimple, 'text-classification': XLMForSequenceClassification, 'text-generation': XLMWithLMHeadModel, 'token-classification': XLMForTokenClassification, 'zero-shot': XLMForSequenceClassification, } if is_torch_available() else {} ) def __lowerCAmelCase ( self : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Tuple ) -> Optional[int]: """simple docstring""" if ( pipeline_test_casse_name == "QAPipelineTests" and tokenizer_name is not None and not tokenizer_name.endswith('''Fast''' ) ): # `QAPipelineTests` fails for a few models when the slower tokenizer are used. # (The slower tokenizers were never used for pipeline tests before the pipeline testing rework) # TODO: check (and possibly fix) the `QAPipelineTests` with slower tokenizer return True return False def __lowerCAmelCase ( self : List[str] , lowerCAmelCase_ : Optional[int] , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : int=False ) -> List[Any]: """simple docstring""" _a = super()._prepare_for_class(lowerCAmelCase_ , lowerCAmelCase_ , return_labels=lowerCAmelCase_ ) if return_labels: if model_class.__name__ == "XLMForQuestionAnswering": _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) _a = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=lowerCAmelCase_ ) return inputs_dict def __lowerCAmelCase ( self : Any ) -> List[Any]: """simple docstring""" _a = XLMModelTester(self ) _a = ConfigTester(self , config_class=lowerCAmelCase_ , emb_dim=37 ) def __lowerCAmelCase ( self : Optional[int] ) -> str: """simple docstring""" self.config_tester.run_common_tests() def __lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_model(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[int] ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_lm_head(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_simple_qa(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict ) -> Optional[int]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_qa(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_sequence_classif(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[str] ) -> List[str]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_token_classif(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : List[Any] ) -> int: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_xlm_for_multiple_choice(*lowerCAmelCase_ ) def __lowerCAmelCase ( self : Any , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : str , lowerCAmelCase_ : str=False , lowerCAmelCase_ : str=1 ) -> int: """simple docstring""" self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_attentions in attentions] , [True] * len(lowerCAmelCase_ ) ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_attentions in enumerate(lowerCAmelCase_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = min_length + idx + 1 _a = ( batch_size * num_beam_groups, config.num_attention_heads, tgt_len, src_len, ) # check attn size self.assertListEqual( [layer_attention.shape for layer_attention in iter_attentions] , [expected_shape] * len(lowerCAmelCase_ ) ) def __lowerCAmelCase ( self : str , lowerCAmelCase_ : Any , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : int=False , lowerCAmelCase_ : List[str]=1 ) -> Optional[Any]: """simple docstring""" self.assertIsInstance(lowerCAmelCase_ , lowerCAmelCase_ ) self.assertListEqual( [isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) for iter_hidden_states in hidden_states] , [True] * len(lowerCAmelCase_ ) , ) self.assertEqual(len(lowerCAmelCase_ ) , (max_length - min_length) * num_beam_groups ) for idx, iter_hidden_states in enumerate(lowerCAmelCase_ ): # adds PAD dummy token _a = min_length + idx + 1 _a = (batch_size * num_beam_groups, seq_len, config.hidden_size) # check hidden size self.assertListEqual( [layer_hidden_states.shape for layer_hidden_states in iter_hidden_states] , [expected_shape] * len(lowerCAmelCase_ ) , ) pass @slow def __lowerCAmelCase ( self : Optional[Any] ) -> List[Any]: """simple docstring""" for model_name in XLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = XLMModel.from_pretrained(lowerCAmelCase_ ) self.assertIsNotNone(lowerCAmelCase_ ) @require_torch class A ( unittest.TestCase ): @slow def __lowerCAmelCase ( self : int ) -> Optional[int]: """simple docstring""" _a = XLMWithLMHeadModel.from_pretrained('''xlm-mlm-en-2048''' ) model.to(lowerCAmelCase_ ) _a = torch.tensor([[14, 4_47]] , dtype=torch.long , device=lowerCAmelCase_ ) # the president _a = [ 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, 14, 4_47, ] # the president the president the president the president the president the president the president the president the president the president # TODO(PVP): this and other input_ids I tried for generation give pretty bad results. Not sure why. Model might just not be made for auto-regressive inference _a = model.generate(lowerCAmelCase_ , do_sample=lowerCAmelCase_ ) self.assertListEqual(output_ids[0].cpu().numpy().tolist() , lowerCAmelCase_ )
22
'''simple docstring''' import os import tempfile import unittest import uuid from pathlib import Path from transformers.testing_utils import get_tests_dir, require_soundfile, require_torch, require_vision from transformers.tools.agent_types import AgentAudio, AgentImage, AgentText from transformers.utils import is_soundfile_availble, is_torch_available, is_vision_available if is_torch_available(): import torch if is_soundfile_availble(): import soundfile as sf if is_vision_available(): from PIL import Image def lowercase ( __magic_name__="" ): '''simple docstring''' UpperCAmelCase : Dict = tempfile.mkdtemp() return os.path.join(__magic_name__ , str(uuid.uuida() ) + suffix ) @require_soundfile @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase : int = AgentAudio(snake_case ) UpperCAmelCase : str = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case , agent_type.to_raw() , atol=1e-4 ) ) del agent_type # Ensure the path remains even after the object deletion self.assertTrue(os.path.exists(snake_case ) ) # Ensure that the file contains the same value as the original tensor UpperCAmelCase , UpperCAmelCase : str = sf.read(snake_case ) self.assertTrue(torch.allclose(snake_case , torch.tensor(snake_case ) , atol=1e-4 ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = torch.rand(1_2 , dtype=torch.floataa ) - 0.5 UpperCAmelCase : Any = get_new_path(suffix=".wav" ) sf.write(snake_case , snake_case , 1_6_0_0_0 ) UpperCAmelCase : Optional[Any] = AgentAudio(snake_case ) self.assertTrue(torch.allclose(snake_case , agent_type.to_raw() , atol=1e-4 ) ) self.assertEqual(agent_type.to_string() , snake_case ) @require_vision @require_torch class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = torch.randint(0 , 2_5_6 , (6_4, 6_4, 3) ) UpperCAmelCase : Tuple = AgentImage(snake_case ) UpperCAmelCase : Tuple = str(agent_type.to_string() ) # Ensure that the tensor and the agent_type's tensor are the same self.assertTrue(torch.allclose(snake_case , agent_type._tensor , atol=1e-4 ) ) self.assertIsInstance(agent_type.to_raw() , Image.Image ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Optional[Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" UpperCAmelCase : Any = Image.open(snake_case ) UpperCAmelCase : List[str] = AgentImage(snake_case ) self.assertTrue(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) def A_ ( self ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = Path(get_tests_dir("fixtures/tests_samples/COCO" ) ) / "000000039769.png" UpperCAmelCase : Dict = Image.open(snake_case ) UpperCAmelCase : int = AgentImage(snake_case ) self.assertFalse(path.samefile(agent_type.to_string() ) ) self.assertTrue(image == agent_type.to_raw() ) # Ensure the path remains even after the object deletion del agent_type self.assertTrue(os.path.exists(snake_case ) ) class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" def A_ ( self ): '''simple docstring''' UpperCAmelCase : Any = "Hey!" UpperCAmelCase : Tuple = AgentText(snake_case ) self.assertEqual(snake_case , agent_type.to_string() ) self.assertEqual(snake_case , agent_type.to_raw() ) self.assertEqual(snake_case , snake_case )
679
0
import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class snake_case (unittest.TestCase ): @property def _a ( self ) -> str: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def _a ( self ) -> Any: lowercase__ = ort.SessionOptions() lowercase__ = False return options def _a ( self ) -> Union[str, Any]: lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) lowercase__ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) lowercase__ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy" ) # using the PNDM scheduler by default lowercase__ = OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( "CompVis/stable-diffusion-v1-4" ,revision="onnx" ,safety_checker=UpperCAmelCase_ ,feature_extractor=UpperCAmelCase_ ,provider=self.gpu_provider ,sess_options=self.gpu_options ,) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) lowercase__ = "A red cat sitting on a park bench" lowercase__ = np.random.RandomState(0 ) lowercase__ = pipe( prompt=UpperCAmelCase_ ,image=UpperCAmelCase_ ,mask_image=UpperCAmelCase_ ,strength=0.75 ,guidance_scale=7.5 ,num_inference_steps=15 ,generator=UpperCAmelCase_ ,output_type="np" ,) lowercase__ = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-2
715
'''simple docstring''' import numpy as np import torch from torch.utils.data import Dataset from utils import logger class snake_case (UpperCamelCase ): def __init__( self ,UpperCAmelCase_ ,UpperCAmelCase_ ) -> int: lowercase__ = params lowercase__ = np.array(UpperCAmelCase_ ) lowercase__ = np.array([len(UpperCAmelCase_ ) for t in data] ) self.check() self.remove_long_sequences() self.remove_empty_sequences() self.remove_unknown_sequences() self.check() self.print_statistics() def __getitem__( self ,UpperCAmelCase_ ) -> Optional[int]: return (self.token_ids[index], self.lengths[index]) def __len__( self ) -> Union[str, Any]: return len(self.lengths ) def _a ( self ) -> int: assert len(self.token_ids ) == len(self.lengths ) assert all(self.lengths[i] == len(self.token_ids[i] ) for i in range(len(self.lengths ) ) ) def _a ( self ) -> Optional[int]: lowercase__ = self.params.max_model_input_size lowercase__ = self.lengths > max_len logger.info(F'''Splitting {sum(UpperCAmelCase_ )} too long sequences.''' ) def divide_chunks(UpperCAmelCase_ ,UpperCAmelCase_ ): return [l[i : i + n] for i in range(0 ,len(UpperCAmelCase_ ) ,UpperCAmelCase_ )] lowercase__ = [] lowercase__ = [] if self.params.mlm: lowercase__ , lowercase__ = self.params.special_tok_ids["cls_token"], self.params.special_tok_ids["sep_token"] else: lowercase__ , lowercase__ = self.params.special_tok_ids["bos_token"], self.params.special_tok_ids["eos_token"] for seq_, len_ in zip(self.token_ids ,self.lengths ): assert (seq_[0] == cls_id) and (seq_[-1] == sep_id), seq_ if len_ <= max_len: new_tok_ids.append(seq_ ) new_lengths.append(len_ ) else: lowercase__ = [] for sub_s in divide_chunks(seq_ ,max_len - 2 ): if sub_s[0] != cls_id: lowercase__ = np.insert(UpperCAmelCase_ ,0 ,UpperCAmelCase_ ) if sub_s[-1] != sep_id: lowercase__ = np.insert(UpperCAmelCase_ ,len(UpperCAmelCase_ ) ,UpperCAmelCase_ ) assert len(UpperCAmelCase_ ) <= max_len assert (sub_s[0] == cls_id) and (sub_s[-1] == sep_id), sub_s sub_seqs.append(UpperCAmelCase_ ) new_tok_ids.extend(UpperCAmelCase_ ) new_lengths.extend([len(UpperCAmelCase_ ) for l in sub_seqs] ) lowercase__ = np.array(UpperCAmelCase_ ) lowercase__ = np.array(UpperCAmelCase_ ) def _a ( self ) -> Any: lowercase__ = len(self ) lowercase__ = self.lengths > 11 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(F'''Remove {init_size - new_size} too short (<=11 tokens) sequences.''' ) def _a ( self ) -> List[Any]: if "unk_token" not in self.params.special_tok_ids: return else: lowercase__ = self.params.special_tok_ids["unk_token"] lowercase__ = len(self ) lowercase__ = np.array([np.count_nonzero(a == unk_token_id ) for a in self.token_ids] ) lowercase__ = (unk_occs / self.lengths) < 0.5 lowercase__ = self.token_ids[indices] lowercase__ = self.lengths[indices] lowercase__ = len(self ) logger.info(F'''Remove {init_size - new_size} sequences with a high level of unknown tokens (50%).''' ) def _a ( self ) -> Optional[int]: if not self.params.is_master: return logger.info(F'''{len(self )} sequences''' ) # data_len = sum(self.lengths) # nb_unique_tokens = len(Counter(list(chain(*self.token_ids)))) # logger.info(f'{data_len} tokens ({nb_unique_tokens} unique)') # unk_idx = self.params.special_tok_ids['unk_token'] # nb_unknown = sum([(t==unk_idx).sum() for t in self.token_ids]) # logger.info(f'{nb_unknown} unknown tokens (covering {100*nb_unknown/data_len:.2f}% of the data)') def _a ( self ,UpperCAmelCase_ ) -> List[str]: lowercase__ = [t[0] for t in batch] lowercase__ = [t[1] for t in batch] assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ) # Max for paddings lowercase__ = max(UpperCAmelCase_ ) # Pad token ids if self.params.mlm: lowercase__ = self.params.special_tok_ids["pad_token"] else: lowercase__ = self.params.special_tok_ids["unk_token"] lowercase__ = [list(t.astype(UpperCAmelCase_ ) ) + [pad_idx] * (max_seq_len_ - len(UpperCAmelCase_ )) for t in token_ids] assert len(tk_ ) == len(UpperCAmelCase_ ) assert all(len(UpperCAmelCase_ ) == max_seq_len_ for t in tk_ ) lowercase__ = torch.tensor(tk_ ) # (bs, max_seq_len_) lowercase__ = torch.tensor(UpperCAmelCase_ ) # (bs) return tk_t, lg_t
539
0
import os import re import shutil import sys import tempfile import unittest import black SCREAMING_SNAKE_CASE : List[Any] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_copies # noqa: E402 # This is the reference code that will be used in the tests. # If BertLMPredictionHead is changed in modeling_bert.py, this code needs to be manually updated. SCREAMING_SNAKE_CASE : Optional[Any] = " def __init__(self, config):\n super().__init__()\n self.transform = BertPredictionHeadTransform(config)\n\n # The output weights are the same as the input embeddings, but there is\n # an output-only bias for each token.\n self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)\n\n self.bias = nn.Parameter(torch.zeros(config.vocab_size))\n\n # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`\n self.decoder.bias = self.bias\n\n def forward(self, hidden_states):\n hidden_states = self.transform(hidden_states)\n hidden_states = self.decoder(hidden_states)\n return hidden_states\n" class _lowerCamelCase( unittest.TestCase ): def UpperCamelCase ( self) -> str: """simple docstring""" _lowercase : Optional[Any] = tempfile.mkdtemp() os.makedirs(os.path.join(self.transformer_dir, 'models/bert/')) _lowercase : List[Any] = self.transformer_dir shutil.copy( os.path.join(lowerCamelCase, 'src/transformers/models/bert/modeling_bert.py'), os.path.join(self.transformer_dir, 'models/bert/modeling_bert.py'), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Optional[Any] = 'src/transformers' shutil.rmtree(self.transformer_dir) def UpperCamelCase ( self, lowerCamelCase, lowerCamelCase, lowerCamelCase, lowerCamelCase=None) -> str: """simple docstring""" _lowercase : Optional[Any] = comment + F'''\nclass {class_name}(nn.Module):\n''' + class_code if overwrite_result is not None: _lowercase : Optional[int] = comment + F'''\nclass {class_name}(nn.Module):\n''' + overwrite_result _lowercase : Dict = black.Mode(target_versions={black.TargetVersion.PYaa}, line_length=1_19) _lowercase : Union[str, Any] = black.format_str(lowerCamelCase, mode=lowerCamelCase) _lowercase : Optional[int] = os.path.join(self.transformer_dir, 'new_code.py') with open(lowerCamelCase, 'w', newline='\n') as f: f.write(lowerCamelCase) if overwrite_result is None: self.assertTrue(len(check_copies.is_copy_consistent(lowerCamelCase)) == 0) else: check_copies.is_copy_consistent(f.name, overwrite=lowerCamelCase) with open(lowerCamelCase, 'r') as f: self.assertTrue(f.read(), lowerCamelCase) def UpperCamelCase ( self) -> Dict: """simple docstring""" _lowercase : Tuple = check_copies.find_code_in_transformers('models.bert.modeling_bert.BertLMPredictionHead') self.assertEqual(lowerCamelCase, lowerCamelCase) def UpperCamelCase ( self) -> Optional[Any]: """simple docstring""" self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', REFERENCE_CODE + '\n', ) # With no empty line at the end self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead', 'BertLMPredictionHead', lowerCamelCase, ) # Copy consistency with rename self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', re.sub('Bert', 'TestModel', lowerCamelCase), ) # Copy consistency with a really long name _lowercase : Tuple = 'TestModelWithAReallyLongNameBecauseSomePeopleLikeThatForSomeReason' self.check_copy_consistency( F'''# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->{long_class_name}''', F'''{long_class_name}LMPredictionHead''', re.sub('Bert', lowerCamelCase, lowerCamelCase), ) # Copy consistency with overwrite self.check_copy_consistency( '# Copied from transformers.models.bert.modeling_bert.BertLMPredictionHead with Bert->TestModel', 'TestModelLMPredictionHead', lowerCamelCase, overwrite_result=re.sub('Bert', 'TestModel', lowerCamelCase), ) def UpperCamelCase ( self) -> Any: """simple docstring""" _lowercase : Tuple = check_copies.LOCALIZED_READMES['README_zh-hans.md'] _lowercase : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (from HuggingFace),' ' released together with the paper [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) by Victor Sanh, Lysandre Debut and Thomas Wolf. The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)**' ' (from Google Research/Stanford University) released with the paper [ELECTRA: Pre-training text encoders' ' as discriminators rather than generators](https://arxiv.org/abs/2003.10555) by Kevin Clark, Minh-Thang' ' Luong, Quoc V. Le, Christopher D. Manning.' ) _lowercase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase : List[Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n1.' ' **[DistilBERT](https://huggingface.co/transformers/model_doc/distilbert.html)** (来自 HuggingFace) 伴随论文' ' [DistilBERT, a distilled version of BERT: smaller, faster, cheaper and' ' lighter](https://arxiv.org/abs/1910.01108) 由 Victor Sanh, Lysandre Debut and Thomas Wolf 发布。 The same' ' method has been applied to compress GPT2 into' ' [DistilGPT2](https://github.com/huggingface/transformers/tree/main/examples/distillation), RoBERTa into' ' [DistilRoBERTa](https://github.com/huggingface/transformers/tree/main/examples/distillation),' ' Multilingual BERT into' ' [DistilmBERT](https://github.com/huggingface/transformers/tree/main/examples/distillation) and a German' ' version of DistilBERT.\n1. **[ELECTRA](https://huggingface.co/transformers/model_doc/electra.html)** (来自' ' Google Research/Stanford University) 伴随论文 [ELECTRA: Pre-training text encoders as discriminators rather' ' than generators](https://arxiv.org/abs/2003.10555) 由 Kevin Clark, Minh-Thang Luong, Quoc V. Le,' ' Christopher D. Manning 发布。\n' ) _lowercase , _lowercase : List[Any] = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) self.assertFalse(lowerCamelCase) self.assertEqual(lowerCamelCase, lowerCamelCase) _lowercase , _lowercase : List[str] = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) # Check whether the number of models is equal to README.md after conversion. self.assertTrue(lowerCamelCase) _lowercase : Union[str, Any] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (from Google Research and the' ' Toyota Technological Institute at Chicago) released with the paper [ALBERT: A Lite BERT for' ' Self-supervised Learning of Language Representations](https://arxiv.org/abs/1909.11942), by Zhenzhong' ' Lan, Mingda Chen, Sebastian Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut.' ) _lowercase : Tuple = ( '1. **[ALBERT](https://huggingface.co/transformers/main/model_doc/albert.html)** (来自 Google Research and' ' the Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase : Optional[int] = ( '1. **[ALBERT](https://huggingface.co/transformers/model_doc/albert.html)** (来自 Google Research and the' ' Toyota Technological Institute at Chicago) 伴随论文 [ALBERT: A Lite BERT for Self-supervised Learning of' ' Language Representations](https://arxiv.org/abs/1909.11942), 由 Zhenzhong Lan, Mingda Chen, Sebastian' ' Goodman, Kevin Gimpel, Piyush Sharma, Radu Soricut 发布。\n' ) _lowercase , _lowercase : Dict = check_copies.convert_to_localized_md( lowerCamelCase, lowerCamelCase, localized_readme['format_model_list']) # Check if the model link is synchronized. self.assertEqual(lowerCamelCase, lowerCamelCase)
89
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available UpperCamelCase : Tuple = { 'configuration_mvp': ['MVP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MvpConfig', 'MvpOnnxConfig'], 'tokenization_mvp': ['MvpTokenizer'], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : str = ['MvpTokenizerFast'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase : Optional[int] = [ 'MVP_PRETRAINED_MODEL_ARCHIVE_LIST', 'MvpForCausalLM', 'MvpForConditionalGeneration', 'MvpForQuestionAnswering', 'MvpForSequenceClassification', 'MvpModel', 'MvpPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mvp import MVP_PRETRAINED_CONFIG_ARCHIVE_MAP, MvpConfig, MvpOnnxConfig from .tokenization_mvp import MvpTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mvp_fast import MvpTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mvp import ( MVP_PRETRAINED_MODEL_ARCHIVE_LIST, MvpForCausalLM, MvpForConditionalGeneration, MvpForQuestionAnswering, MvpForSequenceClassification, MvpModel, MvpPreTrainedModel, ) else: import sys UpperCamelCase : Optional[int] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
50
0
from collections.abc import Callable import numpy as np def UpperCAmelCase__ ( _A , _A , _A , _A , _A ): """simple docstring""" a_ = int(np.ceil((x_end - xa) / step_size ) ) a_ = np.zeros((n + 1,) ) a_ = ya a_ = xa for k in range(lowerCamelCase__ ): a_ = y[k] + step_size * ode_func(lowerCamelCase__ , y[k] ) x += step_size return y if __name__ == "__main__": import doctest doctest.testmod()
721
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase__ = { '''configuration_time_series_transformer''': [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''TimeSeriesTransformerConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase__ = [ '''TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TimeSeriesTransformerForPrediction''', '''TimeSeriesTransformerModel''', '''TimeSeriesTransformerPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, TimeSeriesTransformerConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_time_series_transformer import ( TIME_SERIES_TRANSFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TimeSeriesTransformerForPrediction, TimeSeriesTransformerModel, TimeSeriesTransformerPreTrainedModel, ) else: import sys UpperCamelCase__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
143
0
from ..utils import DummyObject, requires_backends class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[str] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Dict = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : int = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Tuple = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Tuple = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Union[str, Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : str = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[int] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Union[str, Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : int = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : int = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) def lowerCamelCase_ ( *_UpperCamelCase , **_UpperCamelCase ) -> Optional[Any]: """simple docstring""" requires_backends(_UpperCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_UpperCamelCase , **_UpperCamelCase ) -> Union[str, Any]: """simple docstring""" requires_backends(_UpperCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_UpperCamelCase , **_UpperCamelCase ) -> Dict: """simple docstring""" requires_backends(_UpperCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_UpperCamelCase , **_UpperCamelCase ) -> int: """simple docstring""" requires_backends(_UpperCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_UpperCamelCase , **_UpperCamelCase ) -> List[str]: """simple docstring""" requires_backends(_UpperCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_UpperCamelCase , **_UpperCamelCase ) -> int: """simple docstring""" requires_backends(_UpperCamelCase , ['''torch'''] ) def lowerCamelCase_ ( *_UpperCamelCase , **_UpperCamelCase ) -> Tuple: """simple docstring""" requires_backends(_UpperCamelCase , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Union[str, Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Any = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Union[str, Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Dict = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Any = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : str = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : str = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : int = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[int] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Tuple = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Any = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : int = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[int] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : str = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : str = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[int] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : int = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[str] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : str = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Union[str, Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : str = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : int = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Union[str, Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> int: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[Any] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : int = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[str] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Dict: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Optional[int] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Union[str, Any]: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Optional[int]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : List[str] = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[Any]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> List[str]: '''simple docstring''' requires_backends(cls , ['''torch'''] ) class __lowerCAmelCase ( metaclass=_a ): lowerCamelCase_ : Any = ['''torch'''] def __init__(self , *__magic_name__ , **__magic_name__ ) -> Tuple: '''simple docstring''' requires_backends(self , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> str: '''simple docstring''' requires_backends(cls , ['''torch'''] ) @classmethod def lowerCamelCase (cls , *__magic_name__ , **__magic_name__ ) -> Any: '''simple docstring''' requires_backends(cls , ['''torch'''] )
60
def lowerCamelCase_ ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> list: """simple docstring""" snake_case_ : Tuple = len(_UpperCamelCase ) snake_case_ : Union[str, Any] = [[0] * n for i in range(_UpperCamelCase )] for i in range(_UpperCamelCase ): snake_case_ : Any = y_points[i] for i in range(2 , _UpperCamelCase ): for j in range(_UpperCamelCase , _UpperCamelCase ): snake_case_ : Optional[int] = ( (xa - x_points[j - i + 1]) * q[j][i - 1] - (xa - x_points[j]) * q[j - 1][i - 1] ) / (x_points[j] - x_points[j - i + 1]) return [q[n - 1][n - 1], q] if __name__ == "__main__": import doctest doctest.testmod()
60
1
"""simple docstring""" import doctest import logging import os import unittest from pathlib import Path from typing import List, Union import transformers from transformers.testing_utils import require_tf, require_torch, slow _lowercase : int = logging.getLogger() @unittest.skip("Temporarily disable the doc tests." ) @require_torch @require_tf @slow class _UpperCAmelCase ( unittest.TestCase ): def a ( self : Optional[Any] , _lowercase : Path , _lowercase : Union[str, None] = None , _lowercase : Union[List[str], None] = None , _lowercase : Union[str, List[str], None] = None , _lowercase : bool = True , ): __UpperCAmelCase = [file for file in os.listdir(_lowercase ) if os.path.isfile(os.path.join(_lowercase , _lowercase ) )] if identifier is not None: __UpperCAmelCase = [file for file in files if identifier in file] if n_identifier is not None: if isinstance(_lowercase , _lowercase ): for n_ in n_identifier: __UpperCAmelCase = [file for file in files if n_ not in file] else: __UpperCAmelCase = [file for file in files if n_identifier not in file] __UpperCAmelCase = ignore_files or [] ignore_files.append('''__init__.py''' ) __UpperCAmelCase = [file for file in files if file not in ignore_files] for file in files: # Open all files print('''Testing''' , _lowercase ) if only_modules: __UpperCAmelCase = file.split('''.''' )[0] try: __UpperCAmelCase = getattr(_lowercase , _lowercase ) __UpperCAmelCase = doctest.DocTestSuite(_lowercase ) __UpperCAmelCase = unittest.TextTestRunner().run(_lowercase ) self.assertIs(len(result.failures ) , 0 ) except AttributeError: logger.info(F'''{module_identifier} is not a module.''' ) else: __UpperCAmelCase = doctest.testfile(str('''..''' / directory / file ) , optionflags=doctest.ELLIPSIS ) self.assertIs(result.failed , 0 ) def a ( self : List[Any] ): __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''modeling''' __UpperCAmelCase = [ '''modeling_ctrl.py''', '''modeling_tf_ctrl.py''', ] self.analyze_directory(_lowercase , identifier=_lowercase , ignore_files=_lowercase ) def a ( self : List[str] ): __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''tokenization''' self.analyze_directory(_lowercase , identifier=_lowercase ) def a ( self : Dict ): __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = '''configuration''' self.analyze_directory(_lowercase , identifier=_lowercase ) def a ( self : List[str] ): __UpperCAmelCase = Path('''src/transformers''' ) __UpperCAmelCase = ['''configuration''', '''modeling''', '''tokenization'''] self.analyze_directory(_lowercase , n_identifier=_lowercase ) def a ( self : Any ): __UpperCAmelCase = Path('''docs/source''' ) __UpperCAmelCase = ['''favicon.ico'''] self.analyze_directory(_lowercase , ignore_files=_lowercase , only_modules=_lowercase )
706
"""simple docstring""" import doctest import glob import importlib import inspect import os import re from contextlib import contextmanager from functools import wraps from unittest.mock import patch import numpy as np import pytest from absl.testing import parameterized import datasets from datasets import load_metric from .utils import for_all_test_methods, local, slow # mark all tests as integration _lowercase : str = pytest.mark.integration _lowercase : int = {'comet'} _lowercase : str = importlib.util.find_spec('fairseq') is not None _lowercase : Union[str, Any] = {'code_eval'} _lowercase : Optional[Any] = os.name == 'nt' _lowercase : Union[str, Any] = {'bertscore', 'frugalscore', 'perplexity'} _lowercase : Optional[Any] = importlib.util.find_spec('transformers') is not None def lowercase__ ( snake_case_ :int ): @wraps(snake_case_ ) def wrapper(self :List[Any] , snake_case_ :Dict ): if not _has_fairseq and metric_name in REQUIRE_FAIRSEQ: self.skipTest('''"test requires Fairseq"''' ) else: test_case(self , snake_case_ ) return wrapper def lowercase__ ( snake_case_ :str ): @wraps(snake_case_ ) def wrapper(self :List[str] , snake_case_ :int ): if not _has_transformers and metric_name in REQUIRE_TRANSFORMERS: self.skipTest('''"test requires transformers"''' ) else: test_case(self , snake_case_ ) return wrapper def lowercase__ ( snake_case_ :Union[str, Any] ): @wraps(snake_case_ ) def wrapper(self :List[Any] , snake_case_ :Union[str, Any] ): if _on_windows and metric_name in UNSUPPORTED_ON_WINDOWS: self.skipTest('''"test not supported on Windows"''' ) else: test_case(self , snake_case_ ) return wrapper def lowercase__ ( ): __UpperCAmelCase = [metric_dir.split(os.sep )[-2] for metric_dir in glob.glob('''./metrics/*/''' )] return [{"testcase_name": x, "metric_name": x} for x in metrics if x != "gleu"] # gleu is unfinished @parameterized.named_parameters(get_local_metric_names() ) @for_all_test_methods( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) @local class _UpperCAmelCase ( parameterized.TestCase ): a__ : Union[str, Any] = {} a__ : Optional[int] = None @pytest.mark.filterwarnings('''ignore:metric_module_factory is deprecated:FutureWarning''' ) @pytest.mark.filterwarnings('''ignore:load_metric is deprecated:FutureWarning''' ) def a ( self : List[Any] , _lowercase : Any ): __UpperCAmelCase = '''[...]''' __UpperCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _lowercase ) ).module_path ) __UpperCAmelCase = datasets.load.import_main_class(metric_module.__name__ , dataset=_lowercase ) # check parameters __UpperCAmelCase = inspect.signature(metric._compute ).parameters self.assertTrue(all(p.kind != p.VAR_KEYWORD for p in parameters.values() ) ) # no **kwargs # run doctest with self.patch_intensive_calls(_lowercase , metric_module.__name__ ): with self.use_local_metrics(): try: __UpperCAmelCase = doctest.testmod(_lowercase , verbose=_lowercase , raise_on_error=_lowercase ) except doctest.UnexpectedException as e: raise e.exc_info[1] # raise the exception that doctest caught self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @slow def a ( self : List[str] , _lowercase : Union[str, Any] ): __UpperCAmelCase = '''[...]''' __UpperCAmelCase = importlib.import_module( datasets.load.metric_module_factory(os.path.join('''metrics''' , _lowercase ) ).module_path ) # run doctest with self.use_local_metrics(): __UpperCAmelCase = doctest.testmod(_lowercase , verbose=_lowercase , raise_on_error=_lowercase ) self.assertEqual(results.failed , 0 ) self.assertGreater(results.attempted , 1 ) @contextmanager def a ( self : Any , _lowercase : Optional[int] , _lowercase : Any ): if metric_name in self.INTENSIVE_CALLS_PATCHER: with self.INTENSIVE_CALLS_PATCHER[metric_name](_lowercase ): yield else: yield @contextmanager def a ( self : Optional[int] ): def load_local_metric(_lowercase : str , *_lowercase : Dict , **_lowercase : Tuple ): return load_metric(os.path.join('''metrics''' , _lowercase ) , *_lowercase , **_lowercase ) with patch('''datasets.load_metric''' ) as mock_load_metric: __UpperCAmelCase = load_local_metric yield @classmethod def a ( cls : Tuple , _lowercase : Optional[int] ): def wrapper(_lowercase : List[str] ): __UpperCAmelCase = contextmanager(_lowercase ) __UpperCAmelCase = patcher return patcher return wrapper @LocalMetricTest.register_intensive_calls_patcher('''bleurt''' ) def lowercase__ ( snake_case_ :str ): import tensorflow.compat.va as tf from bleurt.score import Predictor tf.flags.DEFINE_string('''sv''' , '''''' , '''''' ) # handle pytest cli flags class _UpperCAmelCase ( _lowerCAmelCase ): def a ( self : List[Any] , _lowercase : Union[str, Any] ): assert len(input_dict['''input_ids'''] ) == 2 return np.array([1.03, 1.04] ) # mock predict_fn which is supposed to do a forward pass with a bleurt model with patch('''bleurt.score._create_predictor''' ) as mock_create_predictor: __UpperCAmelCase = MockedPredictor() yield @LocalMetricTest.register_intensive_calls_patcher('''bertscore''' ) def lowercase__ ( snake_case_ :Optional[int] ): import torch def bert_cos_score_idf(snake_case_ :List[str] , snake_case_ :Optional[Any] , *snake_case_ :Tuple , **snake_case_ :str ): return torch.tensor([[1.0, 1.0, 1.0]] * len(snake_case_ ) ) # mock get_model which is supposed to do download a bert model # mock bert_cos_score_idf which is supposed to do a forward pass with a bert model with patch('''bert_score.scorer.get_model''' ), patch( '''bert_score.scorer.bert_cos_score_idf''' ) as mock_bert_cos_score_idf: __UpperCAmelCase = bert_cos_score_idf yield @LocalMetricTest.register_intensive_calls_patcher('''comet''' ) def lowercase__ ( snake_case_ :Dict ): def load_from_checkpoint(snake_case_ :List[Any] ): class _UpperCAmelCase : def a ( self : Optional[Any] , _lowercase : Tuple , *_lowercase : Dict , **_lowercase : Dict ): assert len(_lowercase ) == 2 __UpperCAmelCase = [0.19, 0.92] return scores, sum(_lowercase ) / len(_lowercase ) return Model() # mock load_from_checkpoint which is supposed to do download a bert model # mock load_from_checkpoint which is supposed to do download a bert model with patch('''comet.download_model''' ) as mock_download_model: __UpperCAmelCase = None with patch('''comet.load_from_checkpoint''' ) as mock_load_from_checkpoint: __UpperCAmelCase = load_from_checkpoint yield def lowercase__ ( ): __UpperCAmelCase = load_metric(os.path.join('''metrics''' , '''seqeval''' ) ) __UpperCAmelCase = '''ERROR''' __UpperCAmelCase = F'''Scheme should be one of [IOB1, IOB2, IOE1, IOE2, IOBES, BILOU], got {wrong_scheme}''' with pytest.raises(snake_case_ , match=re.escape(snake_case_ ) ): metric.compute(predictions=[] , references=[] , scheme=snake_case_ )
397
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) lowercase_ : Tuple = { 'configuration_wav2vec2': ['WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Wav2Vec2Config'], 'feature_extraction_wav2vec2': ['Wav2Vec2FeatureExtractor'], 'processing_wav2vec2': ['Wav2Vec2Processor'], 'tokenization_wav2vec2': ['Wav2Vec2CTCTokenizer', 'Wav2Vec2Tokenizer'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Union[str, Any] = [ 'WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'Wav2Vec2ForAudioFrameClassification', 'Wav2Vec2ForCTC', 'Wav2Vec2ForMaskedLM', 'Wav2Vec2ForPreTraining', 'Wav2Vec2ForSequenceClassification', 'Wav2Vec2ForXVector', 'Wav2Vec2Model', 'Wav2Vec2PreTrainedModel', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ 'TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST', 'TFWav2Vec2ForCTC', 'TFWav2Vec2Model', 'TFWav2Vec2PreTrainedModel', 'TFWav2Vec2ForSequenceClassification', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase_ : Optional[Any] = [ 'FlaxWav2Vec2ForCTC', 'FlaxWav2Vec2ForPreTraining', 'FlaxWav2Vec2Model', 'FlaxWav2Vec2PreTrainedModel', ] if TYPE_CHECKING: from .configuration_wavaveca import WAV_2_VEC_2_PRETRAINED_CONFIG_ARCHIVE_MAP, WavaVecaConfig from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .processing_wavaveca import WavaVecaProcessor from .tokenization_wavaveca import WavaVecaCTCTokenizer, WavaVecaTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavaveca import ( WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, WavaVecaForAudioFrameClassification, WavaVecaForCTC, WavaVecaForMaskedLM, WavaVecaForPreTraining, WavaVecaForSequenceClassification, WavaVecaForXVector, WavaVecaModel, WavaVecaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( TF_WAV_2_VEC_2_PRETRAINED_MODEL_ARCHIVE_LIST, TFWavaVecaForCTC, TFWavaVecaForSequenceClassification, TFWavaVecaModel, TFWavaVecaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_wavaveca import ( FlaxWavaVecaForCTC, FlaxWavaVecaForPreTraining, FlaxWavaVecaModel, FlaxWavaVecaPreTrainedModel, ) else: import sys lowercase_ : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
64
import math import unittest def __UpperCAmelCase ( __A ) -> bool: '''simple docstring''' assert isinstance(__A , __A ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(__A ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class lowercase__ ( unittest.TestCase ): def _UpperCAmelCase ( self : Tuple ): """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def _UpperCAmelCase ( self : Union[str, Any] ): """simple docstring""" with self.assertRaises(_lowercase ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , "Zero doesn't have any positive factors, primes must have exactly two." , ) self.assertFalse( is_prime(1 ) , "One only has 1 positive factor, primes must have exactly two." , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
475
0
'''simple docstring''' import json import os import sys import tempfile import unittest from pathlib import Path from shutil import copyfile from huggingface_hub import HfFolder, Repository, create_repo, delete_repo from requests.exceptions import HTTPError import transformers from transformers import ( CONFIG_MAPPING, FEATURE_EXTRACTOR_MAPPING, PROCESSOR_MAPPING, TOKENIZER_MAPPING, AutoConfig, AutoFeatureExtractor, AutoProcessor, AutoTokenizer, BertTokenizer, ProcessorMixin, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaProcessor, ) from transformers.testing_utils import TOKEN, USER, get_tests_dir, is_staging_test from transformers.tokenization_utils import TOKENIZER_CONFIG_FILE from transformers.utils import FEATURE_EXTRACTOR_NAME, is_tokenizers_available sys.path.append(str(Path(__file__).parent.parent.parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 from test_module.custom_feature_extraction import CustomFeatureExtractor # noqa E402 from test_module.custom_processing import CustomProcessor # noqa E402 from test_module.custom_tokenization import CustomTokenizer # noqa E402 lowerCAmelCase__ = get_tests_dir("fixtures/dummy_feature_extractor_config.json") lowerCAmelCase__ = get_tests_dir("fixtures/vocab.json") lowerCAmelCase__ = get_tests_dir("fixtures") class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : Optional[Any] = 0 def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" __UpperCAmelCase : Optional[Any] = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) self.assertIsInstance(__lowercase , __lowercase ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : List[Any] = WavaVecaConfig() __UpperCAmelCase : int = AutoProcessor.from_pretrained("facebook/wav2vec2-base-960h" ) # save in new folder model_config.save_pretrained(__lowercase ) processor.save_pretrained(__lowercase ) __UpperCAmelCase : Tuple = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: # copy relevant files copyfile(__lowercase , os.path.join(__lowercase , __lowercase ) ) copyfile(__lowercase , os.path.join(__lowercase , "vocab.json" ) ) __UpperCAmelCase : Any = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : int = WavaVecaFeatureExtractor() __UpperCAmelCase : str = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) __UpperCAmelCase : Tuple = WavaVecaProcessor(__lowercase , __lowercase ) # save in new folder processor.save_pretrained(__lowercase ) # drop `processor_class` in tokenizer with open(os.path.join(__lowercase , __lowercase ) , "r" ) as f: __UpperCAmelCase : Any = json.load(__lowercase ) config_dict.pop("processor_class" ) with open(os.path.join(__lowercase , __lowercase ) , "w" ) as f: f.write(json.dumps(__lowercase ) ) __UpperCAmelCase : int = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : Optional[int] = WavaVecaFeatureExtractor() __UpperCAmelCase : Union[str, Any] = AutoTokenizer.from_pretrained("facebook/wav2vec2-base-960h" ) __UpperCAmelCase : List[str] = WavaVecaProcessor(__lowercase , __lowercase ) # save in new folder processor.save_pretrained(__lowercase ) # drop `processor_class` in feature extractor with open(os.path.join(__lowercase , __lowercase ) , "r" ) as f: __UpperCAmelCase : Optional[int] = json.load(__lowercase ) config_dict.pop("processor_class" ) with open(os.path.join(__lowercase , __lowercase ) , "w" ) as f: f.write(json.dumps(__lowercase ) ) __UpperCAmelCase : int = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def lowerCamelCase_ ( self : Dict ): """simple docstring""" with tempfile.TemporaryDirectory() as tmpdirname: __UpperCAmelCase : int = WavaVecaConfig(processor_class="Wav2Vec2Processor" ) model_config.save_pretrained(__lowercase ) # copy relevant files copyfile(__lowercase , os.path.join(__lowercase , "vocab.json" ) ) # create emtpy sample processor with open(os.path.join(__lowercase , __lowercase ) , "w" ) as f: f.write("{}" ) __UpperCAmelCase : List[Any] = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" # If remote code is not set, we will time out when asking whether to load the model. with self.assertRaises(__lowercase ): __UpperCAmelCase : Any = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) # If remote code is disabled, we can't load this config. with self.assertRaises(__lowercase ): __UpperCAmelCase : int = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowercase ) __UpperCAmelCase : str = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowercase ) self.assertTrue(processor.special_attribute_present ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) __UpperCAmelCase : Tuple = processor.feature_extractor self.assertTrue(feature_extractor.special_attribute_present ) self.assertEqual(feature_extractor.__class__.__name__ , "NewFeatureExtractor" ) __UpperCAmelCase : int = processor.tokenizer self.assertTrue(tokenizer.special_attribute_present ) if is_tokenizers_available(): self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizerFast" ) # Test we can also load the slow version __UpperCAmelCase : Any = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowercase , use_fast=__lowercase ) __UpperCAmelCase : Tuple = new_processor.tokenizer self.assertTrue(new_tokenizer.special_attribute_present ) self.assertEqual(new_tokenizer.__class__.__name__ , "NewTokenizer" ) else: self.assertEqual(tokenizer.__class__.__name__ , "NewTokenizer" ) def lowerCamelCase_ ( self : int ): """simple docstring""" try: AutoConfig.register("custom" , __lowercase ) AutoFeatureExtractor.register(__lowercase , __lowercase ) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) AutoProcessor.register(__lowercase , __lowercase ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(__lowercase ): AutoProcessor.register(__lowercase , __lowercase ) # Now that the config is registered, it can be used as any other config with the auto-API __UpperCAmelCase : Optional[Any] = CustomFeatureExtractor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : int = os.path.join(__lowercase , "vocab.txt" ) with open(__lowercase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __UpperCAmelCase : Union[str, Any] = CustomTokenizer(__lowercase ) __UpperCAmelCase : Optional[Any] = CustomProcessor(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained(__lowercase ) __UpperCAmelCase : Any = AutoProcessor.from_pretrained(__lowercase ) self.assertIsInstance(__lowercase , __lowercase ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Dict ): """simple docstring""" class SCREAMING_SNAKE_CASE__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE = False class SCREAMING_SNAKE_CASE__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE = False class SCREAMING_SNAKE_CASE__ ( lowercase__ ): """simple docstring""" SCREAMING_SNAKE_CASE = """AutoFeatureExtractor""" SCREAMING_SNAKE_CASE = """AutoTokenizer""" SCREAMING_SNAKE_CASE = False try: AutoConfig.register("custom" , __lowercase ) AutoFeatureExtractor.register(__lowercase , __lowercase ) AutoTokenizer.register(__lowercase , slow_tokenizer_class=__lowercase ) AutoProcessor.register(__lowercase , __lowercase ) # If remote code is not set, the default is to use local classes. __UpperCAmelCase : List[str] = AutoProcessor.from_pretrained("hf-internal-testing/test_dynamic_processor" ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote code is disabled, we load the local ones. __UpperCAmelCase : List[Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowercase ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertFalse(processor.special_attribute_present ) self.assertFalse(processor.feature_extractor.special_attribute_present ) self.assertFalse(processor.tokenizer.special_attribute_present ) # If remote is enabled, we load from the Hub. __UpperCAmelCase : Union[str, Any] = AutoProcessor.from_pretrained( "hf-internal-testing/test_dynamic_processor" , trust_remote_code=__lowercase ) self.assertEqual(processor.__class__.__name__ , "NewProcessor" ) self.assertTrue(processor.special_attribute_present ) self.assertTrue(processor.feature_extractor.special_attribute_present ) self.assertTrue(processor.tokenizer.special_attribute_present ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] if CustomConfig in FEATURE_EXTRACTOR_MAPPING._extra_content: del FEATURE_EXTRACTOR_MAPPING._extra_content[CustomConfig] if CustomConfig in TOKENIZER_MAPPING._extra_content: del TOKENIZER_MAPPING._extra_content[CustomConfig] if CustomConfig in PROCESSOR_MAPPING._extra_content: del PROCESSOR_MAPPING._extra_content[CustomConfig] def lowerCamelCase_ ( self : Optional[Any] ): """simple docstring""" __UpperCAmelCase : int = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-bert" ) self.assertEqual(processor.__class__.__name__ , "BertTokenizerFast" ) def lowerCamelCase_ ( self : str ): """simple docstring""" __UpperCAmelCase : Any = AutoProcessor.from_pretrained("hf-internal-testing/tiny-random-convnext" ) self.assertEqual(processor.__class__.__name__ , "ConvNextImageProcessor" ) @is_staging_test class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def lowerCamelCase_ ( cls : Union[str, Any] ): """simple docstring""" __UpperCAmelCase : Union[str, Any] = TOKEN HfFolder.save_token(__lowercase ) @classmethod def lowerCamelCase_ ( cls : int ): """simple docstring""" try: delete_repo(token=cls._token , repo_id="test-processor" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-processor-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-processor" ) except HTTPError: pass def lowerCamelCase_ ( self : Dict ): """simple docstring""" __UpperCAmelCase : Dict = WavaVecaProcessor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowercase , "test-processor" ) , push_to_hub=__lowercase , use_auth_token=self._token ) __UpperCAmelCase : Any = WavaVecaProcessor.from_pretrained(f"{USER}/test-processor" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowercase , getattr(new_processor.feature_extractor , __lowercase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase_ ( self : Tuple ): """simple docstring""" __UpperCAmelCase : List[str] = WavaVecaProcessor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: processor.save_pretrained( os.path.join(__lowercase , "test-processor-org" ) , push_to_hub=__lowercase , use_auth_token=self._token , organization="valid_org" , ) __UpperCAmelCase : int = WavaVecaProcessor.from_pretrained("valid_org/test-processor-org" ) for k, v in processor.feature_extractor.__dict__.items(): self.assertEqual(__lowercase , getattr(new_processor.feature_extractor , __lowercase ) ) self.assertDictEqual(new_processor.tokenizer.get_vocab() , processor.tokenizer.get_vocab() ) def lowerCamelCase_ ( self : List[Any] ): """simple docstring""" CustomFeatureExtractor.register_for_auto_class() CustomTokenizer.register_for_auto_class() CustomProcessor.register_for_auto_class() __UpperCAmelCase : int = CustomFeatureExtractor.from_pretrained(__lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: __UpperCAmelCase : Union[str, Any] = os.path.join(__lowercase , "vocab.txt" ) with open(__lowercase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __UpperCAmelCase : Tuple = CustomTokenizer(__lowercase ) __UpperCAmelCase : List[str] = CustomProcessor(__lowercase , __lowercase ) with tempfile.TemporaryDirectory() as tmp_dir: create_repo(f"{USER}/test-dynamic-processor" , token=self._token ) __UpperCAmelCase : List[Any] = Repository(__lowercase , clone_from=f"{USER}/test-dynamic-processor" , token=self._token ) processor.save_pretrained(__lowercase ) # This has added the proper auto_map field to the feature extractor config self.assertDictEqual( processor.feature_extractor.auto_map , { "AutoFeatureExtractor": "custom_feature_extraction.CustomFeatureExtractor", "AutoProcessor": "custom_processing.CustomProcessor", } , ) # This has added the proper auto_map field to the tokenizer config with open(os.path.join(__lowercase , "tokenizer_config.json" ) ) as f: __UpperCAmelCase : Optional[Any] = json.load(__lowercase ) self.assertDictEqual( tokenizer_config["auto_map"] , { "AutoTokenizer": ["custom_tokenization.CustomTokenizer", None], "AutoProcessor": "custom_processing.CustomProcessor", } , ) # The code has been copied from fixtures self.assertTrue(os.path.isfile(os.path.join(__lowercase , "custom_feature_extraction.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowercase , "custom_tokenization.py" ) ) ) self.assertTrue(os.path.isfile(os.path.join(__lowercase , "custom_processing.py" ) ) ) repo.push_to_hub() __UpperCAmelCase : Dict = AutoProcessor.from_pretrained(f"{USER}/test-dynamic-processor" , trust_remote_code=__lowercase ) # Can't make an isinstance check because the new_processor is from the CustomProcessor class of a dynamic module self.assertEqual(new_processor.__class__.__name__ , "CustomProcessor" )
715
'''simple docstring''' import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class SCREAMING_SNAKE_CASE__ : """simple docstring""" @staticmethod def lowerCamelCase_ ( *UpperCAmelCase_ : Union[str, Any] , **UpperCAmelCase_ : Tuple ): """simple docstring""" pass def __UpperCamelCase ( _UpperCAmelCase ): __UpperCAmelCase : Any = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowerCamelCase_ ( self : Dict , UpperCAmelCase_ : Any , UpperCAmelCase_ : Any , UpperCAmelCase_ : List[str] ): """simple docstring""" __UpperCAmelCase : int = DepthEstimationPipeline(model=UpperCAmelCase_ , image_processor=UpperCAmelCase_ ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowerCamelCase_ ( self : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[int] ): """simple docstring""" __UpperCAmelCase : Tuple = depth_estimator("./tests/fixtures/tests_samples/COCO/000000039769.png" ) self.assertEqual({"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )} , UpperCAmelCase_ ) import datasets __UpperCAmelCase : str = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) __UpperCAmelCase : Dict = depth_estimator( [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] ) self.assertEqual( [ {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, {"predicted_depth": ANY(torch.Tensor ), "depth": ANY(Image.Image )}, ] , UpperCAmelCase_ , ) @require_tf @unittest.skip("Depth estimation is not implemented in TF" ) def lowerCamelCase_ ( self : List[str] ): """simple docstring""" pass @slow @require_torch def lowerCamelCase_ ( self : Optional[int] ): """simple docstring""" __UpperCAmelCase : List[str] = "Intel/dpt-large" __UpperCAmelCase : Optional[int] = pipeline("depth-estimation" , model=UpperCAmelCase_ ) __UpperCAmelCase : Any = depth_estimator("http://images.cocodataset.org/val2017/000000039769.jpg" ) __UpperCAmelCase : str = hashimage(outputs["depth"] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["predicted_depth"].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["predicted_depth"].min().item() ) , 2.662 ) @require_torch def lowerCamelCase_ ( self : List[str] ): """simple docstring""" # This is highly irregular to have no small tests. self.skipTest("There is not hf-internal-testing tiny model for either GLPN nor DPT" )
329
0
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def lowercase_ ( __A : Union[str, Any] ) -> List[Any]: """simple docstring""" lowercase : Dict =ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: lowercase : Optional[Any] =1_2_8 elif "12-12" in model_name: lowercase : Union[str, Any] =1_2 lowercase : Tuple =1_2 elif "14-14" in model_name: lowercase : Optional[Any] =1_4 lowercase : List[str] =1_4 elif "16-16" in model_name: lowercase : Union[str, Any] =1_6 lowercase : Optional[int] =1_6 else: raise ValueError('''Model not supported''' ) lowercase : List[Any] ='''huggingface/label-files''' if "speech-commands" in model_name: lowercase : str =3_5 lowercase : Union[str, Any] ='''speech-commands-v2-id2label.json''' else: lowercase : Optional[int] =5_2_7 lowercase : str ='''audioset-id2label.json''' lowercase : List[str] =json.load(open(hf_hub_download(__A , __A , repo_type='''dataset''' ) , '''r''' ) ) lowercase : Tuple ={int(__A ): v for k, v in idalabel.items()} lowercase : Dict =idalabel lowercase : List[str] ={v: k for k, v in idalabel.items()} return config def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" if "module.v" in name: lowercase : int =name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: lowercase : Tuple =name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: lowercase : int =name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: lowercase : Optional[int] =name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: lowercase : Optional[Any] =name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: lowercase : List[Any] =name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: lowercase : int =name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: lowercase : Dict =name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: lowercase : List[Any] =name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: lowercase : List[str] =name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: lowercase : int =name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: lowercase : str =name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: lowercase : Optional[int] =name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: lowercase : Any =name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: lowercase : Dict =name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def lowercase_ ( __A : str , __A : List[str] ) -> Tuple: """simple docstring""" for key in orig_state_dict.copy().keys(): lowercase : Dict =orig_state_dict.pop(__A ) if "qkv" in key: lowercase : Union[str, Any] =key.split('''.''' ) lowercase : Any =int(key_split[3] ) lowercase : int =config.hidden_size if "weight" in key: lowercase : str =val[:dim, :] lowercase : int =val[dim : dim * 2, :] lowercase : Tuple =val[-dim:, :] else: lowercase : Dict =val[:dim] lowercase : str =val[dim : dim * 2] lowercase : Optional[int] =val[-dim:] else: lowercase : List[Any] =val return orig_state_dict def lowercase_ ( __A : Dict ) -> List[str]: """simple docstring""" lowercase : str =[ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(__A , __A ) @torch.no_grad() def lowercase_ ( __A : str , __A : Optional[Any] , __A : Optional[Any]=False ) -> Optional[Any]: """simple docstring""" lowercase : Any =get_audio_spectrogram_transformer_config(__A ) lowercase : List[Any] ={ '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict lowercase : Dict =model_name_to_url[model_name] lowercase : Optional[Any] =torch.hub.load_state_dict_from_url(__A , map_location='''cpu''' ) # remove some keys remove_keys(__A ) # rename some keys lowercase : Optional[Any] =convert_state_dict(__A , __A ) # load 🤗 model lowercase : str =ASTForAudioClassification(__A ) model.eval() model.load_state_dict(__A ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 lowercase : List[Any] =-4.2677393 if '''speech-commands''' not in model_name else -6.845978 lowercase : Union[str, Any] =4.5689974 if '''speech-commands''' not in model_name else 5.5654526 lowercase : Optional[int] =1_0_2_4 if '''speech-commands''' not in model_name else 1_2_8 lowercase : List[Any] =ASTFeatureExtractor(mean=__A , std=__A , max_length=__A ) if "speech-commands" in model_name: lowercase : Tuple =load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) lowercase : str =dataset[0]['''audio''']['''array'''] else: lowercase : int =hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) lowercase , lowercase : Optional[int] =torchaudio.load(__A ) lowercase : Any =waveform.squeeze().numpy() lowercase : Optional[int] =feature_extractor(__A , sampling_rate=1_6_0_0_0 , return_tensors='''pt''' ) # forward pass lowercase : Optional[int] =model(**__A ) lowercase : List[Any] =outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": lowercase : Union[str, Any] =torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": lowercase : str =torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": lowercase : Dict =torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": lowercase : List[str] =torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": lowercase : str =torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": lowercase : List[Any] =torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": lowercase : Any =torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": lowercase : Optional[Any] =torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , __A , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(__A ).mkdir(exist_ok=__A ) print(F'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(__A ) print(F'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(__A ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'MIT/{model_name}' ) feature_extractor.push_to_hub(F'MIT/{model_name}' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
94
'''simple docstring''' import contextlib import os import sqlitea import pytest from datasets import Dataset, Features, Value from datasets.io.sql import SqlDatasetReader, SqlDatasetWriter from ..utils import assert_arrow_memory_doesnt_increase, assert_arrow_memory_increases, require_sqlalchemy def lowerCamelCase_ ( A_ , A_ ): assert isinstance(A_ , A_ ) assert dataset.num_rows == 4 assert dataset.num_columns == 3 assert dataset.column_names == ["col_1", "col_2", "col_3"] for feature, expected_dtype in expected_features.items(): assert dataset.features[feature].dtype == expected_dtype @require_sqlalchemy @pytest.mark.parametrize('''keep_in_memory''' , [False, True] ) def lowerCamelCase_ ( A_ , A_ , A_ , A_ ): __lowerCamelCase = tmp_path / '''cache''' __lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} with assert_arrow_memory_increases() if keep_in_memory else assert_arrow_memory_doesnt_increase(): __lowerCamelCase = SqlDatasetReader( '''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A_ , keep_in_memory=A_ ).read() _check_sql_dataset(A_ , A_ ) @require_sqlalchemy @pytest.mark.parametrize( '''features''' , [ None, {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''}, {'''col_1''': '''string''', '''col_2''': '''string''', '''col_3''': '''string'''}, {'''col_1''': '''int32''', '''col_2''': '''int32''', '''col_3''': '''int32'''}, {'''col_1''': '''float32''', '''col_2''': '''float32''', '''col_3''': '''float32'''}, ] , ) def lowerCamelCase_ ( A_ , A_ , A_ , A_ ): __lowerCamelCase = tmp_path / '''cache''' __lowerCamelCase = {'''col_1''': '''string''', '''col_2''': '''int64''', '''col_3''': '''float64'''} __lowerCamelCase = features.copy() if features else default_expected_features __lowerCamelCase = ( Features({feature: Value(A_ ) for feature, dtype in features.items()} ) if features is not None else None ) __lowerCamelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , features=A_ , cache_dir=A_ ).read() _check_sql_dataset(A_ , A_ ) def lowerCamelCase_ ( A_ ): with contextlib.closing(sqlitea.connect(A_ ) ) as con: __lowerCamelCase = con.cursor() cur.execute('''SELECT * FROM dataset''' ) for row in cur: yield row @require_sqlalchemy def lowerCamelCase_ ( A_ , A_ , A_ ): __lowerCamelCase = tmp_path / '''cache''' __lowerCamelCase = os.path.join(A_ , '''tmp.sql''' ) __lowerCamelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A_ ).read() SqlDatasetWriter(A_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=1 ).write() __lowerCamelCase = iter_sql_file(A_ ) __lowerCamelCase = iter_sql_file(A_ ) for rowa, rowa in zip(A_ , A_ ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase_ ( A_ , A_ , A_ ): __lowerCamelCase = tmp_path / '''cache''' __lowerCamelCase = os.path.join(A_ , '''tmp.sql''' ) __lowerCamelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A_ ).read() SqlDatasetWriter(A_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=2 ).write() __lowerCamelCase = iter_sql_file(A_ ) __lowerCamelCase = iter_sql_file(A_ ) for rowa, rowa in zip(A_ , A_ ): assert rowa == rowa @require_sqlalchemy def lowerCamelCase_ ( A_ , A_ , A_ ): __lowerCamelCase = tmp_path / '''cache''' __lowerCamelCase = os.path.join(A_ , '''tmp.sql''' ) __lowerCamelCase = SqlDatasetReader('''dataset''' , '''sqlite:///''' + sqlite_path , cache_dir=A_ ).read() with pytest.raises(A_ ): SqlDatasetWriter(A_ , '''dataset''' , '''sqlite:///''' + output_sqlite_path , num_proc=0 ).write()
316
0
'''simple docstring''' import fire from transformers import AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , **lowerCAmelCase__ ) -> Dict: UpperCAmelCase__ : str = AutoConfig.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) UpperCAmelCase__ : Any = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase__ ) model.save_pretrained(lowerCAmelCase__ ) AutoTokenizer.from_pretrained(lowerCAmelCase__ ).save_pretrained(lowerCAmelCase__ ) return model if __name__ == "__main__": fire.Fire(save_randomly_initialized_version)
312
'''simple docstring''' import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowerCamelCase_ ( enum.Enum ): lowerCAmelCase__ = 0 lowerCAmelCase__ = 1 lowerCAmelCase__ = 2 @add_end_docstrings(__a ) class lowerCamelCase_ ( __a ): lowerCAmelCase__ = '\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas\'s young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n ' def __init__( self : List[str] , *_A : List[Any] , **_A : List[str] ): '''simple docstring''' super().__init__(*_A , **_A ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == '''tf''' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. UpperCAmelCase__ : Any = None if self.model.config.prefix is not None: UpperCAmelCase__ : int = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. UpperCAmelCase__ : List[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ : List[Any] = self._sanitize_parameters(prefix=_A , **self._forward_params ) UpperCAmelCase__ : Any = {**self._preprocess_params, **preprocess_params} UpperCAmelCase__ : Optional[int] = {**self._forward_params, **forward_params} def lowercase_ ( self : Dict , _A : int=None , _A : Optional[Any]=None , _A : Union[str, Any]=None , _A : Optional[int]=None , _A : Dict=None , _A : str=None , _A : List[str]=None , _A : List[str]=None , **_A : int , ): '''simple docstring''' UpperCAmelCase__ : Any = {} if prefix is not None: UpperCAmelCase__ : Optional[int] = prefix if prefix: UpperCAmelCase__ : Any = self.tokenizer( _A , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase__ : Dict = prefix_inputs['''input_ids'''].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f"""{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected""" ''' [None, \'hole\']''' ) UpperCAmelCase__ : Optional[int] = handle_long_generation preprocess_params.update(_A ) UpperCAmelCase__ : Union[str, Any] = generate_kwargs UpperCAmelCase__ : Optional[Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_full_text`''' ) if return_tensors is not None: raise ValueError('''`return_full_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase__ : Optional[int] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('''`return_text` is mutually exclusive with `return_tensors`''' ) UpperCAmelCase__ : Union[str, Any] = ReturnType.TENSORS if return_type is not None: UpperCAmelCase__ : Optional[int] = return_type if clean_up_tokenization_spaces is not None: UpperCAmelCase__ : List[Any] = clean_up_tokenization_spaces if stop_sequence is not None: UpperCAmelCase__ : Optional[int] = self.tokenizer.encode(_A , add_special_tokens=_A ) if len(_A ) > 1: warnings.warn( '''Stopping on a multiple token sequence is not yet supported on transformers. The first token of''' ''' the stop sequence will be used as the stop sequence string in the interim.''' ) UpperCAmelCase__ : str = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowercase_ ( self : Tuple , *_A : List[Any] , **_A : Optional[int] ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'''add_space_before_punct_symbol''': True} ) return super()._parse_and_tokenize(*_A , **_A ) def __call__( self : List[Any] , _A : List[Any] , **_A : List[Any] ): '''simple docstring''' return super().__call__(_A , **_A ) def lowercase_ ( self : Optional[Any] , _A : Tuple , _A : List[str]="" , _A : Optional[int]=None , **_A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.tokenizer( prefix + prompt_text , padding=_A , add_special_tokens=_A , return_tensors=self.framework ) UpperCAmelCase__ : Union[str, Any] = prompt_text if handle_long_generation == "hole": UpperCAmelCase__ : Any = inputs['''input_ids'''].shape[-1] if "max_new_tokens" in generate_kwargs: UpperCAmelCase__ : str = generate_kwargs['''max_new_tokens'''] else: UpperCAmelCase__ : Tuple = generate_kwargs.get('''max_length''' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('''We cannot infer how many new tokens are expected''' ) if cur_len + new_tokens > self.tokenizer.model_max_length: UpperCAmelCase__ : Optional[Any] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( '''We cannot use `hole` to handle this generation the number of desired tokens exceeds the''' ''' models max length''' ) UpperCAmelCase__ : Optional[int] = inputs['''input_ids'''][:, -keep_length:] if "attention_mask" in inputs: UpperCAmelCase__ : List[Any] = inputs['''attention_mask'''][:, -keep_length:] return inputs def lowercase_ ( self : List[Any] , _A : Any , **_A : List[Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = model_inputs['''input_ids'''] UpperCAmelCase__ : Tuple = model_inputs.get('''attention_mask''' , _A ) # Allow empty prompts if input_ids.shape[1] == 0: UpperCAmelCase__ : Tuple = None UpperCAmelCase__ : int = None UpperCAmelCase__ : Tuple = 1 else: UpperCAmelCase__ : Union[str, Any] = input_ids.shape[0] UpperCAmelCase__ : int = model_inputs.pop('''prompt_text''' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. UpperCAmelCase__ : Dict = generate_kwargs.pop('''prefix_length''' , 0 ) if prefix_length > 0: UpperCAmelCase__ : Tuple = '''max_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].max_new_tokens is not None ) if not has_max_new_tokens: UpperCAmelCase__ : Optional[Any] = generate_kwargs.get('''max_length''' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length UpperCAmelCase__ : List[Any] = '''min_new_tokens''' in generate_kwargs or ( '''generation_config''' in generate_kwargs and generate_kwargs['''generation_config'''].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL UpperCAmelCase__ : Optional[Any] = self.model.generate(input_ids=_A , attention_mask=_A , **_A ) UpperCAmelCase__ : Any = generated_sequence.shape[0] if self.framework == "pt": UpperCAmelCase__ : Optional[int] = generated_sequence.reshape(_A , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": UpperCAmelCase__ : List[Any] = tf.reshape(_A , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowercase_ ( self : Any , _A : Dict , _A : Optional[int]=ReturnType.FULL_TEXT , _A : int=True ): '''simple docstring''' UpperCAmelCase__ : Union[str, Any] = model_outputs['''generated_sequence'''][0] UpperCAmelCase__ : Tuple = model_outputs['''input_ids'''] UpperCAmelCase__ : List[str] = model_outputs['''prompt_text'''] UpperCAmelCase__ : Any = generated_sequence.numpy().tolist() UpperCAmelCase__ : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: UpperCAmelCase__ : List[str] = {'''generated_token_ids''': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text UpperCAmelCase__ : List[str] = self.tokenizer.decode( _A , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: UpperCAmelCase__ : Union[str, Any] = 0 else: UpperCAmelCase__ : List[str] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=_A , clean_up_tokenization_spaces=_A , ) ) if return_type == ReturnType.FULL_TEXT: UpperCAmelCase__ : Dict = prompt_text + text[prompt_length:] else: UpperCAmelCase__ : List[str] = text[prompt_length:] UpperCAmelCase__ : Any = {'''generated_text''': all_text} records.append(_A ) return records
312
1
from typing import List, Optional, Union import numpy as np from ....audio_utils import mel_filter_bank, optimal_fft_length, spectrogram, window_function from ....feature_extraction_sequence_utils import SequenceFeatureExtractor from ....feature_extraction_utils import BatchFeature from ....file_utils import PaddingStrategy, TensorType from ....utils import logging __snake_case :str =logging.get_logger(__name__) class lowerCAmelCase__ ( _lowerCamelCase ): A_ : int = ['input_features', 'attention_mask'] def __init__( self : Tuple , __UpperCamelCase : List[Any]=80 , __UpperCamelCase : int=16_000 , __UpperCamelCase : Tuple=0.0 , __UpperCamelCase : Optional[Any]=10 , __UpperCamelCase : int=25 , __UpperCamelCase : str="hamming_window" , __UpperCamelCase : List[str]=3_2_7_6_8.0 , __UpperCamelCase : Optional[int]=0.9_7 , __UpperCamelCase : List[Any]=1.0 , __UpperCamelCase : int=True , __UpperCamelCase : str=True , __UpperCamelCase : Optional[Any]=False , **__UpperCamelCase : Union[str, Any] , ) -> Tuple: super().__init__(feature_size=__UpperCamelCase , sampling_rate=__UpperCamelCase , padding_value=__UpperCamelCase , **__UpperCamelCase ) A = feature_size A = sampling_rate A = padding_value A = hop_length A = win_length A = frame_signal_scale A = preemphasis_coeff A = mel_floor A = normalize_means A = normalize_vars A = win_function A = return_attention_mask A = win_length * sampling_rate // 1_000 A = hop_length * sampling_rate // 1_000 A = optimal_fft_length(self.sample_size ) A = (self.n_fft // 2) + 1 def __UpperCamelCase ( self : Tuple , __UpperCamelCase : np.array ) -> np.ndarray: if self.win_function == "hamming_window": A = window_function(window_length=self.sample_size , name=self.win_function , periodic=__UpperCamelCase ) else: A = window_function(window_length=self.sample_size , name=self.win_function ) A = mel_filter_bank( num_frequency_bins=self.n_freqs , num_mel_filters=self.feature_size , min_frequency=0.0 , max_frequency=self.sampling_rate / 2.0 , sampling_rate=self.sampling_rate , ) A = spectrogram( one_waveform * self.frame_signal_scale , window=__UpperCamelCase , frame_length=self.sample_size , hop_length=self.sample_stride , fft_length=self.n_fft , center=__UpperCamelCase , preemphasis=self.preemphasis_coeff , mel_filters=__UpperCamelCase , mel_floor=self.mel_floor , log_mel='log' , ) return msfc_features.T def __UpperCamelCase ( self : List[str] , __UpperCamelCase : Optional[Any] , __UpperCamelCase : str , __UpperCamelCase : Tuple ) -> Optional[int]: # make sure we normalize float32 arrays if self.normalize_means: A = x[:input_length].mean(axis=0 ) A = np.subtract(__UpperCamelCase , __UpperCamelCase ) if self.normalize_vars: A = x[:input_length].std(axis=0 ) A = np.divide(__UpperCamelCase , __UpperCamelCase ) if input_length < x.shape[0]: A = padding_value # make sure array is in float32 A = x.astype(np.floataa ) return x def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : List[np.ndarray] , __UpperCamelCase : Optional[np.ndarray] = None ) -> List[np.ndarray]: A = attention_mask.sum(-1 ) if attention_mask is not None else [x.shape[0] for x in input_features] return [self._normalize_one(__UpperCamelCase , __UpperCamelCase , self.padding_value ) for x, n in zip(__UpperCamelCase , __UpperCamelCase )] def __call__( self : Union[str, Any] , __UpperCamelCase : Union[np.ndarray, List[float], List[np.ndarray], List[List[float]]] , __UpperCamelCase : Union[bool, str, PaddingStrategy] = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : bool = False , __UpperCamelCase : Optional[int] = None , __UpperCamelCase : Optional[bool] = None , __UpperCamelCase : Optional[Union[str, TensorType]] = None , __UpperCamelCase : Optional[int] = None , **__UpperCamelCase : List[str] , ) -> BatchFeature: if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( f'''The model corresponding to this feature extractor: {self} was trained using a sampling rate of''' f''' {self.sampling_rate}. Please make sure that the provided `raw_speech` input was sampled with''' f''' {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( 'It is strongly recommended to pass the ``sampling_rate`` argument to this function. ' 'Failing to do so can result in silent errors that might be hard to debug.' ) A = isinstance(__UpperCamelCase , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(f'''Only mono-channel audio is supported for input to {self}''' ) A = is_batched_numpy or ( isinstance(__UpperCamelCase , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(__UpperCamelCase , np.ndarray ): A = np.asarray(__UpperCamelCase , dtype=np.floataa ) elif isinstance(__UpperCamelCase , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A = [raw_speech] # extract fbank features A = [self._extract_mfsc_features(__UpperCamelCase ) for one_waveform in raw_speech] # convert into correct format for padding A = BatchFeature({'input_features': features} ) A = self.pad( __UpperCamelCase , padding=__UpperCamelCase , max_length=__UpperCamelCase , truncation=__UpperCamelCase , pad_to_multiple_of=__UpperCamelCase , return_attention_mask=__UpperCamelCase , **__UpperCamelCase , ) # make sure list is in array format A = padded_inputs.get('input_features' ) if isinstance(input_features[0] , __UpperCamelCase ): A = [np.asarray(__UpperCamelCase , dtype=np.floataa ) for feature in input_features] A = padded_inputs.get('attention_mask' ) if attention_mask is not None: A = [np.asarray(__UpperCamelCase , dtype=np.intaa ) for array in attention_mask] if self.normalize_means or self.normalize_vars: A = ( np.array(__UpperCamelCase , dtype=np.intaa ) if self._get_padding_strategies(__UpperCamelCase , max_length=__UpperCamelCase ) is not PaddingStrategy.DO_NOT_PAD and padding else None ) A = self.normalize( padded_inputs['input_features'] , attention_mask=__UpperCamelCase ) if return_tensors is not None: A = padded_inputs.convert_to_tensors(__UpperCamelCase ) return padded_inputs
106
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from torchvision import transforms from transformers import BitImageProcessor, FocalNetConfig, FocalNetForImageClassification from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def UpperCamelCase_( lowerCamelCase_ ) -> int: _lowercase : List[str] = [2, 2, 6, 2] if 'tiny' in model_name else [2, 2, 18, 2] _lowercase : Tuple = True if 'large' in model_name or 'huge' in model_name else False _lowercase : Any = True if 'large' in model_name or 'huge' in model_name else False _lowercase : Dict = True if 'large' in model_name or 'huge' in model_name else False if "large" in model_name or "xlarge" in model_name or "huge" in model_name: if "fl3" in model_name: _lowercase : Any = [3, 3, 3, 3] _lowercase : Any = [5, 5, 5, 5] elif "fl4" in model_name: _lowercase : Dict = [4, 4, 4, 4] _lowercase : Tuple = [3, 3, 3, 3] if "tiny" in model_name or "small" in model_name or "base" in model_name: _lowercase : str = [3, 3, 3, 3] if "lrf" in model_name: _lowercase : Optional[int] = [3, 3, 3, 3] else: _lowercase : Dict = [2, 2, 2, 2] if "tiny" in model_name: _lowercase : List[str] = 96 elif "small" in model_name: _lowercase : Dict = 96 elif "base" in model_name: _lowercase : Optional[int] = 128 elif "large" in model_name: _lowercase : List[Any] = 192 elif "xlarge" in model_name: _lowercase : Optional[Any] = 256 elif "huge" in model_name: _lowercase : Dict = 352 # set label information _lowercase : int = 'huggingface/label-files' if "large" in model_name or "huge" in model_name: _lowercase : str = 'imagenet-22k-id2label.json' else: _lowercase : Tuple = 'imagenet-1k-id2label.json' _lowercase : Union[str, Any] = json.load(open(hf_hub_download(lowerCamelCase_ , lowerCamelCase_ , repo_type='dataset' ) , 'r' ) ) _lowercase : int = {int(lowerCamelCase_ ): v for k, v in idalabel.items()} _lowercase : Any = {v: k for k, v in idalabel.items()} _lowercase : Optional[Any] = FocalNetConfig( embed_dim=lowerCamelCase_ , depths=lowerCamelCase_ , focal_levels=lowerCamelCase_ , focal_windows=lowerCamelCase_ , use_conv_embed=lowerCamelCase_ , idalabel=lowerCamelCase_ , labelaid=lowerCamelCase_ , use_post_layernorm=lowerCamelCase_ , use_layerscale=lowerCamelCase_ , ) return config def UpperCamelCase_( lowerCamelCase_ ) -> Any: if "patch_embed.proj" in name: _lowercase : Optional[Any] = name.replace('patch_embed.proj' , 'embeddings.patch_embeddings.projection' ) if "patch_embed.norm" in name: _lowercase : str = name.replace('patch_embed.norm' , 'embeddings.norm' ) if "layers" in name: _lowercase : Any = 'encoder.' + name if "encoder.layers" in name: _lowercase : int = name.replace('encoder.layers' , 'encoder.stages' ) if "downsample.proj" in name: _lowercase : Tuple = name.replace('downsample.proj' , 'downsample.projection' ) if "blocks" in name: _lowercase : str = name.replace('blocks' , 'layers' ) if "modulation.f.weight" in name or "modulation.f.bias" in name: _lowercase : List[str] = name.replace('modulation.f' , 'modulation.projection_in' ) if "modulation.h.weight" in name or "modulation.h.bias" in name: _lowercase : int = name.replace('modulation.h' , 'modulation.projection_context' ) if "modulation.proj.weight" in name or "modulation.proj.bias" in name: _lowercase : Any = name.replace('modulation.proj' , 'modulation.projection_out' ) if name == "norm.weight": _lowercase : Any = 'layernorm.weight' if name == "norm.bias": _lowercase : Tuple = 'layernorm.bias' if "head" in name: _lowercase : Optional[int] = name.replace('head' , 'classifier' ) else: _lowercase : Optional[int] = 'focalnet.' + name return name def UpperCamelCase_( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_=False ) -> str: # fmt: off _lowercase : Dict = { 'focalnet-tiny': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_srf.pth', 'focalnet-tiny-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_tiny_lrf.pth', 'focalnet-small': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_srf.pth', 'focalnet-small-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_small_lrf.pth', 'focalnet-base': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_srf.pth', 'focalnet-base-lrf': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_base_lrf.pth', 'focalnet-large-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384.pth', 'focalnet-large-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_large_lrf_384_fl4.pth', 'focalnet-xlarge-lrf-fl3': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384.pth', 'focalnet-xlarge-lrf-fl4': 'https://projects4jw.blob.core.windows.net/focalnet/release/classification/focalnet_xlarge_lrf_384_fl4.pth', } # fmt: on _lowercase : Dict = model_name_to_url[model_name] print('Checkpoint URL: ' , lowerCamelCase_ ) _lowercase : List[str] = torch.hub.load_state_dict_from_url(lowerCamelCase_ , map_location='cpu' )['model'] # rename keys for key in state_dict.copy().keys(): _lowercase : Dict = state_dict.pop(lowerCamelCase_ ) _lowercase : Optional[int] = val _lowercase : Union[str, Any] = get_focalnet_config(lowerCamelCase_ ) _lowercase : Optional[Any] = FocalNetForImageClassification(lowerCamelCase_ ) model.eval() # load state dict model.load_state_dict(lowerCamelCase_ ) # verify conversion _lowercase : Optional[Any] = 'http://images.cocodataset.org/val2017/000000039769.jpg' _lowercase : Any = BitImageProcessor( do_resize=lowerCamelCase_ , size={'shortest_edge': 256} , resample=PILImageResampling.BILINEAR , do_center_crop=lowerCamelCase_ , crop_size=224 , do_normalize=lowerCamelCase_ , image_mean=lowerCamelCase_ , image_std=lowerCamelCase_ , ) _lowercase : List[str] = Image.open(requests.get(lowerCamelCase_ , stream=lowerCamelCase_ ).raw ) _lowercase : List[Any] = processor(images=lowerCamelCase_ , return_tensors='pt' ) _lowercase : str = transforms.Compose( [ transforms.Resize(256 ), transforms.CenterCrop(224 ), transforms.ToTensor(), transforms.Normalize(mean=[0.4_85, 0.4_56, 0.4_06] , std=[0.2_29, 0.2_24, 0.2_25] ), ] ) _lowercase : List[str] = image_transforms(lowerCamelCase_ ).unsqueeze(0 ) # verify pixel_values assert torch.allclose(inputs.pixel_values , lowerCamelCase_ , atol=1e-4 ) _lowercase : Dict = model(**lowerCamelCase_ ) _lowercase : int = outputs.logits.argmax(-1 ).item() print('Predicted class:' , model.config.idalabel[predicted_class_idx] ) print('First values of logits:' , outputs.logits[0, :3] ) if model_name == "focalnet-tiny": _lowercase : Optional[Any] = torch.tensor([0.21_66, -0.43_68, 0.21_91] ) elif model_name == "focalnet-tiny-lrf": _lowercase : int = torch.tensor([1.16_69, 0.01_25, -0.16_95] ) elif model_name == "focalnet-small": _lowercase : str = torch.tensor([0.49_17, -0.04_30, 0.13_41] ) elif model_name == "focalnet-small-lrf": _lowercase : Any = torch.tensor([-0.25_88, -0.53_42, -0.23_31] ) elif model_name == "focalnet-base": _lowercase : List[Any] = torch.tensor([-0.16_55, -0.40_90, -0.17_30] ) elif model_name == "focalnet-base-lrf": _lowercase : int = torch.tensor([0.53_06, -0.04_83, -0.39_28] ) assert torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1e-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F'''Saving model and processor of {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) if push_to_hub: print(F'''Pushing model and processor of {model_name} to the hub...''' ) model.push_to_hub(F'''{model_name}''' ) processor.push_to_hub(F'''{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="focalnet-tiny", type=str, help="Name of the FocalNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub.", ) SCREAMING_SNAKE_CASE : Optional[Any] = parser.parse_args() convert_focalnet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
89
0
import argparse import json import subprocess def __A ( _A , _A ): """simple docstring""" __a = [] __a = ( f"""curl -H \"Accept: application/vnd.github+json\" -H \"Authorization: Bearer {token}\"""" " https://api.github.com/repos/huggingface/transformers/actions/runners" ) __a = subprocess.run(_A , shell=_A , stdout=subprocess.PIPE ) __a = output.stdout.decode("utf-8" ) __a = json.loads(_A ) __a = status["runners"] for runner in runners: if runner["name"] in target_runners: if runner["status"] == "offline": offline_runners.append(_A ) # save the result so we can report them on Slack with open("offline_runners.txt" , "w" ) as fp: fp.write(json.dumps(_A ) ) if len(_A ) > 0: __a = "\n".join([x["name"] for x in offline_runners] ) raise ValueError(f"""The following runners are offline:\n{failed}""" ) if __name__ == "__main__": def __A ( _A ): """simple docstring""" return values.split("," ) SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( """--target_runners""", default=None, type=list_str, required=True, help="""Comma-separated list of runners to check status.""", ) parser.add_argument( """--token""", default=None, type=str, required=True, help="""A token that has actions:read permission.""" ) SCREAMING_SNAKE_CASE : Any = parser.parse_args() get_runner_status(args.target_runners, args.token)
525
import argparse import gc import json import os import re import torch from huggingface_hub import hf_hub_download from transformers import AutoModelForCausalLM, AutoTokenizer, PreTrainedTokenizerFast, RwkvConfig from transformers.modeling_utils import WEIGHTS_INDEX_NAME, shard_checkpoint SCREAMING_SNAKE_CASE : str = { """169M""": 12, """430M""": 24, """1B5""": 24, """3B""": 32, """7B""": 32, """14B""": 40, } SCREAMING_SNAKE_CASE : Dict = { """169M""": 768, """430M""": 1024, """1B5""": 2048, """3B""": 2560, """7B""": 4096, """14B""": 5120, } def __A ( _A ): """simple docstring""" __a = list(state_dict.keys() ) for name in state_dict_keys: __a = state_dict.pop(_A ) # emb -> embedding if name.startswith("emb." ): __a = name.replace("emb." , "embeddings." ) # ln_0 -> pre_ln (only present at block 0) if name.startswith("blocks.0.ln0" ): __a = name.replace("blocks.0.ln0" , "blocks.0.pre_ln" ) # att -> attention __a = re.sub(r"blocks\.(\d+)\.att" , r"blocks.\1.attention" , _A ) # ffn -> feed_forward __a = re.sub(r"blocks\.(\d+)\.ffn" , r"blocks.\1.feed_forward" , _A ) # time_mix_k -> time_mix_key and reshape if name.endswith(".time_mix_k" ): __a = name.replace(".time_mix_k" , ".time_mix_key" ) # time_mix_v -> time_mix_value and reshape if name.endswith(".time_mix_v" ): __a = name.replace(".time_mix_v" , ".time_mix_value" ) # time_mix_r -> time_mix_key and reshape if name.endswith(".time_mix_r" ): __a = name.replace(".time_mix_r" , ".time_mix_receptance" ) if name != "head.weight": __a = "rwkv." + name __a = weight return state_dict def __A ( _A , _A , _A , _A=None , _A=None , _A=False , _A=None ): """simple docstring""" if tokenizer_file is None: print("No `--tokenizer_file` provided, we will use the default tokenizer." ) __a = 5_0277 __a = AutoTokenizer.from_pretrained("EleutherAI/gpt-neox-20b" ) else: __a = PreTrainedTokenizerFast(tokenizer_file=_A ) __a = len(_A ) tokenizer.save_pretrained(_A ) # 2. Build the config __a = list(NUM_HIDDEN_LAYERS_MAPPING.keys() ) if size is None: # Try to infer size from the checkpoint name for candidate in possible_sizes: if candidate in checkpoint_file: __a = candidate break if size is None: raise ValueError("Could not infer the size, please provide it with the `--size` argument." ) if size not in possible_sizes: raise ValueError(f"""`size` should be one of {possible_sizes}, got {size}.""" ) __a = RwkvConfig( vocab_size=_A , num_hidden_layers=NUM_HIDDEN_LAYERS_MAPPING[size] , hidden_size=HIDEN_SIZE_MAPPING[size] , ) config.save_pretrained(_A ) # 3. Download model file then convert state_dict __a = hf_hub_download(_A , _A ) __a = torch.load(_A , map_location="cpu" ) __a = convert_state_dict(_A ) # 4. Split in shards and save __a , __a = shard_checkpoint(_A ) for shard_file, shard in shards.items(): torch.save(_A , os.path.join(_A , _A ) ) if index is not None: __a = os.path.join(_A , _A ) # Save the index as well with open(_A , "w" , encoding="utf-8" ) as f: __a = json.dumps(_A , indent=2 , sort_keys=_A ) + "\n" f.write(_A ) # 5. Clean up shards (for some reason the file PyTorch saves take the same space as the whole state_dict print( "Cleaning up shards. This may error with an OOM error, it this is the case don't worry you still have converted the model." ) __a = list(shards.keys() ) del state_dict del shards gc.collect() for shard_file in shard_files: __a = torch.load(os.path.join(_A , _A ) ) torch.save({k: v.cpu().clone() for k, v in state_dict.items()} , os.path.join(_A , _A ) ) del state_dict gc.collect() if push_to_hub: if model_name is None: raise ValueError("Please provide a `model_name` to push the model to the Hub." ) __a = AutoModelForCausalLM.from_pretrained(_A ) model.push_to_hub(_A , max_shard_size="2GB" ) tokenizer.push_to_hub(_A ) if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = argparse.ArgumentParser() # Required parameters parser.add_argument( """--repo_id""", default=None, type=str, required=True, help="""Repo ID from which to pull the checkpoint.""" ) parser.add_argument( """--checkpoint_file""", default=None, type=str, required=True, help="""Name of the checkpoint file in the repo.""" ) parser.add_argument( """--output_dir""", default=None, type=str, required=True, help="""Where to save the converted model.""" ) parser.add_argument( """--tokenizer_file""", default=None, type=str, help="""Path to the tokenizer file to use (if not provided, only the model is converted).""", ) parser.add_argument( """--size""", default=None, type=str, help="""Size of the model. Will be inferred from the `checkpoint_file` if not passed.""", ) parser.add_argument( """--push_to_hub""", action="""store_true""", help="""Push to the Hub the converted model.""", ) parser.add_argument( """--model_name""", default=None, type=str, help="""Name of the pushed model on the Hub, including the username / organization.""", ) SCREAMING_SNAKE_CASE : Tuple = parser.parse_args() convert_rmkv_checkpoint_to_hf_format( args.repo_id, args.checkpoint_file, args.output_dir, size=args.size, tokenizer_file=args.tokenizer_file, push_to_hub=args.push_to_hub, model_name=args.model_name, )
525
1
from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxSeqaSeqConfigWithPast from ...utils import logging if TYPE_CHECKING: from ...feature_extraction_utils import FeatureExtractionMixin from ...tokenization_utils_base import PreTrainedTokenizerBase from ...utils import TensorType UpperCamelCase__ : Dict = logging.get_logger(__name__) UpperCamelCase__ : List[Any] = { 'openai/whisper-base': 'https://huggingface.co/openai/whisper-base/resolve/main/config.json', } # fmt: off UpperCamelCase__ : Dict = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_57, 3_66, 4_38, 5_32, 6_85, 7_05, 7_96, 9_30, 10_58, 12_20, 12_67, 12_79, 13_03, 13_43, 13_77, 13_91, 16_35, 17_82, 18_75, 21_62, 23_61, 24_88, 34_67, 40_08, 42_11, 46_00, 48_08, 52_99, 58_55, 63_29, 72_03, 96_09, 99_59, 1_05_63, 1_07_86, 1_14_20, 1_17_09, 1_19_07, 1_31_63, 1_36_97, 1_37_00, 1_48_08, 1_53_06, 1_64_10, 1_67_91, 1_79_92, 1_92_03, 1_95_10, 2_07_24, 2_23_05, 2_29_35, 2_70_07, 3_01_09, 3_04_20, 3_34_09, 3_49_49, 4_02_83, 4_04_93, 4_05_49, 4_72_82, 4_91_46, 5_02_57, 5_03_59, 5_03_60, 5_03_61 ] UpperCamelCase__ : str = [ 1, 2, 7, 8, 9, 10, 14, 25, 26, 27, 28, 29, 31, 58, 59, 60, 61, 62, 63, 90, 91, 92, 93, 3_59, 5_03, 5_22, 5_42, 8_73, 8_93, 9_02, 9_18, 9_22, 9_31, 13_50, 18_53, 19_82, 24_60, 26_27, 32_46, 32_53, 32_68, 35_36, 38_46, 39_61, 41_83, 46_67, 65_85, 66_47, 72_73, 90_61, 93_83, 1_04_28, 1_09_29, 1_19_38, 1_20_33, 1_23_31, 1_25_62, 1_37_93, 1_41_57, 1_46_35, 1_52_65, 1_56_18, 1_65_53, 1_66_04, 1_83_62, 1_89_56, 2_00_75, 2_16_75, 2_25_20, 2_61_30, 2_61_61, 2_64_35, 2_82_79, 2_94_64, 3_16_50, 3_23_02, 3_24_70, 3_68_65, 4_28_63, 4_74_25, 4_98_70, 5_02_54, 5_02_58, 5_03_60, 5_03_61, 5_03_62 ] class lowerCAmelCase_ ( lowercase_ ): __a : List[str] = """whisper""" __a : Dict = ["""past_key_values"""] __a : Optional[int] = {"""num_attention_heads""": """encoder_attention_heads""", """hidden_size""": """d_model"""} def __init__( self ,snake_case__=51865 ,snake_case__=80 ,snake_case__=6 ,snake_case__=4 ,snake_case__=6 ,snake_case__=4 ,snake_case__=1536 ,snake_case__=1536 ,snake_case__=0.0 ,snake_case__=0.0 ,snake_case__=50257 ,snake_case__=True ,snake_case__=True ,snake_case__="gelu" ,snake_case__=256 ,snake_case__=0.0 ,snake_case__=0.0 ,snake_case__=0.0 ,snake_case__=0.02 ,snake_case__=False ,snake_case__=1500 ,snake_case__=448 ,snake_case__=50256 ,snake_case__=50256 ,snake_case__=50256 ,snake_case__=None ,snake_case__=[220, 50256] ,snake_case__=False ,snake_case__=256 ,snake_case__=False ,snake_case__=0.05 ,snake_case__=10 ,snake_case__=2 ,snake_case__=0.0 ,snake_case__=10 ,snake_case__=0 ,snake_case__=7 ,**snake_case__ ,): SCREAMING_SNAKE_CASE_ : Tuple = vocab_size SCREAMING_SNAKE_CASE_ : Any = num_mel_bins SCREAMING_SNAKE_CASE_ : Optional[Any] = d_model SCREAMING_SNAKE_CASE_ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_attention_heads SCREAMING_SNAKE_CASE_ : Optional[int] = decoder_layers SCREAMING_SNAKE_CASE_ : List[str] = decoder_attention_heads SCREAMING_SNAKE_CASE_ : Dict = decoder_ffn_dim SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_ffn_dim SCREAMING_SNAKE_CASE_ : Optional[int] = dropout SCREAMING_SNAKE_CASE_ : int = attention_dropout SCREAMING_SNAKE_CASE_ : Optional[int] = activation_dropout SCREAMING_SNAKE_CASE_ : Tuple = activation_function SCREAMING_SNAKE_CASE_ : Dict = init_std SCREAMING_SNAKE_CASE_ : Tuple = encoder_layerdrop SCREAMING_SNAKE_CASE_ : Dict = decoder_layerdrop SCREAMING_SNAKE_CASE_ : Any = use_cache SCREAMING_SNAKE_CASE_ : List[Any] = encoder_layers SCREAMING_SNAKE_CASE_ : int = scale_embedding # scale factor will be sqrt(d_model) if True SCREAMING_SNAKE_CASE_ : Optional[Any] = max_source_positions SCREAMING_SNAKE_CASE_ : Dict = max_target_positions # Audio Classification-specific parameters. Feel free to ignore for other classes. SCREAMING_SNAKE_CASE_ : Tuple = classifier_proj_size SCREAMING_SNAKE_CASE_ : Any = use_weighted_layer_sum # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 SCREAMING_SNAKE_CASE_ : List[str] = apply_spec_augment SCREAMING_SNAKE_CASE_ : List[str] = mask_time_prob SCREAMING_SNAKE_CASE_ : int = mask_time_length SCREAMING_SNAKE_CASE_ : List[str] = mask_time_min_masks SCREAMING_SNAKE_CASE_ : Optional[int] = mask_feature_prob SCREAMING_SNAKE_CASE_ : Any = mask_feature_length SCREAMING_SNAKE_CASE_ : Optional[int] = mask_feature_min_masks SCREAMING_SNAKE_CASE_ : Dict = median_filter_width super().__init__( pad_token_id=snake_case__ ,bos_token_id=snake_case__ ,eos_token_id=snake_case__ ,is_encoder_decoder=snake_case__ ,decoder_start_token_id=snake_case__ ,suppress_tokens=snake_case__ ,begin_suppress_tokens=snake_case__ ,**snake_case__ ,) class lowerCAmelCase_ ( lowercase_ ): @property def snake_case ( self ): SCREAMING_SNAKE_CASE_ : Any = OrderedDict( [ ('input_features', {0: 'batch', 1: 'feature_size', 2: 'encoder_sequence'}), ] ) if self.use_past: SCREAMING_SNAKE_CASE_ : int = {0: 'batch'} else: SCREAMING_SNAKE_CASE_ : Optional[Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(snake_case__ ,direction='inputs' ) return common_inputs def snake_case ( self ,snake_case__ ,snake_case__ = -1 ,snake_case__ = -1 ,snake_case__ = False ,snake_case__ = None ,snake_case__ = 22050 ,snake_case__ = 5.0 ,snake_case__ = 220 ,): SCREAMING_SNAKE_CASE_ : str = OrderedDict() SCREAMING_SNAKE_CASE_ : Optional[Any] = OnnxConfig.generate_dummy_inputs( self ,preprocessor=preprocessor.feature_extractor ,batch_size=snake_case__ ,framework=snake_case__ ,sampling_rate=snake_case__ ,time_duration=snake_case__ ,frequency=snake_case__ ,) SCREAMING_SNAKE_CASE_ : Any = encoder_inputs['input_features'].shape[2] SCREAMING_SNAKE_CASE_ : int = encoder_sequence_length // 2 if self.use_past else seq_length SCREAMING_SNAKE_CASE_ : List[Any] = super().generate_dummy_inputs( preprocessor.tokenizer ,snake_case__ ,snake_case__ ,snake_case__ ,snake_case__ ) SCREAMING_SNAKE_CASE_ : str = encoder_inputs.pop('input_features' ) SCREAMING_SNAKE_CASE_ : int = decoder_inputs.pop('decoder_input_ids' ) if "past_key_values" in decoder_inputs: SCREAMING_SNAKE_CASE_ : str = decoder_inputs.pop('past_key_values' ) return dummy_inputs @property def snake_case ( self ): return 1E-3
105
'''simple docstring''' from __future__ import annotations from collections import deque class __lowerCAmelCase : '''simple docstring''' def __init__(self : str , UpperCamelCase : list[str] ): '''simple docstring''' lowercase__ = [] self.adlist.append( {'''value''': '''''', '''next_states''': [], '''fail_state''': 0, '''output''': []} ) for keyword in keywords: self.add_keyword(UpperCamelCase ) self.set_fail_transitions() def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : int , UpperCamelCase : str ): '''simple docstring''' for state in self.adlist[current_state]["next_states"]: if char == self.adlist[state]["value"]: return state return None def UpperCamelCase__ (self : Optional[Any] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = 0 for character in keyword: lowercase__ = self.find_next_state(UpperCamelCase , UpperCamelCase ) if next_state is None: self.adlist.append( { '''value''': character, '''next_states''': [], '''fail_state''': 0, '''output''': [], } ) self.adlist[current_state]["next_states"].append(len(self.adlist ) - 1 ) lowercase__ = len(self.adlist ) - 1 else: lowercase__ = next_state self.adlist[current_state]["output"].append(UpperCamelCase ) def UpperCamelCase__ (self : List[str] ): '''simple docstring''' lowercase__ = deque() for node in self.adlist[0]["next_states"]: q.append(UpperCamelCase ) lowercase__ = 0 while q: lowercase__ = q.popleft() for child in self.adlist[r]["next_states"]: q.append(UpperCamelCase ) lowercase__ = self.adlist[r]['''fail_state'''] while ( self.find_next_state(UpperCamelCase , self.adlist[child]['''value'''] ) is None and state != 0 ): lowercase__ = self.adlist[state]['''fail_state'''] lowercase__ = self.find_next_state( UpperCamelCase , self.adlist[child]['''value'''] ) if self.adlist[child]["fail_state"] is None: lowercase__ = 0 lowercase__ = ( self.adlist[child]['''output'''] + self.adlist[self.adlist[child]['''fail_state''']]['''output'''] ) def UpperCamelCase__ (self : Optional[int] , UpperCamelCase : str ): '''simple docstring''' lowercase__ = {} # returns a dict with keywords and list of its occurrences lowercase__ = 0 for i in range(len(UpperCamelCase ) ): while ( self.find_next_state(UpperCamelCase , string[i] ) is None and current_state != 0 ): lowercase__ = self.adlist[current_state]['''fail_state'''] lowercase__ = self.find_next_state(UpperCamelCase , string[i] ) if next_state is None: lowercase__ = 0 else: lowercase__ = next_state for key in self.adlist[current_state]["output"]: if key not in result: lowercase__ = [] result[key].append(i - len(UpperCamelCase ) + 1 ) return result if __name__ == "__main__": import doctest doctest.testmod()
460
0
"""simple docstring""" import inspect import unittest from transformers import MobileViTConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel from transformers.models.mobilevit.modeling_mobilevit import MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import MobileViTImageProcessor class __a ( _lowerCAmelCase ): def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Tuple: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "hidden_sizes" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "neck_hidden_sizes" ) ) self.parent.assertTrue(hasattr(UpperCAmelCase_ , "num_attention_heads" ) ) class __a : def __init__( self : int , UpperCAmelCase_ : str , UpperCAmelCase_ : str=13 , UpperCAmelCase_ : int=32 , UpperCAmelCase_ : List[str]=2 , UpperCAmelCase_ : List[str]=3 , UpperCAmelCase_ : Dict=640 , UpperCAmelCase_ : Dict=4 , UpperCAmelCase_ : Dict="silu" , UpperCAmelCase_ : List[Any]=3 , UpperCAmelCase_ : Union[str, Any]=32 , UpperCAmelCase_ : int=0.1 , UpperCAmelCase_ : Optional[int]=0.1 , UpperCAmelCase_ : Any=0.1 , UpperCAmelCase_ : str=0.02 , UpperCAmelCase_ : int=True , UpperCAmelCase_ : Optional[Any]=True , UpperCAmelCase_ : str=10 , UpperCAmelCase_ : List[Any]=None , )-> int: """simple docstring""" UpperCamelCase = parent UpperCamelCase = batch_size UpperCamelCase = image_size UpperCamelCase = patch_size UpperCamelCase = num_channels UpperCamelCase = last_hidden_size UpperCamelCase = num_attention_heads UpperCamelCase = hidden_act UpperCamelCase = conv_kernel_size UpperCamelCase = output_stride UpperCamelCase = hidden_dropout_prob UpperCamelCase = attention_probs_dropout_prob UpperCamelCase = classifier_dropout_prob UpperCamelCase = use_labels UpperCamelCase = is_training UpperCamelCase = num_labels UpperCamelCase = initializer_range UpperCamelCase = scope def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[int]: """simple docstring""" UpperCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) UpperCamelCase = None UpperCamelCase = None if self.use_labels: UpperCamelCase = ids_tensor([self.batch_size] , self.num_labels ) UpperCamelCase = ids_tensor([self.batch_size, self.image_size, self.image_size] , self.num_labels ) UpperCamelCase = self.get_config() return config, pixel_values, labels, pixel_labels def _SCREAMING_SNAKE_CASE ( self : int )-> Optional[int]: """simple docstring""" return MobileViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , num_attention_heads=self.num_attention_heads , hidden_act=self.hidden_act , conv_kernel_size=self.conv_kernel_size , output_stride=self.output_stride , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , classifier_dropout_prob=self.classifier_dropout_prob , initializer_range=self.initializer_range , ) def _SCREAMING_SNAKE_CASE ( self : Dict , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Dict )-> List[Any]: """simple docstring""" UpperCamelCase = MobileViTModel(config=UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model(UpperCAmelCase_ ) self.parent.assertEqual( result.last_hidden_state.shape , ( self.batch_size, self.last_hidden_size, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : Any , UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : Any )-> Optional[Any]: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileViTForImageClassification(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] , UpperCAmelCase_ : List[Any] , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] )-> Dict: """simple docstring""" UpperCamelCase = self.num_labels UpperCamelCase = MobileViTForSemanticSegmentation(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() UpperCamelCase = model(UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) UpperCamelCase = model(UpperCAmelCase_ , labels=UpperCAmelCase_ ) self.parent.assertEqual( result.logits.shape , ( self.batch_size, self.num_labels, self.image_size // self.output_stride, self.image_size // self.output_stride, ) , ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> Any: """simple docstring""" UpperCamelCase = self.prepare_config_and_inputs() UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = config_and_inputs UpperCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class __a ( _lowerCAmelCase , _lowerCAmelCase , unittest.TestCase ): UpperCamelCase_ : Union[str, Any] = ( (MobileViTModel, MobileViTForImageClassification, MobileViTForSemanticSegmentation) if is_torch_available() else () ) UpperCamelCase_ : List[str] = ( { '''feature-extraction''': MobileViTModel, '''image-classification''': MobileViTForImageClassification, '''image-segmentation''': MobileViTForSemanticSegmentation, } if is_torch_available() else {} ) UpperCamelCase_ : Optional[int] = False UpperCamelCase_ : Tuple = False UpperCamelCase_ : Union[str, Any] = False UpperCamelCase_ : List[str] = False def _SCREAMING_SNAKE_CASE ( self : Any )-> Dict: """simple docstring""" UpperCamelCase = MobileViTModelTester(self ) UpperCamelCase = MobileViTConfigTester(self , config_class=UpperCAmelCase_ , has_text_modality=UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> Optional[int]: """simple docstring""" self.config_tester.run_common_tests() @unittest.skip(reason="MobileViT does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] )-> List[str]: """simple docstring""" pass @unittest.skip(reason="MobileViT does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE ( self : str )-> List[str]: """simple docstring""" pass @unittest.skip(reason="MobileViT does not output attentions" ) def _SCREAMING_SNAKE_CASE ( self : Optional[int] )-> int: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Tuple: """simple docstring""" UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = model_class(UpperCAmelCase_ ) UpperCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCamelCase = [*signature.parameters.keys()] UpperCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , UpperCAmelCase_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def _SCREAMING_SNAKE_CASE ( self : Any )-> Any: """simple docstring""" pass def _SCREAMING_SNAKE_CASE ( self : str )-> int: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : List[str] )-> Optional[Any]: """simple docstring""" def check_hidden_states_output(UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : Union[str, Any] ): UpperCamelCase = model_class(UpperCAmelCase_ ) model.to(UpperCAmelCase_ ) model.eval() with torch.no_grad(): UpperCamelCase = model(**self._prepare_for_class(UpperCAmelCase_ , UpperCAmelCase_ ) ) UpperCamelCase = outputs.hidden_states UpperCamelCase = 5 self.assertEqual(len(UpperCAmelCase_ ) , UpperCAmelCase_ ) # MobileViT's feature maps are of shape (batch_size, num_channels, height, width) # with the width and height being successively divided by 2. UpperCamelCase = 2 for i in range(len(UpperCAmelCase_ ) ): self.assertListEqual( list(hidden_states[i].shape[-2:] ) , [self.model_tester.image_size // divisor, self.model_tester.image_size // divisor] , ) divisor *= 2 self.assertEqual(self.model_tester.output_stride , divisor // 2 ) UpperCamelCase , UpperCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCamelCase = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCamelCase = True check_hidden_states_output(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> Optional[Any]: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*UpperCAmelCase_ ) def _SCREAMING_SNAKE_CASE ( self : Dict )-> Tuple: """simple docstring""" UpperCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*UpperCAmelCase_ ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Dict: """simple docstring""" for model_name in MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCamelCase = MobileViTModel.from_pretrained(UpperCAmelCase_ ) self.assertIsNotNone(UpperCAmelCase_ ) def lowerCamelCase__ ( )-> Dict: """simple docstring""" UpperCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class __a ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE ( self : Optional[Any] )-> Optional[int]: """simple docstring""" return MobileViTImageProcessor.from_pretrained("apple/mobilevit-xx-small" ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : int )-> List[str]: """simple docstring""" UpperCamelCase = MobileViTForImageClassification.from_pretrained("apple/mobilevit-xx-small" ).to(UpperCAmelCase_ ) UpperCamelCase = self.default_image_processor UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**UpperCAmelCase_ ) # verify the logits UpperCamelCase = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , UpperCAmelCase_ ) UpperCamelCase = torch.tensor([-1.9364, -1.2327, -0.4653] ).to(UpperCAmelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Tuple )-> Optional[int]: """simple docstring""" UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCamelCase = model.to(UpperCAmelCase_ ) UpperCamelCase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**UpperCAmelCase_ ) UpperCamelCase = outputs.logits # verify the logits UpperCamelCase = torch.Size((1, 21, 32, 32) ) self.assertEqual(logits.shape , UpperCAmelCase_ ) UpperCamelCase = torch.tensor( [ [[6.9713, 6.9786, 7.2422], [7.2893, 7.2825, 7.4446], [7.6580, 7.8797, 7.9420]], [[-10.6869, -10.3250, -10.3471], [-10.4228, -9.9868, -9.7132], [-11.0405, -11.0221, -10.7318]], [[-3.3089, -2.8539, -2.6740], [-3.2706, -2.5621, -2.5108], [-3.2534, -2.6615, -2.6651]], ] , device=UpperCAmelCase_ , ) self.assertTrue(torch.allclose(logits[0, :3, :3, :3] , UpperCAmelCase_ , atol=1e-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : str )-> Any: """simple docstring""" UpperCamelCase = MobileViTForSemanticSegmentation.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCamelCase = model.to(UpperCAmelCase_ ) UpperCamelCase = MobileViTImageProcessor.from_pretrained("apple/deeplabv3-mobilevit-xx-small" ) UpperCamelCase = prepare_img() UpperCamelCase = image_processor(images=UpperCAmelCase_ , return_tensors="pt" ).to(UpperCAmelCase_ ) # forward pass with torch.no_grad(): UpperCamelCase = model(**UpperCAmelCase_ ) UpperCamelCase = outputs.logits.detach().cpu() UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ , target_sizes=[(50, 60)] ) UpperCamelCase = torch.Size((50, 60) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ ) UpperCamelCase = image_processor.post_process_semantic_segmentation(outputs=UpperCAmelCase_ ) UpperCamelCase = torch.Size((32, 32) ) self.assertEqual(segmentation[0].shape , UpperCAmelCase_ )
556
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE = {"""configuration_mbart""": ["""MBART_PRETRAINED_CONFIG_ARCHIVE_MAP""", """MBartConfig""", """MBartOnnxConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""MBartTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = ["""MBartTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """MBART_PRETRAINED_MODEL_ARCHIVE_LIST""", """MBartForCausalLM""", """MBartForConditionalGeneration""", """MBartForQuestionAnswering""", """MBartForSequenceClassification""", """MBartModel""", """MBartPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """TFMBartForConditionalGeneration""", """TFMBartModel""", """TFMBartPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE = [ """FlaxMBartForConditionalGeneration""", """FlaxMBartForQuestionAnswering""", """FlaxMBartForSequenceClassification""", """FlaxMBartModel""", """FlaxMBartPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
556
1
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, is_valid_image, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL UpperCamelCase__ : int = logging.get_logger(__name__) def lowerCAmelCase_ ( _lowerCamelCase: int ): if isinstance(__a , (list, tuple) ) and isinstance(videos[0] , (list, tuple) ) and is_valid_image(videos[0][0] ): return videos elif isinstance(__a , (list, tuple) ) and is_valid_image(videos[0] ): return [videos] elif is_valid_image(__a ): return [[videos]] raise ValueError(F"Could not make batched video from {videos}" ) class _UpperCamelCase ( __lowercase ): '''simple docstring''' _A : int = ['''pixel_values'''] def __init__( self : Optional[Any] , lowerCAmelCase__ : str = True , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[Any] = PILImageResampling.BILINEAR , lowerCAmelCase__ : Optional[Any] = True , lowerCAmelCase__ : Union[str, Any] = None , lowerCAmelCase__ : Optional[Any] = True , lowerCAmelCase__ : Union[str, Any] = 1 / 2_5_5 , lowerCAmelCase__ : Any = True , lowerCAmelCase__ : str = None , lowerCAmelCase__ : int = None , **lowerCAmelCase__ : Union[str, Any] , ): """simple docstring""" super().__init__(**_a ) __SCREAMING_SNAKE_CASE : Dict = size if size is not None else {"""shortest_edge""": 2_2_4} __SCREAMING_SNAKE_CASE : Tuple = get_size_dict(_a , default_to_square=_a ) __SCREAMING_SNAKE_CASE : Optional[Any] = crop_size if crop_size is not None else {"""height""": 2_2_4, """width""": 2_2_4} __SCREAMING_SNAKE_CASE : int = get_size_dict(_a , param_name="""crop_size""" ) __SCREAMING_SNAKE_CASE : Optional[Any] = do_resize __SCREAMING_SNAKE_CASE : List[str] = size __SCREAMING_SNAKE_CASE : List[Any] = do_center_crop __SCREAMING_SNAKE_CASE : Dict = crop_size __SCREAMING_SNAKE_CASE : str = resample __SCREAMING_SNAKE_CASE : List[str] = do_rescale __SCREAMING_SNAKE_CASE : Any = rescale_factor __SCREAMING_SNAKE_CASE : List[Any] = do_normalize __SCREAMING_SNAKE_CASE : List[Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __SCREAMING_SNAKE_CASE : List[Any] = image_std if image_std is not None else IMAGENET_STANDARD_STD def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Optional[Any] = PILImageResampling.BILINEAR , lowerCAmelCase__ : List[Any] = None , **lowerCAmelCase__ : List[str] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = get_size_dict(_a , default_to_square=_a ) if "shortest_edge" in size: __SCREAMING_SNAKE_CASE : str = get_resize_output_image_size(_a , size["""shortest_edge"""] , default_to_square=_a ) elif "height" in size and "width" in size: __SCREAMING_SNAKE_CASE : Union[str, Any] = (size["""height"""], size["""width"""]) else: raise ValueError(F"Size must have 'height' and 'width' or 'shortest_edge' as keys. Got {size.keys()}" ) return resize(_a , size=_a , resample=_a , data_format=_a , **_a ) def UpperCamelCase__ ( self : Optional[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : Any = None , **lowerCAmelCase__ : Optional[Any] , ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(_a ) if "height" not in size or "width" not in size: raise ValueError(F"Size must have 'height' and 'width' as keys. Got {size.keys()}" ) return center_crop(_a , size=(size["""height"""], size["""width"""]) , data_format=_a , **_a ) def UpperCamelCase__ ( self : List[Any] , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : int = None , **lowerCAmelCase__ : Any , ): """simple docstring""" return rescale(_a , scale=_a , data_format=_a , **_a ) def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : List[str] , lowerCAmelCase__ : Union[str, Any] , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : int = None , **lowerCAmelCase__ : List[str] , ): """simple docstring""" return normalize(_a , mean=_a , std=_a , data_format=_a , **_a ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : str , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : List[Any] = None , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : List[Any] = None , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : Any = None , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : List[Any] = ChannelDimension.FIRST , ): """simple docstring""" if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_center_crop and crop_size is None: raise ValueError("""Crop size must be specified if do_center_crop is True.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. __SCREAMING_SNAKE_CASE : Union[str, Any] = to_numpy_array(_a ) if do_resize: __SCREAMING_SNAKE_CASE : List[str] = self.resize(image=_a , size=_a , resample=_a ) if do_center_crop: __SCREAMING_SNAKE_CASE : List[str] = self.center_crop(_a , size=_a ) if do_rescale: __SCREAMING_SNAKE_CASE : Dict = self.rescale(image=_a , scale=_a ) if do_normalize: __SCREAMING_SNAKE_CASE : List[Any] = self.normalize(image=_a , mean=_a , std=_a ) __SCREAMING_SNAKE_CASE : Optional[Any] = to_channel_dimension_format(_a , _a ) return image def UpperCamelCase__ ( self : int , lowerCAmelCase__ : Optional[int] , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : Tuple = None , lowerCAmelCase__ : List[str] = None , lowerCAmelCase__ : Optional[Any] = None , lowerCAmelCase__ : List[Any] = None , lowerCAmelCase__ : Optional[int] = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : Dict = None , lowerCAmelCase__ : int = None , lowerCAmelCase__ : str = None , lowerCAmelCase__ : List[Any] = None , lowerCAmelCase__ : Optional[int] = ChannelDimension.FIRST , **lowerCAmelCase__ : Dict , ): """simple docstring""" __SCREAMING_SNAKE_CASE : List[Any] = do_resize if do_resize is not None else self.do_resize __SCREAMING_SNAKE_CASE : Tuple = resample if resample is not None else self.resample __SCREAMING_SNAKE_CASE : List[str] = do_center_crop if do_center_crop is not None else self.do_center_crop __SCREAMING_SNAKE_CASE : int = do_rescale if do_rescale is not None else self.do_rescale __SCREAMING_SNAKE_CASE : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __SCREAMING_SNAKE_CASE : Tuple = do_normalize if do_normalize is not None else self.do_normalize __SCREAMING_SNAKE_CASE : Optional[Any] = image_mean if image_mean is not None else self.image_mean __SCREAMING_SNAKE_CASE : str = image_std if image_std is not None else self.image_std __SCREAMING_SNAKE_CASE : int = size if size is not None else self.size __SCREAMING_SNAKE_CASE : int = get_size_dict(_a , default_to_square=_a ) __SCREAMING_SNAKE_CASE : str = crop_size if crop_size is not None else self.crop_size __SCREAMING_SNAKE_CASE : Optional[int] = get_size_dict(_a , param_name="""crop_size""" ) if not valid_images(_a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) __SCREAMING_SNAKE_CASE : Union[str, Any] = make_batched(_a ) __SCREAMING_SNAKE_CASE : List[str] = [ [ self._preprocess_image( image=_a , do_resize=_a , size=_a , resample=_a , do_center_crop=_a , crop_size=_a , do_rescale=_a , rescale_factor=_a , do_normalize=_a , image_mean=_a , image_std=_a , data_format=_a , ) for img in video ] for video in videos ] __SCREAMING_SNAKE_CASE : List[Any] = {"""pixel_values""": videos} return BatchFeature(data=_a , tensor_type=_a )
578
import inspect import unittest import numpy as np from tests.test_modeling_common import floats_tensor from transformers import MaskaFormerConfig, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import MaskaFormerForUniversalSegmentation, MaskaFormerModel if is_vision_available(): from transformers import MaskaFormerImageProcessor if is_vision_available(): from PIL import Image class __magic_name__ : def __init__( self , _a , _a=2 , _a=True , _a=False , _a=10 , _a=3 , _a=32 * 8 , _a=32 * 8 , _a=4 , _a=64 , ) -> List[str]: lowerCAmelCase_ = parent lowerCAmelCase_ = batch_size lowerCAmelCase_ = is_training lowerCAmelCase_ = use_auxiliary_loss lowerCAmelCase_ = num_queries lowerCAmelCase_ = num_channels lowerCAmelCase_ = min_size lowerCAmelCase_ = max_size lowerCAmelCase_ = num_labels lowerCAmelCase_ = hidden_dim lowerCAmelCase_ = hidden_dim def __a ( self ) -> List[Any]: lowerCAmelCase_ = floats_tensor([self.batch_size, self.num_channels, self.min_size, self.max_size] ).to( _a ) lowerCAmelCase_ = torch.ones([self.batch_size, self.min_size, self.max_size] , device=_a ) lowerCAmelCase_ = ( torch.rand([self.batch_size, self.num_labels, self.min_size, self.max_size] , device=_a ) > 0.5 ).float() lowerCAmelCase_ = (torch.rand((self.batch_size, self.num_labels) , device=_a ) > 0.5).long() lowerCAmelCase_ = self.get_config() return config, pixel_values, pixel_mask, mask_labels, class_labels def __a ( self ) -> int: lowerCAmelCase_ = MaskaFormerConfig( hidden_size=self.hidden_dim , ) lowerCAmelCase_ = self.num_queries lowerCAmelCase_ = self.num_labels lowerCAmelCase_ = [1, 1, 1, 1] lowerCAmelCase_ = self.num_channels lowerCAmelCase_ = 64 lowerCAmelCase_ = 128 lowerCAmelCase_ = self.hidden_dim lowerCAmelCase_ = self.hidden_dim lowerCAmelCase_ = self.hidden_dim return config def __a ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.prepare_config_and_inputs() lowerCAmelCase_ = {"pixel_values": pixel_values, "pixel_mask": pixel_mask} return config, inputs_dict def __a ( self , _a , _a ) -> Optional[Any]: lowerCAmelCase_ = output.encoder_hidden_states lowerCAmelCase_ = output.pixel_decoder_hidden_states lowerCAmelCase_ = output.transformer_decoder_hidden_states self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , len(config.backbone_config.depths ) ) self.parent.assertTrue(len(_a ) , config.decoder_layers ) def __a ( self , _a , _a , _a , _a=False ) -> int: with torch.no_grad(): lowerCAmelCase_ = MaskaFormerModel(config=_a ) model.to(_a ) model.eval() lowerCAmelCase_ = model(pixel_values=_a , pixel_mask=_a ) lowerCAmelCase_ = model(_a , output_hidden_states=_a ) self.parent.assertEqual( output.transformer_decoder_last_hidden_state.shape , (self.batch_size, self.num_queries, self.hidden_dim) , ) # let's ensure the other two hidden state exists self.parent.assertTrue(output.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(output.encoder_last_hidden_state is not None ) if output_hidden_states: self.check_output_hidden_state(_a , _a ) def __a ( self , _a , _a , _a , _a , _a ) -> List[Any]: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation(config=_a ) model.to(_a ) model.eval() def comm_check_on_output(_a ): # let's still check that all the required stuff is there self.parent.assertTrue(result.transformer_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.pixel_decoder_last_hidden_state is not None ) self.parent.assertTrue(result.encoder_last_hidden_state is not None ) # okay, now we need to check the logits shape # due to the encoder compression, masks have a //4 spatial size self.parent.assertEqual( result.masks_queries_logits.shape , (self.batch_size, self.num_queries, self.min_size // 4, self.max_size // 4) , ) # + 1 for null class self.parent.assertEqual( result.class_queries_logits.shape , (self.batch_size, self.num_queries, self.num_labels + 1) ) with torch.no_grad(): lowerCAmelCase_ = model(pixel_values=_a , pixel_mask=_a ) lowerCAmelCase_ = model(_a ) comm_check_on_output(_a ) lowerCAmelCase_ = model( pixel_values=_a , pixel_mask=_a , mask_labels=_a , class_labels=_a ) comm_check_on_output(_a ) self.parent.assertTrue(result.loss is not None ) self.parent.assertEqual(result.loss.shape , torch.Size([1] ) ) @require_torch class __magic_name__ (__lowercase , __lowercase , unittest.TestCase ): lowerCamelCase__ = (MaskaFormerModel, MaskaFormerForUniversalSegmentation) if is_torch_available() else () lowerCamelCase__ = {'''feature-extraction''': MaskaFormerModel} if is_torch_available() else {} lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False lowerCamelCase__ = False def __a ( self ) -> Tuple: lowerCAmelCase_ = MaskaFormerModelTester(self ) lowerCAmelCase_ = ConfigTester(self , config_class=_a , has_text_modality=_a ) def __a ( self ) -> List[str]: self.config_tester.run_common_tests() def __a ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_maskaformer_instance_segmentation_head_model(*_a ) @unittest.skip(reason="Mask2Former does not use inputs_embeds" ) def __a ( self ) -> Any: pass @unittest.skip(reason="Mask2Former does not have a get_input_embeddings method" ) def __a ( self ) -> Optional[int]: pass @unittest.skip(reason="Mask2Former is not a generative model" ) def __a ( self ) -> str: pass @unittest.skip(reason="Mask2Former does not use token embeddings" ) def __a ( self ) -> List[Any]: pass @require_torch_multi_gpu @unittest.skip( reason="Mask2Former has some layers using `add_module` which doesn't work well with `nn.DataParallel`" ) def __a ( self ) -> Any: pass @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __a ( self ) -> List[str]: pass def __a ( self ) -> Any: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ) lowerCAmelCase_ = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCAmelCase_ = [*signature.parameters.keys()] lowerCAmelCase_ = ["pixel_values"] self.assertListEqual(arg_names[:1] , _a ) @slow def __a ( self ) -> int: for model_name in ["facebook/mask2former-swin-small-coco-instance"]: lowerCAmelCase_ = MaskaFormerModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def __a ( self ) -> Optional[int]: lowerCAmelCase_ = (self.model_tester.min_size,) * 2 lowerCAmelCase_ = { "pixel_values": torch.randn((2, 3, *size) , device=_a ), "mask_labels": torch.randn((2, 10, *size) , device=_a ), "class_labels": torch.zeros(2 , 10 , device=_a ).long(), } lowerCAmelCase_ = self.model_tester.get_config() lowerCAmelCase_ = MaskaFormerForUniversalSegmentation(_a ).to(_a ) lowerCAmelCase_ = model(**_a ) self.assertTrue(outputs.loss is not None ) def __a ( self ) -> str: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.create_and_check_maskaformer_model(_a , **_a , output_hidden_states=_a ) def __a ( self ) -> List[Any]: lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCAmelCase_ = model_class(_a ).to(_a ) lowerCAmelCase_ = model(**_a , output_attentions=_a ) self.assertTrue(outputs.attentions is not None ) def __a ( self ) -> List[str]: if not self.model_tester.is_training: return lowerCAmelCase_ = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ = model_class(_a ) model.to(_a ) model.train() lowerCAmelCase_ = model(_a , mask_labels=_a , class_labels=_a ).loss loss.backward() def __a ( self ) -> Union[str, Any]: lowerCAmelCase_ = self.all_model_classes[1] lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ = self.model_tester.prepare_config_and_inputs() lowerCAmelCase_ = True lowerCAmelCase_ = True lowerCAmelCase_ = model_class(_a ).to(_a ) model.train() lowerCAmelCase_ = model(_a , mask_labels=_a , class_labels=_a ) lowerCAmelCase_ = outputs.encoder_hidden_states[0] encoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.pixel_decoder_hidden_states[0] pixel_decoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.transformer_decoder_hidden_states[0] transformer_decoder_hidden_states.retain_grad() lowerCAmelCase_ = outputs.attentions[0] attentions.retain_grad() outputs.loss.backward(retain_graph=_a ) self.assertIsNotNone(encoder_hidden_states.grad ) self.assertIsNotNone(pixel_decoder_hidden_states.grad ) self.assertIsNotNone(transformer_decoder_hidden_states.grad ) self.assertIsNotNone(attentions.grad ) lowerCamelCase__ = 1e-4 def A(): lowerCAmelCase_ = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_vision @slow class __magic_name__ (unittest.TestCase ): @cached_property def __a ( self ) -> Dict: return "facebook/mask2former-swin-small-coco-instance" @cached_property def __a ( self ) -> Optional[Any]: return MaskaFormerImageProcessor.from_pretrained(self.model_checkpoints ) if is_vision_available() else None def __a ( self ) -> int: lowerCAmelCase_ = MaskaFormerModel.from_pretrained(self.model_checkpoints ).to(_a ) lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(_a , return_tensors="pt" ).to(_a ) lowerCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase_ = model(**_a ) lowerCAmelCase_ = torch.tensor( [[-0.2_7_9_0, -1.0_7_1_7, -1.1_6_6_8], [-0.5_1_2_8, -0.3_1_2_8, -0.4_9_8_7], [-0.5_8_3_2, 0.1_9_7_1, -0.0_1_9_7]] ).to(_a ) self.assertTrue( torch.allclose( outputs.encoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) lowerCAmelCase_ = torch.tensor( [[0.8_9_7_3, 1.1_8_4_7, 1.1_7_7_6], [1.1_9_3_4, 1.5_0_4_0, 1.5_1_2_8], [1.1_1_5_3, 1.4_4_8_6, 1.4_9_5_1]] ).to(_a ) self.assertTrue( torch.allclose( outputs.pixel_decoder_last_hidden_state[0, 0, :3, :3] , _a , atol=_a ) ) lowerCAmelCase_ = torch.tensor( [[2.1_1_5_2, 1.7_0_0_0, -0.8_6_0_3], [1.5_8_0_8, 1.8_0_0_4, -0.9_3_5_3], [1.6_0_4_3, 1.7_4_9_5, -0.5_9_9_9]] ).to(_a ) self.assertTrue( torch.allclose( outputs.transformer_decoder_last_hidden_state[0, :3, :3] , _a , atol=_a ) ) def __a ( self ) -> str: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = prepare_img() lowerCAmelCase_ = image_processor(_a , return_tensors="pt" ).to(_a ) lowerCAmelCase_ = inputs["pixel_values"].shape # check size is divisible by 32 self.assertTrue((inputs_shape[-1] % 32) == 0 and (inputs_shape[-2] % 32) == 0 ) # check size self.assertEqual(_a , (1, 3, 384, 384) ) with torch.no_grad(): lowerCAmelCase_ = model(**_a ) # masks_queries_logits lowerCAmelCase_ = outputs.masks_queries_logits self.assertEqual( masks_queries_logits.shape , (1, model.config.num_queries, inputs_shape[-2] // 4, inputs_shape[-1] // 4) ) lowerCAmelCase_ = [ [-8.7_8_3_9, -9.0_0_5_6, -8.8_1_2_1], [-7.4_1_0_4, -7.0_3_1_3, -6.5_4_0_1], [-6.6_1_0_5, -6.3_4_2_7, -6.4_6_7_5], ] lowerCAmelCase_ = torch.tensor(_a ).to(_a ) self.assertTrue(torch.allclose(masks_queries_logits[0, 0, :3, :3] , _a , atol=_a ) ) # class_queries_logits lowerCAmelCase_ = outputs.class_queries_logits self.assertEqual(class_queries_logits.shape , (1, model.config.num_queries, model.config.num_labels + 1) ) lowerCAmelCase_ = torch.tensor( [ [1.8_3_2_4, -8.0_8_3_5, -4.1_9_2_2], [0.8_4_5_0, -9.0_0_5_0, -3.6_0_5_3], [0.3_0_4_5, -7.7_2_9_3, -3.0_2_7_5], ] ).to(_a ) self.assertTrue(torch.allclose(outputs.class_queries_logits[0, :3, :3] , _a , atol=_a ) ) def __a ( self ) -> Tuple: lowerCAmelCase_ = MaskaFormerForUniversalSegmentation.from_pretrained(self.model_checkpoints ).to(_a ).eval() lowerCAmelCase_ = self.default_image_processor lowerCAmelCase_ = image_processor( [np.zeros((3, 800, 1333) ), np.zeros((3, 800, 1333) )] , segmentation_maps=[np.zeros((384, 384) ).astype(np.floataa ), np.zeros((384, 384) ).astype(np.floataa )] , return_tensors="pt" , ) lowerCAmelCase_ = inputs["pixel_values"].to(_a ) lowerCAmelCase_ = [el.to(_a ) for el in inputs["mask_labels"]] lowerCAmelCase_ = [el.to(_a ) for el in inputs["class_labels"]] with torch.no_grad(): lowerCAmelCase_ = model(**_a ) self.assertTrue(outputs.loss is not None )
122
0
'''simple docstring''' from typing import Dict, List, Optional, Union import numpy as np from .feature_extraction_utils import BatchFeature, FeatureExtractionMixin from .utils import PaddingStrategy, TensorType, is_tf_tensor, is_torch_tensor, logging, to_numpy _lowercase = logging.get_logger(__name__) class _lowercase ( __a ): def __init__( self , A__ , A__ , A__ , **A__ ) -> Union[str, Any]: snake_case = feature_size snake_case = sampling_rate snake_case = padding_value snake_case = kwargs.pop('''padding_side''' , '''right''' ) snake_case = kwargs.pop('''return_attention_mask''' , A__ ) super().__init__(**A__ ) def UpperCamelCase ( self , A__ , A__ = True , A__ = None , A__ = False , A__ = None , A__ = None , A__ = None , ) -> BatchFeature: # If we have a list of dicts, let's convert it in a dict of lists # We do this to allow using this method as a collate_fn function in PyTorch Dataloader if isinstance(A__ , (list, tuple) ) and isinstance(processed_features[0] , (dict, BatchFeature) ): snake_case = { key: [example[key] for example in processed_features] for key in processed_features[0].keys() } # The model's main input name, usually `input_values`, has be passed for padding if self.model_input_names[0] not in processed_features: raise ValueError( '''You should supply an instance of `transformers.BatchFeature` or list of `transformers.BatchFeature`''' F""" to this method that includes {self.model_input_names[0]}, but you provided""" F""" {list(processed_features.keys() )}""" ) snake_case = processed_features[self.model_input_names[0]] snake_case = ( return_attention_mask if return_attention_mask is not None else self.return_attention_mask ) if len(A__ ) == 0: if return_attention_mask: snake_case = [] return processed_features # If we have PyTorch/TF tensors or lists as inputs, we cast them as Numpy arrays # and rebuild them afterwards if no return_tensors is specified # Note that we lose the specific device the tensor may be on for PyTorch snake_case = required_input[0] if isinstance(A__ , (list, tuple) ): # first_element might be an empty list/tuple in some edge cases so we grab the first non empty element. snake_case = 0 while len(required_input[index] ) == 0: index += 1 if index < len(A__ ): snake_case = required_input[index][0] if return_tensors is None: if is_tf_tensor(A__ ): snake_case = '''tf''' elif is_torch_tensor(A__ ): snake_case = '''pt''' elif isinstance(A__ , (int, float, list, tuple, np.ndarray) ): snake_case = '''np''' else: raise ValueError( F"""type of {first_element} unknown: {type(A__ )}. """ '''Should be one of a python, numpy, pytorch or tensorflow object.''' ) for key, value in processed_features.items(): if isinstance(value[0] , (int, float) ): snake_case = to_numpy(A__ ) else: snake_case = [to_numpy(A__ ) for v in value] # Convert padding_strategy in PaddingStrategy snake_case = self._get_padding_strategies(padding=A__ , max_length=A__ ) snake_case = processed_features[self.model_input_names[0]] snake_case = len(A__ ) if not all(len(A__ ) == batch_size for v in processed_features.values() ): raise ValueError('''Some items in the output dictionary have a different batch size than others.''' ) snake_case = [] for i in range(A__ ): snake_case = {k: v[i] for k, v in processed_features.items()} # truncation snake_case = self._truncate( A__ , max_length=A__ , pad_to_multiple_of=A__ , truncation=A__ , ) truncated_inputs.append(A__ ) if padding_strategy == PaddingStrategy.LONGEST: # make sure that `max_length` cannot be longer than the longest truncated length snake_case = max(len(input_slice[self.model_input_names[0]] ) for input_slice in truncated_inputs ) snake_case = PaddingStrategy.MAX_LENGTH snake_case = {} for i in range(A__ ): # padding snake_case = self._pad( truncated_inputs[i] , max_length=A__ , padding_strategy=A__ , pad_to_multiple_of=A__ , return_attention_mask=A__ , ) for key, value in outputs.items(): if key not in batch_outputs: snake_case = [] if value.dtype is np.dtype(np.floataa ): snake_case = value.astype(np.floataa ) batch_outputs[key].append(A__ ) return BatchFeature(A__ , tensor_type=A__ ) def UpperCamelCase ( self , A__ , A__ = None , A__ = PaddingStrategy.DO_NOT_PAD , A__ = None , A__ = None , ) -> dict: snake_case = processed_features[self.model_input_names[0]] if padding_strategy == PaddingStrategy.LONGEST: snake_case = len(A__ ) if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case = padding_strategy != PaddingStrategy.DO_NOT_PAD and len(A__ ) < max_length if return_attention_mask and "attention_mask" not in processed_features: snake_case = np.ones(len(A__ ) , dtype=np.intaa ) if needs_to_be_padded: snake_case = max_length - len(A__ ) if self.padding_side == "right": if return_attention_mask: snake_case = np.pad( processed_features['''attention_mask'''] , (0, difference) ) snake_case = ((0, difference), (0, 0)) if self.feature_size > 1 else (0, difference) snake_case = np.pad( A__ , A__ , '''constant''' , constant_values=self.padding_value ) elif self.padding_side == "left": if return_attention_mask: snake_case = np.pad( processed_features['''attention_mask'''] , (difference, 0) ) snake_case = ((difference, 0), (0, 0)) if self.feature_size > 1 else (difference, 0) snake_case = np.pad( A__ , A__ , '''constant''' , constant_values=self.padding_value ) else: raise ValueError('''Invalid padding strategy:''' + str(self.padding_side ) ) return processed_features def UpperCamelCase ( self , A__ , A__ = None , A__ = None , A__ = None , ) -> Union[str, Any]: if not truncation: return processed_features elif truncation and max_length is None: raise ValueError('''When setting ``truncation=True``, make sure that ``max_length`` is defined.''' ) snake_case = processed_features[self.model_input_names[0]] # find `max_length` that fits `pad_to_multiple_of` if max_length is not None and pad_to_multiple_of is not None and (max_length % pad_to_multiple_of != 0): snake_case = ((max_length // pad_to_multiple_of) + 1) * pad_to_multiple_of snake_case = len(A__ ) > max_length if needs_to_be_truncated: snake_case = processed_features[self.model_input_names[0]][:max_length] if "attention_mask" in processed_features: snake_case = processed_features['''attention_mask'''][:max_length] return processed_features def UpperCamelCase ( self , A__=False , A__=None ) -> Union[str, Any]: # Get padding strategy if padding is not False: if padding is True: snake_case = PaddingStrategy.LONGEST # Default to pad to the longest sequence in the batch elif not isinstance(A__ , A__ ): snake_case = PaddingStrategy(A__ ) elif isinstance(A__ , A__ ): snake_case = padding else: snake_case = PaddingStrategy.DO_NOT_PAD # Set max length if needed if max_length is None: if padding_strategy == PaddingStrategy.MAX_LENGTH: raise ValueError( F"""When setting ``padding={PaddingStrategy.MAX_LENGTH}``, make sure that max_length is defined""" ) # Test if we have a padding value if padding_strategy != PaddingStrategy.DO_NOT_PAD and (self.padding_value is None): raise ValueError( '''Asking to pad but the feature_extractor does not have a padding value. Please select a value to use''' ''' as `padding_value`. For example: `feature_extractor.padding_value = 0.0`.''' ) return padding_strategy
44
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowercase = logging.get_logger(__name__) def __UpperCamelCase ( a : Dict , a : Optional[int] , a : Dict , a : Dict ) ->Union[str, Any]: snake_case = original_name.split('''.''' )[0] snake_case = key.split('''.''' ) snake_case = int(key_list[key_list.index(a ) - 2] ) snake_case = int(key_list[key_list.index(a ) - 1] ) snake_case = orig_block_num - offset snake_case = key.replace(f"""{orig_block_num}.{layer_num}.{original_name}""" , f"""block.{new_block_num}.{layer_num}.{new_name}""" ) return key def __UpperCamelCase ( a : Tuple ) ->Dict: snake_case = OrderedDict() snake_case , snake_case = 0, 0 for key, value in state_dict.items(): if key.startswith('''network''' ): snake_case = key.replace('''network''' , '''poolformer.encoder''' ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith('''bias''' ) and "patch_embed" not in key: patch_emb_offset += 1 snake_case = key[: key.find('''proj''' )] snake_case = key.replace(a , f"""patch_embeddings.{total_embed_found}.""" ) snake_case = key.replace('''proj''' , '''projection''' ) if key.endswith('''bias''' ): total_embed_found += 1 if "patch_embeddings" in key: snake_case = '''poolformer.encoder.''' + key if "mlp.fc1" in key: snake_case = replace_key_with_offset(a , a , '''mlp.fc1''' , '''output.conv1''' ) if "mlp.fc2" in key: snake_case = replace_key_with_offset(a , a , '''mlp.fc2''' , '''output.conv2''' ) if "norm1" in key: snake_case = replace_key_with_offset(a , a , '''norm1''' , '''before_norm''' ) if "norm2" in key: snake_case = replace_key_with_offset(a , a , '''norm2''' , '''after_norm''' ) if "layer_scale_1" in key: snake_case = replace_key_with_offset(a , a , '''layer_scale_1''' , '''layer_scale_1''' ) if "layer_scale_2" in key: snake_case = replace_key_with_offset(a , a , '''layer_scale_2''' , '''layer_scale_2''' ) if "head" in key: snake_case = key.replace('''head''' , '''classifier''' ) snake_case = value return new_state_dict def __UpperCamelCase ( ) ->Optional[int]: snake_case = '''http://images.cocodataset.org/val2017/000000039769.jpg''' snake_case = Image.open(requests.get(a , stream=a ).raw ) return image @torch.no_grad() def __UpperCamelCase ( a : Dict , a : Optional[Any] , a : Tuple ) ->List[str]: snake_case = PoolFormerConfig() # set attributes based on model_name snake_case = '''huggingface/label-files''' snake_case = model_name[-3:] snake_case = 1000 snake_case = '''imagenet-1k-id2label.json''' snake_case = (1, 1000) # set config attributes snake_case = json.load(open(hf_hub_download(a , a , repo_type='''dataset''' ) , '''r''' ) ) snake_case = {int(a ): v for k, v in idalabel.items()} snake_case = idalabel snake_case = {v: k for k, v in idalabel.items()} if size == "s12": snake_case = [2, 2, 6, 2] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 0.9 elif size == "s24": snake_case = [4, 4, 12, 4] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 0.9 elif size == "s36": snake_case = [6, 6, 18, 6] snake_case = [64, 128, 320, 512] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.9 elif size == "m36": snake_case = [6, 6, 18, 6] snake_case = [96, 192, 384, 768] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.95 elif size == "m48": snake_case = [8, 8, 24, 8] snake_case = [96, 192, 384, 768] snake_case = 4.0 snake_case = 1e-6 snake_case = 0.95 else: raise ValueError(f"""Size {size} not supported""" ) # load image processor snake_case = PoolFormerImageProcessor(crop_pct=a ) # Prepare image snake_case = prepare_img() snake_case = image_processor(images=a , return_tensors='''pt''' ).pixel_values logger.info(f"""Converting model {model_name}...""" ) # load original state dict snake_case = torch.load(a , map_location=torch.device('''cpu''' ) ) # rename keys snake_case = rename_keys(a ) # create HuggingFace model and load state dict snake_case = PoolFormerForImageClassification(a ) model.load_state_dict(a ) model.eval() # Define image processor snake_case = PoolFormerImageProcessor(crop_pct=a ) snake_case = image_processor(images=prepare_img() , return_tensors='''pt''' ).pixel_values # forward pass snake_case = model(a ) snake_case = outputs.logits # define expected logit slices for different models if size == "s12": snake_case = torch.tensor([-0.3045, -0.6758, -0.4869] ) elif size == "s24": snake_case = torch.tensor([0.4402, -0.1374, -0.8045] ) elif size == "s36": snake_case = torch.tensor([-0.6080, -0.5133, -0.5898] ) elif size == "m36": snake_case = torch.tensor([0.3952, 0.2263, -1.2668] ) elif size == "m48": snake_case = torch.tensor([0.1167, -0.0656, -0.3423] ) else: raise ValueError(f"""Size {size} not supported""" ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , a , atol=1e-2 ) # finally, save model and image processor logger.info(f"""Saving PyTorch model and image processor to {pytorch_dump_folder_path}...""" ) Path(a ).mkdir(exist_ok=a ) model.save_pretrained(a ) print(f"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(a ) if __name__ == "__main__": _lowercase = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) _lowercase = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
1
'''simple docstring''' import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase : Dict = logging.get_logger(__name__) def _A ( snake_case__ : Any ): snake_case__ : Any = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: snake_case__ : Optional[int] = 1_28 elif "12-12" in model_name: snake_case__ : str = 12 snake_case__ : Optional[int] = 12 elif "14-14" in model_name: snake_case__ : int = 14 snake_case__ : List[Any] = 14 elif "16-16" in model_name: snake_case__ : Dict = 16 snake_case__ : str = 16 else: raise ValueError('''Model not supported''' ) snake_case__ : int = '''huggingface/label-files''' if "speech-commands" in model_name: snake_case__ : Optional[Any] = 35 snake_case__ : Optional[Any] = '''speech-commands-v2-id2label.json''' else: snake_case__ : Any = 5_27 snake_case__ : Any = '''audioset-id2label.json''' snake_case__ : int = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type='''dataset''' ) , '''r''' ) ) snake_case__ : int = {int(snake_case__ ): v for k, v in idalabel.items()} snake_case__ : str = idalabel snake_case__ : List[Any] = {v: k for k, v in idalabel.items()} return config def _A ( snake_case__ : int ): if "module.v" in name: snake_case__ : Dict = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: snake_case__ : Any = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: snake_case__ : int = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: snake_case__ : List[str] = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: snake_case__ : Any = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: snake_case__ : Union[str, Any] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: snake_case__ : Any = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: snake_case__ : List[Any] = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: snake_case__ : int = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: snake_case__ : Tuple = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: snake_case__ : Optional[Any] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: snake_case__ : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: snake_case__ : List[str] = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: snake_case__ : Tuple = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: snake_case__ : Tuple = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def _A ( snake_case__ : str , snake_case__ : List[str] ): for key in orig_state_dict.copy().keys(): snake_case__ : List[str] = orig_state_dict.pop(snake_case__ ) if "qkv" in key: snake_case__ : Tuple = key.split('''.''' ) snake_case__ : List[Any] = int(key_split[3] ) snake_case__ : Any = config.hidden_size if "weight" in key: snake_case__ : str = val[:dim, :] snake_case__ : List[str] = val[dim : dim * 2, :] snake_case__ : Tuple = val[-dim:, :] else: snake_case__ : Tuple = val[:dim] snake_case__ : Optional[Any] = val[dim : dim * 2] snake_case__ : Tuple = val[-dim:] else: snake_case__ : Union[str, Any] = val return orig_state_dict def _A ( snake_case__ : Union[str, Any] ): snake_case__ : Any = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) @torch.no_grad() def _A ( snake_case__ : Any , snake_case__ : Tuple , snake_case__ : List[str]=False ): snake_case__ : List[str] = get_audio_spectrogram_transformer_config(snake_case__ ) snake_case__ : Union[str, Any] = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict snake_case__ : Union[str, Any] = model_name_to_url[model_name] snake_case__ : Dict = torch.hub.load_state_dict_from_url(snake_case__ , map_location='''cpu''' ) # remove some keys remove_keys(snake_case__ ) # rename some keys snake_case__ : Union[str, Any] = convert_state_dict(snake_case__ , snake_case__ ) # load 🤗 model snake_case__ : List[Any] = ASTForAudioClassification(snake_case__ ) model.eval() model.load_state_dict(snake_case__ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 snake_case__ : Optional[Any] = -4.2_67_73_93 if '''speech-commands''' not in model_name else -6.84_59_78 snake_case__ : Tuple = 4.5_68_99_74 if '''speech-commands''' not in model_name else 5.5_65_45_26 snake_case__ : List[Any] = 10_24 if '''speech-commands''' not in model_name else 1_28 snake_case__ : Dict = ASTFeatureExtractor(mean=snake_case__ , std=snake_case__ , max_length=snake_case__ ) if "speech-commands" in model_name: snake_case__ : Union[str, Any] = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) snake_case__ : List[Any] = dataset[0]['''audio''']['''array'''] else: snake_case__ : Dict = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) snake_case__ ,snake_case__ : Optional[Any] = torchaudio.load(snake_case__ ) snake_case__ : List[Any] = waveform.squeeze().numpy() snake_case__ : Tuple = feature_extractor(snake_case__ , sampling_rate=1_60_00 , return_tensors='''pt''' ) # forward pass snake_case__ : Optional[int] = model(**snake_case__ ) snake_case__ : List[str] = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": snake_case__ : Dict = torch.tensor([-0.87_60, -7.00_42, -8.66_02] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": snake_case__ : str = torch.tensor([-1.19_86, -7.09_03, -8.27_18] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": snake_case__ : Any = torch.tensor([-2.61_28, -8.00_80, -9.43_44] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": snake_case__ : Optional[Any] = torch.tensor([-1.50_80, -7.45_34, -8.89_17] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": snake_case__ : List[Any] = torch.tensor([-0.50_50, -6.58_33, -8.08_43] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": snake_case__ : Optional[int] = torch.tensor([-0.38_26, -7.03_36, -8.24_13] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": snake_case__ : int = torch.tensor([-1.21_13, -6.91_01, -8.34_70] ) elif model_name == "ast-finetuned-speech-commands-v2": snake_case__ : Tuple = torch.tensor([6.15_89, -8.05_66, -8.79_84] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , snake_case__ , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(f'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(snake_case__ ) print(f'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(snake_case__ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(f'''MIT/{model_name}''' ) feature_extractor.push_to_hub(f'''MIT/{model_name}''' ) if __name__ == "__main__": _lowerCAmelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="ast-finetuned-audioset-10-10-0.4593", type=str, help="Name of the Audio Spectrogram Transformer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) _lowerCAmelCase : str = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
261
'''simple docstring''' def _A ( snake_case__ : list[int] , snake_case__ : list[int] ): snake_case__ : Tuple = len(snake_case__ ) print('''The following activities are selected:''' ) # The first activity is always selected snake_case__ : Optional[Any] = 0 print(snake_case__ , end=''',''' ) # Consider rest of the activities for j in range(snake_case__ ): # If this activity has start time greater than # or equal to the finish time of previously # selected activity, then select it if start[j] >= finish[i]: print(snake_case__ , end=''',''' ) snake_case__ : int = j if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : List[str] = [1, 3, 0, 5, 8, 5] _lowerCAmelCase : Dict = [2, 4, 6, 7, 9, 9] print_max_activities(start, finish)
261
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _lowerCAmelCase : Optional[int] = logging.get_logger(__name__) _lowerCAmelCase : Dict = { "bigcode/gpt_bigcode-santacoder": "https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json", } class snake_case ( __lowerCamelCase ): """simple docstring""" _lowerCAmelCase = 'gpt_bigcode' _lowerCAmelCase = ['past_key_values'] _lowerCAmelCase = { 'hidden_size': 'n_embd', 'max_position_embeddings': 'n_positions', 'num_attention_heads': 'n_head', 'num_hidden_layers': 'n_layer', } def __init__( self , lowerCamelCase=50257 , lowerCamelCase=1024 , lowerCamelCase=768 , lowerCamelCase=12 , lowerCamelCase=12 , lowerCamelCase=None , lowerCamelCase="gelu_pytorch_tanh" , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=0.1 , lowerCamelCase=1E-5 , lowerCamelCase=0.02 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=50256 , lowerCamelCase=50256 , lowerCamelCase=True , lowerCamelCase=True , lowerCamelCase=True , **lowerCamelCase , ) -> int: """simple docstring""" snake_case__ : List[str] = vocab_size snake_case__ : int = n_positions snake_case__ : Union[str, Any] = n_embd snake_case__ : Union[str, Any] = n_layer snake_case__ : Dict = n_head snake_case__ : List[str] = n_inner snake_case__ : List[Any] = activation_function snake_case__ : Union[str, Any] = resid_pdrop snake_case__ : str = embd_pdrop snake_case__ : Optional[Any] = attn_pdrop snake_case__ : int = layer_norm_epsilon snake_case__ : List[str] = initializer_range snake_case__ : int = scale_attn_weights snake_case__ : int = use_cache snake_case__ : str = attention_softmax_in_fpaa snake_case__ : Any = scale_attention_softmax_in_fpaa snake_case__ : Tuple = multi_query snake_case__ : Union[str, Any] = bos_token_id snake_case__ : Optional[Any] = eos_token_id super().__init__(bos_token_id=lowerCamelCase , eos_token_id=lowerCamelCase , **lowerCamelCase )
694
'''simple docstring''' from __future__ import annotations def _A ( snake_case__ : list[float] , snake_case__ : list[float] ): snake_case__ : Dict = sorted(numsa + numsa ) snake_case__ ,snake_case__ : Tuple = divmod(len(snake_case__ ) , 2 ) if mod == 1: return all_numbers[div] else: return (all_numbers[div] + all_numbers[div - 1]) / 2 if __name__ == "__main__": import doctest doctest.testmod() _lowerCAmelCase : Tuple = [float(x) for x in input("Enter the elements of first array: ").split()] _lowerCAmelCase : List[str] = [float(x) for x in input("Enter the elements of second array: ").split()] print(F'''The median of two arrays is: {median_of_two_arrays(array_a, array_a)}''')
694
1
"""simple docstring""" import os import sys from contextlib import contextmanager # Windows only if os.name == "nt": import ctypes import msvcrt # noqa class UpperCamelCase__ ( ctypes.Structure ): """simple docstring""" A__ : List[Any] = [("size", ctypes.c_int), ("visible", ctypes.c_byte)] def _lowerCamelCase ( ) -> Optional[int]: """simple docstring""" if os.name == "nt": A__ = CursorInfo() A__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase_, ctypes.byref(UpperCAmelCase_ ) ) A__ = False ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase_, ctypes.byref(UpperCAmelCase_ ) ) elif os.name == "posix": sys.stdout.write("\033[?25l" ) sys.stdout.flush() def _lowerCamelCase ( ) -> str: """simple docstring""" if os.name == "nt": A__ = CursorInfo() A__ = ctypes.windll.kernelaa.GetStdHandle(-11 ) ctypes.windll.kernelaa.GetConsoleCursorInfo(UpperCAmelCase_, ctypes.byref(UpperCAmelCase_ ) ) A__ = True ctypes.windll.kernelaa.SetConsoleCursorInfo(UpperCAmelCase_, ctypes.byref(UpperCAmelCase_ ) ) elif os.name == "posix": sys.stdout.write("\033[?25h" ) sys.stdout.flush() @contextmanager def _lowerCamelCase ( ) -> Dict: """simple docstring""" try: hide_cursor() yield finally: show_cursor()
104
'''simple docstring''' def __UpperCamelCase ( UpperCAmelCase ): lowercase__ : Optional[int] = 0 lowercase__ : int = len(UpperCAmelCase ) for i in range(n - 1 ): for j in range(i + 1 , UpperCAmelCase ): if arr[i] > arr[j]: num_inversions += 1 return num_inversions def __UpperCamelCase ( UpperCAmelCase ): if len(UpperCAmelCase ) <= 1: return arr, 0 lowercase__ : List[str] = len(UpperCAmelCase ) // 2 lowercase__ : Optional[Any] = arr[0:mid] lowercase__ : Any = arr[mid:] lowercase__ , lowercase__ : Any = count_inversions_recursive(UpperCAmelCase ) lowercase__ , lowercase__ : List[str] = count_inversions_recursive(UpperCAmelCase ) lowercase__ , lowercase__ : Optional[Any] = _count_cross_inversions(UpperCAmelCase , UpperCAmelCase ) lowercase__ : Optional[Any] = inversion_p + inversions_q + cross_inversions return c, num_inversions def __UpperCamelCase ( UpperCAmelCase , UpperCAmelCase ): lowercase__ : Union[str, Any] = [] lowercase__ : List[Any] = 0 while i < len(UpperCAmelCase ) and j < len(UpperCAmelCase ): if p[i] > q[j]: # if P[1] > Q[j], then P[k] > Q[k] for all i < k <= len(P) # These are all inversions. The claim emerges from the # property that P is sorted. num_inversion += len(UpperCAmelCase ) - i r.append(q[j] ) j += 1 else: r.append(p[i] ) i += 1 if i < len(UpperCAmelCase ): r.extend(p[i:] ) else: r.extend(q[j:] ) return r, num_inversion def __UpperCamelCase ( ): lowercase__ : str = [10, 2, 1, 5, 5, 2, 11] # this arr has 8 inversions: # (10, 2), (10, 1), (10, 5), (10, 5), (10, 2), (2, 1), (5, 2), (5, 2) lowercase__ : Dict = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : Union[str, Any] = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 8 print('''number of inversions = ''' , UpperCAmelCase ) # testing an array with zero inversion (a sorted arr_1) arr_a.sort() lowercase__ : Optional[int] = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : int = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase ) # an empty list should also have zero inversions lowercase__ : Optional[Any] = [] lowercase__ : Any = count_inversions_bf(UpperCAmelCase ) lowercase__ , lowercase__ : List[Any] = count_inversions_recursive(UpperCAmelCase ) assert num_inversions_bf == num_inversions_recursive == 0 print('''number of inversions = ''' , UpperCAmelCase ) if __name__ == "__main__": main()
152
0
import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCAmelCase : def __init__( self , _lowerCAmelCase , _lowerCAmelCase=2 , _lowerCAmelCase=8 , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=True , _lowerCAmelCase=99 , _lowerCAmelCase=16 , _lowerCAmelCase=5 , _lowerCAmelCase=2 , _lowerCAmelCase=36 , _lowerCAmelCase="gelu" , _lowerCAmelCase=0.0 , _lowerCAmelCase=0.0 , _lowerCAmelCase=512 , _lowerCAmelCase=16 , _lowerCAmelCase=2 , _lowerCAmelCase=0.02 , _lowerCAmelCase=3 , _lowerCAmelCase=4 , _lowerCAmelCase=None , ): _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = seq_length _lowerCAmelCase = is_training _lowerCAmelCase = use_input_mask _lowerCAmelCase = use_token_type_ids _lowerCAmelCase = use_labels _lowerCAmelCase = vocab_size _lowerCAmelCase = hidden_size _lowerCAmelCase = num_hidden_layers _lowerCAmelCase = num_attention_heads _lowerCAmelCase = intermediate_size _lowerCAmelCase = hidden_act _lowerCAmelCase = hidden_dropout_prob _lowerCAmelCase = attention_probs_dropout_prob _lowerCAmelCase = max_position_embeddings _lowerCAmelCase = type_vocab_size _lowerCAmelCase = type_sequence_label_size _lowerCAmelCase = initializer_range _lowerCAmelCase = num_labels _lowerCAmelCase = num_choices _lowerCAmelCase = scope def __lowerCAmelCase ( self ): _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _lowerCAmelCase = None if self.use_input_mask: _lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _lowerCAmelCase = None if self.use_token_type_ids: _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _lowerCAmelCase = None _lowerCAmelCase = None _lowerCAmelCase = None if self.use_labels: _lowerCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _lowerCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _lowerCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCAmelCase ( self ): return MraConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_lowerCAmelCase , initializer_range=self.initializer_range , ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.get_config() _lowerCAmelCase = 300 return config def __lowerCAmelCase ( self ): ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = self.prepare_config_and_inputs() _lowerCAmelCase = True _lowerCAmelCase = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) _lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) _lowerCAmelCase = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ): _lowerCAmelCase = True _lowerCAmelCase = MraModel(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , encoder_attention_mask=_lowerCAmelCase , ) _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , encoder_hidden_states=_lowerCAmelCase , ) _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForMaskedLM(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = MraForQuestionAnswering(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , start_positions=_lowerCAmelCase , end_positions=_lowerCAmelCase , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForSequenceClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_labels _lowerCAmelCase = MraForTokenClassification(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = model(_lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def __lowerCAmelCase ( self , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ): _lowerCAmelCase = self.num_choices _lowerCAmelCase = MraForMultipleChoice(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() _lowerCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _lowerCAmelCase = model( _lowerCAmelCase , attention_mask=_lowerCAmelCase , token_type_ids=_lowerCAmelCase , labels=_lowerCAmelCase , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.prepare_config_and_inputs() ( ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ( _lowerCAmelCase ) , ) = config_and_inputs _lowerCAmelCase = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = False SCREAMING_SNAKE_CASE__ = () def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModelTester(self ) _lowerCAmelCase = ConfigTester(self , config_class=_lowerCAmelCase , hidden_size=37 ) def __lowerCAmelCase ( self ): self.config_tester.run_common_tests() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCAmelCase = type self.model_tester.create_and_check_model(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCAmelCase ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCAmelCase ) @slow def __lowerCAmelCase ( self ): for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCAmelCase = MraModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def __lowerCAmelCase ( self ): return @require_torch class UpperCAmelCase ( unittest.TestCase ): @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = torch.Size((1, 256, 768) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[-0.0_140, 0.0_830, -0.0_381], [0.1_546, 0.1_402, 0.0_220], [0.1_162, 0.0_851, 0.0_165]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) _lowerCAmelCase = torch.arange(256 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 256, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[9.2_595, -3.6_038, 11.8_819], [9.3_869, -3.2_693, 11.0_956], [11.8_524, -3.4_938, 13.1_210]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) ) @slow def __lowerCAmelCase ( self ): _lowerCAmelCase = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) _lowerCAmelCase = torch.arange(4_096 ).unsqueeze(0 ) with torch.no_grad(): _lowerCAmelCase = model(_lowerCAmelCase )[0] _lowerCAmelCase = 50_265 _lowerCAmelCase = torch.Size((1, 4_096, vocab_size) ) self.assertEqual(output.shape , _lowerCAmelCase ) _lowerCAmelCase = torch.tensor( [[[5.4_789, -2.3_564, 7.5_064], [7.9_067, -1.3_369, 9.9_668], [9.0_712, -1.8_106, 7.0_380]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , _lowerCAmelCase , atol=1E-4 ) )
664
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_video_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import VivitImageProcessor class UpperCAmelCase ( unittest.TestCase ): def __init__( self , _lowerCAmelCase , _lowerCAmelCase=7 , _lowerCAmelCase=3 , _lowerCAmelCase=10 , _lowerCAmelCase=18 , _lowerCAmelCase=30 , _lowerCAmelCase=400 , _lowerCAmelCase=True , _lowerCAmelCase=None , _lowerCAmelCase=True , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=[0.5, 0.5, 0.5] , _lowerCAmelCase=None , ): _lowerCAmelCase = size if size is not None else {'''shortest_edge''': 18} _lowerCAmelCase = crop_size if crop_size is not None else {'''height''': 18, '''width''': 18} _lowerCAmelCase = parent _lowerCAmelCase = batch_size _lowerCAmelCase = num_channels _lowerCAmelCase = num_frames _lowerCAmelCase = image_size _lowerCAmelCase = min_resolution _lowerCAmelCase = max_resolution _lowerCAmelCase = do_resize _lowerCAmelCase = size _lowerCAmelCase = do_normalize _lowerCAmelCase = image_mean _lowerCAmelCase = image_std _lowerCAmelCase = crop_size def __lowerCAmelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, "crop_size": self.crop_size, } @require_torch @require_vision class UpperCAmelCase ( snake_case_ ,unittest.TestCase ): SCREAMING_SNAKE_CASE__ = VivitImageProcessor if is_vision_available() else None def __lowerCAmelCase ( self ): _lowerCAmelCase = VivitImageProcessingTester(self ) @property def __lowerCAmelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_mean''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''image_std''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_normalize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_resize''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''do_center_crop''' ) ) self.assertTrue(hasattr(_lowerCAmelCase , '''size''' ) ) def __lowerCAmelCase ( self ): _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'''shortest_edge''': 18} ) self.assertEqual(image_processor.crop_size , {'''height''': 18, '''width''': 18} ) _lowerCAmelCase = self.image_processing_class.from_dict(self.image_processor_dict , size=42 , crop_size=84 ) self.assertEqual(image_processor.size , {'''shortest_edge''': 42} ) self.assertEqual(image_processor.crop_size , {'''height''': 84, '''width''': 84} ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PIL videos _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , Image.Image ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , numpify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , np.ndarray ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) def __lowerCAmelCase ( self ): # Initialize image_processing _lowerCAmelCase = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors _lowerCAmelCase = prepare_video_inputs(self.image_processor_tester , equal_resolution=_lowerCAmelCase , torchify=_lowerCAmelCase ) for video in video_inputs: self.assertIsInstance(_lowerCAmelCase , _lowerCAmelCase ) self.assertIsInstance(video[0] , torch.Tensor ) # Test not batched input _lowerCAmelCase = image_processing(video_inputs[0] , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( 1, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , ) # Test batched _lowerCAmelCase = image_processing(_lowerCAmelCase , return_tensors='''pt''' ).pixel_values self.assertEqual( encoded_videos.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_frames, self.image_processor_tester.num_channels, self.image_processor_tester.crop_size['''height'''], self.image_processor_tester.crop_size['''width'''], ) , )
664
1
'''simple docstring''' import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin _SCREAMING_SNAKE_CASE = get_tests_dir("fixtures/test_sentencepiece.model") if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right _SCREAMING_SNAKE_CASE = 25_00_04 _SCREAMING_SNAKE_CASE = 25_00_20 @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( lowerCAmelCase ,unittest.TestCase ): '''simple docstring''' _UpperCamelCase = MBartTokenizer _UpperCamelCase = MBartTokenizerFast _UpperCamelCase = True _UpperCamelCase = True def __snake_case ( self : Tuple) -> Tuple: super().setUp() # We have a SentencePiece fixture for testing A_ = MBartTokenizer(A_ , keep_accents=A_) tokenizer.save_pretrained(self.tmpdirname) def __snake_case ( self : int) -> Optional[Any]: A_ = MBartTokenizer(A_ , keep_accents=A_) A_ = tokenizer.tokenize('This is a test') self.assertListEqual(A_ , ['▁This', '▁is', '▁a', '▁t', 'est']) self.assertListEqual( tokenizer.convert_tokens_to_ids(A_) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) A_ = tokenizer.tokenize('I was born in 92000, and this is falsé.') self.assertListEqual( A_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '9', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', 'é', '.', ] , ) A_ = tokenizer.convert_tokens_to_ids(A_) self.assertListEqual( A_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) A_ = tokenizer.convert_ids_to_tokens(A_) self.assertListEqual( A_ , [ SPIECE_UNDERLINE + 'I', SPIECE_UNDERLINE + 'was', SPIECE_UNDERLINE + 'b', 'or', 'n', SPIECE_UNDERLINE + 'in', SPIECE_UNDERLINE + '', '<unk>', '2', '0', '0', '0', ',', SPIECE_UNDERLINE + 'and', SPIECE_UNDERLINE + 'this', SPIECE_UNDERLINE + 'is', SPIECE_UNDERLINE + 'f', 'al', 's', '<unk>', '.', ] , ) def __snake_case ( self : Optional[int]) -> Optional[Any]: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return A_ = (self.rust_tokenizer_class, 'hf-internal-testing/tiny-random-mbart', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})'): A_ = self.rust_tokenizer_class.from_pretrained(A_ , **A_) A_ = self.tokenizer_class.from_pretrained(A_ , **A_) A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(A_) A_ = tokenizer_p.save_pretrained(A_) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) A_ = tuple(f for f in tokenizer_r_files if 'tokenizer.json' not in f) self.assertSequenceEqual(A_ , A_) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(A_) A_ = tokenizer_p.from_pretrained(A_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_)) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(A_) # Save tokenizer rust, legacy_format=True A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(A_ , legacy_format=A_) A_ = tokenizer_p.save_pretrained(A_) # Checks it save with the same files self.assertSequenceEqual(A_ , A_) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(A_) A_ = tokenizer_p.from_pretrained(A_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_)) shutil.rmtree(A_) # Save tokenizer rust, legacy_format=False A_ = tempfile.mkdtemp() A_ = tokenizer_r.save_pretrained(A_ , legacy_format=A_) A_ = tokenizer_p.save_pretrained(A_) # Checks it saved the tokenizer.json file self.assertTrue(any('tokenizer.json' in f for f in tokenizer_r_files)) # Checks everything loads correctly in the same way A_ = tokenizer_r.from_pretrained(A_) A_ = tokenizer_p.from_pretrained(A_) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(A_ , A_)) shutil.rmtree(A_) @require_torch @require_sentencepiece @require_tokenizers class __UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' _UpperCamelCase = """facebook/mbart-large-en-ro""" _UpperCamelCase = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia\'s stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _UpperCamelCase = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _UpperCamelCase = [8_274, 127_873, 25_916, 7, 8_622, 2_071, 438, 67_485, 53, 187_895, 23, 51_712, 2, EN_CODE] @classmethod def __snake_case ( cls : Tuple) -> int: A_ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='en_XX' , tgt_lang='ro_RO') A_ = 1 return cls def __snake_case ( self : List[str]) -> Any: self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ar_AR'] , 250_001) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['en_EN'] , 250_004) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['ro_RO'] , 250_020) def __snake_case ( self : Dict) -> List[str]: A_ = self.tokenizer.batch_encode_plus(self.src_text).input_ids[0] self.assertListEqual(self.expected_src_tokens , A_) def __snake_case ( self : Optional[Any]) -> Any: self.assertIn(A_ , self.tokenizer.all_special_ids) A_ = [RO_CODE, 884, 9_019, 96, 9, 916, 86_792, 36, 18_743, 15_596, 5, 2] A_ = self.tokenizer.decode(A_ , skip_special_tokens=A_) A_ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=A_) self.assertEqual(A_ , A_) self.assertNotIn(self.tokenizer.eos_token , A_) def __snake_case ( self : Tuple) -> Optional[int]: A_ = ['this is gunna be a long sentence ' * 20] assert isinstance(src_text[0] , A_) A_ = 10 A_ = self.tokenizer(A_ , max_length=A_ , truncation=A_).input_ids[0] self.assertEqual(ids[-2] , 2) self.assertEqual(ids[-1] , A_) self.assertEqual(len(A_) , A_) def __snake_case ( self : List[Any]) -> Tuple: self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['<mask>', 'ar_AR']) , [250_026, 250_001]) def __snake_case ( self : List[str]) -> Dict: A_ = tempfile.mkdtemp() A_ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(A_) A_ = MBartTokenizer.from_pretrained(A_) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , A_) @require_torch def __snake_case ( self : int) -> Tuple: A_ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=A_ , return_tensors='pt') A_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __snake_case ( self : Any) -> List[Any]: A_ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=len(self.expected_src_tokens) , return_tensors='pt' , ) A_ = shift_tokens_right(batch['labels'] , self.tokenizer.pad_token_id) self.assertIsInstance(A_ , A_) self.assertEqual((2, 14) , batch.input_ids.shape) self.assertEqual((2, 14) , batch.attention_mask.shape) A_ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , A_) self.assertEqual(2 , batch.decoder_input_ids[0, -1]) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , []) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE]) def __snake_case ( self : Union[str, Any]) -> List[str]: A_ = self.tokenizer(self.src_text , padding=A_ , truncation=A_ , max_length=3 , return_tensors='pt') A_ = self.tokenizer( text_target=self.tgt_text , padding=A_ , truncation=A_ , max_length=10 , return_tensors='pt') A_ = targets['input_ids'] A_ = shift_tokens_right(A_ , self.tokenizer.pad_token_id) self.assertEqual(batch.input_ids.shape[1] , 3) self.assertEqual(batch.decoder_input_ids.shape[1] , 10) @require_torch def __snake_case ( self : Union[str, Any]) -> int: A_ = self.tokenizer._build_translation_inputs( 'A test' , return_tensors='pt' , src_lang='en_XX' , tgt_lang='ar_AR') self.assertEqual( nested_simplify(A_) , { # A, test, EOS, en_XX 'input_ids': [[62, 3_034, 2, 250_004]], 'attention_mask': [[1, 1, 1, 1]], # ar_AR 'forced_bos_token_id': 250_001, } , )
366
import argparse import shutil from pathlib import Path from tqdm import tqdm from transformers import AutoTokenizer def _UpperCAmelCase ( A , A , A , A=1024 ): '''simple docstring''' UpperCAmelCase__ , UpperCAmelCase__ =[], [] UpperCAmelCase__ =list(zip(A , A ) ) UpperCAmelCase__ , UpperCAmelCase__ =sorted_examples[0] def is_too_big(A ): return tok(A , return_tensors="pt" ).input_ids.shape[1] > max_tokens for src, tgt in tqdm(sorted_examples[1:] ): UpperCAmelCase__ =new_src + " " + src UpperCAmelCase__ =new_tgt + " " + tgt if is_too_big(A ) or is_too_big(A ): # cant fit, finalize example finished_src.append(A ) finished_tgt.append(A ) UpperCAmelCase__ , UpperCAmelCase__ =src, tgt else: # can fit, keep adding UpperCAmelCase__ , UpperCAmelCase__ =cand_src, cand_tgt # cleanup if new_src: assert new_tgt finished_src.append(A ) finished_tgt.append(A ) return finished_src, finished_tgt def _UpperCAmelCase ( A , A , A , A ): '''simple docstring''' UpperCAmelCase__ =Path(A ) save_path.mkdir(exist_ok=A ) for split in ["train"]: UpperCAmelCase__ , UpperCAmelCase__ =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" UpperCAmelCase__ =[x.rstrip() for x in Path(A ).open().readlines()] UpperCAmelCase__ =[x.rstrip() for x in Path(A ).open().readlines()] UpperCAmelCase__ , UpperCAmelCase__ =pack_examples(A , A , A , A ) print(F"""packed {split} split from {len(A )} examples -> {len(A )}.""" ) Path(save_path / F"""{split}.source""" ).open("w" ).write("\n".join(A ) ) Path(save_path / F"""{split}.target""" ).open("w" ).write("\n".join(A ) ) for split in ["val", "test"]: UpperCAmelCase__ , UpperCAmelCase__ =data_dir / F"""{split}.source""", data_dir / F"""{split}.target""" shutil.copyfile(A , save_path / F"""{split}.source""" ) shutil.copyfile(A , save_path / F"""{split}.target""" ) def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =argparse.ArgumentParser() parser.add_argument("--tok_name" , type=A , help="like facebook/bart-large-cnn,t5-base, etc." ) parser.add_argument("--max_seq_len" , type=A , default=128 ) parser.add_argument("--data_dir" , type=A ) parser.add_argument("--save_path" , type=A ) UpperCAmelCase__ =parser.parse_args() UpperCAmelCase__ =AutoTokenizer.from_pretrained(args.tok_name ) return pack_data_dir(A , Path(args.data_dir ) , args.max_seq_len , args.save_path ) if __name__ == "__main__": packer_cli()
625
0
def lowerCamelCase_ ( UpperCamelCase__ : int ) -> bool: """simple docstring""" return sum(i for i in range(1 , number // 2 + 1 ) if number % i == 0 ) == number if __name__ == "__main__": print("Program to check whether a number is a Perfect number or not...") __A = int(input("Enter number: ").strip()) print(f'''{number} is {'' if perfect(number) else 'not '}a Perfect Number.''')
713
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py __A = "src/transformers" __A = "docs/source/en/tasks" def lowerCamelCase_ ( UpperCamelCase__ : int , UpperCamelCase__ : Tuple , UpperCamelCase__ : List[Any] ) -> List[str]: """simple docstring""" with open(UpperCamelCase__ , 'r' , encoding='utf-8' , newline='\n' ) as f: __lowerCamelCase = f.readlines() # Find the start prompt. __lowerCamelCase = 0 while not lines[start_index].startswith(UpperCamelCase__ ): start_index += 1 start_index += 1 __lowerCamelCase = start_index while not lines[end_index].startswith(UpperCamelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. __A = direct_transformers_import(TRANSFORMERS_PATH) __A = { "asr.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, "audio_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, "language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, "image_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, "masked_language_modeling.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, "multiple_choice.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, "object_detection.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, "question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, "semantic_segmentation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, "sequence_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, "summarization.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "token_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, "translation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, "video_classification.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, "document_question_answering.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, "monocular_depth_estimation.md": transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). __A = { "summarization.md": ("nllb",), "translation.md": ("nllb",), } def lowerCamelCase_ ( UpperCamelCase__ : Dict ) -> List[Any]: """simple docstring""" __lowerCamelCase = TASK_GUIDE_TO_MODELS[task_guide] __lowerCamelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCamelCase__ , set() ) __lowerCamelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def lowerCamelCase_ ( UpperCamelCase__ : List[Any] , UpperCamelCase__ : Any=False ) -> Any: """simple docstring""" __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = _find_text_in_file( filename=os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , start_prompt='<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->' , end_prompt='<!--End of the generated tip-->' , ) __lowerCamelCase = get_model_list_for_task(UpperCamelCase__ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCamelCase__ , UpperCamelCase__ ) , 'w' , encoding='utf-8' , newline='\n' ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" ' to fix this.' ) if __name__ == "__main__": __A = argparse.ArgumentParser() parser.add_argument("--fix_and_overwrite", action="store_true", help="Whether to fix inconsistencies.") __A = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
167
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCAmelCase = logging.get_logger(__name__) __UpperCAmelCase = { '''bigcode/gpt_bigcode-santacoder''': '''https://huggingface.co/bigcode/gpt_bigcode-santacoder/resolve/main/config.json''', } class lowerCAmelCase_ ( a__ ): UpperCAmelCase__ : Optional[Any] = "gpt_bigcode" UpperCAmelCase__ : int = ["past_key_values"] UpperCAmelCase__ : Optional[int] = { "hidden_size": "n_embd", "max_position_embeddings": "n_positions", "num_attention_heads": "n_head", "num_hidden_layers": "n_layer", } def __init__( self, SCREAMING_SNAKE_CASE_=5_0257, SCREAMING_SNAKE_CASE_=1024, SCREAMING_SNAKE_CASE_=768, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=12, SCREAMING_SNAKE_CASE_=None, SCREAMING_SNAKE_CASE_="gelu_pytorch_tanh", SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=0.1, SCREAMING_SNAKE_CASE_=1e-5, SCREAMING_SNAKE_CASE_=0.02, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=5_0256, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, SCREAMING_SNAKE_CASE_=True, **SCREAMING_SNAKE_CASE_, ) -> Any: UpperCamelCase : int = vocab_size UpperCamelCase : Any = n_positions UpperCamelCase : Optional[int] = n_embd UpperCamelCase : int = n_layer UpperCamelCase : int = n_head UpperCamelCase : Any = n_inner UpperCamelCase : int = activation_function UpperCamelCase : Tuple = resid_pdrop UpperCamelCase : int = embd_pdrop UpperCamelCase : Any = attn_pdrop UpperCamelCase : int = layer_norm_epsilon UpperCamelCase : Tuple = initializer_range UpperCamelCase : Dict = scale_attn_weights UpperCamelCase : Union[str, Any] = use_cache UpperCamelCase : Dict = attention_softmax_in_fpaa UpperCamelCase : Any = scale_attention_softmax_in_fpaa UpperCamelCase : Optional[Any] = multi_query UpperCamelCase : Any = bos_token_id UpperCamelCase : Union[str, Any] = eos_token_id super().__init__(bos_token_id=SCREAMING_SNAKE_CASE_, eos_token_id=SCREAMING_SNAKE_CASE_, **SCREAMING_SNAKE_CASE_ )
40
import logging import os from .state import PartialState class __UpperCamelCase ( logging.LoggerAdapter ): """simple docstring""" @staticmethod def _UpperCAmelCase ( SCREAMING_SNAKE_CASE ) -> Optional[Any]: a__ = PartialState() return not main_process_only or (main_process_only and state.is_main_process) def _UpperCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) -> Optional[int]: if PartialState._shared_state == {}: raise RuntimeError( '''You must initialize the accelerate state by calling either `PartialState()` or `Accelerator()` before using the logging utility.''' ) a__ = kwargs.pop('''main_process_only''' , SCREAMING_SNAKE_CASE ) a__ = kwargs.pop('''in_order''' , SCREAMING_SNAKE_CASE ) if self.isEnabledFor(SCREAMING_SNAKE_CASE ): if self._should_log(SCREAMING_SNAKE_CASE ): a__ , a__ = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) elif in_order: a__ = PartialState() for i in range(state.num_processes ): if i == state.process_index: a__ , a__ = self.process(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.logger.log(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE ) state.wait_for_everyone() def __a ( __UpperCAmelCase , __UpperCAmelCase = None ): if log_level is None: a__ = os.environ.get('''ACCELERATE_LOG_LEVEL''' , __UpperCAmelCase ) a__ = logging.getLogger(__UpperCAmelCase ) if log_level is not None: logger.setLevel(log_level.upper() ) logger.root.setLevel(log_level.upper() ) return MultiProcessAdapter(__UpperCAmelCase , {} )
194
0
'''simple docstring''' import unittest from transformers import PegasusTokenizer, PegasusTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __a: Optional[Any] = get_tests_dir("""fixtures/test_sentencepiece_no_bos.model""") @require_sentencepiece @require_tokenizers class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = PegasusTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _lowerCAmelCase( self ) -> int: super().setUp() # We have a SentencePiece fixture for testing lowercase__ : str = PegasusTokenizer(__lowerCAmelCase ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCAmelCase( self ) -> List[str]: return PegasusTokenizer.from_pretrained('''google/pegasus-large''' ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> Union[str, Any]: return ("This is a test", "This is a test") def _lowerCAmelCase( self ) -> Tuple: lowercase__ : List[str] = '''</s>''' lowercase__ : List[Any] = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__lowerCAmelCase ) , __lowerCAmelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__lowerCAmelCase ) , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Dict: lowercase__ : Optional[Any] = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<pad>''' ) self.assertEqual(vocab_keys[1] , '''</s>''' ) self.assertEqual(vocab_keys[-1] , '''v''' ) self.assertEqual(len(__lowerCAmelCase ) , 1103 ) def _lowerCAmelCase( self ) -> Union[str, Any]: self.assertEqual(self.get_tokenizer().vocab_size , 1103 ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : int = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ : Optional[int] = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ : Any = ( '''Let\'s see which <unk> is the better <unk_token_11> one <mask_1> It seems like this <mask_2> was important''' ''' </s> <pad> <pad> <pad>''' ) lowercase__ : Union[str, Any] = rust_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] lowercase__ : Optional[int] = py_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : str = self._large_tokenizer # <mask_1> masks whole sentence while <mask_2> masks single word lowercase__ : Union[str, Any] = '''<mask_1> To ensure a <mask_2> flow of bank resolutions.''' lowercase__ : int = [2, 413, 615, 114, 3, 1971, 113, 1679, 10710, 107, 1] lowercase__ : List[Any] = tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : str = self._large_tokenizer # The tracebacks for the following asserts are **better** without messages or self.assertEqual assert tokenizer.vocab_size == 96103 assert tokenizer.pad_token_id == 0 assert tokenizer.eos_token_id == 1 assert tokenizer.offset == 103 assert tokenizer.unk_token_id == tokenizer.offset + 2 == 105 assert tokenizer.unk_token == "<unk>" assert tokenizer.model_max_length == 1024 lowercase__ : Optional[Any] = '''To ensure a smooth flow of bank resolutions.''' lowercase__ : List[Any] = [413, 615, 114, 2291, 1971, 113, 1679, 10710, 107, 1] lowercase__ : str = tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) assert tokenizer.convert_ids_to_tokens([0, 1, 2, 3] ) == ["<pad>", "</s>", "<mask_1>", "<mask_2>"] @require_torch def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : List[str] = ['''This is going to be way too long.''' * 150, '''short example'''] lowercase__ : Tuple = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase__ : Optional[Any] = self._large_tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) lowercase__ : Dict = self._large_tokenizer( text_target=__lowerCAmelCase , max_length=5 , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 1024) assert batch.attention_mask.shape == (2, 1024) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCAmelCase ) == 2 # input_ids, attention_mask. @slow def _lowerCAmelCase( self ) -> int: # fmt: off lowercase__ : List[Any] = {'''input_ids''': [[38979, 143, 18485, 606, 130, 26669, 87686, 121, 54189, 1129, 111, 26669, 87686, 121, 9114, 14787, 121, 13249, 158, 592, 956, 121, 14621, 31576, 143, 62613, 108, 9688, 930, 43430, 11562, 62613, 304, 108, 11443, 897, 108, 9314, 17415, 63399, 108, 11443, 7614, 18316, 118, 4284, 7148, 12430, 143, 1400, 25703, 158, 111, 4284, 7148, 11772, 143, 21297, 1064, 158, 122, 204, 3506, 1754, 1133, 14787, 1581, 115, 33224, 4482, 111, 1355, 110, 29173, 317, 50833, 108, 20147, 94665, 111, 77198, 107, 1], [110, 62613, 117, 638, 112, 1133, 121, 20098, 1355, 79050, 13872, 135, 1596, 53541, 1352, 141, 13039, 5542, 124, 302, 518, 111, 268, 2956, 115, 149, 4427, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [139, 1235, 2799, 18289, 17780, 204, 109, 9474, 1296, 107, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__lowerCAmelCase , model_name='''google/bigbird-pegasus-large-arxiv''' , revision='''ba85d0851d708441f91440d509690f1ab6353415''' , ) @require_sentencepiece @require_tokenizers class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = PegasusTokenizer SCREAMING_SNAKE_CASE = PegasusTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = True def _lowerCAmelCase( self ) -> Dict: super().setUp() # We have a SentencePiece fixture for testing lowercase__ : Optional[Any] = PegasusTokenizer(__lowerCAmelCase , offset=0 , mask_token_sent=__lowerCAmelCase , mask_token='''[MASK]''' ) tokenizer.save_pretrained(self.tmpdirname ) @cached_property def _lowerCAmelCase( self ) -> Optional[Any]: return PegasusTokenizer.from_pretrained('''google/bigbird-pegasus-large-arxiv''' ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> PegasusTokenizer: return PegasusTokenizer.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase ) -> int: return ("This is a test", "This is a test") def _lowerCAmelCase( self ) -> int: lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ : Any = self.tokenizer_class.from_pretrained(self.tmpdirname ) lowercase__ : Tuple = ( '''Let\'s see which <unk> is the better <unk_token> one [MASK] It seems like this [MASK] was important </s>''' ''' <pad> <pad> <pad>''' ) lowercase__ : Optional[Any] = rust_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] lowercase__ : Dict = py_tokenizer([raw_input_str] , return_tensors=__lowerCAmelCase , add_special_tokens=__lowerCAmelCase ).input_ids[0] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) @require_torch def _lowerCAmelCase( self ) -> str: lowercase__ : List[str] = ['''This is going to be way too long.''' * 1000, '''short example'''] lowercase__ : Dict = ['''not super long but more than 5 tokens''', '''tiny'''] lowercase__ : Union[str, Any] = self._large_tokenizer(__lowerCAmelCase , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) lowercase__ : str = self._large_tokenizer( text_target=__lowerCAmelCase , max_length=5 , padding=__lowerCAmelCase , truncation=__lowerCAmelCase , return_tensors='''pt''' ) assert batch.input_ids.shape == (2, 4096) assert batch.attention_mask.shape == (2, 4096) assert targets["input_ids"].shape == (2, 5) assert len(__lowerCAmelCase ) == 2 # input_ids, attention_mask. def _lowerCAmelCase( self ) -> Union[str, Any]: lowercase__ : str = ( '''This is an example string that is used to test the original TF implementation against the HF''' ''' implementation''' ) lowercase__ : Dict = self._large_tokenizer(__lowerCAmelCase ).input_ids self.assertListEqual( __lowerCAmelCase , [182, 117, 142, 587, 4211, 120, 117, 263, 112, 804, 109, 856, 25016, 3137, 464, 109, 26955, 3137, 1] , )
428
'''simple docstring''' import unittest from datasets import load_dataset from transformers import BloomTokenizerFast from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class UpperCAmelCase ( a__ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE = None SCREAMING_SNAKE_CASE = BloomTokenizerFast SCREAMING_SNAKE_CASE = BloomTokenizerFast SCREAMING_SNAKE_CASE = True SCREAMING_SNAKE_CASE = False SCREAMING_SNAKE_CASE = "tokenizer_file" SCREAMING_SNAKE_CASE = {"bos_token": "<s>", "eos_token": "</s>", "unk_token": "<unk>", "pad_token": "<pad>"} def _lowerCAmelCase( self ) -> Dict: super().setUp() lowercase__ : List[Any] = BloomTokenizerFast.from_pretrained('''bigscience/tokenizer''' ) tokenizer.save_pretrained(self.tmpdirname ) def _lowerCAmelCase( self , **__lowerCAmelCase ) -> Dict: kwargs.update(self.special_tokens_map ) return BloomTokenizerFast.from_pretrained(self.tmpdirname , **__lowerCAmelCase ) def _lowerCAmelCase( self ) -> Optional[int]: lowercase__ : List[str] = self.get_rust_tokenizer() lowercase__ : Union[str, Any] = ['''The quick brown fox</s>''', '''jumps over the lazy dog</s>'''] lowercase__ : Dict = [[2175, 23714, 73173, 144252, 2], [77, 132619, 3478, 368, 109586, 35433, 2]] lowercase__ : List[Any] = tokenizer.batch_encode_plus(__lowerCAmelCase )['''input_ids'''] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) lowercase__ : int = tokenizer.batch_decode(__lowerCAmelCase ) self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self , __lowerCAmelCase=6 ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowercase__ : Optional[int] = self.rust_tokenizer_class.from_pretrained(__lowerCAmelCase , **__lowerCAmelCase ) # tokenizer_r.pad_token = None # Hotfixing padding = None # Simple input lowercase__ : str = '''This is a simple input''' lowercase__ : Tuple = ['''This is a simple input 1''', '''This is a simple input 2'''] lowercase__ : Dict = ('''This is a simple input''', '''This is a pair''') lowercase__ : List[Any] = [ ('''This is a simple input 1''', '''This is a simple input 2'''), ('''This is a simple pair 1''', '''This is a simple pair 2'''), ] # Simple input tests try: tokenizer_r.encode(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.batch_encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.encode(__lowerCAmelCase , max_length=__lowerCAmelCase ) tokenizer_r.batch_encode_plus(__lowerCAmelCase , max_length=__lowerCAmelCase ) except ValueError: self.fail('''Bloom Tokenizer should be able to deal with padding''' ) lowercase__ : List[str] = None # Hotfixing padding = None self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Simple input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises(__lowerCAmelCase , tokenizer_r.encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' ) # Pair input self.assertRaises( __lowerCAmelCase , tokenizer_r.batch_encode_plus , __lowerCAmelCase , max_length=__lowerCAmelCase , padding='''max_length''' , ) def _lowerCAmelCase( self ) -> List[Any]: lowercase__ : Dict = self.get_rust_tokenizer() lowercase__ : Any = load_dataset('''xnli''' , '''all_languages''' , split='''test''' , streaming=__lowerCAmelCase ) lowercase__ : Optional[Any] = next(iter(__lowerCAmelCase ) )['''premise'''] # pick up one data lowercase__ : List[str] = list(sample_data.values() ) lowercase__ : str = list(map(tokenizer.encode , __lowerCAmelCase ) ) lowercase__ : List[str] = [tokenizer.decode(__lowerCAmelCase , clean_up_tokenization_spaces=__lowerCAmelCase ) for x in output_tokens] self.assertListEqual(__lowerCAmelCase , __lowerCAmelCase ) def _lowerCAmelCase( self ) -> Union[str, Any]: # The test has to be overriden because BLOOM uses ALiBi positional embeddings that does not have # any sequence length constraints. This test of the parent class will fail since it relies on the # maximum sequence length of the positoonal embeddings. self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map ) , 1 ) self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values() )[0] ) , 1 )
428
1
import importlib.metadata from typing import Union from packaging.version import Version, parse from .constants import STR_OPERATION_TO_FUNC UpperCamelCase__ = parse(importlib.metadata.version('torch')) def lowerCAmelCase_ ( __A, __A, __A ) -> Tuple: '''simple docstring''' if operation not in STR_OPERATION_TO_FUNC.keys(): raise ValueError(f"""`operation` must be one of {list(STR_OPERATION_TO_FUNC.keys() )}, received {operation}""" ) UpperCAmelCase__ = STR_OPERATION_TO_FUNC[operation] if isinstance(__A, __A ): UpperCAmelCase__ = parse(importlib.metadata.version(__A ) ) return operation(__A, parse(__A ) ) def lowerCAmelCase_ ( __A, __A ) -> List[str]: '''simple docstring''' return compare_versions(__A, __A, __A )
486
def lowerCAmelCase_ ( __A, __A ) -> Optional[Any]: '''simple docstring''' UpperCAmelCase__ = [1] for i in range(2, __A ): factorials.append(factorials[-1] * i ) assert 0 <= k < factorials[-1] * n, "k out of bounds" UpperCAmelCase__ = [] UpperCAmelCase__ = list(range(__A ) ) # Find permutation while factorials: UpperCAmelCase__ = factorials.pop() UpperCAmelCase__ , UpperCAmelCase__ = divmod(__A, __A ) permutation.append(elements[number] ) elements.remove(elements[number] ) permutation.append(elements[0] ) return permutation if __name__ == "__main__": import doctest doctest.testmod()
486
1
import datetime import platform import subprocess from typing import Optional, Tuple, Union import numpy as np def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> np.array: """simple docstring""" lowerCAmelCase__ = f'{sampling_rate}' lowerCAmelCase__ = '1' lowerCAmelCase__ = 'f32le' lowerCAmelCase__ = [ 'ffmpeg', '-i', 'pipe:0', '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] try: with subprocess.Popen(snake_case__ , stdin=subprocess.PIPE , stdout=subprocess.PIPE ) as ffmpeg_process: lowerCAmelCase__ = ffmpeg_process.communicate(snake_case__ ) except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to load audio files from filename' ) from error lowerCAmelCase__ = output_stream[0] lowerCAmelCase__ = np.frombuffer(snake_case__ , np.floataa ) if audio.shape[0] == 0: raise ValueError('Malformed soundfile' ) return audio def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ = "f32le" , ) -> Union[str, Any]: """simple docstring""" lowerCAmelCase__ = f'{sampling_rate}' lowerCAmelCase__ = '1' if format_for_conversion == "s16le": lowerCAmelCase__ = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) lowerCAmelCase__ = platform.system() if system == "Linux": lowerCAmelCase__ = 'alsa' lowerCAmelCase__ = 'default' elif system == "Darwin": lowerCAmelCase__ = 'avfoundation' lowerCAmelCase__ = ':0' elif system == "Windows": lowerCAmelCase__ = 'dshow' lowerCAmelCase__ = 'default' lowerCAmelCase__ = [ 'ffmpeg', '-f', format_, '-i', input_, '-ac', ac, '-ar', ar, '-f', format_for_conversion, '-fflags', 'nobuffer', '-hide_banner', '-loglevel', 'quiet', 'pipe:1', ] lowerCAmelCase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample lowerCAmelCase__ = _ffmpeg_stream(snake_case__ , snake_case__ ) for item in iterator: yield item def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ = None , snake_case__ = None , snake_case__ = "f32le" , ) -> Union[str, Any]: """simple docstring""" if stream_chunk_s is not None: lowerCAmelCase__ = stream_chunk_s else: lowerCAmelCase__ = chunk_length_s lowerCAmelCase__ = ffmpeg_microphone(snake_case__ , snake_case__ , format_for_conversion=snake_case__ ) if format_for_conversion == "s16le": lowerCAmelCase__ = np.intaa lowerCAmelCase__ = 2 elif format_for_conversion == "f32le": lowerCAmelCase__ = np.floataa lowerCAmelCase__ = 4 else: raise ValueError(f'Unhandled format `{format_for_conversion}`. Please use `s16le` or `f32le`' ) if stride_length_s is None: lowerCAmelCase__ = chunk_length_s / 6 lowerCAmelCase__ = int(round(sampling_rate * chunk_length_s ) ) * size_of_sample if isinstance(snake_case__ , (int, float) ): lowerCAmelCase__ = [stride_length_s, stride_length_s] lowerCAmelCase__ = int(round(sampling_rate * stride_length_s[0] ) ) * size_of_sample lowerCAmelCase__ = int(round(sampling_rate * stride_length_s[1] ) ) * size_of_sample lowerCAmelCase__ = datetime.datetime.now() lowerCAmelCase__ = datetime.timedelta(seconds=snake_case__ ) for item in chunk_bytes_iter(snake_case__ , snake_case__ , stride=(stride_left, stride_right) , stream=snake_case__ ): # Put everything back in numpy scale lowerCAmelCase__ = np.frombuffer(item['raw'] , dtype=snake_case__ ) lowerCAmelCase__ = ( item['stride'][0] // size_of_sample, item['stride'][1] // size_of_sample, ) lowerCAmelCase__ = sampling_rate audio_time += delta if datetime.datetime.now() > audio_time + 10 * delta: # We're late !! SKIP continue yield item def UpperCAmelCase_ ( snake_case__ , snake_case__ , snake_case__ , snake_case__ = False ) -> List[Any]: """simple docstring""" lowerCAmelCase__ = B'' lowerCAmelCase__ , lowerCAmelCase__ = stride if stride_left + stride_right >= chunk_len: raise ValueError( f'Stride needs to be strictly smaller than chunk_len: ({stride_left}, {stride_right}) vs {chunk_len}' ) lowerCAmelCase__ = 0 for raw in iterator: acc += raw if stream and len(snake_case__ ) < chunk_len: lowerCAmelCase__ = (_stride_left, 0) yield {"raw": acc[:chunk_len], "stride": stride, "partial": True} else: while len(snake_case__ ) >= chunk_len: # We are flushing the accumulator lowerCAmelCase__ = (_stride_left, stride_right) lowerCAmelCase__ = {'raw': acc[:chunk_len], 'stride': stride} if stream: lowerCAmelCase__ = False yield item lowerCAmelCase__ = stride_left lowerCAmelCase__ = acc[chunk_len - stride_left - stride_right :] # Last chunk if len(snake_case__ ) > stride_left: lowerCAmelCase__ = {'raw': acc, 'stride': (_stride_left, 0)} if stream: lowerCAmelCase__ = False yield item def UpperCAmelCase_ ( snake_case__ , snake_case__ ) -> str: """simple docstring""" lowerCAmelCase__ = 2**24 # 16Mo try: with subprocess.Popen(snake_case__ , stdout=subprocess.PIPE , bufsize=snake_case__ ) as ffmpeg_process: while True: lowerCAmelCase__ = ffmpeg_process.stdout.read(snake_case__ ) if raw == b"": break yield raw except FileNotFoundError as error: raise ValueError('ffmpeg was not found but is required to stream audio files from filename' ) from error
604
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionTextToImagePipeline from diffusers.utils.testing_utils import nightly, require_torch_gpu, torch_device _lowerCAmelCase : Any = False class __snake_case ( unittest.TestCase ): pass @nightly @require_torch_gpu class __snake_case ( unittest.TestCase ): def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = VersatileDiffusionTextToImagePipeline.from_pretrained('shi-labs/versatile-diffusion' ) # remove text_unet pipe.remove_unused_weights() pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger ' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=a_ ,generator=a_ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(a_ ) lowerCAmelCase__ = VersatileDiffusionTextToImagePipeline.from_pretrained(a_ ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase__ = generator.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=a_ ,generator=a_ ,guidance_scale=7.5 ,num_inference_steps=2 ,output_type='numpy' ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def SCREAMING_SNAKE_CASE_ ( self ): """simple docstring""" lowerCAmelCase__ = VersatileDiffusionTextToImagePipeline.from_pretrained( 'shi-labs/versatile-diffusion' ,torch_dtype=torch.floataa ) pipe.to(a_ ) pipe.set_progress_bar_config(disable=a_ ) lowerCAmelCase__ = 'A painting of a squirrel eating a burger ' lowerCAmelCase__ = torch.manual_seed(0 ) lowerCAmelCase__ = pipe( prompt=a_ ,generator=a_ ,guidance_scale=7.5 ,num_inference_steps=50 ,output_type='numpy' ).images lowerCAmelCase__ = image[0, 253:256, 253:256, -1] assert image.shape == (1, 512, 512, 3) lowerCAmelCase__ = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
604
1
from __future__ import annotations import typing from collections.abc import Iterable import numpy as np lowercase_: str = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007 lowercase_: Union[str, Any] = typing.Union[np.floataa, int, float] # noqa: UP007 def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" return np.sqrt(np.sum((np.asarray(UpperCAmelCase_) - np.asarray(UpperCAmelCase_)) ** 2)) def _lowercase ( UpperCAmelCase_ , UpperCAmelCase_): """simple docstring""" return sum((va - va) ** 2 for va, va in zip(UpperCAmelCase_ , UpperCAmelCase_)) ** (1 / 2) if __name__ == "__main__": def _lowercase ( ): """simple docstring""" from timeit import timeit print("""Without Numpy""") print( timeit( """euclidean_distance_no_np([1, 2, 3], [4, 5, 6])""" , number=10_000 , globals=globals() , )) print("""With Numpy""") print( timeit( """euclidean_distance([1, 2, 3], [4, 5, 6])""" , number=10_000 , globals=globals() , )) benchmark()
648
import unittest from transformers import DebertaVaConfig, is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( DebertaVaForMaskedLM, DebertaVaForMultipleChoice, DebertaVaForQuestionAnswering, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaModel, ) from transformers.models.deberta_va.modeling_deberta_va import DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST class lowercase__ (__snake_case ): """simple docstring""" def __init__( self : Tuple , __a : Union[str, Any] , __a : Optional[int]=1_3 , __a : Tuple=7 , __a : Dict=True , __a : List[Any]=True , __a : str=True , __a : str=True , __a : Any=9_9 , __a : Optional[Any]=3_2 , __a : Tuple=5 , __a : Union[str, Any]=4 , __a : List[str]=3_7 , __a : Optional[int]="gelu" , __a : str=0.1 , __a : Union[str, Any]=0.1 , __a : List[Any]=5_1_2 , __a : List[Any]=1_6 , __a : List[Any]=2 , __a : Optional[Any]=0.02 , __a : List[Any]=False , __a : List[Any]=True , __a : Optional[int]="None" , __a : Optional[Any]=3 , __a : Optional[int]=4 , __a : Optional[int]=None , ): snake_case__ : Dict = parent snake_case__ : Optional[Any] = batch_size snake_case__ : Union[str, Any] = seq_length snake_case__ : Any = is_training snake_case__ : int = use_input_mask snake_case__ : str = use_token_type_ids snake_case__ : Union[str, Any] = use_labels snake_case__ : List[Any] = vocab_size snake_case__ : Tuple = hidden_size snake_case__ : Tuple = num_hidden_layers snake_case__ : List[Any] = num_attention_heads snake_case__ : Optional[int] = intermediate_size snake_case__ : Optional[Any] = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Dict = attention_probs_dropout_prob snake_case__ : Dict = max_position_embeddings snake_case__ : List[str] = type_vocab_size snake_case__ : List[str] = type_sequence_label_size snake_case__ : Dict = initializer_range snake_case__ : Optional[Any] = num_labels snake_case__ : Dict = num_choices snake_case__ : Optional[Any] = relative_attention snake_case__ : Any = position_biased_input snake_case__ : Union[str, Any] = pos_att_type snake_case__ : Optional[int] = scope def lowercase ( self : Optional[Any] ): snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) snake_case__ : Dict = None if self.use_input_mask: snake_case__ : List[str] = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) snake_case__ : List[Any] = None if self.use_token_type_ids: snake_case__ : str = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) snake_case__ : str = None snake_case__ : Union[str, Any] = None snake_case__ : Optional[int] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) snake_case__ : Any = ids_tensor([self.batch_size] , self.num_choices ) snake_case__ : List[str] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase ( self : List[Any] ): return DebertaVaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , relative_attention=self.relative_attention , position_biased_input=self.position_biased_input , pos_att_type=self.pos_att_type , ) def lowercase ( self : Dict , __a : Optional[int] ): self.parent.assertListEqual(list(result.loss.size() ) , [] ) def lowercase ( self : List[Any] , __a : Tuple , __a : Optional[Any] , __a : Optional[int] , __a : Optional[Any] , __a : Optional[int] , __a : List[str] , __a : str ): snake_case__ : Union[str, Any] = DebertaVaModel(config=__a ) model.to(__a ) model.eval() snake_case__ : Any = model(__a , attention_mask=__a , token_type_ids=__a )[0] snake_case__ : Union[str, Any] = model(__a , token_type_ids=__a )[0] snake_case__ : List[str] = model(__a )[0] self.parent.assertListEqual(list(sequence_output.size() ) , [self.batch_size, self.seq_length, self.hidden_size] ) def lowercase ( self : Tuple , __a : List[str] , __a : List[Any] , __a : int , __a : Union[str, Any] , __a : List[Any] , __a : Tuple , __a : str ): snake_case__ : Optional[int] = DebertaVaForMaskedLM(config=__a ) model.to(__a ) model.eval() snake_case__ : Union[str, Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase ( self : Tuple , __a : int , __a : str , __a : Tuple , __a : Optional[Any] , __a : Tuple , __a : Optional[int] , __a : List[str] ): snake_case__ : Tuple = self.num_labels snake_case__ : int = DebertaVaForSequenceClassification(__a ) model.to(__a ) model.eval() snake_case__ : Optional[int] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertListEqual(list(result.logits.size() ) , [self.batch_size, self.num_labels] ) self.check_loss_output(__a ) def lowercase ( self : Tuple , __a : Optional[int] , __a : int , __a : Optional[Any] , __a : Any , __a : List[str] , __a : List[Any] , __a : List[str] ): snake_case__ : Union[str, Any] = self.num_labels snake_case__ : Dict = DebertaVaForTokenClassification(config=__a ) model.to(__a ) model.eval() snake_case__ : Optional[Any] = model(__a , attention_mask=__a , token_type_ids=__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowercase ( self : Dict , __a : List[str] , __a : List[str] , __a : Tuple , __a : Union[str, Any] , __a : Any , __a : Optional[Any] , __a : Any ): snake_case__ : int = DebertaVaForQuestionAnswering(config=__a ) model.to(__a ) model.eval() snake_case__ : List[Any] = model( __a , attention_mask=__a , token_type_ids=__a , start_positions=__a , end_positions=__a , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowercase ( self : List[str] , __a : Optional[Any] , __a : Tuple , __a : List[str] , __a : Optional[Any] , __a : List[str] , __a : str , __a : str ): snake_case__ : Any = DebertaVaForMultipleChoice(config=__a ) model.to(__a ) model.eval() snake_case__ : Optional[Any] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : List[str] = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : Optional[int] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() snake_case__ : List[Any] = model( __a , attention_mask=__a , token_type_ids=__a , labels=__a , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowercase ( self : Union[str, Any] ): snake_case__ : int = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Any = config_and_inputs snake_case__ : str = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class lowercase__ (__snake_case , __snake_case , unittest.TestCase ): """simple docstring""" __UpperCamelCase : Optional[Any] = ( ( DebertaVaModel, DebertaVaForMaskedLM, DebertaVaForSequenceClassification, DebertaVaForTokenClassification, DebertaVaForQuestionAnswering, DebertaVaForMultipleChoice, ) if is_torch_available() else () ) __UpperCamelCase : List[str] = ( { 'feature-extraction': DebertaVaModel, 'fill-mask': DebertaVaForMaskedLM, 'question-answering': DebertaVaForQuestionAnswering, 'text-classification': DebertaVaForSequenceClassification, 'token-classification': DebertaVaForTokenClassification, 'zero-shot': DebertaVaForSequenceClassification, } if is_torch_available() else {} ) __UpperCamelCase : Any = True __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : int = False __UpperCamelCase : Union[str, Any] = False __UpperCamelCase : Optional[int] = False def lowercase ( self : Optional[Any] ): snake_case__ : Any = DebertaVaModelTester(self ) snake_case__ : Optional[Any] = ConfigTester(self , config_class=__a , hidden_size=3_7 ) def lowercase ( self : List[Any] ): self.config_tester.run_common_tests() def lowercase ( self : Tuple ): snake_case__ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_model(*__a ) def lowercase ( self : Tuple ): snake_case__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_sequence_classification(*__a ) def lowercase ( self : Tuple ): snake_case__ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_masked_lm(*__a ) def lowercase ( self : List[str] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_question_answering(*__a ) def lowercase ( self : int ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_token_classification(*__a ) def lowercase ( self : Optional[int] ): snake_case__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_deberta_for_multiple_choice(*__a ) @slow def lowercase ( self : Union[str, Any] ): for model_name in DEBERTA_V2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = DebertaVaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) @require_torch @require_sentencepiece @require_tokenizers class lowercase__ (unittest.TestCase ): """simple docstring""" @unittest.skip(reason="""Model not available yet""" ) def lowercase ( self : Optional[int] ): pass @slow def lowercase ( self : int ): snake_case__ : List[Any] = DebertaVaModel.from_pretrained("""microsoft/deberta-v2-xlarge""" ) snake_case__ : Any = torch.tensor([[0, 3_1_4_1_4, 2_3_2, 3_2_8, 7_4_0, 1_1_4_0, 1_2_6_9_5, 6_9, 4_6_0_7_8, 1_5_8_8, 2]] ) snake_case__ : Tuple = torch.tensor([[0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]] ) with torch.no_grad(): snake_case__ : int = model(__a , attention_mask=__a )[0] # compare the actual values for a slice. snake_case__ : List[str] = torch.tensor( [[[0.2356, 0.1948, 0.0369], [-0.1063, 0.3586, -0.5152], [-0.6399, -0.0259, -0.2525]]] ) self.assertTrue(torch.allclose(output[:, 1:4, 1:4] , __a , atol=1e-4 ) , f'{output[:, 1:4, 1:4]}' )
648
1
'''simple docstring''' from collections import namedtuple lowercase_ : List[str] = namedtuple('''from_to''', '''from_ to''') lowercase_ : List[Any] = { '''cubicmeter''': from_to(1, 1), '''litre''': from_to(0.001, 1000), '''kilolitre''': from_to(1, 1), '''gallon''': from_to(0.00454, 264.172), '''cubicyard''': from_to(0.76455, 1.30795), '''cubicfoot''': from_to(0.028, 35.3147), '''cup''': from_to(0.000236588, 4226.75), } def SCREAMING_SNAKE_CASE ( lowercase_ : float , lowercase_ : str , lowercase_ : str ): if from_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'from_type' value: {from_type!r} Supported values are:\n""" + """, """.join(lowercase_ ) ) if to_type not in METRIC_CONVERSION: raise ValueError( F"""Invalid 'to_type' value: {to_type!r}. Supported values are:\n""" + """, """.join(lowercase_ ) ) return value * METRIC_CONVERSION[from_type].from_ * METRIC_CONVERSION[to_type].to if __name__ == "__main__": import doctest doctest.testmod()
719
'''simple docstring''' def SCREAMING_SNAKE_CASE ( ): lowercase = [] lowercase = 1 while len(lowercase_ ) < 1E6: constant.append(str(lowercase_ ) ) i += 1 lowercase = """""".join(lowercase_ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
653
0
"""simple docstring""" from collections import defaultdict def __lowerCAmelCase ( __UpperCamelCase : int ): '''simple docstring''' snake_case_ : int = 1 snake_case_ : int = True for v in tree[start]: if v not in visited: ret += dfs(__UpperCamelCase ) if ret % 2 == 0: cuts.append(__UpperCamelCase ) return ret def __lowerCAmelCase ( ): '''simple docstring''' dfs(1 ) if __name__ == "__main__": __lowerCAmelCase , __lowerCAmelCase : List[Any] = 10, 9 __lowerCAmelCase : List[str] = defaultdict(list) __lowerCAmelCase : dict[int, bool] = {} __lowerCAmelCase : list[int] = [] __lowerCAmelCase : int = 0 __lowerCAmelCase : Optional[int] = [(2, 1), (3, 1), (4, 3), (5, 2), (6, 1), (7, 2), (8, 6), (9, 8), (10, 8)] for u, v in edges: tree[u].append(v) tree[v].append(u) even_tree() print(len(cuts) - 1)
58
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) snake_case_ : List[Any] = {"configuration_vit_mae": ["VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP", "ViTMAEConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Tuple = [ "VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST", "ViTMAEForPreTraining", "ViTMAELayer", "ViTMAEModel", "ViTMAEPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : Optional[int] = [ "TFViTMAEForPreTraining", "TFViTMAEModel", "TFViTMAEPreTrainedModel", ] if TYPE_CHECKING: from .configuration_vit_mae import VIT_MAE_PRETRAINED_CONFIG_ARCHIVE_MAP, ViTMAEConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vit_mae import ( VIT_MAE_PRETRAINED_MODEL_ARCHIVE_LIST, ViTMAEForPreTraining, ViTMAELayer, ViTMAEModel, ViTMAEPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_vit_mae import TFViTMAEForPreTraining, TFViTMAEModel, TFViTMAEPreTrainedModel else: import sys snake_case_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
488
0
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _a ( __UpperCamelCase=None ): if subparsers is not None: a_ : Optional[Any] = subparsers.add_parser("""test""" ) else: a_ : List[str] = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=__UpperCamelCase , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def _a ( __UpperCamelCase ): a_ : Tuple = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: a_ : Optional[Any] = script_name else: a_ : Optional[Any] = F'''--config_file={args.config_file} {script_name}''' a_ : Optional[Any] = ["""accelerate-launch"""] + test_args.split() a_ : List[str] = execute_subprocess_async(__UpperCamelCase , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def _a ( ): a_ : List[str] = test_command_parser() a_ : Optional[int] = parser.parse_args() test_command(__UpperCamelCase ) if __name__ == "__main__": main()
478
import numpy as np __lowerCamelCase = [ ['''a''', '''b''', '''c''', '''d''', '''e'''], ['''f''', '''g''', '''h''', '''i''', '''k'''], ['''l''', '''m''', '''n''', '''o''', '''p'''], ['''q''', '''r''', '''s''', '''t''', '''u'''], ['''v''', '''w''', '''x''', '''y''', '''z'''], ] class a__ : def __init__( self : Union[str, Any] ): a_ : List[Any] = np.array(lowerCamelCase_ ) def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str ): a_ , a_ : Optional[int] = np.where(letter == self.SQUARE ) a_ : Union[str, Any] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def UpperCAmelCase( self : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : int ): a_ : str = self.SQUARE[indexa - 1, indexa - 1] return letter def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : str ): a_ : List[str] = message.lower() a_ : str = message.replace(""" """ , """""" ) a_ : Union[str, Any] = message.replace("""j""" , """i""" ) a_ : Optional[Any] = np.empty((2, len(lowerCamelCase_ )) ) for letter_index in range(len(lowerCamelCase_ ) ): a_ : int = self.letter_to_numbers(message[letter_index] ) a_ : str = numbers[0] a_ : int = numbers[1] a_ : int = first_step.reshape(2 * len(lowerCamelCase_ ) ) a_ : Optional[Any] = """""" for numbers_index in range(len(lowerCamelCase_ ) ): a_ : Optional[Any] = int(second_step[numbers_index * 2] ) a_ : Optional[Any] = int(second_step[(numbers_index * 2) + 1] ) a_ : Optional[Any] = self.numbers_to_letter(lowerCamelCase_ , lowerCamelCase_ ) a_ : List[str] = encoded_message + letter return encoded_message def UpperCAmelCase( self : Tuple , lowerCamelCase_ : str ): a_ : Optional[Any] = message.lower() message.replace(""" """ , """""" ) a_ : int = np.empty(2 * len(lowerCamelCase_ ) ) for letter_index in range(len(lowerCamelCase_ ) ): a_ : str = self.letter_to_numbers(message[letter_index] ) a_ : Optional[int] = numbers[0] a_ : Optional[Any] = numbers[1] a_ : Tuple = first_step.reshape((2, len(lowerCamelCase_ )) ) a_ : Optional[int] = """""" for numbers_index in range(len(lowerCamelCase_ ) ): a_ : Dict = int(second_step[0, numbers_index] ) a_ : Tuple = int(second_step[1, numbers_index] ) a_ : Tuple = self.numbers_to_letter(lowerCamelCase_ , lowerCamelCase_ ) a_ : Union[str, Any] = decoded_message + letter return decoded_message
478
1
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class a__ ( __magic_name__ ): lowercase_ = ["image_processor", "tokenizer"] lowercase_ = "ChineseCLIPImageProcessor" lowercase_ = ("BertTokenizer", "BertTokenizerFast") def __init__( self : Tuple , UpperCamelCase_ : List[str]=None , UpperCamelCase_ : Union[str, Any]=None , **UpperCamelCase_ : str): """simple docstring""" __UpperCAmelCase : Union[str, Any] = None if "feature_extractor" in kwargs: warnings.warn( "The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`" " instead." , UpperCamelCase_ , ) __UpperCAmelCase : Union[str, Any] = kwargs.pop("feature_extractor") __UpperCAmelCase : Union[str, Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") super().__init__(UpperCamelCase_ , UpperCamelCase_) __UpperCAmelCase : List[str] = self.image_processor def __call__( self : Any , UpperCamelCase_ : Optional[Any]=None , UpperCamelCase_ : Dict=None , UpperCamelCase_ : Any=None , **UpperCamelCase_ : Optional[Any]): """simple docstring""" if text is None and images is None: raise ValueError("You have to specify either text or images. Both cannot be none.") if text is not None: __UpperCAmelCase : Dict = self.tokenizer(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_) if images is not None: __UpperCAmelCase : Any = self.image_processor(UpperCamelCase_ , return_tensors=UpperCamelCase_ , **UpperCamelCase_) if text is not None and images is not None: __UpperCAmelCase : Any = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase_) , tensor_type=UpperCamelCase_) def a_ ( self : List[str] , *UpperCamelCase_ : Union[str, Any] , **UpperCamelCase_ : Optional[int]): """simple docstring""" return self.tokenizer.batch_decode(*UpperCamelCase_ , **UpperCamelCase_) def a_ ( self : Dict , *UpperCamelCase_ : str , **UpperCamelCase_ : Any): """simple docstring""" return self.tokenizer.decode(*UpperCamelCase_ , **UpperCamelCase_) @property def a_ ( self : str): """simple docstring""" __UpperCAmelCase : Any = self.tokenizer.model_input_names __UpperCAmelCase : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) @property def a_ ( self : Optional[Any]): """simple docstring""" warnings.warn( "`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead." , UpperCamelCase_ , ) return self.image_processor_class
77
"""simple docstring""" from scipy.stats import spearmanr import datasets A = """ The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. """ A = """ Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {'spearmanr': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric(\"spearmanr\") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results['spearmanr']) -0.7 >>> print(round(results['spearmanr_pvalue'], 2)) 0.19 """ A = r"""\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a__ ( datasets.Metric ): def a_ ( self : Any): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float"), "references": datasets.Value("float"), }) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def a_ ( self : Union[str, Any] , UpperCamelCase_ : Any , UpperCamelCase_ : Union[str, Any] , UpperCamelCase_ : int=False): """simple docstring""" __UpperCAmelCase : List[str] = spearmanr(UpperCamelCase_ , UpperCamelCase_) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
77
1
import warnings from collections import OrderedDict from typing import Any, Mapping, Optional from ... import PreTrainedTokenizer from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig, OnnxConfigWithPast, OnnxSeqaSeqConfigWithPast from ...onnx.utils import compute_effective_axis_dimension from ...utils import TensorType, is_torch_available, logging snake_case_ = logging.get_logger(__name__) snake_case_ = { 'facebook/bart-large': 'https://huggingface.co/facebook/bart-large/resolve/main/config.json', # See all BART models at https://huggingface.co/models?filter=bart } class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): A_ : Tuple = 'bart' A_ : Optional[int] = ['past_key_values'] A_ : List[str] = {'num_attention_heads': 'encoder_attention_heads', 'hidden_size': 'd_model'} def __init__(self : Any , a__ : List[str]=5_0265 , a__ : Optional[Any]=1024 , a__ : int=12 , a__ : Union[str, Any]=4096 , a__ : Dict=16 , a__ : int=12 , a__ : Union[str, Any]=4096 , a__ : Optional[int]=16 , a__ : int=0.0 , a__ : List[str]=0.0 , a__ : Dict="gelu" , a__ : List[Any]=1024 , a__ : Dict=0.1 , a__ : Tuple=0.0 , a__ : str=0.0 , a__ : str=0.0_2 , a__ : Optional[int]=0.0 , a__ : int=False , a__ : Optional[Any]=True , a__ : str=3 , a__ : str=1 , a__ : Dict=0 , a__ : Optional[Any]=2 , a__ : str=True , a__ : str=2 , a__ : Optional[int]=2 , **a__ : str , ): """simple docstring""" __snake_case = vocab_size __snake_case = max_position_embeddings __snake_case = d_model __snake_case = encoder_ffn_dim __snake_case = encoder_layers __snake_case = encoder_attention_heads __snake_case = decoder_ffn_dim __snake_case = decoder_layers __snake_case = decoder_attention_heads __snake_case = dropout __snake_case = attention_dropout __snake_case = activation_dropout __snake_case = activation_function __snake_case = init_std __snake_case = encoder_layerdrop __snake_case = decoder_layerdrop __snake_case = classifier_dropout __snake_case = use_cache __snake_case = encoder_layers __snake_case = scale_embedding # scale factor will be sqrt(d_model) if True super().__init__( num_labels=a__ , pad_token_id=a__ , bos_token_id=a__ , eos_token_id=a__ , is_encoder_decoder=a__ , decoder_start_token_id=a__ , forced_eos_token_id=a__ , **a__ , ) # ensure backward compatibility for BART CNN models if self.forced_bos_token_id is None and kwargs.get('''force_bos_token_to_be_generated''' , a__ ): __snake_case = self.bos_token_id warnings.warn( f"""Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. """ '''The config can simply be saved and uploaded again to be fixed.''' ) class SCREAMING_SNAKE_CASE__ ( _UpperCAmelCase ): @property def a (self : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case = {0: '''batch'''} __snake_case = {0: '''batch''', 1: '''past_decoder_sequence + sequence'''} else: __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} __snake_case = {0: '''batch''', 1: '''decoder_sequence'''} if self.use_past: self.fill_with_past_key_values_(a__ , direction='''inputs''' ) elif self.task == "causal-lm": # TODO: figure this case out. __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ] ) if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(a__ ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} else: __snake_case = OrderedDict( [ ('''input_ids''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''attention_mask''', {0: '''batch''', 1: '''encoder_sequence'''}), ('''decoder_input_ids''', {0: '''batch''', 1: '''decoder_sequence'''}), ('''decoder_attention_mask''', {0: '''batch''', 1: '''decoder_sequence'''}), ] ) return common_inputs @property def a (self : str ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = super().outputs else: __snake_case = super(a__ , self ).outputs if self.use_past: __snake_case , __snake_case = self.num_layers for i in range(a__ ): __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} __snake_case = {0: '''batch''', 2: '''past_sequence + sequence'''} return common_outputs def a (self : Tuple , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ): """simple docstring""" __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) # Generate decoder inputs __snake_case = seq_length if not self.use_past else 1 __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) __snake_case = {f"""decoder_{name}""": tensor for name, tensor in decoder_inputs.items()} __snake_case = dict(**a__ , **a__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape __snake_case = common_inputs['''decoder_input_ids'''].shape[1] __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, encoder_seq_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = decoder_seq_length + 3 __snake_case = ( batch, num_decoder_attention_heads, decoder_past_length, self._config.hidden_size // num_decoder_attention_heads, ) __snake_case = torch.cat( [common_inputs['''decoder_attention_mask'''], torch.ones(a__ , a__ )] , dim=1 ) __snake_case = [] # If the number of encoder and decoder layers are present in the model configuration, both are considered __snake_case , __snake_case = self.num_layers __snake_case = min(a__ , a__ ) __snake_case = max(a__ , a__ ) - min_num_layers __snake_case = '''encoder''' if num_encoder_layers > num_decoder_layers else '''decoder''' for _ in range(a__ ): common_inputs["past_key_values"].append( ( torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), torch.zeros(a__ ), ) ) # TODO: test this. __snake_case = encoder_shape if remaining_side_name == '''encoder''' else decoder_shape for _ in range(a__ , a__ ): common_inputs["past_key_values"].append((torch.zeros(a__ ), torch.zeros(a__ )) ) return common_inputs def a (self : str , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ): """simple docstring""" __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , a__ , a__ , a__ , a__ ) if self.use_past: if not is_torch_available(): raise ValueError('''Cannot generate dummy past_keys inputs without PyTorch installed.''' ) else: import torch __snake_case , __snake_case = common_inputs['''input_ids'''].shape # Not using the same length for past_key_values __snake_case = seqlen + 2 __snake_case , __snake_case = self.num_layers __snake_case , __snake_case = self.num_attention_heads __snake_case = ( batch, num_encoder_attention_heads, past_key_values_length, self._config.hidden_size // num_encoder_attention_heads, ) __snake_case = common_inputs['''attention_mask'''].dtype __snake_case = torch.cat( [common_inputs['''attention_mask'''], torch.ones(a__ , a__ , dtype=a__ )] , dim=1 ) __snake_case = [ (torch.zeros(a__ ), torch.zeros(a__ )) for _ in range(a__ ) ] return common_inputs def a (self : Optional[int] , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ): """simple docstring""" __snake_case = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_batch , num_token_to_add=0 ) # If dynamic axis (-1) we forward with a fixed dimension of 8 tokens to avoid optimizations made by ONNX __snake_case = tokenizer.num_special_tokens_to_add(a__ ) __snake_case = compute_effective_axis_dimension( a__ , fixed_dimension=OnnxConfig.default_fixed_sequence , num_token_to_add=a__ ) # Generate dummy inputs according to compute batch and sequence __snake_case = [''' '''.join([tokenizer.unk_token] ) * seq_length] * batch_size __snake_case = dict(tokenizer(a__ , return_tensors=a__ ) ) return common_inputs def a (self : Optional[int] , a__ : PreTrainedTokenizer , a__ : int = -1 , a__ : int = -1 , a__ : bool = False , a__ : Optional[TensorType] = None , ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = self._generate_dummy_inputs_for_default_and_seqaseq_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) elif self.task == "causal-lm": __snake_case = self._generate_dummy_inputs_for_causal_lm( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) else: __snake_case = self._generate_dummy_inputs_for_sequence_classification_and_question_answering( a__ , batch_size=a__ , seq_length=a__ , is_pair=a__ , framework=a__ ) return common_inputs def a (self : Any , a__ : int , a__ : Tuple , a__ : Dict , a__ : Any ): """simple docstring""" if self.task in ["default", "seq2seq-lm"]: __snake_case = super()._flatten_past_key_values_(a__ , a__ , a__ , a__ ) else: __snake_case = super(a__ , self )._flatten_past_key_values_( a__ , a__ , a__ , a__ )
708
import argparse import re import requests import torch # git clone https://github.com/salesforce/BLIP.git from models.blip import blip_decoder from models.blip_itm import blip_itm from models.blip_vqa import blip_vqa from PIL import Image from torchvision import transforms from torchvision.transforms.functional import InterpolationMode from transformers import ( BertTokenizer, BlipConfig, BlipForConditionalGeneration, BlipForImageTextRetrieval, BlipForQuestionAnswering, ) def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : Tuple ) -> Dict: __snake_case = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg''' __snake_case = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ).convert('''RGB''' ) __snake_case = transforms.Compose( [ transforms.Resize((image_size, image_size) , interpolation=InterpolationMode.BICUBIC ), transforms.ToTensor(), transforms.Normalize((0.48_145_466, 0.4_578_275, 0.40_821_073) , (0.26_862_954, 0.26_130_258, 0.27_577_711) ), ] ) __snake_case = transform(snake_case_ ).unsqueeze(0 ).to(snake_case_ ) return image def lowerCamelCase__ ( snake_case_ : int ) -> List[str]: if "visual_encoder" in key: __snake_case = re.sub('''visual_encoder*''' , '''vision_model.encoder''' , snake_case_ ) if "blocks" in key: __snake_case = re.sub(R'''blocks''' , '''layers''' , snake_case_ ) if "attn" in key: __snake_case = re.sub(R'''attn''' , '''self_attn''' , snake_case_ ) if "norm1" in key: __snake_case = re.sub(R'''norm1''' , '''layer_norm1''' , snake_case_ ) if "norm2" in key: __snake_case = re.sub(R'''norm2''' , '''layer_norm2''' , snake_case_ ) if "encoder.norm" in key: __snake_case = re.sub(R'''encoder.norm''' , '''post_layernorm''' , snake_case_ ) if "encoder.patch_embed.proj" in key: __snake_case = re.sub(R'''encoder.patch_embed.proj''' , '''embeddings.patch_embedding''' , snake_case_ ) if "encoder.pos_embed" in key: __snake_case = re.sub(R'''encoder.pos_embed''' , '''embeddings.position_embedding''' , snake_case_ ) if "encoder.cls_token" in key: __snake_case = re.sub(R'''encoder.cls_token''' , '''embeddings.class_embedding''' , snake_case_ ) if "self_attn" in key: __snake_case = re.sub(R'''self_attn.proj''' , '''self_attn.projection''' , snake_case_ ) return key @torch.no_grad() def lowerCamelCase__ ( snake_case_ : Tuple , snake_case_ : str=None ) -> str: if config_path is not None: __snake_case = BlipConfig.from_pretrained(snake_case_ ) else: __snake_case = BlipConfig(projection_dim=512 , text_config={} , vision_config={} ) __snake_case = BlipForConditionalGeneration(snake_case_ ).eval() __snake_case = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_capfilt_large.pth''' __snake_case = blip_decoder(pretrained=snake_case_ , image_size=384 , vit='''base''' ) __snake_case = pt_model.eval() __snake_case = pt_model.state_dict() for key in modified_state_dict.copy(): __snake_case = modified_state_dict.pop(snake_case_ ) __snake_case = rename_key(snake_case_ ) __snake_case = value hf_model.load_state_dict(snake_case_ ) __snake_case = 384 __snake_case = load_demo_image(image_size=snake_case_ , device='''cpu''' ) __snake_case = BertTokenizer.from_pretrained('''bert-base-uncased''' ) __snake_case = tokenizer(['''a picture of'''] ).input_ids __snake_case = hf_model.generate(snake_case_ , snake_case_ ) assert out[0].tolist() == [3_0522, 1037, 3861, 1997, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] __snake_case = hf_model.generate(snake_case_ ) assert out[0].tolist() == [3_0522, 1037, 2450, 3564, 2006, 1996, 3509, 2007, 2014, 3899, 102] if pytorch_dump_folder_path is not None: hf_model.save_pretrained(snake_case_ ) # model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_vqa.pth' __snake_case = ( '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_vqa_capfilt_large.pth''' ) __snake_case = blip_vqa(pretrained=snake_case_ , image_size=snake_case_ , vit='''base''' ) vqa_model.eval() __snake_case = vqa_model.state_dict() for key in modified_state_dict.copy(): __snake_case = modified_state_dict.pop(snake_case_ ) __snake_case = rename_key(snake_case_ ) __snake_case = value __snake_case = BlipForQuestionAnswering(snake_case_ ) hf_vqa_model.load_state_dict(snake_case_ ) __snake_case = ['''How many dogs are in this image?'''] __snake_case = tokenizer(snake_case_ , return_tensors='''pt''' ).input_ids __snake_case = hf_vqa_model.generate(snake_case_ , snake_case_ ) print(tokenizer.decode(answer[0] ) ) assert tokenizer.decode(answer[0] ) == "[UNK] 1 [SEP]" if pytorch_dump_folder_path is not None: hf_vqa_model.save_pretrained(pytorch_dump_folder_path + '''_vqa''' ) __snake_case = '''https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth''' __snake_case = blip_itm(pretrained=snake_case_ , image_size=snake_case_ , vit='''base''' ) itm_model.eval() __snake_case = itm_model.state_dict() for key in modified_state_dict.copy(): __snake_case = modified_state_dict.pop(snake_case_ ) __snake_case = rename_key(snake_case_ ) __snake_case = value __snake_case = BlipForImageTextRetrieval(snake_case_ ) __snake_case = ['''A picture of a woman with a dog sitting in a beach'''] __snake_case = tokenizer( snake_case_ , return_tensors='''pt''' , padding='''max_length''' , truncation=snake_case_ , max_length=35 , ).input_ids hf_itm_model.load_state_dict(snake_case_ ) hf_itm_model.eval() __snake_case = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) __snake_case = hf_itm_model(snake_case_ , snake_case_ , use_itm_head=snake_case_ ) assert out[0].item() == 0.2_110_687_494_277_954 assert torch.nn.functional.softmax(out_itm[0] , dim=1 )[:, 1].item() == 0.45_698_845_386_505_127 if pytorch_dump_folder_path is not None: hf_itm_model.save_pretrained(pytorch_dump_folder_path + '''_itm''' ) if __name__ == "__main__": snake_case_ = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') snake_case_ = parser.parse_args() convert_blip_checkpoint(args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path)
388
0
"""simple docstring""" import numpy as np import torch import torch.nn as nn from transformers import CLIPConfig, CLIPVisionModelWithProjection, PreTrainedModel from ...utils import logging lowercase_ = logging.get_logger(__name__) class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Optional[Any] = CLIPConfig __UpperCAmelCase : int = ['CLIPEncoderLayer'] def __init__( self , _a ): super().__init__(_a ) __a = CLIPVisionModelWithProjection(config.vision_config ) __a = nn.Linear(config.vision_config.projection_dim , 1 ) __a = nn.Linear(config.vision_config.projection_dim , 1 ) @torch.no_grad() def __UpperCAmelCase ( self , _a , _a , _a=0.5 , _a=0.5 ): __a = self.vision_model(_a )[0] __a = self.p_head(_a ) __a = nsfw_detected.flatten() __a = nsfw_detected > p_threshold __a = nsfw_detected.tolist() if any(_a ): logger.warning( '''Potential NSFW content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, nsfw_detected_ in enumerate(_a ): if nsfw_detected_: __a = np.zeros(images[idx].shape ) __a = self.w_head(_a ) __a = watermark_detected.flatten() __a = watermark_detected > w_threshold __a = watermark_detected.tolist() if any(_a ): logger.warning( '''Potential watermarked content was detected in one or more images. A black image will be returned instead.''' ''' Try again with a different prompt and/or seed.''' ) for idx, watermark_detected_ in enumerate(_a ): if watermark_detected_: __a = np.zeros(images[idx].shape ) return images, nsfw_detected, watermark_detected
695
"""simple docstring""" from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional, Union from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, PreTrainedTokenizerBase, TensorType lowercase_ = logging.get_logger(__name__) lowercase_ = { "microsoft/deberta-v2-xlarge": "https://huggingface.co/microsoft/deberta-v2-xlarge/resolve/main/config.json", "microsoft/deberta-v2-xxlarge": "https://huggingface.co/microsoft/deberta-v2-xxlarge/resolve/main/config.json", "microsoft/deberta-v2-xlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xlarge-mnli/resolve/main/config.json" ), "microsoft/deberta-v2-xxlarge-mnli": ( "https://huggingface.co/microsoft/deberta-v2-xxlarge-mnli/resolve/main/config.json" ), } class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCAmelCase : Dict = 'deberta-v2' def __init__( self , _a=128_100 , _a=1_536 , _a=24 , _a=24 , _a=6_144 , _a="gelu" , _a=0.1 , _a=0.1 , _a=512 , _a=0 , _a=0.02 , _a=1E-7 , _a=False , _a=-1 , _a=0 , _a=True , _a=None , _a=0 , _a="gelu" , **_a , ): super().__init__(**_a ) __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = max_position_embeddings __a = type_vocab_size __a = initializer_range __a = relative_attention __a = max_relative_positions __a = pad_token_id __a = position_biased_input # Backwards compatibility if type(_a ) == str: __a = [x.strip() for x in pos_att_type.lower().split('''|''' )] __a = pos_att_type __a = vocab_size __a = layer_norm_eps __a = kwargs.get('''pooler_hidden_size''' , _a ) __a = pooler_dropout __a = pooler_hidden_act class __lowerCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' @property def __UpperCAmelCase ( self ): if self.task == "multiple-choice": __a = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: __a = {0: '''batch''', 1: '''sequence'''} if self._config.type_vocab_size > 0: return OrderedDict( [('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ('''token_type_ids''', dynamic_axis)] ) else: return OrderedDict([('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis)] ) @property def __UpperCAmelCase ( self ): return 12 def __UpperCAmelCase ( self , _a , _a = -1 , _a = -1 , _a = -1 , _a = False , _a = None , _a = 3 , _a = 40 , _a = 40 , _a = None , ): __a = super().generate_dummy_inputs(preprocessor=_a , framework=_a ) if self._config.type_vocab_size == 0 and "token_type_ids" in dummy_inputs: del dummy_inputs["token_type_ids"] return dummy_inputs
695
1
'''simple docstring''' from copy import deepcopy import torch import torch.nn.functional as F from torch.optim import AdamW from torch.optim.lr_scheduler import LambdaLR from torch.utils.data import DataLoader from accelerate.accelerator import Accelerator from accelerate.state import GradientState from accelerate.test_utils import RegressionDataset, RegressionModel from accelerate.utils import DistributedType, is_torch_version, set_seed def __UpperCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ )-> Dict: """simple docstring""" for param, grad_param in zip(model_a.parameters() , model_b.parameters() ): if not param.requires_grad: continue if not did_step: # Grads should not be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nmodel_a grad ({param.grad}) == model_b grad ({grad_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , grad_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nmodel_a grad ({param.grad}) != model_b grad ({grad_param.grad})''' def __UpperCAmelCase ( __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__ , __magic_name__=True )-> Dict: """simple docstring""" model.train() snake_case_ : Optional[int] = model(lowerCAmelCase_ ) snake_case_ : Any = F.mse_loss(lowerCAmelCase_ , target.to(output.device ) ) if not do_backward: loss /= accelerator.gradient_accumulation_steps loss.backward() else: accelerator.backward(lowerCAmelCase_ ) def __UpperCAmelCase ( __magic_name__ , __magic_name__=False )-> Union[str, Any]: """simple docstring""" set_seed(42 ) snake_case_ : Optional[Any] = RegressionModel() snake_case_ : Dict = deepcopy(lowerCAmelCase_ ) snake_case_ : Union[str, Any] = RegressionDataset(length=80 ) snake_case_ : List[Any] = DataLoader(lowerCAmelCase_ , batch_size=16 ) model.to(accelerator.device ) if sched: snake_case_ : List[str] = AdamW(params=model.parameters() , lr=1E-3 ) snake_case_ : str = AdamW(params=ddp_model.parameters() , lr=1E-3 ) snake_case_ : str = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda __magic_name__ : epoch**0.65 ) snake_case_ : Any = LambdaLR(lowerCAmelCase_ , lr_lambda=lambda __magic_name__ : epoch**0.65 ) # Make a copy of `model` if sched: snake_case_ : str = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: snake_case_ : str = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) if sched: return (model, opt, sched, dataloader, ddp_model, ddp_opt, ddp_sched) return model, ddp_model, dataloader def __UpperCAmelCase ( __magic_name__ )-> str: """simple docstring""" snake_case_ : Dict = get_training_setup(lowerCAmelCase_ ) # Use a single batch snake_case_ : Any = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ : int = accelerator.gather((ddp_input, ddp_target) ) snake_case_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Since `no_sync` is a noop, `ddp_model` and `model` grads should always be in sync check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue assert torch.allclose( param.grad , ddp_param.grad ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ : Dict = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def __UpperCAmelCase ( __magic_name__ )-> Union[str, Any]: """simple docstring""" snake_case_ : int = get_training_setup(lowerCAmelCase_ ) # Use a single batch snake_case_ : int = next(iter(lowerCAmelCase_ ) ).values() for iteration in range(3 ): # Gather the distributed inputs and targs for the base model snake_case_ : Optional[int] = accelerator.gather((ddp_input, ddp_target) ) snake_case_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) if iteration % 2 == 0: # Accumulate grads locally with accelerator.no_sync(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) else: # Sync grads step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if iteration % 2 == 0: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' else: # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ : List[Any] = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] def __UpperCAmelCase ( __magic_name__=False , __magic_name__=False )-> int: """simple docstring""" snake_case_ : Any = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ : Union[str, Any] = get_training_setup(lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): snake_case_ : Union[str, Any] = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ : List[Any] = accelerator.gather((ddp_input, ddp_target) ) snake_case_ : Dict = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Do "gradient accumulation" (noop) with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # DDP model and model should only be in sync when not (iteration % 2 == 0) for param, ddp_param in zip(model.parameters() , ddp_model.parameters() ): if not param.requires_grad: continue if ((iteration + 1) % 2 == 0) or (iteration == len(lowerCAmelCase_ ) - 1): # Grads should be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is True ), F'''Gradients not in sync when they should be at iteration {iteration}:\nModel grad ({param.grad}) != DDP grad ({ddp_param.grad})''' else: # Grads should not be in sync assert ( torch.allclose(param.grad , ddp_param.grad ) is False ), F'''Gradients in sync when they should not be at iteration {iteration}:\nModel grad ({param.grad}) == DDP grad ({ddp_param.grad})''' # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) snake_case_ : str = ddp_input[torch.randperm(len(lowerCAmelCase_ ) )] GradientState._reset_state() def __UpperCAmelCase ( __magic_name__=False , __magic_name__=False )-> Dict: """simple docstring""" snake_case_ : Union[str, Any] = Accelerator( split_batches=lowerCAmelCase_ , dispatch_batches=lowerCAmelCase_ , gradient_accumulation_steps=2 ) # Test that context manager behaves properly snake_case_ : int = get_training_setup(lowerCAmelCase_ , lowerCAmelCase_ ) for iteration, batch in enumerate(lowerCAmelCase_ ): snake_case_ : Dict = batch.values() # Gather the distributed inputs and targs for the base model snake_case_ : Any = accelerator.gather((ddp_input, ddp_target) ) snake_case_ : List[Any] = input.to(accelerator.device ), target.to(accelerator.device ) # Perform our initial ground truth step in non "DDP" model.train() ddp_model.train() step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) opt.step() if ((iteration + 1) % 2 == 0) or ((iteration + 1) == len(lowerCAmelCase_ )): if split_batches: sched.step() else: for _ in range(accelerator.num_processes ): sched.step() opt.zero_grad() # Perform gradient accumulation under wrapper with accelerator.accumulate(lowerCAmelCase_ ): step_model(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) ddp_opt.step() ddp_sched.step() ddp_opt.zero_grad() # Learning rates should be the same assert ( opt.param_groups[0]["lr"] == ddp_opt.param_groups[0]["lr"] ), F'''Learning rates found in each optimizer did not align\nopt: {opt.param_groups[0]['lr']}\nDDP opt: {ddp_opt.param_groups[0]['lr']}\n''' snake_case_ : Optional[Any] = (((iteration + 1) % 2) == 0) or ((iteration + 1) == len(lowerCAmelCase_ )) if accelerator.num_processes > 1: check_model_parameters(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # Shuffle ddp_input on each iteration torch.manual_seed(1337 + iteration ) GradientState._reset_state() def __UpperCAmelCase ( )-> str: """simple docstring""" snake_case_ : int = Accelerator() snake_case_ : Optional[int] = RegressionDataset(length=80 ) snake_case_ : Tuple = DataLoader(lowerCAmelCase_ , batch_size=16 ) snake_case_ : Optional[int] = RegressionDataset(length=96 ) snake_case_ : Tuple = DataLoader(lowerCAmelCase_ , batch_size=16 ) snake_case_ : Optional[int] = accelerator.prepare(lowerCAmelCase_ , lowerCAmelCase_ ) assert accelerator.gradient_state.active_dataloader is None for iteration, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if iteration < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader if iteration == 1: for batch_num, _ in enumerate(lowerCAmelCase_ ): assert id(accelerator.gradient_state.active_dataloader ) == id(lowerCAmelCase_ ) if batch_num < len(lowerCAmelCase_ ) - 1: assert not accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader else: assert accelerator.gradient_state.end_of_dataloader assert accelerator.gradient_state.active_dataloader is None def __UpperCAmelCase ( )-> int: """simple docstring""" snake_case_ : Dict = Accelerator() snake_case_ : Optional[Any] = accelerator.state if state.local_process_index == 0: print("**Test `accumulate` gradient accumulation with dataloader break**" ) test_dataloader_break() if state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print("**Test NOOP `no_sync` context manager**" ) test_noop_sync(lowerCAmelCase_ ) if state.distributed_type in (DistributedType.MULTI_GPU, DistributedType.MULTI_CPU): if state.local_process_index == 0: print("**Test Distributed `no_sync` context manager**" ) test_distributed_sync(lowerCAmelCase_ ) if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation(lowerCAmelCase_ , lowerCAmelCase_ ) # Currently will break on torch 2.0 +, need to investigate why if is_torch_version("<" , "2.0" ) or state.distributed_type == DistributedType.NO: if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , "`split_batches=False`, `dispatch_batches=False`**" , ) test_gradient_accumulation_with_opt_and_scheduler() if state.distributed_type == DistributedType.MULTI_GPU: for split_batch in [True, False]: for dispatch_batches in [True, False]: if not split_batch and not dispatch_batches: continue if state.local_process_index == 0: print( "**Test `accumulate` gradient accumulation with optimizer and scheduler, " , F'''`split_batches={split_batch}` and `dispatch_batches={dispatch_batches}`**''' , ) test_gradient_accumulation_with_opt_and_scheduler(lowerCAmelCase_ , lowerCAmelCase_ ) def __UpperCAmelCase ( __magic_name__ )-> List[Any]: """simple docstring""" main() if __name__ == "__main__": main()
703
'''simple docstring''' import pickle import unittest import torch from accelerate import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils import require_cpu @require_cpu class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' snake_case_ : Union[str, Any] = torch.nn.Linear(10 , 10 ) snake_case_ : Dict = torch.optim.SGD(model.parameters() , 0.1 ) snake_case_ : Tuple = Accelerator() snake_case_ : Optional[Any] = accelerator.prepare(lowerCAmelCase__ ) try: pickle.loads(pickle.dumps(lowerCAmelCase__ ) ) except Exception as e: self.fail(F'''Accelerated optimizer pickling failed with {e}''' ) AcceleratorState._reset_state()
656
0
'''simple docstring''' from typing import Optional import torch import torch.utils.checkpoint from torch import Tensor, nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACTaFN from ...file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward from ...modeling_outputs import ( BaseModelOutputWithNoAttention, BaseModelOutputWithPoolingAndNoAttention, ImageClassifierOutputWithNoAttention, ) from ...modeling_utils import PreTrainedModel from ...utils import logging from .configuration_regnet import RegNetConfig _lowerCAmelCase = logging.get_logger(__name__) # General docstring _lowerCAmelCase = "RegNetConfig" # Base docstring _lowerCAmelCase = "facebook/regnet-y-040" _lowerCAmelCase = [1, 1_0_8_8, 7, 7] # Image classification docstring _lowerCAmelCase = "facebook/regnet-y-040" _lowerCAmelCase = "tabby, tabby cat" _lowerCAmelCase = [ "facebook/regnet-y-040", # See all regnet models at https://huggingface.co/models?filter=regnet ] class __A ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 3 , _lowerCamelCase = 1 , _lowerCamelCase = 1 , _lowerCamelCase = "relu" , )-> Optional[Any]: super().__init__() lowercase__ = nn.Convad( _lowerCamelCase , _lowerCamelCase , kernel_size=_lowerCamelCase , stride=_lowerCamelCase , padding=kernel_size // 2 , groups=_lowerCamelCase , bias=_lowerCamelCase , ) lowercase__ = nn.BatchNormad(_lowerCamelCase ) lowercase__ = ACTaFN[activation] if activation is not None else nn.Identity() def snake_case_( self , _lowerCamelCase )-> str: lowercase__ = self.convolution(_lowerCamelCase ) lowercase__ = self.normalization(_lowerCamelCase ) lowercase__ = self.activation(_lowerCamelCase ) return hidden_state class __A ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase )-> Any: super().__init__() lowercase__ = RegNetConvLayer( config.num_channels , config.embedding_size , kernel_size=3 , stride=2 , activation=config.hidden_act ) lowercase__ = config.num_channels def snake_case_( self , _lowerCamelCase )-> Optional[Any]: lowercase__ = pixel_values.shape[1] if num_channels != self.num_channels: raise ValueError( '''Make sure that the channel dimension of the pixel values match with the one set in the configuration.''' ) lowercase__ = self.embedder(_lowerCamelCase ) return hidden_state class __A ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 )-> Tuple: super().__init__() lowercase__ = nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , stride=_lowerCamelCase , bias=_lowerCamelCase ) lowercase__ = nn.BatchNormad(_lowerCamelCase ) def snake_case_( self , _lowerCamelCase )-> Tensor: lowercase__ = self.convolution(_lowerCamelCase ) lowercase__ = self.normalization(_lowerCamelCase ) return hidden_state class __A ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase )-> int: super().__init__() lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) lowercase__ = nn.Sequential( nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , nn.ReLU() , nn.Convad(_lowerCamelCase , _lowerCamelCase , kernel_size=1 ) , nn.Sigmoid() , ) def snake_case_( self , _lowerCamelCase )-> Optional[int]: # b c h w -> b c 1 1 lowercase__ = self.pooler(_lowerCamelCase ) lowercase__ = self.attention(_lowerCamelCase ) lowercase__ = hidden_state * attention return hidden_state class __A ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 )-> Optional[Any]: super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1 , out_channels // config.groups_width ) lowercase__ = ( RegNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , groups=_lowerCamelCase , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) lowercase__ = ACTaFN[config.hidden_act] def snake_case_( self , _lowerCamelCase )-> Tuple: lowercase__ = hidden_state lowercase__ = self.layer(_lowerCamelCase ) lowercase__ = self.shortcut(_lowerCamelCase ) hidden_state += residual lowercase__ = self.activation(_lowerCamelCase ) return hidden_state class __A ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 1 )-> Optional[int]: super().__init__() lowercase__ = in_channels != out_channels or stride != 1 lowercase__ = max(1 , out_channels // config.groups_width ) lowercase__ = ( RegNetShortCut(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase ) if should_apply_shortcut else nn.Identity() ) lowercase__ = nn.Sequential( RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=config.hidden_act ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , groups=_lowerCamelCase , activation=config.hidden_act ) , RegNetSELayer(_lowerCamelCase , reduced_channels=int(round(in_channels / 4 ) ) ) , RegNetConvLayer(_lowerCamelCase , _lowerCamelCase , kernel_size=1 , activation=_lowerCamelCase ) , ) lowercase__ = ACTaFN[config.hidden_act] def snake_case_( self , _lowerCamelCase )-> List[str]: lowercase__ = hidden_state lowercase__ = self.layer(_lowerCamelCase ) lowercase__ = self.shortcut(_lowerCamelCase ) hidden_state += residual lowercase__ = self.activation(_lowerCamelCase ) return hidden_state class __A ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase = 2 , _lowerCamelCase = 2 , )-> Dict: super().__init__() lowercase__ = RegNetXLayer if config.layer_type == '''x''' else RegNetYLayer lowercase__ = nn.Sequential( # downsampling is done in the first layer with stride of 2 layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , stride=_lowerCamelCase , ) , *[layer(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) for _ in range(depth - 1 )] , ) def snake_case_( self , _lowerCamelCase )-> Optional[int]: lowercase__ = self.layers(_lowerCamelCase ) return hidden_state class __A ( nn.Module ): """simple docstring""" def __init__( self , _lowerCamelCase )-> List[str]: super().__init__() lowercase__ = nn.ModuleList([] ) # based on `downsample_in_first_stage`, the first layer of the first stage may or may not downsample the input self.stages.append( RegNetStage( _lowerCamelCase , config.embedding_size , config.hidden_sizes[0] , stride=2 if config.downsample_in_first_stage else 1 , depth=config.depths[0] , ) ) lowercase__ = zip(config.hidden_sizes , config.hidden_sizes[1:] ) for (in_channels, out_channels), depth in zip(_lowerCamelCase , config.depths[1:] ): self.stages.append(RegNetStage(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , depth=_lowerCamelCase ) ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase = False , _lowerCamelCase = True )-> BaseModelOutputWithNoAttention: lowercase__ = () if output_hidden_states else None for stage_module in self.stages: if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) lowercase__ = stage_module(_lowerCamelCase ) if output_hidden_states: lowercase__ = hidden_states + (hidden_state,) if not return_dict: return tuple(v for v in [hidden_state, hidden_states] if v is not None ) return BaseModelOutputWithNoAttention(last_hidden_state=_lowerCamelCase , hidden_states=_lowerCamelCase ) class __A ( a ): """simple docstring""" A_ = RegNetConfig A_ = 'regnet' A_ = 'pixel_values' A_ = True def snake_case_( self , _lowerCamelCase )-> Tuple: if isinstance(_lowerCamelCase , nn.Convad ): nn.init.kaiming_normal_(module.weight , mode='''fan_out''' , nonlinearity='''relu''' ) elif isinstance(_lowerCamelCase , (nn.BatchNormad, nn.GroupNorm) ): nn.init.constant_(module.weight , 1 ) nn.init.constant_(module.bias , 0 ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase=False )-> Union[str, Any]: if isinstance(_lowerCamelCase , _lowerCamelCase ): lowercase__ = value _lowerCAmelCase = r"\n This model is a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass. Use it\n as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and\n behavior.\n\n Parameters:\n config ([`RegNetConfig`]): Model configuration class with all the parameters of the model.\n Initializing with a config file does not load the weights associated with the model, only the\n configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.\n" _lowerCAmelCase = r"\n Args:\n pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)`):\n Pixel values. Pixel values can be obtained using [`AutoImageProcessor`]. See\n [`ConvNextImageProcessor.__call__`] for details.\n\n output_hidden_states (`bool`, *optional*):\n Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for\n more detail.\n return_dict (`bool`, *optional*):\n Whether or not to return a [`~file_utils.ModelOutput`] instead of a plain tuple.\n" @add_start_docstrings( 'The bare RegNet model outputting raw features without any specific head on top.' , a , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetModel with RESNET->REGNET,ResNet->RegNet class __A ( a ): """simple docstring""" def __init__( self , _lowerCamelCase )-> Dict: super().__init__(_lowerCamelCase ) lowercase__ = config lowercase__ = RegNetEmbeddings(_lowerCamelCase ) lowercase__ = RegNetEncoder(_lowerCamelCase ) lowercase__ = nn.AdaptiveAvgPoolad((1, 1) ) # Initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_CHECKPOINT_FOR_DOC , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , modality='''vision''' , expected_output=_EXPECTED_OUTPUT_SHAPE , ) def snake_case_( self , _lowerCamelCase , _lowerCamelCase = None , _lowerCamelCase = None )-> BaseModelOutputWithPoolingAndNoAttention: lowercase__ = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.embedder(_lowerCamelCase ) lowercase__ = self.encoder( _lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) lowercase__ = encoder_outputs[0] lowercase__ = self.pooler(_lowerCamelCase ) if not return_dict: return (last_hidden_state, pooled_output) + encoder_outputs[1:] return BaseModelOutputWithPoolingAndNoAttention( last_hidden_state=_lowerCamelCase , pooler_output=_lowerCamelCase , hidden_states=encoder_outputs.hidden_states , ) @add_start_docstrings( '\n RegNet Model with an image classification head on top (a linear layer on top of the pooled features), e.g. for\n ImageNet.\n ' , a , ) # Copied from transformers.models.resnet.modeling_resnet.ResNetForImageClassification with RESNET->REGNET,ResNet->RegNet,resnet->regnet class __A ( a ): """simple docstring""" def __init__( self , _lowerCamelCase )-> Dict: super().__init__(_lowerCamelCase ) lowercase__ = config.num_labels lowercase__ = RegNetModel(_lowerCamelCase ) # classification head lowercase__ = nn.Sequential( nn.Flatten() , nn.Linear(config.hidden_sizes[-1] , config.num_labels ) if config.num_labels > 0 else nn.Identity() , ) # initialize weights and apply final processing self.post_init() @add_start_docstrings_to_model_forward(_lowerCamelCase ) @add_code_sample_docstrings( checkpoint=_IMAGE_CLASS_CHECKPOINT , output_type=_lowerCamelCase , config_class=_CONFIG_FOR_DOC , expected_output=_IMAGE_CLASS_EXPECTED_OUTPUT , ) def snake_case_( self , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , _lowerCamelCase = None , )-> ImageClassifierOutputWithNoAttention: lowercase__ = return_dict if return_dict is not None else self.config.use_return_dict lowercase__ = self.regnet(_lowerCamelCase , output_hidden_states=_lowerCamelCase , return_dict=_lowerCamelCase ) lowercase__ = outputs.pooler_output if return_dict else outputs[1] lowercase__ = self.classifier(_lowerCamelCase ) lowercase__ = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: lowercase__ = '''regression''' elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): lowercase__ = '''single_label_classification''' else: lowercase__ = '''multi_label_classification''' if self.config.problem_type == "regression": lowercase__ = MSELoss() if self.num_labels == 1: lowercase__ = loss_fct(logits.squeeze() , labels.squeeze() ) else: lowercase__ = loss_fct(_lowerCamelCase , _lowerCamelCase ) elif self.config.problem_type == "single_label_classification": lowercase__ = CrossEntropyLoss() lowercase__ = loss_fct(logits.view(-1 , self.num_labels ) , labels.view(-1 ) ) elif self.config.problem_type == "multi_label_classification": lowercase__ = BCEWithLogitsLoss() lowercase__ = loss_fct(_lowerCamelCase , _lowerCamelCase ) if not return_dict: lowercase__ = (logits,) + outputs[2:] return (loss,) + output if loss is not None else output return ImageClassifierOutputWithNoAttention(loss=_lowerCamelCase , logits=_lowerCamelCase , hidden_states=outputs.hidden_states )
161
'''simple docstring''' def _lowerCAmelCase ( lowercase : float , lowercase : float ) ->float: """simple docstring""" if density <= 0: raise ValueError('''Impossible fluid density''' ) if bulk_modulus <= 0: raise ValueError('''Impossible bulk modulus''' ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
161
1
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class A__ ( __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : torch.FloatTensor lowerCamelCase__ : torch.FloatTensor lowerCamelCase__ : Optional[torch.FloatTensor] =None class A__ ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): lowerCamelCase__ : Any =2 @register_to_config def __init__( self , lowerCamelCase = 0.0_2 , lowerCamelCase = 100 , lowerCamelCase = 1.0_0_7 , lowerCamelCase = 80 , lowerCamelCase = 0.0_5 , lowerCamelCase = 50 , ) -> Optional[int]: """simple docstring""" __magic_name__ : Union[str, Any] = sigma_max # setable values __magic_name__ : int = None __magic_name__ : np.IntTensor = None __magic_name__ : torch.FloatTensor = None # sigma(t_i) def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> torch.FloatTensor: """simple docstring""" return sample def lowercase ( self , lowerCamelCase , lowerCamelCase = None ) -> Tuple: """simple docstring""" __magic_name__ : Union[str, Any] = num_inference_steps __magic_name__ : List[str] = np.arange(0 , self.num_inference_steps )[::-1].copy() __magic_name__ : Optional[int] = torch.from_numpy(lowerCamelCase ).to(lowerCamelCase ) __magic_name__ : Optional[Any] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] __magic_name__ : int = torch.tensor(lowerCamelCase , dtype=torch.floataa , device=lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase = None ) -> Tuple[torch.FloatTensor, float]: """simple docstring""" if self.config.s_min <= sigma <= self.config.s_max: __magic_name__ : Union[str, Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: __magic_name__ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) __magic_name__ : List[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=lowerCamelCase ).to(sample.device ) __magic_name__ : List[Any] = sigma + gamma * sigma __magic_name__ : Dict = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __magic_name__ : Tuple = sample_hat + sigma_hat * model_output __magic_name__ : List[str] = (sample_hat - pred_original_sample) / sigma_hat __magic_name__ : Optional[int] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCamelCase , derivative=lowerCamelCase , pred_original_sample=lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = True , ) -> Union[KarrasVeOutput, Tuple]: """simple docstring""" __magic_name__ : Tuple = sample_prev + sigma_prev * model_output __magic_name__ : Dict = (sample_prev - pred_original_sample) / sigma_prev __magic_name__ : int = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=lowerCamelCase , derivative=lowerCamelCase , pred_original_sample=lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> str: """simple docstring""" raise NotImplementedError()
712
def lowerCAmelCase ( UpperCAmelCase ) ->list[int]: """simple docstring""" if num <= 0: raise ValueError('''Input must be a positive integer''' ) __magic_name__ : List[str] = [True] * (num + 1) __magic_name__ : List[Any] = 2 while p * p <= num: if primes[p]: for i in range(p * p, num + 1, UpperCAmelCase ): __magic_name__ : Any = False p += 1 return [prime for prime in range(2, num + 1 ) if primes[prime]] if __name__ == "__main__": import doctest doctest.testmod() lowercase_ = int(input('''Enter a positive integer: ''').strip()) print(prime_sieve_eratosthenes(user_num))
336
0
"""simple docstring""" def lowercase ( a__ : int ) -> bool: _UpperCamelCase = (1 + 24 * n) ** 0.5 return ((1 + root) / 6) % 1 == 0 def lowercase ( a__ : int = 5000 ) -> int: _UpperCamelCase = [(i * (3 * i - 1)) // 2 for i in range(1 , _A )] for i, pentagonal_i in enumerate(_A ): for j in range(_A , len(_A ) ): _UpperCamelCase = pentagonal_nums[j] _UpperCamelCase = pentagonal_i + pentagonal_j _UpperCamelCase = pentagonal_j - pentagonal_i if is_pentagonal(_A ) and is_pentagonal(_A ): return b return -1 if __name__ == "__main__": print(F'''{solution() = }''')
420
import unittest import numpy as np import torch from torch import nn from transformers import ( CLIPImageProcessor, CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer, CLIPVisionConfig, CLIPVisionModelWithProjection, ) from diffusers import KandinskyVaaPriorPipeline, PriorTransformer, UnCLIPScheduler from diffusers.utils import torch_device from diffusers.utils.testing_utils import enable_full_determinism, skip_mps from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class UpperCamelCase ( _UpperCAmelCase , unittest.TestCase ): lowerCAmelCase : Union[str, Any] = KandinskyVaaPriorPipeline lowerCAmelCase : Dict = ["""prompt"""] lowerCAmelCase : List[Any] = ["""prompt""", """negative_prompt"""] lowerCAmelCase : Optional[int] = [ """num_images_per_prompt""", """generator""", """num_inference_steps""", """latents""", """negative_prompt""", """guidance_scale""", """output_type""", """return_dict""", ] lowerCAmelCase : Dict = False @property def __A ( self ): return 32 @property def __A ( self ): return 32 @property def __A ( self ): return self.time_input_dim @property def __A ( self ): return self.time_input_dim * 4 @property def __A ( self ): return 100 @property def __A ( self ): A__ = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) return tokenizer @property def __A ( self ): torch.manual_seed(0 ) A__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1e-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) return CLIPTextModelWithProjection(UpperCAmelCase__ ) @property def __A ( self ): torch.manual_seed(0 ) A__ = { "num_attention_heads": 2, "attention_head_dim": 12, "embedding_dim": self.text_embedder_hidden_size, "num_layers": 1, } A__ = PriorTransformer(**UpperCAmelCase__ ) # clip_std and clip_mean is initialized to be 0 so PriorTransformer.post_process_latents will always return 0 - set clip_std to be 1 so it won't return 0 A__ = nn.Parameter(torch.ones(model.clip_std.shape ) ) return model @property def __A ( self ): torch.manual_seed(0 ) A__ = CLIPVisionConfig( hidden_size=self.text_embedder_hidden_size , image_size=224 , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_channels=3 , num_hidden_layers=5 , patch_size=14 , ) A__ = CLIPVisionModelWithProjection(UpperCAmelCase__ ) return model @property def __A ( self ): A__ = CLIPImageProcessor( crop_size=224 , do_center_crop=UpperCAmelCase__ , do_normalize=UpperCAmelCase__ , do_resize=UpperCAmelCase__ , image_mean=[0.48_145_466, 0.4_578_275, 0.40_821_073] , image_std=[0.26_862_954, 0.26_130_258, 0.27_577_711] , resample=3 , size=224 , ) return image_processor def __A ( self ): A__ = self.dummy_prior A__ = self.dummy_image_encoder A__ = self.dummy_text_encoder A__ = self.dummy_tokenizer A__ = self.dummy_image_processor A__ = UnCLIPScheduler( variance_type="fixed_small_log" , prediction_type="sample" , num_train_timesteps=1_000 , clip_sample=UpperCAmelCase__ , clip_sample_range=10.0 , ) A__ = { "prior": prior, "image_encoder": image_encoder, "text_encoder": text_encoder, "tokenizer": tokenizer, "scheduler": scheduler, "image_processor": image_processor, } return components def __A ( self , UpperCAmelCase__ , UpperCAmelCase__=0 ): if str(UpperCAmelCase__ ).startswith("mps" ): A__ = torch.manual_seed(UpperCAmelCase__ ) else: A__ = torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) A__ = { "prompt": "horse", "generator": generator, "guidance_scale": 4.0, "num_inference_steps": 2, "output_type": "np", } return inputs def __A ( self ): A__ = "cpu" A__ = self.get_dummy_components() A__ = self.pipeline_class(**UpperCAmelCase__ ) A__ = pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) A__ = pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) A__ = output.image_embeds A__ = pipe( **self.get_dummy_inputs(UpperCAmelCase__ ) , return_dict=UpperCAmelCase__ , )[0] A__ = image[0, -10:] A__ = image_from_tuple[0, -10:] assert image.shape == (1, 32) A__ = np.array( [-0.0_532, 1.7_120, 0.3_656, -1.0_852, -0.8_946, -1.1_756, 0.4_348, 0.2_482, 0.5_146, -0.1_156] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def __A ( self ): A__ = torch_device == "cpu" A__ = True A__ = False self._test_inference_batch_single_identical( test_max_difference=UpperCAmelCase__ , relax_max_difference=UpperCAmelCase__ , test_mean_pixel_difference=UpperCAmelCase__ , ) @skip_mps def __A ( self ): A__ = torch_device == "cpu" A__ = False self._test_attention_slicing_forward_pass( test_max_difference=UpperCAmelCase__ , test_mean_pixel_difference=UpperCAmelCase__ , )
491
0
"""simple docstring""" import copy import inspect import unittest from transformers import AutoBackbone from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import require_timm, require_torch, torch_device from transformers.utils.import_utils import is_torch_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor if is_torch_available(): import torch from transformers import TimmBackbone, TimmBackboneConfig from ...test_pipeline_mixin import PipelineTesterMixin class __snake_case : def __init__( self , lowercase , lowercase=None , lowercase=None , lowercase=None , lowercase="resnet50" , lowercase=3 , lowercase=32 , lowercase=3 , lowercase=True , lowercase=True , ) -> List[str]: '''simple docstring''' a__: str = parent a__: str = out_indices if out_indices is not None else [4] a__: str = stage_names a__: Tuple = out_features a__: Optional[Any] = backbone a__: Any = batch_size a__: Tuple = image_size a__: Optional[int] = num_channels a__: List[str] = use_pretrained_backbone a__: str = is_training def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' a__: Optional[int] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) a__: str = self.get_config() return config, pixel_values def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' return TimmBackboneConfig( image_size=self.image_size , num_channels=self.num_channels , out_features=self.out_features , out_indices=self.out_indices , stage_names=self.stage_names , use_pretrained_backbone=self.use_pretrained_backbone , backbone=self.backbone , ) def lowerCamelCase_ ( self , lowercase , lowercase) -> Union[str, Any]: '''simple docstring''' a__: Optional[Any] = TimmBackbone(config=lowercase) model.to(lowercase) model.eval() with torch.no_grad(): a__: Optional[int] = model(lowercase) self.parent.assertEqual( result.feature_map[-1].shape , (self.batch_size, model.channels[-1], 14, 14) , ) def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Any = self.prepare_config_and_inputs() a__: Dict = config_and_inputs a__: Dict = {'pixel_values': pixel_values} return config, inputs_dict @require_torch @require_timm class __snake_case ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): a__ = (TimmBackbone,) if is_torch_available() else () a__ = {"""feature-extraction""": TimmBackbone} if is_torch_available() else {} a__ = False a__ = False a__ = False a__ = False def lowerCamelCase_ ( self) -> List[str]: '''simple docstring''' a__: Any = TimmBackboneModelTester(self) a__: Tuple = ConfigTester(self , config_class=lowercase , has_text_modality=lowercase) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCamelCase_ ( self) -> str: '''simple docstring''' a__: str = 'resnet18' a__: Tuple = 'microsoft/resnet-18' a__: str = AutoBackbone.from_pretrained(lowercase , use_timm_backbone=lowercase) a__: Tuple = AutoBackbone.from_pretrained(lowercase) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(len(timm_model.stage_names) , len(transformers_model.stage_names)) self.assertEqual(timm_model.channels , transformers_model.channels) # Out indices are set to the last layer by default. For timm models, we don't know # the number of layers in advance, so we set it to (-1,), whereas for transformers # models, we set it to [len(stage_names) - 1] (kept for backward compatibility). self.assertEqual(timm_model.out_indices , (-1,)) self.assertEqual(transformers_model.out_indices , [len(timm_model.stage_names) - 1]) a__: int = AutoBackbone.from_pretrained(lowercase , use_timm_backbone=lowercase , out_indices=[1, 2, 3]) a__: Union[str, Any] = AutoBackbone.from_pretrained(lowercase , out_indices=[1, 2, 3]) self.assertEqual(timm_model.out_indices , transformers_model.out_indices) self.assertEqual(len(timm_model.out_features) , len(transformers_model.out_features)) self.assertEqual(timm_model.channels , transformers_model.channels) @unittest.skip('TimmBackbone doesn\'t support feed forward chunking') def lowerCamelCase_ ( self) -> Union[str, Any]: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have num_hidden_layers attribute') def lowerCamelCase_ ( self) -> Any: '''simple docstring''' pass @unittest.skip('TimmBackbone initialization is managed on the timm side') def lowerCamelCase_ ( self) -> int: '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def lowerCamelCase_ ( self) -> str: '''simple docstring''' pass @unittest.skip('TimmBackbone models doesn\'t have inputs_embeds') def lowerCamelCase_ ( self) -> Optional[Any]: '''simple docstring''' pass @unittest.skip('TimmBackbone model cannot be created without specifying a backbone checkpoint') def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def lowerCamelCase_ ( self) -> str: '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' pass @unittest.skip('model weights aren\'t tied in TimmBackbone.') def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def lowerCamelCase_ ( self) -> List[Any]: '''simple docstring''' pass @unittest.skip('Only checkpoints on timm can be loaded into TimmBackbone') def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t have hidden size info in its configuration.') def lowerCamelCase_ ( self) -> str: '''simple docstring''' pass @unittest.skip('TimmBackbone doesn\'t support output_attentions.') def lowerCamelCase_ ( self) -> str: '''simple docstring''' pass @unittest.skip('Safetensors is not supported by timm.') def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' pass @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.') def lowerCamelCase_ ( self) -> Optional[int]: '''simple docstring''' pass def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Tuple = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: List[Any] = model_class(lowercase) a__: Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__: List[str] = [*signature.parameters.keys()] a__: List[Any] = ['pixel_values'] self.assertListEqual(arg_names[:1] , lowercase) def lowerCamelCase_ ( self) -> Dict: '''simple docstring''' a__: Any = self.model_tester.prepare_config_and_inputs_for_common() a__: Optional[Any] = True a__: List[Any] = self.has_attentions # no need to test all models as different heads yield the same functionality a__: List[Any] = self.all_model_classes[0] a__: Tuple = model_class(lowercase) model.to(lowercase) a__: Dict = self._prepare_for_class(lowercase , lowercase) a__: str = model(**lowercase) a__: List[Any] = outputs[0][-1] # Encoder-/Decoder-only models a__: str = outputs.hidden_states[0] hidden_states.retain_grad() if self.has_attentions: a__: Union[str, Any] = outputs.attentions[0] attentions.retain_grad() output.flatten()[0].backward(retain_graph=lowercase) self.assertIsNotNone(hidden_states.grad) if self.has_attentions: self.assertIsNotNone(attentions.grad) def lowerCamelCase_ ( self) -> Tuple: '''simple docstring''' a__: List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__: Dict = model_class(lowercase) model.to(lowercase) model.eval() a__: str = model(**lowercase) self.assertEqual(len(result.feature_maps) , len(config.out_indices)) self.assertEqual(len(model.channels) , len(config.out_indices)) # Check output of last stage is taken if out_features=None, out_indices=None a__: Tuple = copy.deepcopy(lowercase) a__: Optional[int] = None a__: int = model_class(lowercase) model.to(lowercase) model.eval() a__: Optional[int] = model(**lowercase) self.assertEqual(len(result.feature_maps) , 1) self.assertEqual(len(model.channels) , 1) # Check backbone can be initialized with fresh weights a__: List[str] = copy.deepcopy(lowercase) a__: Any = False a__: Dict = model_class(lowercase) model.to(lowercase) model.eval() a__: Dict = model(**lowercase)
712
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowercase__ = { 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = ['PoolFormerFeatureExtractor'] lowercase__ = ['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ = [ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowercase__ = _LazyModule(__name__, globals()['__file__'], _import_structure)
217
0