code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
import re import subprocess import sys __magic_name__ : int = subprocess.check_output('''git merge-base main HEAD'''.split()).decode('''utf-8''') __magic_name__ : Any = subprocess.check_output(F'git diff --name-only {fork_point_sha}'.split()).decode('''utf-8''').split() __magic_name__ : int = '''|'''.join(sys.argv[1:]) __magic_name__ : Tuple = re.compile(rF'^({joined_dirs}).*?\.py$') __magic_name__ : int = [x for x in modified_files if regex.match(x)] print(''' '''.join(relevant_modified_files), end='''''')
280
"""simple docstring""" import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import BertTokenizer, BertTokenizerFast from transformers.models.bert.tokenization_bert import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import AlignProcessor, EfficientNetImageProcessor @require_vision class lowerCAmelCase__ ( unittest.TestCase ): def lowercase ( self : int ): _snake_case = tempfile.mkdtemp() _snake_case = [ '''[UNK]''', '''[CLS]''', '''[SEP]''', '''[PAD]''', '''[MASK]''', '''want''', '''##want''', '''##ed''', '''wa''', '''un''', '''runn''', '''##ing''', ''',''', '''low''', '''lowest''', ] _snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) _snake_case = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4_8_1_4_5_4_6_6, 0.4_5_7_8_2_7_5, 0.4_0_8_2_1_0_7_3], '''image_std''': [0.2_6_8_6_2_9_5_4, 0.2_6_1_3_0_2_5_8, 0.2_7_5_7_7_7_1_1], } _snake_case = os.path.join(self.tmpdirname , _lowerCamelCase ) with open(self.image_processor_file , '''w''' , encoding='''utf-8''' ) as fp: json.dump(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : List[Any] , **_lowerCamelCase : Tuple ): return BertTokenizer.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : str , **_lowerCamelCase : Tuple ): return BertTokenizerFast.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : Dict , **_lowerCamelCase : Tuple ): return EfficientNetImageProcessor.from_pretrained(self.tmpdirname , **_lowerCamelCase ) def lowercase ( self : str ): shutil.rmtree(self.tmpdirname ) def lowercase ( self : List[Any] ): _snake_case = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _snake_case = [Image.fromarray(np.moveaxis(_lowerCamelCase , 0 , -1 ) ) for x in image_inputs] return image_inputs def lowercase ( self : Tuple ): _snake_case = self.get_tokenizer() _snake_case = self.get_rust_tokenizer() _snake_case = self.get_image_processor() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_slow.save_pretrained(self.tmpdirname ) _snake_case = AlignProcessor.from_pretrained(self.tmpdirname , use_fast=_lowerCamelCase ) _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) processor_fast.save_pretrained(self.tmpdirname ) _snake_case = AlignProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , _lowerCamelCase ) self.assertIsInstance(processor_fast.tokenizer , _lowerCamelCase ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , _lowerCamelCase ) self.assertIsInstance(processor_fast.image_processor , _lowerCamelCase ) def lowercase ( self : int ): _snake_case = AlignProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) _snake_case = self.get_tokenizer(bos_token='''(BOS)''' , eos_token='''(EOS)''' ) _snake_case = self.get_image_processor(do_normalize=_lowerCamelCase , padding_value=1.0 ) _snake_case = AlignProcessor.from_pretrained( self.tmpdirname , bos_token='''(BOS)''' , eos_token='''(EOS)''' , do_normalize=_lowerCamelCase , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , _lowerCamelCase ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , _lowerCamelCase ) def lowercase ( self : List[str] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = self.prepare_image_inputs() _snake_case = image_processor(_lowerCamelCase , return_tensors='''np''' ) _snake_case = processor(images=_lowerCamelCase , return_tensors='''np''' ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def lowercase ( self : List[str] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = processor(text=_lowerCamelCase ) _snake_case = tokenizer(_lowerCamelCase , padding='''max_length''' , max_length=64 ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def lowercase ( self : Any ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , ['''input_ids''', '''token_type_ids''', '''attention_mask''', '''pixel_values'''] ) # test if it raises when no input is passed with pytest.raises(_lowerCamelCase ): processor() def lowercase ( self : Optional[Any] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _snake_case = processor.batch_decode(_lowerCamelCase ) _snake_case = tokenizer.batch_decode(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , _lowerCamelCase ) def lowercase ( self : Optional[Any] ): _snake_case = self.get_image_processor() _snake_case = self.get_tokenizer() _snake_case = AlignProcessor(tokenizer=_lowerCamelCase , image_processor=_lowerCamelCase ) _snake_case = '''lower newer''' _snake_case = self.prepare_image_inputs() _snake_case = processor(text=_lowerCamelCase , images=_lowerCamelCase ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names )
224
0
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_speech_available, is_torch_available, ) snake_case_ : List[str] = { """configuration_trocr""": ["""TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP""", """TrOCRConfig"""], """processing_trocr""": ["""TrOCRProcessor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case_ : List[Any] = [ """TROCR_PRETRAINED_MODEL_ARCHIVE_LIST""", """TrOCRForCausalLM""", """TrOCRPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_trocr import TROCR_PRETRAINED_CONFIG_ARCHIVE_MAP, TrOCRConfig from .processing_trocr import TrOCRProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_trocr import TROCR_PRETRAINED_MODEL_ARCHIVE_LIST, TrOCRForCausalLM, TrOCRPreTrainedModel else: import sys snake_case_ : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
292
"""simple docstring""" def lowercase_ ( _lowercase : list , _lowercase : int , _lowercase : int = 0 , _lowercase : int = 0 ): '''simple docstring''' UpperCAmelCase : Tuple = right or len(_lowercase ) - 1 if left > right: return -1 elif list_data[left] == key: return left elif list_data[right] == key: return right else: return search(_lowercase , _lowercase , left + 1 , right - 1 ) if __name__ == "__main__": import doctest doctest.testmod()
292
1
'''simple docstring''' import shutil import tempfile import unittest import numpy as np import pytest from transformers.testing_utils import require_vision from transformers.utils import is_vision_available if is_vision_available(): from PIL import Image from transformers import ( AutoProcessor, BertTokenizerFast, BlipImageProcessor, GPTaTokenizer, InstructBlipProcessor, PreTrainedTokenizerFast, ) @require_vision class UpperCAmelCase_ ( unittest.TestCase ): '''simple docstring''' def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = tempfile.mkdtemp() _lowerCAmelCase = BlipImageProcessor() _lowerCAmelCase = GPTaTokenizer.from_pretrained("""hf-internal-testing/tiny-random-GPT2Model""" ) _lowerCAmelCase = BertTokenizerFast.from_pretrained("""hf-internal-testing/tiny-random-bert""" ) _lowerCAmelCase = InstructBlipProcessor(lowercase_ , lowercase_ , lowercase_ ) processor.save_pretrained(self.tmpdirname ) def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).tokenizer def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).image_processor def _lowercase ( self , **_lowercase ): """simple docstring""" return AutoProcessor.from_pretrained(self.tmpdirname , **lowercase_ ).qformer_tokenizer def _lowercase ( self ): """simple docstring""" shutil.rmtree(self.tmpdirname ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] _lowerCAmelCase = [Image.fromarray(np.moveaxis(lowercase_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = InstructBlipProcessor( tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() , qformer_tokenizer=self.get_qformer_tokenizer() , ) processor.save_pretrained(self.tmpdirname ) _lowerCAmelCase = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) _lowerCAmelCase = self.get_image_processor(do_normalize=lowercase_ , padding_value=1.0 ) _lowerCAmelCase = InstructBlipProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=lowercase_ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowercase_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowercase_ ) self.assertIsInstance(processor.qformer_tokenizer , lowercase_ ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = image_processor(lowercase_ , return_tensors="""np""" ) _lowerCAmelCase = processor(images=lowercase_ , return_tensors="""np""" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) _lowerCAmelCase = '''lower newer''' _lowerCAmelCase = processor(text=lowercase_ ) _lowerCAmelCase = tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) _lowerCAmelCase = qformer_tokenizer(lowercase_ , return_token_type_ids=lowercase_ ) for key in encoded_tokens.keys(): self.assertListEqual(encoded_tokens[key] , encoded_processor[key] ) for key in encoded_tokens_qformer.keys(): self.assertListEqual(encoded_tokens_qformer[key] , encoded_processor["""qformer_""" + key] ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) _lowerCAmelCase = '''lower newer''' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , ) # test if it raises when no input is passed with pytest.raises(lowercase_ ): processor() def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) _lowerCAmelCase = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] _lowerCAmelCase = processor.batch_decode(lowercase_ ) _lowerCAmelCase = tokenizer.batch_decode(lowercase_ ) self.assertListEqual(lowercase_ , lowercase_ ) def _lowercase ( self ): """simple docstring""" _lowerCAmelCase = self.get_image_processor() _lowerCAmelCase = self.get_tokenizer() _lowerCAmelCase = self.get_qformer_tokenizer() _lowerCAmelCase = InstructBlipProcessor( tokenizer=lowercase_ , image_processor=lowercase_ , qformer_tokenizer=lowercase_ ) _lowerCAmelCase = '''lower newer''' _lowerCAmelCase = self.prepare_image_inputs() _lowerCAmelCase = processor(text=lowercase_ , images=lowercase_ ) self.assertListEqual( list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """qformer_input_ids""", """qformer_attention_mask""", """pixel_values"""] , )
5
"""simple docstring""" import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import ( require_accelerate, require_torch, require_torch_gpu, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ViTForImageClassification, ViTForMaskedImageModeling, ViTModel from transformers.models.vit.modeling_vit import VIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : List[str] , lowercase_ : str , lowercase_ : List[str]=13 , lowercase_ : int=30 , lowercase_ : Optional[int]=2 , lowercase_ : List[str]=3 , lowercase_ : Optional[Any]=True , lowercase_ : Optional[Any]=True , lowercase_ : Optional[int]=32 , lowercase_ : Tuple=5 , lowercase_ : str=4 , lowercase_ : Optional[int]=37 , lowercase_ : Tuple="gelu" , lowercase_ : List[str]=0.1 , lowercase_ : Dict=0.1 , lowercase_ : List[Any]=10 , lowercase_ : Optional[int]=0.02 , lowercase_ : List[str]=None , lowercase_ : Optional[Any]=2 , ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = parent SCREAMING_SNAKE_CASE_ : Any = batch_size SCREAMING_SNAKE_CASE_ : Union[str, Any] = image_size SCREAMING_SNAKE_CASE_ : int = patch_size SCREAMING_SNAKE_CASE_ : Optional[int] = num_channels SCREAMING_SNAKE_CASE_ : Union[str, Any] = is_training SCREAMING_SNAKE_CASE_ : List[str] = use_labels SCREAMING_SNAKE_CASE_ : str = hidden_size SCREAMING_SNAKE_CASE_ : Dict = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[int] = num_attention_heads SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Optional[Any] = hidden_act SCREAMING_SNAKE_CASE_ : Dict = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : str = attention_probs_dropout_prob SCREAMING_SNAKE_CASE_ : Dict = type_sequence_label_size SCREAMING_SNAKE_CASE_ : Any = initializer_range SCREAMING_SNAKE_CASE_ : Dict = scope SCREAMING_SNAKE_CASE_ : Optional[Any] = encoder_stride # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) SCREAMING_SNAKE_CASE_ : Optional[Any] = (image_size // patch_size) ** 2 SCREAMING_SNAKE_CASE_ : int = num_patches + 1 def _SCREAMING_SNAKE_CASE ( self : Optional[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Optional[Any] = None if self.use_labels: SCREAMING_SNAKE_CASE_ : Any = ids_tensor([self.batch_size] , self.type_sequence_label_size) SCREAMING_SNAKE_CASE_ : Tuple = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=lowercase_ , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _SCREAMING_SNAKE_CASE ( self : List[str] , lowercase_ : Optional[Any] , lowercase_ : List[Any] , lowercase_ : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = ViTModel(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def _SCREAMING_SNAKE_CASE ( self : int , lowercase_ : Dict , lowercase_ : Union[str, Any] , lowercase_ : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ViTForMaskedImageModeling(config=lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : List[Any] = model(lowercase_) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size)) # test greyscale images SCREAMING_SNAKE_CASE_ : List[Any] = 1 SCREAMING_SNAKE_CASE_ : List[str] = ViTForMaskedImageModeling(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Union[str, Any] = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : int = model(lowercase_) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any] , lowercase_ : Dict , lowercase_ : Optional[int] , lowercase_ : Union[str, Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.type_sequence_label_size SCREAMING_SNAKE_CASE_ : Tuple = ViTForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Optional[Any] = model(lowercase_ , labels=lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) # test greyscale images SCREAMING_SNAKE_CASE_ : Optional[int] = 1 SCREAMING_SNAKE_CASE_ : Tuple = ViTForImageClassification(lowercase_) model.to(lowercase_) model.eval() SCREAMING_SNAKE_CASE_ : Any = floats_tensor([self.batch_size, 1, self.image_size, self.image_size]) SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size)) def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : str = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) : Dict = config_and_inputs SCREAMING_SNAKE_CASE_ : Dict = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase__ ( UpperCAmelCase__ , UpperCAmelCase__ , unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( ( ViTModel, ViTForImageClassification, ViTForMaskedImageModeling, ) if is_torch_available() else () ) __UpperCamelCase = ( {"feature-extraction": ViTModel, "image-classification": ViTForImageClassification} if is_torch_available() else {} ) __UpperCamelCase = True __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : int = ViTModelTester(self) SCREAMING_SNAKE_CASE_ : Optional[Any] = ConfigTester(self , config_class=lowercase_ , has_text_modality=lowercase_ , hidden_size=37) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='''ViT does not use inputs_embeds''') def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' pass def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : List[Any] = model_class(lowercase_) self.assertIsInstance(model.get_input_embeddings() , (nn.Module)) SCREAMING_SNAKE_CASE_ : Tuple = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowercase_ , nn.Linear)) def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: SCREAMING_SNAKE_CASE_ : Optional[int] = model_class(lowercase_) SCREAMING_SNAKE_CASE_ : Any = inspect.signature(model.forward) # signature.parameters is an OrderedDict => so arg_names order is deterministic SCREAMING_SNAKE_CASE_ : str = [*signature.parameters.keys()] SCREAMING_SNAKE_CASE_ : str = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowercase_) def _SCREAMING_SNAKE_CASE ( self : Tuple): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : Optional[int]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowercase_) def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowercase_) @slow def _SCREAMING_SNAKE_CASE ( self : Dict): '''simple docstring''' for model_name in VIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: SCREAMING_SNAKE_CASE_ : Optional[int] = ViTModel.from_pretrained(lowercase_) self.assertIsNotNone(lowercase_) def _A () -> List[Any]: """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[int] = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _SCREAMING_SNAKE_CASE ( self : List[Any]): '''simple docstring''' return ViTImageProcessor.from_pretrained('''google/vit-base-patch16-224''') if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE ( self : int): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Any = ViTForImageClassification.from_pretrained('''google/vit-base-patch16-224''').to(lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : Optional[int] = prepare_img() SCREAMING_SNAKE_CASE_ : Any = image_processor(images=lowercase_ , return_tensors='''pt''').to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(**lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : Optional[Any] = torch.Size((1, 1000)) self.assertEqual(outputs.logits.shape , lowercase_) SCREAMING_SNAKE_CASE_ : List[str] = torch.tensor([-0.27_44, 0.82_15, -0.08_36]).to(lowercase_) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1e-4)) @slow def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[Any] = ViTModel.from_pretrained('''facebook/dino-vits8''').to(lowercase_) SCREAMING_SNAKE_CASE_ : List[Any] = ViTImageProcessor.from_pretrained('''facebook/dino-vits8''' , size=480) SCREAMING_SNAKE_CASE_ : Optional[Any] = prepare_img() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(images=lowercase_ , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : int = inputs.pixel_values.to(lowercase_) # forward pass with torch.no_grad(): SCREAMING_SNAKE_CASE_ : List[str] = model(lowercase_ , interpolate_pos_encoding=lowercase_) # verify the logits SCREAMING_SNAKE_CASE_ : int = torch.Size((1, 3601, 384)) self.assertEqual(outputs.last_hidden_state.shape , lowercase_) SCREAMING_SNAKE_CASE_ : Union[str, Any] = torch.tensor( [[4.23_40, 4.39_06, -6.66_92], [4.54_63, 1.89_28, -6.72_57], [4.44_29, 0.84_96, -5.85_85]]).to(lowercase_) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , lowercase_ , atol=1e-4)) @slow @require_accelerate @require_torch_gpu def _SCREAMING_SNAKE_CASE ( self : List[str]): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Union[str, Any] = ViTModel.from_pretrained('''facebook/dino-vits8''' , torch_dtype=torch.floataa , device_map='''auto''') SCREAMING_SNAKE_CASE_ : List[Any] = self.default_image_processor SCREAMING_SNAKE_CASE_ : Tuple = prepare_img() SCREAMING_SNAKE_CASE_ : List[str] = image_processor(images=lowercase_ , return_tensors='''pt''') SCREAMING_SNAKE_CASE_ : str = inputs.pixel_values.to(lowercase_) # forward pass to make sure inference works in fp16 with torch.no_grad(): SCREAMING_SNAKE_CASE_ : Dict = model(lowercase_)
512
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( HubertConfig, HubertForCTC, HubertModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() __snake_case : Optional[Any] = logging.get_logger(__name__) __snake_case : Optional[Any] = { 'post_extract_proj': 'feature_projection.projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'feature_projection.layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def _lowercase ( lowerCamelCase__ : Any, lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : List[str], lowerCamelCase__ : str, lowerCamelCase__ : Dict ): for attribute in key.split("." ): _a = getattr(lowerCAmelCase_, lowerCAmelCase_ ) if weight_type is not None: _a = getattr(lowerCAmelCase_, lowerCAmelCase_ ).shape else: _a = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": _a = value elif weight_type == "weight_g": _a = value elif weight_type == "weight_v": _a = value elif weight_type == "bias": _a = value else: _a = value logger.info(F'''{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}.''' ) def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Tuple, lowerCamelCase__ : Any ): _a = [] _a = fairseq_model.state_dict() _a = hf_model.hubert.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): _a = False if "conv_layers" in name: load_conv_layer( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, hf_model.config.feat_extract_norm == "group", ) _a = True else: for key, mapped_key in MAPPING.items(): _a = '''hubert.''' + mapped_key if (is_finetuned and mapped_key != '''lm_head''') else mapped_key if key in name or (key.split("w2v_model." )[-1] == name.split("." )[0] and not is_finetuned): _a = True if "*" in mapped_key: _a = name.split(lowerCAmelCase_ )[0].split("." )[-2] _a = mapped_key.replace("*", lowerCAmelCase_ ) if "weight_g" in name: _a = '''weight_g''' elif "weight_v" in name: _a = '''weight_v''' elif "weight" in name: _a = '''weight''' elif "bias" in name: _a = '''bias''' else: _a = None set_recursively(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) continue if not is_used: unused_weights.append(lowerCAmelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def _lowercase ( lowerCamelCase__ : List[str], lowerCamelCase__ : Tuple, lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict, lowerCamelCase__ : Optional[Any] ): _a = full_name.split("conv_layers." )[-1] _a = name.split("." ) _a = int(items[0] ) _a = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) _a = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCAmelCase_ ) @torch.no_grad() def _lowercase ( lowerCamelCase__ : List[Any], lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : str=None, lowerCamelCase__ : List[Any]=None, lowerCamelCase__ : Optional[Any]=True ): if config_path is not None: _a = HubertConfig.from_pretrained(lowerCAmelCase_ ) else: _a = HubertConfig() if is_finetuned: if dict_path: _a = Dictionary.load(lowerCAmelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq _a = target_dict.pad_index _a = target_dict.bos_index _a = target_dict.eos_index _a = len(target_dict.symbols ) _a = os.path.join(lowerCAmelCase_, "vocab.json" ) if not os.path.isdir(lowerCAmelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCAmelCase_ ) ) return os.makedirs(lowerCAmelCase_, exist_ok=lowerCAmelCase_ ) with open(lowerCAmelCase_, "w", encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices, lowerCAmelCase_ ) _a = WavaVecaCTCTokenizer( lowerCAmelCase_, unk_token=target_dict.unk_word, pad_token=target_dict.pad_word, bos_token=target_dict.bos_word, eos_token=target_dict.eos_word, word_delimiter_token="|", do_lower_case=lowerCAmelCase_, ) _a = True if config.feat_extract_norm == '''layer''' else False _a = WavaVecaFeatureExtractor( feature_size=1, sampling_rate=16_000, padding_value=0, do_normalize=lowerCAmelCase_, return_attention_mask=lowerCAmelCase_, ) _a = WavaVecaProcessor(feature_extractor=lowerCAmelCase_, tokenizer=lowerCAmelCase_ ) processor.save_pretrained(lowerCAmelCase_ ) _a = HubertForCTC(lowerCAmelCase_ ) else: _a = HubertModel(lowerCAmelCase_ ) if is_finetuned: _a = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path], arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: _a = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) _a = model[0].eval() recursively_load_weights(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ) hf_wavavec.save_pretrained(lowerCAmelCase_ ) if __name__ == "__main__": __snake_case : str = argparse.ArgumentParser() parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to fairseq checkpoint") parser.add_argument("--dict_path", default=None, type=str, help="Path to dict of fine-tuned model") parser.add_argument("--config_path", default=None, type=str, help="Path to hf config.json of model to convert") parser.add_argument( "--not_finetuned", action="store_true", help="Whether the model to convert is a fine-tuned model or not" ) __snake_case : List[str] = parser.parse_args() convert_hubert_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
703
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu __snake_case : List[Any] = [ "EAGER", "AOT_EAGER", "INDUCTOR", "NVFUSER", "AOT_NVFUSER", "AOT_CUDAGRAPHS", "OFI", "FX2TRT", "ONNXRT", "IPEX", ] def _lowercase ( lowerCamelCase__ : Union[str, Any], lowerCamelCase__ : Union[str, Any]=None, lowerCamelCase__ : Dict=None, lowerCamelCase__ : Optional[int]=None ): _a = True while ask_again: _a = input(lowerCamelCase__ ) try: if default is not None and len(lowerCamelCase__ ) == 0: return default return convert_value(lowerCamelCase__ ) if convert_value is not None else result except Exception: if error_message is not None: print(lowerCamelCase__ ) def _lowercase ( lowerCamelCase__ : Optional[Any], lowerCamelCase__ : Dict=[], lowerCamelCase__ : int=None, lowerCamelCase__ : Union[str, Any]=0 ): _a = BulletMenu(lowerCamelCase__, lowerCamelCase__ ) _a = menu.run(default_choice=lowerCamelCase__ ) return convert_value(lowerCamelCase__ ) if convert_value is not None else result def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return ComputeEnvironment(["LOCAL_MACHINE", "AMAZON_SAGEMAKER"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return DistributedType(["NO", "MULTI_CPU", "MULTI_XPU", "MULTI_GPU", "MULTI_NPU", "TPU"][value] ) def _lowercase ( lowerCamelCase__ : Dict ): _a = int(lowerCamelCase__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def _lowercase ( lowerCamelCase__ : List[Any] ): _a = int(lowerCamelCase__ ) return PrecisionType(["no", "fp16", "bf16", "fp8"][value] ) def _lowercase ( lowerCamelCase__ : str ): _a = int(lowerCamelCase__ ) return SageMakerDistributedType(["NO", "DATA_PARALLEL", "MODEL_PARALLEL"][value] ) def _lowercase ( lowerCamelCase__ : str ): return {"yes": True, "no": False}[value.lower()] class A ( argparse.RawDescriptionHelpFormatter ): def __lowerCAmelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ) -> int: _a = super()._format_usage(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) _a = usage.replace("<command> [<args>] " , "" ) return usage
691
0
'''simple docstring''' from __future__ import annotations class _UpperCAmelCase : """simple docstring""" def __init__( self : Dict , __UpperCAmelCase : list[list[int]] ): '''simple docstring''' _A = TypeError( "Matrices must be formed from a list of zero or more lists containing at " "least one and the same number of values, each of which must be of type " "int or float." ) if len(__UpperCAmelCase ) != 0: _A = len(rows[0] ) if cols == 0: raise error for row in rows: if len(__UpperCAmelCase ) != cols: raise error for value in row: if not isinstance(__UpperCAmelCase , (int, float) ): raise error _A = rows else: _A = [] def lowerCAmelCase ( self : str ): '''simple docstring''' return [[row[i] for row in self.rows] for i in range(len(self.rows[0] ) )] @property def lowerCAmelCase ( self : str ): '''simple docstring''' return len(self.rows ) @property def lowerCAmelCase ( self : Dict ): '''simple docstring''' return len(self.rows[0] ) @property def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' return (self.num_rows, self.num_columns) @property def lowerCAmelCase ( self : int ): '''simple docstring''' return self.order[0] == self.order[1] def lowerCAmelCase ( self : Tuple ): '''simple docstring''' _A = [ [0 if column_num != row_num else 1 for column_num in range(self.num_rows )] for row_num in range(self.num_rows ) ] return Matrix(__UpperCAmelCase ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' if not self.is_square: return 0 if self.order == (0, 0): return 1 if self.order == (1, 1): return int(self.rows[0][0] ) if self.order == (2, 2): return int( (self.rows[0][0] * self.rows[1][1]) - (self.rows[0][1] * self.rows[1][0]) ) else: return sum( self.rows[0][column] * self.cofactors().rows[0][column] for column in range(self.num_columns ) ) def lowerCAmelCase ( self : str ): '''simple docstring''' return bool(self.determinant() ) def lowerCAmelCase ( self : Dict , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' _A = [ [ self.rows[other_row][other_column] for other_column in range(self.num_columns ) if other_column != column ] for other_row in range(self.num_rows ) if other_row != row ] return Matrix(__UpperCAmelCase ).determinant() def lowerCAmelCase ( self : str , __UpperCAmelCase : int , __UpperCAmelCase : int ): '''simple docstring''' if (row + column) % 2 == 0: return self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) return -1 * self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) def lowerCAmelCase ( self : Any ): '''simple docstring''' return Matrix( [ [self.get_minor(__UpperCAmelCase , __UpperCAmelCase ) for column in range(self.num_columns )] for row in range(self.num_rows ) ] ) def lowerCAmelCase ( self : Dict ): '''simple docstring''' return Matrix( [ [ self.minors().rows[row][column] if (row + column) % 2 == 0 else self.minors().rows[row][column] * -1 for column in range(self.minors().num_columns ) ] for row in range(self.minors().num_rows ) ] ) def lowerCAmelCase ( self : Optional[Any] ): '''simple docstring''' _A = [ [self.cofactors().rows[column][row] for column in range(self.num_columns )] for row in range(self.num_rows ) ] return Matrix(__UpperCAmelCase ) def lowerCAmelCase ( self : str ): '''simple docstring''' _A = self.determinant() if not determinant: raise TypeError("Only matrices with a non-zero determinant have an inverse" ) return self.adjugate() * (1 / determinant) def __repr__( self : int ): '''simple docstring''' return str(self.rows ) def __str__( self : List[Any] ): '''simple docstring''' if self.num_rows == 0: return "[]" if self.num_rows == 1: return "[[" + ". ".join(str(self.rows[0] ) ) + "]]" return ( "[" + "\n ".join( [ "[" + ". ".join([str(__UpperCAmelCase ) for value in row] ) + ".]" for row in self.rows ] ) + "]" ) def lowerCAmelCase ( self : List[Any] , __UpperCAmelCase : list[int] , __UpperCAmelCase : int | None = None ): '''simple docstring''' _A = TypeError("Row must be a list containing all ints and/or floats" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise type_error for value in row: if not isinstance(__UpperCAmelCase , (int, float) ): raise type_error if len(__UpperCAmelCase ) != self.num_columns: raise ValueError( "Row must be equal in length to the other rows in the matrix" ) if position is None: self.rows.append(__UpperCAmelCase ) else: _A = self.rows[0:position] + [row] + self.rows[position:] def lowerCAmelCase ( self : str , __UpperCAmelCase : list[int] , __UpperCAmelCase : int | None = None ): '''simple docstring''' _A = TypeError( "Column must be a list containing all ints and/or floats" ) if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise type_error for value in column: if not isinstance(__UpperCAmelCase , (int, float) ): raise type_error if len(__UpperCAmelCase ) != self.num_rows: raise ValueError( "Column must be equal in length to the other columns in the matrix" ) if position is None: _A = [self.rows[i] + [column[i]] for i in range(self.num_rows )] else: _A = [ self.rows[i][0:position] + [column[i]] + self.rows[i][position:] for i in range(self.num_rows ) ] def __eq__( self : Tuple , __UpperCAmelCase : object ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): return NotImplemented return self.rows == other.rows def __ne__( self : str , __UpperCAmelCase : object ): '''simple docstring''' return not self == other def __neg__( self : str ): '''simple docstring''' return self * -1 def __add__( self : Dict , __UpperCAmelCase : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError("Addition requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] + other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __sub__( self : Union[str, Any] , __UpperCAmelCase : Matrix ): '''simple docstring''' if self.order != other.order: raise ValueError("Subtraction requires matrices of the same order" ) return Matrix( [ [self.rows[i][j] - other.rows[i][j] for j in range(self.num_columns )] for i in range(self.num_rows ) ] ) def __mul__( self : Optional[Any] , __UpperCAmelCase : Matrix | int | float ): '''simple docstring''' if isinstance(__UpperCAmelCase , (int, float) ): return Matrix( [[int(element * other ) for element in row] for row in self.rows] ) elif isinstance(__UpperCAmelCase , __UpperCAmelCase ): if self.num_columns != other.num_rows: raise ValueError( "The number of columns in the first matrix must " "be equal to the number of rows in the second" ) return Matrix( [ [Matrix.dot_product(__UpperCAmelCase , __UpperCAmelCase ) for column in other.columns()] for row in self.rows ] ) else: raise TypeError( "A Matrix can only be multiplied by an int, float, or another matrix" ) def __pow__( self : List[str] , __UpperCAmelCase : int ): '''simple docstring''' if not isinstance(__UpperCAmelCase , __UpperCAmelCase ): raise TypeError("A Matrix can only be raised to the power of an int" ) if not self.is_square: raise ValueError("Only square matrices can be raised to a power" ) if other == 0: return self.identity() if other < 0: if self.is_invertable(): return self.inverse() ** (-other) raise ValueError( "Only invertable matrices can be raised to a negative power" ) _A = self for _ in range(other - 1 ): result *= self return result @classmethod def lowerCAmelCase ( cls : List[Any] , __UpperCAmelCase : list[int] , __UpperCAmelCase : list[int] ): '''simple docstring''' return sum(row[i] * column[i] for i in range(len(__UpperCAmelCase ) ) ) if __name__ == "__main__": import doctest doctest.testmod()
330
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) lowerCamelCase_ = { '''sample_size''': 32, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': 10_00, '''block_out_channels''': [32, 64], '''attention_head_dim''': 8, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCamelCase_ = { '''sample_size''': 64, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 3, '''num_class_embeds''': 10_00, '''block_out_channels''': [1_92, 1_92 * 2, 1_92 * 3, 1_92 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''scale_shift''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCamelCase_ = { '''sample_size''': 2_56, '''in_channels''': 3, '''out_channels''': 3, '''layers_per_block''': 2, '''num_class_embeds''': None, '''block_out_channels''': [2_56, 2_56, 2_56 * 2, 2_56 * 2, 2_56 * 4, 2_56 * 4], '''attention_head_dim''': 64, '''down_block_types''': [ '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''ResnetDownsampleBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', '''AttnDownBlock2D''', ], '''up_block_types''': [ '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''AttnUpBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', '''ResnetUpsampleBlock2D''', ], '''resnet_time_scale_shift''': '''default''', '''upsample_type''': '''resnet''', '''downsample_type''': '''resnet''', } lowerCamelCase_ = { '''num_train_timesteps''': 40, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } lowerCamelCase_ = { '''num_train_timesteps''': 2_01, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } lowerCamelCase_ = { '''num_train_timesteps''': 1_51, '''sigma_min''': 0.002, '''sigma_max''': 80.0, } def __lowercase ( __lowercase ) -> int: '''simple docstring''' if isinstance(__lowercase , __lowercase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError("boolean value expected" ) def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=False ) -> Tuple: '''simple docstring''' _A = checkpoint[F'''{old_prefix}.in_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.weight'''] _A = checkpoint[F'''{old_prefix}.in_layers.2.bias'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.weight'''] _A = checkpoint[F'''{old_prefix}.emb_layers.1.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.0.bias'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.weight'''] _A = checkpoint[F'''{old_prefix}.out_layers.3.bias'''] if has_skip: _A = checkpoint[F'''{old_prefix}.skip_connection.weight'''] _A = checkpoint[F'''{old_prefix}.skip_connection.bias'''] return new_checkpoint def __lowercase ( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase=None ) -> Union[str, Any]: '''simple docstring''' _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.weight'''].chunk(3 , dim=0 ) _A , _A , _A = checkpoint[F'''{old_prefix}.qkv.bias'''].chunk(3 , dim=0 ) _A = checkpoint[F'''{old_prefix}.norm.weight'''] _A = checkpoint[F'''{old_prefix}.norm.bias'''] _A = weight_q.squeeze(-1 ).squeeze(-1 ) _A = bias_q.squeeze(-1 ).squeeze(-1 ) _A = weight_k.squeeze(-1 ).squeeze(-1 ) _A = bias_k.squeeze(-1 ).squeeze(-1 ) _A = weight_v.squeeze(-1 ).squeeze(-1 ) _A = bias_v.squeeze(-1 ).squeeze(-1 ) _A = ( checkpoint[F'''{old_prefix}.proj_out.weight'''].squeeze(-1 ).squeeze(-1 ) ) _A = checkpoint[F'''{old_prefix}.proj_out.bias'''].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def __lowercase ( __lowercase , __lowercase ) -> Any: '''simple docstring''' _A = torch.load(__lowercase , map_location="cpu" ) _A = {} _A = checkpoint["time_embed.0.weight"] _A = checkpoint["time_embed.0.bias"] _A = checkpoint["time_embed.2.weight"] _A = checkpoint["time_embed.2.bias"] if unet_config["num_class_embeds"] is not None: _A = checkpoint["label_emb.weight"] _A = checkpoint["input_blocks.0.0.weight"] _A = checkpoint["input_blocks.0.0.bias"] _A = unet_config["down_block_types"] _A = unet_config["layers_per_block"] _A = unet_config["attention_head_dim"] _A = unet_config["block_out_channels"] _A = 1 _A = channels_list[0] for i, layer_type in enumerate(__lowercase ): _A = channels_list[i] _A = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__lowercase ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__lowercase ): _A = F'''down_blocks.{i}.resnets.{j}''' _A = F'''input_blocks.{current_layer}.0''' _A = True if j == 0 and downsample_block_has_skip else False _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) _A = F'''down_blocks.{i}.attentions.{j}''' _A = F'''input_blocks.{current_layer}.1''' _A = convert_attention( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: _A = F'''down_blocks.{i}.downsamplers.0''' _A = F'''input_blocks.{current_layer}.0''' _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 _A = current_channels # hardcoded the mid-block for now _A = "mid_block.resnets.0" _A = "middle_block.0" _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) _A = "mid_block.attentions.0" _A = "middle_block.1" _A = convert_attention(__lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) _A = "mid_block.resnets.1" _A = "middle_block.2" _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) _A = 0 _A = unet_config["up_block_types"] for i, layer_type in enumerate(__lowercase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.1''' _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): _A = F'''up_blocks.{i}.resnets.{j}''' _A = F'''output_blocks.{current_layer}.0''' _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase , has_skip=__lowercase ) _A = F'''up_blocks.{i}.attentions.{j}''' _A = F'''output_blocks.{current_layer}.1''' _A = convert_attention( __lowercase , __lowercase , __lowercase , __lowercase , __lowercase ) current_layer += 1 if i != len(__lowercase ) - 1: _A = F'''up_blocks.{i}.upsamplers.0''' _A = F'''output_blocks.{current_layer-1}.2''' _A = convert_resnet(__lowercase , __lowercase , __lowercase , __lowercase ) _A = checkpoint["out.0.weight"] _A = checkpoint["out.0.bias"] _A = checkpoint["out.2.weight"] _A = checkpoint["out.2.bias"] return new_checkpoint if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() parser.add_argument('''--unet_path''', default=None, type=str, required=True, help='''Path to the unet.pt to convert.''') parser.add_argument( '''--dump_path''', default=None, type=str, required=True, help='''Path to output the converted UNet model.''' ) parser.add_argument('''--class_cond''', default=True, type=str, help='''Whether the model is class-conditional.''') lowerCamelCase_ = parser.parse_args() lowerCamelCase_ = strabool(args.class_cond) lowerCamelCase_ = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: lowerCamelCase_ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCamelCase_ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: lowerCamelCase_ = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: lowerCamelCase_ = None lowerCamelCase_ = con_pt_to_diffuser(args.unet_path, unet_config) lowerCamelCase_ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: lowerCamelCase_ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: lowerCamelCase_ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): lowerCamelCase_ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") lowerCamelCase_ = CMStochasticIterativeScheduler(**scheduler_config) lowerCamelCase_ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
330
1
'''simple docstring''' import pprint import requests __UpperCamelCase : List[str] = "https://zenquotes.io/api" def __UpperCAmelCase ( ) -> Tuple: """simple docstring""" return requests.get(API_ENDPOINT_URL + '/today' ).json() def __UpperCAmelCase ( ) -> str: """simple docstring""" return requests.get(API_ENDPOINT_URL + '/random' ).json() if __name__ == "__main__": __UpperCamelCase : Union[str, Any] = random_quotes() pprint.pprint(response)
705
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __UpperCamelCase : Tuple = { """configuration_blip_2""": [ """BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP""", """Blip2Config""", """Blip2QFormerConfig""", """Blip2VisionConfig""", ], """processing_blip_2""": ["""Blip2Processor"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCamelCase : Optional[int] = [ """BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST""", """Blip2Model""", """Blip2QFormerModel""", """Blip2PreTrainedModel""", """Blip2ForConditionalGeneration""", """Blip2VisionModel""", ] if TYPE_CHECKING: from .configuration_blip_a import ( BLIP_2_PRETRAINED_CONFIG_ARCHIVE_MAP, BlipaConfig, BlipaQFormerConfig, BlipaVisionConfig, ) from .processing_blip_a import BlipaProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_blip_a import ( BLIP_2_PRETRAINED_MODEL_ARCHIVE_LIST, BlipaForConditionalGeneration, BlipaModel, BlipaPreTrainedModel, BlipaQFormerModel, BlipaVisionModel, ) else: import sys __UpperCamelCase : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
270
0
from __future__ import annotations import math class _UpperCamelCase : '''simple docstring''' def __init__( self : Dict , a : int ) -> None: """simple docstring""" SCREAMING_SNAKE_CASE : Dict = size # approximate the overall size of segment tree with given value SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # create array to store lazy update SCREAMING_SNAKE_CASE : Union[str, Any] = [0 for i in range(0 , 4 * size )] SCREAMING_SNAKE_CASE : Any = [0 for i in range(0 , 4 * size )] # flag for lazy update def __UpperCamelCase ( self : Tuple , a : int ) -> int: """simple docstring""" return idx * 2 def __UpperCamelCase ( self : str , a : int ) -> int: """simple docstring""" return idx * 2 + 1 def __UpperCamelCase ( self : int , a : int , a : int , a : int , a : list[int] ) -> None: """simple docstring""" if left_element == right_element: SCREAMING_SNAKE_CASE : int = a[left_element - 1] else: SCREAMING_SNAKE_CASE : Optional[int] = (left_element + right_element) // 2 self.build(self.left(a ) , a , a , a ) self.build(self.right(a ) , mid + 1 , a , a ) SCREAMING_SNAKE_CASE : List[Any] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) def __UpperCamelCase ( self : Optional[Any] , a : int , a : int , a : int , a : int , a : int , a : int ) -> bool: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : Any = self.lazy[idx] SCREAMING_SNAKE_CASE : List[str] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : Any = True SCREAMING_SNAKE_CASE : List[Any] = True if right_element < a or left_element > b: return True if left_element >= a and right_element <= b: SCREAMING_SNAKE_CASE : Optional[Any] = val if left_element != right_element: SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : str = val SCREAMING_SNAKE_CASE : Tuple = True SCREAMING_SNAKE_CASE : Optional[Any] = True return True SCREAMING_SNAKE_CASE : int = (left_element + right_element) // 2 self.update(self.left(a ) , a , a , a , a , a ) self.update(self.right(a ) , mid + 1 , a , a , a , a ) SCREAMING_SNAKE_CASE : Optional[int] = max( self.segment_tree[self.left(a )] , self.segment_tree[self.right(a )] ) return True def __UpperCamelCase ( self : Dict , a : int , a : int , a : int , a : int , a : int ) -> int | float: """simple docstring""" if self.flag[idx] is True: SCREAMING_SNAKE_CASE : int = self.lazy[idx] SCREAMING_SNAKE_CASE : List[Any] = False if left_element != right_element: SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = self.lazy[idx] SCREAMING_SNAKE_CASE : Optional[Any] = True SCREAMING_SNAKE_CASE : Union[str, Any] = True if right_element < a or left_element > b: return -math.inf if left_element >= a and right_element <= b: return self.segment_tree[idx] SCREAMING_SNAKE_CASE : Dict = (left_element + right_element) // 2 SCREAMING_SNAKE_CASE : Tuple = self.query(self.left(a ) , a , a , a , a ) SCREAMING_SNAKE_CASE : Tuple = self.query(self.right(a ) , mid + 1 , a , a , a ) return max(a , a ) def __str__( self : str ) -> str: """simple docstring""" return str([self.query(1 , 1 , self.size , a , a ) for i in range(1 , self.size + 1 )] ) if __name__ == "__main__": a_ = [1, 2, -4, 7, 3, -5, 6, 11, -20, 9, 14, 15, 5, 2, -8] a_ = 15 a_ = SegmentTree(size) segt.build(1, 1, size, A) print(segt.query(1, 1, size, 4, 6)) print(segt.query(1, 1, size, 7, 11)) print(segt.query(1, 1, size, 7, 12)) segt.update(1, 1, size, 1, 3, 111) print(segt.query(1, 1, size, 1, 15)) segt.update(1, 1, size, 7, 8, 235) print(segt)
25
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def lowercase__ ( A_: Union[str, Any] ) -> List[Any]: """simple docstring""" __UpperCAmelCase =botoa.client("""iam""" ) __UpperCAmelCase ={ """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=A_ , AssumeRolePolicyDocument=json.dumps(A_ , indent=2 ) ) __UpperCAmelCase ={ """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=A_ , PolicyName=F'''{role_name}_policy_permission''' , PolicyDocument=json.dumps(A_ , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F'''role {role_name} already exists. Using existing one''' ) def lowercase__ ( A_: Dict ) -> Any: """simple docstring""" __UpperCAmelCase =botoa.client("""iam""" ) return iam_client.get_role(RoleName=A_ )["Role"]["Arn"] def lowercase__ ( ) -> Union[str, Any]: """simple docstring""" __UpperCAmelCase =_ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , A_ , ) __UpperCAmelCase =None if credentials_configuration == 0: __UpperCAmelCase =_ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) __UpperCAmelCase =aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) __UpperCAmelCase =_ask_field("""AWS Access Key ID: """ ) __UpperCAmelCase =aws_access_key_id __UpperCAmelCase =_ask_field("""AWS Secret Access Key: """ ) __UpperCAmelCase =aws_secret_access_key __UpperCAmelCase =_ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) __UpperCAmelCase =aws_region __UpperCAmelCase =_ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , A_ , ) if role_management == 0: __UpperCAmelCase =_ask_field("""Enter your IAM role name: """ ) else: __UpperCAmelCase ="""accelerate_sagemaker_execution_role""" print(F'''Accelerate will create an iam role "{iam_role_name}" using the provided credentials''' ) _create_iam_role_for_sagemaker(A_ ) __UpperCAmelCase =_ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_custom_docker_image: __UpperCAmelCase =_ask_field("""Enter your Docker image: """ , lambda A_ : str(A_ ).lower() ) __UpperCAmelCase =_ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_sagemaker_inputs_enabled: __UpperCAmelCase =_ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda A_ : str(A_ ).lower() , ) __UpperCAmelCase =_ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =None if is_sagemaker_metrics_enabled: __UpperCAmelCase =_ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda A_ : str(A_ ).lower() , ) __UpperCAmelCase =_ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) __UpperCAmelCase ={} __UpperCAmelCase =_ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) if use_dynamo: __UpperCAmelCase ="""dynamo_""" __UpperCAmelCase =_ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) __UpperCAmelCase =_ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) if use_custom_options: __UpperCAmelCase =_ask_options( """Which mode do you want to use?""" , A_ , lambda A_ : TORCH_DYNAMO_MODES[int(A_ )] , default="""default""" , ) __UpperCAmelCase =_ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase =_ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=A_ , error_message="""Please enter yes or no.""" , ) __UpperCAmelCase ="""Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: __UpperCAmelCase =_ask_options( A_ , A_ , lambda A_ : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(A_ )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" __UpperCAmelCase =_ask_field(A_ , lambda A_ : str(A_ ).lower() , default="""ml.p3.2xlarge""" ) __UpperCAmelCase =1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): __UpperCAmelCase =_ask_field( """How many machines do you want use? [1]: """ , A_ , default=1 , ) __UpperCAmelCase =_ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=A_ , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=A_ , use_cpu=A_ , dynamo_config=A_ , eca_instance_type=A_ , profile=A_ , region=A_ , iam_role_name=A_ , mixed_precision=A_ , num_machines=A_ , sagemaker_inputs_file=A_ , sagemaker_metrics_file=A_ , )
68
0
"""simple docstring""" # Usage: # ./gen-card-allenai-wmt16.py import os from pathlib import Path def UpperCamelCase ( _A , _A , _A , _A ) -> Optional[int]: lowercase : List[Any] = { """en""": """Machine learning is great, isn't it?""", """ru""": """Машинное обучение - это здорово, не так ли?""", """de""": """Maschinelles Lernen ist großartig, nicht wahr?""", } # BLUE scores as follows: # "pair": [fairseq, transformers] lowercase : Union[str, Any] = { """wmt16-en-de-dist-12-1""": [28.3, 27.52], """wmt16-en-de-dist-6-1""": [27.4, 27.11], """wmt16-en-de-12-1""": [26.9, 25.75], } lowercase : Dict = F"""{src_lang}-{tgt_lang}""" lowercase : Dict = F""" --- language: - {src_lang} - {tgt_lang} thumbnail: tags: - translation - wmt16 - allenai license: apache-2.0 datasets: - wmt16 metrics: - bleu --- # FSMT ## Model description This is a ported version of fairseq-based [wmt16 transformer](https://github.com/jungokasai/deep-shallow/) for {src_lang}-{tgt_lang}. For more details, please, see [Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation](https://arxiv.org/abs/2006.10369). All 3 models are available: * [wmt16-en-de-dist-12-1](https://huggingface.co/allenai/wmt16-en-de-dist-12-1) * [wmt16-en-de-dist-6-1](https://huggingface.co/allenai/wmt16-en-de-dist-6-1) * [wmt16-en-de-12-1](https://huggingface.co/allenai/wmt16-en-de-12-1) ## Intended uses & limitations #### How to use ```python from transformers import FSMTForConditionalGeneration, FSMTTokenizer mname = \"allenai/{model_name}\" tokenizer = FSMTTokenizer.from_pretrained(mname) model = FSMTForConditionalGeneration.from_pretrained(mname) input = \"{texts[src_lang]}\" input_ids = tokenizer.encode(input, return_tensors=\"pt\") outputs = model.generate(input_ids) decoded = tokenizer.decode(outputs[0], skip_special_tokens=True) print(decoded) # {texts[tgt_lang]} ``` #### Limitations and bias ## Training data Pretrained weights were left identical to the original model released by allenai. For more details, please, see the [paper](https://arxiv.org/abs/2006.10369). ## Eval results Here are the BLEU scores: model | fairseq | transformers -------|---------|---------- {model_name} | {scores[model_name][0]} | {scores[model_name][1]} The score is slightly below the score reported in the paper, as the researchers don't use `sacrebleu` and measure the score on tokenized outputs. `transformers` score was measured using `sacrebleu` on detokenized outputs. The score was calculated using this code: ```bash git clone https://github.com/huggingface/transformers cd transformers export PAIR={pair} export DATA_DIR=data/$PAIR export SAVE_DIR=data/$PAIR export BS=8 export NUM_BEAMS=5 mkdir -p $DATA_DIR sacrebleu -t wmt16 -l $PAIR --echo src > $DATA_DIR/val.source sacrebleu -t wmt16 -l $PAIR --echo ref > $DATA_DIR/val.target echo $PAIR PYTHONPATH=\"src:examples/seq2seq\" python examples/seq2seq/run_eval.py allenai/{model_name} $DATA_DIR/val.source $SAVE_DIR/test_translations.txt --reference_path $DATA_DIR/val.target --score_path $SAVE_DIR/test_bleu.json --bs $BS --task translation --num_beams $NUM_BEAMS ``` ## Data Sources - [training, etc.](http://www.statmt.org/wmt16/) - [test set](http://matrix.statmt.org/test_sets/newstest2016.tgz?1504722372) ### BibTeX entry and citation info ``` @misc{{kasai2020deep, title={{Deep Encoder, Shallow Decoder: Reevaluating the Speed-Quality Tradeoff in Machine Translation}}, author={{Jungo Kasai and Nikolaos Pappas and Hao Peng and James Cross and Noah A. Smith}}, year={{2020}}, eprint={{2006.10369}}, archivePrefix={{arXiv}}, primaryClass={{cs.CL}} }} ``` """ model_card_dir.mkdir(parents=_A , exist_ok=_A ) lowercase : Any = os.path.join(_A , """README.md""" ) print(F"""Generating {path}""" ) with open(_A , """w""" , encoding="""utf-8""" ) as f: f.write(_A ) # make sure we are under the root of the project _lowerCAmelCase = Path(__file__).resolve().parent.parent.parent _lowerCAmelCase = repo_dir / 'model_cards' for model_name in ["wmt16-en-de-dist-12-1", "wmt16-en-de-dist-6-1", "wmt16-en-de-12-1"]: _lowerCAmelCase = model_cards_dir / 'allenai' / model_name write_model_card(model_card_dir, src_lang='en', tgt_lang='de', model_name=model_name)
348
"""simple docstring""" import time from dataclasses import dataclass from multiprocessing import Pool from unittest import TestCase from unittest.mock import patch import multiprocess import numpy as np import pytest from datasets.utils.py_utils import ( NestedDataStructure, asdict, iflatmap_unordered, map_nested, temp_seed, temporary_assignment, zip_dict, ) from .utils import require_tf, require_torch def UpperCamelCase ( _A ) -> Any: # picklable for multiprocessing return x.sum() def UpperCamelCase ( _A ) -> Tuple: # picklable for multiprocessing return i + 1 @dataclass class UpperCamelCase : _SCREAMING_SNAKE_CASE : int _SCREAMING_SNAKE_CASE : str class UpperCamelCase (__snake_case ): def __snake_case ( self :List[str] ) ->Optional[int]: lowercase : Optional[Any] = {} lowercase : List[str] = [] lowercase : List[str] = 1 lowercase : Any = [1, 2] lowercase : str = {"""a""": 1, """b""": 2} lowercase : List[str] = {"""a""": [1, 2], """b""": [3, 4]} lowercase : Union[str, Any] = {"""a""": {"""1""": 1}, """b""": 2} lowercase : List[str] = {"""a""": 1, """b""": 2, """c""": 3, """d""": 4} lowercase : List[Any] = {} lowercase : Union[str, Any] = [] lowercase : List[str] = 2 lowercase : Tuple = [2, 3] lowercase : Dict = {"""a""": 2, """b""": 3} lowercase : Dict = {"""a""": [2, 3], """b""": [4, 5]} lowercase : Optional[int] = {"""a""": {"""1""": 2}, """b""": 3} lowercase : str = {"""a""": 2, """b""": 3, """c""": 4, """d""": 5} self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ ) , __magic_name__ ) lowercase : int = 2 self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) lowercase : Dict = {"""a""": np.eye(2 ), """b""": np.zeros(3 ), """c""": np.ones(2 )} lowercase : int = {"""a""": 2, """b""": 0, """c""": 2} lowercase : str = { """a""": np.eye(2 ).astype(__magic_name__ ), """b""": np.zeros(3 ).astype(__magic_name__ ), """c""": np.ones(2 ).astype(__magic_name__ ), } self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ) , __magic_name__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) self.assertEqual(map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ) , __magic_name__ ) self.assertEqual( {k: v.tolist() for k, v in map_nested(__magic_name__ , __magic_name__ , map_numpy=__magic_name__ , num_proc=__magic_name__ ).items()} , {k: v.tolist() for k, v in expected_map_nested_sna_int.items()} , ) with self.assertRaises(__magic_name__ ): # can't pickle a local lambda map_nested(lambda __magic_name__ : x + 1 , __magic_name__ , num_proc=__magic_name__ ) def __snake_case ( self :Optional[Any] ) ->Optional[int]: lowercase : Union[str, Any] = {"""a""": 1, """b""": 2} lowercase : int = {"""a""": 3, """b""": 4} lowercase : Optional[Any] = {"""a""": 5, """b""": 6} lowercase : List[str] = sorted([("""a""", (1, 3, 5)), ("""b""", (2, 4, 6))] ) self.assertEqual(sorted(zip_dict(__magic_name__ , __magic_name__ , __magic_name__ ) ) , __magic_name__ ) def __snake_case ( self :Tuple ) ->Union[str, Any]: class UpperCamelCase : _SCREAMING_SNAKE_CASE : str = """bar""" lowercase : Tuple = Foo() self.assertEqual(foo.my_attr , """bar""" ) with temporary_assignment(__magic_name__ , """my_attr""" , """BAR""" ): self.assertEqual(foo.my_attr , """BAR""" ) self.assertEqual(foo.my_attr , """bar""" ) @pytest.mark.parametrize( """iterable_length, num_proc, expected_num_proc""" , [ (1, None, 1), (1, 1, 1), (2, None, 1), (2, 1, 1), (2, 2, 1), (2, 3, 1), (3, 2, 1), (16, 16, 16), (16, 17, 16), (17, 16, 16), ] , ) def UpperCamelCase ( _A , _A , _A ) -> int: with patch("""datasets.utils.py_utils._single_map_nested""" ) as mock_single_map_nested, patch( """datasets.parallel.parallel.Pool""" ) as mock_multiprocessing_pool: lowercase : Union[str, Any] = {F"""{i}""": i for i in range(_A )} lowercase : List[str] = map_nested(lambda _A : x + 10 , _A , num_proc=_A , parallel_min_length=16 ) if expected_num_proc == 1: assert mock_single_map_nested.called assert not mock_multiprocessing_pool.called else: assert not mock_single_map_nested.called assert mock_multiprocessing_pool.called assert mock_multiprocessing_pool.call_args[0][0] == expected_num_proc class UpperCamelCase (__snake_case ): @require_tf def __snake_case ( self :str ) ->Dict: import tensorflow as tf from tensorflow.keras import layers lowercase : Any = layers.Dense(2 ) def gen_random_output(): lowercase : Tuple = tf.random.uniform((1, 3) ) return model(__magic_name__ ).numpy() with temp_seed(42 , set_tensorflow=__magic_name__ ): lowercase : Tuple = gen_random_output() with temp_seed(42 , set_tensorflow=__magic_name__ ): lowercase : Optional[int] = gen_random_output() lowercase : Any = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @require_torch def __snake_case ( self :Union[str, Any] ) ->str: import torch def gen_random_output(): lowercase : List[str] = torch.nn.Linear(3 , 2 ) lowercase : List[Any] = torch.rand(1 , 3 ) return model(__magic_name__ ).detach().numpy() with temp_seed(42 , set_pytorch=__magic_name__ ): lowercase : Tuple = gen_random_output() with temp_seed(42 , set_pytorch=__magic_name__ ): lowercase : int = gen_random_output() lowercase : List[str] = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) def __snake_case ( self :Dict ) ->int: def gen_random_output(): return np.random.rand(1 , 3 ) with temp_seed(42 ): lowercase : str = gen_random_output() with temp_seed(42 ): lowercase : Tuple = gen_random_output() lowercase : Any = gen_random_output() np.testing.assert_equal(__magic_name__ , __magic_name__ ) self.assertGreater(np.abs(outa - outa ).sum() , 0 ) @pytest.mark.parametrize("""input_data""" , [{}] ) def UpperCamelCase ( _A ) -> List[Any]: lowercase : Optional[int] = NestedDataStructure(_A ).data assert output_data == input_data @pytest.mark.parametrize( """data, expected_output""" , [ ({}, []), ([], []), ("""foo""", ["""foo"""]), (["""foo""", """bar"""], ["""foo""", """bar"""]), ([["""foo""", """bar"""]], ["""foo""", """bar"""]), ([[["""foo"""], ["""bar"""]]], ["""foo""", """bar"""]), ([[["""foo"""], """bar"""]], ["""foo""", """bar"""]), ({"""a""": 1, """b""": 2}, [1, 2]), ({"""a""": [1, 2], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[1, 2]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[[3], [4]]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [[3, 4]]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, 4]}, [1, 2, 3, 4]), ({"""a""": [[[1], [2]]], """b""": [3, [4]]}, [1, 2, 3, 4]), ({"""a""": {"""1""": 1}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": 2}, [1, 2]), ({"""a""": {"""1""": [1]}, """b""": [2]}, [1, 2]), ] , ) def UpperCamelCase ( _A , _A ) -> Any: lowercase : int = NestedDataStructure(_A ).flatten() assert output == expected_output def UpperCamelCase ( ) -> Tuple: lowercase : str = A(x=1 , y="""foobar""" ) lowercase : Optional[int] = {"""x""": 1, """y""": """foobar"""} assert asdict(_A ) == expected_output lowercase : Dict = {"""a""": {"""b""": A(x=10 , y="""foo""" )}, """c""": [A(x=20 , y="""bar""" )]} lowercase : Optional[Any] = {"""a""": {"""b""": {"""x""": 10, """y""": """foo"""}}, """c""": [{"""x""": 20, """y""": """bar"""}]} assert asdict(_A ) == expected_output with pytest.raises(_A ): asdict([1, A(x=10 , y="""foo""" )] ) def UpperCamelCase ( _A ) -> int: return text.split() def UpperCamelCase ( _A ) -> Any: yield (time.time(), content) time.sleep(2 ) yield (time.time(), content) def UpperCamelCase ( ) -> Optional[int]: with Pool(2 ) as pool: lowercase : int = list(iflatmap_unordered(_A , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(_A ) == 20 # check multiprocess from pathos (uses dill for pickling) with multiprocess.Pool(2 ) as pool: lowercase : Union[str, Any] = list(iflatmap_unordered(_A , _split_text , kwargs_iterable=[{"""text""": """hello there"""}] * 10 ) ) assert out.count("""hello""" ) == 10 assert out.count("""there""" ) == 10 assert len(_A ) == 20 # check that we get items as fast as possible with Pool(2 ) as pool: lowercase : int = [] for yield_time, content in iflatmap_unordered( _A , _aseconds_generator_of_aitems_with_timing , kwargs_iterable=[{"""content""": """a"""}, {"""content""": """b"""}] ): assert yield_time < time.time() + 0.1, "we should each item directly after it was yielded" out.append(_A ) assert out.count("""a""" ) == 2 assert out.count("""b""" ) == 2 assert len(_A ) == 4
348
1
from typing import Dict, Iterable, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import normalize, rescale, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract _UpperCamelCase = logging.get_logger(__name__) def lowerCAmelCase__( lowercase : Union[str, Any] , lowercase : int , lowercase : int ) -> str: return [ int(1000 * (box[0] / width) ), int(1000 * (box[1] / height) ), int(1000 * (box[2] / width) ), int(1000 * (box[3] / height) ), ] def lowerCAmelCase__( lowercase : np.ndarray , lowercase : Optional[str] , lowercase : Optional[str] ) -> List[Any]: __snake_case : int = to_pil_image(lowercase ) __snake_case , __snake_case : Optional[int] = pil_image.size __snake_case : Optional[Any] = pytesseract.image_to_data(lowercase , lang=lowercase , output_type="dict" , config=lowercase ) __snake_case , __snake_case , __snake_case , __snake_case , __snake_case : Optional[int] = data["text"], data["left"], data["top"], data["width"], data["height"] # filter empty words and corresponding coordinates __snake_case : Any = [idx for idx, word in enumerate(lowercase ) if not word.strip()] __snake_case : str = [word for idx, word in enumerate(lowercase ) if idx not in irrelevant_indices] __snake_case : int = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] __snake_case : Optional[Any] = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] __snake_case : Tuple = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] __snake_case : List[Any] = [coord for idx, coord in enumerate(lowercase ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format __snake_case : Optional[int] = [] for x, y, w, h in zip(lowercase , lowercase , lowercase , lowercase ): __snake_case : Union[str, Any] = [x, y, x + w, y + h] actual_boxes.append(lowercase ) # finally, normalize the bounding boxes __snake_case : Optional[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(lowercase , lowercase , lowercase ) ) assert len(lowercase ) == len(lowercase ), "Not as many words as there are bounding boxes" return words, normalized_boxes class _lowerCamelCase ( a ): """simple docstring""" UpperCAmelCase_ : Union[str, Any] =["pixel_values"] def __init__( self , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = True , UpperCAmelCase = 1 / 255 , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = True , UpperCAmelCase = None , UpperCAmelCase = "" , **UpperCAmelCase , ) -> None: '''simple docstring''' super().__init__(**UpperCAmelCase ) __snake_case : Optional[int] = size if size is not None else {"height": 224, "width": 224} __snake_case : Dict = get_size_dict(UpperCAmelCase ) __snake_case : Any = do_resize __snake_case : List[Any] = size __snake_case : Dict = resample __snake_case : Union[str, Any] = do_rescale __snake_case : Optional[Any] = rescale_value __snake_case : Any = do_normalize __snake_case : Union[str, Any] = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN __snake_case : Tuple = image_std if image_std is not None else IMAGENET_STANDARD_STD __snake_case : Optional[int] = apply_ocr __snake_case : Optional[Any] = ocr_lang __snake_case : Tuple = tesseract_config def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = PILImageResampling.BILINEAR , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' __snake_case : Optional[int] = get_size_dict(UpperCAmelCase ) if "height" not in size or "width" not in size: raise ValueError(F"""The size dictionary must contain the keys 'height' and 'width'. Got {size.keys()}""" ) __snake_case : Union[str, Any] = (size["height"], size["width"]) return resize(UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return rescale(UpperCAmelCase , scale=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase = None , **UpperCAmelCase , ) -> np.ndarray: '''simple docstring''' return normalize(UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase , data_format=UpperCAmelCase , **UpperCAmelCase ) def UpperCAmelCase ( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase=None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = None , UpperCAmelCase = ChannelDimension.FIRST , **UpperCAmelCase , ) -> PIL.Image.Image: '''simple docstring''' __snake_case : Dict = do_resize if do_resize is not None else self.do_resize __snake_case : Dict = size if size is not None else self.size __snake_case : Optional[int] = get_size_dict(UpperCAmelCase ) __snake_case : str = resample if resample is not None else self.resample __snake_case : Optional[int] = do_rescale if do_rescale is not None else self.do_rescale __snake_case : Optional[Any] = rescale_factor if rescale_factor is not None else self.rescale_factor __snake_case : List[Any] = do_normalize if do_normalize is not None else self.do_normalize __snake_case : Any = image_mean if image_mean is not None else self.image_mean __snake_case : Tuple = image_std if image_std is not None else self.image_std __snake_case : List[str] = apply_ocr if apply_ocr is not None else self.apply_ocr __snake_case : List[str] = ocr_lang if ocr_lang is not None else self.ocr_lang __snake_case : int = tesseract_config if tesseract_config is not None else self.tesseract_config __snake_case : Dict = make_list_of_images(UpperCAmelCase ) if not valid_images(UpperCAmelCase ): raise ValueError( "Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, " "torch.Tensor, tf.Tensor or jax.ndarray." ) if do_resize and size is None: raise ValueError("Size must be specified if do_resize is True." ) if do_rescale and rescale_factor is None: raise ValueError("Rescale factor must be specified if do_rescale is True." ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("If do_normalize is True, image_mean and image_std must be specified." ) # All transformations expect numpy arrays. __snake_case : Dict = [to_numpy_array(UpperCAmelCase ) for image in images] # Tesseract OCR to get words + normalized bounding boxes if apply_ocr: requires_backends(self , "pytesseract" ) __snake_case : int = [] __snake_case : Any = [] for image in images: __snake_case , __snake_case : Dict = apply_tesseract(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) words_batch.append(UpperCAmelCase ) boxes_batch.append(UpperCAmelCase ) if do_resize: __snake_case : Any = [self.resize(image=UpperCAmelCase , size=UpperCAmelCase , resample=UpperCAmelCase ) for image in images] if do_rescale: __snake_case : Tuple = [self.rescale(image=UpperCAmelCase , scale=UpperCAmelCase ) for image in images] if do_normalize: __snake_case : Any = [self.normalize(image=UpperCAmelCase , mean=UpperCAmelCase , std=UpperCAmelCase ) for image in images] __snake_case : int = [to_channel_dimension_format(UpperCAmelCase , UpperCAmelCase ) for image in images] __snake_case : Optional[Any] = BatchFeature(data={"pixel_values": images} , tensor_type=UpperCAmelCase ) if apply_ocr: __snake_case : Dict = words_batch __snake_case : Tuple = boxes_batch return data
243
import itertools import math def lowerCAmelCase__( lowercase : int ) -> bool: if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(lowercase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True def lowerCAmelCase__( ) -> Optional[int]: __snake_case : List[Any] = 2 while True: if is_prime(lowercase ): yield num num += 1 def lowerCAmelCase__( lowercase : int = 1_0001 ) -> int: return next(itertools.islice(prime_generator() , nth - 1 , lowercase ) ) if __name__ == "__main__": print(F'''{solution() = }''')
243
1
"""simple docstring""" import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip SCREAMING_SNAKE_CASE__ : Optional[Any] = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def A_ ( UpperCAmelCase__ ) -> Any: if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Dict: return max(metric_fn(UpperCAmelCase__ , UpperCAmelCase__ ) for gt in ground_truths ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: a : Tuple = [line.strip() for line in open(UpperCAmelCase__ , 'r' ).readlines()] a : Union[str, Any] = [] if args.gold_data_mode == "qa": a : int = pd.read_csv(UpperCAmelCase__ , sep='\t' , header=UpperCAmelCase__ ) for answer_list in data[1]: a : Union[str, Any] = ast.literal_eval(UpperCAmelCase__ ) answers.append(UpperCAmelCase__ ) else: a : Union[str, Any] = [line.strip() for line in open(UpperCAmelCase__ , 'r' ).readlines()] a : str = [[reference] for reference in references] a : List[str] = 0 for prediction, ground_truths in zip(UpperCAmelCase__ , UpperCAmelCase__ ): total += 1 em += metric_max_over_ground_truths(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) fa += metric_max_over_ground_truths(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) a : Any = 1_0_0.0 * em / total a : Optional[Any] = 1_0_0.0 * fa / total logger.info(F'F1: {fa:.2f}' ) logger.info(F'EM: {em:.2f}' ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: a : Any = args.k a : Tuple = [line.strip() for line in open(UpperCAmelCase__ , 'r' ).readlines()] a : Any = [line.strip() for line in open(UpperCAmelCase__ , 'r' ).readlines()] a : List[Any] = 0 for hypo, reference in zip(UpperCAmelCase__ , UpperCAmelCase__ ): a : Union[str, Any] = set(hypo.split('\t' )[:k] ) a : str = set(reference.split('\t' ) ) total += 1 em += len(hypo_provenance & ref_provenance ) / k a : List[str] = 1_0_0.0 * em / total logger.info(F'Precision@{k}: {em: .2f}' ) def A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> int: def strip_title(UpperCAmelCase__ ): if title.startswith('"' ): a : List[str] = title[1:] if title.endswith('"' ): a : List[Any] = title[:-1] return title a : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase__ , return_tensors='pt' , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ , )['input_ids'].to(args.device ) a : int = rag_model.rag.question_encoder(UpperCAmelCase__ ) a : List[str] = question_enc_outputs[0] a : Optional[int] = rag_model.retriever( UpperCAmelCase__ , question_enc_pool_output.cpu().detach().to(torch.floataa ).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='pt' , ) a : List[str] = rag_model.retriever.index.get_doc_dicts(result.doc_ids ) a : Union[str, Any] = [] for docs in all_docs: a : Tuple = [strip_title(UpperCAmelCase__ ) for title in docs['title']] provenance_strings.append('\t'.join(UpperCAmelCase__ ) ) return provenance_strings def A_ ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Optional[int]: with torch.no_grad(): a : Union[str, Any] = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( UpperCAmelCase__ , return_tensors='pt' , padding=UpperCAmelCase__ , truncation=UpperCAmelCase__ ) a : Tuple = inputs_dict.input_ids.to(args.device ) a : Any = inputs_dict.attention_mask.to(args.device ) a : Dict = rag_model.generate( # rag_model overwrites generate UpperCAmelCase__ , attention_mask=UpperCAmelCase__ , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=UpperCAmelCase__ , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) a : int = rag_model.retriever.generator_tokenizer.batch_decode(UpperCAmelCase__ , skip_special_tokens=UpperCAmelCase__ ) if args.print_predictions: for q, a in zip(UpperCAmelCase__ , UpperCAmelCase__ ): logger.info('Q: {} - A: {}'.format(UpperCAmelCase__ , UpperCAmelCase__ ) ) return answers def A_ ( ) -> str: a : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_type' , choices=['rag_sequence', 'rag_token', 'bart'] , type=UpperCAmelCase__ , help=( 'RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the' ' model_name_or_path' ) , ) parser.add_argument( '--index_name' , default=UpperCAmelCase__ , choices=['exact', 'compressed', 'legacy'] , type=UpperCAmelCase__ , help='RAG model retriever type' , ) parser.add_argument( '--index_path' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , help='Path to the retrieval index' , ) parser.add_argument('--n_docs' , default=5 , type=UpperCAmelCase__ , help='Number of retrieved docs' ) parser.add_argument( '--model_name_or_path' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Path to pretrained checkpoints or model identifier from huggingface.co/models' , ) parser.add_argument( '--eval_mode' , choices=['e2e', 'retrieval'] , default='e2e' , type=UpperCAmelCase__ , help=( 'Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates' ' precision@k.' ) , ) parser.add_argument('--k' , default=1 , type=UpperCAmelCase__ , help='k for the precision@k calculation' ) parser.add_argument( '--evaluation_set' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Path to a file containing evaluation samples' , ) parser.add_argument( '--gold_data_path' , default=UpperCAmelCase__ , type=UpperCAmelCase__ , required=UpperCAmelCase__ , help='Path to a tab-separated file with gold samples' , ) parser.add_argument( '--gold_data_mode' , default='qa' , type=UpperCAmelCase__ , choices=['qa', 'ans'] , help=( 'Format of the gold data file' 'qa - a single line in the following format: question [tab] answer_list' 'ans - a single line of the gold file contains the expected answer string' ) , ) parser.add_argument( '--predictions_path' , type=UpperCAmelCase__ , default='predictions.txt' , help='Name of the predictions file, to be stored in the checkpoints directory' , ) parser.add_argument( '--eval_all_checkpoints' , action='store_true' , help='Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number' , ) parser.add_argument( '--eval_batch_size' , default=8 , type=UpperCAmelCase__ , help='Batch size per GPU/CPU for evaluation.' , ) parser.add_argument( '--recalculate' , help='Recalculate predictions even if the prediction file exists' , action='store_true' , ) parser.add_argument( '--num_beams' , default=4 , type=UpperCAmelCase__ , help='Number of beams to be used when generating answers' , ) parser.add_argument('--min_length' , default=1 , type=UpperCAmelCase__ , help='Min length of the generated answers' ) parser.add_argument('--max_length' , default=50 , type=UpperCAmelCase__ , help='Max length of the generated answers' ) parser.add_argument( '--print_predictions' , action='store_true' , help='If True, prints predictions while evaluating.' , ) parser.add_argument( '--print_docs' , action='store_true' , help='If True, prints docs retried while generating.' , ) a : Any = parser.parse_args() a : Tuple = torch.device('cuda' if torch.cuda.is_available() else 'cpu' ) return args def A_ ( UpperCAmelCase__ ) -> List[Any]: a : Union[str, Any] = {} if args.model_type is None: a : Tuple = infer_model_type(args.model_name_or_path ) assert args.model_type is not None if args.model_type.startswith('rag' ): a : List[Any] = RagTokenForGeneration if args.model_type == 'rag_token' else RagSequenceForGeneration a : Any = args.n_docs if args.index_name is not None: a : Any = args.index_name if args.index_path is not None: a : Optional[int] = args.index_path else: a : List[Any] = BartForConditionalGeneration a : Any = ( [f.path for f in os.scandir(args.model_name_or_path ) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('Evaluate the following checkpoints: %s' , UpperCAmelCase__ ) a : Any = get_scores if args.eval_mode == 'e2e' else get_precision_at_k a : List[str] = evaluate_batch_eae if args.eval_mode == 'e2e' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path ) and (not args.recalculate): logger.info('Calculating metrics based on an existing predictions file: {}'.format(args.predictions_path ) ) score_fn(UpperCAmelCase__ , args.predictions_path , args.gold_data_path ) continue logger.info('***** Running evaluation for {} *****'.format(UpperCAmelCase__ ) ) logger.info(' Batch size = %d' , args.eval_batch_size ) logger.info(' Predictions will be stored under {}'.format(args.predictions_path ) ) if args.model_type.startswith('rag' ): a : Tuple = RagRetriever.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) a : Union[str, Any] = model_class.from_pretrained(UpperCAmelCase__ , retriever=UpperCAmelCase__ , **UpperCAmelCase__ ) model.retriever.init_retrieval() else: a : Optional[int] = model_class.from_pretrained(UpperCAmelCase__ , **UpperCAmelCase__ ) model.to(args.device ) with open(args.evaluation_set , 'r' ) as eval_file, open(args.predictions_path , 'w' ) as preds_file: a : Optional[Any] = [] for line in tqdm(UpperCAmelCase__ ): questions.append(line.strip() ) if len(UpperCAmelCase__ ) == args.eval_batch_size: a : Union[str, Any] = evaluate_batch_fn(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) preds_file.write('\n'.join(UpperCAmelCase__ ) + '\n' ) preds_file.flush() a : List[str] = [] if len(UpperCAmelCase__ ) > 0: a : str = evaluate_batch_fn(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) preds_file.write('\n'.join(UpperCAmelCase__ ) ) preds_file.flush() score_fn(UpperCAmelCase__ , args.predictions_path , args.gold_data_path ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : int = get_args() main(args)
509
"""simple docstring""" def A_ ( UpperCAmelCase__ , UpperCAmelCase__ ) -> float: if discount_rate < 0: raise ValueError('Discount rate cannot be negative' ) if not cash_flows: raise ValueError('Cash flows list cannot be empty' ) a : List[str] = sum( cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(UpperCAmelCase__ ) ) return round(UpperCAmelCase__ , ndigits=2 ) if __name__ == "__main__": import doctest doctest.testmod()
509
1
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging _UpperCamelCase : Optional[int] = logging.get_logger(__name__) _UpperCamelCase : List[Any] = { "microsoft/markuplm-base": "https://huggingface.co/microsoft/markuplm-base/resolve/main/config.json", "microsoft/markuplm-large": "https://huggingface.co/microsoft/markuplm-large/resolve/main/config.json", } class _snake_case ( a_ ): SCREAMING_SNAKE_CASE : Optional[Any] = '''markuplm''' def __init__( self , _SCREAMING_SNAKE_CASE=3_05_22 , _SCREAMING_SNAKE_CASE=7_68 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=12 , _SCREAMING_SNAKE_CASE=30_72 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=5_12 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.02 , _SCREAMING_SNAKE_CASE=1e-12 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=0 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=2_56 , _SCREAMING_SNAKE_CASE=10_24 , _SCREAMING_SNAKE_CASE=2_16 , _SCREAMING_SNAKE_CASE=10_01 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=50 , _SCREAMING_SNAKE_CASE="absolute" , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=None , **_SCREAMING_SNAKE_CASE , ): '''simple docstring''' super().__init__( pad_token_id=_SCREAMING_SNAKE_CASE , bos_token_id=_SCREAMING_SNAKE_CASE , eos_token_id=_SCREAMING_SNAKE_CASE , **_SCREAMING_SNAKE_CASE , ) lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = hidden_act lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = type_vocab_size lowerCAmelCase = initializer_range lowerCAmelCase = layer_norm_eps lowerCAmelCase = position_embedding_type lowerCAmelCase = use_cache lowerCAmelCase = classifier_dropout # additional properties lowerCAmelCase = max_depth lowerCAmelCase = max_xpath_tag_unit_embeddings lowerCAmelCase = max_xpath_subs_unit_embeddings lowerCAmelCase = tag_pad_id lowerCAmelCase = subs_pad_id lowerCAmelCase = xpath_unit_hidden_size
284
'''simple docstring''' import gc import unittest from diffusers import FlaxControlNetModel, FlaxStableDiffusionControlNetPipeline from diffusers.utils import is_flax_available, load_image, slow from diffusers.utils.testing_utils import require_flax if is_flax_available(): import jax import jax.numpy as jnp from flax.jax_utils import replicate from flax.training.common_utils import shard @slow @require_flax class _snake_case ( unittest.TestCase ): def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' super().tearDown() gc.collect() def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-canny' , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) lowerCAmelCase , lowerCAmelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) lowerCAmelCase = controlnet_params lowerCAmelCase = 'bird' lowerCAmelCase = jax.device_count() lowerCAmelCase = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png' ) lowerCAmelCase = pipe.prepare_image_inputs([canny_image] * num_samples ) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) lowerCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = shard(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = shard(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase = jnp.array( [0.167_969, 0.116_699, 0.081_543, 0.154_297, 0.132_812, 0.108_887, 0.169_922, 0.169_922, 0.205_078] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2 def _SCREAMING_SNAKE_CASE ( self ): '''simple docstring''' lowerCAmelCase , lowerCAmelCase = FlaxControlNetModel.from_pretrained( 'lllyasviel/sd-controlnet-openpose' , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) lowerCAmelCase , lowerCAmelCase = FlaxStableDiffusionControlNetPipeline.from_pretrained( 'runwayml/stable-diffusion-v1-5' , controlnet=_SCREAMING_SNAKE_CASE , from_pt=_SCREAMING_SNAKE_CASE , dtype=jnp.bfloataa ) lowerCAmelCase = controlnet_params lowerCAmelCase = 'Chef in the kitchen' lowerCAmelCase = jax.device_count() lowerCAmelCase = pipe.prepare_text_inputs([prompts] * num_samples ) lowerCAmelCase = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/pose.png' ) lowerCAmelCase = pipe.prepare_image_inputs([pose_image] * num_samples ) lowerCAmelCase = jax.random.PRNGKey(0 ) lowerCAmelCase = jax.random.split(_SCREAMING_SNAKE_CASE , jax.device_count() ) lowerCAmelCase = replicate(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = shard(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = shard(_SCREAMING_SNAKE_CASE ) lowerCAmelCase = pipe( prompt_ids=_SCREAMING_SNAKE_CASE , image=_SCREAMING_SNAKE_CASE , params=_SCREAMING_SNAKE_CASE , prng_seed=_SCREAMING_SNAKE_CASE , num_inference_steps=50 , jit=_SCREAMING_SNAKE_CASE , ).images assert images.shape == (jax.device_count(), 1, 7_68, 5_12, 3) lowerCAmelCase = images.reshape((images.shape[0] * images.shape[1],) + images.shape[-3:] ) lowerCAmelCase = images[0, 2_53:2_56, 2_53:2_56, -1] lowerCAmelCase = jnp.asarray(jax.device_get(image_slice.flatten() ) ) lowerCAmelCase = jnp.array( [[0.271_484, 0.261_719, 0.275_391, 0.277_344, 0.279_297, 0.291_016, 0.294_922, 0.302_734, 0.302_734]] ) print(F'output_slice: {output_slice}' ) assert jnp.abs(output_slice - expected_slice ).max() < 1e-2
284
1
"""simple docstring""" def snake_case ( UpperCamelCase__ : int , UpperCamelCase__ : int ) -> int: return int((input_a, input_a).count(0 ) != 0 ) def snake_case ( ) -> None: assert nand_gate(0 , 0 ) == 1 assert nand_gate(0 , 1 ) == 1 assert nand_gate(1 , 0 ) == 1 assert nand_gate(1 , 1 ) == 0 if __name__ == "__main__": print(nand_gate(0, 0)) print(nand_gate(0, 1)) print(nand_gate(1, 0)) print(nand_gate(1, 1))
42
"""simple docstring""" import argparse import json from collections import OrderedDict from functools import partial from pathlib import Path import timm import torch from huggingface_hub import hf_hub_download from transformers import LevitConfig, LevitForImageClassificationWithTeacher, LevitImageProcessor from transformers.utils import logging logging.set_verbosity_info() __lowerCamelCase :Dict = logging.get_logger() def snake_case ( UpperCamelCase__ : int , UpperCamelCase__ : str , UpperCamelCase__ : LevitConfig , UpperCamelCase__ : Path , UpperCamelCase__ : bool = True ) -> Dict: print(F'Converting {name}...' ) with torch.no_grad(): if hidden_sizes == 128: if name[-1] == "S": lowerCamelCase : Optional[Any] = timm.create_model("""levit_128s""" , pretrained=UpperCamelCase__ ) else: lowerCamelCase : Dict = timm.create_model("""levit_128""" , pretrained=UpperCamelCase__ ) if hidden_sizes == 192: lowerCamelCase : Tuple = timm.create_model("""levit_192""" , pretrained=UpperCamelCase__ ) if hidden_sizes == 256: lowerCamelCase : Optional[int] = timm.create_model("""levit_256""" , pretrained=UpperCamelCase__ ) if hidden_sizes == 384: lowerCamelCase : Dict = timm.create_model("""levit_384""" , pretrained=UpperCamelCase__ ) from_model.eval() lowerCamelCase : Optional[Any] = LevitForImageClassificationWithTeacher(UpperCamelCase__ ).eval() lowerCamelCase : Tuple = OrderedDict() lowerCamelCase : Optional[Any] = from_model.state_dict() lowerCamelCase : str = list(from_model.state_dict().keys() ) lowerCamelCase : List[Any] = list(our_model.state_dict().keys() ) print(len(UpperCamelCase__ ) , len(UpperCamelCase__ ) ) for i in range(len(UpperCamelCase__ ) ): lowerCamelCase : str = weights[og_keys[i]] our_model.load_state_dict(UpperCamelCase__ ) lowerCamelCase : int = torch.randn((2, 3, 224, 224) ) lowerCamelCase : Any = from_model(UpperCamelCase__ ) lowerCamelCase : List[Any] = our_model(UpperCamelCase__ ).logits assert torch.allclose(UpperCamelCase__ , UpperCamelCase__ ), "The model logits don't match the original one." lowerCamelCase : Dict = name print(UpperCamelCase__ ) if push_to_hub: our_model.save_pretrained(save_directory / checkpoint_name ) lowerCamelCase : Optional[int] = LevitImageProcessor() image_processor.save_pretrained(save_directory / checkpoint_name ) print(F'Pushed {checkpoint_name}' ) def snake_case ( UpperCamelCase__ : Path , UpperCamelCase__ : str = None , UpperCamelCase__ : bool = True ) -> Optional[int]: lowerCamelCase : Optional[Any] = """imagenet-1k-id2label.json""" lowerCamelCase : List[Any] = 1000 lowerCamelCase : Dict = (1, num_labels) lowerCamelCase : List[Any] = """huggingface/label-files""" lowerCamelCase : Optional[int] = num_labels lowerCamelCase : List[str] = json.load(open(hf_hub_download(UpperCamelCase__ , UpperCamelCase__ , repo_type="""dataset""" ) , """r""" ) ) lowerCamelCase : Any = {int(UpperCamelCase__ ): v for k, v in idalabel.items()} lowerCamelCase : List[Any] = idalabel lowerCamelCase : str = {v: k for k, v in idalabel.items()} lowerCamelCase : Tuple = partial(UpperCamelCase__ , num_labels=UpperCamelCase__ , idalabel=UpperCamelCase__ , labelaid=UpperCamelCase__ ) lowerCamelCase : Optional[int] = { """levit-128S""": 128, """levit-128""": 128, """levit-192""": 192, """levit-256""": 256, """levit-384""": 384, } lowerCamelCase : List[Any] = { """levit-128S""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 6, 8] , depths=[2, 3, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-128""": ImageNetPreTrainedConfig( hidden_sizes=[128, 256, 384] , num_attention_heads=[4, 8, 12] , depths=[4, 4, 4] , key_dim=[16, 16, 16] , drop_path_rate=0 , ), """levit-192""": ImageNetPreTrainedConfig( hidden_sizes=[192, 288, 384] , num_attention_heads=[3, 5, 6] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-256""": ImageNetPreTrainedConfig( hidden_sizes=[256, 384, 512] , num_attention_heads=[4, 6, 8] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0 , ), """levit-384""": ImageNetPreTrainedConfig( hidden_sizes=[384, 512, 768] , num_attention_heads=[6, 9, 12] , depths=[4, 4, 4] , key_dim=[32, 32, 32] , drop_path_rate=0.1 , ), } if model_name: convert_weight_and_push( names_to_hidden_sizes[model_name] , UpperCamelCase__ , names_to_config[model_name] , UpperCamelCase__ , UpperCamelCase__ ) else: for model_name, config in names_to_config.items(): convert_weight_and_push(names_to_hidden_sizes[model_name] , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ ) return config, expected_shape if __name__ == "__main__": __lowerCamelCase :Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default=None, type=str, help='The name of the model you wish to convert, it must be one of the supported Levit* architecture,', ) parser.add_argument( '--pytorch_dump_folder_path', default='levit-dump-folder/', type=Path, required=False, help='Path to the output PyTorch model directory.', ) parser.add_argument('--push_to_hub', action='store_true', help='Push model and image processor to the hub') parser.add_argument( '--no-push_to_hub', dest='push_to_hub', action='store_false', help='Do not push model and image processor to the hub', ) __lowerCamelCase :List[Any] = parser.parse_args() __lowerCamelCase :Path = args.pytorch_dump_folder_path pytorch_dump_folder_path.mkdir(exist_ok=True, parents=True) convert_weights_and_push(pytorch_dump_folder_path, args.model_name, args.push_to_hub)
42
1
from pathlib import Path import cva import numpy as np from matplotlib import pyplot as plt def SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ ) -> np.ndarray: """simple docstring""" A__ = cva.getAffineTransform(lowercase_ , lowercase_ ) return cva.warpAffine(lowercase_ , lowercase_ , (rows, cols) ) if __name__ == "__main__": # read original image _lowerCamelCase : Optional[Any] = cva.imread( str(Path(__file__).resolve().parent.parent / """image_data""" / """lena.jpg""") ) # turn image in gray scale value _lowerCamelCase : List[str] = cva.cvtColor(image, cva.COLOR_BGR2GRAY) # get image shape _lowerCamelCase , _lowerCamelCase : List[str] = gray_img.shape # set different points to rotate image _lowerCamelCase : List[str] = np.array([[50, 50], [200, 50], [50, 200]], np.floataa) _lowerCamelCase : Union[str, Any] = np.array([[10, 100], [200, 50], [100, 250]], np.floataa) _lowerCamelCase : Any = np.array([[50, 50], [150, 50], [120, 200]], np.floataa) _lowerCamelCase : Tuple = np.array([[10, 100], [80, 50], [180, 250]], np.floataa) # add all rotated images in a list _lowerCamelCase : Union[str, Any] = [ gray_img, get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), get_rotation(gray_img, ptsa, ptsa, img_rows, img_cols), ] # plot different image rotations _lowerCamelCase : Any = plt.figure(1) _lowerCamelCase : Optional[int] = ["""Original""", """Rotation 1""", """Rotation 2""", """Rotation 3"""] for i, image in enumerate(images): plt.subplot(2, 2, i + 1), plt.imshow(image, """gray""") plt.title(titles[i]) plt.axis("""off""") plt.subplots_adjust(left=0.0, bottom=0.05, right=1.0, top=0.95) plt.show()
87
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: int = 100_0000 ) -> int: _UpperCAmelCase : str = set(range(3 , lowerCAmelCase , 2 ) ) primes.add(2 ) for p in range(3 , lowerCAmelCase , 2 ): if p not in primes: continue primes.difference_update(set(range(p * p , lowerCAmelCase , lowerCAmelCase ) ) ) _UpperCAmelCase : Tuple = [float(lowerCAmelCase ) for n in range(limit + 1 )] for p in primes: for n in range(lowerCAmelCase , limit + 1 , lowerCAmelCase ): phi[n] *= 1 - 1 / p return int(sum(phi[2:] ) ) if __name__ == "__main__": print(F'''{solution() = }''')
300
0
"""simple docstring""" def _SCREAMING_SNAKE_CASE ( _lowercase : str = 100_0000 ) ->Optional[int]: '''simple docstring''' a : Optional[int] = limit + 1 a : Dict = [0] * limit for first_term in range(1 , _lowercase ): for n in range(_lowercase , _lowercase , _lowercase ): a : List[str] = first_term + n / first_term if common_difference % 4: # d must be divisble by 4 continue else: common_difference /= 4 if ( first_term > common_difference and first_term < 4 * common_difference ): # since x,y,z are positive integers frequency[n] += 1 # so z>0 and a>d ,also 4d<a a : Optional[Any] = sum(1 for x in frequency[1:limit] if x == 10 ) return count if __name__ == "__main__": print(F'''{solution() = }''')
708
"""simple docstring""" import unittest from diffusers.pipelines.pipeline_utils import is_safetensors_compatible class __UpperCamelCase ( unittest.TestCase ): def __a ( self ) -> Optional[Any]: a : Optional[int] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> Optional[Any]: a : str = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> Dict: a : List[str] = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", "unet/diffusion_pytorch_model.bin", # Removed: 'unet/diffusion_pytorch_model.safetensors', ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> List[Any]: a : Optional[Any] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> Tuple: a : Tuple = [ "safety_checker/pytorch_model.bin", "safety_checker/model.safetensors", "vae/diffusion_pytorch_model.bin", "vae/diffusion_pytorch_model.safetensors", "text_encoder/pytorch_model.bin", # Removed: 'text_encoder/model.safetensors', "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ ) ) def __a ( self ) -> Dict: a : Dict = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] a : Dict = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> List[str]: a : List[Any] = [ "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] a : Any = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> int: # pass variant but use the non-variant filenames a : int = [ "unet/diffusion_pytorch_model.bin", "unet/diffusion_pytorch_model.safetensors", ] a : Tuple = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> str: a : str = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", "unet/diffusion_pytorch_model.fp16.bin", # Removed: 'unet/diffusion_pytorch_model.fp16.safetensors', ] a : Any = "fp16" self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> str: a : Union[str, Any] = [ "text_encoder/pytorch_model.fp16.bin", "text_encoder/model.fp16.safetensors", ] a : str = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> List[str]: # pass variant but use the non-variant filenames a : Optional[int] = [ "text_encoder/pytorch_model.bin", "text_encoder/model.safetensors", ] a : str = "fp16" self.assertTrue(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) ) def __a ( self ) -> Optional[Any]: a : Any = [ "safety_checker/pytorch_model.fp16.bin", "safety_checker/model.fp16.safetensors", "vae/diffusion_pytorch_model.fp16.bin", "vae/diffusion_pytorch_model.fp16.safetensors", "text_encoder/pytorch_model.fp16.bin", # 'text_encoder/model.fp16.safetensors', "unet/diffusion_pytorch_model.fp16.bin", "unet/diffusion_pytorch_model.fp16.safetensors", ] a : Optional[int] = "fp16" self.assertFalse(is_safetensors_compatible(lowerCAmelCase__ , variant=lowerCAmelCase__ ) )
31
0
'''simple docstring''' from typing import Dict, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import flip_channel_order, resize, to_channel_dimension_format, to_pil_image from ...image_utils import ( ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_pytesseract_available, is_vision_available, logging, requires_backends if is_vision_available(): import PIL # soft dependency if is_pytesseract_available(): import pytesseract snake_case_ : List[str] = logging.get_logger(__name__) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): return [ int(1_0_0_0 * (box[0] / width) ), int(1_0_0_0 * (box[1] / height) ), int(1_0_0_0 * (box[2] / width) ), int(1_0_0_0 * (box[3] / height) ), ] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ = None ): _UpperCamelCase : Optional[int] = tesseract_config if tesseract_config is not None else '' # apply OCR _UpperCamelCase : int = to_pil_image(UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase : Dict = pil_image.size _UpperCamelCase : Tuple = pytesseract.image_to_data(UpperCAmelCase_ , lang=UpperCAmelCase_ , output_type='dict' , config=UpperCAmelCase_ ) _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase : int = data['text'], data['left'], data['top'], data['width'], data['height'] # filter empty words and corresponding coordinates _UpperCamelCase : Optional[Any] = [idx for idx, word in enumerate(UpperCAmelCase_ ) if not word.strip()] _UpperCamelCase : Any = [word for idx, word in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] _UpperCamelCase : Any = [coord for idx, coord in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] _UpperCamelCase : Union[str, Any] = [coord for idx, coord in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] _UpperCamelCase : Union[str, Any] = [coord for idx, coord in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] _UpperCamelCase : List[str] = [coord for idx, coord in enumerate(UpperCAmelCase_ ) if idx not in irrelevant_indices] # turn coordinates into (left, top, left+width, top+height) format _UpperCamelCase : Tuple = [] for x, y, w, h in zip(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : List[str] = [x, y, x + w, y + h] actual_boxes.append(UpperCAmelCase_ ) # finally, normalize the bounding boxes _UpperCamelCase : List[Any] = [] for box in actual_boxes: normalized_boxes.append(normalize_box(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) ) assert len(UpperCAmelCase_ ) == len(UpperCAmelCase_ ), "Not as many words as there are bounding boxes" return words, normalized_boxes class lowercase__ ( lowercase ): lowercase__ = ["""pixel_values"""] def __init__( self : Dict ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : bool = True ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = "" ,**lowerCamelCase__ : List[Any] ,): '''simple docstring''' super().__init__(**lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = size if size is not None else {'height': 224, 'width': 224} _UpperCamelCase : Union[str, Any] = get_size_dict(lowerCamelCase__ ) _UpperCamelCase : Optional[int] = do_resize _UpperCamelCase : str = size _UpperCamelCase : Any = resample _UpperCamelCase : List[str] = apply_ocr _UpperCamelCase : int = ocr_lang _UpperCamelCase : Union[str, Any] = tesseract_config def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : np.ndarray ,lowerCamelCase__ : Dict[str, int] ,lowerCamelCase__ : PILImageResampling = PILImageResampling.BILINEAR ,lowerCamelCase__ : Optional[Union[str, ChannelDimension]] = None ,**lowerCamelCase__ : Union[str, Any] ,): '''simple docstring''' _UpperCamelCase : Optional[int] = get_size_dict(lowerCamelCase__ ) if "height" not in size or "width" not in size: raise ValueError(F'The size dictionary must contain the keys \'height\' and \'width\'. Got {size.keys()}' ) _UpperCamelCase : List[str] = (size['height'], size['width']) return resize(lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ,data_format=lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : ImageInput ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Dict[str, int] = None ,lowerCamelCase__ : PILImageResampling = None ,lowerCamelCase__ : bool = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[str] = None ,lowerCamelCase__ : Optional[Union[str, TensorType]] = None ,lowerCamelCase__ : ChannelDimension = ChannelDimension.FIRST ,**lowerCamelCase__ : List[Any] ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = do_resize if do_resize is not None else self.do_resize _UpperCamelCase : Tuple = size if size is not None else self.size _UpperCamelCase : Optional[int] = get_size_dict(lowerCamelCase__ ) _UpperCamelCase : Optional[Any] = resample if resample is not None else self.resample _UpperCamelCase : Union[str, Any] = apply_ocr if apply_ocr is not None else self.apply_ocr _UpperCamelCase : Union[str, Any] = ocr_lang if ocr_lang is not None else self.ocr_lang _UpperCamelCase : int = tesseract_config if tesseract_config is not None else self.tesseract_config _UpperCamelCase : Dict = make_list_of_images(lowerCamelCase__ ) if not valid_images(lowerCamelCase__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None: raise ValueError('Size must be specified if do_resize is True.' ) # All transformations expect numpy arrays. _UpperCamelCase : Union[str, Any] = [to_numpy_array(lowerCamelCase__ ) for image in images] if apply_ocr: requires_backends(self ,'pytesseract' ) _UpperCamelCase : Tuple = [] _UpperCamelCase : Tuple = [] for image in images: _UpperCamelCase , _UpperCamelCase : Optional[Any] = apply_tesseract(lowerCamelCase__ ,lowerCamelCase__ ,lowerCamelCase__ ) words_batch.append(lowerCamelCase__ ) boxes_batch.append(lowerCamelCase__ ) if do_resize: _UpperCamelCase : Any = [self.resize(image=lowerCamelCase__ ,size=lowerCamelCase__ ,resample=lowerCamelCase__ ) for image in images] # flip color channels from RGB to BGR (as Detectron2 requires this) _UpperCamelCase : Optional[int] = [flip_channel_order(lowerCamelCase__ ) for image in images] _UpperCamelCase : Dict = [to_channel_dimension_format(lowerCamelCase__ ,lowerCamelCase__ ) for image in images] _UpperCamelCase : Union[str, Any] = BatchFeature(data={'pixel_values': images} ,tensor_type=lowerCamelCase__ ) if apply_ocr: _UpperCamelCase : Dict = words_batch _UpperCamelCase : str = boxes_batch return data
195
'''simple docstring''' import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case_ : Union[str, Any] = logging.get_logger(__name__) snake_case_ : Tuple = '▁' snake_case_ : List[str] = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } snake_case_ : Tuple = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } snake_case_ : Union[str, Any] = { 'facebook/m2m100_418M': 1024, } # fmt: off snake_case_ : List[Any] = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class lowercase__ ( lowercase ): lowercase__ = VOCAB_FILES_NAMES lowercase__ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowercase__ = PRETRAINED_VOCAB_FILES_MAP lowercase__ = ["""input_ids""", """attention_mask"""] lowercase__ = [] lowercase__ = [] def __init__( self : Union[str, Any] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Dict=None ,lowerCamelCase__ : Optional[int]=None ,lowerCamelCase__ : Optional[int]="<s>" ,lowerCamelCase__ : Optional[int]="</s>" ,lowerCamelCase__ : str="</s>" ,lowerCamelCase__ : Union[str, Any]="<pad>" ,lowerCamelCase__ : Optional[int]="<unk>" ,lowerCamelCase__ : str="m2m100" ,lowerCamelCase__ : Optional[Dict[str, Any]] = None ,lowerCamelCase__ : Optional[Any]=8 ,**lowerCamelCase__ : str ,): '''simple docstring''' _UpperCamelCase : int = {} if sp_model_kwargs is None else sp_model_kwargs _UpperCamelCase : Optional[int] = language_codes _UpperCamelCase : Union[str, Any] = FAIRSEQ_LANGUAGE_CODES[language_codes] _UpperCamelCase : str = {lang_code: F'__{lang_code}__' for lang_code in fairseq_language_code} _UpperCamelCase : Optional[Any] = kwargs.get('additional_special_tokens' ,[] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(lowerCamelCase__ ) for lang_code in fairseq_language_code if self.get_lang_token(lowerCamelCase__ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCamelCase__ ,tgt_lang=lowerCamelCase__ ,bos_token=lowerCamelCase__ ,eos_token=lowerCamelCase__ ,sep_token=lowerCamelCase__ ,unk_token=lowerCamelCase__ ,pad_token=lowerCamelCase__ ,language_codes=lowerCamelCase__ ,sp_model_kwargs=self.sp_model_kwargs ,num_madeup_words=lowerCamelCase__ ,**lowerCamelCase__ ,) _UpperCamelCase : Any = vocab_file _UpperCamelCase : int = load_json(lowerCamelCase__ ) _UpperCamelCase : int = {v: k for k, v in self.encoder.items()} _UpperCamelCase : Any = spm_file _UpperCamelCase : Optional[Any] = load_spm(lowerCamelCase__ ,self.sp_model_kwargs ) _UpperCamelCase : Union[str, Any] = len(self.encoder ) _UpperCamelCase : Dict = { self.get_lang_token(lowerCamelCase__ ): self.encoder_size + i for i, lang_code in enumerate(lowerCamelCase__ ) } _UpperCamelCase : Any = {lang_code: self.encoder_size + i for i, lang_code in enumerate(lowerCamelCase__ )} _UpperCamelCase : Dict = {v: k for k, v in self.lang_token_to_id.items()} _UpperCamelCase : Any = src_lang if src_lang is not None else 'en' _UpperCamelCase : int = tgt_lang _UpperCamelCase : Optional[int] = self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) _UpperCamelCase : List[Any] = num_madeup_words @property def UpperCamelCase_ ( self : int ): '''simple docstring''' return len(self.encoder ) + len(self.lang_token_to_id ) @property def UpperCamelCase_ ( self : Optional[int] ): '''simple docstring''' return self._src_lang @src_lang.setter def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Tuple = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ): '''simple docstring''' return self.sp_model.encode(lowerCamelCase__ ,out_type=lowerCamelCase__ ) def UpperCamelCase_ ( self : Union[str, Any] ,lowerCamelCase__ : str ): '''simple docstring''' if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(lowerCamelCase__ ,self.encoder[self.unk_token] ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : int ): '''simple docstring''' if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(lowerCamelCase__ ,self.unk_token ) def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : Union[str, Any] ): '''simple docstring''' _UpperCamelCase : List[Any] = [] _UpperCamelCase : Union[str, Any] = '' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(lowerCamelCase__ ) + token _UpperCamelCase : Optional[int] = [] else: current_sub_tokens.append(lowerCamelCase__ ) out_string += self.sp_model.decode(lowerCamelCase__ ) return out_string.strip() def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ,lowerCamelCase__ : bool = False ): '''simple docstring''' if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCamelCase__ ,token_ids_a=lowerCamelCase__ ,already_has_special_tokens=lowerCamelCase__ ) _UpperCamelCase : Tuple = [1] * len(self.prefix_tokens ) _UpperCamelCase : str = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCamelCase__ )) + suffix_ones return prefix_ones + ([0] * len(lowerCamelCase__ )) + ([0] * len(lowerCamelCase__ )) + suffix_ones def UpperCamelCase_ ( self : List[str] ,lowerCamelCase__ : List[int] ,lowerCamelCase__ : Optional[List[int]] = None ): '''simple docstring''' if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def UpperCamelCase_ ( self : Dict ): '''simple docstring''' _UpperCamelCase : List[Any] = {self.convert_ids_to_tokens(lowerCamelCase__ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Any ): '''simple docstring''' _UpperCamelCase : Dict = self.__dict__.copy() _UpperCamelCase : int = None return state def __setstate__( self : Optional[int] ,lowerCamelCase__ : Dict ): '''simple docstring''' _UpperCamelCase : Dict = d # for backward compatibility if not hasattr(self ,'sp_model_kwargs' ): _UpperCamelCase : int = {} _UpperCamelCase : Dict = load_spm(self.spm_file ,self.sp_model_kwargs ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : str ,lowerCamelCase__ : Optional[str] = None ): '''simple docstring''' _UpperCamelCase : int = Path(lowerCamelCase__ ) if not save_dir.is_dir(): raise OSError(F'{save_directory} should be a directory' ) _UpperCamelCase : List[str] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) _UpperCamelCase : Optional[Any] = save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder ,lowerCamelCase__ ) if os.path.abspath(self.spm_file ) != os.path.abspath(lowerCamelCase__ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file ,lowerCamelCase__ ) elif not os.path.isfile(self.spm_file ): with open(lowerCamelCase__ ,'wb' ) as fi: _UpperCamelCase : Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(lowerCamelCase__ ) return (str(lowerCamelCase__ ), str(lowerCamelCase__ )) def UpperCamelCase_ ( self : Tuple ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : str = "en" ,lowerCamelCase__ : Optional[List[str]] = None ,lowerCamelCase__ : str = "ro" ,**lowerCamelCase__ : List[Any] ,): '''simple docstring''' _UpperCamelCase : Optional[Any] = src_lang _UpperCamelCase : Any = tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(lowerCamelCase__ ,lowerCamelCase__ ,**lowerCamelCase__ ) def UpperCamelCase_ ( self : int ,lowerCamelCase__ : List[str] ,lowerCamelCase__ : Optional[str] ,lowerCamelCase__ : Optional[str] ,**lowerCamelCase__ : Optional[int] ): '''simple docstring''' if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) _UpperCamelCase : int = src_lang _UpperCamelCase : Any = self(lowerCamelCase__ ,add_special_tokens=lowerCamelCase__ ,**lowerCamelCase__ ) _UpperCamelCase : List[Any] = self.get_lang_id(lowerCamelCase__ ) _UpperCamelCase : Any = tgt_lang_id return inputs def UpperCamelCase_ ( self : Dict ): '''simple docstring''' self.set_src_lang_special_tokens(self.src_lang ) def UpperCamelCase_ ( self : str ): '''simple docstring''' self.set_tgt_lang_special_tokens(self.tgt_lang ) def UpperCamelCase_ ( self : str ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Union[str, Any] = self.get_lang_token(lowerCamelCase__ ) _UpperCamelCase : str = self.lang_token_to_id[lang_token] _UpperCamelCase : Any = [self.cur_lang_id] _UpperCamelCase : Union[str, Any] = [self.eos_token_id] def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : Optional[Any] = self.get_lang_token(lowerCamelCase__ ) _UpperCamelCase : Union[str, Any] = self.lang_token_to_id[lang_token] _UpperCamelCase : Union[str, Any] = [self.cur_lang_id] _UpperCamelCase : List[str] = [self.eos_token_id] def UpperCamelCase_ ( self : Any ,lowerCamelCase__ : str ): '''simple docstring''' return self.lang_code_to_token[lang] def UpperCamelCase_ ( self : List[Any] ,lowerCamelCase__ : str ): '''simple docstring''' _UpperCamelCase : List[str] = self.get_lang_token(lowerCamelCase__ ) return self.lang_token_to_id[lang_token] def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): _UpperCamelCase : Union[str, Any] = sentencepiece.SentencePieceProcessor(**UpperCAmelCase_ ) spm.Load(str(UpperCAmelCase_ ) ) return spm def A__ ( UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'r' ) as f: return json.load(UpperCAmelCase_ ) def A__ ( UpperCAmelCase_ , UpperCAmelCase_ ): with open(UpperCAmelCase_ , 'w' ) as f: json.dump(UpperCAmelCase_ , UpperCAmelCase_ , indent=2 )
195
1
from random import randint, random def UpperCamelCase_ ( __a , __a , __a , __a = False , __a = False , __a = 5 , ) -> list: a__ : Optional[Any] = [[-1] * number_of_cells] # Create a highway without any car a__ : List[Any] = 0 a__ : Optional[int] = max(__a , 0 ) while i < number_of_cells: a__ : Tuple = ( randint(0 , __a ) if random_speed else initial_speed ) # Place the cars i += ( randint(1 , max_speed * 2 ) if random_frequency else frequency ) # Arbitrary number, may need tuning return highway def UpperCamelCase_ ( __a , __a ) -> int: a__ : Tuple = 0 a__ : Any = highway_now[car_index + 1 :] for cell in range(len(__a ) ): # May need a better name for this if cells[cell] != -1: # If the cell is not empty then return distance # we have the distance we wanted distance += 1 # Here if the car is near the end of the highway return distance + get_distance(__a , -1 ) def UpperCamelCase_ ( __a , __a , __a ) -> list: a__ : List[str] = len(__a ) # Beforce calculations, the highway is empty a__ : Tuple = [-1] * number_of_cells for car_index in range(__a ): if highway_now[car_index] != -1: # Add 1 to the current speed of the car and cap the speed a__ : Union[str, Any] = min(highway_now[car_index] + 1 , __a ) # Number of empty cell before the next car a__ : Optional[int] = get_distance(__a , __a ) - 1 # We can't have the car causing an accident a__ : Dict = min(next_highway[car_index] , __a ) if random() < probability: # Randomly, a driver will slow down a__ : List[str] = max(next_highway[car_index] - 1 , 0 ) return next_highway def UpperCamelCase_ ( __a , __a , __a , __a ) -> list: a__ : List[Any] = len(highway[0] ) for i in range(__a ): a__ : List[Any] = update(highway[i] , __a , __a ) a__ : Union[str, Any] = [-1] * number_of_cells for car_index in range(__a ): a__ : List[str] = next_speeds_calculated[car_index] if speed != -1: # Change the position based on the speed (with % to create the loop) a__ : List[str] = (car_index + speed) % number_of_cells # Commit the change of position a__ : Optional[int] = speed highway.append(__a ) return highway if __name__ == "__main__": import doctest doctest.testmod()
702
from ..utils import ( OptionalDependencyNotAvailable, is_flax_available, is_scipy_available, is_torch_available, is_torchsde_available, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_pt_objects import * # noqa F403 else: from .scheduling_consistency_models import CMStochasticIterativeScheduler from .scheduling_ddim import DDIMScheduler from .scheduling_ddim_inverse import DDIMInverseScheduler from .scheduling_ddim_parallel import DDIMParallelScheduler from .scheduling_ddpm import DDPMScheduler from .scheduling_ddpm_parallel import DDPMParallelScheduler from .scheduling_deis_multistep import DEISMultistepScheduler from .scheduling_dpmsolver_multistep import DPMSolverMultistepScheduler from .scheduling_dpmsolver_multistep_inverse import DPMSolverMultistepInverseScheduler from .scheduling_dpmsolver_singlestep import DPMSolverSinglestepScheduler from .scheduling_euler_ancestral_discrete import EulerAncestralDiscreteScheduler from .scheduling_euler_discrete import EulerDiscreteScheduler from .scheduling_heun_discrete import HeunDiscreteScheduler from .scheduling_ipndm import IPNDMScheduler from .scheduling_k_dpm_2_ancestral_discrete import KDPMaAncestralDiscreteScheduler from .scheduling_k_dpm_2_discrete import KDPMaDiscreteScheduler from .scheduling_karras_ve import KarrasVeScheduler from .scheduling_pndm import PNDMScheduler from .scheduling_repaint import RePaintScheduler from .scheduling_sde_ve import ScoreSdeVeScheduler from .scheduling_sde_vp import ScoreSdeVpScheduler from .scheduling_unclip import UnCLIPScheduler from .scheduling_unipc_multistep import UniPCMultistepScheduler from .scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin from .scheduling_vq_diffusion import VQDiffusionScheduler try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_flax_objects import * # noqa F403 else: from .scheduling_ddim_flax import FlaxDDIMScheduler from .scheduling_ddpm_flax import FlaxDDPMScheduler from .scheduling_dpmsolver_multistep_flax import FlaxDPMSolverMultistepScheduler from .scheduling_karras_ve_flax import FlaxKarrasVeScheduler from .scheduling_lms_discrete_flax import FlaxLMSDiscreteScheduler from .scheduling_pndm_flax import FlaxPNDMScheduler from .scheduling_sde_ve_flax import FlaxScoreSdeVeScheduler from .scheduling_utils_flax import ( FlaxKarrasDiffusionSchedulers, FlaxSchedulerMixin, FlaxSchedulerOutput, broadcast_to_shape_from_left, ) try: if not (is_torch_available() and is_scipy_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_scipy_objects import * # noqa F403 else: from .scheduling_lms_discrete import LMSDiscreteScheduler try: if not (is_torch_available() and is_torchsde_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ..utils.dummy_torch_and_torchsde_objects import * # noqa F403 else: from .scheduling_dpmsolver_sde import DPMSolverSDEScheduler
151
0
'''simple docstring''' import argparse from pathlib import Path import torch from transformers import OPTConfig, OPTModel from transformers.utils import logging logging.set_verbosity_info() lowercase_ = logging.get_logger(__name__) def lowerCAmelCase (__A): """simple docstring""" _a = torch.load(__A , map_location='''cpu''') if "model" in sd.keys(): _a = torch.load(__A , map_location='''cpu''')['''model'''] # pop unnecessary weights _a = [ '''decoder.version''', '''decoder.output_projection.weight''', ] for key in keys_to_delete: if key in sd: sd.pop(__A) _a = { '''decoder.project_in_dim.weight''': '''decoder.project_in.weight''', '''decoder.project_out_dim.weight''': '''decoder.project_out.weight''', '''decoder.layer_norm.weight''': '''decoder.final_layer_norm.weight''', '''decoder.layer_norm.bias''': '''decoder.final_layer_norm.bias''', } for old_key, new_key in keys_to_rename.items(): if old_key in sd: _a = sd.pop(__A) _a = list(sd.keys()) for key in keys: if ".qkv_proj." in key: _a = sd[key] # We split QKV in separate Q,K,V _a = key.replace('''.qkv_proj.''' , '''.q_proj.''') _a = key.replace('''.qkv_proj.''' , '''.k_proj.''') _a = key.replace('''.qkv_proj.''' , '''.v_proj.''') _a = value.shape[0] assert depth % 3 == 0 # `SequeuceParallelTransformerBlock` has QKV weight is separated in K,V,Q despite the naming: # https://cs.github.com/facebookresearch/metaseq/blob/51871bd73cd04c038f239ea2a26db1d7f6b37927/metaseq/modules/sequence_parallel_transformer_layer.py#L97 _a , _a , _a = torch.split(__A , depth // 3 , dim=0) _a = q _a = k _a = v del sd[key] return sd @torch.no_grad() def lowerCAmelCase (__A , __A , __A=None): """simple docstring""" _a = load_checkpoint(__A) if config is not None: _a = OPTConfig.from_pretrained(__A) else: _a = OPTConfig() _a = OPTModel(__A).half().eval() model.load_state_dict(__A) # Check results Path(__A).mkdir(exist_ok=__A) model.save_pretrained(__A) if __name__ == "__main__": lowercase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--fairseq_path", type=str, help=( "path to fairseq checkpoint in correct format. You can find all checkpoints in the correct format here:" " https://huggingface.co/models?other=opt_metasq" ), ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument("--hf_config", default=None, type=str, help="Define HF config.") lowercase_ = parser.parse_args() convert_opt_checkpoint(args.fairseq_path, args.pytorch_dump_folder_path, config=args.hf_config)
11
"""simple docstring""" def lowerCAmelCase_ (_SCREAMING_SNAKE_CASE :str ) -> int: assert column_title.isupper() a_ : int = 0 a_ : Tuple = len(_SCREAMING_SNAKE_CASE ) - 1 a_ : Union[str, Any] = 0 while index >= 0: a_ : List[Any] = (ord(column_title[index] ) - 64) * pow(26 , _SCREAMING_SNAKE_CASE ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
473
0
'''simple docstring''' import unittest from transformers import BertGenerationTokenizer from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_torch, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin _UpperCamelCase = """▁""" _UpperCamelCase = get_tests_dir("""fixtures/test_sentencepiece.model""") @require_sentencepiece class lowerCamelCase__ ( _A, unittest.TestCase ): '''simple docstring''' A__ = BertGenerationTokenizer A__ = False A__ = True def lowercase__ ( self : Union[str, Any] ) -> int: '''simple docstring''' super().setUp() lowerCAmelCase__ = BertGenerationTokenizer(__A , keep_accents=__A ) tokenizer.save_pretrained(self.tmpdirname ) def lowercase__ ( self : List[str] ) -> int: '''simple docstring''' lowerCAmelCase__ = """<s>""" lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(__A ) , __A ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(__A ) , __A ) def lowercase__ ( self : List[str] ) -> List[Any]: '''simple docstring''' lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<unk>""" ) self.assertEqual(vocab_keys[1] , """<s>""" ) self.assertEqual(vocab_keys[-1] , """<pad>""" ) self.assertEqual(len(__A ) , 1002 ) def lowercase__ ( self : int ) -> str: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 1000 ) def lowercase__ ( self : Union[str, Any] ) -> Any: '''simple docstring''' lowerCAmelCase__ = BertGenerationTokenizer(__A , keep_accents=__A ) lowerCAmelCase__ = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(__A , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(__A ) , [285, 46, 10, 170, 382] , ) lowerCAmelCase__ = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(__A ) self.assertListEqual( __A , [8, 21, 84, 55, 24, 19, 7, 0, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 0, 4] , ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(__A ) self.assertListEqual( __A , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) @cached_property def lowercase__ ( self : Tuple ) -> str: '''simple docstring''' return BertGenerationTokenizer.from_pretrained("""google/bert_for_seq_generation_L-24_bbc_encoder""" ) @slow def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' lowerCAmelCase__ = """Hello World!""" lowerCAmelCase__ = [1_8536, 2260, 101] self.assertListEqual(__A , self.big_tokenizer.encode(__A ) ) @slow def lowercase__ ( self : str ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) lowerCAmelCase__ = [ 871, 419, 358, 946, 991, 2521, 452, 358, 1357, 387, 7751, 3536, 112, 985, 456, 126, 865, 938, 5400, 5734, 458, 1368, 467, 786, 2462, 5246, 1159, 633, 865, 4519, 457, 582, 852, 2557, 427, 916, 508, 405, 3_4324, 497, 391, 408, 1_1342, 1244, 385, 100, 938, 985, 456, 574, 362, 1_2597, 3200, 3129, 1172, ] self.assertListEqual(__A , self.big_tokenizer.encode(__A ) ) @require_torch @slow def lowercase__ ( self : Dict ) -> Dict: '''simple docstring''' import torch from transformers import BertGenerationConfig, BertGenerationEncoder # Build sequence lowerCAmelCase__ = list(self.big_tokenizer.get_vocab().keys() )[:10] lowerCAmelCase__ = """ """.join(__A ) lowerCAmelCase__ = self.big_tokenizer.encode_plus(__A , return_tensors="""pt""" , return_token_type_ids=__A ) lowerCAmelCase__ = self.big_tokenizer.batch_encode_plus( [sequence + """ """ + sequence] , return_tensors="""pt""" , return_token_type_ids=__A ) lowerCAmelCase__ = BertGenerationConfig() lowerCAmelCase__ = BertGenerationEncoder(__A ) assert model.get_input_embeddings().weight.shape[0] >= self.big_tokenizer.vocab_size with torch.no_grad(): model(**__A ) model(**__A ) @slow def lowercase__ ( self : Optional[Any] ) -> List[str]: '''simple docstring''' lowerCAmelCase__ = {"""input_ids""": [[3_9286, 458, 3_6335, 2001, 456, 1_3073, 1_3266, 455, 113, 7746, 1741, 1_1157, 391, 1_3073, 1_3266, 455, 113, 3967, 3_5412, 113, 4936, 109, 3870, 2377, 113, 3_0084, 4_5720, 458, 134, 1_7496, 112, 503, 1_1672, 113, 118, 112, 5665, 1_3347, 3_8687, 112, 1496, 3_1389, 112, 3268, 4_7264, 134, 962, 112, 1_6377, 8035, 2_3130, 430, 1_2169, 1_5518, 2_8592, 458, 146, 4_1697, 109, 391, 1_2169, 1_5518, 1_6689, 458, 146, 4_1358, 109, 452, 726, 4034, 111, 763, 3_5412, 5082, 388, 1903, 111, 9051, 391, 2870, 4_8918, 1900, 1123, 550, 998, 112, 9586, 1_5985, 455, 391, 410, 2_2955, 3_7636, 114], [448, 1_7496, 419, 3663, 385, 763, 113, 2_7533, 2870, 3283, 1_3043, 1639, 2_4713, 523, 656, 2_4013, 1_8550, 2521, 517, 2_7014, 2_1244, 420, 1212, 1465, 391, 927, 4833, 388, 578, 1_1786, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [484, 2169, 7687, 2_1932, 1_8146, 726, 363, 1_7032, 3391, 114, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=__A , model_name="""google/bert_for_seq_generation_L-24_bbc_encoder""" , revision="""c817d1fd1be2ffa69431227a1fe320544943d4db""" , )
721
'''simple docstring''' # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _UpperCamelCase = { """configuration_vivit""": ["""VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VivitConfig"""], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = ["""VivitImageProcessor"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ """VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST""", """VivitModel""", """VivitPreTrainedModel""", """VivitForVideoClassification""", ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
211
0
from __future__ import annotations import math import numpy as np from numpy.linalg import norm def a__ ( snake_case , snake_case ): """simple docstring""" return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(snake_case , snake_case ) ) ) def a__ ( snake_case , snake_case ): """simple docstring""" if dataset.ndim != value_array.ndim: __SCREAMING_SNAKE_CASE : Any = ( '''Wrong input data\'s dimensions... ''' F'''dataset : {dataset.ndim}, value_array : {value_array.ndim}''' ) raise ValueError(snake_case ) try: if dataset.shape[1] != value_array.shape[1]: __SCREAMING_SNAKE_CASE : Tuple = ( '''Wrong input data\'s shape... ''' F'''dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}''' ) raise ValueError(snake_case ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError('''Wrong shape''' ) if dataset.dtype != value_array.dtype: __SCREAMING_SNAKE_CASE : Optional[Any] = ( '''Input data have different datatype... ''' F'''dataset : {dataset.dtype}, value_array : {value_array.dtype}''' ) raise TypeError(snake_case ) __SCREAMING_SNAKE_CASE : List[Any] = [] for value in value_array: __SCREAMING_SNAKE_CASE : Dict = euclidean(snake_case , dataset[0] ) __SCREAMING_SNAKE_CASE : Any = dataset[0].tolist() for dataset_value in dataset[1:]: __SCREAMING_SNAKE_CASE : List[str] = euclidean(snake_case , snake_case ) if dist > temp_dist: __SCREAMING_SNAKE_CASE : Tuple = temp_dist __SCREAMING_SNAKE_CASE : List[str] = dataset_value.tolist() answer.append([vector, dist] ) return answer def a__ ( snake_case , snake_case ): """simple docstring""" return np.dot(snake_case , snake_case ) / (norm(snake_case ) * norm(snake_case )) if __name__ == "__main__": import doctest doctest.testmod()
74
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import convert_to_rgb, normalize, rescale, resize, to_channel_dimension_format from ...image_utils import ( OPENAI_CLIP_MEAN, OPENAI_CLIP_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL A = logging.get_logger(__name__) class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' lowerCAmelCase_ = ['pixel_values'] def __init__( self : List[str] , snake_case__ : bool = True , snake_case__ : Dict[str, int] = None , snake_case__ : PILImageResampling = PILImageResampling.BICUBIC , snake_case__ : bool = True , snake_case__ : Union[int, float] = 1 / 2_5_5 , snake_case__ : bool = True , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : bool = True , **snake_case__ : List[Any] , ) -> None: super().__init__(**snake_case__ ) _lowerCamelCase = size if size is not None else {'height': 3_8_4, 'width': 3_8_4} _lowerCamelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) _lowerCamelCase = do_resize _lowerCamelCase = size _lowerCamelCase = resample _lowerCamelCase = do_rescale _lowerCamelCase = rescale_factor _lowerCamelCase = do_normalize _lowerCamelCase = image_mean if image_mean is not None else OPENAI_CLIP_MEAN _lowerCamelCase = image_std if image_std is not None else OPENAI_CLIP_STD _lowerCamelCase = do_convert_rgb def _snake_case ( self : Union[str, Any] , snake_case__ : np.ndarray , snake_case__ : Dict[str, int] , snake_case__ : PILImageResampling = PILImageResampling.BICUBIC , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Dict , ) -> np.ndarray: _lowerCamelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) if "height" not in size or "width" not in size: raise ValueError(f"""The `size` dictionary must contain the keys `height` and `width`. Got {size.keys()}""" ) _lowerCamelCase = (size['height'], size['width']) return resize(snake_case__ , size=snake_case__ , resample=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _snake_case ( self : Dict , snake_case__ : np.ndarray , snake_case__ : Union[int, float] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Optional[int] , ) -> int: return rescale(snake_case__ , scale=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _snake_case ( self : Optional[Any] , snake_case__ : np.ndarray , snake_case__ : Union[float, List[float]] , snake_case__ : Union[float, List[float]] , snake_case__ : Optional[Union[str, ChannelDimension]] = None , **snake_case__ : Optional[int] , ) -> np.ndarray: return normalize(snake_case__ , mean=snake_case__ , std=snake_case__ , data_format=snake_case__ , **snake_case__ ) def _snake_case ( self : List[str] , snake_case__ : ImageInput , snake_case__ : Optional[bool] = None , snake_case__ : Optional[Dict[str, int]] = None , snake_case__ : PILImageResampling = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[float] = None , snake_case__ : Optional[bool] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[float, List[float]]] = None , snake_case__ : Optional[Union[str, TensorType]] = None , snake_case__ : bool = None , snake_case__ : ChannelDimension = ChannelDimension.FIRST , **snake_case__ : str , ) -> PIL.Image.Image: _lowerCamelCase = do_resize if do_resize is not None else self.do_resize _lowerCamelCase = resample if resample is not None else self.resample _lowerCamelCase = do_rescale if do_rescale is not None else self.do_rescale _lowerCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _lowerCamelCase = do_normalize if do_normalize is not None else self.do_normalize _lowerCamelCase = image_mean if image_mean is not None else self.image_mean _lowerCamelCase = image_std if image_std is not None else self.image_std _lowerCamelCase = do_convert_rgb if do_convert_rgb is not None else self.do_convert_rgb _lowerCamelCase = size if size is not None else self.size _lowerCamelCase = get_size_dict(snake_case__ , default_to_square=snake_case__ ) _lowerCamelCase = make_list_of_images(snake_case__ ) if not valid_images(snake_case__ ): raise ValueError( 'Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, ' 'torch.Tensor, tf.Tensor or jax.ndarray.' ) if do_resize and size is None or resample is None: raise ValueError('Size and resample must be specified if do_resize is True.' ) if do_rescale and rescale_factor is None: raise ValueError('Rescale factor must be specified if do_rescale is True.' ) if do_normalize and (image_mean is None or image_std is None): raise ValueError('Image mean and std must be specified if do_normalize is True.' ) # PIL RGBA images are converted to RGB if do_convert_rgb: _lowerCamelCase = [convert_to_rgb(snake_case__ ) for image in images] # All transformations expect numpy arrays. _lowerCamelCase = [to_numpy_array(snake_case__ ) for image in images] if do_resize: _lowerCamelCase = [self.resize(image=snake_case__ , size=snake_case__ , resample=snake_case__ ) for image in images] if do_rescale: _lowerCamelCase = [self.rescale(image=snake_case__ , scale=snake_case__ ) for image in images] if do_normalize: _lowerCamelCase = [self.normalize(image=snake_case__ , mean=snake_case__ , std=snake_case__ ) for image in images] _lowerCamelCase = [to_channel_dimension_format(snake_case__ , snake_case__ ) for image in images] _lowerCamelCase = BatchFeature(data={'pixel_values': images} , tensor_type=snake_case__ ) return encoded_outputs
544
0
def snake_case_ (__A : int = 6_0_0_8_5_1_4_7_5_1_4_3 ) -> int: try: __lowerCAmelCase : Dict = int(__A ) except (TypeError, ValueError): raise TypeError("""Parameter n must be int or castable to int.""" ) if n <= 0: raise ValueError("""Parameter n must be greater than or equal to one.""" ) __lowerCAmelCase : str = 2 __lowerCAmelCase : str = 0 if n == 2: return 2 while n > 2: while n % i != 0: i += 1 __lowerCAmelCase : Any = i while n % i == 0: __lowerCAmelCase : Union[str, Any] = n // i i += 1 return int(__A ) if __name__ == "__main__": print(F'{solution() = }')
218
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class SCREAMING_SNAKE_CASE ( a_ ): """simple docstring""" lowerCamelCase : Optional[Any] =(DPMSolverSinglestepScheduler,) lowerCamelCase : Optional[Any] =(("num_inference_steps", 25),) def SCREAMING_SNAKE_CASE ( self : str , **lowerCAmelCase : str ) -> List[str]: """simple docstring""" __lowerCAmelCase : List[str] = { """num_train_timesteps""": 10_00, """beta_start""": 0.0001, """beta_end""": 0.02, """beta_schedule""": """linear""", """solver_order""": 2, """prediction_type""": """epsilon""", """thresholding""": False, """sample_max_value""": 1.0, """algorithm_type""": """dpmsolver++""", """solver_type""": """midpoint""", """lambda_min_clipped""": -float("""inf""" ), """variance_type""": None, } config.update(**lowerCAmelCase ) return config def SCREAMING_SNAKE_CASE ( self : Tuple , lowerCAmelCase : Union[str, Any]=0 , **lowerCAmelCase : Dict ) -> int: """simple docstring""" __lowerCAmelCase : Dict = dict(self.forward_default_kwargs ) __lowerCAmelCase : List[str] = kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) __lowerCAmelCase : Any = self.dummy_sample __lowerCAmelCase : Dict = 0.1 * sample __lowerCAmelCase : Dict = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase : Any = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals __lowerCAmelCase : Dict = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) __lowerCAmelCase : Dict = scheduler_class.from_pretrained(lowerCAmelCase ) new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals __lowerCAmelCase : Union[str, Any] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase ,__lowerCAmelCase : Tuple = sample, sample for t in range(lowerCAmelCase , time_step + scheduler.config.solver_order + 1 ): __lowerCAmelCase : Any = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample __lowerCAmelCase : Union[str, Any] = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[Any]: """simple docstring""" pass def SCREAMING_SNAKE_CASE ( self : List[Any] , lowerCAmelCase : List[str]=0 , **lowerCAmelCase : List[Any] ) -> Dict: """simple docstring""" __lowerCAmelCase : str = dict(self.forward_default_kwargs ) __lowerCAmelCase : Union[str, Any] = kwargs.pop("""num_inference_steps""" , lowerCAmelCase ) __lowerCAmelCase : Optional[int] = self.dummy_sample __lowerCAmelCase : Dict = 0.1 * sample __lowerCAmelCase : Optional[int] = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: __lowerCAmelCase : Optional[int] = self.get_scheduler_config() __lowerCAmelCase : List[Any] = scheduler_class(**lowerCAmelCase ) scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residuals (must be after setting timesteps) __lowerCAmelCase : Any = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(lowerCAmelCase ) __lowerCAmelCase : Dict = scheduler_class.from_pretrained(lowerCAmelCase ) # copy over dummy past residuals new_scheduler.set_timesteps(lowerCAmelCase ) # copy over dummy past residual (must be after setting timesteps) __lowerCAmelCase : Optional[int] = dummy_past_residuals[: new_scheduler.config.solver_order] __lowerCAmelCase : Union[str, Any] = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample __lowerCAmelCase : Optional[int] = new_scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1e-5, "Scheduler outputs are not identical" def SCREAMING_SNAKE_CASE ( self : Optional[Any] , lowerCAmelCase : str=None , **lowerCAmelCase : Optional[Any] ) -> Tuple: """simple docstring""" if scheduler is None: __lowerCAmelCase : Dict = self.scheduler_classes[0] __lowerCAmelCase : Dict = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : Optional[Any] = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : List[str] = self.scheduler_classes[0] __lowerCAmelCase : int = self.get_scheduler_config(**lowerCAmelCase ) __lowerCAmelCase : Any = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : str = 10 __lowerCAmelCase : str = self.dummy_model() __lowerCAmelCase : Optional[int] = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Optional[Any] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : int = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample return sample def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> str: """simple docstring""" __lowerCAmelCase : str = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase : Union[str, Any] = 50 __lowerCAmelCase : Union[str, Any] = self.dummy_model() __lowerCAmelCase : Any = self.dummy_sample_deter scheduler.set_timesteps(lowerCAmelCase ) # make sure that the first t is uneven for i, t in enumerate(scheduler.timesteps[3:] ): __lowerCAmelCase : Dict = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : str = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample __lowerCAmelCase : List[str] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2574 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Optional[int]: """simple docstring""" for timesteps in [25, 50, 1_00, 9_99, 10_00]: self.check_over_configs(num_train_timesteps=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : int ) -> Tuple: """simple docstring""" __lowerCAmelCase : Optional[Any] = DPMSolverSinglestepScheduler(**self.get_scheduler_config() ) __lowerCAmelCase : int = self.full_loop(scheduler=lowerCAmelCase ) __lowerCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 __lowerCAmelCase : Optional[Any] = DEISMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Dict = DPMSolverMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Any = UniPCMultistepScheduler.from_config(scheduler.config ) __lowerCAmelCase : Any = DPMSolverSinglestepScheduler.from_config(scheduler.config ) __lowerCAmelCase : List[str] = self.full_loop(scheduler=lowerCAmelCase ) __lowerCAmelCase : str = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> List[Any]: """simple docstring""" self.check_over_configs(thresholding=lowerCAmelCase ) for order in [1, 2, 3]: for solver_type in ["midpoint", "heun"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=lowerCAmelCase , prediction_type=lowerCAmelCase , sample_max_value=lowerCAmelCase , algorithm_type="""dpmsolver++""" , solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , ) def SCREAMING_SNAKE_CASE ( self : int ) -> Any: """simple docstring""" for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : Union[str, Any] ) -> Union[str, Any]: """simple docstring""" for algorithm_type in ["dpmsolver", "dpmsolver++"]: for solver_type in ["midpoint", "heun"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) __lowerCAmelCase : Optional[Any] = self.full_loop( solver_order=lowerCAmelCase , solver_type=lowerCAmelCase , prediction_type=lowerCAmelCase , algorithm_type=lowerCAmelCase , ) assert not torch.isnan(lowerCAmelCase ).any(), "Samples have nan numbers" def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> Dict: """simple docstring""" self.check_over_configs(lower_order_final=lowerCAmelCase ) self.check_over_configs(lower_order_final=lowerCAmelCase ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Any: """simple docstring""" self.check_over_configs(lambda_min_clipped=-float("""inf""" ) ) self.check_over_configs(lambda_min_clipped=-5.1 ) def SCREAMING_SNAKE_CASE ( self : List[Any] ) -> Tuple: """simple docstring""" self.check_over_configs(variance_type=lowerCAmelCase ) self.check_over_configs(variance_type="""learned_range""" ) def SCREAMING_SNAKE_CASE ( self : int ) -> str: """simple docstring""" for num_inference_steps in [1, 2, 3, 5, 10, 50, 1_00, 9_99, 10_00]: self.check_over_forward(num_inference_steps=lowerCAmelCase , time_step=0 ) def SCREAMING_SNAKE_CASE ( self : Optional[Any] ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[Any] = self.full_loop() __lowerCAmelCase : Any = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2791 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Optional[int] ) -> str: """simple docstring""" __lowerCAmelCase : List[Any] = self.full_loop(use_karras_sigmas=lowerCAmelCase ) __lowerCAmelCase : Tuple = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.2248 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Any ) -> List[Any]: """simple docstring""" __lowerCAmelCase : Union[str, Any] = self.full_loop(prediction_type="""v_prediction""" ) __lowerCAmelCase : Optional[int] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.1453 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : Tuple ) -> Optional[Any]: """simple docstring""" __lowerCAmelCase : List[str] = self.full_loop(prediction_type="""v_prediction""" , use_karras_sigmas=lowerCAmelCase ) __lowerCAmelCase : List[str] = torch.mean(torch.abs(lowerCAmelCase ) ) assert abs(result_mean.item() - 0.0649 ) < 1e-3 def SCREAMING_SNAKE_CASE ( self : List[str] ) -> Optional[int]: """simple docstring""" __lowerCAmelCase : List[str] = self.scheduler_classes[0] __lowerCAmelCase : Union[str, Any] = self.get_scheduler_config(thresholding=lowerCAmelCase , dynamic_thresholding_ratio=0 ) __lowerCAmelCase : str = scheduler_class(**lowerCAmelCase ) __lowerCAmelCase : List[str] = 10 __lowerCAmelCase : str = self.dummy_model() __lowerCAmelCase : List[Any] = self.dummy_sample_deter.half() scheduler.set_timesteps(lowerCAmelCase ) for i, t in enumerate(scheduler.timesteps ): __lowerCAmelCase : Union[str, Any] = model(lowerCAmelCase , lowerCAmelCase ) __lowerCAmelCase : List[Any] = scheduler.step(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ).prev_sample assert sample.dtype == torch.floataa
218
1
'''simple docstring''' import math class _UpperCamelCase : '''simple docstring''' def __init__( self : int , lowerCAmelCase__ : Dict=0 ): # a graph with Node 0,1,...,N-1 """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = n __SCREAMING_SNAKE_CASE : List[Any] = [ [math.inf for j in range(0 , snake_case__ )] for i in range(0 , snake_case__ ) ] # adjacency matrix for weight __SCREAMING_SNAKE_CASE : Union[str, Any] = [ [math.inf for j in range(0 , snake_case__ )] for i in range(0 , snake_case__ ) ] # dp[i][j] stores minimum distance from i to j def UpperCamelCase__ ( self : Tuple , lowerCAmelCase__ : int , lowerCAmelCase__ : Tuple , lowerCAmelCase__ : Tuple ): """simple docstring""" __SCREAMING_SNAKE_CASE : Union[str, Any] = w def UpperCamelCase__ ( self : str ): """simple docstring""" for k in range(0 , self.n ): for i in range(0 , self.n ): for j in range(0 , self.n ): __SCREAMING_SNAKE_CASE : str = min(self.dp[i][j] , self.dp[i][k] + self.dp[k][j] ) def UpperCamelCase__ ( self : List[str] , lowerCAmelCase__ : List[Any] , lowerCAmelCase__ : Any ): """simple docstring""" return self.dp[u][v] if __name__ == "__main__": UpperCamelCase__ : Dict = Graph(5) graph.add_edge(0, 2, 9) graph.add_edge(0, 4, 10) graph.add_edge(1, 3, 5) graph.add_edge(2, 3, 7) graph.add_edge(3, 0, 10) graph.add_edge(3, 1, 2) graph.add_edge(3, 2, 1) graph.add_edge(3, 4, 6) graph.add_edge(4, 1, 3) graph.add_edge(4, 2, 4) graph.add_edge(4, 3, 9) graph.floyd_warshall() graph.show_min(1, 4) graph.show_min(0, 3)
578
"""simple docstring""" import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class UpperCamelCase_ : def __init__( self , snake_case__ , snake_case__=13 , snake_case__=7 , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=True , snake_case__=99 , snake_case__=32 , snake_case__=5 , snake_case__=4 , snake_case__=37 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=5_12 , snake_case__=16 , snake_case__=2 , snake_case__=0.02 , snake_case__=3 , snake_case__=4 , snake_case__=None , ) -> int: """simple docstring""" UpperCAmelCase = parent UpperCAmelCase = batch_size UpperCAmelCase = seq_length UpperCAmelCase = is_training UpperCAmelCase = use_input_mask UpperCAmelCase = use_token_type_ids UpperCAmelCase = use_labels UpperCAmelCase = vocab_size UpperCAmelCase = hidden_size UpperCAmelCase = num_hidden_layers UpperCAmelCase = num_attention_heads UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = hidden_dropout_prob UpperCAmelCase = attention_probs_dropout_prob UpperCAmelCase = max_position_embeddings UpperCAmelCase = type_vocab_size UpperCAmelCase = type_sequence_label_size UpperCAmelCase = initializer_range UpperCAmelCase = num_labels UpperCAmelCase = num_choices UpperCAmelCase = scope def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCAmelCase = None if self.use_input_mask: UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) UpperCAmelCase = None if self.use_token_type_ids: UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) UpperCAmelCase = None UpperCAmelCase = None UpperCAmelCase = None if self.use_labels: UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case__ , initializer_range=self.initializer_range , ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> List[str]: """simple docstring""" UpperCAmelCase = NystromformerModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase = model(snake_case__ , token_type_ids=snake_case__ ) UpperCAmelCase = model(snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> int: """simple docstring""" UpperCAmelCase = NystromformerForMaskedLM(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = NystromformerForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = NystromformerForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> int: """simple docstring""" UpperCAmelCase = self.num_labels UpperCAmelCase = NystromformerForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = model(snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def UpperCamelCase_ ( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ) -> Dict: """simple docstring""" UpperCAmelCase = self.num_choices UpperCAmelCase = NystromformerForMultipleChoice(config=snake_case__ ) model.to(snake_case__ ) model.eval() UpperCAmelCase = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() UpperCAmelCase = model( snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = self.prepare_config_and_inputs() ( ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ( UpperCAmelCase ) , ) = config_and_inputs UpperCAmelCase = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": input_mask} return config, inputs_dict @require_torch class UpperCamelCase_ ( a_ , a_ , unittest.TestCase ): _A : Optional[Any] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) _A : Optional[Any] = ( { 'feature-extraction': NystromformerModel, 'fill-mask': NystromformerForMaskedLM, 'question-answering': NystromformerForQuestionAnswering, 'text-classification': NystromformerForSequenceClassification, 'token-classification': NystromformerForTokenClassification, 'zero-shot': NystromformerForSequenceClassification, } if is_torch_available() else {} ) _A : int = False _A : Dict = False def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = NystromformerModelTester(self ) UpperCAmelCase = ConfigTester(self , config_class=snake_case__ , hidden_size=37 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" self.config_tester.run_common_tests() def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: UpperCAmelCase = type self.model_tester.create_and_check_model(*snake_case__ ) def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case__ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case__ ) def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) def UpperCamelCase_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) @slow def UpperCamelCase_ ( self ) -> int: """simple docstring""" for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase = NystromformerModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) @require_torch class UpperCamelCase_ ( unittest.TestCase ): @slow def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" UpperCAmelCase = NystromformerModel.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): UpperCAmelCase = model(snake_case__ )[0] UpperCAmelCase = torch.Size((1, 6, 7_68) ) self.assertEqual(output.shape , snake_case__ ) UpperCAmelCase = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case__ , atol=1e-4 ) ) @slow def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = """the [MASK] of Belgium is Brussels""" UpperCAmelCase = AutoTokenizer.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase = NystromformerForMaskedLM.from_pretrained("""uw-madison/nystromformer-512""" ) UpperCAmelCase = tokenizer(snake_case__ , return_tensors="""pt""" ) with torch.no_grad(): UpperCAmelCase = model(encoding.input_ids ).logits UpperCAmelCase = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case__ ) , """capital""" )
673
0
from math import factorial class SCREAMING_SNAKE_CASE__ : def __init__( self : Optional[Any] , _lowerCAmelCase : Any , _lowerCAmelCase : List[str] ): __snake_case : Optional[int] = real if isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Dict = [1] * rank else: __snake_case : Any = rank def __repr__( self : Optional[Any] ): return ( f'''{self.real}+''' f'''{'+'.join(str(_lowerCAmelCase )+'E'+str(n+1 )for n,dual in enumerate(self.duals ) )}''' ) def snake_case__ ( self : List[Any] ): __snake_case : Optional[int] = self.duals.copy() while cur[-1] == 0: cur.pop(-1 ) return Dual(self.real , _lowerCAmelCase ) def __add__( self : Optional[Any] , _lowerCAmelCase : List[str] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): return Dual(self.real + other , self.duals ) __snake_case : Union[str, Any] = self.duals.copy() __snake_case : Optional[Any] = other.duals.copy() if len(_lowerCAmelCase ) > len(_lowerCAmelCase ): o_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) elif len(_lowerCAmelCase ) < len(_lowerCAmelCase ): s_dual.extend([1] * (len(_lowerCAmelCase ) - len(_lowerCAmelCase )) ) __snake_case : Dict = [] for i in range(len(_lowerCAmelCase ) ): new_duals.append(s_dual[i] + o_dual[i] ) return Dual(self.real + other.real , _lowerCAmelCase ) A : str = __add__ def __sub__( self : List[str] , _lowerCAmelCase : int ): return self + other * -1 def __mul__( self : Dict , _lowerCAmelCase : Any ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Optional[Any] = [] for i in self.duals: new_duals.append(i * other ) return Dual(self.real * other , _lowerCAmelCase ) __snake_case : str = [0] * (len(self.duals ) + len(other.duals ) + 1) for i, item in enumerate(self.duals ): for j, jtem in enumerate(other.duals ): new_duals[i + j + 1] += item * jtem for k in range(len(self.duals ) ): new_duals[k] += self.duals[k] * other.real for index in range(len(other.duals ) ): new_duals[index] += other.duals[index] * self.real return Dual(self.real * other.real , _lowerCAmelCase ) A : int = __mul__ def __truediv__( self : Any , _lowerCAmelCase : Optional[Any] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : List[Any] = [] for i in self.duals: new_duals.append(i / other ) return Dual(self.real / other , _lowerCAmelCase ) raise ValueError def __floordiv__( self : Optional[int] , _lowerCAmelCase : List[str] ): if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): __snake_case : Optional[Any] = [] for i in self.duals: new_duals.append(i // other ) return Dual(self.real // other , _lowerCAmelCase ) raise ValueError def __pow__( self : Dict , _lowerCAmelCase : Any ): if n < 0 or isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError("""power must be a positive integer""" ) if n == 0: return 1 if n == 1: return self __snake_case : List[str] = self for _ in range(n - 1 ): x *= self return x def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Optional[int] , __SCREAMING_SNAKE_CASE : int , __SCREAMING_SNAKE_CASE : List[Any] ): '''simple docstring''' if not callable(__SCREAMING_SNAKE_CASE ): raise ValueError("""differentiate() requires a function as input for func""" ) if not isinstance(__SCREAMING_SNAKE_CASE , (float, int) ): raise ValueError("""differentiate() requires a float as input for position""" ) if not isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): raise ValueError("""differentiate() requires an int as input for order""" ) __snake_case : List[Any] = Dual(__SCREAMING_SNAKE_CASE , 1 ) __snake_case : Union[str, Any] = func(__SCREAMING_SNAKE_CASE ) if order == 0: return result.real return result.duals[order - 1] * factorial(__SCREAMING_SNAKE_CASE ) if __name__ == "__main__": import doctest doctest.testmod() def __lowerCAmelCase ( __SCREAMING_SNAKE_CASE : Tuple ): '''simple docstring''' return y**2 * y**4 print(differentiate(f, 9, 2))
713
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
390
0
import numpy as np UpperCamelCase = [ ["a", "b", "c", "d", "e"], ["f", "g", "h", "i", "k"], ["l", "m", "n", "o", "p"], ["q", "r", "s", "t", "u"], ["v", "w", "x", "y", "z"], ] class lowerCAmelCase_ : def __init__( self ): _lowercase : Any = np.array(_lowerCAmelCase ) def __a ( self , _lowerCAmelCase ): _lowercase , _lowercase : List[str] = np.where(letter == self.SQUARE ) _lowercase : Optional[int] = np.concatenate([indexa + 1, indexa + 1] ) return indexes def __a ( self , _lowerCAmelCase , _lowerCAmelCase ): _lowercase : int = self.SQUARE[indexa - 1, indexa - 1] return letter def __a ( self , _lowerCAmelCase ): _lowercase : int = message.lower() _lowercase : Optional[Any] = message.replace(' ' , '' ) _lowercase : Optional[Any] = message.replace('j' , 'i' ) _lowercase : Optional[int] = np.empty((2, len(_lowerCAmelCase )) ) for letter_index in range(len(_lowerCAmelCase ) ): _lowercase : Any = self.letter_to_numbers(message[letter_index] ) _lowercase : Tuple = numbers[0] _lowercase : int = numbers[1] _lowercase : int = first_step.reshape(2 * len(_lowerCAmelCase ) ) _lowercase : Tuple = '' for numbers_index in range(len(_lowerCAmelCase ) ): _lowercase : int = int(second_step[numbers_index * 2] ) _lowercase : List[Any] = int(second_step[(numbers_index * 2) + 1] ) _lowercase : Optional[int] = self.numbers_to_letter(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : List[Any] = encoded_message + letter return encoded_message def __a ( self , _lowerCAmelCase ): _lowercase : Tuple = message.lower() message.replace(' ' , '' ) _lowercase : Optional[Any] = np.empty(2 * len(_lowerCAmelCase ) ) for letter_index in range(len(_lowerCAmelCase ) ): _lowercase : List[Any] = self.letter_to_numbers(message[letter_index] ) _lowercase : int = numbers[0] _lowercase : Union[str, Any] = numbers[1] _lowercase : Optional[int] = first_step.reshape((2, len(_lowerCAmelCase )) ) _lowercase : Tuple = '' for numbers_index in range(len(_lowerCAmelCase ) ): _lowercase : Tuple = int(second_step[0, numbers_index] ) _lowercase : Dict = int(second_step[1, numbers_index] ) _lowercase : List[Any] = self.numbers_to_letter(_lowerCAmelCase , _lowerCAmelCase ) _lowercase : Dict = decoded_message + letter return decoded_message
66
import argparse import json import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ConvNextConfig, SegformerImageProcessor, UperNetConfig, UperNetForSemanticSegmentation def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> List[Any]: _lowercase : int = 384 if "tiny" in model_name: _lowercase : Tuple = [3, 3, 9, 3] _lowercase : List[str] = [96, 192, 384, 768] if "small" in model_name: _lowercase : List[str] = [3, 3, 27, 3] _lowercase : Union[str, Any] = [96, 192, 384, 768] if "base" in model_name: _lowercase : List[Any] = [3, 3, 27, 3] _lowercase : Dict = [128, 256, 512, 1_024] _lowercase : Optional[int] = 512 if "large" in model_name: _lowercase : List[str] = [3, 3, 27, 3] _lowercase : List[Any] = [192, 384, 768, 1_536] _lowercase : Tuple = 768 if "xlarge" in model_name: _lowercase : str = [3, 3, 27, 3] _lowercase : List[str] = [256, 512, 1_024, 2_048] _lowercase : Tuple = 1_024 # set label information _lowercase : Dict = 150 _lowercase : Union[str, Any] = 'huggingface/label-files' _lowercase : str = 'ade20k-id2label.json' _lowercase : List[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , repo_type='dataset' ) , 'r' ) ) _lowercase : Dict = {int(SCREAMING_SNAKE_CASE ): v for k, v in idalabel.items()} _lowercase : Tuple = {v: k for k, v in idalabel.items()} _lowercase : List[str] = ConvNextConfig( depths=SCREAMING_SNAKE_CASE , hidden_sizes=SCREAMING_SNAKE_CASE , out_features=['stage1', 'stage2', 'stage3', 'stage4'] ) _lowercase : Union[str, Any] = UperNetConfig( backbone_config=SCREAMING_SNAKE_CASE , auxiliary_in_channels=SCREAMING_SNAKE_CASE , num_labels=SCREAMING_SNAKE_CASE , idalabel=SCREAMING_SNAKE_CASE , labelaid=SCREAMING_SNAKE_CASE , ) return config def __magic_name__ ( SCREAMING_SNAKE_CASE ) -> int: _lowercase : Any = [] # fmt: off # stem rename_keys.append(('backbone.downsample_layers.0.0.weight', 'backbone.embeddings.patch_embeddings.weight') ) rename_keys.append(('backbone.downsample_layers.0.0.bias', 'backbone.embeddings.patch_embeddings.bias') ) rename_keys.append(('backbone.downsample_layers.0.1.weight', 'backbone.embeddings.layernorm.weight') ) rename_keys.append(('backbone.downsample_layers.0.1.bias', 'backbone.embeddings.layernorm.bias') ) # stages for i in range(len(config.backbone_config.depths ) ): for j in range(config.backbone_config.depths[i] ): rename_keys.append((F"""backbone.stages.{i}.{j}.gamma""", F"""backbone.encoder.stages.{i}.layers.{j}.layer_scale_parameter""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.depthwise_conv.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.dwconv.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.norm.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.layernorm.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv1.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv1.bias""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.weight""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.weight""") ) rename_keys.append((F"""backbone.stages.{i}.{j}.pointwise_conv2.bias""", F"""backbone.encoder.stages.{i}.layers.{j}.pwconv2.bias""") ) if i > 0: rename_keys.append((F"""backbone.downsample_layers.{i}.0.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.0.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.0.bias""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.weight""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.weight""") ) rename_keys.append((F"""backbone.downsample_layers.{i}.1.bias""", F"""backbone.encoder.stages.{i}.downsampling_layer.1.bias""") ) rename_keys.append((F"""backbone.norm{i}.weight""", F"""backbone.hidden_states_norms.stage{i+1}.weight""") ) rename_keys.append((F"""backbone.norm{i}.bias""", F"""backbone.hidden_states_norms.stage{i+1}.bias""") ) # decode head rename_keys.extend( [ ('decode_head.conv_seg.weight', 'decode_head.classifier.weight'), ('decode_head.conv_seg.bias', 'decode_head.classifier.bias'), ('auxiliary_head.conv_seg.weight', 'auxiliary_head.classifier.weight'), ('auxiliary_head.conv_seg.bias', 'auxiliary_head.classifier.bias'), ] ) # fmt: on return rename_keys def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Optional[int]: _lowercase : Any = dct.pop(SCREAMING_SNAKE_CASE ) _lowercase : Any = val def __magic_name__ ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> Any: _lowercase : List[Any] = { 'upernet-convnext-tiny': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_tiny_fp16_512x512_160k_ade20k/upernet_convnext_tiny_fp16_512x512_160k_ade20k_20220227_124553-cad485de.pth', 'upernet-convnext-small': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_small_fp16_512x512_160k_ade20k/upernet_convnext_small_fp16_512x512_160k_ade20k_20220227_131208-1b1e394f.pth', 'upernet-convnext-base': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_base_fp16_512x512_160k_ade20k/upernet_convnext_base_fp16_512x512_160k_ade20k_20220227_181227-02a24fc6.pth', 'upernet-convnext-large': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_large_fp16_640x640_160k_ade20k/upernet_convnext_large_fp16_640x640_160k_ade20k_20220226_040532-e57aa54d.pth', 'upernet-convnext-xlarge': 'https://download.openmmlab.com/mmsegmentation/v0.5/convnext/upernet_convnext_xlarge_fp16_640x640_160k_ade20k/upernet_convnext_xlarge_fp16_640x640_160k_ade20k_20220226_080344-95fc38c2.pth', } _lowercase : Optional[int] = model_name_to_url[model_name] _lowercase : str = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE , map_location='cpu' )['state_dict'] _lowercase : Optional[int] = get_upernet_config(SCREAMING_SNAKE_CASE ) _lowercase : Tuple = UperNetForSemanticSegmentation(SCREAMING_SNAKE_CASE ) model.eval() # replace "bn" => "batch_norm" for key in state_dict.copy().keys(): _lowercase : List[Any] = state_dict.pop(SCREAMING_SNAKE_CASE ) if "bn" in key: _lowercase : Any = key.replace('bn' , 'batch_norm' ) _lowercase : Any = val # rename keys _lowercase : int = create_rename_keys(SCREAMING_SNAKE_CASE ) for src, dest in rename_keys: rename_key(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) model.load_state_dict(SCREAMING_SNAKE_CASE ) # verify on image _lowercase : Union[str, Any] = 'https://huggingface.co/datasets/hf-internal-testing/fixtures_ade20k/resolve/main/ADE_val_00000001.jpg' _lowercase : Any = Image.open(requests.get(SCREAMING_SNAKE_CASE , stream=SCREAMING_SNAKE_CASE ).raw ).convert('RGB' ) _lowercase : Tuple = SegformerImageProcessor() _lowercase : Tuple = processor(SCREAMING_SNAKE_CASE , return_tensors='pt' ).pixel_values with torch.no_grad(): _lowercase : Dict = model(SCREAMING_SNAKE_CASE ) if model_name == "upernet-convnext-tiny": _lowercase : Dict = torch.tensor( [[-8.8110, -8.8110, -8.6521], [-8.8110, -8.8110, -8.6521], [-8.7746, -8.7746, -8.6130]] ) elif model_name == "upernet-convnext-small": _lowercase : Union[str, Any] = torch.tensor( [[-8.8236, -8.8236, -8.6771], [-8.8236, -8.8236, -8.6771], [-8.7638, -8.7638, -8.6240]] ) elif model_name == "upernet-convnext-base": _lowercase : Dict = torch.tensor( [[-8.8558, -8.8558, -8.6905], [-8.8558, -8.8558, -8.6905], [-8.7669, -8.7669, -8.6021]] ) elif model_name == "upernet-convnext-large": _lowercase : Optional[int] = torch.tensor( [[-8.6660, -8.6660, -8.6210], [-8.6660, -8.6660, -8.6210], [-8.6310, -8.6310, -8.5964]] ) elif model_name == "upernet-convnext-xlarge": _lowercase : str = torch.tensor( [[-8.4980, -8.4980, -8.3977], [-8.4980, -8.4980, -8.3977], [-8.4379, -8.4379, -8.3412]] ) print('Logits:' , outputs.logits[0, 0, :3, :3] ) assert torch.allclose(outputs.logits[0, 0, :3, :3] , SCREAMING_SNAKE_CASE , atol=1E-4 ) print('Looks ok!' ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(SCREAMING_SNAKE_CASE ) print(F"""Saving processor to {pytorch_dump_folder_path}""" ) processor.save_pretrained(SCREAMING_SNAKE_CASE ) if push_to_hub: print(F"""Pushing model and processor for {model_name} to hub""" ) model.push_to_hub(F"""openmmlab/{model_name}""" ) processor.push_to_hub(F"""openmmlab/{model_name}""" ) if __name__ == "__main__": UpperCamelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--model_name", default="upernet-convnext-tiny", type=str, choices=[f'''upernet-convnext-{size}''' for size in ["tiny", "small", "base", "large", "xlarge"]], help="Name of the ConvNext UperNet model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) parser.add_argument( "--push_to_hub", action="store_true", help="Whether or not to push the converted model to the 🤗 hub." ) UpperCamelCase = parser.parse_args() convert_upernet_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
66
1
import unittest from transformers import MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING, AutoTokenizer, is_vision_available from transformers.pipelines import pipeline from transformers.pipelines.document_question_answering import apply_tesseract from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_detectrona, require_pytesseract, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image from transformers.image_utils import load_image else: class __A: @staticmethod def lowercase__ ( *__UpperCamelCase : Any , **__UpperCamelCase : List[str] ): pass def __lowerCAmelCase ( UpperCAmelCase__ : int ) -> str: return None # This is a pinned image from a specific revision of a document question answering space, hosted by HuggingFace, # so we can expect it to be available. lowercase = ( '''https://huggingface.co/spaces/impira/docquery/resolve/2f6c96314dc84dfda62d40de9da55f2f5165d403/invoice.png''' ) @is_pipeline_test @require_torch @require_vision class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING @require_pytesseract @require_vision def lowercase__ ( self : Optional[int] , __UpperCamelCase : List[str] , __UpperCamelCase : str , __UpperCamelCase : List[str] ): lowerCamelCase_ = pipeline( """document-question-answering""" , model=__UpperCamelCase , tokenizer=__UpperCamelCase , image_processor=__UpperCamelCase ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , """""" ) ) ) lowerCamelCase_ = """What is the placebo?""" lowerCamelCase_ = [ { """image""": load_image(__UpperCamelCase ), """question""": question, }, { """image""": image, """question""": question, }, { """image""": image, """question""": question, """word_boxes""": word_boxes, }, ] return dqa_pipeline, examples def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Any , __UpperCamelCase : Any ): lowerCamelCase_ = dqa_pipeline(__UpperCamelCase , top_k=2 ) self.assertEqual( __UpperCamelCase , [ [ {"""score""": ANY(__UpperCamelCase ), """answer""": ANY(__UpperCamelCase ), """start""": ANY(__UpperCamelCase ), """end""": ANY(__UpperCamelCase )}, {"""score""": ANY(__UpperCamelCase ), """answer""": ANY(__UpperCamelCase ), """start""": ANY(__UpperCamelCase ), """end""": ANY(__UpperCamelCase )}, ] ] * 3 , ) @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self : int ): lowerCamelCase_ = pipeline("""document-question-answering""" , model="""hf-internal-testing/tiny-random-layoutlmv2""" ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = """How many cats are there?""" lowerCamelCase_ = [ {"""score""": 0.0001, """answer""": """oy 2312/2019""", """start""": 3_8, """end""": 3_9}, {"""score""": 0.0001, """answer""": """oy 2312/2019 DUE""", """start""": 3_8, """end""": 4_0}, ] lowerCamelCase_ = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , __UpperCamelCase ) lowerCamelCase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , __UpperCamelCase ) # This image does not detect ANY text in it, meaning layoutlmv2 should fail. # Empty answer probably lowerCamelCase_ = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCamelCase_ = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(__UpperCamelCase , [] ) # We can optionnally pass directly the words and bounding boxes lowerCamelCase_ = """./tests/fixtures/tests_samples/COCO/000000039769.png""" lowerCamelCase_ = [] lowerCamelCase_ = [] lowerCamelCase_ = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , words=__UpperCamelCase , boxes=__UpperCamelCase , top_k=2 ) self.assertEqual(__UpperCamelCase , [] ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = """What is the invoice number?""" lowerCamelCase_ = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowerCamelCase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9944, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0009, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ], ] * 2 , ) @slow @require_torch @require_detectrona @require_pytesseract def lowercase__ ( self : str ): lowerCamelCase_ = pipeline( """document-question-answering""" , model="""tiennvcs/layoutlmv2-base-uncased-finetuned-docvqa""" , revision="""9977165""" , max_seq_len=5_0 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = """What is the invoice number?""" lowerCamelCase_ = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowerCamelCase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9974, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, {"""score""": 0.9948, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] ] * 2 , ) @slow @require_torch @require_pytesseract @require_vision def lowercase__ ( self : List[Any] ): lowerCamelCase_ = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=__UpperCamelCase ) lowerCamelCase_ = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=__UpperCamelCase , revision="""3dc6de3""" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = """What is the invoice number?""" lowerCamelCase_ = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) lowerCamelCase_ = dqa_pipeline({"""image""": image, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , """""" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.4251, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.0819, """answer""": """1110212019""", """start""": 2_3, """end""": 2_3}, ] , ) @slow @require_torch @require_pytesseract @require_vision def lowercase__ ( self : Union[str, Any] ): lowerCamelCase_ = AutoTokenizer.from_pretrained( """impira/layoutlm-document-qa""" , revision="""3dc6de3""" , add_prefix_space=__UpperCamelCase ) lowerCamelCase_ = pipeline( """document-question-answering""" , model="""impira/layoutlm-document-qa""" , tokenizer=__UpperCamelCase , revision="""3dc6de3""" , max_seq_len=5_0 , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = """What is the invoice number?""" lowerCamelCase_ = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) lowerCamelCase_ = dqa_pipeline( [{"""image""": image, """question""": question}, {"""image""": image, """question""": question}] , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] ] * 2 , ) lowerCamelCase_ = list(zip(*apply_tesseract(load_image(__UpperCamelCase ) , __UpperCamelCase , """""" ) ) ) # This model should also work if `image` is set to None lowerCamelCase_ = dqa_pipeline({"""image""": None, """word_boxes""": word_boxes, """question""": question} , top_k=2 ) self.assertEqual( nested_simplify(__UpperCamelCase , decimals=4 ) , [ {"""score""": 0.9999, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, {"""score""": 0.9998, """answer""": """us-001""", """start""": 1_6, """end""": 1_6}, ] , ) @slow @require_torch def lowercase__ ( self : List[str] ): lowerCamelCase_ = pipeline( """document-question-answering""" , model="""naver-clova-ix/donut-base-finetuned-docvqa""" , tokenizer=AutoTokenizer.from_pretrained("""naver-clova-ix/donut-base-finetuned-docvqa""" ) , feature_extractor="""naver-clova-ix/donut-base-finetuned-docvqa""" , ) lowerCamelCase_ = INVOICE_URL lowerCamelCase_ = """What is the invoice number?""" lowerCamelCase_ = dqa_pipeline(image=__UpperCamelCase , question=__UpperCamelCase , top_k=2 ) self.assertEqual(nested_simplify(__UpperCamelCase , decimals=4 ) , [{"""answer""": """us-001"""}] ) @require_tf @unittest.skip("""Document question answering not implemented in TF""" ) def lowercase__ ( self : int ): pass
103
import hashlib import unittest from transformers import MODEL_FOR_DEPTH_ESTIMATION_MAPPING, is_torch_available, is_vision_available from transformers.pipelines import DepthEstimationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_torch_available(): import torch if is_vision_available(): from PIL import Image else: class __A: @staticmethod def lowercase__ ( *__UpperCamelCase : str , **__UpperCamelCase : Dict ): pass def __lowerCAmelCase ( UpperCAmelCase__ : Image ) -> str: lowerCamelCase_ = hashlib.mda(image.tobytes() ) return m.hexdigest() @is_pipeline_test @require_vision @require_timm @require_torch class __A( unittest.TestCase ): SCREAMING_SNAKE_CASE = MODEL_FOR_DEPTH_ESTIMATION_MAPPING def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : int ): lowerCamelCase_ = DepthEstimationPipeline(model=__UpperCamelCase , image_processor=__UpperCamelCase ) return depth_estimator, [ "./tests/fixtures/tests_samples/COCO/000000039769.png", "./tests/fixtures/tests_samples/COCO/000000039769.png", ] def lowercase__ ( self : Any , __UpperCamelCase : List[str] , __UpperCamelCase : Union[str, Any] ): lowerCamelCase_ = depth_estimator("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) self.assertEqual({"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )} , __UpperCamelCase ) import datasets lowerCamelCase_ = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) lowerCamelCase_ = depth_estimator( [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] ) self.assertEqual( [ {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, {"""predicted_depth""": ANY(torch.Tensor ), """depth""": ANY(Image.Image )}, ] , __UpperCamelCase , ) @require_tf @unittest.skip("""Depth estimation is not implemented in TF""" ) def lowercase__ ( self : Optional[int] ): pass @slow @require_torch def lowercase__ ( self : List[Any] ): lowerCamelCase_ = """Intel/dpt-large""" lowerCamelCase_ = pipeline("""depth-estimation""" , model=__UpperCamelCase ) lowerCamelCase_ = depth_estimator("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) lowerCamelCase_ = hashimage(outputs["""depth"""] ) # This seems flaky. # self.assertEqual(outputs["depth"], "1a39394e282e9f3b0741a90b9f108977") self.assertEqual(nested_simplify(outputs["""predicted_depth"""].max().item() ) , 29.304 ) self.assertEqual(nested_simplify(outputs["""predicted_depth"""].min().item() ) , 2.662 ) @require_torch def lowercase__ ( self : Dict ): # This is highly irregular to have no small tests. self.skipTest("""There is not hf-internal-testing tiny model for either GLPN nor DPT""" )
103
1
import tempfile import torch from diffusers import IPNDMScheduler from .test_schedulers import SchedulerCommonTest class __lowercase ( A ): __magic_name__ : Union[str, Any] = (IPNDMScheduler,) __magic_name__ : Optional[Any] = (('''num_inference_steps''', 50),) def lowerCAmelCase_ ( self , **a__ ) -> List[Any]: '''simple docstring''' A_ = {'''num_train_timesteps''': 1_0_0_0} config.update(**a__ ) return config def lowerCAmelCase_ ( self , a__=0 , **a__ ) -> Tuple: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop('''num_inference_steps''' , a__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config(**a__ ) A_ = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) A_ = scheduler_class.from_pretrained(a__ ) new_scheduler.set_timesteps(a__ ) # copy over dummy past residuals A_ = dummy_past_residuals[:] A_ = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A_ = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A_ = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A_ = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' pass def lowerCAmelCase_ ( self , a__=0 , **a__ ) -> Any: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop('''num_inference_steps''' , a__ ) A_ = self.dummy_sample A_ = 0.1 * sample A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**a__ ) scheduler.set_timesteps(a__ ) # copy over dummy past residuals (must be after setting timesteps) A_ = dummy_past_residuals[:] if time_step is None: A_ = scheduler.timesteps[len(scheduler.timesteps ) // 2] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(a__ ) A_ = scheduler_class.from_pretrained(a__ ) # copy over dummy past residuals new_scheduler.set_timesteps(a__ ) # copy over dummy past residual (must be after setting timesteps) A_ = dummy_past_residuals[:] A_ = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A_ = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" A_ = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A_ = new_scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample assert torch.sum(torch.abs(output - new_output ) ) < 1E-5, "Scheduler outputs are not identical" def lowerCAmelCase_ ( self , **a__ ) -> Any: '''simple docstring''' A_ = self.scheduler_classes[0] A_ = self.get_scheduler_config(**a__ ) A_ = scheduler_class(**a__ ) A_ = 1_0 A_ = self.dummy_model() A_ = self.dummy_sample_deter scheduler.set_timesteps(a__ ) for i, t in enumerate(scheduler.timesteps ): A_ = model(a__ , a__ ) A_ = scheduler.step(a__ , a__ , a__ ).prev_sample for i, t in enumerate(scheduler.timesteps ): A_ = model(a__ , a__ ) A_ = scheduler.step(a__ , a__ , a__ ).prev_sample return sample def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = dict(self.forward_default_kwargs ) A_ = kwargs.pop('''num_inference_steps''' , a__ ) for scheduler_class in self.scheduler_classes: A_ = self.get_scheduler_config() A_ = scheduler_class(**a__ ) A_ = self.dummy_sample A_ = 0.1 * sample if num_inference_steps is not None and hasattr(a__ , '''set_timesteps''' ): scheduler.set_timesteps(a__ ) elif num_inference_steps is not None and not hasattr(a__ , '''set_timesteps''' ): A_ = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) A_ = [residual + 0.2, residual + 0.15, residual + 0.1, residual + 0.05] A_ = dummy_past_residuals[:] A_ = scheduler.timesteps[5] A_ = scheduler.timesteps[6] A_ = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A_ = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) A_ = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample A_ = scheduler.step(a__ , a__ , a__ , **a__ ).prev_sample self.assertEqual(output_a.shape , sample.shape ) self.assertEqual(output_a.shape , output_a.shape ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' for timesteps in [1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=a__ , time_step=a__ ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' for t, num_inference_steps in zip([1, 5, 1_0] , [1_0, 5_0, 1_0_0] ): self.check_over_forward(num_inference_steps=a__ , time_step=a__ ) def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' A_ = self.full_loop() A_ = torch.mean(torch.abs(a__ ) ) assert abs(result_mean.item() - 2_5_4_0_5_2_9 ) < 1_0
141
import gc import unittest from transformers import MODEL_FOR_MASKED_LM_MAPPING, TF_MODEL_FOR_MASKED_LM_MAPPING, FillMaskPipeline, pipeline from transformers.pipelines import PipelineException from transformers.testing_utils import ( is_pipeline_test, is_torch_available, nested_simplify, require_tf, require_torch, require_torch_gpu, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class __lowercase ( unittest.TestCase ): __magic_name__ : int = MODEL_FOR_MASKED_LM_MAPPING __magic_name__ : Dict = TF_MODEL_FOR_MASKED_LM_MAPPING def lowerCAmelCase_ ( self ) -> Dict: '''simple docstring''' super().tearDown() # clean-up as much as possible GPU memory occupied by PyTorch gc.collect() if is_torch_available(): import torch torch.cuda.empty_cache() @require_tf def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''tf''' ) A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped'''}, {'''sequence''': '''My name is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is grouped''', '''score''': 2.1E-05, '''token''': 3_8_0_1_5, '''token_str''': ''' grouped''', }, { '''sequence''': '''The largest city in France is accuser''', '''score''': 2.1E-05, '''token''': 2_5_5_0_6, '''token_str''': ''' accuser''', }, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Patrick''', '''score''': 2E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 1.9E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , top_k=2 , framework='''pt''' ) A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul'''}, {'''sequence''': '''My name isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ { '''sequence''': '''The largest city in France is Maul''', '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', }, {'''sequence''': '''The largest city in France isELS''', '''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS'''}, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 2.1E-05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Te''', '''score''': 2E-05, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, {'''sequence''': '''My name is Clara''', '''score''': 2E-05, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, ] , ) A_ = unmasker('''My name is <mask> <mask>''' , top_k=2 ) self.assertEqual( nested_simplify(a__ , decimals=6 ) , [ [ { '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is Maul<mask></s>''', }, {'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name isELS<mask></s>'''}, ], [ { '''score''': 2.2E-05, '''token''': 3_5_6_7_6, '''token_str''': ''' Maul''', '''sequence''': '''<s>My name is<mask> Maul</s>''', }, {'''score''': 2.2E-05, '''token''': 1_6_4_1_6, '''token_str''': '''ELS''', '''sequence''': '''<s>My name is<mask>ELS</s>'''}, ], ] , ) @require_torch_gpu def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' A_ = pipeline('''fill-mask''' , model='''hf-internal-testing/tiny-random-distilbert''' , device=0 , framework='''pt''' ) # convert model to fp16 pipe.model.half() A_ = pipe('''Paris is the [MASK] of France.''' ) # We actually don't care about the result, we just want to make sure # it works, meaning the float16 tensor got casted back to float32 # for postprocessing. self.assertIsInstance(a__ , a__ ) @slow @require_torch def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''pt''' ) self.run_large_test(a__ ) @slow @require_tf def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''distilroberta-base''' , top_k=2 , framework='''tf''' ) self.run_large_test(a__ ) def lowerCAmelCase_ ( self , a__ ) -> Tuple: '''simple docstring''' A_ = unmasker('''My name is <mask>''' ) self.assertEqual( nested_simplify(a__ ) , [ {'''sequence''': '''My name is John''', '''score''': 0.0_08, '''token''': 6_1_0, '''token_str''': ''' John'''}, {'''sequence''': '''My name is Chris''', '''score''': 0.0_07, '''token''': 1_5_7_3, '''token_str''': ''' Chris'''}, ] , ) A_ = unmasker('''The largest city in France is <mask>''' ) self.assertEqual( nested_simplify(a__ ) , [ { '''sequence''': '''The largest city in France is Paris''', '''score''': 0.2_51, '''token''': 2_2_0_1, '''token_str''': ''' Paris''', }, { '''sequence''': '''The largest city in France is Lyon''', '''score''': 0.2_14, '''token''': 1_2_7_9_0, '''token_str''': ''' Lyon''', }, ] , ) A_ = unmasker('''My name is <mask>''' , targets=[''' Patrick''', ''' Clara''', ''' Teven'''] , top_k=3 ) self.assertEqual( nested_simplify(a__ ) , [ {'''sequence''': '''My name is Patrick''', '''score''': 0.0_05, '''token''': 3_4_9_9, '''token_str''': ''' Patrick'''}, {'''sequence''': '''My name is Clara''', '''score''': 0.0_00, '''token''': 1_3_6_0_6, '''token_str''': ''' Clara'''}, {'''sequence''': '''My name is Te''', '''score''': 0.0_00, '''token''': 2_9_4_1, '''token_str''': ''' Te'''}, ] , ) @require_torch def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''pt''' ) A_ = None A_ = None self.run_pipeline_test(a__ , [] ) @require_tf def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' A_ = pipeline(task='''fill-mask''' , model='''sshleifer/tiny-distilroberta-base''' , framework='''tf''' ) A_ = None A_ = None self.run_pipeline_test(a__ , [] ) def lowerCAmelCase_ ( self , a__ , a__ , a__ ) -> Any: '''simple docstring''' if tokenizer is None or tokenizer.mask_token_id is None: self.skipTest('''The provided tokenizer has no mask token, (probably reformer or wav2vec2)''' ) A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = [ F"This is another {tokenizer.mask_token} test", ] return fill_masker, examples def lowerCAmelCase_ ( self , a__ , a__ ) -> Any: '''simple docstring''' A_ = fill_masker.tokenizer A_ = fill_masker.model A_ = fill_masker( F"This is a {tokenizer.mask_token}" , ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = fill_masker([F"This is a {tokenizer.mask_token}"] ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = fill_masker([F"This is a {tokenizer.mask_token}", F"Another {tokenizer.mask_token} great test."] ) self.assertEqual( a__ , [ [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], ] , ) with self.assertRaises(a__ ): fill_masker([None] ) # No mask_token is not supported with self.assertRaises(a__ ): fill_masker('''This is''' ) self.run_test_top_k(a__ , a__ ) self.run_test_targets(a__ , a__ ) self.run_test_top_k_targets(a__ , a__ ) self.fill_mask_with_duplicate_targets_and_top_k(a__ , a__ ) self.fill_mask_with_multiple_masks(a__ , a__ ) def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = sorted(vocab.keys() )[:2] # Pipeline argument A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , targets=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , a__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) ) # Call argument A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = {vocab[el] for el in targets} self.assertEqual({el['''token'''] for el in outputs} , a__ ) A_ = [tokenizer.decode([x] ) for x in target_ids] self.assertEqual({el['''token_str'''] for el in outputs} , set(a__ ) ) # Score equivalence A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) A_ = [top_mask['''token_str'''] for top_mask in outputs] A_ = [top_mask['''score'''] for top_mask in outputs] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ) == set(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=a__ ) A_ = [top_mask['''score'''] for top_mask in unmasked_targets] self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) # Raises with invalid with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[] ) # For some tokenizers, `""` is actually in the vocabulary and the expected error won't raised if "" not in tokenizer.get_vocab(): with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets=[''''''] ) with self.assertRaises(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , targets='''''' ) def lowerCAmelCase_ ( self , a__ , a__ ) -> int: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ , top_k=2 ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( a__ , [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ] , ) self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def lowerCAmelCase_ ( self , a__ , a__ ) -> str: '''simple docstring''' A_ = tokenizer.get_vocab() A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) # top_k=2, ntargets=3 A_ = sorted(vocab.keys() )[:3] A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=2 , targets=a__ ) # If we use the most probably targets, and filter differently, we should still # have the same results A_ = [el['''token_str'''] for el in sorted(a__ , key=lambda a__ : x["score"] , reverse=a__ )] # For some BPE tokenizers, `</w>` is removed during decoding, so `token_str` won't be the same as in `targets`. if set(a__ ).issubset(a__ ): A_ = fill_masker(F"This is a {tokenizer.mask_token}" , top_k=3 , targets=a__ ) # They should yield exactly the same result self.assertEqual(nested_simplify(a__ ) , nested_simplify(a__ ) ) def lowerCAmelCase_ ( self , a__ , a__ ) -> Union[str, Any]: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = tokenizer.get_vocab() # String duplicates + id duplicates A_ = sorted(vocab.keys() )[:3] A_ = [targets[0], targets[1], targets[0], targets[2], targets[1]] A_ = fill_masker(F"My name is {tokenizer.mask_token}" , targets=a__ , top_k=1_0 ) # The target list contains duplicates, so we can't output more # than them self.assertEqual(len(a__ ) , 3 ) def lowerCAmelCase_ ( self , a__ , a__ ) -> List[Any]: '''simple docstring''' A_ = FillMaskPipeline(model=a__ , tokenizer=a__ ) A_ = fill_masker( F"This is a {tokenizer.mask_token} {tokenizer.mask_token} {tokenizer.mask_token}" , top_k=2 ) self.assertEqual( a__ , [ [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], [ {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, {'''sequence''': ANY(a__ ), '''score''': ANY(a__ ), '''token''': ANY(a__ ), '''token_str''': ANY(a__ )}, ], ] , )
141
1
import argparse from collections import defaultdict def lowercase ( _a ,_a ,_a ,_a ,_a ) -> Union[str, Any]: UpperCAmelCase_: Any = f"{file}_{class_name}_{test_name}" done_test[_id] += 1 with open(_a ,"r" ) as f: UpperCAmelCase_: Union[str, Any] = f.readlines() UpperCAmelCase_: int = f"class {class_name}(" UpperCAmelCase_: Union[str, Any] = f"{4 * ' '}def {test_name}(" UpperCAmelCase_: Dict = f"{8 * ' '}{correct_line.split()[0]}" UpperCAmelCase_: List[str] = f"{16 * ' '}{correct_line.split()[0]}" UpperCAmelCase_: Any = False UpperCAmelCase_: Optional[Any] = False UpperCAmelCase_: Tuple = False UpperCAmelCase_: Union[str, Any] = False UpperCAmelCase_: int = 0 UpperCAmelCase_: Tuple = 0 UpperCAmelCase_: Union[str, Any] = [] for line in lines: if line.startswith(_a ): UpperCAmelCase_: Tuple = True elif in_class and line.startswith(_a ): UpperCAmelCase_: Optional[Any] = True elif in_class and in_func and (line.startswith(_a ) or line.startswith(_a )): UpperCAmelCase_: Dict = len(line.split(correct_line.split()[0] )[0] ) count += 1 if count == done_test[_id]: UpperCAmelCase_: List[str] = True if in_class and in_func and in_line: if ")" not in line: continue else: UpperCAmelCase_: Tuple = True if in_class and in_func and in_line and insert_line: new_lines.append(f"{spaces * ' '}{correct_line}" ) UpperCAmelCase_: Dict = False else: new_lines.append(_a ) with open(_a ,"w" ) as f: for line in new_lines: f.write(_a ) def lowercase ( _a ,_a=None ) -> List[Any]: if fail is not None: with open(_a ,"r" ) as f: UpperCAmelCase_: List[Any] = {l.strip() for l in f.readlines()} else: UpperCAmelCase_: Tuple = None with open(_a ,"r" ) as f: UpperCAmelCase_: Any = f.readlines() UpperCAmelCase_: Any = defaultdict(_a ) for line in correct_lines: UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_: List[Any] = line.split(";" ) if test_failures is None or "::".join([file, class_name, test_name] ) in test_failures: overwrite_file(_a ,_a ,_a ,_a ,_a ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() parser.add_argument("""--correct_filename""", help="""filename of tests with expected result""") parser.add_argument("""--fail_filename""", help="""filename of test failures""", type=str, default=None) _lowerCAmelCase = parser.parse_args() main(args.correct_filename, args.fail_filename)
709
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() @property def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = 1 UpperCAmelCase_: Optional[Any] = 3 UpperCAmelCase_: Optional[int] = (32, 32) UpperCAmelCase_: int = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(A__ ) return image @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: str = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D") , up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=A__ , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: int = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D"] , up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"] , latent_channels=4 , ) return model @property def snake_case_ ( self ): """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase_: List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="gelu" , projection_dim=512 , ) return CLIPTextModel(A__ ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Any = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[Any] = self.dummy_cond_unet_upscale UpperCAmelCase_: Dict = DDPMScheduler() UpperCAmelCase_: Optional[int] = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Union[str, Any] = self.dummy_vae UpperCAmelCase_: Optional[int] = self.dummy_text_encoder UpperCAmelCase_: str = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: Dict = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_: Optional[int] = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: Optional[int] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Union[str, Any] = "A painting of a squirrel eating a burger" UpperCAmelCase_: Any = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: int = sd_pipe( [prompt] , image=A__ , generator=A__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Optional[Any] = output.images UpperCAmelCase_: List[str] = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: List[Any] = sd_pipe( [prompt] , image=A__ , generator=A__ , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , return_dict=A__ , )[0] UpperCAmelCase_: List[Any] = image[0, -3:, -3:, -1] UpperCAmelCase_: List[str] = image_from_tuple[0, -3:, -3:, -1] UpperCAmelCase_: int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) UpperCAmelCase_: List[str] = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = "cpu" # ensure determinism for the device-dependent torch.Generator UpperCAmelCase_: Optional[Any] = self.dummy_cond_unet_upscale UpperCAmelCase_: Union[str, Any] = DDPMScheduler() UpperCAmelCase_: Optional[Any] = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Dict = self.dummy_vae UpperCAmelCase_: Any = self.dummy_text_encoder UpperCAmelCase_: Tuple = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: Union[str, Any] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: List[str] = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk UpperCAmelCase_: str = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: int = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Any = "A painting of a squirrel eating a burger" UpperCAmelCase_: Union[str, Any] = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Any = output.images assert image.shape[0] == 2 UpperCAmelCase_: Any = torch.Generator(device=A__ ).manual_seed(0 ) UpperCAmelCase_: Any = sd_pipe( [prompt] , image=A__ , generator=A__ , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="np" , ) UpperCAmelCase_: Dict = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != "cuda" , "This test requires a GPU" ) def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: List[str] = self.dummy_cond_unet_upscale UpperCAmelCase_: Dict = DDPMScheduler() UpperCAmelCase_: int = DDIMScheduler(prediction_type="v_prediction" ) UpperCAmelCase_: Dict = self.dummy_vae UpperCAmelCase_: Dict = self.dummy_text_encoder UpperCAmelCase_: Union[str, Any] = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip" ) UpperCAmelCase_: List[str] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase_: Union[str, Any] = Image.fromarray(np.uinta(A__ ) ).convert("RGB" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 UpperCAmelCase_: List[str] = unet.half() UpperCAmelCase_: Union[str, Any] = text_encoder.half() # make sure here that pndm scheduler skips prk UpperCAmelCase_: Optional[Any] = StableDiffusionUpscalePipeline( unet=A__ , low_res_scheduler=A__ , scheduler=A__ , vae=A__ , text_encoder=A__ , tokenizer=A__ , max_noise_level=350 , ) UpperCAmelCase_: Optional[int] = sd_pipe.to(A__ ) sd_pipe.set_progress_bar_config(disable=A__ ) UpperCAmelCase_: Any = "A painting of a squirrel eating a burger" UpperCAmelCase_: List[Any] = torch.manual_seed(0 ) UpperCAmelCase_: str = sd_pipe( [prompt] , image=A__ , generator=A__ , num_inference_steps=2 , output_type="np" , ).images UpperCAmelCase_: str = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class UpperCAmelCase__ ( unittest.TestCase ): def snake_case_ ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: str = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: List[Any] = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat.npy" ) UpperCAmelCase_: Optional[Any] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Optional[Any] = StableDiffusionUpscalePipeline.from_pretrained(A__ ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: List[str] = "a cat sitting on a park bench" UpperCAmelCase_: Any = torch.manual_seed(0 ) UpperCAmelCase_: Any = pipe( prompt=A__ , image=A__ , generator=A__ , output_type="np" , ) UpperCAmelCase_: Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1E-3 def snake_case_ ( self ): """simple docstring""" UpperCAmelCase_: Optional[int] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: Dict = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale" "/upsampled_cat_fp16.npy" ) UpperCAmelCase_: Optional[int] = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Any = StableDiffusionUpscalePipeline.from_pretrained( A__ , torch_dtype=torch.floataa , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing() UpperCAmelCase_: Any = "a cat sitting on a park bench" UpperCAmelCase_: Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_: Optional[Any] = pipe( prompt=A__ , image=A__ , generator=A__ , output_type="np" , ) UpperCAmelCase_: str = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5E-1 def snake_case_ ( self ): """simple docstring""" torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCAmelCase_: List[Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/sd2-upscale/low_res_cat.png" ) UpperCAmelCase_: Tuple = "stabilityai/stable-diffusion-x4-upscaler" UpperCAmelCase_: Union[str, Any] = StableDiffusionUpscalePipeline.from_pretrained( A__ , torch_dtype=torch.floataa , ) pipe.to(A__ ) pipe.set_progress_bar_config(disable=A__ ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() UpperCAmelCase_: str = "a cat sitting on a park bench" UpperCAmelCase_: Optional[int] = torch.manual_seed(0 ) UpperCAmelCase_: Union[str, Any] = pipe( prompt=A__ , image=A__ , generator=A__ , num_inference_steps=5 , output_type="np" , ) UpperCAmelCase_: Any = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
306
0
import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging lowerCamelCase__ : Dict = logging.get_logger(__name__) lowerCamelCase__ : Union[str, Any] = """▁""" lowerCamelCase__ : Union[str, Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} lowerCamelCase__ : Union[str, Any] = { """vocab_file""": { """facebook/nllb-200-distilled-600M""": ( """https://huggingface.co/facebook/nllb-200-distilled-600M/blob/main/sentencepiece.bpe.model""" ), } } lowerCamelCase__ : List[Any] = { """facebook/nllb-200-distilled-600M""": 1_0_2_4, } # fmt: off lowerCamelCase__ : List[str] = ["""ace_Arab""", """ace_Latn""", """acm_Arab""", """acq_Arab""", """aeb_Arab""", """afr_Latn""", """ajp_Arab""", """aka_Latn""", """amh_Ethi""", """apc_Arab""", """arb_Arab""", """ars_Arab""", """ary_Arab""", """arz_Arab""", """asm_Beng""", """ast_Latn""", """awa_Deva""", """ayr_Latn""", """azb_Arab""", """azj_Latn""", """bak_Cyrl""", """bam_Latn""", """ban_Latn""", """bel_Cyrl""", """bem_Latn""", """ben_Beng""", """bho_Deva""", """bjn_Arab""", """bjn_Latn""", """bod_Tibt""", """bos_Latn""", """bug_Latn""", """bul_Cyrl""", """cat_Latn""", """ceb_Latn""", """ces_Latn""", """cjk_Latn""", """ckb_Arab""", """crh_Latn""", """cym_Latn""", """dan_Latn""", """deu_Latn""", """dik_Latn""", """dyu_Latn""", """dzo_Tibt""", """ell_Grek""", """eng_Latn""", """epo_Latn""", """est_Latn""", """eus_Latn""", """ewe_Latn""", """fao_Latn""", """pes_Arab""", """fij_Latn""", """fin_Latn""", """fon_Latn""", """fra_Latn""", """fur_Latn""", """fuv_Latn""", """gla_Latn""", """gle_Latn""", """glg_Latn""", """grn_Latn""", """guj_Gujr""", """hat_Latn""", """hau_Latn""", """heb_Hebr""", """hin_Deva""", """hne_Deva""", """hrv_Latn""", """hun_Latn""", """hye_Armn""", """ibo_Latn""", """ilo_Latn""", """ind_Latn""", """isl_Latn""", """ita_Latn""", """jav_Latn""", """jpn_Jpan""", """kab_Latn""", """kac_Latn""", """kam_Latn""", """kan_Knda""", """kas_Arab""", """kas_Deva""", """kat_Geor""", """knc_Arab""", """knc_Latn""", """kaz_Cyrl""", """kbp_Latn""", """kea_Latn""", """khm_Khmr""", """kik_Latn""", """kin_Latn""", """kir_Cyrl""", """kmb_Latn""", """kon_Latn""", """kor_Hang""", """kmr_Latn""", """lao_Laoo""", """lvs_Latn""", """lij_Latn""", """lim_Latn""", """lin_Latn""", """lit_Latn""", """lmo_Latn""", """ltg_Latn""", """ltz_Latn""", """lua_Latn""", """lug_Latn""", """luo_Latn""", """lus_Latn""", """mag_Deva""", """mai_Deva""", """mal_Mlym""", """mar_Deva""", """min_Latn""", """mkd_Cyrl""", """plt_Latn""", """mlt_Latn""", """mni_Beng""", """khk_Cyrl""", """mos_Latn""", """mri_Latn""", """zsm_Latn""", """mya_Mymr""", """nld_Latn""", """nno_Latn""", """nob_Latn""", """npi_Deva""", """nso_Latn""", """nus_Latn""", """nya_Latn""", """oci_Latn""", """gaz_Latn""", """ory_Orya""", """pag_Latn""", """pan_Guru""", """pap_Latn""", """pol_Latn""", """por_Latn""", """prs_Arab""", """pbt_Arab""", """quy_Latn""", """ron_Latn""", """run_Latn""", """rus_Cyrl""", """sag_Latn""", """san_Deva""", """sat_Beng""", """scn_Latn""", """shn_Mymr""", """sin_Sinh""", """slk_Latn""", """slv_Latn""", """smo_Latn""", """sna_Latn""", """snd_Arab""", """som_Latn""", """sot_Latn""", """spa_Latn""", """als_Latn""", """srd_Latn""", """srp_Cyrl""", """ssw_Latn""", """sun_Latn""", """swe_Latn""", """swh_Latn""", """szl_Latn""", """tam_Taml""", """tat_Cyrl""", """tel_Telu""", """tgk_Cyrl""", """tgl_Latn""", """tha_Thai""", """tir_Ethi""", """taq_Latn""", """taq_Tfng""", """tpi_Latn""", """tsn_Latn""", """tso_Latn""", """tuk_Latn""", """tum_Latn""", """tur_Latn""", """twi_Latn""", """tzm_Tfng""", """uig_Arab""", """ukr_Cyrl""", """umb_Latn""", """urd_Arab""", """uzn_Latn""", """vec_Latn""", """vie_Latn""", """war_Latn""", """wol_Latn""", """xho_Latn""", """ydd_Hebr""", """yor_Latn""", """yue_Hant""", """zho_Hans""", """zho_Hant""", """zul_Latn"""] class __magic_name__ (snake_case_ ): '''simple docstring''' __lowercase : Union[str, Any] = VOCAB_FILES_NAMES __lowercase : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowercase : Dict = PRETRAINED_VOCAB_FILES_MAP __lowercase : Optional[Any] = ['input_ids', 'attention_mask'] __lowercase : List[int] = [] __lowercase : List[int] = [] def __init__( self:List[Any] , _a:int , _a:Optional[int]="<s>" , _a:Any="</s>" , _a:int="</s>" , _a:str="<s>" , _a:Tuple="<unk>" , _a:Any="<pad>" , _a:str="<mask>" , _a:str=None , _a:Union[str, Any]=None , _a:List[Any]=None , _a:Optional[Dict[str, Any]] = None , _a:Any=None , _a:str=False , **_a:Tuple , ): # Mask token behave like a normal word, i.e. include the space before it snake_case__ = AddedToken(_a , lstrip=_a , rstrip=_a ) if isinstance(_a , _a ) else mask_token snake_case__ = {} if sp_model_kwargs is None else sp_model_kwargs snake_case__ = legacy_behaviour super().__init__( bos_token=_a , eos_token=_a , unk_token=_a , sep_token=_a , cls_token=_a , pad_token=_a , mask_token=_a , tokenizer_file=_a , src_lang=_a , tgt_lang=_a , additional_special_tokens=_a , sp_model_kwargs=self.sp_model_kwargs , legacy_behaviour=_a , **_a , ) snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(_a ) ) snake_case__ = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | ---- | ---- | ---- | ---- | ---- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' # spm | '<unk>' | '<s>' | '</s>' | 'an' | '▁n' | '▁m' | '▁t' | '▁k' | '▁a' | '▁s' # Mimic fairseq token-to-id alignment for the first 4 token snake_case__ = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab snake_case__ = 1 snake_case__ = len(self.sp_model ) snake_case__ = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(_a ) } snake_case__ = {v: k for k, v in self.lang_code_to_id.items()} snake_case__ = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) snake_case__ = {v: k for k, v in self.fairseq_tokens_to_ids.items()} snake_case__ = list(self.lang_code_to_id.keys() ) if additional_special_tokens is not None: # Only add those special tokens if they are not already there. self._additional_special_tokens.extend( [t for t in additional_special_tokens if t not in self._additional_special_tokens] ) snake_case__ = src_lang if src_lang is not None else '''eng_Latn''' snake_case__ = self.lang_code_to_id[self._src_lang] snake_case__ = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self:Optional[Any] ): snake_case__ = self.__dict__.copy() snake_case__ = None snake_case__ = self.sp_model.serialized_model_proto() return state def __setstate__( self:int , _a:List[Any] ): snake_case__ = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): snake_case__ = {} snake_case__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) @property def SCREAMING_SNAKE_CASE__ ( self:str ): return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def SCREAMING_SNAKE_CASE__ ( self:Tuple ): return self._src_lang @src_lang.setter def SCREAMING_SNAKE_CASE__ ( self:Union[str, Any] , _a:str ): snake_case__ = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None , _a:bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_a , token_ids_a=_a , already_has_special_tokens=_a ) snake_case__ = [1] * len(self.prefix_tokens ) snake_case__ = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(_a )) + suffix_ones return prefix_ones + ([0] * len(_a )) + ([0] * len(_a )) + suffix_ones def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:List[int] , _a:Optional[List[int]] = None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def SCREAMING_SNAKE_CASE__ ( self:List[str] , _a:List[int] , _a:Optional[List[int]] = None ): snake_case__ = [self.sep_token_id] snake_case__ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:Optional[Any] , _a:str , _a:Optional[str] , _a:Optional[str] , **_a:List[str] ): if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) snake_case__ = src_lang snake_case__ = self(_a , add_special_tokens=_a , return_tensors=_a , **_a ) snake_case__ = self.convert_tokens_to_ids(_a ) snake_case__ = tgt_lang_id return inputs def SCREAMING_SNAKE_CASE__ ( self:str ): snake_case__ = {self.convert_ids_to_tokens(_a ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def SCREAMING_SNAKE_CASE__ ( self:List[Any] , _a:str ): return self.sp_model.encode(_a , out_type=_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:List[str] ): if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] snake_case__ = self.sp_model.PieceToId(_a ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str ): if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:Any ): snake_case__ = ''''''.join(_a ).replace(_a , ''' ''' ).strip() return out_string def SCREAMING_SNAKE_CASE__ ( self:Optional[int] , _a:str , _a:Optional[str] = None ): if not os.path.isdir(_a ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return snake_case__ = os.path.join( _a , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_a ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _a ) elif not os.path.isfile(self.vocab_file ): with open(_a , '''wb''' ) as fi: snake_case__ = self.sp_model.serialized_model_proto() fi.write(_a ) return (out_vocab_file,) def SCREAMING_SNAKE_CASE__ ( self:str , _a:List[str] , _a:str = "eng_Latn" , _a:Optional[List[str]] = None , _a:str = "fra_Latn" , **_a:Union[str, Any] , ): snake_case__ = src_lang snake_case__ = tgt_lang return super().prepare_seqaseq_batch(_a , _a , **_a ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] ): return self.set_src_lang_special_tokens(self.src_lang ) def SCREAMING_SNAKE_CASE__ ( self:int ): return self.set_tgt_lang_special_tokens(self.tgt_lang ) def SCREAMING_SNAKE_CASE__ ( self:Optional[Any] , _a:int ): snake_case__ = self.lang_code_to_id[src_lang] if self.legacy_behaviour: snake_case__ = [] snake_case__ = [self.eos_token_id, self.cur_lang_code] else: snake_case__ = [self.cur_lang_code] snake_case__ = [self.eos_token_id] def SCREAMING_SNAKE_CASE__ ( self:Dict , _a:str ): snake_case__ = self.lang_code_to_id[lang] if self.legacy_behaviour: snake_case__ = [] snake_case__ = [self.eos_token_id, self.cur_lang_code] else: snake_case__ = [self.cur_lang_code] snake_case__ = [self.eos_token_id]
33
"""simple docstring""" SCREAMING_SNAKE_CASE__ : Optional[Any] ={ 'a': 'AAAAA', 'b': 'AAAAB', 'c': 'AAABA', 'd': 'AAABB', 'e': 'AABAA', 'f': 'AABAB', 'g': 'AABBA', 'h': 'AABBB', 'i': 'ABAAA', 'j': 'BBBAA', 'k': 'ABAAB', 'l': 'ABABA', 'm': 'ABABB', 'n': 'ABBAA', 'o': 'ABBAB', 'p': 'ABBBA', 'q': 'ABBBB', 'r': 'BAAAA', 's': 'BAAAB', 't': 'BAABA', 'u': 'BAABB', 'v': 'BBBAB', 'w': 'BABAA', 'x': 'BABAB', 'y': 'BABBA', 'z': 'BABBB', ' ': ' ', } SCREAMING_SNAKE_CASE__ : str ={value: key for key, value in encode_dict.items()} def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: _lowerCamelCase : Dict = '''''' for letter in word.lower(): if letter.isalpha() or letter == " ": encoded += encode_dict[letter] else: raise Exception('''encode() accepts only letters of the alphabet and spaces''' ) return encoded def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->str: if set(SCREAMING_SNAKE_CASE_ ) - {"A", "B", " "} != set(): raise Exception('''decode() accepts only \'A\', \'B\' and spaces''' ) _lowerCamelCase : List[Any] = '''''' for word in coded.split(): while len(SCREAMING_SNAKE_CASE_ ) != 0: decoded += decode_dict[word[:5]] _lowerCamelCase : Union[str, Any] = word[5:] decoded += " " return decoded.strip() if __name__ == "__main__": from doctest import testmod testmod()
434
0
from typing import Any class _UpperCamelCase : def __init__( self: Any , _SCREAMING_SNAKE_CASE: Tuple ) -> List[str]: """simple docstring""" UpperCamelCase_ = data UpperCamelCase_ = None def __repr__( self: Optional[Any] ) -> str: """simple docstring""" return f'''Node({self.data})''' class _UpperCamelCase : def __init__( self: Optional[int] ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = None def __iter__( self: str ) -> Any: """simple docstring""" UpperCamelCase_ = self.head while node: yield node.data UpperCamelCase_ = node.next def __len__( self: Tuple ) -> int: """simple docstring""" return sum(1 for _ in self ) def __repr__( self: List[str] ) -> str: """simple docstring""" return "->".join([str(_SCREAMING_SNAKE_CASE ) for item in self] ) def __getitem__( self: Dict , _SCREAMING_SNAKE_CASE: Dict ) -> Any: """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) for i, node in enumerate(self ): if i == index: return node return None def __setitem__( self: Any , _SCREAMING_SNAKE_CASE: str , _SCREAMING_SNAKE_CASE: Tuple ) -> None: """simple docstring""" if not 0 <= index < len(self ): raise ValueError("list index out of range." ) UpperCamelCase_ = self.head for _ in range(_SCREAMING_SNAKE_CASE ): UpperCamelCase_ = current.next UpperCamelCase_ = data def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Dict ) -> None: """simple docstring""" self.insert_nth(len(self ) , _SCREAMING_SNAKE_CASE ) def lowercase ( self: Any , _SCREAMING_SNAKE_CASE: List[str] ) -> None: """simple docstring""" self.insert_nth(0 , _SCREAMING_SNAKE_CASE ) def lowercase ( self: int , _SCREAMING_SNAKE_CASE: List[Any] , _SCREAMING_SNAKE_CASE: Optional[Any] ) -> None: """simple docstring""" if not 0 <= index <= len(self ): raise IndexError("list index out of range" ) UpperCamelCase_ = Node(_SCREAMING_SNAKE_CASE ) if self.head is None: UpperCamelCase_ = new_node elif index == 0: UpperCamelCase_ = self.head # link new_node to head UpperCamelCase_ = new_node else: UpperCamelCase_ = self.head for _ in range(index - 1 ): UpperCamelCase_ = temp.next UpperCamelCase_ = temp.next UpperCamelCase_ = new_node def lowercase ( self: List[Any] ) -> None: # print every node data """simple docstring""" print(self ) def lowercase ( self: List[Any] ) -> Any: """simple docstring""" return self.delete_nth(0 ) def lowercase ( self: str ) -> Any: # delete from tail """simple docstring""" return self.delete_nth(len(self ) - 1 ) def lowercase ( self: List[Any] , _SCREAMING_SNAKE_CASE: Any = 0 ) -> Any: """simple docstring""" if not 0 <= index <= len(self ) - 1: # test if index is valid raise IndexError("List index out of range." ) UpperCamelCase_ = self.head # default first node if index == 0: UpperCamelCase_ = self.head.next else: UpperCamelCase_ = self.head for _ in range(index - 1 ): UpperCamelCase_ = temp.next UpperCamelCase_ = temp.next UpperCamelCase_ = temp.next.next return delete_node.data def lowercase ( self: Union[str, Any] ) -> bool: """simple docstring""" return self.head is None def lowercase ( self: int ) -> None: """simple docstring""" UpperCamelCase_ = None UpperCamelCase_ = self.head while current: # Store the current node's next node. UpperCamelCase_ = current.next # Make the current node's next point backwards UpperCamelCase_ = prev # Make the previous node be the current node UpperCamelCase_ = current # Make the current node the next node (to progress iteration) UpperCamelCase_ = next_node # Return prev in order to put the head at the end UpperCamelCase_ = prev def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ = LinkedList() assert linked_list.is_empty() is True assert str(__snake_case ) == "" try: linked_list.delete_head() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. try: linked_list.delete_tail() raise AssertionError # This should not happen. except IndexError: assert True # This should happen. for i in range(10 ): assert len(__snake_case ) == i linked_list.insert_nth(__snake_case , i + 1 ) assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(1 , 11 ) ) linked_list.insert_head(0 ) linked_list.insert_tail(11 ) assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(0 , 12 ) ) assert linked_list.delete_head() == 0 assert linked_list.delete_nth(9 ) == 10 assert linked_list.delete_tail() == 11 assert len(__snake_case ) == 9 assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(1 , 10 ) ) assert all(linked_list[i] == i + 1 for i in range(0 , 9 ) ) is True for i in range(0 , 9 ): UpperCamelCase_ = -i assert all(linked_list[i] == -i for i in range(0 , 9 ) ) is True linked_list.reverse() assert str(__snake_case ) == "->".join(str(__snake_case ) for i in range(-8 , 1 ) ) def lowerCAmelCase_ ( ) -> None: UpperCamelCase_ = [ -9, 100, Node(77345112 ), "dlrow olleH", 7, 5555, 0, -192.55555, "Hello, world!", 77.9, Node(10 ), None, None, 12.20, ] UpperCamelCase_ = LinkedList() for i in test_input: linked_list.insert_tail(__snake_case ) # Check if it's empty or not assert linked_list.is_empty() is False assert ( str(__snake_case ) == "-9->100->Node(77345112)->dlrow olleH->7->5555->0->" "-192.55555->Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the head UpperCamelCase_ = linked_list.delete_head() assert result == -9 assert ( str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None->12.2" ) # Delete the tail UpperCamelCase_ = linked_list.delete_tail() assert result == 12.2 assert ( str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None->None" ) # Delete a node in specific location in linked list UpperCamelCase_ = linked_list.delete_nth(10 ) assert result is None assert ( str(__snake_case ) == "100->Node(77345112)->dlrow olleH->7->5555->0->-192.55555->" "Hello, world!->77.9->Node(10)->None" ) # Add a Node instance to its head linked_list.insert_head(Node("Hello again, world!" ) ) assert ( str(__snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None" ) # Add None to its tail linked_list.insert_tail(__snake_case ) assert ( str(__snake_case ) == "Node(Hello again, world!)->100->Node(77345112)->dlrow olleH->" "7->5555->0->-192.55555->Hello, world!->77.9->Node(10)->None->None" ) # Reverse the linked list linked_list.reverse() assert ( str(__snake_case ) == "None->None->Node(10)->77.9->Hello, world!->-192.55555->0->5555->" "7->dlrow olleH->Node(77345112)->100->Node(Hello again, world!)" ) def lowerCAmelCase_ ( ) -> List[str]: from doctest import testmod testmod() UpperCamelCase_ = LinkedList() linked_list.insert_head(input("Inserting 1st at head " ).strip() ) linked_list.insert_head(input("Inserting 2nd at head " ).strip() ) print("\nPrint list:" ) linked_list.print_list() linked_list.insert_tail(input("\nInserting 1st at tail " ).strip() ) linked_list.insert_tail(input("Inserting 2nd at tail " ).strip() ) print("\nPrint list:" ) linked_list.print_list() print("\nDelete head" ) linked_list.delete_head() print("Delete tail" ) linked_list.delete_tail() print("\nPrint list:" ) linked_list.print_list() print("\nReverse linked list" ) linked_list.reverse() print("\nPrint list:" ) linked_list.print_list() print("\nString representation of linked list:" ) print(__snake_case ) print("\nReading/changing Node data using indexing:" ) print(F'''Element at Position 1: {linked_list[1]}''' ) UpperCamelCase_ = input("Enter New Value: " ).strip() print("New list:" ) print(__snake_case ) print(F'''length of linked_list is : {len(__snake_case )}''' ) if __name__ == "__main__": main()
713
import json import os import subprocess import unittest from ast import literal_eval import pytest from parameterized import parameterized, parameterized_class from . import is_sagemaker_available if is_sagemaker_available(): from sagemaker import Session, TrainingJobAnalytics from sagemaker.huggingface import HuggingFace @pytest.mark.skipif( literal_eval(os.getenv('''TEST_SAGEMAKER''' , '''False''' ) ) is not True , reason='''Skipping test because should only be run when releasing minor transformers version''' , ) @pytest.mark.usefixtures('''sm_env''' ) @parameterized_class( [ { '''framework''': '''pytorch''', '''script''': '''run_glue.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_5_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''pytorch''', '''script''': '''run_ddp.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.7, '''eval_loss''': 0.6}, }, { '''framework''': '''tensorflow''', '''script''': '''run_tf_dist.py''', '''model_name_or_path''': '''distilbert-base-cased''', '''instance_type''': '''ml.p3.16xlarge''', '''results''': {'''train_runtime''': 6_0_0, '''eval_accuracy''': 0.6, '''eval_loss''': 0.7}, }, ] ) class _UpperCamelCase ( unittest.TestCase ): def lowercase ( self: Union[str, Any] ) -> List[str]: """simple docstring""" if self.framework == "pytorch": subprocess.run( f'''cp ./examples/pytorch/text-classification/run_glue.py {self.env.test_path}/run_glue.py'''.split() , encoding="utf-8" , check=_SCREAMING_SNAKE_CASE , ) assert hasattr(self , "env" ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Dict ) -> str: """simple docstring""" UpperCamelCase_ = f'''{self.env.base_job_name}-{instance_count}-{"ddp" if "ddp" in self.script else "smd"}''' # distributed data settings UpperCamelCase_ = {"smdistributed": {"dataparallel": {"enabled": True}}} if self.script != "run_ddp.py" else None # creates estimator return HuggingFace( entry_point=self.script , source_dir=self.env.test_path , role=self.env.role , image_uri=self.env.image_uri , base_job_name=_SCREAMING_SNAKE_CASE , instance_count=_SCREAMING_SNAKE_CASE , instance_type=self.instance_type , debugger_hook_config=_SCREAMING_SNAKE_CASE , hyperparameters={**self.env.distributed_hyperparameters, "model_name_or_path": self.model_name_or_path} , metric_definitions=self.env.metric_definitions , distribution=_SCREAMING_SNAKE_CASE , py_version="py36" , ) def lowercase ( self: List[str] , _SCREAMING_SNAKE_CASE: Any ) -> List[Any]: """simple docstring""" TrainingJobAnalytics(_SCREAMING_SNAKE_CASE ).export_csv(f'''{self.env.test_path}/{job_name}_metrics.csv''' ) @parameterized.expand([(2,)] ) def lowercase ( self: str , _SCREAMING_SNAKE_CASE: Tuple ) -> Optional[Any]: """simple docstring""" UpperCamelCase_ = self.create_estimator(_SCREAMING_SNAKE_CASE ) # run training estimator.fit() # result dataframe UpperCamelCase_ = TrainingJobAnalytics(estimator.latest_training_job.name ).dataframe() # extract kpis UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_accuracy"]["value"] ) UpperCamelCase_ = list(result_metrics_df[result_metrics_df.metric_name == "eval_loss"]["value"] ) # get train time from SageMaker job, this includes starting, preprocessing, stopping UpperCamelCase_ = ( Session().describe_training_job(estimator.latest_training_job.name ).get("TrainingTimeInSeconds" , 999999 ) ) # assert kpis assert train_runtime <= self.results["train_runtime"] assert all(t >= self.results["eval_accuracy"] for t in eval_accuracy ) assert all(t <= self.results["eval_loss"] for t in eval_loss ) # dump tests result into json file to share in PR with open(f'''{estimator.latest_training_job.name}.json''' , "w" ) as outfile: json.dump({"train_time": train_runtime, "eval_accuracy": eval_accuracy, "eval_loss": eval_loss} , _SCREAMING_SNAKE_CASE )
371
0
'''simple docstring''' from maths.prime_factors import prime_factors def UpperCamelCase__ ( _lowercase : int ) -> int: if not isinstance(_lowercase , _lowercase ): __UpperCAmelCase: List[str] = F'''Input value of [number={number}] must be an integer''' raise TypeError(_lowercase ) if number < 1: raise ValueError("""Input must be a positive integer""" ) return -1 if len(prime_factors(_lowercase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
523
'''simple docstring''' from datetime import datetime import matplotlib.pyplot as plt import torch def UpperCamelCase__ ( _lowercase : Dict ) -> str: for param in module.parameters(): __UpperCAmelCase: int = False def UpperCamelCase__ ( ) -> List[Any]: __UpperCAmelCase: int = """cuda""" if torch.cuda.is_available() else """cpu""" if torch.backends.mps.is_available() and torch.backends.mps.is_built(): __UpperCAmelCase: Dict = """mps""" if device == "mps": print( """WARNING: MPS currently doesn't seem to work, and messes up backpropagation without any visible torch""" """ errors. I recommend using CUDA on a colab notebook or CPU instead if you're facing inexplicable issues""" """ with generations.""" ) return device def UpperCamelCase__ ( _lowercase : List[str] ) -> List[str]: __UpperCAmelCase: List[str] = plt.imshow(_lowercase ) fig.axes.get_xaxis().set_visible(_lowercase ) fig.axes.get_yaxis().set_visible(_lowercase ) plt.show() def UpperCamelCase__ ( ) -> List[Any]: __UpperCAmelCase: Any = datetime.now() __UpperCAmelCase: Any = current_time.strftime("""%H:%M:%S""" ) return timestamp
523
1
"""simple docstring""" import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer import diffusers from diffusers import ( AutoencoderKL, EulerDiscreteScheduler, StableDiffusionLatentUpscalePipeline, StableDiffusionPipeline, UNetaDConditionModel, ) from diffusers.schedulers import KarrasDiffusionSchedulers from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS from ..test_pipelines_common import PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Optional[int]: _lowerCamelCase : List[Any] = [tensor.shape for tensor in tensor_list] return all(shape == shapes[0] for shape in shapes[1:] ) class _UpperCAmelCase ( a_ , a_ , a_ , unittest.TestCase ): """simple docstring""" __snake_case = StableDiffusionLatentUpscalePipeline __snake_case = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { """height""", """width""", """cross_attention_kwargs""", """negative_prompt_embeds""", """prompt_embeds""", } __snake_case = PipelineTesterMixin.required_optional_params - {"""num_images_per_prompt"""} __snake_case = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __snake_case = frozenset( [] ) # TO-DO: update image_params once pipeline is refactored with VaeImageProcessor.preprocess __snake_case = frozenset([] ) __snake_case = True @property def a__ ( self ) -> Optional[int]: _lowerCamelCase : Dict = 1 _lowerCamelCase : Optional[int] = 4 _lowerCamelCase : Optional[int] = (16, 16) _lowerCamelCase : Optional[int] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(_lowercase ) return image def a__ ( self ) -> Any: torch.manual_seed(0 ) _lowerCamelCase : Any = UNetaDConditionModel( act_fn='''gelu''' , attention_head_dim=8 , norm_num_groups=_lowercase , block_out_channels=[32, 32, 64, 64] , time_cond_proj_dim=160 , conv_in_kernel=1 , conv_out_kernel=1 , cross_attention_dim=32 , down_block_types=( '''KDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', '''KCrossAttnDownBlock2D''', ) , in_channels=8 , mid_block_type=_lowercase , only_cross_attention=_lowercase , out_channels=5 , resnet_time_scale_shift='''scale_shift''' , time_embedding_type='''fourier''' , timestep_post_act='''gelu''' , up_block_types=('''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KCrossAttnUpBlock2D''', '''KUpBlock2D''') , ) _lowerCamelCase : Union[str, Any] = AutoencoderKL( block_out_channels=[32, 32, 64, 64] , in_channels=3 , out_channels=3 , down_block_types=[ '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', '''DownEncoderBlock2D''', ] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) _lowerCamelCase : Optional[Any] = EulerDiscreteScheduler(prediction_type='''sample''' ) _lowerCamelCase : List[str] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act='''quick_gelu''' , projection_dim=512 , ) _lowerCamelCase : Optional[Any] = CLIPTextModel(_lowercase ) _lowerCamelCase : str = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) _lowerCamelCase : List[str] = { '''unet''': model.eval(), '''vae''': vae.eval(), '''scheduler''': scheduler, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, } return components def a__ ( self , _lowercase , _lowercase=0 ) -> List[str]: if str(_lowercase ).startswith('''mps''' ): _lowerCamelCase : List[Any] = torch.manual_seed(_lowercase ) else: _lowerCamelCase : Tuple = torch.Generator(device=_lowercase ).manual_seed(_lowercase ) _lowerCamelCase : int = { '''prompt''': '''A painting of a squirrel eating a burger''', '''image''': self.dummy_image.cpu(), '''generator''': generator, '''num_inference_steps''': 2, '''output_type''': '''numpy''', } return inputs def a__ ( self ) -> Optional[int]: _lowerCamelCase : int = '''cpu''' _lowerCamelCase : str = self.get_dummy_components() _lowerCamelCase : Union[str, Any] = self.pipeline_class(**_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCamelCase : Dict = self.get_dummy_inputs(_lowercase ) _lowerCamelCase : List[str] = pipe(**_lowercase ).images _lowerCamelCase : Union[str, Any] = image[0, -3:, -3:, -1] self.assertEqual(image.shape , (1, 256, 256, 3) ) _lowerCamelCase : List[str] = np.array( [0.47222412, 0.41921633, 0.44717434, 0.46874192, 0.42588258, 0.46150726, 0.4677534, 0.45583832, 0.48579055] ) _lowerCamelCase : Optional[int] = np.abs(image_slice.flatten() - expected_slice ).max() self.assertLessEqual(_lowercase , 1E-3 ) def a__ ( self ) -> Optional[int]: super().test_attention_slicing_forward_pass(expected_max_diff=7E-3 ) def a__ ( self ) -> List[str]: super().test_cpu_offload_forward_pass(expected_max_diff=3E-3 ) def a__ ( self ) -> int: super().test_dict_tuple_outputs_equivalent(expected_max_difference=3E-3 ) def a__ ( self ) -> str: super().test_inference_batch_single_identical(expected_max_diff=7E-3 ) def a__ ( self ) -> Optional[int]: super().test_pt_np_pil_outputs_equivalent(expected_max_diff=3E-3 ) def a__ ( self ) -> int: super().test_save_load_local(expected_max_difference=3E-3 ) def a__ ( self ) -> Optional[int]: super().test_save_load_optional_components(expected_max_difference=3E-3 ) def a__ ( self ) -> List[Any]: _lowerCamelCase : Optional[Any] = [ '''DDIMScheduler''', '''DDPMScheduler''', '''PNDMScheduler''', '''HeunDiscreteScheduler''', '''EulerAncestralDiscreteScheduler''', '''KDPM2DiscreteScheduler''', '''KDPM2AncestralDiscreteScheduler''', '''DPMSolverSDEScheduler''', ] _lowerCamelCase : Optional[Any] = self.get_dummy_components() _lowerCamelCase : str = self.pipeline_class(**_lowercase ) # make sure that PNDM does not need warm-up pipe.scheduler.register_to_config(skip_prk_steps=_lowercase ) pipe.to(_lowercase ) pipe.set_progress_bar_config(disable=_lowercase ) _lowerCamelCase : Dict = self.get_dummy_inputs(_lowercase ) _lowerCamelCase : Any = 2 _lowerCamelCase : Optional[int] = [] for scheduler_enum in KarrasDiffusionSchedulers: if scheduler_enum.name in skip_schedulers: # no sigma schedulers are not supported # no schedulers continue _lowerCamelCase : Optional[int] = getattr(_lowercase , scheduler_enum.name ) _lowerCamelCase : str = scheduler_cls.from_config(pipe.scheduler.config ) _lowerCamelCase : Optional[int] = pipe(**_lowercase )[0] outputs.append(_lowercase ) assert check_same_shape(_lowercase ) @require_torch_gpu @slow class _UpperCAmelCase ( unittest.TestCase ): """simple docstring""" def a__ ( self ) -> Dict: super().tearDown() gc.collect() torch.cuda.empty_cache() def a__ ( self ) -> str: _lowerCamelCase : Dict = torch.manual_seed(33 ) _lowerCamelCase : Optional[int] = StableDiffusionPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' , torch_dtype=torch.floataa ) pipe.to('''cuda''' ) _lowerCamelCase : Dict = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _lowerCamelCase : Tuple = '''a photo of an astronaut high resolution, unreal engine, ultra realistic''' _lowerCamelCase : Tuple = pipe(_lowercase , generator=_lowercase , output_type='''latent''' ).images _lowerCamelCase : Optional[Any] = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type='''np''' , ).images[0] _lowerCamelCase : str = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/astronaut_1024.npy''' ) assert np.abs((expected_image - image).mean() ) < 5E-2 def a__ ( self ) -> Any: _lowerCamelCase : List[Any] = torch.manual_seed(33 ) _lowerCamelCase : List[Any] = StableDiffusionLatentUpscalePipeline.from_pretrained( '''stabilityai/sd-x2-latent-upscaler''' , torch_dtype=torch.floataa ) upscaler.to('''cuda''' ) _lowerCamelCase : List[str] = '''the temple of fire by Ross Tran and Gerardo Dottori, oil on canvas''' _lowerCamelCase : str = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_512.png''' ) _lowerCamelCase : Optional[Any] = upscaler( prompt=_lowercase , image=_lowercase , num_inference_steps=20 , guidance_scale=0 , generator=_lowercase , output_type='''np''' , ).images[0] _lowerCamelCase : List[Any] = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/latent-upscaler/fire_temple_1024.npy''' ) assert np.abs((expected_image - image).max() ) < 5E-2
558
"""simple docstring""" import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ : Dict =logging.get_logger(__name__) def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Dict: _lowerCamelCase : Tuple = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: _lowerCamelCase : List[Any] = 128 elif "12-12" in model_name: _lowerCamelCase : Optional[int] = 12 _lowerCamelCase : Union[str, Any] = 12 elif "14-14" in model_name: _lowerCamelCase : Union[str, Any] = 14 _lowerCamelCase : str = 14 elif "16-16" in model_name: _lowerCamelCase : Tuple = 16 _lowerCamelCase : List[Any] = 16 else: raise ValueError('''Model not supported''' ) _lowerCamelCase : Optional[int] = '''huggingface/label-files''' if "speech-commands" in model_name: _lowerCamelCase : int = 35 _lowerCamelCase : Optional[int] = '''speech-commands-v2-id2label.json''' else: _lowerCamelCase : str = 527 _lowerCamelCase : List[Any] = '''audioset-id2label.json''' _lowerCamelCase : Optional[Any] = json.load(open(hf_hub_download(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type='''dataset''' ) , '''r''' ) ) _lowerCamelCase : List[Any] = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} _lowerCamelCase : int = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} return config def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Dict: if "module.v" in name: _lowerCamelCase : Tuple = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: _lowerCamelCase : str = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: _lowerCamelCase : Optional[Any] = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: _lowerCamelCase : str = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: _lowerCamelCase : List[Any] = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: _lowerCamelCase : Optional[int] = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: _lowerCamelCase : Dict = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: _lowerCamelCase : Tuple = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: _lowerCamelCase : str = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: _lowerCamelCase : str = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: _lowerCamelCase : List[str] = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: _lowerCamelCase : List[str] = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: _lowerCamelCase : Union[str, Any] = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: _lowerCamelCase : Optional[Any] = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: _lowerCamelCase : int = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ->Optional[int]: for key in orig_state_dict.copy().keys(): _lowerCamelCase : List[Any] = orig_state_dict.pop(SCREAMING_SNAKE_CASE_ ) if "qkv" in key: _lowerCamelCase : Dict = key.split('''.''' ) _lowerCamelCase : int = int(key_split[3] ) _lowerCamelCase : int = config.hidden_size if "weight" in key: _lowerCamelCase : Any = val[:dim, :] _lowerCamelCase : Optional[Any] = val[dim : dim * 2, :] _lowerCamelCase : List[Any] = val[-dim:, :] else: _lowerCamelCase : Optional[int] = val[:dim] _lowerCamelCase : Optional[int] = val[dim : dim * 2] _lowerCamelCase : Optional[Any] = val[-dim:] else: _lowerCamelCase : Dict = val return orig_state_dict def UpperCamelCase ( SCREAMING_SNAKE_CASE_ ) ->Union[str, Any]: _lowerCamelCase : int = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) @torch.no_grad() def UpperCamelCase ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_=False ) ->Tuple: _lowerCamelCase : Optional[int] = get_audio_spectrogram_transformer_config(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Tuple = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict _lowerCamelCase : Dict = model_name_to_url[model_name] _lowerCamelCase : Any = torch.hub.load_state_dict_from_url(SCREAMING_SNAKE_CASE_ , map_location='''cpu''' ) # remove some keys remove_keys(SCREAMING_SNAKE_CASE_ ) # rename some keys _lowerCamelCase : str = convert_state_dict(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # load 🤗 model _lowerCamelCase : Tuple = ASTForAudioClassification(SCREAMING_SNAKE_CASE_ ) model.eval() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 _lowerCamelCase : List[str] = -4.2677393 if '''speech-commands''' not in model_name else -6.845978 _lowerCamelCase : Any = 4.5689974 if '''speech-commands''' not in model_name else 5.5654526 _lowerCamelCase : int = 1024 if '''speech-commands''' not in model_name else 128 _lowerCamelCase : Optional[Any] = ASTFeatureExtractor(mean=SCREAMING_SNAKE_CASE_ , std=SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ ) if "speech-commands" in model_name: _lowerCamelCase : str = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) _lowerCamelCase : int = dataset[0]['''audio''']['''array'''] else: _lowerCamelCase : List[Any] = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) _lowerCamelCase, _lowerCamelCase : List[Any] = torchaudio.load(SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : int = waveform.squeeze().numpy() _lowerCamelCase : List[Any] = feature_extractor(SCREAMING_SNAKE_CASE_ , sampling_rate=1_6000 , return_tensors='''pt''' ) # forward pass _lowerCamelCase : str = model(**SCREAMING_SNAKE_CASE_ ) _lowerCamelCase : Tuple = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": _lowerCamelCase : Optional[int] = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": _lowerCamelCase : Tuple = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": _lowerCamelCase : Dict = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": _lowerCamelCase : List[str] = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": _lowerCamelCase : Union[str, Any] = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": _lowerCamelCase : str = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": _lowerCamelCase : List[str] = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": _lowerCamelCase : str = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , SCREAMING_SNAKE_CASE_ , atol=1e-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(SCREAMING_SNAKE_CASE_ ).mkdir(exist_ok=SCREAMING_SNAKE_CASE_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(SCREAMING_SNAKE_CASE_ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ : Tuple =argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) SCREAMING_SNAKE_CASE__ : Any =parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
558
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_torch_available, ) _UpperCamelCase = { 'configuration_mega': ['MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP', 'MegaConfig', 'MegaOnnxConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCamelCase = [ 'MEGA_PRETRAINED_MODEL_ARCHIVE_LIST', 'MegaForCausalLM', 'MegaForMaskedLM', 'MegaForMultipleChoice', 'MegaForQuestionAnswering', 'MegaForSequenceClassification', 'MegaForTokenClassification', 'MegaModel', 'MegaPreTrainedModel', ] if TYPE_CHECKING: from .configuration_mega import MEGA_PRETRAINED_CONFIG_ARCHIVE_MAP, MegaConfig, MegaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mega import ( MEGA_PRETRAINED_MODEL_ARCHIVE_LIST, MegaForCausalLM, MegaForMaskedLM, MegaForMultipleChoice, MegaForQuestionAnswering, MegaForSequenceClassification, MegaForTokenClassification, MegaModel, MegaPreTrainedModel, ) else: import sys _UpperCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
243
"""simple docstring""" # Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from ..models.auto import AutoModelForSequenceClassification, AutoTokenizer from .base import PipelineTool class lowerCAmelCase ( snake_case__ ): '''simple docstring''' A = 'facebook/bart-large-mnli' A = ( 'This is a tool that classifies an English text using provided labels. It takes two inputs: `text`, which ' 'should be the text to classify, and `labels`, which should be the list of labels to use for classification. ' 'It returns the most likely label in the list of provided `labels` for the input text.' ) A = 'text_classifier' A = AutoTokenizer A = AutoModelForSequenceClassification A = ['text', ['text']] A = ['text'] def lowerCamelCase__ ( self :List[Any] ) -> List[Any]: """simple docstring""" super().setup() UpperCamelCase__ = self.model.config UpperCamelCase__ = -1 for idx, label in config.idalabel.items(): if label.lower().startswith("entail" ): UpperCamelCase__ = int(lowerCamelCase_ ) if self.entailment_id == -1: raise ValueError("Could not determine the entailment ID from the model config, please pass it at init." ) def lowerCamelCase__ ( self :int , lowerCamelCase_ :List[str] , lowerCamelCase_ :List[str] ) -> Tuple: """simple docstring""" UpperCamelCase__ = labels return self.pre_processor( [text] * len(lowerCamelCase_ ) , [f'This example is {label}' for label in labels] , return_tensors="pt" , padding="max_length" , ) def lowerCamelCase__ ( self :int , lowerCamelCase_ :int ) -> Tuple: """simple docstring""" UpperCamelCase__ = outputs.logits UpperCamelCase__ = torch.argmax(logits[:, 2] ).item() return self._labels[label_id]
516
0
import json import os import unittest from transformers import DebertaTokenizer, DebertaTokenizerFast from transformers.models.deberta.tokenization_deberta import VOCAB_FILES_NAMES from transformers.testing_utils import slow from ...test_tokenization_common import TokenizerTesterMixin class a_ ( lowerCamelCase_ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase = DebertaTokenizer __UpperCAmelCase = True __UpperCAmelCase = DebertaTokenizerFast def _lowerCAmelCase ( self : Optional[Any] ): super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE =[ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '[UNK]', ] SCREAMING_SNAKE_CASE =dict(zip(snake_case ,range(len(snake_case ) ) ) ) SCREAMING_SNAKE_CASE =['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE ={'unk_token': '[UNK]'} SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE =os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file ,'w' ,encoding='utf-8' ) as fp: fp.write(json.dumps(snake_case ) + '\n' ) with open(self.merges_file ,'w' ,encoding='utf-8' ) as fp: fp.write('\n'.join(snake_case ) ) def _lowerCAmelCase ( self : Any ,**snake_case : Optional[int] ): kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname ,**snake_case ) def _lowerCAmelCase ( self : Union[str, Any] ,snake_case : str ): SCREAMING_SNAKE_CASE ='lower newer' SCREAMING_SNAKE_CASE ='lower newer' return input_text, output_text def _lowerCAmelCase ( self : str ): SCREAMING_SNAKE_CASE =self.get_tokenizer() SCREAMING_SNAKE_CASE ='lower newer' SCREAMING_SNAKE_CASE =['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE =tokenizer.tokenize(snake_case ) self.assertListEqual(snake_case ,snake_case ) SCREAMING_SNAKE_CASE =tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE =[0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(snake_case ) ,snake_case ) def _lowerCAmelCase ( self : Optional[int] ): SCREAMING_SNAKE_CASE =self.get_tokenizer() SCREAMING_SNAKE_CASE =tokenizer('Hello' ,'World' ) SCREAMING_SNAKE_CASE =[0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1] self.assertListEqual(tokd['token_type_ids'] ,snake_case ) @slow def _lowerCAmelCase ( self : Optional[Any] ): SCREAMING_SNAKE_CASE =self.tokenizer_class.from_pretrained('microsoft/deberta-base' ) SCREAMING_SNAKE_CASE =tokenizer.encode('sequence builders' ,add_special_tokens=snake_case ) SCREAMING_SNAKE_CASE =tokenizer.encode('multi-sequence build' ,add_special_tokens=snake_case ) SCREAMING_SNAKE_CASE =tokenizer.encode( 'sequence builders' ,add_special_tokens=snake_case ,add_prefix_space=snake_case ) SCREAMING_SNAKE_CASE =tokenizer.encode( 'sequence builders' ,'multi-sequence build' ,add_special_tokens=snake_case ,add_prefix_space=snake_case ) SCREAMING_SNAKE_CASE =tokenizer.build_inputs_with_special_tokens(snake_case ) SCREAMING_SNAKE_CASE =tokenizer.build_inputs_with_special_tokens(snake_case ,snake_case ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode @slow def _lowerCAmelCase ( self : Tuple ): SCREAMING_SNAKE_CASE =[self.tokenizer_class] if self.test_rust_tokenizer: tokenizer_classes.append(self.rust_tokenizer_class ) for tokenizer_class in tokenizer_classes: SCREAMING_SNAKE_CASE =tokenizer_class.from_pretrained('microsoft/deberta-base' ) SCREAMING_SNAKE_CASE =[ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] SCREAMING_SNAKE_CASE =tokenizer(snake_case ,padding=snake_case ) SCREAMING_SNAKE_CASE =[tokenizer.decode(snake_case ,skip_special_tokens=snake_case ) for seq in encoding['input_ids']] # fmt: off SCREAMING_SNAKE_CASE ={ 'input_ids': [ [1, 2118, 11126, 565, 35, 83, 25191, 163, 18854, 13, 12156, 12, 16101, 25376, 13807, 9, 22205, 27893, 1635, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 2118, 11126, 565, 24536, 80, 43797, 4878, 7373, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 133, 78, 65, 16, 10, 3724, 1538, 33183, 11303, 43797, 1938, 4, 870, 24165, 29105, 5, 739, 32644, 33183, 11303, 36173, 88, 80, 650, 7821, 45940, 6, 52, 2559, 5, 1836, 9, 5, 7397, 13171, 31, 5, 1836, 9, 32644, 33183, 11303, 4, 2] ], 'token_type_ids': [ [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] ], 'attention_mask': [ [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] ] } # fmt: on SCREAMING_SNAKE_CASE =[ 'ALBERT: A Lite BERT for Self-supervised Learning of Language Representations', 'ALBERT incorporates two parameter reduction techniques', 'The first one is a factorized embedding parameterization. By decomposing the large vocabulary' ' embedding matrix into two small matrices, we separate the size of the hidden layers from the size of' ' vocabulary embedding.', ] self.assertDictEqual(encoding.data ,snake_case ) for expected, decoded in zip(snake_case ,snake_case ): self.assertEqual(snake_case ,snake_case )
701
import argparse import torch from transformers import GPTaLMHeadModel, RobertaForMaskedLM if __name__ == "__main__": _lowerCamelCase =argparse.ArgumentParser( description=( "Extraction some layers of the full RobertaForMaskedLM or GPT2LMHeadModel for Transfer Learned" " Distillation" ) ) parser.add_argument("--model_type", default="roberta", choices=["roberta", "gpt2"]) parser.add_argument("--model_name", default="roberta-large", type=str) parser.add_argument("--dump_checkpoint", default="serialization_dir/tf_roberta_048131723.pth", type=str) parser.add_argument("--vocab_transform", action="store_true") _lowerCamelCase =parser.parse_args() if args.model_type == "roberta": _lowerCamelCase =RobertaForMaskedLM.from_pretrained(args.model_name) _lowerCamelCase ="roberta" elif args.model_type == "gpt2": _lowerCamelCase =GPTaLMHeadModel.from_pretrained(args.model_name) _lowerCamelCase ="transformer" _lowerCamelCase =model.state_dict() _lowerCamelCase ={} # Embeddings # if args.model_type == "gpt2": for param_name in ["wte.weight", "wpe.weight"]: _lowerCamelCase =state_dict[f'{prefix}.{param_name}'] else: for w in ["word_embeddings", "position_embeddings", "token_type_embeddings"]: _lowerCamelCase =f'{prefix}.embeddings.{w}.weight' _lowerCamelCase =state_dict[param_name] for w in ["weight", "bias"]: _lowerCamelCase =f'{prefix}.embeddings.LayerNorm.{w}' _lowerCamelCase =state_dict[param_name] # Transformer Blocks # _lowerCamelCase =0 for teacher_idx in [0, 2, 4, 7, 9, 11]: if args.model_type == "gpt2": for layer in ["ln_1", "attn.c_attn", "attn.c_proj", "ln_2", "mlp.c_fc", "mlp.c_proj"]: for w in ["weight", "bias"]: _lowerCamelCase =state_dict[ f'{prefix}.h.{teacher_idx}.{layer}.{w}' ] _lowerCamelCase =state_dict[f'{prefix}.h.{teacher_idx}.attn.bias'] else: for layer in [ "attention.self.query", "attention.self.key", "attention.self.value", "attention.output.dense", "attention.output.LayerNorm", "intermediate.dense", "output.dense", "output.LayerNorm", ]: for w in ["weight", "bias"]: _lowerCamelCase =state_dict[ f'{prefix}.encoder.layer.{teacher_idx}.{layer}.{w}' ] std_idx += 1 # Language Modeling Head ###s if args.model_type == "roberta": for layer in ["lm_head.decoder.weight", "lm_head.bias"]: _lowerCamelCase =state_dict[f'{layer}'] if args.vocab_transform: for w in ["weight", "bias"]: _lowerCamelCase =state_dict[f'lm_head.dense.{w}'] _lowerCamelCase =state_dict[f'lm_head.layer_norm.{w}'] elif args.model_type == "gpt2": for w in ["weight", "bias"]: _lowerCamelCase =state_dict[f'{prefix}.ln_f.{w}'] _lowerCamelCase =state_dict["lm_head.weight"] print(f'N layers selected for distillation: {std_idx}') print(f'Number of params transferred for distillation: {len(compressed_sd.keys())}') print(f'Save transferred checkpoint to {args.dump_checkpoint}.') torch.save(compressed_sd, args.dump_checkpoint)
252
0
import unittest import torch from diffusers import DDIMScheduler, DDPMScheduler, UNetaDModel from diffusers.training_utils import set_seed from diffusers.utils.testing_utils import slow lowerCamelCase : int = False class A( unittest.TestCase ): '''simple docstring''' def a__ ( self : int , A_ : Dict=32 ) -> Any: """simple docstring""" set_seed(0 ) lowerCamelCase_ = UNetaDModel(sample_size=A_ , in_channels=3 , out_channels=3 ) lowerCamelCase_ = torch.optim.SGD(model.parameters() , lr=0.0001 ) return model, optimizer @slow def a__ ( self : int ) -> str: """simple docstring""" lowerCamelCase_ = 'cpu' # ensure full determinism without setting the CUBLAS_WORKSPACE_CONFIG env variable lowerCamelCase_ = DDPMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=A_ , ) lowerCamelCase_ = DDIMScheduler( num_train_timesteps=1000 , beta_start=0.0001 , beta_end=0.02 , beta_schedule='linear' , clip_sample=A_ , ) assert ddpm_scheduler.config.num_train_timesteps == ddim_scheduler.config.num_train_timesteps # shared batches for DDPM and DDIM set_seed(0 ) lowerCamelCase_ = [torch.randn((4, 3, 32, 32) ).clip(-1 , 1 ).to(A_ ) for _ in range(4 )] lowerCamelCase_ = [torch.randn((4, 3, 32, 32) ).to(A_ ) for _ in range(4 )] lowerCamelCase_ = [torch.randint(0 , 1000 , (4,) ).long().to(A_ ) for _ in range(4 )] # train with a DDPM scheduler lowerCamelCase_ , lowerCamelCase_ = self.get_model_optimizer(resolution=32 ) model.train().to(A_ ) for i in range(4 ): optimizer.zero_grad() lowerCamelCase_ = ddpm_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCamelCase_ = model(A_ , timesteps[i] ).sample lowerCamelCase_ = torch.nn.functional.mse_loss(A_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer # recreate the model and optimizer, and retry with DDIM lowerCamelCase_ , lowerCamelCase_ = self.get_model_optimizer(resolution=32 ) model.train().to(A_ ) for i in range(4 ): optimizer.zero_grad() lowerCamelCase_ = ddim_scheduler.add_noise(clean_images[i] , noise[i] , timesteps[i] ) lowerCamelCase_ = model(A_ , timesteps[i] ).sample lowerCamelCase_ = torch.nn.functional.mse_loss(A_ , noise[i] ) loss.backward() optimizer.step() del model, optimizer self.assertTrue(torch.allclose(A_ , A_ , atol=1E-5 ) ) self.assertTrue(torch.allclose(A_ , A_ , atol=1E-5 ) )
70
"""simple docstring""" import os import pytest from attr import dataclass SCREAMING_SNAKE_CASE__:List[str] = """us-east-1""" # defaults region @dataclass class snake_case__ : _snake_case : str _snake_case : Optional[Any] = """arn:aws:iam::558105141721:role/sagemaker_execution_role""" _snake_case : Optional[Any] = { """task_name""": """mnli""", """per_device_train_batch_size""": 16, """per_device_eval_batch_size""": 16, """do_train""": True, """do_eval""": True, """do_predict""": True, """output_dir""": """/opt/ml/model""", """overwrite_output_dir""": True, """max_steps""": 500, """save_steps""": 5_500, } _snake_case : List[str] = {**hyperparameters, """max_steps""": 1_000} @property def a__ ( self ): if self.framework == "pytorch": return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"eval_accuracy.*=\D*(.*?)$"}, {"Name": "eval_loss", "Regex": r"eval_loss.*=\D*(.*?)$"}, ] else: return [ {"Name": "train_runtime", "Regex": r"train_runtime.*=\D*(.*?)$"}, {"Name": "eval_accuracy", "Regex": r"loss.*=\D*(.*?)]?$"}, {"Name": "eval_loss", "Regex": r"sparse_categorical_accuracy.*=\D*(.*?)]?$"}, ] @property def a__ ( self ): return F"{self.framework}-transfromers-test" @property def a__ ( self ): return F"./tests/sagemaker/scripts/{self.framework}" @property def a__ ( self ): if self.framework == "pytorch": return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-pytorch-training:1.7.1-transformers4.6.1-gpu-py36-cu110-ubuntu18.04" else: return "763104351884.dkr.ecr.us-east-1.amazonaws.com/huggingface-tensorflow-training:2.4.1-transformers4.6.1-gpu-py37-cu110-ubuntu18.04" @pytest.fixture(scope="class" ) def _lowerCamelCase( a ): __a = SageMakerTestEnvironment(framework=request.cls.framework )
528
0
from __future__ import annotations from math import pi, sqrt def _lowerCamelCase ( __A : float , __A : float ) -> tuple: if inductance <= 0: raise ValueError('''Inductance cannot be 0 or negative''' ) elif capacitance <= 0: raise ValueError('''Capacitance cannot be 0 or negative''' ) else: return ( "Resonant frequency", float(1 / (2 * pi * (sqrt(inductance * capacitance ))) ), ) if __name__ == "__main__": import doctest doctest.testmod()
186
import math def _lowerCamelCase ( __A : int ) -> int: if not isinstance(__A , __A ): _UpperCAmelCase : List[Any] = f'''Input value of [number={number}] must be an integer''' raise TypeError(__A ) if number < 1: _UpperCAmelCase : Optional[Any] = f'''Input value of [number={number}] must be > 0''' raise ValueError(__A ) elif number == 1: return 3 elif number == 2: return 5 else: _UpperCAmelCase : Any = int(math.log(number // 3 , 2 ) ) + 2 _UpperCAmelCase : Dict = [3, 5] _UpperCAmelCase : Tuple = 2 _UpperCAmelCase : Dict = 3 for block in range(1 , __A ): for _ in range(__A ): proth_list.append(2 ** (block + 1) + proth_list[proth_index - 1] ) proth_index += 1 increment *= 2 return proth_list[number - 1] if __name__ == "__main__": import doctest doctest.testmod() for number in range(11): SCREAMING_SNAKE_CASE = 0 try: SCREAMING_SNAKE_CASE = proth(number) except ValueError: print(F'ValueError: there is no {number}th Proth number') continue print(F'The {number}th Proth number: {value}')
186
1
'''simple docstring''' import argparse import re import numpy as np import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SamConfig, SamImageProcessor, SamModel, SamProcessor, SamVisionConfig, ) __A = { "iou_prediction_head.layers.0": "iou_prediction_head.proj_in", "iou_prediction_head.layers.1": "iou_prediction_head.layers.0", "iou_prediction_head.layers.2": "iou_prediction_head.proj_out", "mask_decoder.output_upscaling.0": "mask_decoder.upscale_conv1", "mask_decoder.output_upscaling.1": "mask_decoder.upscale_layer_norm", "mask_decoder.output_upscaling.3": "mask_decoder.upscale_conv2", "mask_downscaling.0": "mask_embed.conv1", "mask_downscaling.1": "mask_embed.layer_norm1", "mask_downscaling.3": "mask_embed.conv2", "mask_downscaling.4": "mask_embed.layer_norm2", "mask_downscaling.6": "mask_embed.conv3", "point_embeddings": "point_embed", "pe_layer.positional_encoding_gaussian_matrix": "shared_embedding.positional_embedding", "image_encoder": "vision_encoder", "neck.0": "neck.conv1", "neck.1": "neck.layer_norm1", "neck.2": "neck.conv2", "neck.3": "neck.layer_norm2", "patch_embed.proj": "patch_embed.projection", ".norm": ".layer_norm", "blocks": "layers", } def _A ( lowercase__ ): lowercase__ = {} state_dict.pop("""pixel_mean""" , lowercase__ ) state_dict.pop("""pixel_std""" , lowercase__ ) lowercase__ = R""".*.output_hypernetworks_mlps.(\d+).layers.(\d+).*""" for key, value in state_dict.items(): for key_to_modify, new_key in KEYS_TO_MODIFY_MAPPING.items(): if key_to_modify in key: lowercase__ = key.replace(lowercase__ , lowercase__ ) if re.match(lowercase__ , lowercase__ ): lowercase__ = int(re.match(lowercase__ , lowercase__ ).group(2 ) ) if layer_nb == 0: lowercase__ = key.replace("""layers.0""" , """proj_in""" ) elif layer_nb == 1: lowercase__ = key.replace("""layers.1""" , """layers.0""" ) elif layer_nb == 2: lowercase__ = key.replace("""layers.2""" , """proj_out""" ) lowercase__ = value lowercase__ = model_state_dict[ """prompt_encoder.shared_embedding.positional_embedding""" ] return model_state_dict def _A ( lowercase__ , lowercase__ , lowercase__ , lowercase__="ybelkada/segment-anything" ): lowercase__ = hf_hub_download(lowercase__ , f'''checkpoints/{model_name}.pth''' ) if "sam_vit_b" in model_name: lowercase__ = SamConfig() elif "sam_vit_l" in model_name: lowercase__ = SamVisionConfig( hidden_size=1024 , num_hidden_layers=24 , num_attention_heads=16 , global_attn_indexes=[5, 11, 17, 23] , ) lowercase__ = SamConfig( vision_config=lowercase__ , ) elif "sam_vit_h" in model_name: lowercase__ = SamVisionConfig( hidden_size=1280 , num_hidden_layers=32 , num_attention_heads=16 , global_attn_indexes=[7, 15, 23, 31] , ) lowercase__ = SamConfig( vision_config=lowercase__ , ) lowercase__ = torch.load(lowercase__ , map_location="""cpu""" ) lowercase__ = replace_keys(lowercase__ ) lowercase__ = SamImageProcessor() lowercase__ = SamProcessor(image_processor=lowercase__ ) lowercase__ = SamModel(lowercase__ ) hf_model.load_state_dict(lowercase__ ) lowercase__ = hf_model.to("""cuda""" ) lowercase__ = """https://huggingface.co/ybelkada/segment-anything/resolve/main/assets/car.png""" lowercase__ = Image.open(requests.get(lowercase__ , stream=lowercase__ ).raw ).convert("""RGB""" ) lowercase__ = [[[400, 650]]] lowercase__ = [[1]] lowercase__ = processor(images=np.array(lowercase__ ) , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase__ = hf_model(**lowercase__ ) lowercase__ = output.iou_scores.squeeze() if model_name == "sam_vit_h_4b8939": assert scores[-1].item() == 0.5_7_9_8_9_0_2_5_1_1_5_9_6_6_8 lowercase__ = processor( images=np.array(lowercase__ ) , input_points=lowercase__ , input_labels=lowercase__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase__ = hf_model(**lowercase__ ) lowercase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_7_1_2_6_0_3_0_9_2_1_9_3_6_0_4 lowercase__ = ((75, 275, 1725, 850),) lowercase__ = processor(images=np.array(lowercase__ ) , input_boxes=lowercase__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase__ = hf_model(**lowercase__ ) lowercase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.8_6_8_6_0_1_5_6_0_5_9_2_6_5_1_4 # Test with 2 points and 1 image. lowercase__ = [[[400, 650], [800, 650]]] lowercase__ = [[1, 1]] lowercase__ = processor( images=np.array(lowercase__ ) , input_points=lowercase__ , input_labels=lowercase__ , return_tensors="""pt""" ).to("""cuda""" ) with torch.no_grad(): lowercase__ = hf_model(**lowercase__ ) lowercase__ = output.iou_scores.squeeze() assert scores[-1].item() == 0.9_9_3_6_0_4_7_7_9_2_4_3_4_6_9_2 if __name__ == "__main__": __A = argparse.ArgumentParser() __A = ["sam_vit_b_01ec64", "sam_vit_h_4b8939", "sam_vit_l_0b3195"] parser.add_argument( "--model_name", default="sam_vit_h_4b8939", choices=choices, type=str, help="Path to hf config.json of model to convert", ) parser.add_argument("--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model.") parser.add_argument( "--push_to_hub", action="store_true", help="Whether to push the model and processor to the hub after converting", ) parser.add_argument( "--model_hub_id", default="ybelkada/segment-anything", choices=choices, type=str, help="Path to hf config.json of model to convert", ) __A = parser.parse_args() convert_sam_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub, args.model_hub_id)
325
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) _UpperCAmelCase = {"""configuration_unispeech""": ["""UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP""", """UniSpeechConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _UpperCAmelCase = [ """UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST""", """UniSpeechForCTC""", """UniSpeechForPreTraining""", """UniSpeechForSequenceClassification""", """UniSpeechModel""", """UniSpeechPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_unispeech import UNISPEECH_PRETRAINED_CONFIG_ARCHIVE_MAP, UniSpeechConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_unispeech import ( UNISPEECH_PRETRAINED_MODEL_ARCHIVE_LIST, UniSpeechForCTC, UniSpeechForPreTraining, UniSpeechForSequenceClassification, UniSpeechModel, UniSpeechPreTrainedModel, ) else: import sys _UpperCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
409
0
"""simple docstring""" import collections import inspect import unittest from transformers import FocalNetConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( FocalNetBackbone, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetModel, ) from transformers.models.focalnet.modeling_focalnet import FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a : def __init__( self : Dict , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : List[str]=13 , lowerCamelCase_ : Tuple=32 , lowerCamelCase_ : Optional[int]=2 , lowerCamelCase_ : int=3 , lowerCamelCase_ : Union[str, Any]=16 , lowerCamelCase_ : List[str]=[32, 64, 1_28] , lowerCamelCase_ : Any=[1, 2, 1] , lowerCamelCase_ : Optional[Any]=[2, 2, 4] , lowerCamelCase_ : Tuple=2 , lowerCamelCase_ : List[str]=2.0 , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Dict=0.0 , lowerCamelCase_ : Optional[int]=0.0 , lowerCamelCase_ : Tuple=0.1 , lowerCamelCase_ : int="gelu" , lowerCamelCase_ : Tuple=False , lowerCamelCase_ : Tuple=True , lowerCamelCase_ : Any=0.02 , lowerCamelCase_ : int=1E-5 , lowerCamelCase_ : str=True , lowerCamelCase_ : Union[str, Any]=None , lowerCamelCase_ : List[str]=True , lowerCamelCase_ : Any=10 , lowerCamelCase_ : Optional[Any]=8 , lowerCamelCase_ : Any=["stage1", "stage2"] , lowerCamelCase_ : Tuple=[1, 2] , ) -> Optional[int]: __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = embed_dim __a = hidden_sizes __a = depths __a = num_heads __a = window_size __a = mlp_ratio __a = qkv_bias __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = drop_path_rate __a = hidden_act __a = use_absolute_embeddings __a = patch_norm __a = layer_norm_eps __a = initializer_range __a = is_training __a = scope __a = use_labels __a = type_sequence_label_size __a = encoder_stride __a = out_features __a = out_indices def lowerCAmelCase_ ( self : int ) -> Union[str, Any]: __a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __a = None if self.use_labels: __a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __a = self.get_config() return config, pixel_values, labels def lowerCAmelCase_ ( self : List[Any] ) -> Any: return FocalNetConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , hidden_sizes=self.hidden_sizes , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , out_features=self.out_features , out_indices=self.out_indices , ) def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Any ) -> Tuple: __a = FocalNetModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ ) __a = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) __a = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def lowerCAmelCase_ ( self : List[str] , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ) -> Union[str, Any]: __a = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size, 8, 8] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[:-1] ) # verify backbone works with out_features=None __a = None __a = FocalNetBackbone(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.image_size * 2, 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def lowerCAmelCase_ ( self : Any , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : Optional[Any] ) -> List[str]: __a = FocalNetForMaskedImageModeling(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ ) self.parent.assertEqual( result.reconstruction.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images __a = 1 __a = FocalNetForMaskedImageModeling(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase_ ) self.parent.assertEqual(result.reconstruction.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def lowerCAmelCase_ ( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any ) -> Tuple: __a = self.type_sequence_label_size __a = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = model(lowerCamelCase_ , labels=lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images __a = 1 __a = FocalNetForImageClassification(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() __a = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) __a = model(lowerCamelCase_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def lowerCAmelCase_ ( self : Tuple ) -> Dict: __a = self.prepare_config_and_inputs() __a , __a , __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a ( A_ , A_ , unittest.TestCase ): A_ : List[str] = ( ( FocalNetModel, FocalNetForImageClassification, FocalNetForMaskedImageModeling, FocalNetBackbone, ) if is_torch_available() else () ) A_ : List[Any] = ( {'''feature-extraction''': FocalNetModel, '''image-classification''': FocalNetForImageClassification} if is_torch_available() else {} ) A_ : int = False A_ : str = False A_ : Any = False A_ : Optional[Any] = False A_ : Union[str, Any] = False def lowerCAmelCase_ ( self : Any ) -> Optional[Any]: __a = FocalNetModelTester(self ) __a = ConfigTester(self , config_class=lowerCamelCase_ , embed_dim=37 , has_text_modality=lowerCamelCase_ ) def lowerCAmelCase_ ( self : Any ) -> int: self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase_ ( self : Optional[Any] ) -> List[Any]: return def lowerCAmelCase_ ( self : List[Any] ) -> Optional[int]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : str ) -> List[str]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : int ) -> Optional[int]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*lowerCamelCase_ ) def lowerCAmelCase_ ( self : str ) -> Dict: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase_ ) @unittest.skip(reason="""FocalNet does not use inputs_embeds""" ) def lowerCAmelCase_ ( self : List[Any] ) -> Dict: pass @unittest.skip(reason="""FocalNet does not use feedforward chunking""" ) def lowerCAmelCase_ ( self : List[str] ) -> Optional[Any]: pass def lowerCAmelCase_ ( self : Optional[Any] ) -> Any: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a = model_class(lowerCamelCase_ ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(lowerCamelCase_ , nn.Linear ) ) def lowerCAmelCase_ ( self : int ) -> Optional[int]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes[:-1]: __a = model_class(lowerCamelCase_ ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , lowerCamelCase_ ) def lowerCAmelCase_ ( self : Tuple , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Any ) -> List[Any]: __a = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(lowerCamelCase_ , lowerCamelCase_ ) ) __a = outputs.hidden_states __a = getattr( self.model_tester , """expected_num_hidden_layers""" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) # FocalNet has a different seq_length __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) __a = outputs.reshaped_hidden_states self.assertEqual(len(lowerCamelCase_ ) , lowerCamelCase_ ) __a , __a , __a , __a = reshaped_hidden_states[0].shape __a = ( reshaped_hidden_states[0].view(lowerCamelCase_ , lowerCamelCase_ , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def lowerCAmelCase_ ( self : str ) -> Optional[int]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes[:-1]: __a = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) def lowerCAmelCase_ ( self : Any ) -> List[str]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = 3 __a = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) __a = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) __a = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) __a = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes[:-1]: __a = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True self.check_hidden_states_output(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , (padded_height, padded_width) ) @slow def lowerCAmelCase_ ( self : Tuple ) -> Tuple: for model_name in FOCALNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = FocalNetModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCAmelCase_ ( self : int ) -> Union[str, Any]: __a , __a = self.model_tester.prepare_config_and_inputs_for_common() __a = _config_zero_init(lowerCamelCase_ ) for model_class in self.all_model_classes: __a = model_class(config=lowerCamelCase_ ) for name, param in model.named_parameters(): if "embeddings" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class a ( unittest.TestCase ): @cached_property def lowerCAmelCase_ ( self : Tuple ) -> int: # TODO update organization return AutoImageProcessor.from_pretrained("""microsoft/focalnet-tiny""" ) if is_vision_available() else None @slow def lowerCAmelCase_ ( self : List[Any] ) -> Union[str, Any]: __a = FocalNetForImageClassification.from_pretrained("""microsoft/focalnet-tiny""" ).to(lowerCamelCase_ ) __a = self.default_image_processor __a = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) __a = image_processor(images=lowerCamelCase_ , return_tensors="""pt""" ).to(lowerCamelCase_ ) # forward pass with torch.no_grad(): __a = model(**lowerCamelCase_ ) # verify the logits __a = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , lowerCamelCase_ ) __a = torch.tensor([0.21_66, -0.43_68, 0.21_91] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase_ , atol=1E-4 ) ) self.assertTrue(outputs.logits.argmax(dim=-1 ).item() , 2_81 ) @require_torch class a ( A_ , unittest.TestCase ): A_ : Dict = (FocalNetBackbone,) if is_torch_available() else () A_ : Dict = FocalNetConfig A_ : Any = False def lowerCAmelCase_ ( self : Dict ) -> int: __a = FocalNetModelTester(self )
707
"""simple docstring""" from sklearn.metrics import matthews_corrcoef import datasets __A = """ Compute the Matthews correlation coefficient (MCC) The Matthews correlation coefficient is used in machine learning as a measure of the quality of binary and multiclass classifications. It takes into account true and false positives and negatives and is generally regarded as a balanced measure which can be used even if the classes are of very different sizes. The MCC is in essence a correlation coefficient value between -1 and +1. A coefficient of +1 represents a perfect prediction, 0 an average random prediction and -1 an inverse prediction. The statistic is also known as the phi coefficient. [source: Wikipedia] """ __A = """ Args: predictions (list of int): Predicted labels, as returned by a model. references (list of int): Ground truth labels. sample_weight (list of int, float, or bool): Sample weights. Defaults to `None`. Returns: matthews_correlation (dict containing float): Matthews correlation. Examples: Example 1, a basic example with only predictions and references as inputs: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3]) >>> print(round(results['matthews_correlation'], 2)) 0.54 Example 2, the same example as above, but also including sample weights: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 3, 1, 1, 1, 2]) >>> print(round(results['matthews_correlation'], 2)) 0.1 Example 3, the same example as above, but with sample weights that cause a negative correlation: >>> matthews_metric = datasets.load_metric(\"matthews_correlation\") >>> results = matthews_metric.compute(references=[1, 3, 2, 0, 3, 2], ... predictions=[1, 2, 2, 0, 3, 3], ... sample_weight=[0.5, 1, 0, 0, 0, 1]) >>> print(round(results['matthews_correlation'], 2)) -0.25 """ __A = """\ @article{scikit-learn, title={Scikit-learn: Machine Learning in {P}ython}, author={Pedregosa, F. and Varoquaux, G. and Gramfort, A. and Michel, V. and Thirion, B. and Grisel, O. and Blondel, M. and Prettenhofer, P. and Weiss, R. and Dubourg, V. and Vanderplas, J. and Passos, A. and Cournapeau, D. and Brucher, M. and Perrot, M. and Duchesnay, E.}, journal={Journal of Machine Learning Research}, volume={12}, pages={2825--2830}, year={2011} } """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): def lowerCAmelCase_ ( self : List[Any] ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int32""" ), """references""": datasets.Value("""int32""" ), } ) , reference_urls=[ """https://scikit-learn.org/stable/modules/generated/sklearn.metrics.matthews_corrcoef.html""" ] , ) def lowerCAmelCase_ ( self : Optional[int] , lowerCamelCase_ : str , lowerCamelCase_ : Any , lowerCamelCase_ : Tuple=None ) -> Dict: return { "matthews_correlation": float(matthews_corrcoef(lowerCamelCase_ , lowerCamelCase_ , sample_weight=lowerCamelCase_ ) ), }
173
0
"""simple docstring""" from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class SCREAMING_SNAKE_CASE__ ( lowercase ): """simple docstring""" a : jnp.ndarray a : jnp.ndarray class SCREAMING_SNAKE_CASE__ ( nn.Module ): """simple docstring""" a : int a : Tuple[int] =(16, 32, 96, 2_56) a : jnp.dtype =jnp.floataa def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) lowerCAmelCase : List[Any] = [] for i in range(len(self.block_out_channels ) - 1 ): lowerCAmelCase : List[Any] = self.block_out_channels[i] lowerCAmelCase : Optional[int] = self.block_out_channels[i + 1] lowerCAmelCase : Tuple = nn.Conv( snake_case__ , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCAmelCase : List[str] = nn.Conv( snake_case__ , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(snake_case__ ) lowerCAmelCase : Tuple = blocks lowerCAmelCase : List[str] = nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case__ ): """simple docstring""" lowerCAmelCase : Any = self.conv_in(snake_case__ ) lowerCAmelCase : Dict = nn.silu(snake_case__ ) for block in self.blocks: lowerCAmelCase : Any = block(snake_case__ ) lowerCAmelCase : Optional[Any] = nn.silu(snake_case__ ) lowerCAmelCase : Union[str, Any] = self.conv_out(snake_case__ ) return embedding @flax_register_to_config class SCREAMING_SNAKE_CASE__ ( nn.Module , lowercase , lowercase ): """simple docstring""" a : int =32 a : int =4 a : Tuple[str] =( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) a : Union[bool, Tuple[bool]] =False a : Tuple[int] =(3_20, 6_40, 12_80, 12_80) a : int =2 a : Union[int, Tuple[int]] =8 a : Optional[Union[int, Tuple[int]]] =None a : int =12_80 a : float =0.0 a : bool =False a : jnp.dtype =jnp.floataa a : bool =True a : int =0 a : str ="rgb" a : Tuple[int] =(16, 32, 96, 2_56) def lowercase__ ( self , snake_case__ ): """simple docstring""" lowerCAmelCase : List[str] = (1, self.in_channels, self.sample_size, self.sample_size) lowerCAmelCase : List[Any] = jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCAmelCase : int = jnp.ones((1,) , dtype=jnp.intaa ) lowerCAmelCase : str = jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) lowerCAmelCase : int = (1, 3, self.sample_size * 8, self.sample_size * 8) lowerCAmelCase : Union[str, Any] = jnp.zeros(snake_case__ , dtype=jnp.floataa ) lowerCAmelCase , lowerCAmelCase : Optional[Any] = jax.random.split(snake_case__ ) lowerCAmelCase : Union[str, Any] = {"params": params_rng, "dropout": dropout_rng} return self.init(snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ )["params"] def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.block_out_channels lowerCAmelCase : List[str] = block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. lowerCAmelCase : Optional[Any] = self.num_attention_heads or self.attention_head_dim # input lowerCAmelCase : Union[str, Any] = nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time lowerCAmelCase : Any = FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) lowerCAmelCase : str = FlaxTimestepEmbedding(snake_case__ , dtype=self.dtype ) lowerCAmelCase : Union[str, Any] = FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) lowerCAmelCase : Any = self.only_cross_attention if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : List[str] = (only_cross_attention,) * len(self.down_block_types ) if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase : Dict = (num_attention_heads,) * len(self.down_block_types ) # down lowerCAmelCase : List[str] = [] lowerCAmelCase : str = [] lowerCAmelCase : int = block_out_channels[0] lowerCAmelCase : str = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) for i, down_block_type in enumerate(self.down_block_types ): lowerCAmelCase : Dict = output_channel lowerCAmelCase : Any = block_out_channels[i] lowerCAmelCase : Tuple = i == len(snake_case__ ) - 1 if down_block_type == "CrossAttnDownBlock2D": lowerCAmelCase : Union[str, Any] = FlaxCrossAttnDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: lowerCAmelCase : int = FlaxDownBlockaD( in_channels=snake_case__ , out_channels=snake_case__ , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(snake_case__ ) for _ in range(self.layers_per_block ): lowerCAmelCase : Optional[int] = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) if not is_final_block: lowerCAmelCase : Dict = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(snake_case__ ) lowerCAmelCase : str = down_blocks lowerCAmelCase : Optional[int] = controlnet_down_blocks # mid lowerCAmelCase : Tuple = block_out_channels[-1] lowerCAmelCase : Optional[int] = FlaxUNetMidBlockaDCrossAttn( in_channels=snake_case__ , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) lowerCAmelCase : Tuple = nn.Conv( snake_case__ , kernel_size=(1, 1) , padding="VALID" , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = 1.0 , snake_case__ = True , snake_case__ = False , ): """simple docstring""" lowerCAmelCase : List[str] = self.controlnet_conditioning_channel_order if channel_order == "bgr": lowerCAmelCase : Optional[int] = jnp.flip(snake_case__ , axis=1 ) # 1. time if not isinstance(snake_case__ , jnp.ndarray ): lowerCAmelCase : Union[str, Any] = jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(snake_case__ , jnp.ndarray ) and len(timesteps.shape ) == 0: lowerCAmelCase : str = timesteps.astype(dtype=jnp.floataa ) lowerCAmelCase : Optional[int] = jnp.expand_dims(snake_case__ , 0 ) lowerCAmelCase : Union[str, Any] = self.time_proj(snake_case__ ) lowerCAmelCase : Tuple = self.time_embedding(snake_case__ ) # 2. pre-process lowerCAmelCase : Tuple = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCAmelCase : Union[str, Any] = self.conv_in(snake_case__ ) lowerCAmelCase : List[Any] = jnp.transpose(snake_case__ , (0, 2, 3, 1) ) lowerCAmelCase : Optional[int] = self.controlnet_cond_embedding(snake_case__ ) sample += controlnet_cond # 3. down lowerCAmelCase : Union[str, Any] = (sample,) for down_block in self.down_blocks: if isinstance(snake_case__ , snake_case__ ): lowerCAmelCase , lowerCAmelCase : Optional[Any] = down_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) else: lowerCAmelCase , lowerCAmelCase : int = down_block(snake_case__ , snake_case__ , deterministic=not train ) down_block_res_samples += res_samples # 4. mid lowerCAmelCase : Union[str, Any] = self.mid_block(snake_case__ , snake_case__ , snake_case__ , deterministic=not train ) # 5. contronet blocks lowerCAmelCase : Optional[int] = () for down_block_res_sample, controlnet_block in zip(snake_case__ , self.controlnet_down_blocks ): lowerCAmelCase : Any = controlnet_block(snake_case__ ) controlnet_down_block_res_samples += (down_block_res_sample,) lowerCAmelCase : Dict = controlnet_down_block_res_samples lowerCAmelCase : Optional[Any] = self.controlnet_mid_block(snake_case__ ) # 6. scaling lowerCAmelCase : List[Any] = [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=snake_case__ , mid_block_res_sample=snake_case__ )
645
"""simple docstring""" import json import pathlib import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision, slow from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DeformableDetrImageProcessor class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): """simple docstring""" def __init__( self , snake_case__ , snake_case__=7 , snake_case__=3 , snake_case__=30 , snake_case__=400 , snake_case__=True , snake_case__=None , snake_case__=True , snake_case__=[0.5, 0.5, 0.5] , snake_case__=[0.5, 0.5, 0.5] , snake_case__=True , snake_case__=1 / 255 , snake_case__=True , ): """simple docstring""" lowerCAmelCase : List[Any] = size if size is not None else {"shortest_edge": 18, "longest_edge": 1_333} lowerCAmelCase : Union[str, Any] = parent lowerCAmelCase : str = batch_size lowerCAmelCase : int = num_channels lowerCAmelCase : Any = min_resolution lowerCAmelCase : List[str] = max_resolution lowerCAmelCase : Dict = do_resize lowerCAmelCase : int = size lowerCAmelCase : int = do_normalize lowerCAmelCase : str = image_mean lowerCAmelCase : Optional[Any] = image_std lowerCAmelCase : Dict = do_rescale lowerCAmelCase : Optional[int] = rescale_factor lowerCAmelCase : Union[str, Any] = do_pad def lowercase__ ( self ): """simple docstring""" return { "do_resize": self.do_resize, "size": self.size, "do_normalize": self.do_normalize, "image_mean": self.image_mean, "image_std": self.image_std, "do_rescale": self.do_rescale, "rescale_factor": self.rescale_factor, "do_pad": self.do_pad, } def lowercase__ ( self , snake_case__ , snake_case__=False ): """simple docstring""" if not batched: lowerCAmelCase : Optional[Any] = image_inputs[0] if isinstance(snake_case__ , Image.Image ): lowerCAmelCase , lowerCAmelCase : int = image.size else: lowerCAmelCase , lowerCAmelCase : int = image.shape[1], image.shape[2] if w < h: lowerCAmelCase : Optional[Any] = int(self.size["shortest_edge"] * h / w ) lowerCAmelCase : int = self.size["shortest_edge"] elif w > h: lowerCAmelCase : Dict = self.size["shortest_edge"] lowerCAmelCase : str = int(self.size["shortest_edge"] * w / h ) else: lowerCAmelCase : Optional[int] = self.size["shortest_edge"] lowerCAmelCase : Any = self.size["shortest_edge"] else: lowerCAmelCase : Union[str, Any] = [] for image in image_inputs: lowerCAmelCase , lowerCAmelCase : Tuple = self.get_expected_values([image] ) expected_values.append((expected_height, expected_width) ) lowerCAmelCase : Dict = max(snake_case__ , key=lambda snake_case__ : item[0] )[0] lowerCAmelCase : int = max(snake_case__ , key=lambda snake_case__ : item[1] )[1] return expected_height, expected_width @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( lowercase , unittest.TestCase ): """simple docstring""" a : Union[str, Any] =DeformableDetrImageProcessor if is_vision_available() else None def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Dict = DeformableDetrImageProcessingTester(self ) @property def lowercase__ ( self ): """simple docstring""" return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[str] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(snake_case__ , "image_mean" ) ) self.assertTrue(hasattr(snake_case__ , "image_std" ) ) self.assertTrue(hasattr(snake_case__ , "do_normalize" ) ) self.assertTrue(hasattr(snake_case__ , "do_resize" ) ) self.assertTrue(hasattr(snake_case__ , "do_rescale" ) ) self.assertTrue(hasattr(snake_case__ , "do_pad" ) ) self.assertTrue(hasattr(snake_case__ , "size" ) ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"shortest_edge": 18, "longest_edge": 1_333} ) self.assertEqual(image_processor.do_pad , snake_case__ ) lowerCAmelCase : Optional[Any] = self.image_processing_class.from_dict( self.image_processor_dict , size=42 , max_size=84 , pad_and_return_pixel_mask=snake_case__ ) self.assertEqual(image_processor.size , {"shortest_edge": 42, "longest_edge": 84} ) self.assertEqual(image_processor.do_pad , snake_case__ ) def lowercase__ ( self ): """simple docstring""" pass def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , Image.Image ) # Test not batched input lowerCAmelCase : List[str] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase , lowerCAmelCase : Tuple = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase , lowerCAmelCase : Optional[int] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) lowerCAmelCase : List[Any] = image_processing(snake_case__ , return_tensors="pt" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : int = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors lowerCAmelCase : int = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , numpify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , np.ndarray ) # Test not batched input lowerCAmelCase : str = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[str] = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Dict = image_processing(snake_case__ , return_tensors="pt" ).pixel_values lowerCAmelCase , lowerCAmelCase : Dict = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : Union[str, Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors lowerCAmelCase : Tuple = prepare_image_inputs(self.image_processor_tester , equal_resolution=snake_case__ , torchify=snake_case__ ) for image in image_inputs: self.assertIsInstance(snake_case__ , torch.Tensor ) # Test not batched input lowerCAmelCase : Union[str, Any] = image_processing(image_inputs[0] , return_tensors="pt" ).pixel_values lowerCAmelCase , lowerCAmelCase : str = self.image_processor_tester.get_expected_values(snake_case__ ) self.assertEqual( encoded_images.shape , (1, self.image_processor_tester.num_channels, expected_height, expected_width) , ) # Test batched lowerCAmelCase : Dict = image_processing(snake_case__ , return_tensors="pt" ).pixel_values lowerCAmelCase , lowerCAmelCase : List[Any] = self.image_processor_tester.get_expected_values(snake_case__ , batched=snake_case__ ) self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, expected_height, expected_width, ) , ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : List[Any] = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_annotations.txt" , "r" ) as f: lowerCAmelCase : List[Any] = json.loads(f.read() ) lowerCAmelCase : List[str] = {"image_id": 39_769, "annotations": target} # encode them lowerCAmelCase : Optional[Any] = DeformableDetrImageProcessor() lowerCAmelCase : Dict = image_processing(images=snake_case__ , annotations=snake_case__ , return_tensors="pt" ) # verify pixel values lowerCAmelCase : Optional[int] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) lowerCAmelCase : Optional[int] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area lowerCAmelCase : str = torch.tensor([5887.9600, 11250.2061, 489353.8438, 837122.7500, 147967.5156, 165732.3438] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes lowerCAmelCase : str = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) lowerCAmelCase : Dict = torch.tensor([0.5503, 0.2765, 0.0604, 0.2215] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : Union[str, Any] = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd lowerCAmelCase : str = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels lowerCAmelCase : Union[str, Any] = torch.tensor([75, 75, 63, 65, 17, 17] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify orig_size lowerCAmelCase : List[Any] = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size lowerCAmelCase : Any = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) ) @slow def lowercase__ ( self ): """simple docstring""" lowerCAmelCase : str = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) with open("./tests/fixtures/tests_samples/COCO/coco_panoptic_annotations.txt" , "r" ) as f: lowerCAmelCase : Optional[int] = json.loads(f.read() ) lowerCAmelCase : Tuple = {"file_name": "000000039769.png", "image_id": 39_769, "segments_info": target} lowerCAmelCase : Tuple = pathlib.Path("./tests/fixtures/tests_samples/COCO/coco_panoptic" ) # encode them lowerCAmelCase : str = DeformableDetrImageProcessor(format="coco_panoptic" ) lowerCAmelCase : Dict = image_processing(images=snake_case__ , annotations=snake_case__ , masks_path=snake_case__ , return_tensors="pt" ) # verify pixel values lowerCAmelCase : List[str] = torch.Size([1, 3, 800, 1_066] ) self.assertEqual(encoding["pixel_values"].shape , snake_case__ ) lowerCAmelCase : Union[str, Any] = torch.tensor([0.2796, 0.3138, 0.3481] ) self.assertTrue(torch.allclose(encoding["pixel_values"][0, 0, 0, :3] , snake_case__ , atol=1e-4 ) ) # verify area lowerCAmelCase : int = torch.tensor([147979.6875, 165527.0469, 484638.5938, 11292.9375, 5879.6562, 7634.1147] ) self.assertTrue(torch.allclose(encoding["labels"][0]["area"] , snake_case__ ) ) # verify boxes lowerCAmelCase : List[Any] = torch.Size([6, 4] ) self.assertEqual(encoding["labels"][0]["boxes"].shape , snake_case__ ) lowerCAmelCase : Optional[int] = torch.tensor([0.2625, 0.5437, 0.4688, 0.8625] ) self.assertTrue(torch.allclose(encoding["labels"][0]["boxes"][0] , snake_case__ , atol=1e-3 ) ) # verify image_id lowerCAmelCase : int = torch.tensor([39_769] ) self.assertTrue(torch.allclose(encoding["labels"][0]["image_id"] , snake_case__ ) ) # verify is_crowd lowerCAmelCase : Any = torch.tensor([0, 0, 0, 0, 0, 0] ) self.assertTrue(torch.allclose(encoding["labels"][0]["iscrowd"] , snake_case__ ) ) # verify class_labels lowerCAmelCase : List[str] = torch.tensor([17, 17, 63, 75, 75, 93] ) self.assertTrue(torch.allclose(encoding["labels"][0]["class_labels"] , snake_case__ ) ) # verify masks lowerCAmelCase : List[Any] = 822_873 self.assertEqual(encoding["labels"][0]["masks"].sum().item() , snake_case__ ) # verify orig_size lowerCAmelCase : Dict = torch.tensor([480, 640] ) self.assertTrue(torch.allclose(encoding["labels"][0]["orig_size"] , snake_case__ ) ) # verify size lowerCAmelCase : Tuple = torch.tensor([800, 1_066] ) self.assertTrue(torch.allclose(encoding["labels"][0]["size"] , snake_case__ ) )
645
1
'''simple docstring''' from collections import defaultdict from typing import Optional from ..image_utils import load_image from ..utils import ( add_end_docstrings, is_torch_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, ChunkPipeline if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_MASK_GENERATION_MAPPING __A = logging.get_logger(__name__) @add_end_docstrings(__magic_name__ ) class __lowerCAmelCase ( __magic_name__ ): """simple docstring""" def __init__( self , **lowerCamelCase__ ) -> Dict: '''simple docstring''' super().__init__(**_lowerCAmelCase ) requires_backends(self , 'vision' ) requires_backends(self , 'torch' ) if self.framework != "pt": raise ValueError(f"""The {self.__class__} is only available in PyTorch.""" ) self.check_model_type(_lowerCAmelCase ) def lowercase_ ( self , **lowerCamelCase__ ) -> List[Any]: '''simple docstring''' __lowerCamelCase = {} __lowerCamelCase = {} __lowerCamelCase = {} # preprocess args if "points_per_batch" in kwargs: __lowerCamelCase = kwargs['points_per_batch'] if "points_per_crop" in kwargs: __lowerCamelCase = kwargs['points_per_crop'] if "crops_n_layers" in kwargs: __lowerCamelCase = kwargs['crops_n_layers'] if "crop_overlap_ratio" in kwargs: __lowerCamelCase = kwargs['crop_overlap_ratio'] if "crop_n_points_downscale_factor" in kwargs: __lowerCamelCase = kwargs['crop_n_points_downscale_factor'] # postprocess args if "pred_iou_thresh" in kwargs: __lowerCamelCase = kwargs['pred_iou_thresh'] if "stability_score_offset" in kwargs: __lowerCamelCase = kwargs['stability_score_offset'] if "mask_threshold" in kwargs: __lowerCamelCase = kwargs['mask_threshold'] if "stability_score_thresh" in kwargs: __lowerCamelCase = kwargs['stability_score_thresh'] if "crops_nms_thresh" in kwargs: __lowerCamelCase = kwargs['crops_nms_thresh'] if "output_rle_mask" in kwargs: __lowerCamelCase = kwargs['output_rle_mask'] if "output_bboxes_mask" in kwargs: __lowerCamelCase = kwargs['output_bboxes_mask'] return preprocess_kwargs, forward_params, postprocess_kwargs def __call__( self , lowerCamelCase__ , *lowerCamelCase__ , lowerCamelCase__=None , lowerCamelCase__=None , **lowerCamelCase__ ) -> int: '''simple docstring''' return super().__call__(_lowerCAmelCase , *_lowerCAmelCase , num_workers=_lowerCAmelCase , batch_size=_lowerCAmelCase , **_lowerCAmelCase ) def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=64 , lowerCamelCase__ = 0 , lowerCamelCase__ = 512 / 1_500 , lowerCamelCase__ = 32 , lowerCamelCase__ = 1 , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = load_image(_lowerCAmelCase ) __lowerCamelCase = self.image_processor.size['longest_edge'] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.generate_crop_boxes( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase = self.image_processor(images=_lowerCAmelCase , return_tensors='pt' ) with self.device_placement(): if self.framework == "pt": __lowerCamelCase = self.get_inference_context() with inference_context(): __lowerCamelCase = self._ensure_tensor_on_device(_lowerCAmelCase , device=self.device ) __lowerCamelCase = self.model.get_image_embeddings(model_inputs.pop('pixel_values' ) ) __lowerCamelCase = image_embeddings __lowerCamelCase = grid_points.shape[1] __lowerCamelCase = points_per_batch if points_per_batch is not None else n_points if points_per_batch <= 0: raise ValueError( 'Cannot have points_per_batch<=0. Must be >=1 to returned batched outputs. ' 'To return all points at once, set points_per_batch to None' ) for i in range(0 , _lowerCAmelCase , _lowerCAmelCase ): __lowerCamelCase = grid_points[:, i : i + points_per_batch, :, :] __lowerCamelCase = input_labels[:, i : i + points_per_batch] __lowerCamelCase = i == n_points - points_per_batch yield { "input_points": batched_points, "input_labels": labels, "input_boxes": crop_boxes, "is_last": is_last, **model_inputs, } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0.88 , lowerCamelCase__=0.95 , lowerCamelCase__=0 , lowerCamelCase__=1 , ) -> Optional[int]: '''simple docstring''' __lowerCamelCase = model_inputs.pop('input_boxes' ) __lowerCamelCase = model_inputs.pop('is_last' ) __lowerCamelCase = model_inputs.pop('original_sizes' ).tolist() __lowerCamelCase = model_inputs.pop('reshaped_input_sizes' ).tolist() __lowerCamelCase = self.model(**_lowerCAmelCase ) # post processing happens here in order to avoid CPU GPU copies of ALL the masks __lowerCamelCase = model_outputs['pred_masks'] __lowerCamelCase = self.image_processor.post_process_masks( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , binarize=_lowerCAmelCase ) __lowerCamelCase = model_outputs['iou_scores'] __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.filter_masks( masks[0] , iou_scores[0] , original_sizes[0] , input_boxes[0] , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , ) return { "masks": masks, "is_last": is_last, "boxes": boxes, "iou_scores": iou_scores, } def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=False , lowerCamelCase__=False , lowerCamelCase__=0.7 , ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = [] __lowerCamelCase = [] __lowerCamelCase = [] for model_output in model_outputs: all_scores.append(model_output.pop('iou_scores' ) ) all_masks.extend(model_output.pop('masks' ) ) all_boxes.append(model_output.pop('boxes' ) ) __lowerCamelCase = torch.cat(_lowerCAmelCase ) __lowerCamelCase = torch.cat(_lowerCAmelCase ) __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase = self.image_processor.post_process_for_mask_generation( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) __lowerCamelCase = defaultdict(_lowerCAmelCase ) for output in model_outputs: for k, v in output.items(): extra[k].append(_lowerCAmelCase ) __lowerCamelCase = {} if output_rle_mask: __lowerCamelCase = rle_mask if output_bboxes_mask: __lowerCamelCase = bounding_boxes return {"masks": output_masks, "scores": iou_scores, **optional, **extra}
709
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class __lowerCAmelCase ( __magic_name__ , unittest.TestCase ): """simple docstring""" snake_case_ = ConsistencyModelPipeline snake_case_ = UNCONDITIONAL_IMAGE_GENERATION_PARAMS snake_case_ = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt snake_case_ = frozenset( [ '''num_inference_steps''', '''generator''', '''latents''', '''output_type''', '''return_dict''', '''callback''', '''callback_steps''', ] ) @property def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def lowercase_ ( self , lowerCamelCase__=False ) -> Dict: '''simple docstring''' if class_cond: __lowerCamelCase = self.dummy_cond_unet else: __lowerCamelCase = self.dummy_uncond_unet # Default to CM multistep sampler __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = { 'unet': unet, 'scheduler': scheduler, } return components def lowercase_ ( self , lowerCamelCase__ , lowerCamelCase__=0 ) -> Optional[Any]: '''simple docstring''' if str(lowerCamelCase__ ).startswith('mps' ): __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ) -> Union[str, Any]: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components(class_cond=lowerCamelCase__ ) __lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = 0 __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.35_72, 0.62_73, 0.40_31, 0.39_61, 0.43_21, 0.57_30, 0.52_66, 0.47_80, 0.50_04] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ) -> List[Any]: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components() __lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 def lowercase_ ( self ) -> str: '''simple docstring''' __lowerCamelCase = 'cpu' # ensure determinism for the device-dependent torch.Generator __lowerCamelCase = self.get_dummy_components(class_cond=lowerCamelCase__ ) __lowerCamelCase = ConsistencyModelPipeline(**lowerCamelCase__ ) __lowerCamelCase = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_dummy_inputs(lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = 0 __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 32, 32, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.50_04, 0.50_04, 0.49_94, 0.50_08, 0.49_76, 0.50_18, 0.49_90, 0.49_82, 0.49_87] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @slow @require_torch_gpu class __lowerCAmelCase ( unittest.TestCase ): """simple docstring""" def lowercase_ ( self ) -> List[Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowercase_ ( self , lowerCamelCase__=0 , lowerCamelCase__=False , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=(1, 3, 64, 64) ) -> int: '''simple docstring''' __lowerCamelCase = torch.manual_seed(lowerCamelCase__ ) __lowerCamelCase = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: __lowerCamelCase = self.get_fixed_latents(seed=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ , shape=lowerCamelCase__ ) __lowerCamelCase = latents return inputs def lowercase_ ( self , lowerCamelCase__=0 , lowerCamelCase__="cpu" , lowerCamelCase__=torch.floataa , lowerCamelCase__=(1, 3, 64, 64) ) -> Optional[int]: '''simple docstring''' if type(lowerCamelCase__ ) == str: __lowerCamelCase = torch.device(lowerCamelCase__ ) __lowerCamelCase = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase = randn_tensor(lowerCamelCase__ , generator=lowerCamelCase__ , device=lowerCamelCase__ , dtype=lowerCamelCase__ ) return latents def lowercase_ ( self ) -> Dict: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_inputs() __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.08_88, 0.08_81, 0.06_66, 0.04_79, 0.02_92, 0.01_95, 0.02_01, 0.01_63, 0.02_54] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 def lowercase_ ( self ) -> Any: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_inputs() __lowerCamelCase = 1 __lowerCamelCase = None __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.03_40, 0.01_52, 0.00_63, 0.02_67, 0.02_21, 0.01_07, 0.04_16, 0.01_86, 0.02_17] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2e-2 @require_torch_a def lowercase_ ( self ) -> int: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_inputs(get_fixed_latents=lowerCamelCase__ , device=lowerCamelCase__ ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase__ , enable_math=lowerCamelCase__ , enable_mem_efficient=lowerCamelCase__ ): __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.18_75, 0.14_28, 0.12_89, 0.21_51, 0.20_92, 0.14_77, 0.18_77, 0.16_41, 0.13_53] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3 @require_torch_a def lowercase_ ( self ) -> Optional[Any]: '''simple docstring''' __lowerCamelCase = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) __lowerCamelCase = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_02 , sigma_max=80.0 , ) __lowerCamelCase = ConsistencyModelPipeline(unet=lowerCamelCase__ , scheduler=lowerCamelCase__ ) pipe.to(torch_device=lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase = self.get_inputs(get_fixed_latents=lowerCamelCase__ , device=lowerCamelCase__ ) __lowerCamelCase = 1 __lowerCamelCase = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=lowerCamelCase__ , enable_math=lowerCamelCase__ , enable_mem_efficient=lowerCamelCase__ ): __lowerCamelCase = pipe(**lowerCamelCase__ ).images assert image.shape == (1, 64, 64, 3) __lowerCamelCase = image[0, -3:, -3:, -1] __lowerCamelCase = np.array([0.16_63, 0.19_48, 0.22_75, 0.16_80, 0.12_04, 0.12_45, 0.18_58, 0.13_38, 0.20_95] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-3
167
0
import argparse import os import re # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_dummies.py a__ = '''src/diffusers''' # Matches is_xxx_available() a__ = re.compile(R'''is\_([a-z_]*)_available\(\)''') # Matches from xxx import bla a__ = re.compile(R'''\s+from\s+\S*\s+import\s+([^\(\s].*)\n''') a__ = ''' {0} = None ''' a__ = ''' class {0}(metaclass=DummyObject): _backends = {1} def __init__(self, *args, **kwargs): requires_backends(self, {1}) @classmethod def from_config(cls, *args, **kwargs): requires_backends(cls, {1}) @classmethod def from_pretrained(cls, *args, **kwargs): requires_backends(cls, {1}) ''' a__ = ''' def {0}(*args, **kwargs): requires_backends({0}, {1}) ''' def __UpperCAmelCase ( __a : Dict ) -> str: """simple docstring""" _a : Optional[Any] = _re_backend.findall(__a ) if len(__a ) == 0: return None return "_and_".join(__a ) def __UpperCAmelCase ( ) -> Union[str, Any]: """simple docstring""" with open(os.path.join(__a ,'''__init__.py''' ) ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Optional[int] = f.readlines() # Get to the point we do the actual imports for type checking _a : List[Any] = 0 _a : Optional[int] = {} # Go through the end of the file while line_index < len(__a ): # If the line contains is_backend_available, we grab all objects associated with the `else` block _a : Any = find_backend(lines[line_index] ) if backend is not None: while not lines[line_index].startswith('''else:''' ): line_index += 1 line_index += 1 _a : List[str] = [] # Until we unindent, add backend objects to the list while line_index < len(__a ) and len(lines[line_index] ) > 1: _a : Optional[Any] = lines[line_index] _a : Any = _re_single_line_import.search(__a ) if single_line_import_search is not None: objects.extend(single_line_import_search.groups()[0].split(''', ''' ) ) elif line.startswith(''' ''' * 8 ): objects.append(line[8:-2] ) line_index += 1 if len(__a ) > 0: _a : Dict = objects else: line_index += 1 return backend_specific_objects def __UpperCAmelCase ( __a : str ,__a : str ) -> str: """simple docstring""" if name.isupper(): return DUMMY_CONSTANT.format(__a ) elif name.islower(): return DUMMY_FUNCTION.format(__a ,__a ) else: return DUMMY_CLASS.format(__a ,__a ) def __UpperCAmelCase ( __a : List[Any]=None ) -> Tuple: """simple docstring""" if backend_specific_objects is None: _a : Optional[int] = read_init() # For special correspondence backend to module name as used in the function requires_modulename _a : Optional[Any] = {} for backend, objects in backend_specific_objects.items(): _a : Optional[int] = '''[''' + ''', '''.join(F"""\"{b}\"""" for b in backend.split('''_and_''' ) ) + ''']''' _a : Optional[Any] = '''# This file is autogenerated by the command `make fix-copies`, do not edit.\n''' dummy_file += "from ..utils import DummyObject, requires_backends\n\n" dummy_file += "\n".join([create_dummy_object(__a ,__a ) for o in objects] ) _a : Optional[Any] = dummy_file return dummy_files def __UpperCAmelCase ( __a : Union[str, Any]=False ) -> Optional[Any]: """simple docstring""" _a : Any = create_dummy_files() # For special correspondence backend to shortcut as used in utils/dummy_xxx_objects.py _a : Dict = {'''torch''': '''pt'''} # Locate actual dummy modules and read their content. _a : Union[str, Any] = os.path.join(__a ,'''utils''' ) _a : List[Any] = { backend: os.path.join(__a ,F"""dummy_{short_names.get(__a ,__a )}_objects.py""" ) for backend in dummy_files.keys() } _a : List[Any] = {} for backend, file_path in dummy_file_paths.items(): if os.path.isfile(__a ): with open(__a ,'''r''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: _a : Dict = f.read() else: _a : str = '''''' for backend in dummy_files.keys(): if dummy_files[backend] != actual_dummies[backend]: if overwrite: print( F"""Updating diffusers.utils.dummy_{short_names.get(__a ,__a )}_objects.py as the main """ '''__init__ has new objects.''' ) with open(dummy_file_paths[backend] ,'''w''' ,encoding='''utf-8''' ,newline='''\n''' ) as f: f.write(dummy_files[backend] ) else: raise ValueError( '''The main __init__ has objects that are not present in ''' F"""diffusers.utils.dummy_{short_names.get(__a ,__a )}_objects.py. Run `make fix-copies` """ '''to fix this.''' ) if __name__ == "__main__": a__ = argparse.ArgumentParser() parser.add_argument('''--fix_and_overwrite''', action='''store_true''', help='''Whether to fix inconsistencies.''') a__ = parser.parse_args() check_dummies(args.fix_and_overwrite)
14
'''simple docstring''' from __future__ import annotations from random import choice def a_ ( lowerCamelCase : Optional[Any] ): return choice(lowerCamelCase ) def a_ ( lowerCamelCase : list[int] , lowerCamelCase : int ): lowerCAmelCase = random_pivot(lowerCamelCase ) # partition based on pivot # linear time lowerCAmelCase = [e for e in lst if e < pivot] lowerCAmelCase = [e for e in lst if e > pivot] # if we get lucky, pivot might be the element we want. # we can easily see this: # small (elements smaller than k) # + pivot (kth element) # + big (elements larger than k) if len(lowerCamelCase ) == k - 1: return pivot # pivot is in elements bigger than k elif len(lowerCamelCase ) < k - 1: return kth_number(lowerCamelCase , k - len(lowerCamelCase ) - 1 ) # pivot is in elements smaller than k else: return kth_number(lowerCamelCase , lowerCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
133
0
"""simple docstring""" from __future__ import annotations from collections import namedtuple from dataclasses import dataclass @dataclass class __magic_name__ : __A : int __A : TreeNode | None = None __A : TreeNode | None = None UpperCAmelCase = namedtuple('''CoinsDistribResult''', '''moves excess''') def lowerCamelCase (a_ :TreeNode | None) -> int: if root is None: return 0 # Validation def count_nodes(a_ :TreeNode | None) -> int: if node is None: return 0 return count_nodes(node.left) + count_nodes(node.right) + 1 def count_coins(a_ :TreeNode | None) -> int: if node is None: return 0 return count_coins(node.left) + count_coins(node.right) + node.data if count_nodes(a_) != count_coins(a_): raise ValueError('''The nodes number should be same as the number of coins''') # Main calculation def get_distrib(a_ :TreeNode | None) -> CoinsDistribResult: if node is None: return CoinsDistribResult(0 , 1) lowercase :List[Any] = get_distrib(node.left) lowercase :List[str] = get_distrib(node.right) lowercase :str = 1 - left_distrib_excess lowercase :List[str] = 1 - right_distrib_excess lowercase :Any = ( left_distrib_moves + right_distrib_moves + abs(a_) + abs(a_) ) lowercase :Tuple = node.data - coins_to_left - coins_to_right return CoinsDistribResult(a_ , a_) return get_distrib(a_)[0] if __name__ == "__main__": import doctest doctest.testmod()
711
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase () -> tuple[list[int], int]: lowercase :Any = [randint(-1000 , 1000) for i in range(10)] lowercase :Any = randint(-5000 , 5000) return (arr, r) UpperCAmelCase = make_dataset() def lowerCamelCase (a_ :list[int] , a_ :int) -> tuple[int, ...]: for triplet in permutations(a_ , 3): if sum(a_) == target: return tuple(sorted(a_)) return (0, 0, 0) def lowerCamelCase (a_ :list[int] , a_ :int) -> tuple[int, int, int]: arr.sort() lowercase :Union[str, Any] = len(a_) for i in range(n - 1): lowercase , lowercase :Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase () -> tuple[float, float]: lowercase :int = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' lowercase :Optional[Any] = ''' triplet_sum1(*dataset) ''' lowercase :Union[str, Any] = ''' triplet_sum2(*dataset) ''' lowercase :Dict = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_0000) lowercase :Optional[int] = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_0000) return (min(a_), min(a_)) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
475
0
from typing import Optional, Tuple import jax import jax.numpy as jnp from flax import linen as nn from flax.core.frozen_dict import FrozenDict from transformers import CLIPConfig, FlaxPreTrainedModel from transformers.models.clip.modeling_flax_clip import FlaxCLIPVisionModule def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase=1e-12): SCREAMING_SNAKE_CASE = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_UpperCAmelCase , axis=1) , a_min=_UpperCAmelCase)).T SCREAMING_SNAKE_CASE = jnp.divide(emb_a.T , jnp.clip(jnp.linalg.norm(_UpperCAmelCase , axis=1) , a_min=_UpperCAmelCase)).T return jnp.matmul(_UpperCAmelCase , norm_emb_a.T) class _snake_case ( nn.Module ): _lowercase : CLIPConfig _lowercase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self) -> Optional[int]: SCREAMING_SNAKE_CASE = FlaxCLIPVisionModule(self.config.vision_config) SCREAMING_SNAKE_CASE = nn.Dense(self.config.projection_dim , use_bias=a , dtype=self.dtype) SCREAMING_SNAKE_CASE = self.param('concept_embeds' , jax.nn.initializers.ones , (17, self.config.projection_dim)) SCREAMING_SNAKE_CASE = self.param( 'special_care_embeds' , jax.nn.initializers.ones , (3, self.config.projection_dim)) SCREAMING_SNAKE_CASE = self.param('concept_embeds_weights' , jax.nn.initializers.ones , (17,)) SCREAMING_SNAKE_CASE = self.param('special_care_embeds_weights' , jax.nn.initializers.ones , (3,)) def __call__( self , a) -> Tuple: SCREAMING_SNAKE_CASE = self.vision_model(a)[1] SCREAMING_SNAKE_CASE = self.visual_projection(a) SCREAMING_SNAKE_CASE = jax_cosine_distance(a , self.special_care_embeds) SCREAMING_SNAKE_CASE = jax_cosine_distance(a , self.concept_embeds) # increase this value to create a stronger `nfsw` filter # at the cost of increasing the possibility of filtering benign image inputs SCREAMING_SNAKE_CASE = 0.0 SCREAMING_SNAKE_CASE = special_cos_dist - self.special_care_embeds_weights[None, :] + adjustment SCREAMING_SNAKE_CASE = jnp.round(a , 3) SCREAMING_SNAKE_CASE = jnp.any(special_scores > 0 , axis=1 , keepdims=a) # Use a lower threshold if an image has any special care concept SCREAMING_SNAKE_CASE = is_special_care * 0.01 SCREAMING_SNAKE_CASE = cos_dist - self.concept_embeds_weights[None, :] + special_adjustment SCREAMING_SNAKE_CASE = jnp.round(a , 3) SCREAMING_SNAKE_CASE = jnp.any(concept_scores > 0 , axis=1) return has_nsfw_concepts class _snake_case ( A__ ): _lowercase : Optional[Any] = CLIPConfig _lowercase : Optional[Any] = '''clip_input''' _lowercase : Dict = FlaxStableDiffusionSafetyCheckerModule def __init__( self , a , a = None , a = 0 , a = jnp.floataa , a = True , **a , ) -> Dict: if input_shape is None: SCREAMING_SNAKE_CASE = (1, 224, 224, 3) SCREAMING_SNAKE_CASE = self.module_class(config=a , dtype=a , **a) super().__init__(a , a , input_shape=a , seed=a , dtype=a , _do_init=_do_init) def SCREAMING_SNAKE_CASE__ ( self , a , a , a = None) -> FrozenDict: # init input tensor SCREAMING_SNAKE_CASE = jax.random.normal(a , a) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE = jax.random.split(a) SCREAMING_SNAKE_CASE = {'params': params_rng, 'dropout': dropout_rng} SCREAMING_SNAKE_CASE = self.module.init(a , a)['params'] return random_params def __call__( self , a , a = None , ) -> Optional[int]: SCREAMING_SNAKE_CASE = jnp.transpose(a , (0, 2, 3, 1)) return self.module.apply( {'params': params or self.params} , jnp.array(a , dtype=jnp.floataa) , rngs={} , )
73
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) A : Union[str, Any] = { 'configuration_convnext': ['CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ConvNextConfig', 'ConvNextOnnxConfig'] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = ['ConvNextFeatureExtractor'] A : Optional[Any] = ['ConvNextImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : str = [ 'CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'ConvNextForImageClassification', 'ConvNextModel', 'ConvNextPreTrainedModel', 'ConvNextBackbone', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A : List[str] = [ 'TFConvNextForImageClassification', 'TFConvNextModel', 'TFConvNextPreTrainedModel', ] if TYPE_CHECKING: from .configuration_convnext import CONVNEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, ConvNextConfig, ConvNextOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_convnext import ConvNextFeatureExtractor from .image_processing_convnext import ConvNextImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_convnext import ( CONVNEXT_PRETRAINED_MODEL_ARCHIVE_LIST, ConvNextBackbone, ConvNextForImageClassification, ConvNextModel, ConvNextPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_convnext import TFConvNextForImageClassification, TFConvNextModel, TFConvNextPreTrainedModel else: import sys A : int = _LazyModule(__name__, globals()['__file__'], _import_structure)
15
0
import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ : Optional[Any] = logging.get_logger(__name__) # pylint: disable=invalid-name def _lowerCAmelCase ( _a : Union[List, PIL.Image.Image, torch.Tensor] ) -> Tuple: warnings.warn( """The preprocess method is deprecated and will be removed in a future version. Please""" """ use VaeImageProcessor.preprocess instead""" , _a , ) if isinstance(_a , torch.Tensor ): return image elif isinstance(_a , PIL.Image.Image ): lowerCAmelCase_ : Any = [image] if isinstance(image[0] , PIL.Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ : Tuple = image[0].size lowerCAmelCase_ , lowerCAmelCase_ : Dict = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 lowerCAmelCase_ : Optional[Any] = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION["""lanczos"""] ) )[None, :] for i in image] lowerCAmelCase_ : Union[str, Any] = np.concatenate(_a , axis=0 ) lowerCAmelCase_ : List[Any] = np.array(_a ).astype(np.floataa ) / 255.0 lowerCAmelCase_ : int = image.transpose(0 , 3 , 1 , 2 ) lowerCAmelCase_ : Optional[int] = 2.0 * image - 1.0 lowerCAmelCase_ : str = torch.from_numpy(_a ) elif isinstance(image[0] , torch.Tensor ): lowerCAmelCase_ : List[str] = torch.cat(_a , dim=0 ) return image def _lowerCAmelCase ( _a : Union[List, PIL.Image.Image, torch.Tensor] ) -> List[str]: if isinstance(_a , torch.Tensor ): return mask elif isinstance(_a , PIL.Image.Image ): lowerCAmelCase_ : Any = [mask] if isinstance(mask[0] , PIL.Image.Image ): lowerCAmelCase_ , lowerCAmelCase_ : Any = mask[0].size lowerCAmelCase_ , lowerCAmelCase_ : Union[str, Any] = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 lowerCAmelCase_ : Any = [np.array(m.convert("""L""" ).resize((w, h) , resample=PIL_INTERPOLATION["""nearest"""] ) )[None, :] for m in mask] lowerCAmelCase_ : int = np.concatenate(_a , axis=0 ) lowerCAmelCase_ : Union[str, Any] = mask.astype(np.floataa ) / 255.0 lowerCAmelCase_ : Optional[int] = 0 lowerCAmelCase_ : Dict = 1 lowerCAmelCase_ : Optional[Any] = torch.from_numpy(_a ) elif isinstance(mask[0] , torch.Tensor ): lowerCAmelCase_ : int = torch.cat(_a , dim=0 ) return mask class lowercase__ ( __A ): __UpperCamelCase = 42 __UpperCamelCase = 42 def __init__( self , _lowercase , _lowercase ): super().__init__() self.register_modules(unet=_lowercase , scheduler=_lowercase ) @torch.no_grad() def __call__( self , _lowercase , _lowercase , _lowercase = 250 , _lowercase = 0.0 , _lowercase = 10 , _lowercase = 10 , _lowercase = None , _lowercase = "pil" , _lowercase = True , ): lowerCAmelCase_ : List[Any] = image lowerCAmelCase_ : Dict = _preprocess_image(_lowercase ) lowerCAmelCase_ : List[str] = original_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase_ : Union[str, Any] = _preprocess_mask(_lowercase ) lowerCAmelCase_ : int = mask_image.to(device=self.device , dtype=self.unet.dtype ) lowerCAmelCase_ : Union[str, Any] = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(_lowercase , _lowercase ) and len(_lowercase ) != batch_size: raise ValueError( F'You have passed a list of generators of length {len(_lowercase )}, but requested an effective batch' F' size of {batch_size}. Make sure the batch size matches the length of the generators.' ) lowerCAmelCase_ : Dict = original_image.shape lowerCAmelCase_ : Tuple = randn_tensor(_lowercase , generator=_lowercase , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(_lowercase , _lowercase , _lowercase , self.device ) lowerCAmelCase_ : List[str] = eta lowerCAmelCase_ : str = self.scheduler.timesteps[0] + 1 lowerCAmelCase_ : Optional[Any] = generator[0] if isinstance(_lowercase , _lowercase ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual lowerCAmelCase_ : int = self.unet(_lowercase , _lowercase ).sample # compute previous image: x_t -> x_t-1 lowerCAmelCase_ : Tuple = self.scheduler.step(_lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase ).prev_sample else: # compute the reverse: x_t-1 -> x_t lowerCAmelCase_ : str = self.scheduler.undo_step(_lowercase , _lowercase , _lowercase ) lowerCAmelCase_ : Any = t lowerCAmelCase_ : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowerCAmelCase_ : Union[str, Any] = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowerCAmelCase_ : Any = self.numpy_to_pil(_lowercase ) if not return_dict: return (image,) return ImagePipelineOutput(images=_lowercase )
440
from dataclasses import dataclass from typing import Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, randn_tensor from .scheduling_utils import SchedulerMixin @dataclass class lowercase__ ( __A ): __UpperCamelCase = 42 __UpperCamelCase = 42 __UpperCamelCase = None class lowercase__ ( __A , __A ): __UpperCamelCase = 2 @register_to_config def __init__( self , _lowercase = 0.02 , _lowercase = 100 , _lowercase = 1.007 , _lowercase = 80 , _lowercase = 0.05 , _lowercase = 50 , ): # standard deviation of the initial noise distribution lowerCAmelCase_ : int = sigma_max # setable values lowerCAmelCase_ : int = None lowerCAmelCase_ : np.IntTensor = None lowerCAmelCase_ : torch.FloatTensor = None # sigma(t_i) def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ): return sample def UpperCAmelCase__ ( self , _lowercase , _lowercase = None ): lowerCAmelCase_ : int = num_inference_steps lowerCAmelCase_ : int = np.arange(0 , self.num_inference_steps )[::-1].copy() lowerCAmelCase_ : List[Any] = torch.from_numpy(_lowercase ).to(_lowercase ) lowerCAmelCase_ : List[str] = [ ( self.config.sigma_max**2 * (self.config.sigma_min**2 / self.config.sigma_max**2) ** (i / (num_inference_steps - 1)) ) for i in self.timesteps ] lowerCAmelCase_ : Optional[int] = torch.tensor(_lowercase , dtype=torch.floataa , device=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase = None ): if self.config.s_min <= sigma <= self.config.s_max: lowerCAmelCase_ : List[Any] = min(self.config.s_churn / self.num_inference_steps , 2**0.5 - 1 ) else: lowerCAmelCase_ : List[str] = 0 # sample eps ~ N(0, S_noise^2 * I) lowerCAmelCase_ : List[Any] = self.config.s_noise * randn_tensor(sample.shape , generator=_lowercase ).to(sample.device ) lowerCAmelCase_ : Optional[int] = sigma + gamma * sigma lowerCAmelCase_ : int = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): lowerCAmelCase_ : Union[str, Any] = sample_hat + sigma_hat * model_output lowerCAmelCase_ : Dict = (sample_hat - pred_original_sample) / sigma_hat lowerCAmelCase_ : List[Any] = sample_hat + (sigma_prev - sigma_hat) * derivative if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase , _lowercase = True , ): lowerCAmelCase_ : str = sample_prev + sigma_prev * model_output lowerCAmelCase_ : List[Any] = (sample_prev - pred_original_sample) / sigma_prev lowerCAmelCase_ : Tuple = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) if not return_dict: return (sample_prev, derivative) return KarrasVeOutput( prev_sample=_lowercase , derivative=_lowercase , pred_original_sample=_lowercase ) def UpperCAmelCase__ ( self , _lowercase , _lowercase , _lowercase ): raise NotImplementedError()
440
1
'''simple docstring''' import inspect import warnings from typing import Any, Dict, Optional, Union from packaging import version def SCREAMING_SNAKE_CASE ( *lowerCAmelCase__ : str , lowerCAmelCase__ : Optional[Union[Dict, Any]] = None , lowerCAmelCase__ : List[str]=True , lowerCAmelCase__ : Optional[int]=2) -> Union[str, Any]: '''simple docstring''' from .. import __version__ _lowercase : Dict = take_from _lowercase : Optional[int] = () if not isinstance(args[0] , lowerCAmelCase__): _lowercase : List[str] = (args,) for attribute, version_name, message in args: if version.parse(version.parse(lowerCAmelCase__).base_version) >= version.parse(lowerCAmelCase__): raise ValueError( F'''The deprecation tuple {(attribute, version_name, message)} should be removed since diffusers\'''' F''' version {__version__} is >= {version_name}''') _lowercase : Dict = None if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and attribute in deprecated_kwargs: values += (deprecated_kwargs.pop(lowerCAmelCase__),) _lowercase : Optional[int] = F'''The `{attribute}` argument is deprecated and will be removed in version {version_name}.''' elif hasattr(lowerCAmelCase__ , lowerCAmelCase__): values += (getattr(lowerCAmelCase__ , lowerCAmelCase__),) _lowercase : Union[str, Any] = F'''The `{attribute}` attribute is deprecated and will be removed in version {version_name}.''' elif deprecated_kwargs is None: _lowercase : Optional[Any] = F'''`{attribute}` is deprecated and will be removed in version {version_name}.''' if warning is not None: _lowercase : str = warning + ' ' if standard_warn else '' warnings.warn(warning + message , lowerCAmelCase__ , stacklevel=lowerCAmelCase__) if isinstance(lowerCAmelCase__ , lowerCAmelCase__) and len(lowerCAmelCase__) > 0: _lowercase : Tuple = inspect.getouterframes(inspect.currentframe())[1] _lowercase : int = call_frame.filename _lowercase : Optional[Any] = call_frame.lineno _lowercase : List[str] = call_frame.function _lowercase , _lowercase : Optional[Any] = next(iter(deprecated_kwargs.items())) raise TypeError(F'''{function} in {filename} line {line_number-1} got an unexpected keyword argument `{key}`''') if len(lowerCAmelCase__) == 0: return elif len(lowerCAmelCase__) == 1: return values[0] return values
125
'''simple docstring''' from dataclasses import dataclass from typing import Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, Encoder, VectorQuantizer @dataclass class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ ): '''simple docstring''' lowerCAmelCase__ : torch.FloatTensor class __SCREAMING_SNAKE_CASE ( lowerCAmelCase__ , lowerCAmelCase__ ): '''simple docstring''' @register_to_config def __init__( self : Optional[Any] ,UpperCamelCase : int = 3 ,UpperCamelCase : int = 3 ,UpperCamelCase : Tuple[str] = ("DownEncoderBlock2D",) ,UpperCamelCase : Tuple[str] = ("UpDecoderBlock2D",) ,UpperCamelCase : Tuple[int] = (64,) ,UpperCamelCase : int = 1 ,UpperCamelCase : str = "silu" ,UpperCamelCase : int = 3 ,UpperCamelCase : int = 32 ,UpperCamelCase : int = 256 ,UpperCamelCase : int = 32 ,UpperCamelCase : Optional[int] = None ,UpperCamelCase : float = 0.1_8_2_1_5 ,UpperCamelCase : str = "group" ,) -> List[Any]: super().__init__() # pass init params to Encoder _lowercase : Any = Encoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,down_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,act_fn=UpperCamelCase ,norm_num_groups=UpperCamelCase ,double_z=UpperCamelCase ,) _lowercase : Tuple = vq_embed_dim if vq_embed_dim is not None else latent_channels _lowercase : List[str] = nn.Convad(UpperCamelCase ,UpperCamelCase ,1 ) _lowercase : Dict = VectorQuantizer(UpperCamelCase ,UpperCamelCase ,beta=0.2_5 ,remap=UpperCamelCase ,sane_index_shape=UpperCamelCase ) _lowercase : List[str] = nn.Convad(UpperCamelCase ,UpperCamelCase ,1 ) # pass init params to Decoder _lowercase : Optional[Any] = Decoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,up_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,act_fn=UpperCamelCase ,norm_num_groups=UpperCamelCase ,norm_type=UpperCamelCase ,) @apply_forward_hook def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = True ) -> VQEncoderOutput: _lowercase : Optional[int] = self.encoder(UpperCamelCase ) _lowercase : Any = self.quant_conv(UpperCamelCase ) if not return_dict: return (h,) return VQEncoderOutput(latents=UpperCamelCase ) @apply_forward_hook def _lowerCamelCase ( self : Optional[int] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = False ,UpperCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: # also go through quantization layer if not force_not_quantize: _lowercase , _lowercase , _lowercase : Optional[int] = self.quantize(UpperCamelCase ) else: _lowercase : Tuple = h _lowercase : Optional[int] = self.post_quant_conv(UpperCamelCase ) _lowercase : Dict = self.decoder(UpperCamelCase ,quant if self.config.norm_type == 'spatial' else None ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) def _lowerCamelCase ( self : Optional[Any] ,UpperCamelCase : torch.FloatTensor ,UpperCamelCase : bool = True ) -> Union[DecoderOutput, torch.FloatTensor]: _lowercase : Dict = sample _lowercase : Dict = self.encode(UpperCamelCase ).latents _lowercase : str = self.decode(UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase )
125
1
"""simple docstring""" import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class lowerCAmelCase_ ( nn.Module ): """simple docstring""" _lowerCAmelCase : int = 42 _lowerCAmelCase : Optional[Any] = 42 _lowerCAmelCase : Optional[Any] = 0.0 _lowerCAmelCase : List[str] = 1 _lowerCAmelCase : Any = 1 _lowerCAmelCase : List[str] = True _lowerCAmelCase : Union[str, Any] = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[Any] = False _lowerCAmelCase : List[str] = jnp.floataa def snake_case ( self ): """simple docstring""" snake_case = [] snake_case = [] for i in range(self.num_layers ): snake_case = self.in_channels if i == 0 else self.out_channels snake_case = FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) snake_case = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) snake_case = resnets snake_case = attentions if self.add_downsample: snake_case = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True ): """simple docstring""" snake_case = () for resnet, attn in zip(self.resnets , self.attentions ): snake_case = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) snake_case = attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: snake_case = self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase_ ( nn.Module ): """simple docstring""" _lowerCAmelCase : str = 42 _lowerCAmelCase : str = 42 _lowerCAmelCase : List[Any] = 0.0 _lowerCAmelCase : Optional[Any] = 1 _lowerCAmelCase : Optional[Any] = True _lowerCAmelCase : List[str] = jnp.floataa def snake_case ( self ): """simple docstring""" snake_case = [] for i in range(self.num_layers ): snake_case = self.in_channels if i == 0 else self.out_channels snake_case = FlaxResnetBlockaD( in_channels=lowercase_ , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) snake_case = resnets if self.add_downsample: snake_case = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True ): """simple docstring""" snake_case = () for resnet in self.resnets: snake_case = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) output_states += (hidden_states,) if self.add_downsample: snake_case = self.downsamplers_a(lowercase_ ) output_states += (hidden_states,) return hidden_states, output_states class lowerCAmelCase_ ( nn.Module ): """simple docstring""" _lowerCAmelCase : Any = 42 _lowerCAmelCase : str = 42 _lowerCAmelCase : int = 42 _lowerCAmelCase : Optional[int] = 0.0 _lowerCAmelCase : Union[str, Any] = 1 _lowerCAmelCase : int = 1 _lowerCAmelCase : Union[str, Any] = True _lowerCAmelCase : Any = False _lowerCAmelCase : List[str] = False _lowerCAmelCase : Dict = False _lowerCAmelCase : Any = jnp.floataa def snake_case ( self ): """simple docstring""" snake_case = [] snake_case = [] for i in range(self.num_layers ): snake_case = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case = self.prev_output_channel if i == 0 else self.out_channels snake_case = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) snake_case = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) snake_case = resnets snake_case = attentions if self.add_upsample: snake_case = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True ): """simple docstring""" for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states snake_case = res_hidden_states_tuple[-1] snake_case = res_hidden_states_tuple[:-1] snake_case = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) snake_case = attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: snake_case = self.upsamplers_a(lowercase_ ) return hidden_states class lowerCAmelCase_ ( nn.Module ): """simple docstring""" _lowerCAmelCase : Optional[Any] = 42 _lowerCAmelCase : Dict = 42 _lowerCAmelCase : Optional[Any] = 42 _lowerCAmelCase : Tuple = 0.0 _lowerCAmelCase : List[Any] = 1 _lowerCAmelCase : Dict = True _lowerCAmelCase : List[str] = jnp.floataa def snake_case ( self ): """simple docstring""" snake_case = [] for i in range(self.num_layers ): snake_case = self.in_channels if (i == self.num_layers - 1) else self.out_channels snake_case = self.prev_output_channel if i == 0 else self.out_channels snake_case = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) snake_case = resnets if self.add_upsample: snake_case = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True ): """simple docstring""" for resnet in self.resnets: # pop res hidden states snake_case = res_hidden_states_tuple[-1] snake_case = res_hidden_states_tuple[:-1] snake_case = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) snake_case = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) if self.add_upsample: snake_case = self.upsamplers_a(lowercase_ ) return hidden_states class lowerCAmelCase_ ( nn.Module ): """simple docstring""" _lowerCAmelCase : str = 42 _lowerCAmelCase : Tuple = 0.0 _lowerCAmelCase : Any = 1 _lowerCAmelCase : Optional[int] = 1 _lowerCAmelCase : Optional[int] = False _lowerCAmelCase : int = False _lowerCAmelCase : Dict = jnp.floataa def snake_case ( self ): """simple docstring""" snake_case = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] snake_case = [] for _ in range(self.num_layers ): snake_case = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(lowercase_ ) snake_case = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(lowercase_ ) snake_case = resnets snake_case = attentions def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase=True ): """simple docstring""" snake_case = self.resnets[0](lowercase_ , lowercase_ ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): snake_case = attn(lowercase_ , lowercase_ , deterministic=lowercase_ ) snake_case = resnet(lowercase_ , lowercase_ , deterministic=lowercase_ ) return hidden_states
708
"""simple docstring""" def lowerCAmelCase__ ( _UpperCamelCase : int , _UpperCamelCase : int ) -> int: """simple docstring""" return int((input_a, input_a).count(0 ) == 0 ) def lowerCAmelCase__ ( ) -> None: """simple docstring""" assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
104
0
'''simple docstring''' from __future__ import annotations def UpperCamelCase_ ( _UpperCAmelCase : list , _UpperCAmelCase : int | None = None , _UpperCAmelCase : int | None = None ) -> List[str]: """simple docstring""" if start is None: _UpperCAmelCase : Any = 0 if end is None: _UpperCAmelCase : List[str] = len(_UpperCAmelCase ) - 1 if start >= end: return _UpperCAmelCase : Optional[int] = (start + end) // 2 slowsort(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) slowsort(_UpperCAmelCase , mid + 1 , _UpperCAmelCase ) if sequence[end] < sequence[mid]: _UpperCAmelCase : Union[str, Any] = sequence[mid], sequence[end] slowsort(_UpperCAmelCase , _UpperCAmelCase , end - 1 ) if __name__ == "__main__": from doctest import testmod testmod()
244
import argparse import os import evaluate import torch from datasets import load_dataset from torch.optim import AdamW from torch.utils.data import DataLoader from transformers import AutoModelForSequenceClassification, AutoTokenizer, get_linear_schedule_with_warmup, set_seed from accelerate import Accelerator, DistributedType ######################################################################## # This is a fully working simple example to use Accelerate, # specifically showcasing how to properly calculate the metrics on the # validation dataset when in a distributed system, and builds off the # `nlp_example.py` script. # # This example trains a Bert base model on GLUE MRPC # in any of the following settings (with the same script): # - single CPU or single GPU # - multi GPUS (using PyTorch distributed mode) # - (multi) TPUs # - fp16 (mixed-precision) or fp32 (normal precision) # # To help focus on the differences in the code, building `DataLoaders` # was refactored into its own function. # New additions from the base script can be found quickly by # looking for the # New Code # tags # # To run it in each of these various modes, follow the instructions # in the readme for examples: # https://github.com/huggingface/accelerate/tree/main/examples # ######################################################################## a_ :int = 16 a_ :Tuple = 32 def lowercase_ (A : Accelerator , A : int = 1_6 ): snake_case__ : Union[str, Any] = AutoTokenizer.from_pretrained('bert-base-cased' ) snake_case__ : Tuple = load_dataset('glue' , 'mrpc' ) def tokenize_function(A : int ): # max_length=None => use the model max length (it's actually the default) snake_case__ : Any = tokenizer(examples['sentence1'] , examples['sentence2'] , truncation=A , max_length=A ) return outputs # Apply the method we just defined to all the examples in all the splits of the dataset # starting with the main process first: with accelerator.main_process_first(): snake_case__ : Union[str, Any] = datasets.map( A , batched=A , remove_columns=['idx', 'sentence1', 'sentence2'] , ) # We also rename the 'label' column to 'labels' which is the expected name for labels by the models of the # transformers library snake_case__ : List[Any] = tokenized_datasets.rename_column('label' , 'labels' ) def collate_fn(A : str ): # On TPU it's best to pad everything to the same length or training will be very slow. snake_case__ : Any = 1_2_8 if accelerator.distributed_type == DistributedType.TPU else None # When using mixed precision we want round multiples of 8/16 if accelerator.mixed_precision == "fp8": snake_case__ : Tuple = 1_6 elif accelerator.mixed_precision != "no": snake_case__ : Optional[int] = 8 else: snake_case__ : Optional[Any] = None return tokenizer.pad( A , padding='longest' , max_length=A , pad_to_multiple_of=A , return_tensors='pt' , ) # Instantiate dataloaders. snake_case__ : Union[str, Any] = DataLoader( tokenized_datasets['train'] , shuffle=A , collate_fn=A , batch_size=A ) snake_case__ : int = DataLoader( tokenized_datasets['validation'] , shuffle=A , collate_fn=A , batch_size=A ) return train_dataloader, eval_dataloader # For testing only if os.environ.get("TESTING_MOCKED_DATALOADERS", None) == "1": from accelerate.test_utils.training import mocked_dataloaders a_ :Tuple = mocked_dataloaders # noqa: F811 def lowercase_ (A : List[str] , A : Optional[Any] ): # For testing only if os.environ.get('TESTING_MOCKED_DATALOADERS' , A ) == "1": snake_case__ : int = 2 # Initialize accelerator snake_case__ : Union[str, Any] = Accelerator(cpu=args.cpu , mixed_precision=args.mixed_precision ) # Sample hyper-parameters for learning rate, batch size, seed and a few other HPs snake_case__ : Any = config['lr'] snake_case__ : Dict = int(config['num_epochs'] ) snake_case__ : Tuple = int(config['seed'] ) snake_case__ : Any = int(config['batch_size'] ) snake_case__ : Optional[int] = evaluate.load('glue' , 'mrpc' ) # If the batch size is too big we use gradient accumulation snake_case__ : Dict = 1 if batch_size > MAX_GPU_BATCH_SIZE and accelerator.distributed_type != DistributedType.TPU: snake_case__ : int = batch_size // MAX_GPU_BATCH_SIZE snake_case__ : List[Any] = MAX_GPU_BATCH_SIZE set_seed(A ) snake_case__ , snake_case__ : str = get_dataloaders(A , A ) # Instantiate the model (we build the model here so that the seed also control new weights initialization) snake_case__ : Optional[Any] = AutoModelForSequenceClassification.from_pretrained('bert-base-cased' , return_dict=A ) # We could avoid this line since the accelerator is set with `device_placement=True` (default value). # Note that if you are placing tensors on devices manually, this line absolutely needs to be before the optimizer # creation otherwise training will not work on TPU (`accelerate` will kindly throw an error to make us aware of that). snake_case__ : Union[str, Any] = model.to(accelerator.device ) # Instantiate optimizer snake_case__ : int = AdamW(params=model.parameters() , lr=A ) # Instantiate scheduler snake_case__ : Any = get_linear_schedule_with_warmup( optimizer=A , num_warmup_steps=1_0_0 , num_training_steps=(len(A ) * num_epochs) // gradient_accumulation_steps , ) # Prepare everything # There is no specific order to remember, we just need to unpack the objects in the same order we gave them to the # prepare method. snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ : Optional[int] = accelerator.prepare( A , A , A , A , A ) # Now we train the model for epoch in range(A ): model.train() for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) snake_case__ : int = model(**A ) snake_case__ : Optional[Any] = outputs.loss snake_case__ : List[str] = loss / gradient_accumulation_steps accelerator.backward(A ) if step % gradient_accumulation_steps == 0: optimizer.step() lr_scheduler.step() optimizer.zero_grad() model.eval() snake_case__ : Optional[Any] = 0 for step, batch in enumerate(A ): # We could avoid this line since we set the accelerator with `device_placement=True`. batch.to(accelerator.device ) with torch.no_grad(): snake_case__ : Optional[Any] = model(**A ) snake_case__ : Dict = outputs.logits.argmax(dim=-1 ) snake_case__ , snake_case__ : int = accelerator.gather((predictions, batch['labels']) ) # New Code # # First we check if it's a distributed system if accelerator.use_distributed: # Then see if we're on the last batch of our eval dataloader if step == len(A ) - 1: # Last batch needs to be truncated on distributed systems as it contains additional samples snake_case__ : Union[str, Any] = predictions[: len(eval_dataloader.dataset ) - samples_seen] snake_case__ : Optional[Any] = references[: len(eval_dataloader.dataset ) - samples_seen] else: # Otherwise we add the number of samples seen samples_seen += references.shape[0] # All of this can be avoided if you use `Accelerator.gather_for_metrics` instead of `Accelerator.gather`: # accelerator.gather_for_metrics((predictions, batch["labels"])) metric.add_batch( predictions=A , references=A , ) snake_case__ : str = metric.compute() # Use accelerator.print to print only on the main process. accelerator.print(F'''epoch {epoch}:''' , A ) def lowercase_ (): snake_case__ : Optional[Any] = argparse.ArgumentParser(description='Simple example of training script.' ) parser.add_argument( '--mixed_precision' , type=A , default=A , choices=['no', 'fp16', 'bf16', 'fp8'] , help='Whether to use mixed precision. Choose' 'between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >= 1.10.' 'and an Nvidia Ampere GPU.' , ) parser.add_argument('--cpu' , action='store_true' , help='If passed, will train on the CPU.' ) snake_case__ : str = parser.parse_args() snake_case__ : Any = {'lr': 2e-5, 'num_epochs': 3, 'seed': 4_2, 'batch_size': 1_6} training_function(A , A ) if __name__ == "__main__": main()
478
0
"""simple docstring""" import unittest from transformers import MraConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_torch_available(): import torch from transformers import ( MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, MraModel, ) from transformers.models.mra.modeling_mra import MRA_PRETRAINED_MODEL_ARCHIVE_LIST class snake_case : '''simple docstring''' def __init__( self : Optional[int], _lowerCamelCase : List[Any], _lowerCamelCase : Any=2, _lowerCamelCase : Any=8, _lowerCamelCase : Optional[Any]=True, _lowerCamelCase : List[str]=True, _lowerCamelCase : Optional[int]=True, _lowerCamelCase : Union[str, Any]=True, _lowerCamelCase : Optional[Any]=99, _lowerCamelCase : List[Any]=16, _lowerCamelCase : int=5, _lowerCamelCase : List[str]=2, _lowerCamelCase : int=36, _lowerCamelCase : List[Any]="gelu", _lowerCamelCase : Union[str, Any]=0.0, _lowerCamelCase : Optional[Any]=0.0, _lowerCamelCase : List[Any]=5_12, _lowerCamelCase : Union[str, Any]=16, _lowerCamelCase : str=2, _lowerCamelCase : List[Any]=0.02, _lowerCamelCase : int=3, _lowerCamelCase : Any=4, _lowerCamelCase : Dict=None, ): '''simple docstring''' __A = parent __A = batch_size __A = seq_length __A = is_training __A = use_input_mask __A = use_token_type_ids __A = use_labels __A = vocab_size __A = hidden_size __A = num_hidden_layers __A = num_attention_heads __A = intermediate_size __A = hidden_act __A = hidden_dropout_prob __A = attention_probs_dropout_prob __A = max_position_embeddings __A = type_vocab_size __A = type_sequence_label_size __A = initializer_range __A = num_labels __A = num_choices __A = scope def _SCREAMING_SNAKE_CASE ( self : int ): '''simple docstring''' __A = ids_tensor([self.batch_size, self.seq_length], self.vocab_size ) __A = None if self.use_input_mask: __A = random_attention_mask([self.batch_size, self.seq_length] ) __A = None if self.use_token_type_ids: __A = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size ) __A = None __A = None __A = None if self.use_labels: __A = ids_tensor([self.batch_size], self.type_sequence_label_size ) __A = ids_tensor([self.batch_size, self.seq_length], self.num_labels ) __A = ids_tensor([self.batch_size], self.num_choices ) __A = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' return MraConfig( vocab_size=self.vocab_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, max_position_embeddings=self.max_position_embeddings, type_vocab_size=self.type_vocab_size, is_decoder=_lowerCamelCase, initializer_range=self.initializer_range, ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.get_config() __A = 3_00 return config def _SCREAMING_SNAKE_CASE ( self : Optional[Any] ): '''simple docstring''' ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = self.prepare_config_and_inputs() __A = True __A = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) __A = ids_tensor([self.batch_size, self.seq_length], vocab_size=2 ) return ( config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels, encoder_hidden_states, encoder_attention_mask, ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : List[str], _lowerCamelCase : List[Any], _lowerCamelCase : List[Any], _lowerCamelCase : int, _lowerCamelCase : Any, _lowerCamelCase : Optional[Any], _lowerCamelCase : Any ): '''simple docstring''' __A = MraModel(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase ) __A = model(_lowerCamelCase, token_type_ids=_lowerCamelCase ) __A = model(_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : Optional[Any], _lowerCamelCase : List[Any], _lowerCamelCase : List[Any], _lowerCamelCase : Union[str, Any], _lowerCamelCase : Optional[int], _lowerCamelCase : Optional[Any], _lowerCamelCase : str, _lowerCamelCase : Any, _lowerCamelCase : List[str], ): '''simple docstring''' __A = True __A = MraModel(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model( _lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase, encoder_hidden_states=_lowerCamelCase, encoder_attention_mask=_lowerCamelCase, ) __A = model( _lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase, encoder_hidden_states=_lowerCamelCase, ) __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def _SCREAMING_SNAKE_CASE ( self : Tuple, _lowerCamelCase : Dict, _lowerCamelCase : Dict, _lowerCamelCase : Any, _lowerCamelCase : Dict, _lowerCamelCase : int, _lowerCamelCase : List[Any], _lowerCamelCase : Tuple ): '''simple docstring''' __A = MraForMaskedLM(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase, labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size) ) def _SCREAMING_SNAKE_CASE ( self : Any, _lowerCamelCase : List[str], _lowerCamelCase : Tuple, _lowerCamelCase : List[Any], _lowerCamelCase : Dict, _lowerCamelCase : int, _lowerCamelCase : Optional[int], _lowerCamelCase : Tuple ): '''simple docstring''' __A = MraForQuestionAnswering(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model( _lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase, start_positions=_lowerCamelCase, end_positions=_lowerCamelCase, ) self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length) ) def _SCREAMING_SNAKE_CASE ( self : List[Any], _lowerCamelCase : List[Any], _lowerCamelCase : List[str], _lowerCamelCase : Optional[int], _lowerCamelCase : Any, _lowerCamelCase : Optional[int], _lowerCamelCase : Optional[int], _lowerCamelCase : Optional[int] ): '''simple docstring''' __A = self.num_labels __A = MraForSequenceClassification(_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase, labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Optional[Any], _lowerCamelCase : str, _lowerCamelCase : List[Any], _lowerCamelCase : int, _lowerCamelCase : Optional[int], _lowerCamelCase : Optional[Any], _lowerCamelCase : List[Any], _lowerCamelCase : Union[str, Any] ): '''simple docstring''' __A = self.num_labels __A = MraForTokenClassification(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = model(_lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase, labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels) ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any], _lowerCamelCase : Any, _lowerCamelCase : Optional[int], _lowerCamelCase : int, _lowerCamelCase : List[str], _lowerCamelCase : Union[str, Any], _lowerCamelCase : List[str], _lowerCamelCase : Tuple ): '''simple docstring''' __A = self.num_choices __A = MraForMultipleChoice(config=_lowerCamelCase ) model.to(_lowerCamelCase ) model.eval() __A = input_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __A = token_type_ids.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __A = input_mask.unsqueeze(1 ).expand(-1, self.num_choices, -1 ).contiguous() __A = model( _lowerCamelCase, attention_mask=_lowerCamelCase, token_type_ids=_lowerCamelCase, labels=_lowerCamelCase, ) self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices) ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self.prepare_config_and_inputs() ( ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ( __A ) , ) = config_and_inputs __A = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class snake_case ( _lowerCAmelCase , unittest.TestCase ): '''simple docstring''' A_ : Any = ( ( MraModel, MraForMaskedLM, MraForMultipleChoice, MraForQuestionAnswering, MraForSequenceClassification, MraForTokenClassification, ) if is_torch_available() else () ) A_ : str = False A_ : str = False A_ : int = False A_ : Union[str, Any] = False A_ : Any = () def _SCREAMING_SNAKE_CASE ( self : Dict ): '''simple docstring''' __A = MraModelTester(self ) __A = ConfigTester(self, config_class=_lowerCamelCase, hidden_size=37 ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' self.config_tester.run_common_tests() def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __A = type self.model_tester.create_and_check_model(*_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : str ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def _SCREAMING_SNAKE_CASE ( self : List[str] ): '''simple docstring''' __A = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) @slow def _SCREAMING_SNAKE_CASE ( self : Optional[int] ): '''simple docstring''' for model_name in MRA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __A = MraModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip(reason='''MRA does not output attentions''' ) def _SCREAMING_SNAKE_CASE ( self : Tuple ): '''simple docstring''' return @require_torch class snake_case ( unittest.TestCase ): '''simple docstring''' @slow def _SCREAMING_SNAKE_CASE ( self : List[Any] ): '''simple docstring''' __A = MraModel.from_pretrained('''uw-madison/mra-base-512-4''' ) __A = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): __A = model(_lowerCamelCase )[0] __A = torch.Size((1, 2_56, 7_68) ) self.assertEqual(output.shape, _lowerCamelCase ) __A = torch.tensor( [[[-0.01_40, 0.08_30, -0.03_81], [0.15_46, 0.14_02, 0.02_20], [0.11_62, 0.08_51, 0.01_65]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], _lowerCamelCase, atol=1e-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Any ): '''simple docstring''' __A = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-512-4''' ) __A = torch.arange(2_56 ).unsqueeze(0 ) with torch.no_grad(): __A = model(_lowerCamelCase )[0] __A = 5_02_65 __A = torch.Size((1, 2_56, vocab_size) ) self.assertEqual(output.shape, _lowerCamelCase ) __A = torch.tensor( [[[9.25_95, -3.60_38, 11.88_19], [9.38_69, -3.26_93, 11.09_56], [11.85_24, -3.49_38, 13.12_10]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], _lowerCamelCase, atol=1e-4 ) ) @slow def _SCREAMING_SNAKE_CASE ( self : Union[str, Any] ): '''simple docstring''' __A = MraForMaskedLM.from_pretrained('''uw-madison/mra-base-4096-8-d3''' ) __A = torch.arange(40_96 ).unsqueeze(0 ) with torch.no_grad(): __A = model(_lowerCamelCase )[0] __A = 5_02_65 __A = torch.Size((1, 40_96, vocab_size) ) self.assertEqual(output.shape, _lowerCamelCase ) __A = torch.tensor( [[[5.47_89, -2.35_64, 7.50_64], [7.90_67, -1.33_69, 9.96_68], [9.07_12, -1.81_06, 7.03_80]]] ) self.assertTrue(torch.allclose(output[:, :3, :3], _lowerCamelCase, atol=1e-4 ) )
713
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.utils import ComputeEnvironment from .cluster import get_cluster_input from .config_args import cache_dir, default_config_file, default_yaml_config_file, load_config_from_file # noqa: F401 from .config_utils import _ask_field, _ask_options, _convert_compute_environment # noqa: F401 from .sagemaker import get_sagemaker_input lowercase_ = 'Launches a series of prompts to create and save a `default_config.yaml` configuration file for your training system. Should always be ran first on your machine' def lowerCAmelCase ( ): """simple docstring""" __A = _ask_options( '''In which compute environment are you running?''' , ['''This machine''', '''AWS (Amazon SageMaker)'''] , _convert_compute_environment , ) if compute_environment == ComputeEnvironment.AMAZON_SAGEMAKER: __A = get_sagemaker_input() else: __A = get_cluster_input() return config def lowerCAmelCase ( __UpperCamelCase=None ): """simple docstring""" if subparsers is not None: __A = subparsers.add_parser('''config''' , description=__UpperCamelCase ) else: __A = argparse.ArgumentParser('''Accelerate config command''' , description=__UpperCamelCase ) parser.add_argument( '''--config_file''' , default=__UpperCamelCase , help=( '''The path to use to store the config file. Will default to a file named default_config.yaml in the cache ''' '''location, which is the content of the environment `HF_HOME` suffixed with \'accelerate\', or if you don\'t have ''' '''such an environment variable, your cache directory (\'~/.cache\' or the content of `XDG_CACHE_HOME`) suffixed ''' '''with \'huggingface\'.''' ) , ) if subparsers is not None: parser.set_defaults(func=__UpperCamelCase ) return parser def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" __A = get_user_input() if args.config_file is not None: __A = args.config_file else: if not os.path.isdir(__UpperCamelCase ): os.makedirs(__UpperCamelCase ) __A = default_yaml_config_file if config_file.endswith('''.json''' ): config.to_json_file(__UpperCamelCase ) else: config.to_yaml_file(__UpperCamelCase ) print(f'accelerate configuration saved at {config_file}' ) def lowerCAmelCase ( ): """simple docstring""" __A = config_command_parser() __A = parser.parse_args() config_command(__UpperCamelCase ) if __name__ == "__main__": main()
215
0
'''simple docstring''' import argparse import requests import torch # pip3 install salesforce-lavis # I'm actually installing a slightly modified version: pip3 install git+https://github.com/nielsrogge/LAVIS.git@fix_lavis_float32 (there's also the fix_lavis branch) # also note: to convert Vicuna checkpoints, we had to include /home/niels/python_projects/checkpoints/FastChat/vicuna-7b in lavis/configs/models/blip2/blip2_instruct_vicuna7b.yaml # same for Vicuna-13b from lavis.models import load_model_and_preprocess from PIL import Image from transformers import ( AutoTokenizer, BlipImageProcessor, InstructBlipConfig, InstructBlipForConditionalGeneration, InstructBlipProcessor, InstructBlipQFormerConfig, InstructBlipVisionConfig, LlamaConfig, LlamaTokenizerFast, TaConfig, TaTokenizerFast, ) from transformers.utils.constants import OPENAI_CLIP_MEAN, OPENAI_CLIP_STD def SCREAMING_SNAKE_CASE ( ): lowercase = """https://raw.githubusercontent.com/salesforce/LAVIS/main/docs/_static/Confusing-Pictures.jpg""" lowercase = Image.open(requests.get(lowercase_ , stream=lowercase_ ).raw ).convert("""RGB""" ) return image def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): lowercase = [] # fmt: off # vision encoder rename_keys.append(("""visual_encoder.cls_token""", """vision_model.embeddings.class_embedding""") ) rename_keys.append(("""visual_encoder.pos_embed""", """vision_model.embeddings.position_embedding""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.weight""", """vision_model.embeddings.patch_embedding.weight""") ) rename_keys.append(("""visual_encoder.patch_embed.proj.bias""", """vision_model.embeddings.patch_embedding.bias""") ) rename_keys.append(("""ln_vision.weight""", """vision_model.post_layernorm.weight""") ) rename_keys.append(("""ln_vision.bias""", """vision_model.post_layernorm.bias""") ) for i in range(config.vision_config.num_hidden_layers ): rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.weight""", F"""vision_model.encoder.layers.{i}.layer_norm1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm1.bias""", F"""vision_model.encoder.layers.{i}.layer_norm1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.weight""", F"""vision_model.encoder.layers.{i}.layer_norm2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.norm2.bias""", F"""vision_model.encoder.layers.{i}.layer_norm2.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.qkv.weight""", F"""vision_model.encoder.layers.{i}.self_attn.qkv.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.weight""", F"""vision_model.encoder.layers.{i}.self_attn.projection.weight""",) ) rename_keys.append((F"""visual_encoder.blocks.{i}.attn.proj.bias""", F"""vision_model.encoder.layers.{i}.self_attn.projection.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc1.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc1.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc1.bias""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.weight""", F"""vision_model.encoder.layers.{i}.mlp.fc2.weight""") ) rename_keys.append((F"""visual_encoder.blocks.{i}.mlp.fc2.bias""", F"""vision_model.encoder.layers.{i}.mlp.fc2.bias""") ) # QFormer rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.weight""", """qformer.embeddings.layernorm.weight""") ) rename_keys.append(("""Qformer.bert.embeddings.LayerNorm.bias""", """qformer.embeddings.layernorm.bias""") ) # fmt: on return rename_keys def SCREAMING_SNAKE_CASE ( lowercase_ : Any , lowercase_ : Optional[int] , lowercase_ : Union[str, Any] ): lowercase = dct.pop(lowercase_ ) lowercase = val def SCREAMING_SNAKE_CASE ( lowercase_ : List[Any] , lowercase_ : Optional[int] ): for i in range(config.vision_config.num_hidden_layers ): # read in original q and v biases lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.q_bias""" ) lowercase = state_dict.pop(F"""visual_encoder.blocks.{i}.attn.v_bias""" ) # next, set bias in the state dict lowercase = torch.cat((q_bias, torch.zeros_like(lowercase_ , requires_grad=lowercase_ ), v_bias) ) lowercase = qkv_bias def SCREAMING_SNAKE_CASE ( lowercase_ : List[str] ): lowercase = 364 if """coco""" in model_name else 224 lowercase = InstructBlipVisionConfig(image_size=lowercase_ ).to_dict() # make sure the models have proper bos_token_id and eos_token_id set (important for generation) # seems like flan-T5 models don't have bos_token_id properly set? if "t5-xl" in model_name: lowercase = TaConfig.from_pretrained("""google/flan-t5-xl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "t5-xxl" in model_name: lowercase = TaConfig.from_pretrained("""google/flan-t5-xxl""" , dense_act_fn="""gelu""" , bos_token_id=1 ).to_dict() elif "vicuna-7b" in model_name: lowercase = LlamaConfig.from_pretrained("""decapoda-research/llama-7b-hf""" , vocab_size=3_2001 ).to_dict() elif "vicuna-13b" in model_name: lowercase = LlamaConfig.from_pretrained("""decapoda-research/llama-13b-hf""" , vocab_size=3_2001 ).to_dict() else: raise ValueError("""Model name not supported""" ) # the authors add one special "[DEC]" token to the vocab of Q-Former, hence vocab size = 30522 + 1 lowercase = InstructBlipQFormerConfig(vocab_size=3_0523 ).to_dict() lowercase = InstructBlipConfig(vision_config=lowercase_ , text_config=lowercase_ , qformer_config=lowercase_ ) return config, image_size @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : List[Any]=None , lowercase_ : str=False ): lowercase = AutoTokenizer.from_pretrained("""bert-base-uncased""" , truncation_side="""left""" ) qformer_tokenizer.add_special_tokens({"""bos_token""": """[DEC]"""} ) if "t5" in model_name: lowercase = TaTokenizerFast.from_pretrained("""google/flan-t5-xl""" , truncation_side="""left""" ) elif "vicuna" in model_name: # the following was used in the original implementation: # tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b", use_fast=False, truncation_side="left") # tokenizer.add_special_tokens({"pad_token": "[PAD]"}) # tokenizer.add_special_tokens({"bos_token": "</s>"}) # tokenizer.add_special_tokens({"eos_token": "</s>"}) # tokenizer.add_special_tokens({"unk_token": "</s>"}) lowercase = LlamaTokenizerFast.from_pretrained( """huggyllama/llama-7b""" , truncation_side="""left""" , bos_token="""</s>""" , unk_token="""</s>""" ) tokenizer.add_special_tokens({"""pad_token""": """[PAD]"""} ) lowercase , lowercase = get_blipa_config(lowercase_ ) lowercase = InstructBlipForConditionalGeneration(lowercase_ ).eval() lowercase = { """instructblip-vicuna-7b""": ("""blip2_vicuna_instruct""", """vicuna7b"""), """instructblip-vicuna-13b""": ("""blip2_vicuna_instruct""", """vicuna13b"""), """instructblip-flan-t5-xl""": ("""blip2_t5_instruct""", """flant5xl"""), """instructblip-flan-t5-xxl""": ("""blip2_t5_instruct""", """flant5xxl"""), } lowercase , lowercase = model_name_to_original[model_name] # load original model print("""Loading original model...""" ) lowercase = """cuda:1""" if torch.cuda.is_available() else """cpu""" lowercase = """cuda:2""" if torch.cuda.is_available() else """cpu""" lowercase , lowercase , lowercase = load_model_and_preprocess( name=lowercase_ , model_type=lowercase_ , is_eval=lowercase_ , device=lowercase_ ) original_model.eval() print("""Done!""" ) # update state dict keys lowercase = original_model.state_dict() lowercase = create_rename_keys(lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) # some keys can be renamed efficiently for key, val in state_dict.copy().items(): lowercase = state_dict.pop(lowercase_ ) if key.startswith("""Qformer.bert""" ): lowercase = key.replace("""Qformer.bert""" , """qformer""" ) if "attention.self" in key: lowercase = key.replace("""self""" , """attention""" ) if "llm_proj" in key: lowercase = key.replace("""llm_proj""" , """language_projection""" ) if "t5_proj" in key: lowercase = key.replace("""t5_proj""" , """language_projection""" ) if key.startswith("""llm_model""" ): lowercase = key.replace("""llm_model""" , """language_model""" ) if key.startswith("""t5""" ): lowercase = key.replace("""t5""" , """language""" ) lowercase = val # read in qv biases read_in_q_v_bias(lowercase_ , lowercase_ ) # note: weights get loaded in torch.float32 by default hf_model.load_state_dict(lowercase_ , strict=lowercase_ ) lowercase = load_demo_image() lowercase = """What is unusual about this image?""" # create processor lowercase = BlipImageProcessor( size={"""height""": image_size, """width""": image_size} , image_mean=lowercase_ , image_std=lowercase_ ) lowercase = InstructBlipProcessor( image_processor=lowercase_ , tokenizer=lowercase_ , qformer_tokenizer=lowercase_ , ) lowercase = processor(images=lowercase_ , text=lowercase_ , return_tensors="""pt""" ).to(lowercase_ ) # make sure processor creates exact same pixel values lowercase = vis_processors["""eval"""](lowercase_ ).unsqueeze(0 ).to(lowercase_ ) lowercase = inputs.pixel_values assert torch.allclose(original_pixel_values.to(pixel_values.device ) , lowercase_ ) original_model.to(lowercase_ ) hf_model.to(lowercase_ ) with torch.no_grad(): if "vicuna" in model_name: lowercase = original_model({"""image""": original_pixel_values, """text_input""": [prompt]} ).logits lowercase = hf_model(**lowercase_ ).logits else: lowercase = original_model( {"""image""": original_pixel_values, """text_input""": [prompt], """text_output""": ["""\n"""]} ).logits lowercase = tokenizer("""\n""" , return_tensors="""pt""" ).input_ids.to(lowercase_ ) lowercase = label_input_ids.masked_fill(label_input_ids == tokenizer.pad_token_id , -100 ) lowercase = hf_model(**lowercase_ , labels=lowercase_ ).logits print("""First values of original logits:""" , original_logits[0, :3, :3] ) print("""First values of HF logits:""" , logits[0, :3, :3] ) # assert values assert original_logits.shape == logits.shape lowercase = 1E-4 if """vicuna""" in model_name else 1E-5 assert torch.allclose(original_logits.to(logits.device ) , lowercase_ , atol=lowercase_ ) print("""Looks ok!""" ) print("""Generating with original model...""" ) lowercase = original_model.generate({"""image""": original_pixel_values, """prompt""": prompt} , num_beams=5 ) # important: we need to cast the weights of the HF model to the appropriate type print("""Generating with HF model...""" ) lowercase = hf_model.generate( **lowercase_ , do_sample=lowercase_ , num_beams=5 , max_length=256 , min_length=1 , top_p=0.9 , repetition_penalty=1.5 , length_penalty=1.0 , temperature=1 , ) if "vicuna" in model_name: # convert output id 0 to 2 (eos_token_id) # TODO add this in the generate method? lowercase = 2 print("""Original generation:""" , lowercase_ ) lowercase = processor.batch_decode(lowercase_ , skip_special_tokens=lowercase_ ) lowercase = [text.strip() for text in output_text] print("""HF generation:""" , lowercase_ ) if pytorch_dump_folder_path is not None: processor.save_pretrained(lowercase_ ) hf_model.save_pretrained(lowercase_ ) if push_to_hub: processor.push_to_hub(F"""Salesforce/{model_name}""" ) hf_model.push_to_hub(F"""Salesforce/{model_name}""" ) if __name__ == "__main__": lowercase_ : str = argparse.ArgumentParser() lowercase_ : Tuple = [ '''instructblip-vicuna-7b''', '''instructblip-vicuna-13b''', '''instructblip-flan-t5-xl''', '''instructblip-flan-t5-xxl''', ] parser.add_argument( '''--model_name''', default='''instructblip-flan-t5-xl''', choices=choices, type=str, help='''Path to hf config.json of model to convert''', ) parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether to push the model and processor to the hub after converting''', ) lowercase_ : str = parser.parse_args() convert_blipa_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
588
'''simple docstring''' def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = abs(lowercase_ ) lowercase = 0 while n > 0: res += n % 10 n //= 10 return res def SCREAMING_SNAKE_CASE ( lowercase_ : int ): lowercase = abs(lowercase_ ) return n if n < 10 else n % 10 + sum_of_digits(n // 10 ) def SCREAMING_SNAKE_CASE ( lowercase_ : int ): return sum(int(lowercase_ ) for c in str(abs(lowercase_ ) ) ) def SCREAMING_SNAKE_CASE ( ): from collections.abc import Callable from timeit import timeit def benchmark_a_function(lowercase_ : Callable , lowercase_ : int ) -> None: lowercase = F"""{func.__name__}({value})""" lowercase = timeit(F"""__main__.{call}""" , setup="""import __main__""" ) print(F"""{call:56} = {func(lowercase_ )} -- {timing:.4f} seconds""" ) for value in (26_2144, 1125_8999_0684_2624, 126_7650_6002_2822_9401_4967_0320_5376): for func in (sum_of_digits, sum_of_digits_recursion, sum_of_digits_compact): benchmark_a_function(lowercase_ , lowercase_ ) print() if __name__ == "__main__": import doctest doctest.testmod() benchmark()
588
1
import warnings from typing import List, Optional, Union from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding, PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = ["image_processor", "tokenizer"] A_ = "FlavaImageProcessor" A_ = ("BertTokenizer", "BertTokenizerFast") def __init__( self: str , __A: Dict=None , __A: List[str]=None , **__A: Tuple ) -> str: _A = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __A , ) _A = kwargs.pop('''feature_extractor''' ) _A = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__A , __A ) _A = self.image_processor def __call__( self: Any , __A: Optional[ImageInput] = None , __A: Optional[Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]]] = None , __A: bool = True , __A: Union[bool, str, PaddingStrategy] = False , __A: Union[bool, str, TruncationStrategy] = False , __A: Optional[int] = None , __A: int = 0 , __A: Optional[int] = None , __A: Optional[bool] = None , __A: Optional[bool] = None , __A: Optional[bool] = None , __A: Optional[bool] = None , __A: bool = False , __A: bool = False , __A: bool = False , __A: bool = False , __A: bool = True , __A: Optional[Union[str, TensorType]] = None , **__A: List[Any] , ) -> Any: if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: _A = self.tokenizer( text=__A , add_special_tokens=__A , padding=__A , truncation=__A , max_length=__A , stride=__A , pad_to_multiple_of=__A , return_token_type_ids=__A , return_attention_mask=__A , return_overflowing_tokens=__A , return_special_tokens_mask=__A , return_offsets_mapping=__A , return_length=__A , verbose=__A , return_tensors=__A , **__A , ) if images is not None: _A = self.image_processor( __A , return_image_mask=__A , return_codebook_pixels=__A , return_tensors=__A , **__A , ) if text is not None and images is not None: encoding.update(__A ) return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__A ) , tensor_type=__A ) def __A ( self: int , *__A: Dict , **__A: Union[str, Any] ) -> str: return self.tokenizer.batch_decode(*__A , **__A ) def __A ( self: Union[str, Any] , *__A: Optional[Any] , **__A: Tuple ) -> Union[str, Any]: return self.tokenizer.decode(*__A , **__A ) @property def __A ( self: Union[str, Any] ) -> str: _A = self.tokenizer.model_input_names _A = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def __A ( self: Optional[int] ) -> Optional[int]: warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __A , ) return self.image_processor_class @property def __A ( self: Optional[int] ) -> Union[str, Any]: warnings.warn( '''`feature_extractor` is deprecated and will be removed in v5. Use `image_processor` instead.''' , __A , ) return self.image_processor
62
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging __A = logging.get_logger(__name__) __A = { 'roberta-base': 'https://huggingface.co/roberta-base/resolve/main/config.json', 'roberta-large': 'https://huggingface.co/roberta-large/resolve/main/config.json', 'roberta-large-mnli': 'https://huggingface.co/roberta-large-mnli/resolve/main/config.json', 'distilroberta-base': 'https://huggingface.co/distilroberta-base/resolve/main/config.json', 'roberta-base-openai-detector': 'https://huggingface.co/roberta-base-openai-detector/resolve/main/config.json', 'roberta-large-openai-detector': 'https://huggingface.co/roberta-large-openai-detector/resolve/main/config.json', } class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" A_ = "roberta" def __init__( self: Dict , __A: int=5_02_65 , __A: Union[str, Any]=7_68 , __A: Union[str, Any]=12 , __A: str=12 , __A: int=30_72 , __A: str="gelu" , __A: Union[str, Any]=0.1 , __A: int=0.1 , __A: Optional[int]=5_12 , __A: Union[str, Any]=2 , __A: str=0.02 , __A: str=1e-12 , __A: Any=1 , __A: str=0 , __A: Any=2 , __A: Optional[int]="absolute" , __A: Optional[Any]=True , __A: Union[str, Any]=None , **__A: List[str] , ) -> Dict: super().__init__(pad_token_id=__A , bos_token_id=__A , eos_token_id=__A , **__A ) _A = vocab_size _A = hidden_size _A = num_hidden_layers _A = num_attention_heads _A = hidden_act _A = intermediate_size _A = hidden_dropout_prob _A = attention_probs_dropout_prob _A = max_position_embeddings _A = type_vocab_size _A = initializer_range _A = layer_norm_eps _A = position_embedding_type _A = use_cache _A = classifier_dropout class SCREAMING_SNAKE_CASE ( snake_case ): """simple docstring""" @property def __A ( self: Dict ) -> Mapping[str, Mapping[int, str]]: if self.task == "multiple-choice": _A = {0: '''batch''', 1: '''choice''', 2: '''sequence'''} else: _A = {0: '''batch''', 1: '''sequence'''} return OrderedDict( [ ('''input_ids''', dynamic_axis), ('''attention_mask''', dynamic_axis), ] )
62
1
from ...utils import ( OptionalDependencyNotAvailable, is_torch_available, is_transformers_available, is_transformers_version, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import KandinskyPipeline, KandinskyPriorPipeline else: from .pipeline_kandinsky import KandinskyPipeline from .pipeline_kandinsky_imgaimg import KandinskyImgaImgPipeline from .pipeline_kandinsky_inpaint import KandinskyInpaintPipeline from .pipeline_kandinsky_prior import KandinskyPriorPipeline, KandinskyPriorPipelineOutput from .text_encoder import MultilingualCLIP
556
import numpy as np def lowerCAmelCase_ (lowerCAmelCase__: np.ndarray , lowerCAmelCase__: float ): """simple docstring""" return np.where(vector > 0 , lowerCAmelCase__ , (alpha * (np.exp(lowerCAmelCase__ ) - 1)) ) if __name__ == "__main__": import doctest doctest.testmod()
556
1
snake_case = """Alexander Joslin""" import operator as op from .stack import Stack def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Any = {"*": op.mul, "/": op.truediv, "+": op.add, "-": op.sub} SCREAMING_SNAKE_CASE : Stack[int] = Stack() SCREAMING_SNAKE_CASE : Stack[str] = Stack() for i in equation: if i.isdigit(): # RULE 1 operand_stack.push(int(lowercase ) ) elif i in operators: # RULE 2 operator_stack.push(lowercase ) elif i == ")": # RULE 4 SCREAMING_SNAKE_CASE : Tuple = operator_stack.peek() operator_stack.pop() SCREAMING_SNAKE_CASE : Tuple = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE : List[Any] = operand_stack.peek() operand_stack.pop() SCREAMING_SNAKE_CASE : List[Any] = operators[opr](lowercase , lowercase ) operand_stack.push(lowercase ) # RULE 5 return operand_stack.peek() if __name__ == "__main__": snake_case = """(5 + ((4 * 2) * (2 + 3)))""" # answer = 45 print(F"""{equation} = {dijkstras_two_stack_algorithm(equation)}""")
716
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from pathlib import Path import torch from ...utils import is_npu_available, is_xpu_available from .config_args import ClusterConfig, default_json_config_file from .config_utils import SubcommandHelpFormatter snake_case = """Create a default config file for Accelerate with only a few flags set.""" def lowerCamelCase__ ( lowercase="no" , lowercase = default_json_config_file , lowercase = False ): """simple docstring""" SCREAMING_SNAKE_CASE : Tuple = Path(lowercase ) path.parent.mkdir(parents=lowercase , exist_ok=lowercase ) if path.exists(): print( F'''Configuration already exists at {save_location}, will not override. Run `accelerate config` manually or pass a different `save_location`.''' ) return False SCREAMING_SNAKE_CASE : int = mixed_precision.lower() if mixed_precision not in ["no", "fp16", "bf16", "fp8"]: raise ValueError( F'''`mixed_precision` should be one of \'no\', \'fp16\', \'bf16\', or \'fp8\'. Received {mixed_precision}''' ) SCREAMING_SNAKE_CASE : Union[str, Any] = { "compute_environment": "LOCAL_MACHINE", "mixed_precision": mixed_precision, } if torch.cuda.is_available(): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.cuda.device_count() SCREAMING_SNAKE_CASE : int = num_gpus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_gpus > 1: SCREAMING_SNAKE_CASE : Tuple = "MULTI_GPU" else: SCREAMING_SNAKE_CASE : Optional[Any] = "NO" elif is_xpu_available() and use_xpu: SCREAMING_SNAKE_CASE : List[str] = torch.xpu.device_count() SCREAMING_SNAKE_CASE : str = num_xpus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_xpus > 1: SCREAMING_SNAKE_CASE : Any = "MULTI_XPU" else: SCREAMING_SNAKE_CASE : str = "NO" elif is_npu_available(): SCREAMING_SNAKE_CASE : List[Any] = torch.npu.device_count() SCREAMING_SNAKE_CASE : Optional[Any] = num_npus SCREAMING_SNAKE_CASE : Union[str, Any] = False if num_npus > 1: SCREAMING_SNAKE_CASE : str = "MULTI_NPU" else: SCREAMING_SNAKE_CASE : int = "NO" else: SCREAMING_SNAKE_CASE : Dict = 0 SCREAMING_SNAKE_CASE : List[Any] = True SCREAMING_SNAKE_CASE : Dict = 1 SCREAMING_SNAKE_CASE : int = "NO" SCREAMING_SNAKE_CASE : Dict = ClusterConfig(**lowercase ) config.to_json_file(lowercase ) return path def lowerCamelCase__ ( lowercase , lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Dict = parser.add_parser("default" , parents=lowercase , help=lowercase , formatter_class=lowercase ) parser.add_argument( "--config_file" , default=lowercase , help=( "The path to use to store the config file. Will default to a file named default_config.yaml in the cache " "location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have " "such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed " "with 'huggingface'." ) , dest="save_location" , ) parser.add_argument( "--mixed_precision" , choices=["no", "fp16", "bf16"] , type=lowercase , help="Whether or not to use mixed precision training. " "Choose between FP16 and BF16 (bfloat16) training. " "BF16 training is only supported on Nvidia Ampere GPUs and PyTorch 1.10 or later." , default="no" , ) parser.set_defaults(func=lowercase ) return parser def lowerCamelCase__ ( lowercase ): """simple docstring""" SCREAMING_SNAKE_CASE : Optional[int] = write_basic_config(args.mixed_precision , args.save_location ) if config_file: print(F'''accelerate configuration saved at {config_file}''' )
488
0
class __snake_case : '''simple docstring''' def __init__( self , A_ , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = name SCREAMING_SNAKE_CASE__ = value SCREAMING_SNAKE_CASE__ = weight def __repr__( self ): '''simple docstring''' return f'''{self.__class__.__name__}({self.name}, {self.value}, {self.weight})''' def lowercase_ ( self ): '''simple docstring''' return self.value def lowercase_ ( self ): '''simple docstring''' return self.name def lowercase_ ( self ): '''simple docstring''' return self.weight def lowercase_ ( self ): '''simple docstring''' return self.value / self.weight def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Any: SCREAMING_SNAKE_CASE__ = [] for i in range(len(lowerCAmelCase_ ) ): menu.append(Things(name[i] , value[i] , weight[i] ) ) return menu def __snake_case ( lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: SCREAMING_SNAKE_CASE__ = sorted(lowerCAmelCase_ , key=lowerCAmelCase_ , reverse=lowerCAmelCase_ ) SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = 0.0, 0.0 for i in range(len(lowerCAmelCase_ ) ): if (total_cost + items_copy[i].get_weight()) <= max_cost: result.append(items_copy[i] ) total_cost += items_copy[i].get_weight() total_value += items_copy[i].get_value() return (result, total_value) def __snake_case ( ) -> str: pass if __name__ == "__main__": import doctest doctest.testmod()
100
import argparse import glob import logging import os from argparse import Namespace from importlib import import_module import numpy as np import torch from lightning_base import BaseTransformer, add_generic_args, generic_train from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch.nn import CrossEntropyLoss from torch.utils.data import DataLoader, TensorDataset from utils_ner import TokenClassificationTask _A : List[str] = logging.getLogger(__name__) class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ : Dict = """token-classification""" def __init__( self , A_ ): '''simple docstring''' if type(A_ ) == dict: SCREAMING_SNAKE_CASE__ = Namespace(**A_ ) SCREAMING_SNAKE_CASE__ = import_module('''tasks''' ) try: SCREAMING_SNAKE_CASE__ = getattr(A_ , hparams.task_type ) SCREAMING_SNAKE_CASE__ = token_classification_task_clazz() except AttributeError: raise ValueError( f'''Task {hparams.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ''' f'''Available tasks classes are: {TokenClassificationTask.__subclasses__()}''' ) SCREAMING_SNAKE_CASE__ = self.token_classification_task.get_labels(hparams.labels ) SCREAMING_SNAKE_CASE__ = CrossEntropyLoss().ignore_index super().__init__(A_ , len(self.labels ) , self.mode ) def lowercase_ ( self , **A_ ): '''simple docstring''' return self.model(**A_ ) def lowercase_ ( self , A_ , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE__ = self(**A_ ) SCREAMING_SNAKE_CASE__ = outputs[0] # tensorboard_logs = {"loss": loss, "rate": self.lr_scheduler.get_last_lr()[-1]} return {"loss": loss} def lowercase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self.hparams for mode in ["train", "dev", "test"]: SCREAMING_SNAKE_CASE__ = self._feature_file(A_ ) if os.path.exists(A_ ) and not args.overwrite_cache: logger.info('''Loading features from cached file %s''' , A_ ) SCREAMING_SNAKE_CASE__ = torch.load(A_ ) else: logger.info('''Creating features from dataset file at %s''' , args.data_dir ) SCREAMING_SNAKE_CASE__ = self.token_classification_task.read_examples_from_file(args.data_dir , A_ ) SCREAMING_SNAKE_CASE__ = self.token_classification_task.convert_examples_to_features( A_ , self.labels , args.max_seq_length , self.tokenizer , cls_token_at_end=bool(self.config.model_type in ['''xlnet'''] ) , cls_token=self.tokenizer.cls_token , cls_token_segment_id=2 if self.config.model_type in ['''xlnet'''] else 0 , sep_token=self.tokenizer.sep_token , sep_token_extra=A_ , pad_on_left=bool(self.config.model_type in ['''xlnet'''] ) , pad_token=self.tokenizer.pad_token_id , pad_token_segment_id=self.tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info('''Saving features into cached file %s''' , A_ ) torch.save(A_ , A_ ) def lowercase_ ( self , A_ , A_ , A_ = False ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = self._feature_file(A_ ) logger.info('''Loading features from cached file %s''' , A_ ) SCREAMING_SNAKE_CASE__ = torch.load(A_ ) SCREAMING_SNAKE_CASE__ = torch.tensor([f.input_ids for f in features] , dtype=torch.long ) SCREAMING_SNAKE_CASE__ = torch.tensor([f.attention_mask for f in features] , dtype=torch.long ) if features[0].token_type_ids is not None: SCREAMING_SNAKE_CASE__ = torch.tensor([f.token_type_ids for f in features] , dtype=torch.long ) else: SCREAMING_SNAKE_CASE__ = torch.tensor([0 for f in features] , dtype=torch.long ) # HACK(we will not use this anymore soon) SCREAMING_SNAKE_CASE__ = torch.tensor([f.label_ids for f in features] , dtype=torch.long ) return DataLoader( TensorDataset(A_ , A_ , A_ , A_ ) , batch_size=A_ ) def lowercase_ ( self , A_ , A_ ): '''simple docstring''' """Compute validation""" "" SCREAMING_SNAKE_CASE__ = {'''input_ids''': batch[0], '''attention_mask''': batch[1], '''labels''': batch[3]} if self.config.model_type != "distilbert": SCREAMING_SNAKE_CASE__ = ( batch[2] if self.config.model_type in ['''bert''', '''xlnet'''] else None ) # XLM and RoBERTa don"t use token_type_ids SCREAMING_SNAKE_CASE__ = self(**A_ ) SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = outputs[:2] SCREAMING_SNAKE_CASE__ = logits.detach().cpu().numpy() SCREAMING_SNAKE_CASE__ = inputs['''labels'''].detach().cpu().numpy() return {"val_loss": tmp_eval_loss.detach().cpu(), "pred": preds, "target": out_label_ids} def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ = torch.stack([x['''val_loss'''] for x in outputs] ).mean() SCREAMING_SNAKE_CASE__ = np.concatenate([x['''pred'''] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE__ = np.argmax(A_ , axis=2 ) SCREAMING_SNAKE_CASE__ = np.concatenate([x['''target'''] for x in outputs] , axis=0 ) SCREAMING_SNAKE_CASE__ = dict(enumerate(self.labels ) ) SCREAMING_SNAKE_CASE__ = [[] for _ in range(out_label_ids.shape[0] )] SCREAMING_SNAKE_CASE__ = [[] for _ in range(out_label_ids.shape[0] )] for i in range(out_label_ids.shape[0] ): for j in range(out_label_ids.shape[1] ): if out_label_ids[i, j] != self.pad_token_label_id: out_label_list[i].append(label_map[out_label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) SCREAMING_SNAKE_CASE__ = { '''val_loss''': val_loss_mean, '''accuracy_score''': accuracy_score(A_ , A_ ), '''precision''': precision_score(A_ , A_ ), '''recall''': recall_score(A_ , A_ ), '''f1''': fa_score(A_ , A_ ), } SCREAMING_SNAKE_CASE__ = dict(results.items() ) SCREAMING_SNAKE_CASE__ = results return ret, preds_list, out_label_list def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._eval_end(A_ ) SCREAMING_SNAKE_CASE__ = ret['''log'''] return {"val_loss": logs["val_loss"], "log": logs, "progress_bar": logs} def lowercase_ ( self , A_ ): '''simple docstring''' SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = self._eval_end(A_ ) # Converting to the dict required by pl # https://github.com/PyTorchLightning/pytorch-lightning/blob/master/\ # pytorch_lightning/trainer/logging.py#L139 SCREAMING_SNAKE_CASE__ = ret['''log'''] # `val_loss` is the key returned by `self._eval_end()` but actually refers to `test_loss` return {"avg_test_loss": logs["val_loss"], "log": logs, "progress_bar": logs} @staticmethod def lowercase_ ( A_ , A_ ): '''simple docstring''' BaseTransformer.add_model_specific_args(A_ , A_ ) parser.add_argument( '''--task_type''' , default='''NER''' , type=A_ , help='''Task type to fine tune in training (e.g. NER, POS, etc)''' ) parser.add_argument( '''--max_seq_length''' , default=1_28 , type=A_ , help=( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) , ) parser.add_argument( '''--labels''' , default='''''' , type=A_ , help='''Path to a file containing all labels. If not specified, CoNLL-2003 labels are used.''' , ) parser.add_argument( '''--gpus''' , default=0 , type=A_ , help='''The number of GPUs allocated for this, it is by default 0 meaning none''' , ) parser.add_argument( '''--overwrite_cache''' , action='''store_true''' , help='''Overwrite the cached training and evaluation sets''' ) return parser if __name__ == "__main__": _A : List[str] = argparse.ArgumentParser() add_generic_args(parser, os.getcwd()) _A : List[Any] = NERTransformer.add_model_specific_args(parser, os.getcwd()) _A : Optional[Any] = parser.parse_args() _A : Any = NERTransformer(args) _A : Any = generic_train(model, args) if args.do_predict: # See https://github.com/huggingface/transformers/issues/3159 # pl use this default format to create a checkpoint: # https://github.com/PyTorchLightning/pytorch-lightning/blob/master\ # /pytorch_lightning/callbacks/model_checkpoint.py#L322 _A : Optional[int] = sorted(glob.glob(os.path.join(args.output_dir, """checkpoint-epoch=*.ckpt"""), recursive=True)) _A : Optional[int] = model.load_from_checkpoint(checkpoints[-1]) trainer.test(model)
100
1
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer __A : List[Any] = logging.get_logger(__name__) __A : Optional[int] = {"vocab_file": "vocab.txt"} __A : List[Any] = { "vocab_file": { "YituTech/conv-bert-base": "https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt", "YituTech/conv-bert-medium-small": ( "https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt" ), "YituTech/conv-bert-small": "https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt", } } __A : int = { "YituTech/conv-bert-base": 512, "YituTech/conv-bert-medium-small": 512, "YituTech/conv-bert-small": 512, } __A : List[Any] = { "YituTech/conv-bert-base": {"do_lower_case": True}, "YituTech/conv-bert-medium-small": {"do_lower_case": True}, "YituTech/conv-bert-small": {"do_lower_case": True}, } class __lowerCAmelCase ( _UpperCamelCase): '''simple docstring''' __magic_name__ : List[str] = VOCAB_FILES_NAMES __magic_name__ : Optional[Any] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = PRETRAINED_INIT_CONFIGURATION __magic_name__ : Optional[int] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = ConvBertTokenizer def __init__( self : Optional[Any] , UpperCamelCase__ : Dict=None , UpperCamelCase__ : List[str]=None , UpperCamelCase__ : Any=True , UpperCamelCase__ : str="[UNK]" , UpperCamelCase__ : int="[SEP]" , UpperCamelCase__ : List[str]="[PAD]" , UpperCamelCase__ : Optional[int]="[CLS]" , UpperCamelCase__ : Union[str, Any]="[MASK]" , UpperCamelCase__ : Optional[Any]=True , UpperCamelCase__ : int=None , **UpperCamelCase__ : Any , ): super().__init__( UpperCamelCase__ , tokenizer_file=UpperCamelCase__ , do_lower_case=UpperCamelCase__ , unk_token=UpperCamelCase__ , sep_token=UpperCamelCase__ , pad_token=UpperCamelCase__ , cls_token=UpperCamelCase__ , mask_token=UpperCamelCase__ , tokenize_chinese_chars=UpperCamelCase__ , strip_accents=UpperCamelCase__ , **UpperCamelCase__ , ) A__ : Union[str, Any] =json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , UpperCamelCase__ ) != do_lower_case or normalizer_state.get("strip_accents" , UpperCamelCase__ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , UpperCamelCase__ ) != tokenize_chinese_chars ): A__ : List[Any] =getattr(UpperCamelCase__ , normalizer_state.pop("type" ) ) A__ : List[Any] =do_lower_case A__ : Dict =strip_accents A__ : int =tokenize_chinese_chars A__ : Union[str, Any] =normalizer_class(**UpperCamelCase__ ) A__ : Any =do_lower_case def _UpperCAmelCase ( self : Any , UpperCamelCase__ : str , UpperCamelCase__ : int=None ): A__ : Tuple =[self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def _UpperCAmelCase ( self : str , UpperCamelCase__ : Dict , UpperCamelCase__ : Tuple = None ): A__ : Any =[self.sep_token_id] A__ : str =[self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : Optional[Any] , UpperCamelCase__ : Dict = None ): A__ : str =self._tokenizer.model.save(UpperCamelCase__ , name=UpperCamelCase__ ) return tuple(UpperCamelCase__ )
716
"""simple docstring""" from typing import Optional from torch import nn from .transformer_ad import TransformeraDModel, TransformeraDModelOutput class __lowerCAmelCase ( nn.Module): '''simple docstring''' def __init__( self : Union[str, Any] , UpperCamelCase__ : int = 16 , UpperCamelCase__ : int = 88 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : int = 1 , UpperCamelCase__ : float = 0.0 , UpperCamelCase__ : int = 32 , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : bool = False , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : Optional[int] = None , UpperCamelCase__ : str = "geglu" , UpperCamelCase__ : Optional[int] = None , ): super().__init__() A__ : Dict =nn.ModuleList( [ TransformeraDModel( num_attention_heads=UpperCamelCase__ , attention_head_dim=UpperCamelCase__ , in_channels=UpperCamelCase__ , num_layers=UpperCamelCase__ , dropout=UpperCamelCase__ , norm_num_groups=UpperCamelCase__ , cross_attention_dim=UpperCamelCase__ , attention_bias=UpperCamelCase__ , sample_size=UpperCamelCase__ , num_vector_embeds=UpperCamelCase__ , activation_fn=UpperCamelCase__ , num_embeds_ada_norm=UpperCamelCase__ , ) for _ in range(2 ) ] ) # Variables that can be set by a pipeline: # The ratio of transformer1 to transformer2's output states to be combined during inference A__ : Dict =0.5 # The shape of `encoder_hidden_states` is expected to be # `(batch_size, condition_lengths[0]+condition_lengths[1], num_features)` A__ : List[str] =[77, 257] # Which transformer to use to encode which condition. # E.g. `(1, 0)` means that we'll use `transformers[1](conditions[0])` and `transformers[0](conditions[1])` A__ : Union[str, Any] =[1, 0] def _UpperCAmelCase ( self : Tuple , UpperCamelCase__ : Dict , UpperCamelCase__ : Dict , UpperCamelCase__ : Optional[Any]=None , UpperCamelCase__ : int=None , UpperCamelCase__ : Union[str, Any]=None , UpperCamelCase__ : bool = True , ): A__ : Optional[Any] =hidden_states A__ : Union[str, Any] =[] A__ : str =0 # attention_mask is not used yet for i in range(2 ): # for each of the two transformers, pass the corresponding condition tokens A__ : Dict =encoder_hidden_states[:, tokens_start : tokens_start + self.condition_lengths[i]] A__ : str =self.transformer_index_for_condition[i] A__ : Optional[int] =self.transformers[transformer_index]( UpperCamelCase__ , encoder_hidden_states=UpperCamelCase__ , timestep=UpperCamelCase__ , cross_attention_kwargs=UpperCamelCase__ , return_dict=UpperCamelCase__ , )[0] encoded_states.append(encoded_state - input_states ) tokens_start += self.condition_lengths[i] A__ : Union[str, Any] =encoded_states[0] * self.mix_ratio + encoded_states[1] * (1 - self.mix_ratio) A__ : Dict =output_states + input_states if not return_dict: return (output_states,) return TransformeraDModelOutput(sample=UpperCamelCase__ )
595
0
import unittest import numpy as np import torch from diffusers import ScoreSdeVePipeline, ScoreSdeVeScheduler, UNetaDModel from diffusers.utils.testing_utils import enable_full_determinism, require_torch, slow, torch_device enable_full_determinism() class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" @property def _SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) __lowercase = UNetaDModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=3 , out_channels=3 , down_block_types=('''DownBlock2D''', '''AttnDownBlock2D''') , up_block_types=('''AttnUpBlock2D''', '''UpBlock2D''') , ) return model def _SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = self.dummy_uncond_unet __lowercase = ScoreSdeVeScheduler() __lowercase = ScoreSdeVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) sde_ve.to(lowerCAmelCase__ ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase__ ) __lowercase = torch.manual_seed(0 ) __lowercase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowerCAmelCase__ ).images __lowercase = torch.manual_seed(0 ) __lowercase = sde_ve(num_inference_steps=2 , output_type='''numpy''' , generator=lowerCAmelCase__ , return_dict=lowerCAmelCase__ )[ 0 ] __lowercase = image[0, -3:, -3:, -1] __lowercase = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 32, 32, 3) __lowercase = np.array([0.0, 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 @slow @require_torch class _UpperCamelCase ( unittest.TestCase ): """simple docstring""" def _SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = '''google/ncsnpp-church-256''' __lowercase = UNetaDModel.from_pretrained(lowerCAmelCase__ ) __lowercase = ScoreSdeVeScheduler.from_pretrained(lowerCAmelCase__ ) __lowercase = ScoreSdeVePipeline(unet=lowerCAmelCase__ , scheduler=lowerCAmelCase__ ) sde_ve.to(lowerCAmelCase__ ) sde_ve.set_progress_bar_config(disable=lowerCAmelCase__ ) __lowercase = torch.manual_seed(0 ) __lowercase = sde_ve(num_inference_steps=10 , output_type='''numpy''' , generator=lowerCAmelCase__ ).images __lowercase = image[0, -3:, -3:, -1] assert image.shape == (1, 2_56, 2_56, 3) __lowercase = np.array([0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2
534
def UpperCAmelCase ( lowercase , lowercase ): """simple docstring""" __lowercase = word.split() def justify(lowercase , lowercase , lowercase ) -> str: __lowercase = max_width - width __lowercase = len(lowercase ) if len(lowercase ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: __lowercase = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] __lowercase = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] __lowercase = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(lowercase ): num_spaces_between_words_list[i] += 1 __lowercase = [] for i in range(lowercase ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * ''' ''' ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(lowercase ) __lowercase = [] __lowercase = [] __lowercase = 0 for word in words: if width + len(lowercase ) + len(lowercase ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(lowercase ) width += len(lowercase ) else: # justify the line and add it to result answer.append(justify(lowercase , lowercase , lowercase ) ) # reset new line and new width __lowercase , __lowercase = [word], len(lowercase ) __lowercase = max_width - width - len(lowercase ) answer.append(''' '''.join(lowercase ) + (remaining_spaces + 1) * ''' ''' ) return answer if __name__ == "__main__": from doctest import testmod testmod()
534
1
"""simple docstring""" import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class lowerCAmelCase ( unittest.TestCase ): '''simple docstring''' def __init__( self , lowerCAmelCase__ , lowerCAmelCase__=7 , lowerCAmelCase__=3 , lowerCAmelCase__=18 , lowerCAmelCase__=30 , lowerCAmelCase__=400 , lowerCAmelCase__=True , lowerCAmelCase__=None , lowerCAmelCase__=True , lowerCAmelCase__=[0.5, 0.5, 0.5] , lowerCAmelCase__=[0.5, 0.5, 0.5] , ) -> Optional[int]: SCREAMING_SNAKE_CASE = size if size is not None else {'height': 18, 'width': 18} SCREAMING_SNAKE_CASE = parent SCREAMING_SNAKE_CASE = batch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = min_resolution SCREAMING_SNAKE_CASE = max_resolution SCREAMING_SNAKE_CASE = do_resize SCREAMING_SNAKE_CASE = size SCREAMING_SNAKE_CASE = do_normalize SCREAMING_SNAKE_CASE = image_mean SCREAMING_SNAKE_CASE = image_std def __A ( self ) -> int: return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : List[str] = DPTImageProcessor if is_vision_available() else None def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = DPTImageProcessingTester(self ) @property def __A ( self ) -> Dict: return self.image_processor_tester.prepare_image_processor_dict() def __A ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_mean' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'image_std' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_normalize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'do_resize' ) ) self.assertTrue(hasattr(lowerCAmelCase__ , 'size' ) ) def __A ( self ) -> int: SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {'height': 18, 'width': 18} ) SCREAMING_SNAKE_CASE = self.image_processing_class.from_dict(self.image_processor_dict , size=42 ) self.assertEqual(image_processor.size , {'height': 42, 'width': 42} ) def __A ( self ) -> str: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PIL images SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , Image.Image ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __A ( self ) -> Union[str, Any]: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , numpify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , np.ndarray ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) def __A ( self ) -> Tuple: # Initialize image_processing SCREAMING_SNAKE_CASE = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors SCREAMING_SNAKE_CASE = prepare_image_inputs(self.image_processor_tester , equal_resolution=lowerCAmelCase__ , torchify=lowerCAmelCase__ ) for image in image_inputs: self.assertIsInstance(lowerCAmelCase__ , torch.Tensor ) # Test not batched input SCREAMING_SNAKE_CASE = image_processing(image_inputs[0] , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , ) # Test batched SCREAMING_SNAKE_CASE = image_processing(lowerCAmelCase__ , return_tensors='pt' ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size['height'], self.image_processor_tester.size['width'], ) , )
327
"""simple docstring""" from typing import List from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase = logging.get_logger(__name__) __UpperCamelCase = { '''snap-research/efficientformer-l1-300''': ( '''https://huggingface.co/snap-research/efficientformer-l1-300/resolve/main/config.json''' ), } class lowerCAmelCase ( lowerCamelCase_ ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = """efficientformer""" def __init__( self , lowerCAmelCase__ = [3, 2, 6, 4] , lowerCAmelCase__ = [48, 96, 224, 448] , lowerCAmelCase__ = [True, True, True, True] , lowerCAmelCase__ = 448 , lowerCAmelCase__ = 32 , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 7 , lowerCAmelCase__ = 5 , lowerCAmelCase__ = 8 , lowerCAmelCase__ = 4 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 16 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 3 , lowerCAmelCase__ = 2 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = 0.0 , lowerCAmelCase__ = 1 , lowerCAmelCase__ = True , lowerCAmelCase__ = True , lowerCAmelCase__ = 1e-5 , lowerCAmelCase__ = "gelu" , lowerCAmelCase__ = 0.02 , lowerCAmelCase__ = 1e-12 , lowerCAmelCase__ = 224 , lowerCAmelCase__ = 1e-05 , **lowerCAmelCase__ , ) -> None: super().__init__(**lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = hidden_act SCREAMING_SNAKE_CASE = hidden_dropout_prob SCREAMING_SNAKE_CASE = hidden_sizes SCREAMING_SNAKE_CASE = num_hidden_layers SCREAMING_SNAKE_CASE = num_attention_heads SCREAMING_SNAKE_CASE = initializer_range SCREAMING_SNAKE_CASE = layer_norm_eps SCREAMING_SNAKE_CASE = patch_size SCREAMING_SNAKE_CASE = num_channels SCREAMING_SNAKE_CASE = depths SCREAMING_SNAKE_CASE = mlp_expansion_ratio SCREAMING_SNAKE_CASE = downsamples SCREAMING_SNAKE_CASE = dim SCREAMING_SNAKE_CASE = key_dim SCREAMING_SNAKE_CASE = attention_ratio SCREAMING_SNAKE_CASE = resolution SCREAMING_SNAKE_CASE = pool_size SCREAMING_SNAKE_CASE = downsample_patch_size SCREAMING_SNAKE_CASE = downsample_stride SCREAMING_SNAKE_CASE = downsample_pad SCREAMING_SNAKE_CASE = drop_path_rate SCREAMING_SNAKE_CASE = num_metaad_blocks SCREAMING_SNAKE_CASE = distillation SCREAMING_SNAKE_CASE = use_layer_scale SCREAMING_SNAKE_CASE = layer_scale_init_value SCREAMING_SNAKE_CASE = image_size SCREAMING_SNAKE_CASE = batch_norm_eps
327
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor _a : Union[str, Any] = logging.get_logger(__name__) class _lowercase ( __SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] , *SCREAMING_SNAKE_CASE_ : List[str] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: warnings.warn( 'The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please' ' use DonutImageProcessor instead.' , __SCREAMING_SNAKE_CASE , ) super().__init__(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE )
56
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging from ...utils.backbone_utils import BackboneConfigMixin, get_aligned_output_features_output_indices A_ : int = logging.get_logger(__name__) A_ : Dict = { "google/bit-50": "https://huggingface.co/google/bit-50/resolve/main/config.json", } class __snake_case ( __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''bit''' lowerCamelCase__ = ['''preactivation''', '''bottleneck'''] lowerCamelCase__ = ['''SAME''', '''VALID'''] def __init__( self , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=6_4 , __SCREAMING_SNAKE_CASE=[2_5_6, 5_1_2, 1_0_2_4, 2_0_4_8] , __SCREAMING_SNAKE_CASE=[3, 4, 6, 3] , __SCREAMING_SNAKE_CASE="preactivation" , __SCREAMING_SNAKE_CASE="relu" , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=0.0 , __SCREAMING_SNAKE_CASE=False , __SCREAMING_SNAKE_CASE=3_2 , __SCREAMING_SNAKE_CASE=1 , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=None , **__SCREAMING_SNAKE_CASE , ): super().__init__(**__SCREAMING_SNAKE_CASE ) if layer_type not in self.layer_types: raise ValueError(f"layer_type={layer_type} is not one of {','.join(self.layer_types )}" ) if global_padding is not None: if global_padding.upper() in self.supported_padding: snake_case__ : Tuple = global_padding.upper() else: raise ValueError(f"Padding strategy {global_padding} not supported" ) snake_case__ : List[str] = num_channels snake_case__ : Tuple = embedding_size snake_case__ : str = hidden_sizes snake_case__ : Optional[Any] = depths snake_case__ : List[Any] = layer_type snake_case__ : Dict = hidden_act snake_case__ : Union[str, Any] = global_padding snake_case__ : List[str] = num_groups snake_case__ : str = drop_path_rate snake_case__ : List[Any] = embedding_dynamic_padding snake_case__ : List[str] = output_stride snake_case__ : Dict = width_factor snake_case__ : List[str] = ["""stem"""] + [f"stage{idx}" for idx in range(1 , len(__SCREAMING_SNAKE_CASE ) + 1 )] snake_case__ , snake_case__ : Dict = get_aligned_output_features_output_indices( out_features=__SCREAMING_SNAKE_CASE , out_indices=__SCREAMING_SNAKE_CASE , stage_names=self.stage_names )
38
0
import math from datetime import datetime, timedelta def _lowercase ( UpperCamelCase_ ) -> datetime: '''simple docstring''' SCREAMING_SNAKE_CASE__ = year % 19 SCREAMING_SNAKE_CASE__ = year % 4 SCREAMING_SNAKE_CASE__ = year % 7 SCREAMING_SNAKE_CASE__ = math.floor(year / 100 ) SCREAMING_SNAKE_CASE__ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE__ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE__ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE__ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE__ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE__ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 18 ) else: return datetime(UpperCamelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): __snake_case = """will be""" if year > datetime.now().year else """was""" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
400
import math from datetime import datetime, timedelta def _lowercase ( UpperCamelCase_ ) -> datetime: '''simple docstring''' SCREAMING_SNAKE_CASE__ = year % 19 SCREAMING_SNAKE_CASE__ = year % 4 SCREAMING_SNAKE_CASE__ = year % 7 SCREAMING_SNAKE_CASE__ = math.floor(year / 100 ) SCREAMING_SNAKE_CASE__ = math.floor((13 + 8 * leap_day_inhibits) / 25 ) SCREAMING_SNAKE_CASE__ = leap_day_inhibits / 4 SCREAMING_SNAKE_CASE__ = ( 15 - lunar_orbit_correction + leap_day_inhibits - leap_day_reinstall_number ) % 30 SCREAMING_SNAKE_CASE__ = (4 + leap_day_inhibits - leap_day_reinstall_number) % 7 # days to be added to March 21 SCREAMING_SNAKE_CASE__ = (19 * metonic_cycle + secular_moon_shift) % 30 # PHM -> Paschal Full Moon SCREAMING_SNAKE_CASE__ = ( 2 * julian_leap_year + 4 * non_leap_year + 6 * days_to_add + century_starting_point ) % 7 if days_to_add == 29 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 19 ) elif days_to_add == 28 and days_from_phm_to_sunday == 6: return datetime(UpperCamelCase_ , 4 , 18 ) else: return datetime(UpperCamelCase_ , 3 , 22 ) + timedelta( days=int(days_to_add + days_from_phm_to_sunday ) ) if __name__ == "__main__": for year in (19_94, 20_00, 20_10, 20_21, 20_23): __snake_case = """will be""" if year > datetime.now().year else """was""" print(F"""Easter in {year} {tense} {gauss_easter(year)}""")
400
1
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Image from .base import TaskTemplate @dataclass(frozen=lowerCAmelCase__ ) class __UpperCamelCase ( lowerCAmelCase__ ): """simple docstring""" lowerCAmelCase_ = field(default='''image-classification''' , metadata={'''include_in_asdict_even_if_is_default''': True} ) lowerCAmelCase_ = Features({'''image''': Image()} ) lowerCAmelCase_ = Features({'''labels''': ClassLabel} ) lowerCAmelCase_ = "image" lowerCAmelCase_ = "labels" def UpperCAmelCase__ ( self : Optional[Any] , _A : Optional[Any] ): """simple docstring""" if self.label_column not in features: raise ValueError(F'''Column {self.label_column} is not present in features.''' ) if not isinstance(features[self.label_column] , _A ): raise ValueError(F'''Column {self.label_column} is not a ClassLabel.''' ) __SCREAMING_SNAKE_CASE : Any = copy.deepcopy(self ) __SCREAMING_SNAKE_CASE : Optional[int] = self.label_schema.copy() __SCREAMING_SNAKE_CASE : Union[str, Any] = features[self.label_column] __SCREAMING_SNAKE_CASE : List[Any] = label_schema return task_template @property def UpperCAmelCase__ ( self : Union[str, Any] ): """simple docstring""" return { self.image_column: "image", self.label_column: "labels", }
74
import itertools from dataclasses import dataclass from typing import List, Optional import pyarrow as pa import pyarrow.parquet as pq import datasets from datasets.table import table_cast lowercase_ = datasets.utils.logging.get_logger(__name__) @dataclass class __UpperCamelCase ( datasets.BuilderConfig ): """simple docstring""" lowerCAmelCase_ = 1_00_00 lowerCAmelCase_ = None lowerCAmelCase_ = None class __UpperCamelCase ( datasets.ArrowBasedBuilder ): """simple docstring""" lowerCAmelCase_ = ParquetConfig def UpperCAmelCase__ ( self : Any ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def UpperCAmelCase__ ( self : Any , _A : Optional[Any] ): """simple docstring""" if not self.config.data_files: raise ValueError(F'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) __SCREAMING_SNAKE_CASE : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_A , (str, list, tuple) ): __SCREAMING_SNAKE_CASE : Tuple = data_files if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Optional[int] = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE : List[Any] = [dl_manager.iter_files(_A ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={'''files''': files} )] __SCREAMING_SNAKE_CASE : int = [] for split_name, files in data_files.items(): if isinstance(_A , _A ): __SCREAMING_SNAKE_CASE : Any = [files] # Use `dl_manager.iter_files` to skip hidden files in an extracted archive __SCREAMING_SNAKE_CASE : Optional[int] = [dl_manager.iter_files(_A ) for file in files] # Infer features is they are stoed in the arrow schema if self.info.features is None: for file in itertools.chain.from_iterable(_A ): with open(_A , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : Dict = datasets.Features.from_arrow_schema(pq.read_schema(_A ) ) break splits.append(datasets.SplitGenerator(name=_A , gen_kwargs={'''files''': files} ) ) return splits def UpperCAmelCase__ ( self : str , _A : pa.Table ): """simple docstring""" if self.info.features is not None: # more expensive cast to support nested features with keys in a different order # allows str <-> int/float or str to Audio for example __SCREAMING_SNAKE_CASE : str = table_cast(_A , self.info.features.arrow_schema ) return pa_table def UpperCAmelCase__ ( self : Tuple , _A : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = self.info.features.arrow_schema if self.info.features is not None else None if self.info.features is not None and self.config.columns is not None: if sorted(field.name for field in schema ) != sorted(self.config.columns ): raise ValueError( F'''Tried to load parquet data with columns \'{self.config.columns}\' with mismatching features \'{self.info.features}\'''' ) for file_idx, file in enumerate(itertools.chain.from_iterable(_A ) ): with open(_A , '''rb''' ) as f: __SCREAMING_SNAKE_CASE : str = pq.ParquetFile(_A ) try: for batch_idx, record_batch in enumerate( parquet_file.iter_batches(batch_size=self.config.batch_size , columns=self.config.columns ) ): __SCREAMING_SNAKE_CASE : Optional[Any] = pa.Table.from_batches([record_batch] ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield F'''{file_idx}_{batch_idx}''', self._cast_table(_A ) except ValueError as e: logger.error(F'''Failed to read file \'{file}\' with error {type(_A )}: {e}''' ) raise
74
1
"""simple docstring""" import logging import os import sys from dataclasses import dataclass, field from importlib import import_module from typing import Dict, List, Optional, Tuple import numpy as np from seqeval.metrics import accuracy_score, fa_score, precision_score, recall_score from torch import nn from utils_ner import Split, TokenClassificationDataset, TokenClassificationTask import transformers from transformers import ( AutoConfig, AutoModelForTokenClassification, AutoTokenizer, DataCollatorWithPadding, EvalPrediction, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import is_main_process lowercase_ = logging.getLogger(__name__) @dataclass class snake_case : '''simple docstring''' A_ : str = field( metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} ) A_ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) A_ : Optional[str] = field( default="NER" , metadata={"help": "Task type to fine tune in training (e.g. NER, POS, etc)"} ) A_ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"} ) A_ : bool = field(default=_lowerCAmelCase , metadata={"help": "Set this flag to use fast tokenization."} ) # If you want to tweak more attributes on your tokenizer, you should do it in a distinct script, # or just modify its tokenizer_config.json. A_ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"} , ) @dataclass class snake_case : '''simple docstring''' A_ : str = field( metadata={"help": "The input data dir. Should contain the .txt files for a CoNLL-2003-formatted task."} ) A_ : Optional[str] = field( default=_lowerCAmelCase , metadata={"help": "Path to a file containing all labels. If not specified, CoNLL-2003 labels are used."} , ) A_ : int = field( default=128 , metadata={ "help": ( "The maximum total input sequence length after tokenization. Sequences longer " "than this will be truncated, sequences shorter will be padded." ) } , ) A_ : bool = field( default=_lowerCAmelCase , metadata={"help": "Overwrite the cached training and evaluation sets"} ) def lowerCAmelCase ( ): """simple docstring""" __A = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('''.json''' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. __A , __A , __A = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: __A , __A , __A = parser.parse_args_into_dataclasses() if ( os.path.exists(training_args.output_dir ) and os.listdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir ): raise ValueError( f'Output directory ({training_args.output_dir}) already exists and is not empty. Use' ''' --overwrite_output_dir to overcome.''' ) __A = import_module('''tasks''' ) try: __A = getattr(__UpperCamelCase , model_args.task_type ) __A = token_classification_task_clazz() except AttributeError: raise ValueError( f'Task {model_args.task_type} needs to be defined as a TokenClassificationTask subclass in {module}. ' f'Available tasks classes are: {TokenClassificationTask.__subclasses__()}' ) # Setup logging logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''' , datefmt='''%m/%d/%Y %H:%M:%S''' , level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN , ) logger.warning( '''Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s''' , training_args.local_rank , training_args.device , training_args.n_gpu , bool(training_args.local_rank != -1 ) , training_args.fpaa , ) # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() logger.info('''Training/evaluation parameters %s''' , __UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Prepare CONLL-2003 task __A = token_classification_task.get_labels(data_args.labels ) __A = dict(enumerate(__UpperCamelCase ) ) __A = len(__UpperCamelCase ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. __A = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path , num_labels=__UpperCamelCase , idalabel=__UpperCamelCase , labelaid={label: i for i, label in enumerate(__UpperCamelCase )} , cache_dir=model_args.cache_dir , ) __A = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path , cache_dir=model_args.cache_dir , use_fast=model_args.use_fast , ) __A = AutoModelForTokenClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool('''.ckpt''' in model_args.model_name_or_path ) , config=__UpperCamelCase , cache_dir=model_args.cache_dir , ) # Get datasets __A = ( TokenClassificationDataset( token_classification_task=__UpperCamelCase , data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , labels=__UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.train , ) if training_args.do_train else None ) __A = ( TokenClassificationDataset( token_classification_task=__UpperCamelCase , data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , labels=__UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.dev , ) if training_args.do_eval else None ) def align_predictions(__UpperCamelCase , __UpperCamelCase ) -> Tuple[List[int], List[int]]: __A = np.argmax(__UpperCamelCase , axis=2 ) __A , __A = preds.shape __A = [[] for _ in range(__UpperCamelCase )] __A = [[] for _ in range(__UpperCamelCase )] for i in range(__UpperCamelCase ): for j in range(__UpperCamelCase ): if label_ids[i, j] != nn.CrossEntropyLoss().ignore_index: out_label_list[i].append(label_map[label_ids[i][j]] ) preds_list[i].append(label_map[preds[i][j]] ) return preds_list, out_label_list def compute_metrics(__UpperCamelCase ) -> Dict: __A , __A = align_predictions(p.predictions , p.label_ids ) return { "accuracy_score": accuracy_score(__UpperCamelCase , __UpperCamelCase ), "precision": precision_score(__UpperCamelCase , __UpperCamelCase ), "recall": recall_score(__UpperCamelCase , __UpperCamelCase ), "f1": fa_score(__UpperCamelCase , __UpperCamelCase ), } # Data collator __A = DataCollatorWithPadding(__UpperCamelCase , pad_to_multiple_of=8 ) if training_args.fpaa else None # Initialize our Trainer __A = Trainer( model=__UpperCamelCase , args=__UpperCamelCase , train_dataset=__UpperCamelCase , eval_dataset=__UpperCamelCase , compute_metrics=__UpperCamelCase , data_collator=__UpperCamelCase , ) # Training if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) trainer.save_model() # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) if trainer.is_world_process_zero(): tokenizer.save_pretrained(training_args.output_dir ) # Evaluation __A = {} if training_args.do_eval: logger.info('''*** Evaluate ***''' ) __A = trainer.evaluate() __A = os.path.join(training_args.output_dir , '''eval_results.txt''' ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , '''w''' ) as writer: logger.info('''***** Eval results *****''' ) for key, value in result.items(): logger.info(''' %s = %s''' , __UpperCamelCase , __UpperCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) results.update(__UpperCamelCase ) # Predict if training_args.do_predict: __A = TokenClassificationDataset( token_classification_task=__UpperCamelCase , data_dir=data_args.data_dir , tokenizer=__UpperCamelCase , labels=__UpperCamelCase , model_type=config.model_type , max_seq_length=data_args.max_seq_length , overwrite_cache=data_args.overwrite_cache , mode=Split.test , ) __A , __A , __A = trainer.predict(__UpperCamelCase ) __A , __A = align_predictions(__UpperCamelCase , __UpperCamelCase ) __A = os.path.join(training_args.output_dir , '''test_results.txt''' ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , '''w''' ) as writer: for key, value in metrics.items(): logger.info(''' %s = %s''' , __UpperCamelCase , __UpperCamelCase ) writer.write('''%s = %s\n''' % (key, value) ) # Save predictions __A = os.path.join(training_args.output_dir , '''test_predictions.txt''' ) if trainer.is_world_process_zero(): with open(__UpperCamelCase , '''w''' ) as writer: with open(os.path.join(data_args.data_dir , '''test.txt''' ) , '''r''' ) as f: token_classification_task.write_predictions_to_file(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return results def lowerCAmelCase ( __UpperCamelCase ): """simple docstring""" main() if __name__ == "__main__": main()
215
"""simple docstring""" def lowerCAmelCase ( __UpperCamelCase , __UpperCamelCase ): """simple docstring""" def get_matched_characters(__UpperCamelCase , __UpperCamelCase ) -> str: __A = [] __A = min(len(_stra ) , len(_stra ) ) // 2 for i, l in enumerate(_stra ): __A = int(max(0 , i - limit ) ) __A = int(min(i + limit + 1 , len(_stra ) ) ) if l in _stra[left:right]: matched.append(__UpperCamelCase ) __A = f'{_stra[0:_stra.index(__UpperCamelCase )]} {_stra[_stra.index(__UpperCamelCase ) + 1:]}' return "".join(__UpperCamelCase ) # matching characters __A = get_matched_characters(__UpperCamelCase , __UpperCamelCase ) __A = get_matched_characters(__UpperCamelCase , __UpperCamelCase ) __A = len(__UpperCamelCase ) # transposition __A = ( len([(ca, ca) for ca, ca in zip(__UpperCamelCase , __UpperCamelCase ) if ca != ca] ) // 2 ) if not match_count: __A = 0.0 else: __A = ( 1 / 3 * ( match_count / len(__UpperCamelCase ) + match_count / len(__UpperCamelCase ) + (match_count - transpositions) / match_count ) ) # common prefix up to 4 characters __A = 0 for ca, ca in zip(stra[:4] , stra[:4] ): if ca == ca: prefix_len += 1 else: break return jaro + 0.1 * prefix_len * (1 - jaro) if __name__ == "__main__": import doctest doctest.testmod() print(jaro_winkler('hello', 'world'))
215
1
'''simple docstring''' from __future__ import annotations def lowercase_ ( __A : list[int] ) -> list[int]: # This function is recursive """simple docstring""" lowercase : str =len(__A ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else lowercase : Any =array[0] lowercase : List[Any] =False lowercase : Union[str, Any] =1 lowercase : list[int] =[] while not is_found and i < array_length: if array[i] < pivot: lowercase : Optional[int] =True lowercase : Dict =[element for element in array[i:] if element >= array[i]] lowercase : Union[str, Any] =longest_subsequence(__A ) if len(__A ) > len(__A ): lowercase : int =temp_array else: i += 1 lowercase : str =[element for element in array[1:] if element >= pivot] lowercase : int =[pivot, *longest_subsequence(__A )] if len(__A ) > len(__A ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
94
'''simple docstring''' import unittest from transformers.testing_utils import CaptureStdout from transformers.tools.python_interpreter import evaluate def lowercase_ ( __A : str ) -> Union[str, Any]: """simple docstring""" return x + 2 class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def A__ ( self : Dict ) -> List[Any]: '''simple docstring''' lowercase : Optional[int] ='''x = 3''' lowercase : Any ={} lowercase : Union[str, Any] =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) assert result == 3 self.assertDictEqual(UpperCAmelCase , {'''x''': 3} ) lowercase : str ='''x = y''' lowercase : Optional[int] ={'''y''': 5} lowercase : List[str] =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase , {'''x''': 5, '''y''': 5} ) def A__ ( self : str ) -> Optional[int]: '''simple docstring''' lowercase : Optional[int] ='''y = add_two(x)''' lowercase : str ={'''x''': 3} lowercase : List[str] =evaluate(UpperCAmelCase , {'''add_two''': add_two} , state=UpperCAmelCase ) assert result == 5 self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''y''': 5} ) # Won't work without the tool with CaptureStdout() as out: lowercase : Optional[Any] =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) assert result is None assert "tried to execute add_two" in out.out def A__ ( self : List[Any] ) -> Optional[int]: '''simple docstring''' lowercase : int ='''x = 3''' lowercase : Dict ={} lowercase : List[Any] =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) assert result == 3 self.assertDictEqual(UpperCAmelCase , {'''x''': 3} ) def A__ ( self : str ) -> Tuple: '''simple docstring''' lowercase : Optional[Any] ='''test_dict = {\'x\': x, \'y\': add_two(x)}''' lowercase : str ={'''x''': 3} lowercase : Tuple =evaluate(UpperCAmelCase , {'''add_two''': add_two} , state=UpperCAmelCase ) self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''y''': 5} ) self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def A__ ( self : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' lowercase : Optional[Any] ='''x = 3\ny = 5''' lowercase : int ={} lowercase : List[str] =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''y''': 5} ) def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : List[str] ='''text = f\'This is x: {x}.\'''' lowercase : Union[str, Any] ={'''x''': 3} lowercase : Tuple =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == "This is x: 3." self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''text''': '''This is x: 3.'''} ) def A__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' lowercase : Tuple ='''if x <= 3:\n y = 2\nelse:\n y = 5''' lowercase : Union[str, Any] ={'''x''': 3} lowercase : Any =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 2 self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''y''': 2} ) lowercase : Optional[Any] ={'''x''': 8} lowercase : str =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) # evaluate returns the value of the last assignment. assert result == 5 self.assertDictEqual(UpperCAmelCase , {'''x''': 8, '''y''': 5} ) def A__ ( self : str ) -> Optional[Any]: '''simple docstring''' lowercase : List[str] ='''test_list = [x, add_two(x)]''' lowercase : Any ={'''x''': 3} lowercase : Tuple =evaluate(UpperCAmelCase , {'''add_two''': add_two} , state=UpperCAmelCase ) self.assertListEqual(UpperCAmelCase , [3, 5] ) self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''test_list''': [3, 5]} ) def A__ ( self : Any ) -> Tuple: '''simple docstring''' lowercase : str ='''y = x''' lowercase : Dict ={'''x''': 3} lowercase : Tuple =evaluate(UpperCAmelCase , {} , state=UpperCAmelCase ) assert result == 3 self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''y''': 3} ) def A__ ( self : str ) -> List[str]: '''simple docstring''' lowercase : Any ='''test_list = [x, add_two(x)]\ntest_list[1]''' lowercase : Any ={'''x''': 3} lowercase : Union[str, Any] =evaluate(UpperCAmelCase , {'''add_two''': add_two} , state=UpperCAmelCase ) assert result == 5 self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''test_list''': [3, 5]} ) lowercase : int ='''test_dict = {\'x\': x, \'y\': add_two(x)}\ntest_dict[\'y\']''' lowercase : Union[str, Any] ={'''x''': 3} lowercase : Tuple =evaluate(UpperCAmelCase , {'''add_two''': add_two} , state=UpperCAmelCase ) assert result == 5 self.assertDictEqual(UpperCAmelCase , {'''x''': 3, '''test_dict''': {'''x''': 3, '''y''': 5}} ) def A__ ( self : List[str] ) -> Tuple: '''simple docstring''' lowercase : Optional[int] ='''x = 0\nfor i in range(3):\n x = i''' lowercase : List[str] ={} lowercase : Union[str, Any] =evaluate(UpperCAmelCase , {'''range''': range} , state=UpperCAmelCase ) assert result == 2 self.assertDictEqual(UpperCAmelCase , {'''x''': 2, '''i''': 2} )
94
1
import os from typing import List, Optional, Union from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy from ...utils import TensorType from ..auto import AutoTokenizer class A__ ( __lowerCamelCase ): lowercase = ['image_processor', 'tokenizer'] lowercase = 'BlipImageProcessor' lowercase = 'AutoTokenizer' def __init__( self : Tuple , a : Tuple , a : int , a : Tuple ): '''simple docstring''' super().__init__(UpperCAmelCase_ , UpperCAmelCase_ ) # add QFormer tokenizer lowerCAmelCase__ : Tuple = qformer_tokenizer def __call__( self : List[Any] , a : ImageInput = None , a : Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None , a : bool = True , a : Union[bool, str, PaddingStrategy] = False , a : Union[bool, str, TruncationStrategy] = None , a : Optional[int] = None , a : int = 0 , a : Optional[int] = None , a : Optional[bool] = None , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = False , a : bool = True , a : Optional[Union[str, TensorType]] = None , **a : List[str] , ): '''simple docstring''' if images is None and text is None: raise ValueError('You have to specify at least images or text.' ) lowerCAmelCase__ : Tuple = BatchFeature() if text is not None: lowerCAmelCase__ : List[str] = self.tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) encoding.update(UpperCAmelCase_ ) lowerCAmelCase__ : int = self.qformer_tokenizer( text=UpperCAmelCase_ , add_special_tokens=UpperCAmelCase_ , padding=UpperCAmelCase_ , truncation=UpperCAmelCase_ , max_length=UpperCAmelCase_ , stride=UpperCAmelCase_ , pad_to_multiple_of=UpperCAmelCase_ , return_attention_mask=UpperCAmelCase_ , return_overflowing_tokens=UpperCAmelCase_ , return_special_tokens_mask=UpperCAmelCase_ , return_offsets_mapping=UpperCAmelCase_ , return_token_type_ids=UpperCAmelCase_ , return_length=UpperCAmelCase_ , verbose=UpperCAmelCase_ , return_tensors=UpperCAmelCase_ , **UpperCAmelCase_ , ) lowerCAmelCase__ : List[Any] = qformer_text_encoding.pop('input_ids' ) lowerCAmelCase__ : Any = qformer_text_encoding.pop('attention_mask' ) if images is not None: lowerCAmelCase__ : Optional[int] = self.image_processor(UpperCAmelCase_ , return_tensors=UpperCAmelCase_ ) encoding.update(UpperCAmelCase_ ) return encoding def _lowerCamelCase ( self : List[str] , *a : Union[str, Any] , **a : Union[str, Any] ): '''simple docstring''' return self.tokenizer.batch_decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) def _lowerCamelCase ( self : Optional[Any] , *a : List[str] , **a : Union[str, Any] ): '''simple docstring''' return self.tokenizer.decode(*UpperCAmelCase_ , **UpperCAmelCase_ ) @property # Copied from transformers.models.blip.processing_blip.BlipProcessor.model_input_names def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : int = self.tokenizer.model_input_names lowerCAmelCase__ : Tuple = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) def _lowerCamelCase ( self : List[Any] , a : str , **a : Union[str, Any] ): '''simple docstring''' if os.path.isfile(UpperCAmelCase_ ): raise ValueError(f'''Provided path ({save_directory}) should be a directory, not a file''' ) os.makedirs(UpperCAmelCase_ , exist_ok=UpperCAmelCase_ ) lowerCAmelCase__ : Union[str, Any] = os.path.join(UpperCAmelCase_ , 'qformer_tokenizer' ) self.qformer_tokenizer.save_pretrained(UpperCAmelCase_ ) return super().save_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) @classmethod def _lowerCamelCase ( cls : Dict , a : str , **a : Union[str, Any] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = AutoTokenizer.from_pretrained(UpperCAmelCase_ , subfolder='qformer_tokenizer' ) lowerCAmelCase__ : Union[str, Any] = cls._get_arguments_from_pretrained(UpperCAmelCase_ , **UpperCAmelCase_ ) args.append(UpperCAmelCase_ ) return cls(*UpperCAmelCase_ )
706
import gc import unittest import numpy as np import torch from torch.backends.cuda import sdp_kernel from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) from diffusers.utils import randn_tensor, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_a, require_torch_gpu from ..pipeline_params import UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS, UNCONDITIONAL_IMAGE_GENERATION_PARAMS from ..test_pipelines_common import PipelineTesterMixin enable_full_determinism() class A__ ( __magic_name__ , unittest.TestCase ): lowercase = ConsistencyModelPipeline lowercase = UNCONDITIONAL_IMAGE_GENERATION_PARAMS lowercase = UNCONDITIONAL_IMAGE_GENERATION_BATCH_PARAMS # Override required_optional_params to remove num_images_per_prompt lowercase = frozenset( [ 'num_inference_steps', 'generator', 'latents', 'output_type', 'return_dict', 'callback', 'callback_steps', ] ) @property def _lowerCamelCase ( self : int ): '''simple docstring''' lowerCAmelCase__ : Dict = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet' , ) return unet @property def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = UNetaDModel.from_pretrained( 'diffusers/consistency-models-test' , subfolder='test_unet_class_cond' , ) return unet def _lowerCamelCase ( self : Optional[Any] , a : Union[str, Any]=False ): '''simple docstring''' if class_cond: lowerCAmelCase__ : Tuple = self.dummy_cond_unet else: lowerCAmelCase__ : Dict = self.dummy_uncond_unet # Default to CM multistep sampler lowerCAmelCase__ : Optional[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : List[Any] = { 'unet': unet, 'scheduler': scheduler, } return components def _lowerCamelCase ( self : int , a : Optional[int] , a : Any=0 ): '''simple docstring''' if str(a ).startswith('mps' ): lowerCAmelCase__ : List[str] = torch.manual_seed(a ) else: lowerCAmelCase__ : str = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : str = { 'batch_size': 1, 'num_inference_steps': None, 'timesteps': [22, 0], 'generator': generator, 'output_type': 'np', } return inputs def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Any = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[Any] = self.get_dummy_components() lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = self.get_dummy_inputs(a ) lowerCAmelCase__ : str = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : Tuple = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Tuple = self.get_dummy_components(class_cond=a ) lowerCAmelCase__ : Union[str, Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Tuple = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : int = 0 lowerCAmelCase__ : Union[str, Any] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = np.array([0.3_5_7_2, 0.6_2_7_3, 0.4_0_3_1, 0.3_9_6_1, 0.4_3_2_1, 0.5_7_3_0, 0.5_2_6_6, 0.4_7_8_0, 0.5_0_0_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Any ): '''simple docstring''' lowerCAmelCase__ : Tuple = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Union[str, Any] = self.get_dummy_components() lowerCAmelCase__ : Tuple = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Dict = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Union[str, Any] = self.get_dummy_inputs(a ) lowerCAmelCase__ : Optional[Any] = 1 lowerCAmelCase__ : Dict = None lowerCAmelCase__ : List[Any] = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Tuple = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[Any] = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' lowerCAmelCase__ : Dict = 'cpu' # ensure determinism for the device-dependent torch.Generator lowerCAmelCase__ : Optional[int] = self.get_dummy_components(class_cond=a ) lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(**a ) lowerCAmelCase__ : Optional[Any] = pipe.to(a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Tuple = self.get_dummy_inputs(a ) lowerCAmelCase__ : Dict = 1 lowerCAmelCase__ : Tuple = None lowerCAmelCase__ : Optional[Any] = 0 lowerCAmelCase__ : str = pipe(**a ).images assert image.shape == (1, 32, 32, 3) lowerCAmelCase__ : Union[str, Any] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Dict = np.array([0.5_0_0_4, 0.5_0_0_4, 0.4_9_9_4, 0.5_0_0_8, 0.4_9_7_6, 0.5_0_1_8, 0.4_9_9_0, 0.4_9_8_2, 0.4_9_8_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @slow @require_torch_gpu class A__ ( unittest.TestCase ): def _lowerCamelCase ( self : Optional[Any] ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowerCamelCase ( self : Optional[Any] , a : Tuple=0 , a : Optional[Any]=False , a : Optional[Any]="cpu" , a : Union[str, Any]=torch.floataa , a : Dict=(1, 3, 64, 64) ): '''simple docstring''' lowerCAmelCase__ : Union[str, Any] = torch.manual_seed(a ) lowerCAmelCase__ : List[Any] = { 'num_inference_steps': None, 'timesteps': [22, 0], 'class_labels': 0, 'generator': generator, 'output_type': 'np', } if get_fixed_latents: lowerCAmelCase__ : Optional[int] = self.get_fixed_latents(seed=a , device=a , dtype=a , shape=a ) lowerCAmelCase__ : Tuple = latents return inputs def _lowerCamelCase ( self : str , a : Tuple=0 , a : Tuple="cpu" , a : Tuple=torch.floataa , a : str=(1, 3, 64, 64) ): '''simple docstring''' if type(a ) == str: lowerCAmelCase__ : str = torch.device(a ) lowerCAmelCase__ : List[str] = torch.Generator(device=a ).manual_seed(a ) lowerCAmelCase__ : Any = randn_tensor(a , generator=a , device=a , dtype=a ) return latents def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[str] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : List[Any] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Optional[Any] = self.get_inputs() lowerCAmelCase__ : Dict = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : List[str] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = np.array([0.0_8_8_8, 0.0_8_8_1, 0.0_6_6_6, 0.0_4_7_9, 0.0_2_9_2, 0.0_1_9_5, 0.0_2_0_1, 0.0_1_6_3, 0.0_2_5_4] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 def _lowerCamelCase ( self : str ): '''simple docstring''' lowerCAmelCase__ : Optional[int] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : Any = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Optional[int] = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : List[str] = self.get_inputs() lowerCAmelCase__ : Union[str, Any] = 1 lowerCAmelCase__ : List[str] = None lowerCAmelCase__ : List[str] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Optional[int] = image[0, -3:, -3:, -1] lowerCAmelCase__ : Union[str, Any] = np.array([0.0_3_4_0, 0.0_1_5_2, 0.0_0_6_3, 0.0_2_6_7, 0.0_2_2_1, 0.0_1_0_7, 0.0_4_1_6, 0.0_1_8_6, 0.0_2_1_7] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 2E-2 @require_torch_a def _lowerCamelCase ( self : List[str] ): '''simple docstring''' lowerCAmelCase__ : int = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Tuple = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : str = self.get_inputs(get_fixed_latents=a , device=a ) # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): lowerCAmelCase__ : Dict = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : str = image[0, -3:, -3:, -1] lowerCAmelCase__ : str = np.array([0.1_8_7_5, 0.1_4_2_8, 0.1_2_8_9, 0.2_1_5_1, 0.2_0_9_2, 0.1_4_7_7, 0.1_8_7_7, 0.1_6_4_1, 0.1_3_5_3] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 @require_torch_a def _lowerCamelCase ( self : Optional[int] ): '''simple docstring''' lowerCAmelCase__ : Optional[Any] = UNetaDModel.from_pretrained('diffusers/consistency_models' , subfolder='diffusers_cd_imagenet64_l2' ) lowerCAmelCase__ : List[Any] = CMStochasticIterativeScheduler( num_train_timesteps=40 , sigma_min=0.0_0_2 , sigma_max=8_0.0 , ) lowerCAmelCase__ : Dict = ConsistencyModelPipeline(unet=a , scheduler=a ) pipe.to(torch_device=a , torch_dtype=torch.floataa ) pipe.set_progress_bar_config(disable=a ) lowerCAmelCase__ : Any = self.get_inputs(get_fixed_latents=a , device=a ) lowerCAmelCase__ : List[str] = 1 lowerCAmelCase__ : str = None # Ensure usage of flash attention in torch 2.0 with sdp_kernel(enable_flash=a , enable_math=a , enable_mem_efficient=a ): lowerCAmelCase__ : List[str] = pipe(**a ).images assert image.shape == (1, 64, 64, 3) lowerCAmelCase__ : Dict = image[0, -3:, -3:, -1] lowerCAmelCase__ : Optional[int] = np.array([0.1_6_6_3, 0.1_9_4_8, 0.2_2_7_5, 0.1_6_8_0, 0.1_2_0_4, 0.1_2_4_5, 0.1_8_5_8, 0.1_3_3_8, 0.2_0_9_5] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
69
0
import unittest import numpy as np from transformers.testing_utils import require_torch, require_vision from transformers.utils import is_torch_available, is_vision_available from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import GLPNImageProcessor class _lowercase ( unittest.TestCase ): def __init__( self , a , a=7 , a=3 , a=1_8 , a=3_0 , a=4_0_0 , a=True , a=3_2 , a=True , ): snake_case__ : Optional[int] =parent snake_case__ : Union[str, Any] =batch_size snake_case__ : int =num_channels snake_case__ : str =image_size snake_case__ : int =min_resolution snake_case__ : Dict =max_resolution snake_case__ : List[Any] =do_resize snake_case__ : Tuple =size_divisor snake_case__ : Optional[int] =do_rescale def lowercase__ ( self ): return { "do_resize": self.do_resize, "size_divisor": self.size_divisor, "do_rescale": self.do_rescale, } @require_torch @require_vision class _lowercase ( lowerCAmelCase__ , unittest.TestCase ): _a : List[str] = GLPNImageProcessor if is_vision_available() else None def lowercase__ ( self ): snake_case__ : int =GLPNImageProcessingTester(self ) @property def lowercase__ ( self ): return self.image_processor_tester.prepare_image_processor_dict() def lowercase__ ( self ): snake_case__ : str =self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(lowercase_ , """do_resize""" ) ) self.assertTrue(hasattr(lowercase_ , """size_divisor""" ) ) self.assertTrue(hasattr(lowercase_ , """resample""" ) ) self.assertTrue(hasattr(lowercase_ , """do_rescale""" ) ) def lowercase__ ( self ): pass def lowercase__ ( self ): # Initialize image_processing snake_case__ : List[Any] =self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[str] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , Image.Image ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ : int =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowercase__ ( self ): # Initialize image_processing snake_case__ : str =self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : str =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , numpify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , np.ndarray ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ : Any =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 ) def lowercase__ ( self ): # Initialize image_processing snake_case__ : List[str] =self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[Any] =prepare_image_inputs(self.image_processor_tester , equal_resolution=lowercase_ , torchify=lowercase_ ) for image in image_inputs: self.assertIsInstance(lowercase_ , torch.Tensor ) # Test not batched input (GLPNImageProcessor doesn't support batching) snake_case__ : Any =image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertTrue(encoded_images.shape[-1] % self.image_processor_tester.size_divisor == 0 ) self.assertTrue(encoded_images.shape[-2] % self.image_processor_tester.size_divisor == 0 )
385
"""simple docstring""" from math import sqrt def __lowercase ( _a ): assert isinstance(_a , _a ) and ( number >= 0 ), "'number' must been an int and positive" snake_case_ : List[str] = True # 0 and 1 are none primes. if number <= 1: snake_case_ : Optional[int] = False for divisor in range(2 , int(round(sqrt(_a ) ) ) + 1 ): # if 'number' divisible by 'divisor' then sets 'status' # of false and break up the loop. if number % divisor == 0: snake_case_ : List[Any] = False break # precondition assert isinstance(_a , _a ), "'status' must been from type bool" return status def __lowercase ( _a ): assert isinstance(_a , _a ) and (n > 2), "'N' must been an int and > 2" # beginList: contains all natural numbers from 2 up to N snake_case_ : int = list(range(2 , n + 1 ) ) snake_case_ : Optional[int] = [] # this list will be returns. # actual sieve of erathostenes for i in range(len(_a ) ): for j in range(i + 1 , len(_a ) ): if (begin_list[i] != 0) and (begin_list[j] % begin_list[i] == 0): snake_case_ : List[Any] = 0 # filters actual prime numbers. snake_case_ : str = [x for x in begin_list if x != 0] # precondition assert isinstance(_a , _a ), "'ans' must been from type list" return ans def __lowercase ( _a ): assert isinstance(_a , _a ) and (n > 2), "'N' must been an int and > 2" snake_case_ : List[str] = [] # iterates over all numbers between 2 up to N+1 # if a number is prime then appends to list 'ans' for number in range(2 , n + 1 ): if is_prime(_a ): ans.append(_a ) # precondition assert isinstance(_a , _a ), "'ans' must been from type list" return ans def __lowercase ( _a ): assert isinstance(_a , _a ) and number >= 0, "'number' must been an int and >= 0" snake_case_ : Optional[int] = [] # this list will be returns of the function. # potential prime number factors. snake_case_ : Optional[Any] = 2 snake_case_ : List[str] = number if number == 0 or number == 1: ans.append(_a ) # if 'number' not prime then builds the prime factorization of 'number' elif not is_prime(_a ): while quotient != 1: if is_prime(_a ) and (quotient % factor == 0): ans.append(_a ) quotient /= factor else: factor += 1 else: ans.append(_a ) # precondition assert isinstance(_a , _a ), "'ans' must been from type list" return ans def __lowercase ( _a ): assert isinstance(_a , _a ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case_ : str = 0 # prime factorization of 'number' snake_case_ : Union[str, Any] = prime_factorization(_a ) snake_case_ : int = max(_a ) # precondition assert isinstance(_a , _a ), "'ans' must been from type int" return ans def __lowercase ( _a ): assert isinstance(_a , _a ) and ( number >= 0 ), "'number' bust been an int and >= 0" snake_case_ : List[Any] = 0 # prime factorization of 'number' snake_case_ : Union[str, Any] = prime_factorization(_a ) snake_case_ : int = min(_a ) # precondition assert isinstance(_a , _a ), "'ans' must been from type int" return ans def __lowercase ( _a ): assert isinstance(_a , _a ), "'number' must been an int" assert isinstance(number % 2 == 0 , _a ), "compare bust been from type bool" return number % 2 == 0 def __lowercase ( _a ): assert isinstance(_a , _a ), "'number' must been an int" assert isinstance(number % 2 != 0 , _a ), "compare bust been from type bool" return number % 2 != 0 def __lowercase ( _a ): assert ( isinstance(_a , _a ) and (number > 2) and is_even(_a ) ), "'number' must been an int, even and > 2" snake_case_ : Optional[Any] = [] # this list will returned # creates a list of prime numbers between 2 up to 'number' snake_case_ : Dict = get_prime_numbers(_a ) snake_case_ : Optional[int] = len(_a ) # run variable for while-loops. snake_case_ : List[str] = 0 snake_case_ : Optional[Any] = None # exit variable. for break up the loops snake_case_ : List[Any] = True while i < len_pn and loop: snake_case_ : Optional[int] = i + 1 while j < len_pn and loop: if prime_numbers[i] + prime_numbers[j] == number: snake_case_ : List[Any] = False ans.append(prime_numbers[i] ) ans.append(prime_numbers[j] ) j += 1 i += 1 # precondition assert ( isinstance(_a , _a ) and (len(_a ) == 2) and (ans[0] + ans[1] == number) and is_prime(ans[0] ) and is_prime(ans[1] ) ), "'ans' must contains two primes. And sum of elements must been eq 'number'" return ans def __lowercase ( _a , _a ): assert ( isinstance(_a , _a ) and isinstance(_a , _a ) and (numbera >= 0) and (numbera >= 0) ), "'number1' and 'number2' must been positive integer." snake_case_ : int = 0 while numbera != 0: snake_case_ : Optional[Any] = numbera % numbera snake_case_ : Tuple = numbera snake_case_ : str = rest # precondition assert isinstance(_a , _a ) and ( numbera >= 0 ), "'number' must been from type int and positive" return numbera def __lowercase ( _a , _a ): assert ( isinstance(_a , _a ) and isinstance(_a , _a ) and (numbera >= 1) and (numbera >= 1) ), "'number1' and 'number2' must been positive integer." snake_case_ : str = 1 # actual answer that will be return. # for kgV (x,1) if numbera > 1 and numbera > 1: # builds the prime factorization of 'number1' and 'number2' snake_case_ : str = prime_factorization(_a ) snake_case_ : Optional[Any] = prime_factorization(_a ) elif numbera == 1 or numbera == 1: snake_case_ : Dict = [] snake_case_ : Any = [] snake_case_ : str = max(_a , _a ) snake_case_ : Union[str, Any] = 0 snake_case_ : Optional[Any] = 0 snake_case_ : Union[str, Any] = [] # captured numbers int both 'primeFac1' and 'primeFac2' # iterates through primeFac1 for n in prime_fac_a: if n not in done: if n in prime_fac_a: snake_case_ : int = prime_fac_a.count(_a ) snake_case_ : Optional[Any] = prime_fac_a.count(_a ) for _ in range(max(_a , _a ) ): ans *= n else: snake_case_ : Optional[Any] = prime_fac_a.count(_a ) for _ in range(_a ): ans *= n done.append(_a ) # iterates through primeFac2 for n in prime_fac_a: if n not in done: snake_case_ : Any = prime_fac_a.count(_a ) for _ in range(_a ): ans *= n done.append(_a ) # precondition assert isinstance(_a , _a ) and ( ans >= 0 ), "'ans' must been from type int and positive" return ans def __lowercase ( _a ): assert isinstance(_a , _a ) and (n >= 0), "'number' must been a positive int" snake_case_ : List[Any] = 0 snake_case_ : Any = 2 # this variable holds the answer while index < n: index += 1 ans += 1 # counts to the next number # if ans not prime then # runs to the next prime number. while not is_prime(_a ): ans += 1 # precondition assert isinstance(_a , _a ) and is_prime( _a ), "'ans' must been a prime number and from type int" return ans def __lowercase ( _a , _a ): assert ( is_prime(_a ) and is_prime(_a ) and (p_number_a < p_number_a) ), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'" snake_case_ : List[str] = p_number_a + 1 # jump to the next number snake_case_ : Tuple = [] # this list will be returns. # if number is not prime then # fetch the next prime number. while not is_prime(_a ): number += 1 while number < p_number_a: ans.append(_a ) number += 1 # fetch the next prime number. while not is_prime(_a ): number += 1 # precondition assert ( isinstance(_a , _a ) and ans[0] != p_number_a and ans[len(_a ) - 1] != p_number_a ), "'ans' must been a list without the arguments" # 'ans' contains not 'pNumber1' and 'pNumber2' ! return ans def __lowercase ( _a ): assert isinstance(_a , _a ) and (n >= 1), "'n' must been int and >= 1" snake_case_ : Optional[Any] = [] # will be returned. for divisor in range(1 , n + 1 ): if n % divisor == 0: ans.append(_a ) # precondition assert ans[0] == 1 and ans[len(_a ) - 1] == n, "Error in function getDivisiors(...)" return ans def __lowercase ( _a ): assert isinstance(_a , _a ) and ( number > 1 ), "'number' must been an int and >= 1" snake_case_ : List[Any] = get_divisors(_a ) # precondition assert ( isinstance(_a , _a ) and (divisors[0] == 1) and (divisors[len(_a ) - 1] == number) ), "Error in help-function getDivisiors(...)" # summed all divisors up to 'number' (exclusive), hence [:-1] return sum(divisors[:-1] ) == number def __lowercase ( _a , _a ): assert ( isinstance(_a , _a ) and isinstance(_a , _a ) and (denominator != 0) ), "The arguments must been from type int and 'denominator' != 0" # build the greatest common divisor of numerator and denominator. snake_case_ : List[Any] = gcd(abs(_a ) , abs(_a ) ) # precondition assert ( isinstance(_a , _a ) and (numerator % gcd_of_fraction == 0) and (denominator % gcd_of_fraction == 0) ), "Error in function gcd(...,...)" return (numerator // gcd_of_fraction, denominator // gcd_of_fraction) def __lowercase ( _a ): assert isinstance(_a , _a ) and (n >= 0), "'n' must been a int and >= 0" snake_case_ : Dict = 1 # this will be return. for factor in range(1 , n + 1 ): ans *= factor return ans def __lowercase ( _a ): assert isinstance(_a , _a ) and (n >= 0), "'n' must been an int and >= 0" snake_case_ : List[Any] = 0 snake_case_ : int = 1 snake_case_ : Any = 1 # this will be return for _ in range(n - 1 ): snake_case_ : List[Any] = ans ans += fiba snake_case_ : Any = tmp return ans
123
0
from __future__ import annotations def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if len(SCREAMING_SNAKE_CASE__ ) <= 1 or n <= 1: return insert_next(SCREAMING_SNAKE_CASE__ ,n - 1 ) rec_insertion_sort(SCREAMING_SNAKE_CASE__ ,n - 1 ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index >= len(SCREAMING_SNAKE_CASE__ ) or collection[index - 1] <= collection[index]: return # Swaps adjacent elements since they are not in ascending order lowerCAmelCase , lowerCAmelCase : Dict = ( collection[index], collection[index - 1], ) insert_next(SCREAMING_SNAKE_CASE__ ,index + 1 ) if __name__ == "__main__": lowerCAmelCase : int =input('Enter integers separated by spaces: ') lowerCAmelCase : list[int] =[int(num) for num in numbers.split()] rec_insertion_sort(number_list, len(number_list)) print(number_list)
693
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCAmelCase : int ={ 'configuration_poolformer': [ 'POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PoolFormerConfig', 'PoolFormerOnnxConfig', ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : List[Any] =['PoolFormerFeatureExtractor'] lowerCAmelCase : List[str] =['PoolFormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCAmelCase : Tuple =[ 'POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'PoolFormerForImageClassification', 'PoolFormerModel', 'PoolFormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_poolformer import ( POOLFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, PoolFormerConfig, PoolFormerOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_poolformer import PoolFormerFeatureExtractor from .image_processing_poolformer import PoolFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_poolformer import ( POOLFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, PoolFormerForImageClassification, PoolFormerModel, PoolFormerPreTrainedModel, ) else: import sys lowerCAmelCase : Any =_LazyModule(__name__, globals()['__file__'], _import_structure)
693
1
import os import posixpath import uuid from dataclasses import dataclass from typing import TYPE_CHECKING, Iterable, List, Optional, Tuple, Union import numpy as np import pyarrow as pa import datasets from datasets.arrow_writer import ArrowWriter, ParquetWriter from datasets.config import MAX_SHARD_SIZE from datasets.filesystems import ( is_remote_filesystem, rename, ) from datasets.iterable_dataset import _BaseExamplesIterable from datasets.utils.py_utils import convert_file_size_to_int _a : Any = datasets.utils.logging.get_logger(__name__) if TYPE_CHECKING: import pyspark @dataclass class UpperCamelCase_ ( datasets.BuilderConfig ): """simple docstring""" A = None def UpperCamelCase__ ( _A: "pyspark.sql.DataFrame" , _A: List[int] , ): '''simple docstring''' import pyspark def generate_fn(): __lowerCamelCase = df.select("""*""" , pyspark.sql.functions.spark_partition_id().alias("""part_id""" ) ) for partition_id in partition_order: __lowerCamelCase = df_with_partition_id.select("""*""" ).where(f'''part_id = {partition_id}''' ).drop("""part_id""" ) __lowerCamelCase = partition_df.collect() __lowerCamelCase = 0 for row in rows: yield f'''{partition_id}_{row_id}''', row.asDict() row_id += 1 return generate_fn class UpperCamelCase_ ( _BaseExamplesIterable ): """simple docstring""" def __init__( self , UpperCAmelCase , UpperCAmelCase=None , ): __lowerCamelCase = df __lowerCamelCase = partition_order or range(self.df.rdd.getNumPartitions() ) __lowerCamelCase = _generate_iterable_examples(self.df , self.partition_order ) def __iter__( self ): yield from self.generate_examples_fn() def lowerCamelCase_ ( self , UpperCAmelCase ): __lowerCamelCase = list(range(self.df.rdd.getNumPartitions() ) ) generator.shuffle(UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase ): __lowerCamelCase = self.split_shard_indices_by_worker(UpperCAmelCase , UpperCAmelCase ) return SparkExamplesIterable(self.df , partition_order=UpperCAmelCase ) @property def lowerCamelCase_ ( self ): return len(self.partition_order ) class UpperCamelCase_ ( datasets.DatasetBuilder ): """simple docstring""" A = SparkConfig def __init__( self , UpperCAmelCase , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): import pyspark __lowerCamelCase = pyspark.sql.SparkSession.builder.getOrCreate() __lowerCamelCase = df __lowerCamelCase = working_dir super().__init__( cache_dir=UpperCAmelCase , config_name=str(self.df.semanticHash() ) , **UpperCAmelCase , ) def lowerCamelCase_ ( self ): # Returns the path of the created file. def create_cache_and_write_probe(UpperCAmelCase ): # makedirs with exist_ok will recursively create the directory. It will not throw an error if directories # already exist. os.makedirs(self._cache_dir , exist_ok=UpperCAmelCase ) __lowerCamelCase = os.path.join(self._cache_dir , """fs_test""" + uuid.uuida().hex ) # Opening the file in append mode will create a new file unless it already exists, in which case it will not # change the file contents. open(UpperCAmelCase , """a""" ) return [probe_file] if self._spark.conf.get("""spark.master""" , """""" ).startswith("""local""" ): return # If the cluster is multi-node, make sure that the user provided a cache_dir and that it is on an NFS # accessible to the driver. # TODO: Stream batches to the driver using ArrowCollectSerializer instead of throwing an error. if self._cache_dir: __lowerCamelCase = ( self._spark.sparkContext.parallelize(range(1 ) , 1 ).mapPartitions(UpperCAmelCase ).collect() ) if os.path.isfile(probe[0] ): return raise ValueError( """When using Dataset.from_spark on a multi-node cluster, the driver and all workers should be able to access cache_dir""" ) def lowerCamelCase_ ( self ): return datasets.DatasetInfo(features=self.config.features ) def lowerCamelCase_ ( self , UpperCAmelCase ): return [datasets.SplitGenerator(name=datasets.Split.TRAIN )] def lowerCamelCase_ ( self , UpperCAmelCase ): import pyspark def get_arrow_batch_size(UpperCAmelCase ): for batch in it: yield pa.RecordBatch.from_pydict({"""batch_bytes""": [batch.nbytes]} ) __lowerCamelCase = self.df.count() __lowerCamelCase = df_num_rows if df_num_rows <= 1_0_0 else 1_0_0 # Approximate the size of each row (in Arrow format) by averaging over a max-100-row sample. __lowerCamelCase = ( self.df.limit(UpperCAmelCase ) .repartition(1 ) .mapInArrow(UpperCAmelCase , """batch_bytes: long""" ) .agg(pyspark.sql.functions.sum("""batch_bytes""" ).alias("""sample_bytes""" ) ) .collect()[0] .sample_bytes / sample_num_rows ) __lowerCamelCase = approx_bytes_per_row * df_num_rows if approx_total_size > max_shard_size: # Make sure there is at least one row per partition. __lowerCamelCase = min(UpperCAmelCase , int(approx_total_size / max_shard_size ) ) __lowerCamelCase = self.df.repartition(UpperCAmelCase ) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): import pyspark __lowerCamelCase = ParquetWriter if file_format == """parquet""" else ArrowWriter __lowerCamelCase = os.path.join(self._working_dir , os.path.basename(UpperCAmelCase ) ) if self._working_dir else fpath __lowerCamelCase = file_format == """parquet""" # Define these so that we don't reference self in write_arrow, which will result in a pickling error due to # pickling the SparkContext. __lowerCamelCase = self.config.features __lowerCamelCase = self._writer_batch_size __lowerCamelCase = self._fs.storage_options def write_arrow(UpperCAmelCase ): # Within the same SparkContext, no two task attempts will share the same attempt ID. __lowerCamelCase = pyspark.TaskContext().taskAttemptId() __lowerCamelCase = next(UpperCAmelCase , UpperCAmelCase ) if first_batch is None: # Some partitions might not receive any data. return pa.RecordBatch.from_arrays( [[task_id], [0], [0]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) __lowerCamelCase = 0 __lowerCamelCase = writer_class( features=UpperCAmelCase , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=UpperCAmelCase , storage_options=UpperCAmelCase , embed_local_files=UpperCAmelCase , ) __lowerCamelCase = pa.Table.from_batches([first_batch] ) writer.write_table(UpperCAmelCase ) for batch in it: if max_shard_size is not None and writer._num_bytes >= max_shard_size: __lowerCamelCase , __lowerCamelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) shard_id += 1 __lowerCamelCase = writer_class( features=writer._features , path=working_fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , writer_batch_size=UpperCAmelCase , storage_options=UpperCAmelCase , embed_local_files=UpperCAmelCase , ) __lowerCamelCase = pa.Table.from_batches([batch] ) writer.write_table(UpperCAmelCase ) if writer._num_bytes > 0: __lowerCamelCase , __lowerCamelCase = writer.finalize() writer.close() yield pa.RecordBatch.from_arrays( [[task_id], [num_examples], [num_bytes]] , names=["""task_id""", """num_examples""", """num_bytes"""] , ) if working_fpath != fpath: for file in os.listdir(os.path.dirname(UpperCAmelCase ) ): __lowerCamelCase = os.path.join(os.path.dirname(UpperCAmelCase ) , os.path.basename(UpperCAmelCase ) ) shutil.move(UpperCAmelCase , UpperCAmelCase ) __lowerCamelCase = ( self.df.mapInArrow(UpperCAmelCase , """task_id: long, num_examples: long, num_bytes: long""" ) .groupBy("""task_id""" ) .agg( pyspark.sql.functions.sum("""num_examples""" ).alias("""total_num_examples""" ) , pyspark.sql.functions.sum("""num_bytes""" ).alias("""total_num_bytes""" ) , pyspark.sql.functions.count("""num_bytes""" ).alias("""num_shards""" ) , pyspark.sql.functions.collect_list("""num_examples""" ).alias("""shard_lengths""" ) , ) .collect() ) for row in stats: yield row.task_id, (row.total_num_examples, row.total_num_bytes, row.num_shards, row.shard_lengths) def lowerCamelCase_ ( self , UpperCAmelCase , UpperCAmelCase = "arrow" , UpperCAmelCase = None , UpperCAmelCase = None , **UpperCAmelCase , ): self._validate_cache_dir() __lowerCamelCase = convert_file_size_to_int(max_shard_size or MAX_SHARD_SIZE ) self._repartition_df_if_needed(UpperCAmelCase ) __lowerCamelCase = not is_remote_filesystem(self._fs ) __lowerCamelCase = os.path.join if is_local else posixpath.join __lowerCamelCase = """-TTTTT-SSSSS-of-NNNNN""" __lowerCamelCase = f'''{self.name}-{split_generator.name}{SUFFIX}.{file_format}''' __lowerCamelCase = path_join(self._output_dir , UpperCAmelCase ) __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = 0 __lowerCamelCase = [] __lowerCamelCase = [] for task_id, content in self._prepare_split_single(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): ( ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ( __lowerCamelCase ) , ) = content if num_bytes > 0: total_num_examples += num_examples total_num_bytes += num_bytes total_shards += num_shards task_id_and_num_shards.append((task_id, num_shards) ) all_shard_lengths.extend(UpperCAmelCase ) __lowerCamelCase = total_num_examples __lowerCamelCase = total_num_bytes # should rename everything at the end logger.debug(f'''Renaming {total_shards} shards.''' ) if total_shards > 1: __lowerCamelCase = all_shard_lengths # Define fs outside of _rename_shard so that we don't reference self in the function, which will result in a # pickling error due to pickling the SparkContext. __lowerCamelCase = self._fs # use the -SSSSS-of-NNNNN pattern def _rename_shard( UpperCAmelCase , UpperCAmelCase , UpperCAmelCase , ): rename( UpperCAmelCase , fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace("""TTTTT-SSSSS""" , f'''{global_shard_id:05d}''' ).replace("""NNNNN""" , f'''{total_shards:05d}''' ) , ) __lowerCamelCase = [] __lowerCamelCase = 0 for i in range(len(UpperCAmelCase ) ): __lowerCamelCase , __lowerCamelCase = task_id_and_num_shards[i] for shard_id in range(UpperCAmelCase ): args.append([task_id, shard_id, global_shard_id] ) global_shard_id += 1 self._spark.sparkContext.parallelize(UpperCAmelCase , len(UpperCAmelCase ) ).map(lambda UpperCAmelCase : _rename_shard(*UpperCAmelCase ) ).collect() else: # don't use any pattern __lowerCamelCase = 0 __lowerCamelCase = task_id_and_num_shards[0][0] self._rename( fpath.replace("""SSSSS""" , f'''{shard_id:05d}''' ).replace("""TTTTT""" , f'''{task_id:05d}''' ) , fpath.replace(UpperCAmelCase , """""" ) , ) def lowerCamelCase_ ( self , UpperCAmelCase , ): return SparkExamplesIterable(self.df )
479
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available _a : List[str] = { 'configuration_data2vec_audio': ['DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecAudioConfig'], 'configuration_data2vec_text': [ 'DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecTextConfig', 'Data2VecTextOnnxConfig', ], 'configuration_data2vec_vision': [ 'DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Data2VecVisionConfig', 'Data2VecVisionOnnxConfig', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _a : Optional[Any] = [ 'DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecAudioForAudioFrameClassification', 'Data2VecAudioForCTC', 'Data2VecAudioForSequenceClassification', 'Data2VecAudioForXVector', 'Data2VecAudioModel', 'Data2VecAudioPreTrainedModel', ] _a : str = [ 'DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecTextForCausalLM', 'Data2VecTextForMaskedLM', 'Data2VecTextForMultipleChoice', 'Data2VecTextForQuestionAnswering', 'Data2VecTextForSequenceClassification', 'Data2VecTextForTokenClassification', 'Data2VecTextModel', 'Data2VecTextPreTrainedModel', ] _a : Tuple = [ 'DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST', 'Data2VecVisionForImageClassification', 'Data2VecVisionForMaskedImageModeling', 'Data2VecVisionForSemanticSegmentation', 'Data2VecVisionModel', 'Data2VecVisionPreTrainedModel', ] if is_tf_available(): _a : Dict = [ 'TFData2VecVisionForImageClassification', 'TFData2VecVisionForSemanticSegmentation', 'TFData2VecVisionModel', 'TFData2VecVisionPreTrainedModel', ] if TYPE_CHECKING: from .configuration_dataavec_audio import DATA2VEC_AUDIO_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecAudioConfig from .configuration_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecTextConfig, DataaVecTextOnnxConfig, ) from .configuration_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_CONFIG_ARCHIVE_MAP, DataaVecVisionConfig, DataaVecVisionOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_dataavec_audio import ( DATA2VEC_AUDIO_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecAudioForAudioFrameClassification, DataaVecAudioForCTC, DataaVecAudioForSequenceClassification, DataaVecAudioForXVector, DataaVecAudioModel, DataaVecAudioPreTrainedModel, ) from .modeling_dataavec_text import ( DATA2VEC_TEXT_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecTextForCausalLM, DataaVecTextForMaskedLM, DataaVecTextForMultipleChoice, DataaVecTextForQuestionAnswering, DataaVecTextForSequenceClassification, DataaVecTextForTokenClassification, DataaVecTextModel, DataaVecTextPreTrainedModel, ) from .modeling_dataavec_vision import ( DATA2VEC_VISION_PRETRAINED_MODEL_ARCHIVE_LIST, DataaVecVisionForImageClassification, DataaVecVisionForMaskedImageModeling, DataaVecVisionForSemanticSegmentation, DataaVecVisionModel, DataaVecVisionPreTrainedModel, ) if is_tf_available(): from .modeling_tf_dataavec_vision import ( TFDataaVecVisionForImageClassification, TFDataaVecVisionForSemanticSegmentation, TFDataaVecVisionModel, TFDataaVecVisionPreTrainedModel, ) else: import sys _a : Any = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
479
1
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin a_ : List[Any] = get_tests_dir('fixtures/test_sentencepiece.model') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right a_ : Dict = 25_0004 a_ : Dict = 25_0020 @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase , unittest.TestCase ): """simple docstring""" _a = MBartTokenizer _a = MBartTokenizerFast _a = True _a = True def __A ( self ) -> Tuple: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing __magic_name__ = MBartTokenizer(lowercase__ , keep_accents=lowercase__ ) tokenizer.save_pretrained(self.tmpdirname ) def __A ( self ) -> str: '''simple docstring''' __magic_name__ = MBartTokenizer(lowercase__ , keep_accents=lowercase__ ) __magic_name__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowercase__ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowercase__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) __magic_name__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) __magic_name__ = tokenizer.convert_tokens_to_ids(lowercase__ ) self.assertListEqual( lowercase__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) __magic_name__ = tokenizer.convert_ids_to_tokens(lowercase__ ) self.assertListEqual( lowercase__ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __A ( self ) -> List[Any]: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return __magic_name__ = (self.rust_tokenizer_class, "hf-internal-testing/tiny-random-mbart", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): __magic_name__ = self.rust_tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __magic_name__ = self.tokenizer_class.from_pretrained(lowercase__ , **lowercase__ ) __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(lowercase__ ) __magic_name__ = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) __magic_name__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowercase__ , lowercase__ ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(lowercase__ ) __magic_name__ = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=True __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(lowercase__ , legacy_format=lowercase__ ) __magic_name__ = tokenizer_p.save_pretrained(lowercase__ ) # Checks it save with the same files self.assertSequenceEqual(lowercase__ , lowercase__ ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(lowercase__ ) __magic_name__ = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) shutil.rmtree(lowercase__ ) # Save tokenizer rust, legacy_format=False __magic_name__ = tempfile.mkdtemp() __magic_name__ = tokenizer_r.save_pretrained(lowercase__ , legacy_format=lowercase__ ) __magic_name__ = tokenizer_p.save_pretrained(lowercase__ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way __magic_name__ = tokenizer_r.from_pretrained(lowercase__ ) __magic_name__ = tokenizer_p.from_pretrained(lowercase__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowercase__ , lowercase__ ) ) shutil.rmtree(lowercase__ ) @require_torch @require_sentencepiece @require_tokenizers class SCREAMING_SNAKE_CASE_ ( unittest.TestCase ): """simple docstring""" _a = """facebook/mbart-large-en-ro""" _a = [ """ UN Chief Says There Is No Military Solution in Syria""", """ Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.""", ] _a = [ """Şeful ONU declară că nu există o soluţie militară în Siria""", """Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei""" """ pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor""" """ face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.""", ] _a = [8274, 127873, 25916, 7, 8622, 2071, 438, 67485, 53, 187895, 23, 51712, 2, EN_CODE] @classmethod def __A ( cls ) -> Dict: '''simple docstring''' __magic_name__ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) __magic_name__ = 1 return cls def __A ( self ) -> Optional[int]: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_00_01 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_00_04 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_00_20 ) def __A ( self ) -> Any: '''simple docstring''' __magic_name__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) def __A ( self ) -> Dict: '''simple docstring''' self.assertIn(lowercase__ , self.tokenizer.all_special_ids ) __magic_name__ = [RO_CODE, 8_84, 90_19, 96, 9, 9_16, 8_67_92, 36, 1_87_43, 1_55_96, 5, 2] __magic_name__ = self.tokenizer.decode(lowercase__ , skip_special_tokens=lowercase__ ) __magic_name__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=lowercase__ ) self.assertEqual(lowercase__ , lowercase__ ) self.assertNotIn(self.tokenizer.eos_token , lowercase__ ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = ["this is gunna be a long sentence " * 20] assert isinstance(src_text[0] , lowercase__ ) __magic_name__ = 10 __magic_name__ = self.tokenizer(lowercase__ , max_length=lowercase__ , truncation=lowercase__ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , lowercase__ ) self.assertEqual(len(lowercase__ ) , lowercase__ ) def __A ( self ) -> int: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_00_26, 25_00_01] ) def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = tempfile.mkdtemp() __magic_name__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(lowercase__ ) __magic_name__ = MBartTokenizer.from_pretrained(lowercase__ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , lowercase__ ) @require_torch def __A ( self ) -> Tuple: '''simple docstring''' __magic_name__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=lowercase__ , return_tensors='''pt''' ) __magic_name__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def __A ( self ) -> Dict: '''simple docstring''' __magic_name__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) __magic_name__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(lowercase__ , lowercase__ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) __magic_name__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , lowercase__ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def __A ( self ) -> int: '''simple docstring''' __magic_name__ = self.tokenizer(self.src_text , padding=lowercase__ , truncation=lowercase__ , max_length=3 , return_tensors='''pt''' ) __magic_name__ = self.tokenizer( text_target=self.tgt_text , padding=lowercase__ , truncation=lowercase__ , max_length=10 , return_tensors='''pt''' ) __magic_name__ = targets["input_ids"] __magic_name__ = shift_tokens_right(lowercase__ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def __A ( self ) -> List[Any]: '''simple docstring''' __magic_name__ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(lowercase__ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 30_34, 2, 25_00_04]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_00_01, } , )
702
import argparse import requests import torch from PIL import Image from transformers import SwinConfig, SwinForMaskedImageModeling, ViTImageProcessor def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): __magic_name__ = SwinConfig(image_size=192 ) if "base" in model_name: __magic_name__ = 6 __magic_name__ = 128 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (4, 8, 16, 32) elif "large" in model_name: __magic_name__ = 12 __magic_name__ = 192 __magic_name__ = (2, 2, 18, 2) __magic_name__ = (6, 12, 24, 48) else: raise ValueError('''Model not supported, only supports base and large variants''' ) __magic_name__ = window_size __magic_name__ = embed_dim __magic_name__ = depths __magic_name__ = num_heads return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Optional[Any] ): if "encoder.mask_token" in name: __magic_name__ = name.replace('''encoder.mask_token''' , '''embeddings.mask_token''' ) if "encoder.patch_embed.proj" in name: __magic_name__ = name.replace('''encoder.patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) if "encoder.patch_embed.norm" in name: __magic_name__ = name.replace('''encoder.patch_embed.norm''' , '''embeddings.norm''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) if name == "encoder.norm.weight": __magic_name__ = '''layernorm.weight''' if name == "encoder.norm.bias": __magic_name__ = '''layernorm.bias''' if "decoder" in name: pass else: __magic_name__ = '''swin.''' + name return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Union[str, Any] , snake_case_ : Any ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "attn_mask" in key: pass elif "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[2] ) __magic_name__ = int(key_split[4] ) __magic_name__ = model.swin.encoder.layers[layer_num].blocks[block_num].attention.self.all_head_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[ dim : dim * 2, : ] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[ :dim ] __magic_name__ = val[ dim : dim * 2 ] __magic_name__ = val[ -dim: ] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : List[str] , snake_case_ : int , snake_case_ : Any , snake_case_ : str ): __magic_name__ = torch.load(snake_case_ , map_location='''cpu''' )['''model'''] __magic_name__ = get_swin_config(snake_case_ ) __magic_name__ = SwinForMaskedImageModeling(snake_case_ ) model.eval() __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) model.load_state_dict(snake_case_ ) __magic_name__ = '''http://images.cocodataset.org/val2017/000000039769.jpg''' __magic_name__ = ViTImageProcessor(size={'''height''': 192, '''width''': 192} ) __magic_name__ = Image.open(requests.get(snake_case_ , stream=snake_case_ ).raw ) __magic_name__ = image_processor(images=snake_case_ , return_tensors='''pt''' ) with torch.no_grad(): __magic_name__ = model(**snake_case_ ).logits print(outputs.keys() ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(snake_case_ ) if push_to_hub: print(f'Pushing model and image processor for {model_name} to hub' ) model.push_to_hub(f'microsoft/{model_name}' ) image_processor.push_to_hub(f'microsoft/{model_name}' ) if __name__ == "__main__": a_ : Optional[int] = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='swin-base-simmim-window6-192', type=str, choices=['swin-base-simmim-window6-192', 'swin-large-simmim-window12-192'], help='Name of the Swin SimMIM model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default='/Users/nielsrogge/Documents/SwinSimMIM/simmim_pretrain__swin_base__img192_window6__100ep.pth', type=str, help='Path to the original PyTorch checkpoint (.pth file).', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : Optional[Any] = parser.parse_args() convert_swin_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path, args.push_to_hub)
678
0
import copy import os from typing import TYPE_CHECKING, List, Union if TYPE_CHECKING: pass from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """kakaobrain/align-base""": """https://huggingface.co/kakaobrain/align-base/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""align_text_model""" def __init__( self : List[str] , UpperCamelCase : Union[str, Any]=3_05_22 , UpperCamelCase : Optional[int]=7_68 , UpperCamelCase : Dict=12 , UpperCamelCase : List[str]=12 , UpperCamelCase : str=30_72 , UpperCamelCase : List[Any]="gelu" , UpperCamelCase : Optional[int]=0.1 , UpperCamelCase : Optional[Any]=0.1 , UpperCamelCase : Tuple=5_12 , UpperCamelCase : List[Any]=2 , UpperCamelCase : str=0.02 , UpperCamelCase : Union[str, Any]=1e-1_2 , UpperCamelCase : int=0 , UpperCamelCase : List[str]="absolute" , UpperCamelCase : Optional[int]=True , **UpperCamelCase : Union[str, Any] , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : Optional[int] = vocab_size _snake_case : Tuple = hidden_size _snake_case : Optional[int] = num_hidden_layers _snake_case : Any = num_attention_heads _snake_case : Optional[Any] = hidden_act _snake_case : int = intermediate_size _snake_case : List[str] = hidden_dropout_prob _snake_case : Any = attention_probs_dropout_prob _snake_case : Any = max_position_embeddings _snake_case : List[str] = type_vocab_size _snake_case : Tuple = initializer_range _snake_case : int = layer_norm_eps _snake_case : Optional[int] = position_embedding_type _snake_case : str = use_cache _snake_case : Optional[int] = pad_token_id @classmethod def UpperCamelCase_ ( cls : List[Any] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : Optional[int] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase ) _snake_case , _snake_case : Optional[int] = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the text config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": _snake_case : List[str] = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""align_vision_model""" def __init__( self : Dict , UpperCamelCase : int = 3 , UpperCamelCase : int = 6_00 , UpperCamelCase : float = 2.0 , UpperCamelCase : float = 3.1 , UpperCamelCase : int = 8 , UpperCamelCase : List[int] = [3, 3, 5, 3, 5, 5, 3] , UpperCamelCase : List[int] = [32, 16, 24, 40, 80, 1_12, 1_92] , UpperCamelCase : List[int] = [16, 24, 40, 80, 1_12, 1_92, 3_20] , UpperCamelCase : List[int] = [] , UpperCamelCase : List[int] = [1, 2, 2, 2, 1, 2, 1] , UpperCamelCase : List[int] = [1, 2, 2, 3, 3, 4, 1] , UpperCamelCase : List[int] = [1, 6, 6, 6, 6, 6, 6] , UpperCamelCase : float = 0.25 , UpperCamelCase : str = "swish" , UpperCamelCase : int = 25_60 , UpperCamelCase : str = "mean" , UpperCamelCase : float = 0.02 , UpperCamelCase : float = 0.0_01 , UpperCamelCase : float = 0.99 , UpperCamelCase : float = 0.2 , **UpperCamelCase : Dict , ): '''simple docstring''' super().__init__(**UpperCamelCase ) _snake_case : int = num_channels _snake_case : Any = image_size _snake_case : Dict = width_coefficient _snake_case : str = depth_coefficient _snake_case : Optional[Any] = depth_divisor _snake_case : Dict = kernel_sizes _snake_case : str = in_channels _snake_case : Any = out_channels _snake_case : List[Any] = depthwise_padding _snake_case : Any = strides _snake_case : Optional[int] = num_block_repeats _snake_case : Optional[Any] = expand_ratios _snake_case : int = squeeze_expansion_ratio _snake_case : List[Any] = hidden_act _snake_case : Optional[int] = hidden_dim _snake_case : List[str] = pooling_type _snake_case : Tuple = initializer_range _snake_case : Optional[Any] = batch_norm_eps _snake_case : int = batch_norm_momentum _snake_case : Any = drop_connect_rate _snake_case : Any = sum(UpperCamelCase ) * 4 @classmethod def UpperCamelCase_ ( cls : List[str] , UpperCamelCase : Union[str, os.PathLike] , **UpperCamelCase : List[Any] ): '''simple docstring''' cls._set_token_in_kwargs(UpperCamelCase ) _snake_case , _snake_case : str = cls.get_config_dict(UpperCamelCase , **UpperCamelCase ) # get the vision config dict if we are loading from AlignConfig if config_dict.get('model_type' ) == "align": _snake_case : Dict = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( f"""You are using a model of type {config_dict['model_type']} to instantiate a model of type """ f"""{cls.model_type}. This is not supported for all configurations of models and can yield errors.""" ) return cls.from_dict(UpperCamelCase , **UpperCamelCase ) class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""align""" a_ : List[Any] =True def __init__( self : Dict , UpperCamelCase : Optional[Any]=None , UpperCamelCase : Tuple=None , UpperCamelCase : Union[str, Any]=6_40 , UpperCamelCase : int=1.0 , UpperCamelCase : int=0.02 , **UpperCamelCase : str , ): '''simple docstring''' super().__init__(**UpperCamelCase ) if text_config is None: _snake_case : str = {} logger.info('text_config is None. Initializing the AlignTextConfig with default values.' ) if vision_config is None: _snake_case : List[str] = {} logger.info('vision_config is None. Initializing the AlignVisionConfig with default values.' ) _snake_case : Union[str, Any] = AlignTextConfig(**UpperCamelCase ) _snake_case : Dict = AlignVisionConfig(**UpperCamelCase ) _snake_case : Any = projection_dim _snake_case : Optional[int] = temperature_init_value _snake_case : List[str] = initializer_range @classmethod def UpperCamelCase_ ( cls : Any , UpperCamelCase : AlignTextConfig , UpperCamelCase : AlignVisionConfig , **UpperCamelCase : Tuple ): '''simple docstring''' return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **UpperCamelCase ) def UpperCamelCase_ ( self : int ): '''simple docstring''' _snake_case : Union[str, Any] = copy.deepcopy(self.__dict__ ) _snake_case : Optional[Any] = self.text_config.to_dict() _snake_case : List[str] = self.vision_config.to_dict() _snake_case : Tuple = self.__class__.model_type return output
411
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """tiiuae/falcon-40b""": """https://huggingface.co/tiiuae/falcon-40b/resolve/main/config.json""", """tiiuae/falcon-7b""": """https://huggingface.co/tiiuae/falcon-7b/resolve/main/config.json""", } class _lowerCAmelCase ( UpperCAmelCase_ ): '''simple docstring''' a_ : List[str] ="""falcon""" a_ : List[Any] =["""past_key_values"""] def __init__( self : Dict , UpperCamelCase : List[Any]=6_50_24 , UpperCamelCase : Dict=45_44 , UpperCamelCase : Optional[Any]=32 , UpperCamelCase : Optional[int]=71 , UpperCamelCase : Any=1e-5 , UpperCamelCase : List[str]=0.02 , UpperCamelCase : Optional[Any]=True , UpperCamelCase : Optional[Any]=0.0 , UpperCamelCase : Any=0.0 , UpperCamelCase : Union[str, Any]=None , UpperCamelCase : Union[str, Any]=False , UpperCamelCase : Dict=False , UpperCamelCase : Dict=True , UpperCamelCase : List[Any]=True , UpperCamelCase : str=False , UpperCamelCase : Dict=11 , UpperCamelCase : Dict=11 , **UpperCamelCase : Optional[int] , ): '''simple docstring''' _snake_case : Optional[Any] = vocab_size # Backward compatibility with n_embed kwarg _snake_case : Optional[Any] = kwargs.pop('n_embed' , UpperCamelCase ) _snake_case : Dict = hidden_size if n_embed is None else n_embed _snake_case : Dict = num_hidden_layers _snake_case : Dict = num_attention_heads _snake_case : List[str] = layer_norm_epsilon _snake_case : Optional[int] = initializer_range _snake_case : str = use_cache _snake_case : str = hidden_dropout _snake_case : str = attention_dropout _snake_case : List[Any] = bos_token_id _snake_case : Union[str, Any] = eos_token_id _snake_case : Tuple = num_attention_heads if num_kv_heads is None else num_kv_heads _snake_case : Union[str, Any] = alibi _snake_case : Optional[int] = new_decoder_architecture _snake_case : List[Any] = multi_query # Ignored when new_decoder_architecture is True _snake_case : Dict = parallel_attn _snake_case : Dict = bias super().__init__(bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase , **UpperCamelCase ) @property def UpperCamelCase_ ( self : str ): '''simple docstring''' return self.hidden_size // self.num_attention_heads @property def UpperCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return not self.alibi
411
1
'''simple docstring''' import argparse import os import torch from diffusers import ( CMStochasticIterativeScheduler, ConsistencyModelPipeline, UNetaDModel, ) UpperCamelCase_ = { "sample_size": 3_2, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": 1_0_0_0, "block_out_channels": [3_2, 6_4], "attention_head_dim": 8, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } UpperCamelCase_ = { "sample_size": 6_4, "in_channels": 3, "out_channels": 3, "layers_per_block": 3, "num_class_embeds": 1_0_0_0, "block_out_channels": [1_9_2, 1_9_2 * 2, 1_9_2 * 3, 1_9_2 * 4], "attention_head_dim": 6_4, "down_block_types": [ "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "scale_shift", "upsample_type": "resnet", "downsample_type": "resnet", } UpperCamelCase_ = { "sample_size": 2_5_6, "in_channels": 3, "out_channels": 3, "layers_per_block": 2, "num_class_embeds": None, "block_out_channels": [2_5_6, 2_5_6, 2_5_6 * 2, 2_5_6 * 2, 2_5_6 * 4, 2_5_6 * 4], "attention_head_dim": 6_4, "down_block_types": [ "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "ResnetDownsampleBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", ], "up_block_types": [ "AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", "ResnetUpsampleBlock2D", ], "resnet_time_scale_shift": "default", "upsample_type": "resnet", "downsample_type": "resnet", } UpperCamelCase_ = { "num_train_timesteps": 4_0, "sigma_min": 0.002, "sigma_max": 80.0, } UpperCamelCase_ = { "num_train_timesteps": 2_0_1, "sigma_min": 0.002, "sigma_max": 80.0, } UpperCamelCase_ = { "num_train_timesteps": 1_5_1, "sigma_min": 0.002, "sigma_max": 80.0, } def lowercase__( __UpperCamelCase: Optional[int] ): """simple docstring""" if isinstance(__UpperCamelCase ,__UpperCamelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise argparse.ArgumentTypeError('boolean value expected' ) def lowercase__( __UpperCamelCase: List[str] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Optional[int]=False ): """simple docstring""" SCREAMING_SNAKE_CASE : str = checkpoint[f"{old_prefix}.in_layers.0.weight"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint[f"{old_prefix}.in_layers.0.bias"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"{old_prefix}.in_layers.2.weight"] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"{old_prefix}.in_layers.2.bias"] SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint[f"{old_prefix}.emb_layers.1.weight"] SCREAMING_SNAKE_CASE : int = checkpoint[f"{old_prefix}.emb_layers.1.bias"] SCREAMING_SNAKE_CASE : List[str] = checkpoint[f"{old_prefix}.out_layers.0.weight"] SCREAMING_SNAKE_CASE : Any = checkpoint[f"{old_prefix}.out_layers.0.bias"] SCREAMING_SNAKE_CASE : List[Any] = checkpoint[f"{old_prefix}.out_layers.3.weight"] SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"{old_prefix}.out_layers.3.bias"] if has_skip: SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"{old_prefix}.skip_connection.weight"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"{old_prefix}.skip_connection.bias"] return new_checkpoint def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: List[Any] ,__UpperCamelCase: Union[str, Any] ,__UpperCamelCase: Any ,__UpperCamelCase: Optional[Any]=None ): """simple docstring""" SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = checkpoint[f"{old_prefix}.qkv.weight"].chunk(3 ,dim=0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = checkpoint[f"{old_prefix}.qkv.bias"].chunk(3 ,dim=0 ) SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint[f"{old_prefix}.norm.weight"] SCREAMING_SNAKE_CASE : Dict = checkpoint[f"{old_prefix}.norm.bias"] SCREAMING_SNAKE_CASE : str = weight_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : List[str] = bias_q.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : Dict = weight_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : List[str] = bias_k.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : Optional[int] = weight_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : int = bias_v.squeeze(-1 ).squeeze(-1 ) SCREAMING_SNAKE_CASE : int = ( checkpoint[f"{old_prefix}.proj_out.weight"].squeeze(-1 ).squeeze(-1 ) ) SCREAMING_SNAKE_CASE : Optional[Any] = checkpoint[f"{old_prefix}.proj_out.bias"].squeeze(-1 ).squeeze(-1 ) return new_checkpoint def lowercase__( __UpperCamelCase: str ,__UpperCamelCase: Optional[Any] ): """simple docstring""" SCREAMING_SNAKE_CASE : Union[str, Any] = torch.load(__UpperCamelCase ,map_location='cpu' ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : List[str] = checkpoint['time_embed.0.weight'] SCREAMING_SNAKE_CASE : str = checkpoint['time_embed.0.bias'] SCREAMING_SNAKE_CASE : int = checkpoint['time_embed.2.weight'] SCREAMING_SNAKE_CASE : int = checkpoint['time_embed.2.bias'] if unet_config["num_class_embeds"] is not None: SCREAMING_SNAKE_CASE : Tuple = checkpoint['label_emb.weight'] SCREAMING_SNAKE_CASE : List[Any] = checkpoint['input_blocks.0.0.weight'] SCREAMING_SNAKE_CASE : Tuple = checkpoint['input_blocks.0.0.bias'] SCREAMING_SNAKE_CASE : List[Any] = unet_config['down_block_types'] SCREAMING_SNAKE_CASE : Tuple = unet_config['layers_per_block'] SCREAMING_SNAKE_CASE : List[str] = unet_config['attention_head_dim'] SCREAMING_SNAKE_CASE : Tuple = unet_config['block_out_channels'] SCREAMING_SNAKE_CASE : Any = 1 SCREAMING_SNAKE_CASE : Optional[Any] = channels_list[0] for i, layer_type in enumerate(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[str] = channels_list[i] SCREAMING_SNAKE_CASE : Dict = current_channels != prev_channels if layer_type == "ResnetDownsampleBlock2D": for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = f"down_blocks.{i}.resnets.{j}" SCREAMING_SNAKE_CASE : List[str] = f"input_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : Dict = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE : Optional[int] = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,has_skip=__UpperCamelCase ) current_layer += 1 elif layer_type == "AttnDownBlock2D": for j in range(__UpperCamelCase ): SCREAMING_SNAKE_CASE : List[Any] = f"down_blocks.{i}.resnets.{j}" SCREAMING_SNAKE_CASE : Union[str, Any] = f"input_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : Any = True if j == 0 and downsample_block_has_skip else False SCREAMING_SNAKE_CASE : List[Any] = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,has_skip=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Dict = f"down_blocks.{i}.attentions.{j}" SCREAMING_SNAKE_CASE : str = f"input_blocks.{current_layer}.1" SCREAMING_SNAKE_CASE : List[str] = convert_attention( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) current_layer += 1 if i != len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE : Optional[Any] = f"down_blocks.{i}.downsamplers.0" SCREAMING_SNAKE_CASE : Tuple = f"input_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : Optional[Any] = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) current_layer += 1 SCREAMING_SNAKE_CASE : Optional[Any] = current_channels # hardcoded the mid-block for now SCREAMING_SNAKE_CASE : Optional[int] = 'mid_block.resnets.0' SCREAMING_SNAKE_CASE : List[Any] = 'middle_block.0' SCREAMING_SNAKE_CASE : str = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[str] = 'mid_block.attentions.0' SCREAMING_SNAKE_CASE : Tuple = 'middle_block.1' SCREAMING_SNAKE_CASE : Tuple = convert_attention(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Optional[int] = 'mid_block.resnets.1' SCREAMING_SNAKE_CASE : Union[str, Any] = 'middle_block.2' SCREAMING_SNAKE_CASE : Optional[int] = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : int = 0 SCREAMING_SNAKE_CASE : Dict = unet_config['up_block_types'] for i, layer_type in enumerate(__UpperCamelCase ): if layer_type == "ResnetUpsampleBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE : Union[str, Any] = f"up_blocks.{i}.resnets.{j}" SCREAMING_SNAKE_CASE : Union[str, Any] = f"output_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : Optional[int] = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,has_skip=__UpperCamelCase ) current_layer += 1 if i != len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE : Optional[int] = f"up_blocks.{i}.upsamplers.0" SCREAMING_SNAKE_CASE : str = f"output_blocks.{current_layer-1}.1" SCREAMING_SNAKE_CASE : List[str] = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) elif layer_type == "AttnUpBlock2D": for j in range(layers_per_block + 1 ): SCREAMING_SNAKE_CASE : Dict = f"up_blocks.{i}.resnets.{j}" SCREAMING_SNAKE_CASE : Optional[Any] = f"output_blocks.{current_layer}.0" SCREAMING_SNAKE_CASE : Tuple = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,has_skip=__UpperCamelCase ) SCREAMING_SNAKE_CASE : List[Any] = f"up_blocks.{i}.attentions.{j}" SCREAMING_SNAKE_CASE : Optional[Any] = f"output_blocks.{current_layer}.1" SCREAMING_SNAKE_CASE : Dict = convert_attention( __UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) current_layer += 1 if i != len(__UpperCamelCase ) - 1: SCREAMING_SNAKE_CASE : int = f"up_blocks.{i}.upsamplers.0" SCREAMING_SNAKE_CASE : Optional[int] = f"output_blocks.{current_layer-1}.2" SCREAMING_SNAKE_CASE : Tuple = convert_resnet(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ) SCREAMING_SNAKE_CASE : Tuple = checkpoint['out.0.weight'] SCREAMING_SNAKE_CASE : List[str] = checkpoint['out.0.bias'] SCREAMING_SNAKE_CASE : Any = checkpoint['out.2.weight'] SCREAMING_SNAKE_CASE : Union[str, Any] = checkpoint['out.2.bias'] return new_checkpoint if __name__ == "__main__": UpperCamelCase_ = argparse.ArgumentParser() parser.add_argument("--unet_path", default=None, type=str, required=True, help="Path to the unet.pt to convert.") parser.add_argument( "--dump_path", default=None, type=str, required=True, help="Path to output the converted UNet model." ) parser.add_argument("--class_cond", default=True, type=str, help="Whether the model is class-conditional.") UpperCamelCase_ = parser.parse_args() UpperCamelCase_ = strabool(args.class_cond) UpperCamelCase_ = os.path.basename(args.unet_path) print(F"""Checkpoint: {ckpt_name}""") # Get U-Net config if "imagenet64" in ckpt_name: UpperCamelCase_ = IMAGENET_64_UNET_CONFIG elif "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase_ = LSUN_256_UNET_CONFIG elif "test" in ckpt_name: UpperCamelCase_ = TEST_UNET_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") if not args.class_cond: UpperCamelCase_ = None UpperCamelCase_ = con_pt_to_diffuser(args.unet_path, unet_config) UpperCamelCase_ = UNetaDModel(**unet_config) image_unet.load_state_dict(converted_unet_ckpt) # Get scheduler config if "cd" in ckpt_name or "test" in ckpt_name: UpperCamelCase_ = CD_SCHEDULER_CONFIG elif "ct" in ckpt_name and "imagenet64" in ckpt_name: UpperCamelCase_ = CT_IMAGENET_64_SCHEDULER_CONFIG elif "ct" in ckpt_name and "256" in ckpt_name and (("bedroom" in ckpt_name) or ("cat" in ckpt_name)): UpperCamelCase_ = CT_LSUN_256_SCHEDULER_CONFIG else: raise ValueError(F"""Checkpoint type {ckpt_name} is not currently supported.""") UpperCamelCase_ = CMStochasticIterativeScheduler(**scheduler_config) UpperCamelCase_ = ConsistencyModelPipeline(unet=image_unet, scheduler=cm_scheduler) consistency_model.save_pretrained(args.dump_path)
508
'''simple docstring''' import logging import os import sys from dataclasses import dataclass, field from typing import Optional from seqaseq_trainer import SeqaSeqTrainer from seqaseq_training_args import SeqaSeqTrainingArguments import transformers from transformers import ( AutoConfig, AutoModelForSeqaSeqLM, AutoTokenizer, HfArgumentParser, MBartTokenizer, MBartTokenizerFast, set_seed, ) from transformers.trainer_utils import EvaluationStrategy, is_main_process from transformers.training_args import ParallelMode from utils import ( SeqaSeqDataCollator, SeqaSeqDataset, assert_all_frozen, build_compute_metrics_fn, check_output_dir, freeze_embeds, freeze_params, lmap, save_json, use_task_specific_params, write_txt_file, ) UpperCamelCase_ = logging.getLogger(__name__) @dataclass class _a : '''simple docstring''' A : str = field( metadata={'''help''': '''Path to pretrained model or model identifier from huggingface.co/models'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained config name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Pretrained tokenizer name or path if not the same as model_name'''} ) A : Optional[str] = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Where do you want to store the pretrained models downloaded from huggingface.co'''} , ) A : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether tp freeze the encoder.'''} ) A : bool = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Whether to freeze the embeddings.'''} ) @dataclass class _a : '''simple docstring''' A : str = field( metadata={'''help''': '''The input data dir. Should contain the .tsv files (or other data files) for the task.'''} ) A : Optional[str] = field( default='''summarization''' , metadata={'''help''': '''Task name, summarization (or summarization_{dataset} for pegasus) or translation'''} , ) A : Optional[int] = field( default=1_024 , metadata={ '''help''': ( '''The maximum total input sequence length after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : Optional[int] = field( default=128 , metadata={ '''help''': ( '''The maximum total sequence length for target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for validation target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded. ''' '''This argument is also used to override the ``max_length`` param of ``model.generate``, which is used ''' '''during ``evaluate`` and ``predict``.''' ) } , ) A : Optional[int] = field( default=142 , metadata={ '''help''': ( '''The maximum total sequence length for test target text after tokenization. Sequences longer ''' '''than this will be truncated, sequences shorter will be padded.''' ) } , ) A : Optional[int] = field(default=-1 , metadata={'''help''': '''# training examples. -1 means use all.'''} ) A : Optional[int] = field(default=-1 , metadata={'''help''': '''# validation examples. -1 means use all.'''} ) A : Optional[int] = field(default=-1 , metadata={'''help''': '''# test examples. -1 means use all.'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Source language id for translation.'''} ) A : Optional[str] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''Target language id for translation.'''} ) A : Optional[int] = field(default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''# num_beams to use for evaluation.'''} ) A : bool = field( default=SCREAMING_SNAKE_CASE , metadata={'''help''': '''If only pad tokens should be ignored. This assumes that `config.pad_token_id` is defined.'''} , ) def lowercase__( __UpperCamelCase: Any ,__UpperCamelCase: List[str] ,__UpperCamelCase: Dict ): """simple docstring""" logger.info(f"***** {split} metrics *****" ) for key in sorted(metrics.keys() ): logger.info(f" {key} = {metrics[key]}" ) save_json(__UpperCamelCase ,os.path.join(__UpperCamelCase ,f"{split}_results.json" ) ) def lowercase__( ): """simple docstring""" SCREAMING_SNAKE_CASE : int = HfArgumentParser((ModelArguments, DataTrainingArguments, SeqaSeqTrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith('.json' ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Tuple = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Any = parser.parse_args_into_dataclasses() check_output_dir(__UpperCamelCase ) # Setup logging logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s' ,datefmt='%m/%d/%Y %H:%M:%S' ,level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN ,) logger.warning( 'Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s' ,training_args.local_rank ,training_args.device ,training_args.n_gpu ,bool(training_args.parallel_mode == ParallelMode.DISTRIBUTED ) ,training_args.fpaa ,) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Set the verbosity to info of the Transformers logger (on main process only): if is_main_process(training_args.local_rank ): transformers.utils.logging.set_verbosity_info() logger.info('Training/evaluation parameters %s' ,__UpperCamelCase ) # Set seed set_seed(training_args.seed ) # Load pretrained model and tokenizer # # Distributed training: # The .from_pretrained methods guarantee that only one local process can concurrently # download model & vocab. SCREAMING_SNAKE_CASE : List[str] = AutoConfig.from_pretrained( model_args.config_name if model_args.config_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) SCREAMING_SNAKE_CASE : List[str] = ('encoder_layerdrop', 'decoder_layerdrop', 'dropout', 'attention_dropout') for p in extra_model_params: if getattr(__UpperCamelCase ,__UpperCamelCase ,__UpperCamelCase ): assert hasattr(__UpperCamelCase ,__UpperCamelCase ), f"({config.__class__.__name__}) doesn't have a `{p}` attribute" setattr(__UpperCamelCase ,__UpperCamelCase ,getattr(__UpperCamelCase ,__UpperCamelCase ) ) SCREAMING_SNAKE_CASE : Tuple = AutoTokenizer.from_pretrained( model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path ,cache_dir=model_args.cache_dir ,) SCREAMING_SNAKE_CASE : List[str] = AutoModelForSeqaSeqLM.from_pretrained( model_args.model_name_or_path ,from_tf='.ckpt' in model_args.model_name_or_path ,config=__UpperCamelCase ,cache_dir=model_args.cache_dir ,) # use task specific params use_task_specific_params(__UpperCamelCase ,data_args.task ) # set num_beams for evaluation if data_args.eval_beams is None: SCREAMING_SNAKE_CASE : Optional[int] = model.config.num_beams # set decoder_start_token_id for MBart if model.config.decoder_start_token_id is None and isinstance(__UpperCamelCase ,(MBartTokenizer, MBartTokenizerFast) ): assert ( data_args.tgt_lang is not None and data_args.src_lang is not None ), "mBart requires --tgt_lang and --src_lang" if isinstance(__UpperCamelCase ,__UpperCamelCase ): SCREAMING_SNAKE_CASE : str = tokenizer.lang_code_to_id[data_args.tgt_lang] else: SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer.convert_tokens_to_ids(data_args.tgt_lang ) if model_args.freeze_embeds: freeze_embeds(__UpperCamelCase ) if model_args.freeze_encoder: freeze_params(model.get_encoder() ) assert_all_frozen(model.get_encoder() ) SCREAMING_SNAKE_CASE : Tuple = SeqaSeqDataset # Get datasets SCREAMING_SNAKE_CASE : str = ( dataset_class( __UpperCamelCase ,type_path='train' ,data_dir=data_args.data_dir ,n_obs=data_args.n_train ,max_target_length=data_args.max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '' ,) if training_args.do_train else None ) SCREAMING_SNAKE_CASE : Any = ( dataset_class( __UpperCamelCase ,type_path='val' ,data_dir=data_args.data_dir ,n_obs=data_args.n_val ,max_target_length=data_args.val_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '' ,) if training_args.do_eval or training_args.evaluation_strategy != EvaluationStrategy.NO else None ) SCREAMING_SNAKE_CASE : List[str] = ( dataset_class( __UpperCamelCase ,type_path='test' ,data_dir=data_args.data_dir ,n_obs=data_args.n_test ,max_target_length=data_args.test_max_target_length ,max_source_length=data_args.max_source_length ,prefix=model.config.prefix or '' ,) if training_args.do_predict else None ) # Initialize our Trainer SCREAMING_SNAKE_CASE : Dict = ( build_compute_metrics_fn(data_args.task ,__UpperCamelCase ) if training_args.predict_with_generate else None ) SCREAMING_SNAKE_CASE : List[Any] = SeqaSeqTrainer( model=__UpperCamelCase ,args=__UpperCamelCase ,data_args=__UpperCamelCase ,train_dataset=__UpperCamelCase ,eval_dataset=__UpperCamelCase ,data_collator=SeqaSeqDataCollator( __UpperCamelCase ,__UpperCamelCase ,model.config.decoder_start_token_id ,training_args.tpu_num_cores ) ,compute_metrics=__UpperCamelCase ,tokenizer=__UpperCamelCase ,) SCREAMING_SNAKE_CASE : List[str] = {} # Training if training_args.do_train: logger.info('*** Train ***' ) SCREAMING_SNAKE_CASE : Optional[Any] = trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path ) else None ) SCREAMING_SNAKE_CASE : Optional[Any] = train_result.metrics SCREAMING_SNAKE_CASE : Tuple = data_args.n_train trainer.save_model() # this also saves the tokenizer if trainer.is_world_process_zero(): handle_metrics('train' ,__UpperCamelCase ,training_args.output_dir ) all_metrics.update(__UpperCamelCase ) # Need to save the state, since Trainer.save_model saves only the tokenizer with the model trainer.state.save_to_json(os.path.join(training_args.output_dir ,'trainer_state.json' ) ) # For convenience, we also re-save the tokenizer to the same directory, # so that you can share your model easily on huggingface.co/models =) tokenizer.save_pretrained(training_args.output_dir ) # Evaluation if training_args.do_eval: logger.info('*** Evaluate ***' ) SCREAMING_SNAKE_CASE : Union[str, Any] = trainer.evaluate(metric_key_prefix='val' ) SCREAMING_SNAKE_CASE : int = data_args.n_val SCREAMING_SNAKE_CASE : List[Any] = round(metrics['val_loss'] ,4 ) if trainer.is_world_process_zero(): handle_metrics('val' ,__UpperCamelCase ,training_args.output_dir ) all_metrics.update(__UpperCamelCase ) if training_args.do_predict: logger.info('*** Predict ***' ) SCREAMING_SNAKE_CASE : str = trainer.predict(test_dataset=__UpperCamelCase ,metric_key_prefix='test' ) SCREAMING_SNAKE_CASE : Optional[int] = test_output.metrics SCREAMING_SNAKE_CASE : Tuple = data_args.n_test if trainer.is_world_process_zero(): SCREAMING_SNAKE_CASE : Optional[Any] = round(metrics['test_loss'] ,4 ) handle_metrics('test' ,__UpperCamelCase ,training_args.output_dir ) all_metrics.update(__UpperCamelCase ) if training_args.predict_with_generate: SCREAMING_SNAKE_CASE : str = tokenizer.batch_decode( test_output.predictions ,skip_special_tokens=__UpperCamelCase ,clean_up_tokenization_spaces=__UpperCamelCase ) SCREAMING_SNAKE_CASE : Union[str, Any] = lmap(str.strip ,__UpperCamelCase ) write_txt_file(__UpperCamelCase ,os.path.join(training_args.output_dir ,'test_generations.txt' ) ) if trainer.is_world_process_zero(): save_json(__UpperCamelCase ,os.path.join(training_args.output_dir ,'all_results.json' ) ) return all_metrics def lowercase__( __UpperCamelCase: Any ): """simple docstring""" main() if __name__ == "__main__": main()
508
1
'''simple docstring''' from dataclasses import dataclass from typing import Optional import numpy as np import torch import torch.nn as nn from ..utils import BaseOutput, is_torch_version, randn_tensor from .attention_processor import SpatialNorm from .unet_ad_blocks import UNetMidBlockaD, get_down_block, get_up_block @dataclass class a__( lowerCamelCase__ ): lowercase__ = 42 class a__( nn.Module ): def __init__( self : Union[str, Any] , __snake_case : List[Any]=3 , __snake_case : List[str]=3 , __snake_case : List[Any]=("DownEncoderBlock2D",) , __snake_case : List[str]=(64,) , __snake_case : Tuple=2 , __snake_case : List[Any]=32 , __snake_case : List[str]="silu" , __snake_case : List[str]=True , ): super().__init__() a : Optional[Any] = layers_per_block a : Tuple = torch.nn.Convad( __snake_case , block_out_channels[0] , kernel_size=3 , stride=1 , padding=1 , ) a : str = None a : Optional[int] = nn.ModuleList([] ) # down a : int = block_out_channels[0] for i, down_block_type in enumerate(__snake_case ): a : Tuple = output_channel a : List[str] = block_out_channels[i] a : Optional[Any] = i == len(__snake_case ) - 1 a : Tuple = get_down_block( __snake_case , num_layers=self.layers_per_block , in_channels=__snake_case , out_channels=__snake_case , add_downsample=not is_final_block , resnet_eps=1e-6 , downsample_padding=0 , resnet_act_fn=__snake_case , resnet_groups=__snake_case , attention_head_dim=__snake_case , temb_channels=__snake_case , ) self.down_blocks.append(__snake_case ) # mid a : int = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__snake_case , output_scale_factor=1 , resnet_time_scale_shift='default' , attention_head_dim=block_out_channels[-1] , resnet_groups=__snake_case , temb_channels=__snake_case , ) # out a : Union[str, Any] = nn.GroupNorm(num_channels=block_out_channels[-1] , num_groups=__snake_case , eps=1e-6 ) a : str = nn.SiLU() a : int = 2 * out_channels if double_z else out_channels a : Tuple = nn.Convad(block_out_channels[-1] , __snake_case , 3 , padding=1 ) a : Optional[int] = False def lowercase_ ( self : Tuple , __snake_case : Optional[Any] ): a : Any = x a : Dict = self.conv_in(__snake_case ) if self.training and self.gradient_checkpointing: def create_custom_forward(__snake_case : Any ): def custom_forward(*__snake_case : Optional[int] ): return module(*__snake_case ) return custom_forward # down if is_torch_version('>=' , '1.11.0' ): for down_block in self.down_blocks: a : Tuple = torch.utils.checkpoint.checkpoint( create_custom_forward(__snake_case ) , __snake_case , use_reentrant=__snake_case ) # middle a : Dict = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __snake_case , use_reentrant=__snake_case ) else: for down_block in self.down_blocks: a : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(__snake_case ) , __snake_case ) # middle a : str = torch.utils.checkpoint.checkpoint(create_custom_forward(self.mid_block ) , __snake_case ) else: # down for down_block in self.down_blocks: a : List[str] = down_block(__snake_case ) # middle a : Tuple = self.mid_block(__snake_case ) # post-process a : Any = self.conv_norm_out(__snake_case ) a : Optional[int] = self.conv_act(__snake_case ) a : Optional[Any] = self.conv_out(__snake_case ) return sample class a__( nn.Module ): def __init__( self : Union[str, Any] , __snake_case : Union[str, Any]=3 , __snake_case : str=3 , __snake_case : List[str]=("UpDecoderBlock2D",) , __snake_case : Any=(64,) , __snake_case : Optional[int]=2 , __snake_case : Any=32 , __snake_case : Tuple="silu" , __snake_case : List[str]="group" , ): super().__init__() a : List[Any] = layers_per_block a : Tuple = nn.Convad( __snake_case , block_out_channels[-1] , kernel_size=3 , stride=1 , padding=1 , ) a : List[str] = None a : Tuple = nn.ModuleList([] ) a : List[Any] = in_channels if norm_type == 'spatial' else None # mid a : Union[str, Any] = UNetMidBlockaD( in_channels=block_out_channels[-1] , resnet_eps=1e-6 , resnet_act_fn=__snake_case , output_scale_factor=1 , resnet_time_scale_shift='default' if norm_type == 'group' else norm_type , attention_head_dim=block_out_channels[-1] , resnet_groups=__snake_case , temb_channels=__snake_case , ) # up a : Any = list(reversed(__snake_case ) ) a : Optional[int] = reversed_block_out_channels[0] for i, up_block_type in enumerate(__snake_case ): a : Optional[Any] = output_channel a : List[Any] = reversed_block_out_channels[i] a : str = i == len(__snake_case ) - 1 a : Union[str, Any] = get_up_block( __snake_case , num_layers=self.layers_per_block + 1 , in_channels=__snake_case , out_channels=__snake_case , prev_output_channel=__snake_case , add_upsample=not is_final_block , resnet_eps=1e-6 , resnet_act_fn=__snake_case , resnet_groups=__snake_case , attention_head_dim=__snake_case , temb_channels=__snake_case , resnet_time_scale_shift=__snake_case , ) self.up_blocks.append(__snake_case ) a : List[str] = output_channel # out if norm_type == "spatial": a : str = SpatialNorm(block_out_channels[0] , __snake_case ) else: a : int = nn.GroupNorm(num_channels=block_out_channels[0] , num_groups=__snake_case , eps=1e-6 ) a : Optional[int] = nn.SiLU() a : Optional[int] = nn.Convad(block_out_channels[0] , __snake_case , 3 , padding=1 ) a : Dict = False def lowercase_ ( self : Optional[int] , __snake_case : Union[str, Any] , __snake_case : List[Any]=None ): a : Optional[Any] = z a : Optional[Any] = self.conv_in(__snake_case ) a : Union[str, Any] = next(iter(self.up_blocks.parameters() ) ).dtype if self.training and self.gradient_checkpointing: def create_custom_forward(__snake_case : Union[str, Any] ): def custom_forward(*__snake_case : Optional[int] ): return module(*__snake_case ) return custom_forward if is_torch_version('>=' , '1.11.0' ): # middle a : str = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __snake_case , __snake_case , use_reentrant=__snake_case ) a : Union[str, Any] = sample.to(__snake_case ) # up for up_block in self.up_blocks: a : Any = torch.utils.checkpoint.checkpoint( create_custom_forward(__snake_case ) , __snake_case , __snake_case , use_reentrant=__snake_case ) else: # middle a : List[Any] = torch.utils.checkpoint.checkpoint( create_custom_forward(self.mid_block ) , __snake_case , __snake_case ) a : List[str] = sample.to(__snake_case ) # up for up_block in self.up_blocks: a : Tuple = torch.utils.checkpoint.checkpoint(create_custom_forward(__snake_case ) , __snake_case , __snake_case ) else: # middle a : Any = self.mid_block(__snake_case , __snake_case ) a : str = sample.to(__snake_case ) # up for up_block in self.up_blocks: a : Dict = up_block(__snake_case , __snake_case ) # post-process if latent_embeds is None: a : Dict = self.conv_norm_out(__snake_case ) else: a : int = self.conv_norm_out(__snake_case , __snake_case ) a : List[str] = self.conv_act(__snake_case ) a : str = self.conv_out(__snake_case ) return sample class a__( nn.Module ): def __init__( self : Any , __snake_case : Optional[int] , __snake_case : Tuple , __snake_case : str , __snake_case : Any=None , __snake_case : Dict="random" , __snake_case : Tuple=False , __snake_case : int=True ): super().__init__() a : List[Any] = n_e a : int = vq_embed_dim a : Optional[int] = beta a : Dict = legacy a : List[Any] = nn.Embedding(self.n_e , self.vq_embed_dim ) self.embedding.weight.data.uniform_(-1.0 / self.n_e , 1.0 / self.n_e ) a : int = remap if self.remap is not None: self.register_buffer('used' , torch.tensor(np.load(self.remap ) ) ) a : List[str] = self.used.shape[0] a : Optional[Any] = unknown_index # "random" or "extra" or integer if self.unknown_index == "extra": a : Any = self.re_embed a : Optional[int] = self.re_embed + 1 print( F"""Remapping {self.n_e} indices to {self.re_embed} indices. """ F"""Using {self.unknown_index} for unknown indices.""" ) else: a : Optional[Any] = n_e a : Union[str, Any] = sane_index_shape def lowercase_ ( self : Optional[int] , __snake_case : Optional[int] ): a : Optional[int] = inds.shape assert len(__snake_case ) > 1 a : Optional[int] = inds.reshape(ishape[0] , -1 ) a : str = self.used.to(__snake_case ) a : Union[str, Any] = (inds[:, :, None] == used[None, None, ...]).long() a : List[Any] = match.argmax(-1 ) a : List[str] = match.sum(2 ) < 1 if self.unknown_index == "random": a : Dict = torch.randint(0 , self.re_embed , size=new[unknown].shape ).to(device=new.device ) else: a : Any = self.unknown_index return new.reshape(__snake_case ) def lowercase_ ( self : List[Any] , __snake_case : List[str] ): a : str = inds.shape assert len(__snake_case ) > 1 a : List[Any] = inds.reshape(ishape[0] , -1 ) a : Dict = self.used.to(__snake_case ) if self.re_embed > self.used.shape[0]: # extra token a : Optional[Any] = 0 # simply set to zero a : Optional[int] = torch.gather(used[None, :][inds.shape[0] * [0], :] , 1 , __snake_case ) return back.reshape(__snake_case ) def lowercase_ ( self : Tuple , __snake_case : Dict ): # reshape z -> (batch, height, width, channel) and flatten a : Union[str, Any] = z.permute(0 , 2 , 3 , 1 ).contiguous() a : List[Any] = z.view(-1 , self.vq_embed_dim ) # distances from z to embeddings e_j (z - e)^2 = z^2 + e^2 - 2 e * z a : Union[str, Any] = torch.argmin(torch.cdist(__snake_case , self.embedding.weight ) , dim=1 ) a : int = self.embedding(__snake_case ).view(z.shape ) a : str = None a : Optional[int] = None # compute loss for embedding if not self.legacy: a : List[str] = self.beta * torch.mean((z_q.detach() - z) ** 2 ) + torch.mean((z_q - z.detach()) ** 2 ) else: a : Dict = torch.mean((z_q.detach() - z) ** 2 ) + self.beta * torch.mean((z_q - z.detach()) ** 2 ) # preserve gradients a : Dict = z + (z_q - z).detach() # reshape back to match original input shape a : str = z_q.permute(0 , 3 , 1 , 2 ).contiguous() if self.remap is not None: a : List[str] = min_encoding_indices.reshape(z.shape[0] , -1 ) # add batch axis a : List[Any] = self.remap_to_used(__snake_case ) a : int = min_encoding_indices.reshape(-1 , 1 ) # flatten if self.sane_index_shape: a : Tuple = min_encoding_indices.reshape(z_q.shape[0] , z_q.shape[2] , z_q.shape[3] ) return z_q, loss, (perplexity, min_encodings, min_encoding_indices) def lowercase_ ( self : str , __snake_case : Optional[int] , __snake_case : Optional[int] ): # shape specifying (batch, height, width, channel) if self.remap is not None: a : Optional[Any] = indices.reshape(shape[0] , -1 ) # add batch axis a : Tuple = self.unmap_to_all(__snake_case ) a : Optional[int] = indices.reshape(-1 ) # flatten again # get quantized latent vectors a : Union[str, Any] = self.embedding(__snake_case ) if shape is not None: a : int = z_q.view(__snake_case ) # reshape back to match original input shape a : List[str] = z_q.permute(0 , 3 , 1 , 2 ).contiguous() return z_q class a__( lowerCamelCase__ ): def __init__( self : Optional[Any] , __snake_case : Any , __snake_case : Any=False ): a : Any = parameters a , a : int = torch.chunk(__snake_case , 2 , dim=1 ) a : str = torch.clamp(self.logvar , -30.0 , 20.0 ) a : Dict = deterministic a : Union[str, Any] = torch.exp(0.5 * self.logvar ) a : Optional[int] = torch.exp(self.logvar ) if self.deterministic: a : Union[str, Any] = torch.zeros_like( self.mean , device=self.parameters.device , dtype=self.parameters.dtype ) def lowercase_ ( self : Union[str, Any] , __snake_case : Optional[torch.Generator] = None ): # make sure sample is on the same device as the parameters and has same dtype a : List[Any] = randn_tensor( self.mean.shape , generator=__snake_case , device=self.parameters.device , dtype=self.parameters.dtype ) a : Optional[Any] = self.mean + self.std * sample return x def lowercase_ ( self : Dict , __snake_case : Tuple=None ): if self.deterministic: return torch.Tensor([0.0] ) else: if other is None: return 0.5 * torch.sum(torch.pow(self.mean , 2 ) + self.var - 1.0 - self.logvar , dim=[1, 2, 3] ) else: return 0.5 * torch.sum( torch.pow(self.mean - other.mean , 2 ) / other.var + self.var / other.var - 1.0 - self.logvar + other.logvar , dim=[1, 2, 3] , ) def lowercase_ ( self : Union[str, Any] , __snake_case : int , __snake_case : Dict=[1, 2, 3] ): if self.deterministic: return torch.Tensor([0.0] ) a : Optional[Any] = np.log(2.0 * np.pi ) return 0.5 * torch.sum(logtwopi + self.logvar + torch.pow(sample - self.mean , 2 ) / self.var , dim=__snake_case ) def lowercase_ ( self : str ): return self.mean
526
'''simple docstring''' from __future__ import annotations lowerCAmelCase: str = 'Muhammad Umer Farooq' lowerCAmelCase: List[str] = 'MIT' lowerCAmelCase: Tuple = '1.0.0' lowerCAmelCase: List[Any] = 'Muhammad Umer Farooq' lowerCAmelCase: Optional[Any] = '[email protected]' lowerCAmelCase: Dict = 'Alpha' import re from html.parser import HTMLParser from urllib import parse import requests class a__( lowerCamelCase__ ): def __init__( self : Dict , __snake_case : str ): super().__init__() a : list[str] = [] a : List[Any] = domain def lowercase_ ( self : Dict , __snake_case : str , __snake_case : list[tuple[str, str | None]] ): # Only parse the 'anchor' tag. if tag == "a": # Check the list of defined attributes. for name, value in attrs: # If href is defined, and not empty nor # print it. if name == "href" and value != "#" and value != "": # If not already in urls. if value not in self.urls: a : Tuple = parse.urljoin(self.domain , __snake_case ) self.urls.append(__snake_case ) def lowerCamelCase__ ( _A ): return ".".join(get_sub_domain_name(_A ).split('.' )[-2:] ) def lowerCamelCase__ ( _A ): return parse.urlparse(_A ).netloc def lowerCamelCase__ ( _A = "https://github.com" ): a : Any = get_domain_name(_A ) # Initialize the parser a : Tuple = Parser(_A ) try: # Open URL a : List[Any] = requests.get(_A ) # pass the raw HTML to the parser to get links parser.feed(r.text ) # Get links and loop through a : Union[str, Any] = set() for link in parser.urls: # open URL. # read = requests.get(link) try: a : int = requests.get(_A ) # Get the valid email. a : Optional[Any] = re.findall('[a-zA-Z0-9]+@' + domain , read.text ) # If not in list then append it. for email in emails: valid_emails.add(_A ) except ValueError: pass except ValueError: raise SystemExit(1 ) # Finally return a sorted list of email addresses with no duplicates. return sorted(_A ) if __name__ == "__main__": lowerCAmelCase: Any = emails_from_url('https://github.com') print(F"{len(emails)} emails found:") print('\n'.join(sorted(emails)))
526
1
import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def A_ ( __a : Optional[Any] , __a : Any , __a : Dict ): """simple docstring""" a__ = 1.5 a__ = int(factor * num_class_images ) a__ = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__a , aesthetic_weight=0.1 ) os.makedirs(F'''{class_data_dir}/images''' , exist_ok=__a ) if len(list(Path(F'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: a__ = client.query(text=__a ) if len(__a ) >= factor * num_class_images or num_images > 1e4: break else: a__ = int(factor * num_images ) a__ = ClipClient( url="""https://knn.laion.ai/knn-service""" , indice_name="""laion_400m""" , num_images=__a , aesthetic_weight=0.1 , ) a__ = 0 a__ = 0 a__ = tqdm(desc="""downloading real regularization images""" , total=__a ) with open(F'''{class_data_dir}/caption.txt''' , """w""" ) as fa, open(F'''{class_data_dir}/urls.txt''' , """w""" ) as fa, open( F'''{class_data_dir}/images.txt''' , """w""" ) as fa: while total < num_class_images: a__ = class_images[count] count += 1 try: a__ = requests.get(images["""url"""] ) if img.status_code == 200: a__ = Image.open(BytesIO(img.content ) ) with open(F'''{class_data_dir}/images/{total}.jpg''' , """wb""" ) as f: f.write(img.content ) fa.write(images["""caption"""] + """\n""" ) fa.write(images["""url"""] + """\n""" ) fa.write(F'''{class_data_dir}/images/{total}.jpg''' + """\n""" ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def A_ ( ): """simple docstring""" a__ = argparse.ArgumentParser("""""" , add_help=__a ) parser.add_argument("""--class_prompt""" , help="""text prompt to retrieve images""" , required=__a , type=__a ) parser.add_argument("""--class_data_dir""" , help="""path to save images""" , required=__a , type=__a ) parser.add_argument("""--num_class_images""" , help="""number of images to download""" , default=200 , type=__a ) return parser.parse_args() if __name__ == "__main__": UpperCAmelCase = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
351
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import OwlViTImageProcessor, OwlViTProcessor @require_vision class __snake_case ( unittest.TestCase): '''simple docstring''' def _a ( self ): a__ = tempfile.mkdtemp() # fmt: off a__ = ["""""", """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """lo""", """l</w>""", """w</w>""", """r</w>""", """t</w>""", """low</w>""", """er</w>""", """lowest</w>""", """newer</w>""", """wider""", """<unk>""", """<|startoftext|>""", """<|endoftext|>"""] # fmt: on a__ = dict(zip(a_ , range(len(a_ ) ) ) ) a__ = ["""#version: 0.2""", """l o""", """lo w</w>""", """e r</w>""", """"""] a__ = {"""unk_token""": """<unk>"""} a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) a__ = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(a_ ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(a_ ) ) a__ = { """do_resize""": True, """size""": 20, """do_center_crop""": True, """crop_size""": 18, """do_normalize""": True, """image_mean""": [0.48_145_466, 0.4_578_275, 0.40_821_073], """image_std""": [0.26_862_954, 0.26_130_258, 0.27_577_711], } a__ = os.path.join(self.tmpdirname , a_ ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(a_ , a_ ) def _a ( self , **a_ ): return CLIPTokenizer.from_pretrained(self.tmpdirname , pad_token="""!""" , **a_ ) def _a ( self , **a_ ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , pad_token="""!""" , **a_ ) def _a ( self , **a_ ): return OwlViTImageProcessor.from_pretrained(self.tmpdirname , **a_ ) def _a ( self ): shutil.rmtree(self.tmpdirname ) def _a ( self ): a__ = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a__ = [Image.fromarray(np.moveaxis(a_ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _a ( self ): a__ = self.get_tokenizer() a__ = self.get_rust_tokenizer() a__ = self.get_image_processor() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) processor_slow.save_pretrained(self.tmpdirname ) a__ = OwlViTProcessor.from_pretrained(self.tmpdirname , use_fast=a_ ) a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) processor_fast.save_pretrained(self.tmpdirname ) a__ = OwlViTProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , a_ ) self.assertIsInstance(processor_fast.tokenizer , a_ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , a_ ) self.assertIsInstance(processor_fast.image_processor , a_ ) def _a ( self ): a__ = OwlViTProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) a__ = self.get_image_processor(do_normalize=a_ ) a__ = OwlViTProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=a_ ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , a_ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , a_ ) def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = self.prepare_image_inputs() a__ = image_processor(a_ , return_tensors="""np""" ) a__ = processor(images=a_ , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = """lower newer""" a__ = processor(text=a_ , return_tensors="""np""" ) a__ = tokenizer(a_ , return_tensors="""np""" ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key][0].tolist() , encoded_processor[key][0].tolist() ) def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = """lower newer""" a__ = self.prepare_image_inputs() a__ = processor(text=a_ , images=a_ ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _a ( self ): a__ = """google/owlvit-base-patch32""" a__ = OwlViTProcessor.from_pretrained(a_ ) a__ = ["""cat""", """nasa badge"""] a__ = processor(text=a_ ) a__ = 16 self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _a ( self ): a__ = """google/owlvit-base-patch32""" a__ = OwlViTProcessor.from_pretrained(a_ ) a__ = [["""cat""", """nasa badge"""], ["""person"""]] a__ = processor(text=a_ ) a__ = 16 a__ = len(a_ ) a__ = max([len(a_ ) for texts in input_texts] ) self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (batch_size * num_max_text_queries, seq_length) ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _a ( self ): a__ = """google/owlvit-base-patch32""" a__ = OwlViTProcessor.from_pretrained(a_ ) a__ = ["""cat""", """nasa badge"""] a__ = processor(text=a_ ) a__ = 16 a__ = inputs["""input_ids"""] a__ = [ [49_406, 2_368, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [49_406, 6_841, 11_301, 49_407, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], ] self.assertListEqual(list(inputs.keys() ) , ["""input_ids""", """attention_mask"""] ) self.assertEqual(inputs["""input_ids"""].shape , (2, seq_length) ) self.assertListEqual(list(input_ids[0] ) , predicted_ids[0] ) self.assertListEqual(list(input_ids[1] ) , predicted_ids[1] ) def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = self.prepare_image_inputs() a__ = self.prepare_image_inputs() a__ = processor(images=a_ , query_images=a_ ) self.assertListEqual(list(inputs.keys() ) , ["""query_pixel_values""", """pixel_values"""] ) # test if it raises when no input is passed with pytest.raises(a_ ): processor() def _a ( self ): a__ = self.get_image_processor() a__ = self.get_tokenizer() a__ = OwlViTProcessor(tokenizer=a_ , image_processor=a_ ) a__ = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ = processor.batch_decode(a_ ) a__ = tokenizer.batch_decode(a_ ) self.assertListEqual(a_ , a_ )
351
1
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available UpperCAmelCase_ : Optional[int] = { "configuration_conditional_detr": [ "CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP", "ConditionalDetrConfig", "ConditionalDetrOnnxConfig", ] } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : List[Any] = ["ConditionalDetrFeatureExtractor"] UpperCAmelCase_ : Any = ["ConditionalDetrImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ : Tuple = [ "CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST", "ConditionalDetrForObjectDetection", "ConditionalDetrForSegmentation", "ConditionalDetrModel", "ConditionalDetrPreTrainedModel", ] if TYPE_CHECKING: from .configuration_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_CONFIG_ARCHIVE_MAP, ConditionalDetrConfig, ConditionalDetrOnnxConfig, ) try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_conditional_detr import ConditionalDetrFeatureExtractor from .image_processing_conditional_detr import ConditionalDetrImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_conditional_detr import ( CONDITIONAL_DETR_PRETRAINED_MODEL_ARCHIVE_LIST, ConditionalDetrForObjectDetection, ConditionalDetrForSegmentation, ConditionalDetrModel, ConditionalDetrPreTrainedModel, ) else: import sys UpperCAmelCase_ : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
120
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCAmelCase = { '''configuration_longt5''': ['''LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LongT5Config''', '''LongT5OnnxConfig'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LongT5EncoderModel''', '''LongT5ForConditionalGeneration''', '''LongT5Model''', '''LongT5PreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase = [ '''FlaxLongT5ForConditionalGeneration''', '''FlaxLongT5Model''', '''FlaxLongT5PreTrainedModel''', ] if TYPE_CHECKING: from .configuration_longta import LONGT5_PRETRAINED_CONFIG_ARCHIVE_MAP, LongTaConfig, LongTaOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_longta import ( LONGT5_PRETRAINED_MODEL_ARCHIVE_LIST, LongTaEncoderModel, LongTaForConditionalGeneration, LongTaModel, LongTaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_longta import ( FlaxLongTaForConditionalGeneration, FlaxLongTaModel, FlaxLongTaPreTrainedModel, ) else: import sys UpperCAmelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
677
0
'''simple docstring''' import os import tempfile import unittest from transformers.models.marian.convert_marian_tatoeba_to_pytorch import DEFAULT_REPO, TatoebaConverter from transformers.testing_utils import slow from transformers.utils import cached_property @unittest.skipUnless(os.path.exists(__lowerCamelCase ) , 'Tatoeba directory does not exist.' ) class lowercase ( unittest.TestCase ): @cached_property def __UpperCAmelCase ( self : Union[str, Any]) -> str: lowercase_ = tempfile.mkdtemp() return TatoebaConverter(save_dir=__lowerCAmelCase) @slow def __UpperCAmelCase ( self : Tuple) -> List[Any]: self.resolver.convert_models(["heb-eng"]) @slow def __UpperCAmelCase ( self : Union[str, Any]) -> Tuple: lowercase_ , lowercase_ = self.resolver.write_model_card("opus-mt-he-en" , dry_run=__lowerCAmelCase) assert mmeta["long_pair"] == "heb-eng"
461
'''simple docstring''' def __a ( __lowerCamelCase : int = 600_851_475_143 ) -> int: '''simple docstring''' try: lowercase_ = int(__lowerCamelCase ) except (TypeError, ValueError): raise TypeError("Parameter n must be int or castable to int." ) if n <= 0: raise ValueError("Parameter n must be greater than or equal to one." ) lowercase_ = 1 lowercase_ = 2 while i * i <= n: while n % i == 0: lowercase_ = i n //= i i += 1 if n > 1: lowercase_ = n return int(__lowerCamelCase ) if __name__ == "__main__": print(F'''{solution() = }''')
461
1
import random import unittest from torch.utils.data import BatchSampler, DataLoader, IterableDataset from accelerate import Accelerator from accelerate.data_loader import ( BatchSamplerShard, DataLoaderDispatcher, DataLoaderShard, IterableDatasetShard, SkipBatchSampler, SkipDataLoader, skip_first_batches, ) class __lowercase ( A ): def __init__( self , a__=0.01 , a__=1_0_0_0 ) -> Optional[int]: '''simple docstring''' A_ = p_stop A_ = max_length def __iter__( self ) -> Dict: '''simple docstring''' A_ = 0 A_ = False while not stop and count < self.max_length: yield count count += 1 A_ = random.random() < self.p_stop class __lowercase ( unittest.TestCase ): def lowerCAmelCase_ ( self , a__ , a__ , a__=False , a__=True ) -> Union[str, Any]: '''simple docstring''' A_ = [ BatchSamplerShard(a__ , 2 , a__ , split_batches=a__ , even_batches=a__ ) for i in range(2 ) ] A_ = [list(a__ ) for batch_sampler_shard in batch_sampler_shards] if not split_batches: self.assertListEqual([len(a__ ) for shard in batch_sampler_shards] , [len(a__ ) for e in expected] ) self.assertListEqual(a__ , a__ ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. A_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(a__ , a__ ) A_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [0, 1, 2]], ] self.check_batch_sampler_shards(a__ , a__ ) A_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 0, 1]], ] self.check_batch_sampler_shards(a__ , a__ ) A_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [1, 2, 3]], ] self.check_batch_sampler_shards(a__ , a__ ) A_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(a__ , a__ ) # Check the shards when the dataset is very small. A_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) A_ = [[[0, 1, 0]], [[1, 0, 1]]] self.check_batch_sampler_shards(a__ , a__ ) A_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) A_ = [[], []] self.check_batch_sampler_shards(a__ , a__ ) def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. A_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) A_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. A_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [0, 1]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) A_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [1, 2]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) A_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) # Check the shards when the dataset is very small. A_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) A_ = [[[0, 1]], [[0, 1]]] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) A_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) A_ = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' # Check the shards when the dataset is a round multiple of total batch size. A_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1, 2_2, 2_3]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) A_ = BatchSampler(range(2_4 ) , batch_size=3 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is a round multiple of batch size but not total batch size. A_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) A_ = BatchSampler(range(2_1 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but has a multiple of # num_processes batch. A_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9, 2_0]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7], [2_1]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) A_ = BatchSampler(range(2_2 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size but and has not a multiple of # num_processes batch. A_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4], [1_8, 1_9]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) A_ = BatchSampler(range(2_0 ) , batch_size=3 , drop_last=a__ ) A_ = [ [[0, 1, 2], [6, 7, 8], [1_2, 1_3, 1_4]], [[3, 4, 5], [9, 1_0, 1_1], [1_5, 1_6, 1_7]], ] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) # Check the shards when the dataset is very small. A_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) A_ = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) A_ = BatchSampler(range(2 ) , batch_size=3 , drop_last=a__ ) A_ = [[], []] self.check_batch_sampler_shards(a__ , a__ , even_batches=a__ ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' # Check the shards when the dataset is a round multiple of batch size. A_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9], [2_2, 2_3]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) A_ = BatchSampler(range(2_4 ) , batch_size=4 , drop_last=a__ ) # Expected shouldn't change self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size. A_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0, 2_1]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) A_ = BatchSampler(range(2_2 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is not a round multiple of batch size or num_processes. A_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7], [2_0]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) A_ = BatchSampler(range(2_1 ) , batch_size=4 , drop_last=a__ ) A_ = [ [[0, 1], [4, 5], [8, 9], [1_2, 1_3], [1_6, 1_7]], [[2, 3], [6, 7], [1_0, 1_1], [1_4, 1_5], [1_8, 1_9]], ] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) # Check the shards when the dataset is very small. A_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) A_ = [[[0, 1]], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) A_ = BatchSampler(range(2 ) , batch_size=4 , drop_last=a__ ) A_ = [[], []] self.check_batch_sampler_shards(a__ , a__ , split_batches=a__ , even_batches=a__ ) def lowerCAmelCase_ ( self ) -> Any: '''simple docstring''' A_ = [[0, 1, 2], [3, 4], [5, 6, 7, 8], [9, 1_0, 1_1], [1_2, 1_3]] A_ = [BatchSamplerShard(a__ , 2 , a__ , even_batches=a__ ) for i in range(2 )] self.assertEqual(len(batch_sampler_shards[0] ) , 3 ) self.assertEqual(len(batch_sampler_shards[1] ) , 2 ) self.assertListEqual(list(batch_sampler_shards[0] ) , [[0, 1, 2], [5, 6, 7, 8], [1_2, 1_3]] ) self.assertListEqual(list(batch_sampler_shards[1] ) , [[3, 4], [9, 1_0, 1_1]] ) def lowerCAmelCase_ ( self , a__ , a__ , a__ , a__=False , a__=2 , a__=False ) -> Union[str, Any]: '''simple docstring''' random.seed(a__ ) A_ = list(a__ ) A_ = [ IterableDatasetShard( a__ , batch_size=a__ , drop_last=a__ , num_processes=a__ , process_index=a__ , split_batches=a__ , ) for i in range(a__ ) ] A_ = [] for iterable_dataset_shard in iterable_dataset_shards: # Since our random iterable dataset will be... random... we need to use a seed to get reproducible results. random.seed(a__ ) iterable_dataset_lists.append(list(a__ ) ) A_ = batch_size // num_processes if split_batches else batch_size # All iterable dataset shard should have the same length, a round multiple of shard_batch_size A_ = iterable_dataset_lists[0] for l in iterable_dataset_lists[1:]: self.assertEqual(len(a__ ) , len(a__ ) ) self.assertTrue(len(a__ ) % shard_batch_size == 0 ) A_ = [] for idx in range(0 , len(a__ ) , a__ ): for l in iterable_dataset_lists: observed += l[idx : idx + shard_batch_size] if not drop_last: while len(a__ ) < len(a__ ): reference += reference self.assertListEqual(a__ , reference[: len(a__ )] ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' A_ = 4_2 A_ = RandomIterableDataset() self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) # Edge case with a very small dataset A_ = RandomIterableDataset(max_length=2 ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) self.check_iterable_dataset_shards(a__ , a__ , batch_size=4 , drop_last=a__ , split_batches=a__ ) def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' A_ = BatchSampler(range(1_6 ) , batch_size=4 , drop_last=a__ ) A_ = SkipBatchSampler(a__ , 2 ) self.assertListEqual(list(a__ ) , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' A_ = SkipDataLoader(list(range(1_6 ) ) , batch_size=4 , skip_batches=2 ) self.assertListEqual([t.tolist() for t in dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCAmelCase_ ( self ) -> List[Any]: '''simple docstring''' A_ = DataLoader(list(range(1_6 ) ) , batch_size=4 ) A_ = skip_first_batches(a__ , num_batches=2 ) self.assertListEqual([t.tolist() for t in new_dataloader] , [[8, 9, 1_0, 1_1], [1_2, 1_3, 1_4, 1_5]] ) def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' A_ = DataLoaderShard(list(range(1_6 ) ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' Accelerator() A_ = DataLoaderDispatcher(range(1_6 ) , batch_size=4 ) for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 ) # Test it also works on the second iteration for idx, _ in enumerate(a__ ): self.assertEqual(dataloader.end_of_dataloader , idx == 3 )
141
from __future__ import annotations import csv import requests from bsa import BeautifulSoup def lowerCamelCase_ ( __UpperCamelCase = "" ): A_ = url or '''https://www.imdb.com/chart/top/?ref_=nv_mv_250''' A_ = BeautifulSoup(requests.get(__UpperCamelCase ).text , '''html.parser''' ) A_ = soup.find_all('''td''' , attrs='''titleColumn''' ) A_ = soup.find_all('''td''' , class_='''ratingColumn imdbRating''' ) return { title.a.text: float(rating.strong.text ) for title, rating in zip(__UpperCamelCase , __UpperCamelCase ) } def lowerCamelCase_ ( __UpperCamelCase = "IMDb_Top_250_Movies.csv" ): A_ = get_imdb_top_aaa_movies() with open(__UpperCamelCase , '''w''' , newline='''''' ) as out_file: A_ = csv.writer(__UpperCamelCase ) writer.writerow(['''Movie title''', '''IMDb rating'''] ) for title, rating in movies.items(): writer.writerow([title, rating] ) if __name__ == "__main__": write_movies()
141
1
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from ..models.auto import AutoModelForSeqaSeqLM, AutoTokenizer from .base import PipelineTool class lowerCamelCase ( SCREAMING_SNAKE_CASE ): UpperCAmelCase : int = 'philschmid/bart-large-cnn-samsum' UpperCAmelCase : List[Any] = ( 'This is a tool that summarizes an English text. It takes an input `text` containing the text to summarize, ' 'and returns a summary of the text.' ) UpperCAmelCase : str = 'summarizer' UpperCAmelCase : Union[str, Any] = AutoTokenizer UpperCAmelCase : Union[str, Any] = AutoModelForSeqaSeqLM UpperCAmelCase : List[Any] = ['text'] UpperCAmelCase : List[str] = ['text'] def snake_case_ ( self : Dict , __snake_case : Tuple ) -> Tuple: return self.pre_processor(__snake_case , return_tensors='''pt''' , truncation=__snake_case ) def snake_case_ ( self : Optional[Any] , __snake_case : int ) -> List[str]: return self.model.generate(**__snake_case )[0] def snake_case_ ( self : List[str] , __snake_case : int ) -> List[str]: return self.pre_processor.decode(__snake_case , skip_special_tokens=__snake_case , clean_up_tokenization_spaces=__snake_case )
721
import requests from bsa import BeautifulSoup def lowerCamelCase_ ( UpperCamelCase_ = "AAPL" ): _a : List[str] = f"""https://in.finance.yahoo.com/quote/{symbol}?s={symbol}""" _a : Any = BeautifulSoup(requests.get(UpperCamelCase_ ).text , '''html.parser''' ) _a : Optional[int] = '''My(6px) Pos(r) smartphone_Mt(6px)''' return soup.find('''div''' , class_=class_ ).find('''span''' ).text if __name__ == "__main__": for symbol in "AAPL AMZN IBM GOOG MSFT ORCL".split(): print(f'''Current {symbol:<4} stock price is {stock_price(symbol):>8}''')
249
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available lowercase__ : Optional[int] = { '''configuration_xlm''': ['''XLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMConfig''', '''XLMOnnxConfig'''], '''tokenization_xlm''': ['''XLMTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Union[str, Any] = [ '''XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMForMultipleChoice''', '''XLMForQuestionAnswering''', '''XLMForQuestionAnsweringSimple''', '''XLMForSequenceClassification''', '''XLMForTokenClassification''', '''XLMModel''', '''XLMPreTrainedModel''', '''XLMWithLMHeadModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ : Dict = [ '''TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFXLMForMultipleChoice''', '''TFXLMForQuestionAnsweringSimple''', '''TFXLMForSequenceClassification''', '''TFXLMForTokenClassification''', '''TFXLMMainLayer''', '''TFXLMModel''', '''TFXLMPreTrainedModel''', '''TFXLMWithLMHeadModel''', ] if TYPE_CHECKING: from .configuration_xlm import XLM_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMConfig, XLMOnnxConfig from .tokenization_xlm import XLMTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm import ( XLM_PRETRAINED_MODEL_ARCHIVE_LIST, XLMForMultipleChoice, XLMForQuestionAnswering, XLMForQuestionAnsweringSimple, XLMForSequenceClassification, XLMForTokenClassification, XLMModel, XLMPreTrainedModel, XLMWithLMHeadModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlm import ( TF_XLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLMForMultipleChoice, TFXLMForQuestionAnsweringSimple, TFXLMForSequenceClassification, TFXLMForTokenClassification, TFXLMMainLayer, TFXLMModel, TFXLMPreTrainedModel, TFXLMWithLMHeadModel, ) else: import sys lowercase__ : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
8
"""simple docstring""" import copy from typing import Any, Dict, List, Optional, Union import numpy as np import torch from ...audio_utils import mel_filter_bank, spectrogram, window_function from ...feature_extraction_sequence_utils import SequenceFeatureExtractor from ...feature_extraction_utils import BatchFeature from ...utils import TensorType, logging _UpperCamelCase = logging.get_logger(__name__) class __UpperCAmelCase (__A ): '''simple docstring''' _UpperCamelCase : Optional[int] = ['input_features', 'is_longer'] def __init__( self , snake_case_=64 , snake_case_=48_000 , snake_case_=480 , snake_case_=10 , snake_case_=1_024 , snake_case_=0.0 , snake_case_=False , snake_case_ = 0 , snake_case_ = 14_000 , snake_case_ = None , snake_case_ = "fusion" , snake_case_ = "repeatpad" , **snake_case_ , ): '''simple docstring''' super().__init__( feature_size=snake_case_ , sampling_rate=snake_case_ , padding_value=snake_case_ , return_attention_mask=snake_case_ , **snake_case_ , ) A__ : List[str] = top_db A__ : Optional[int] = truncation A__ : str = padding A__ : str = fft_window_size A__ : Any = (fft_window_size >> 1) + 1 A__ : Optional[Any] = hop_length A__ : Any = max_length_s A__ : int = max_length_s * sampling_rate A__ : Any = sampling_rate A__ : List[str] = frequency_min A__ : int = frequency_max A__ : Tuple = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm=snake_case_ , mel_scale="""htk""" , ) A__ : List[Any] = mel_filter_bank( num_frequency_bins=self.nb_frequency_bins , num_mel_filters=snake_case_ , min_frequency=snake_case_ , max_frequency=snake_case_ , sampling_rate=snake_case_ , norm="""slaney""" , mel_scale="""slaney""" , ) def lowerCamelCase ( self ): '''simple docstring''' A__ : List[Any] = copy.deepcopy(self.__dict__ ) A__ : int = self.__class__.__name__ if "mel_filters" in output: del output["mel_filters"] if "mel_filters_slaney" in output: del output["mel_filters_slaney"] return output def lowerCamelCase ( self , snake_case_ , snake_case_ = None ): '''simple docstring''' A__ : Any = spectrogram( snake_case_ , window_function(self.fft_window_size , """hann""" ) , frame_length=self.fft_window_size , hop_length=self.hop_length , power=2.0 , mel_filters=snake_case_ , log_mel="""dB""" , ) return log_mel_spectrogram.T def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' A__ : Union[str, Any] = np.array_split(list(range(0 , total_frames - chunk_frames + 1 ) ) , 3 ) if len(ranges[1] ) == 0: # if the audio is too short, we just use the first chunk A__ : Optional[Any] = [0] if len(ranges[2] ) == 0: # if the audio is too short, we just use the first chunk A__ : str = [0] # randomly choose index for each part A__ : int = np.random.choice(ranges[0] ) A__ : Dict = np.random.choice(ranges[1] ) A__ : Dict = np.random.choice(ranges[2] ) A__ : Any = mel[idx_front : idx_front + chunk_frames, :] A__ : Optional[int] = mel[idx_middle : idx_middle + chunk_frames, :] A__ : Optional[int] = mel[idx_back : idx_back + chunk_frames, :] A__ : Dict = torch.tensor(mel[None, None, :] ) A__ : Dict = torch.nn.functional.interpolate( snake_case_ , size=[chunk_frames, 64] , mode="""bilinear""" , align_corners=snake_case_ ) A__ : List[Any] = mel_shrink[0][0].numpy() A__ : Dict = np.stack([mel_shrink, mel_chunk_front, mel_chunk_middle, mel_chunk_back] , axis=0 ) return mel_fusion def lowerCamelCase ( self , snake_case_ , snake_case_ , snake_case_ , snake_case_ ): '''simple docstring''' if waveform.shape[0] > max_length: if truncation == "rand_trunc": A__ : int = True # random crop to max_length (for compatibility) -> this should be handled by self.pad A__ : Tuple = len(snake_case_ ) - max_length A__ : Any = np.random.randint(0 , overflow + 1 ) A__ : int = waveform[idx : idx + max_length] A__ : List[str] = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] elif truncation == "fusion": A__ : Optional[int] = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) A__ : Optional[int] = max_length // self.hop_length + 1 # the +1 related to how the spectrogram is computed A__ : int = mel.shape[0] if chunk_frames == total_frames: # there is a corner case where the audio length is larger than max_length but smaller than max_length+hop_length. # In this case, we just use the whole audio. A__ : Union[str, Any] = np.stack([mel, mel, mel, mel] , axis=0 ) A__ : Dict = False else: A__ : List[Any] = self._random_mel_fusion(snake_case_ , snake_case_ , snake_case_ ) A__ : Optional[Any] = True else: raise NotImplementedError(F'''data_truncating {truncation} not implemented''' ) else: A__ : Tuple = False # only use repeat as a new possible value for padding. you repeat the audio before applying the usual max_length padding if waveform.shape[0] < max_length: if padding == "repeat": A__ : Union[str, Any] = int(max_length / len(snake_case_ ) ) A__ : List[Any] = np.stack(np.tile(snake_case_ , n_repeat + 1 ) )[:max_length] if padding == "repeatpad": A__ : List[Any] = int(max_length / len(snake_case_ ) ) A__ : Tuple = np.stack(np.tile(snake_case_ , snake_case_ ) ) A__ : Tuple = np.pad(snake_case_ , (0, max_length - waveform.shape[0]) , mode="""constant""" , constant_values=0 ) if truncation == "fusion": A__ : str = self._np_extract_fbank_features(snake_case_ , self.mel_filters ) A__ : List[Any] = np.stack([input_mel, input_mel, input_mel, input_mel] , axis=0 ) else: A__ : List[Any] = self._np_extract_fbank_features(snake_case_ , self.mel_filters_slaney )[None, :] return input_mel, longer def __call__( self , snake_case_ , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , snake_case_ = None , **snake_case_ , ): '''simple docstring''' A__ : Optional[Any] = truncation if truncation is not None else self.truncation A__ : Union[str, Any] = padding if padding else self.padding if sampling_rate is not None: if sampling_rate != self.sampling_rate: raise ValueError( F'''The model corresponding to this feature extractor: {self.__class__.__name__} was trained using a''' F''' sampling rate of {self.sampling_rate}. Please make sure that the provided `raw_speech` input''' F''' was sampled with {self.sampling_rate} and not {sampling_rate}.''' ) else: logger.warning( """It is strongly recommended to pass the `sampling_rate` argument to this function. """ """Failing to do so can result in silent errors that might be hard to debug.""" ) A__ : List[Any] = isinstance(snake_case_ , np.ndarray ) and len(raw_speech.shape ) > 1 if is_batched_numpy and len(raw_speech.shape ) > 2: raise ValueError(F'''Only mono-channel audio is supported for input to {self}''' ) A__ : int = is_batched_numpy or ( isinstance(snake_case_ , (list, tuple) ) and (isinstance(raw_speech[0] , (np.ndarray, tuple, list) )) ) if is_batched: A__ : Any = [np.asarray(snake_case_ , dtype=np.floataa ) for speech in raw_speech] elif not is_batched and not isinstance(snake_case_ , np.ndarray ): A__ : Any = np.asarray(snake_case_ , dtype=np.floataa ) elif isinstance(snake_case_ , np.ndarray ) and raw_speech.dtype is np.dtype(np.floataa ): A__ : Optional[int] = raw_speech.astype(np.floataa ) # always return batch if not is_batched: A__ : Union[str, Any] = [np.asarray(snake_case_ )] # convert to mel spectrogram, truncate and pad if needed. A__ : Optional[Any] = [ self._get_input_mel(snake_case_ , max_length if max_length else self.nb_max_samples , snake_case_ , snake_case_ ) for waveform in raw_speech ] A__ : List[str] = [] A__ : Optional[Any] = [] for mel, longer in padded_inputs: input_mel.append(snake_case_ ) is_longer.append(snake_case_ ) if truncation == "fusion" and sum(snake_case_ ) == 0: # if no audio is longer than 10s, then randomly select one audio to be longer A__ : Optional[Any] = np.random.randint(0 , len(snake_case_ ) ) A__ : str = True if isinstance(input_mel[0] , snake_case_ ): A__ : Optional[Any] = [np.asarray(snake_case_ , dtype=np.floataa ) for feature in input_mel] # is_longer is a list of bool A__ : Union[str, Any] = [[longer] for longer in is_longer] A__ : str = {"""input_features""": input_mel, """is_longer""": is_longer} A__ : Optional[int] = BatchFeature(snake_case_ ) if return_tensors is not None: A__ : Dict = input_features.convert_to_tensors(snake_case_ ) return input_features
363
0
# Copyright 2021 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from packaging import version from .. import __version__ from .constants import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD from .doc import ( add_code_sample_docstrings, add_end_docstrings, add_start_docstrings, add_start_docstrings_to_model_forward, copy_func, replace_return_docstrings, ) from .generic import ( ContextManagers, ExplicitEnum, ModelOutput, PaddingStrategy, TensorType, add_model_info_to_auto_map, cached_property, can_return_loss, expand_dims, find_labels, flatten_dict, infer_framework, is_jax_tensor, is_numpy_array, is_tensor, is_tf_symbolic_tensor, is_tf_tensor, is_torch_device, is_torch_dtype, is_torch_tensor, reshape, squeeze, strtobool, tensor_size, to_numpy, to_py_obj, transpose, working_or_temp_dir, ) from .hub import ( CLOUDFRONT_DISTRIB_PREFIX, DISABLE_TELEMETRY, HF_MODULES_CACHE, HUGGINGFACE_CO_PREFIX, HUGGINGFACE_CO_RESOLVE_ENDPOINT, PYTORCH_PRETRAINED_BERT_CACHE, PYTORCH_TRANSFORMERS_CACHE, S3_BUCKET_PREFIX, TRANSFORMERS_CACHE, TRANSFORMERS_DYNAMIC_MODULE_NAME, EntryNotFoundError, PushToHubMixin, RepositoryNotFoundError, RevisionNotFoundError, cached_file, default_cache_path, define_sagemaker_information, download_url, extract_commit_hash, get_cached_models, get_file_from_repo, get_full_repo_name, has_file, http_user_agent, is_offline_mode, is_remote_url, move_cache, send_example_telemetry, try_to_load_from_cache, ) from .import_utils import ( ENV_VARS_TRUE_AND_AUTO_VALUES, ENV_VARS_TRUE_VALUES, TORCH_FX_REQUIRED_VERSION, USE_JAX, USE_TF, USE_TORCH, DummyObject, OptionalDependencyNotAvailable, _LazyModule, ccl_version, direct_transformers_import, get_torch_version, is_accelerate_available, is_apex_available, is_bitsandbytes_available, is_bsa_available, is_coloredlogs_available, is_cython_available, is_datasets_available, is_decord_available, is_detectrona_available, is_faiss_available, is_flax_available, is_ftfy_available, is_in_notebook, is_ipex_available, is_jieba_available, is_jumanpp_available, is_kenlm_available, is_keras_nlp_available, is_librosa_available, is_natten_available, is_ninja_available, is_onnx_available, is_openai_available, is_optimum_available, is_pandas_available, is_peft_available, is_phonemizer_available, is_protobuf_available, is_psutil_available, is_pyanvml_available, is_pyctcdecode_available, is_pytesseract_available, is_pytest_available, is_pytorch_quantization_available, is_rjieba_available, is_sacremoses_available, is_safetensors_available, is_sagemaker_dp_enabled, is_sagemaker_mp_enabled, is_scipy_available, is_sentencepiece_available, is_seqio_available, is_sklearn_available, is_soundfile_availble, is_spacy_available, is_speech_available, is_sudachi_available, is_tensorflow_probability_available, is_tensorflow_text_available, is_tfaonnx_available, is_tf_available, is_timm_available, is_tokenizers_available, is_torch_available, is_torch_bfaa_available, is_torch_bfaa_cpu_available, is_torch_bfaa_gpu_available, is_torch_compile_available, is_torch_cuda_available, is_torch_fx_available, is_torch_fx_proxy, is_torch_mps_available, is_torch_neuroncore_available, is_torch_tensorrt_fx_available, is_torch_tfaa_available, is_torch_tpu_available, is_torchaudio_available, is_torchdistx_available, is_torchdynamo_available, is_torchvision_available, is_training_run_on_sagemaker, is_vision_available, requires_backends, torch_only_method, ) _snake_case : Dict = 'pytorch_model.bin' _snake_case : Any = 'pytorch_model.bin.index.json' _snake_case : Dict = 'adapter_config.json' _snake_case : Any = 'adapter_model.bin' _snake_case : Union[str, Any] = 'adapter_model.safetensors' _snake_case : List[str] = 'tf_model.h5' _snake_case : str = 'tf_model.h5.index.json' _snake_case : List[Any] = 'model.ckpt' _snake_case : Optional[Any] = 'flax_model.msgpack' _snake_case : Optional[int] = 'flax_model.msgpack.index.json' _snake_case : str = 'model.safetensors' _snake_case : Union[str, Any] = 'model.safetensors.index.json' _snake_case : Any = 'config.json' _snake_case : int = 'preprocessor_config.json' _snake_case : int = FEATURE_EXTRACTOR_NAME _snake_case : str = 'generation_config.json' _snake_case : str = 'modelcard.json' _snake_case : Tuple = '▁' _snake_case : Dict = SENTENCEPIECE_UNDERLINE # Kept for backward compatibility _snake_case : str = [ [[0, 1, 0, 1], [1, 0, 0, 1]] ] * 2 # Needs to have 0s and 1s only since XLM uses it for langs too. _snake_case : List[Any] = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]] _snake_case : int = [[1, 1, 1, 1, 1], [1, 1, 1, 0, 0], [0, 0, 0, 1, 1]] def a_ ( lowerCAmelCase_ : Dict ): if version.parse(lowerCAmelCase_ ) < version.parse(lowerCAmelCase_ ): if "dev" in min_version: __lowerCAmelCase = ( 'This example requires a source install from HuggingFace Transformers (see ' '`https://huggingface.co/docs/transformers/installation#install-from-source`),' ) else: __lowerCAmelCase = F"""This example requires a minimum version of {min_version},""" error_message += F""" but the version found is {__version__}.\n""" raise ImportError( error_message + 'Check out https://github.com/huggingface/transformers/tree/main/examples#important-note for the examples corresponding to other ' 'versions of HuggingFace Transformers.' )
421
import os from typing import BinaryIO, Optional, Union import numpy as np import pyarrow.parquet as pq from .. import Audio, Dataset, Features, Image, NamedSplit, Value, config from ..features.features import FeatureType, _visit from ..formatting import query_table from ..packaged_modules import _PACKAGED_DATASETS_MODULES from ..packaged_modules.parquet.parquet import Parquet from ..utils import logging from ..utils.typing import NestedDataStructureLike, PathLike from .abc import AbstractDatasetReader def a_ ( lowerCAmelCase_ : Features ): __lowerCAmelCase = np.inf def set_batch_size(lowerCAmelCase_ : FeatureType ) -> None: nonlocal batch_size if isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = min(lowerCAmelCase_, config.PARQUET_ROW_GROUP_SIZE_FOR_IMAGE_DATASETS ) elif isinstance(lowerCAmelCase_, lowerCAmelCase_ ): __lowerCAmelCase = min(lowerCAmelCase_, config.PARQUET_ROW_GROUP_SIZE_FOR_AUDIO_DATASETS ) elif isinstance(lowerCAmelCase_, lowerCAmelCase_ ) and feature.dtype == "binary": __lowerCAmelCase = min(lowerCAmelCase_, config.PARQUET_ROW_GROUP_SIZE_FOR_BINARY_DATASETS ) _visit(lowerCAmelCase_, lowerCAmelCase_ ) return None if batch_size is np.inf else batch_size class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" def __init__( self : List[Any] , lowerCAmelCase_ : NestedDataStructureLike[PathLike] , lowerCAmelCase_ : Optional[NamedSplit] = None , lowerCAmelCase_ : Optional[Features] = None , lowerCAmelCase_ : str = None , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : bool = False , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : int , ) -> str: super().__init__( lowerCAmelCase_ , split=lowerCAmelCase_ , features=lowerCAmelCase_ , cache_dir=lowerCAmelCase_ , keep_in_memory=lowerCAmelCase_ , streaming=lowerCAmelCase_ , num_proc=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = path_or_paths if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ) else {self.split: path_or_paths} __lowerCAmelCase = _PACKAGED_DATASETS_MODULES['parquet'][1] __lowerCAmelCase = Parquet( cache_dir=lowerCAmelCase_ , data_files=lowerCAmelCase_ , features=lowerCAmelCase_ , hash=lowerCAmelCase_ , **lowerCAmelCase_ , ) def lowercase ( self : Optional[int] ) -> int: # Build iterable dataset if self.streaming: __lowerCAmelCase = self.builder.as_streaming_dataset(split=self.split ) # Build regular (map-style) dataset else: __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None __lowerCAmelCase = None self.builder.download_and_prepare( download_config=lowerCAmelCase_ , download_mode=lowerCAmelCase_ , verification_mode=lowerCAmelCase_ , base_path=lowerCAmelCase_ , num_proc=self.num_proc , ) __lowerCAmelCase = self.builder.as_dataset( split=self.split , verification_mode=lowerCAmelCase_ , in_memory=self.keep_in_memory ) return dataset class _UpperCAmelCase : """simple docstring""" def __init__( self : int , lowerCAmelCase_ : Dataset , lowerCAmelCase_ : Union[PathLike, BinaryIO] , lowerCAmelCase_ : Optional[int] = None , **lowerCAmelCase_ : int , ) -> Any: __lowerCAmelCase = dataset __lowerCAmelCase = path_or_buf __lowerCAmelCase = batch_size or get_writer_batch_size(dataset.features ) __lowerCAmelCase = parquet_writer_kwargs def lowercase ( self : Optional[int] ) -> int: __lowerCAmelCase = self.batch_size if self.batch_size else config.DEFAULT_MAX_BATCH_SIZE if isinstance(self.path_or_buf , (str, bytes, os.PathLike) ): with open(self.path_or_buf , 'wb+' ) as buffer: __lowerCAmelCase = self._write(file_obj=lowerCAmelCase_ , batch_size=lowerCAmelCase_ , **self.parquet_writer_kwargs ) else: __lowerCAmelCase = self._write(file_obj=self.path_or_buf , batch_size=lowerCAmelCase_ , **self.parquet_writer_kwargs ) return written def lowercase ( self : List[Any] , lowerCAmelCase_ : BinaryIO , lowerCAmelCase_ : int , **lowerCAmelCase_ : Optional[int] ) -> int: __lowerCAmelCase = 0 __lowerCAmelCase = parquet_writer_kwargs.pop('path_or_buf' , lowerCAmelCase_ ) __lowerCAmelCase = self.dataset.features.arrow_schema __lowerCAmelCase = pq.ParquetWriter(lowerCAmelCase_ , schema=lowerCAmelCase_ , **lowerCAmelCase_ ) for offset in logging.tqdm( range(0 , len(self.dataset ) , lowerCAmelCase_ ) , unit='ba' , disable=not logging.is_progress_bar_enabled() , desc='Creating parquet from Arrow format' , ): __lowerCAmelCase = query_table( table=self.dataset._data , key=slice(lowerCAmelCase_ , offset + batch_size ) , indices=self.dataset._indices if self.dataset._indices is not None else None , ) writer.write_table(lowerCAmelCase_ ) written += batch.nbytes writer.close() return written
421
1
import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class lowercase ( enum.Enum ): """simple docstring""" _UpperCamelCase : str = 0 _UpperCamelCase : str = 1 _UpperCamelCase : Union[str, Any] = 2 @add_end_docstrings(a_ ) class lowercase ( a_ ): """simple docstring""" _UpperCamelCase : Optional[int] = "\n In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The\n voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western\n Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision\n and denounces one of the men as a horse thief. Although his father initially slaps him for making such an\n accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of\n the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop,\n begging for his blessing. <eod> </s> <eos>\n " def __init__( self : Union[str, Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Any ): '''simple docstring''' super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == 'tf' else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case : Tuple = None if self.model.config.prefix is not None: _snake_case : Union[str, Any] = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case : str = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case : List[str] = self._sanitize_parameters(prefix=lowerCamelCase_ , **self._forward_params ) _snake_case : Optional[int] = {**self._preprocess_params, **preprocess_params} _snake_case : Any = {**self._forward_params, **forward_params} def __UpperCAmelCase ( self : int , lowerCamelCase_ : str=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : int=None , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : Dict=None , lowerCamelCase_ : Optional[Any]=None , lowerCamelCase_ : Dict=None , **lowerCamelCase_ : List[Any] , ): '''simple docstring''' _snake_case : str = {} if prefix is not None: _snake_case : List[Any] = prefix if prefix: _snake_case : int = self.tokenizer( lowerCamelCase_ , padding=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=self.framework ) _snake_case : str = prefix_inputs['input_ids'].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( f'''{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected''' ' [None, \'hole\']' ) _snake_case : List[Any] = handle_long_generation preprocess_params.update(lowerCamelCase_ ) _snake_case : Optional[int] = generate_kwargs _snake_case : Tuple = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_full_text`' ) if return_tensors is not None: raise ValueError('`return_full_text` is mutually exclusive with `return_tensors`' ) _snake_case : Dict = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError('`return_text` is mutually exclusive with `return_tensors`' ) _snake_case : Optional[int] = ReturnType.TENSORS if return_type is not None: _snake_case : Any = return_type if clean_up_tokenization_spaces is not None: _snake_case : Union[str, Any] = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case : str = self.tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) if len(lowerCamelCase_ ) > 1: warnings.warn( 'Stopping on a multiple token sequence is not yet supported on transformers. The first token of' ' the stop sequence will be used as the stop sequence string in the interim.' ) _snake_case : List[str] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def __UpperCAmelCase ( self : List[Any] , *lowerCamelCase_ : Union[str, Any] , **lowerCamelCase_ : Dict ): '''simple docstring''' if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({'add_space_before_punct_symbol': True} ) return super()._parse_and_tokenize(*lowerCamelCase_ , **lowerCamelCase_ ) def __call__( self : Any , lowerCamelCase_ : List[str] , **lowerCamelCase_ : Optional[Any] ): '''simple docstring''' return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def __UpperCAmelCase ( self : Dict , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Union[str, Any]="" , lowerCamelCase_ : Any=None , **lowerCamelCase_ : int ): '''simple docstring''' _snake_case : Tuple = self.tokenizer( prefix + prompt_text , padding=lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=self.framework ) _snake_case : int = prompt_text if handle_long_generation == "hole": _snake_case : Any = inputs['input_ids'].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case : int = generate_kwargs['max_new_tokens'] else: _snake_case : List[Any] = generate_kwargs.get('max_length' , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError('We cannot infer how many new tokens are expected' ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case : Optional[int] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( 'We cannot use `hole` to handle this generation the number of desired tokens exceeds the' ' models max length' ) _snake_case : Dict = inputs['input_ids'][:, -keep_length:] if "attention_mask" in inputs: _snake_case : Dict = inputs['attention_mask'][:, -keep_length:] return inputs def __UpperCAmelCase ( self : List[Any] , lowerCamelCase_ : int , **lowerCamelCase_ : Optional[int] ): '''simple docstring''' _snake_case : str = model_inputs['input_ids'] _snake_case : Optional[int] = model_inputs.get('attention_mask' , lowerCamelCase_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case : Union[str, Any] = None _snake_case : Union[str, Any] = None _snake_case : Any = 1 else: _snake_case : Optional[int] = input_ids.shape[0] _snake_case : List[str] = model_inputs.pop('prompt_text' ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case : str = generate_kwargs.pop('prefix_length' , 0 ) if prefix_length > 0: _snake_case : Any = 'max_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case : Dict = generate_kwargs.get('max_length' ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case : Optional[Any] = 'min_new_tokens' in generate_kwargs or ( 'generation_config' in generate_kwargs and generate_kwargs['generation_config'].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case : List[str] = self.model.generate(input_ids=lowerCamelCase_ , attention_mask=lowerCamelCase_ , **lowerCamelCase_ ) _snake_case : str = generated_sequence.shape[0] if self.framework == "pt": _snake_case : Optional[Any] = generated_sequence.reshape(lowerCamelCase_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case : List[Any] = tf.reshape(lowerCamelCase_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def __UpperCAmelCase ( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : List[str]=ReturnType.FULL_TEXT , lowerCamelCase_ : Any=True ): '''simple docstring''' _snake_case : List[str] = model_outputs['generated_sequence'][0] _snake_case : Any = model_outputs['input_ids'] _snake_case : List[Any] = model_outputs['prompt_text'] _snake_case : Tuple = generated_sequence.numpy().tolist() _snake_case : Dict = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case : int = {'generated_token_ids': sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case : List[Any] = self.tokenizer.decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case : Optional[int] = 0 else: _snake_case : List[str] = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case : List[Any] = prompt_text + text[prompt_length:] else: _snake_case : Dict = text[prompt_length:] _snake_case : List[Any] = {'generated_text': all_text} records.append(lowerCamelCase_ ) return records
304
# Lint as: python3 import itertools import os import re lowercase_ : List[Any] = re.compile(r'''([A-Z]+)([A-Z][a-z])''') lowercase_ : Tuple = re.compile(r'''([a-z\d])([A-Z])''') lowercase_ : Dict = re.compile(r'''(?<!_)_(?!_)''') lowercase_ : Optional[int] = re.compile(r'''(_{2,})''') lowercase_ : List[str] = r'''^\w+(\.\w+)*$''' lowercase_ : int = r'''<>:/\|?*''' def A__( __lowerCAmelCase ): _snake_case : int = _uppercase_uppercase_re.sub(R'\1_\2' , __lowerCAmelCase ) _snake_case : Any = _lowercase_uppercase_re.sub(R'\1_\2' , __lowerCAmelCase ) return name.lower() def A__( __lowerCAmelCase ): _snake_case : List[str] = _single_underscore_re.split(__lowerCAmelCase ) _snake_case : Any = [_multiple_underscores_re.split(__lowerCAmelCase ) for n in name] return "".join(n.capitalize() for n in itertools.chain.from_iterable(__lowerCAmelCase ) if n != '' ) def A__( __lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) return camelcase_to_snakecase(__lowerCAmelCase ) def A__( __lowerCAmelCase , __lowerCAmelCase ): if os.path.basename(__lowerCAmelCase ) != name: raise ValueError(F'''Should be a dataset name, not a path: {name}''' ) if not re.match(_split_re , __lowerCAmelCase ): raise ValueError(F'''Split name should match \'{_split_re}\'\' but got \'{split}\'.''' ) return F'''{filename_prefix_for_name(__lowerCAmelCase )}-{split}''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None ): _snake_case : Dict = filename_prefix_for_split(__lowerCAmelCase , __lowerCAmelCase ) if filetype_suffix: prefix += F'''.{filetype_suffix}''' _snake_case : int = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) return F'''{filepath}*''' def A__( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase=None , __lowerCAmelCase=None ): _snake_case : Any = filename_prefix_for_split(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Optional[Any] = os.path.join(__lowerCAmelCase , __lowerCAmelCase ) if shard_lengths: _snake_case : Dict = len(__lowerCAmelCase ) _snake_case : Optional[int] = [F'''{prefix}-{shard_id:05d}-of-{num_shards:05d}''' for shard_id in range(__lowerCAmelCase )] if filetype_suffix: _snake_case : Tuple = [filename + F'''.{filetype_suffix}''' for filename in filenames] return filenames else: _snake_case : Dict = prefix if filetype_suffix: filename += F'''.{filetype_suffix}''' return [filename]
304
1
'''simple docstring''' from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_tf_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_tf_available(): import tensorflow as tf a_ : Union[str, Any] = logging.get_logger(__name__) @dataclass class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **UpperCamelCase ): """simple docstring""" for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: lowerCamelCase_ = deprecated_arg[3:] lowerCamelCase_ = not kwargs.pop(UpperCamelCase ) logger.warning( f'''{deprecated_arg} is depreciated. Please use --no-{positive_arg} or''' f''' {positive_arg}={kwargs[positive_arg]}''' ) lowerCamelCase_ = kwargs.pop("tpu_name" , self.tpu_name ) lowerCamelCase_ = kwargs.pop("device_idx" , self.device_idx ) lowerCamelCase_ = kwargs.pop("eager_mode" , self.eager_mode ) lowerCamelCase_ = kwargs.pop("use_xla" , self.use_xla ) super().__init__(**UpperCamelCase ) _lowerCamelCase = field( default=lowercase , metadata={"help": "Name of TPU"} , ) _lowerCamelCase = field( default=0 , metadata={"help": "CPU / GPU device index. Defaults to 0."} , ) _lowerCamelCase = field(default=lowercase , metadata={"help": "Benchmark models in eager model."} ) _lowerCamelCase = field( default=lowercase , metadata={ "help": "Benchmark models using XLA JIT compilation. Note that `eager_model` has to be set to `False`." } , ) @cached_property def snake_case ( self ): """simple docstring""" requires_backends(self , ["tf"] ) lowerCamelCase_ = None if self.tpu: try: if self.tpu_name: lowerCamelCase_ = tf.distribute.cluster_resolver.TPUClusterResolver(self.tpu_name ) else: lowerCamelCase_ = tf.distribute.cluster_resolver.TPUClusterResolver() except ValueError: lowerCamelCase_ = None return tpu @cached_property def snake_case ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.is_tpu: tf.config.experimental_connect_to_cluster(self._setup_tpu ) tf.tpu.experimental.initialize_tpu_system(self._setup_tpu ) lowerCamelCase_ = tf.distribute.TPUStrategy(self._setup_tpu ) else: # currently no multi gpu is allowed if self.is_gpu: # TODO: Currently only single GPU is supported tf.config.set_visible_devices(self.gpu_list[self.device_idx] , "GPU" ) lowerCamelCase_ = tf.distribute.OneDeviceStrategy(device=f'''/gpu:{self.device_idx}''' ) else: tf.config.set_visible_devices([] , "GPU" ) # disable GPU lowerCamelCase_ = tf.distribute.OneDeviceStrategy(device=f'''/cpu:{self.device_idx}''' ) return strategy @property def snake_case ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_tpu is not None @property def snake_case ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return self._setup_strategy @property def snake_case ( self ): """simple docstring""" requires_backends(self , ["tf"] ) return tf.config.list_physical_devices("GPU" ) @property def snake_case ( self ): """simple docstring""" requires_backends(self , ["tf"] ) if self.cuda: return len(self.gpu_list ) return 0 @property def snake_case ( self ): """simple docstring""" return self.n_gpu > 0
707
'''simple docstring''' import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging a_ : List[str] = logging.get_logger(__name__) a_ : Dict = { """microsoft/unispeech-large-1500h-cv""": ( """https://huggingface.co/microsoft/unispeech-large-1500h-cv/resolve/main/config.json""" ), # See all UniSpeech models at https://huggingface.co/models?filter=unispeech } class snake_case ( lowercase ): """simple docstring""" _lowerCamelCase = "unispeech" def __init__( self , UpperCamelCase=32 , UpperCamelCase=768 , UpperCamelCase=12 , UpperCamelCase=12 , UpperCamelCase=3072 , UpperCamelCase="gelu" , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.0 , UpperCamelCase=0.0 , UpperCamelCase=0.1 , UpperCamelCase=0.1 , UpperCamelCase=0.02 , UpperCamelCase=1e-5 , UpperCamelCase="group" , UpperCamelCase="gelu" , UpperCamelCase=(512, 512, 512, 512, 512, 512, 512) , UpperCamelCase=(5, 2, 2, 2, 2, 2, 2) , UpperCamelCase=(10, 3, 3, 3, 3, 2, 2) , UpperCamelCase=False , UpperCamelCase=128 , UpperCamelCase=16 , UpperCamelCase=False , UpperCamelCase=True , UpperCamelCase=0.05 , UpperCamelCase=10 , UpperCamelCase=2 , UpperCamelCase=0.0 , UpperCamelCase=10 , UpperCamelCase=0 , UpperCamelCase=320 , UpperCamelCase=2 , UpperCamelCase=0.1 , UpperCamelCase=100 , UpperCamelCase=256 , UpperCamelCase=256 , UpperCamelCase=0.1 , UpperCamelCase="mean" , UpperCamelCase=False , UpperCamelCase=False , UpperCamelCase=256 , UpperCamelCase=80 , UpperCamelCase=0 , UpperCamelCase=1 , UpperCamelCase=2 , UpperCamelCase=0.5 , **UpperCamelCase , ): """simple docstring""" super().__init__(**UpperCamelCase , pad_token_id=UpperCamelCase , bos_token_id=UpperCamelCase , eos_token_id=UpperCamelCase ) lowerCamelCase_ = hidden_size lowerCamelCase_ = feat_extract_norm lowerCamelCase_ = feat_extract_activation lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = list(UpperCamelCase ) lowerCamelCase_ = conv_bias lowerCamelCase_ = num_conv_pos_embeddings lowerCamelCase_ = num_conv_pos_embedding_groups lowerCamelCase_ = len(self.conv_dim ) lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = intermediate_size lowerCamelCase_ = hidden_act lowerCamelCase_ = num_attention_heads lowerCamelCase_ = hidden_dropout lowerCamelCase_ = attention_dropout lowerCamelCase_ = activation_dropout lowerCamelCase_ = feat_proj_dropout lowerCamelCase_ = final_dropout lowerCamelCase_ = layerdrop lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = initializer_range lowerCamelCase_ = num_ctc_classes lowerCamelCase_ = vocab_size lowerCamelCase_ = do_stable_layer_norm lowerCamelCase_ = use_weighted_layer_sum lowerCamelCase_ = classifier_proj_size if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( "Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==" " `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 lowerCamelCase_ = apply_spec_augment lowerCamelCase_ = mask_time_prob lowerCamelCase_ = mask_time_length lowerCamelCase_ = mask_time_min_masks lowerCamelCase_ = mask_feature_prob lowerCamelCase_ = mask_feature_length lowerCamelCase_ = mask_feature_min_masks # parameters for pretraining with codevector quantized representations lowerCamelCase_ = num_codevectors_per_group lowerCamelCase_ = num_codevector_groups lowerCamelCase_ = contrastive_logits_temperature lowerCamelCase_ = feat_quantizer_dropout lowerCamelCase_ = num_negatives lowerCamelCase_ = codevector_dim lowerCamelCase_ = proj_codevector_dim lowerCamelCase_ = diversity_loss_weight # ctc loss lowerCamelCase_ = ctc_loss_reduction lowerCamelCase_ = ctc_zero_infinity # pretraining loss lowerCamelCase_ = replace_prob @property def snake_case ( self ): """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
445
0
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) _lowerCamelCase : Any = {"""configuration_xlnet""": ["""XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP""", """XLNetConfig"""]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizer"""] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : int = ["""XLNetTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Union[str, Any] = [ """XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """XLNetForMultipleChoice""", """XLNetForQuestionAnswering""", """XLNetForQuestionAnsweringSimple""", """XLNetForSequenceClassification""", """XLNetForTokenClassification""", """XLNetLMHeadModel""", """XLNetModel""", """XLNetPreTrainedModel""", """load_tf_weights_in_xlnet""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase : Dict = [ """TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFXLNetForMultipleChoice""", """TFXLNetForQuestionAnsweringSimple""", """TFXLNetForSequenceClassification""", """TFXLNetForTokenClassification""", """TFXLNetLMHeadModel""", """TFXLNetMainLayer""", """TFXLNetModel""", """TFXLNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys _lowerCamelCase : int = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
87
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class lowerCAmelCase__ : '''simple docstring''' def __init__( self : Union[str, Any] , snake_case__ : int , snake_case__ : List[str]=2 , snake_case__ : List[str]=3 , snake_case__ : Tuple=4 , snake_case__ : Optional[Any]=2 , snake_case__ : int=7 , snake_case__ : Optional[Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : Tuple=True , snake_case__ : int=True , snake_case__ : Optional[Any]=9_9 , snake_case__ : Optional[Any]=3_6 , snake_case__ : Tuple=3 , snake_case__ : int=4 , snake_case__ : Tuple=3_7 , snake_case__ : Union[str, Any]="gelu" , snake_case__ : Any=0.1 , snake_case__ : Optional[int]=0.1 , snake_case__ : Dict=5_1_2 , snake_case__ : Optional[int]=1_6 , snake_case__ : Dict=2 , snake_case__ : Dict=0.02 , snake_case__ : List[Any]=6 , snake_case__ : int=6 , snake_case__ : Tuple=3 , snake_case__ : List[Any]=4 , snake_case__ : List[str]=None , snake_case__ : Optional[Any]=1_0_0_0 , ) -> Optional[int]: _lowerCamelCase = parent _lowerCamelCase = batch_size _lowerCamelCase = num_channels _lowerCamelCase = image_size _lowerCamelCase = patch_size _lowerCamelCase = text_seq_length _lowerCamelCase = is_training _lowerCamelCase = use_input_mask _lowerCamelCase = use_token_type_ids _lowerCamelCase = use_labels _lowerCamelCase = vocab_size _lowerCamelCase = hidden_size _lowerCamelCase = num_hidden_layers _lowerCamelCase = num_attention_heads _lowerCamelCase = intermediate_size _lowerCamelCase = hidden_act _lowerCamelCase = hidden_dropout_prob _lowerCamelCase = attention_probs_dropout_prob _lowerCamelCase = max_position_embeddings _lowerCamelCase = type_vocab_size _lowerCamelCase = type_sequence_label_size _lowerCamelCase = initializer_range _lowerCamelCase = coordinate_size _lowerCamelCase = shape_size _lowerCamelCase = num_labels _lowerCamelCase = num_choices _lowerCamelCase = scope _lowerCamelCase = range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) _lowerCamelCase = text_seq_length _lowerCamelCase = (image_size // patch_size) ** 2 + 1 _lowerCamelCase = self.text_seq_length + self.image_seq_length def _snake_case ( self : int ) -> Any: _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: _lowerCamelCase = bbox[i, j, 3] _lowerCamelCase = bbox[i, j, 1] _lowerCamelCase = t if bbox[i, j, 2] < bbox[i, j, 0]: _lowerCamelCase = bbox[i, j, 2] _lowerCamelCase = bbox[i, j, 0] _lowerCamelCase = t _lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _lowerCamelCase = None if self.use_input_mask: _lowerCamelCase = random_attention_mask([self.batch_size, self.text_seq_length] ) _lowerCamelCase = None if self.use_token_type_ids: _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) _lowerCamelCase = None _lowerCamelCase = None if self.use_labels: _lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _lowerCamelCase = ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) _lowerCamelCase = LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _snake_case ( self : Optional[int] , snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : Tuple , snake_case__ : Dict , snake_case__ : Optional[int] , snake_case__ : int , snake_case__ : Optional[Any] ) -> Any: _lowerCamelCase = LayoutLMvaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() # text + image _lowerCamelCase = model(snake_case__ , pixel_values=snake_case__ ) _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ ) _lowerCamelCase = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , token_type_ids=snake_case__ ) _lowerCamelCase = model(snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only _lowerCamelCase = model(snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only _lowerCamelCase = model(pixel_values=snake_case__ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _snake_case ( self : Any , snake_case__ : Tuple , snake_case__ : Union[str, Any] , snake_case__ : Optional[int] , snake_case__ : List[Any] , snake_case__ : Any , snake_case__ : str , snake_case__ : str , snake_case__ : int ) -> List[Any]: _lowerCamelCase = self.num_labels _lowerCamelCase = LayoutLMvaForSequenceClassification(snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _snake_case ( self : Dict , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : str , snake_case__ : Any , snake_case__ : List[str] , snake_case__ : Tuple , snake_case__ : Dict ) -> Optional[Any]: _lowerCamelCase = self.num_labels _lowerCamelCase = LayoutLMvaForTokenClassification(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , labels=snake_case__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _snake_case ( self : str , snake_case__ : int , snake_case__ : Optional[int] , snake_case__ : str , snake_case__ : List[str] , snake_case__ : List[Any] , snake_case__ : List[Any] , snake_case__ : int , snake_case__ : Any ) -> Dict: _lowerCamelCase = LayoutLMvaForQuestionAnswering(config=snake_case__ ) model.to(snake_case__ ) model.eval() _lowerCamelCase = model( snake_case__ , bbox=snake_case__ , pixel_values=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , start_positions=snake_case__ , end_positions=snake_case__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _snake_case ( self : str ) -> List[str]: _lowerCamelCase = self.prepare_config_and_inputs() ( ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ( _lowerCamelCase ) , ) = config_and_inputs _lowerCamelCase = { 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,unittest.TestCase ): '''simple docstring''' lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = False lowerCAmelCase_ = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) lowerCAmelCase_ = ( {'document-question-answering': LayoutLMvaForQuestionAnswering, 'feature-extraction': LayoutLMvaModel} if is_torch_available() else {} ) def _snake_case ( self : Union[str, Any] , snake_case__ : Tuple , snake_case__ : Optional[Any] , snake_case__ : int , snake_case__ : Tuple , snake_case__ : Union[str, Any] ) -> str: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _snake_case ( self : str ) -> Any: _lowerCamelCase = LayoutLMvaModelTester(self ) _lowerCamelCase = ConfigTester(self , config_class=snake_case__ , hidden_size=3_7 ) def _snake_case ( self : List[str] , snake_case__ : str , snake_case__ : List[Any] , snake_case__ : Dict=False ) -> str: _lowerCamelCase = copy.deepcopy(snake_case__ ) if model_class in get_values(snake_case__ ): _lowerCamelCase = { k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(snake_case__ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(snake_case__ ): _lowerCamelCase = torch.ones(self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in get_values(snake_case__ ): _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: _lowerCamelCase = torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=snake_case__ ) elif model_class in [ *get_values(snake_case__ ), ]: _lowerCamelCase = torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=snake_case__ , ) return inputs_dict def _snake_case ( self : Any ) -> List[str]: self.config_tester.run_common_tests() def _snake_case ( self : int ) -> Optional[int]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _snake_case ( self : int ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _lowerCamelCase = type self.model_tester.create_and_check_model(*snake_case__ ) def _snake_case ( self : int ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case__ ) def _snake_case ( self : Any ) -> Any: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case__ ) def _snake_case ( self : int ) -> List[Any]: _lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case__ ) @slow def _snake_case ( self : Optional[int] ) -> List[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _lowerCamelCase = LayoutLMvaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def lowerCamelCase ( ) -> List[Any]: _lowerCamelCase = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class lowerCAmelCase__ ( unittest.TestCase ): '''simple docstring''' @cached_property def _snake_case ( self : int ) -> Any: return LayoutLMvaImageProcessor(apply_ocr=snake_case__ ) if is_vision_available() else None @slow def _snake_case ( self : List[str] ) -> Tuple: _lowerCamelCase = LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(snake_case__ ) _lowerCamelCase = self.default_image_processor _lowerCamelCase = prepare_img() _lowerCamelCase = image_processor(images=snake_case__ , return_tensors='pt' ).pixel_values.to(snake_case__ ) _lowerCamelCase = torch.tensor([[1, 2]] ) _lowerCamelCase = torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass _lowerCamelCase = model( input_ids=input_ids.to(snake_case__ ) , bbox=bbox.to(snake_case__ ) , pixel_values=pixel_values.to(snake_case__ ) , ) # verify the logits _lowerCamelCase = torch.Size((1, 1_9_9, 7_6_8) ) self.assertEqual(outputs.last_hidden_state.shape , snake_case__ ) _lowerCamelCase = torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , snake_case__ , atol=1e-4 ) )
544
0
_A = range(2, 20 + 1) _A = [10**k for k in range(ks[-1] + 1)] _A = {} def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Optional[Any] , UpperCamelCase : Tuple , UpperCamelCase : List[str] , UpperCamelCase : str ) -> str: """simple docstring""" a_ = sum(a_i[j] for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ) ) a_ = sum(a_i[j] * base[j] for j in range(min(len(_UpperCAmelCase ) , _UpperCAmelCase ) ) ) a_ , a_ = 0, 0 a_ = n - i a_ = memo.get(_UpperCAmelCase ) if sub_memo is not None: a_ = sub_memo.get(_UpperCAmelCase ) if jumps is not None and len(_UpperCAmelCase ) > 0: # find and make the largest jump without going over a_ = -1 for _k in range(len(_UpperCAmelCase ) - 1 , -1 , -1 ): if jumps[_k][2] <= k and jumps[_k][1] <= max_dn: a_ = _k break if max_jump >= 0: a_ , a_ , a_ = jumps[max_jump] # since the difference between jumps is cached, add c a_ = diff + c for j in range(min(_UpperCAmelCase , len(_UpperCAmelCase ) ) ): a_ , a_ = divmod(_UpperCAmelCase , 10 ) if new_c > 0: add(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) else: a_ = [] else: a_ = {c: []} a_ = sub_memo if dn >= max_dn or c + diff >= base[k]: return diff, dn if k > ks[0]: while True: # keep doing smaller jumps a_ , a_ = next_term(_UpperCAmelCase , k - 1 , i + dn , _UpperCAmelCase ) diff += _diff dn += terms_jumped if dn >= max_dn or c + diff >= base[k]: break else: # would be too small a jump, just compute sequential terms instead a_ , a_ = compute(_UpperCAmelCase , _UpperCAmelCase , i + dn , _UpperCAmelCase ) diff += _diff dn += terms_jumped a_ = sub_memo[c] # keep jumps sorted by # of terms skipped a_ = 0 while j < len(_UpperCAmelCase ): if jumps[j][1] > dn: break j += 1 # cache the jump for this value digitsum(b) and c sub_memo[c].insert(_UpperCAmelCase , (diff, dn, k) ) return (diff, dn) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Any , UpperCamelCase : List[Any] , UpperCamelCase : int , UpperCamelCase : int ) -> Optional[int]: """simple docstring""" if i >= n: return 0, i if k > len(_UpperCAmelCase ): a_i.extend([0 for _ in range(k - len(_UpperCAmelCase ) )] ) # note: a_i -> b * 10^k + c # ds_b -> digitsum(b) # ds_c -> digitsum(c) a_ = i a_ , a_ , a_ = 0, 0, 0 for j in range(len(_UpperCAmelCase ) ): if j >= k: ds_b += a_i[j] else: ds_c += a_i[j] while i < n: i += 1 a_ = ds_c + ds_b diff += addend a_ = 0 for j in range(_UpperCAmelCase ): a_ = a_i[j] + addend a_ , a_ = divmod(_UpperCAmelCase , 10 ) ds_c += a_i[j] if addend > 0: break if addend > 0: add(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) return diff, i - start_i def __SCREAMING_SNAKE_CASE ( UpperCamelCase : Union[str, Any] , UpperCamelCase : Union[str, Any] , UpperCamelCase : Any ) -> Dict: """simple docstring""" for j in range(_UpperCAmelCase , len(_UpperCAmelCase ) ): a_ = digits[j] + addend if s >= 10: a_ , a_ = divmod(_UpperCAmelCase , 10 ) a_ = addend // 10 + quotient else: a_ = s a_ = addend // 10 if addend == 0: break while addend > 0: a_ , a_ = divmod(_UpperCAmelCase , 10 ) digits.append(_UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( UpperCamelCase : str = 10**15 ) -> Union[str, Any]: """simple docstring""" a_ = [1] a_ = 1 a_ = 0 while True: a_ , a_ = next_term(_UpperCAmelCase , 20 , i + dn , _UpperCAmelCase ) dn += terms_jumped if dn == n - i: break a_ = 0 for j in range(len(_UpperCAmelCase ) ): a_n += digits[j] * 10**j return a_n if __name__ == "__main__": print(f'{solution() = }')
716
import unittest import numpy as np from transformers import RobertaPreLayerNormConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...test_modeling_flax_common import FlaxModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask if is_flax_available(): import jax.numpy as jnp from transformers.models.roberta_prelayernorm.modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, ) class lowerCamelCase_ ( unittest.TestCase ): def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=13 , _SCREAMING_SNAKE_CASE=7 , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=True , _SCREAMING_SNAKE_CASE=99 , _SCREAMING_SNAKE_CASE=32 , _SCREAMING_SNAKE_CASE=5 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE=37 , _SCREAMING_SNAKE_CASE="gelu" , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=0.1 , _SCREAMING_SNAKE_CASE=512 , _SCREAMING_SNAKE_CASE=16 , _SCREAMING_SNAKE_CASE=2 , _SCREAMING_SNAKE_CASE=0.0_2 , _SCREAMING_SNAKE_CASE=4 , ): a_ = parent a_ = batch_size a_ = seq_length a_ = is_training a_ = use_attention_mask a_ = use_token_type_ids a_ = use_labels a_ = vocab_size a_ = hidden_size a_ = num_hidden_layers a_ = num_attention_heads a_ = intermediate_size a_ = hidden_act a_ = hidden_dropout_prob a_ = attention_probs_dropout_prob a_ = max_position_embeddings a_ = type_vocab_size a_ = type_sequence_label_size a_ = initializer_range a_ = num_choices def __magic_name__ ( self ): a_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) a_ = None if self.use_attention_mask: a_ = random_attention_mask([self.batch_size, self.seq_length] ) a_ = None if self.use_token_type_ids: a_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) a_ = RobertaPreLayerNormConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=_SCREAMING_SNAKE_CASE , initializer_range=self.initializer_range , ) return config, input_ids, token_type_ids, attention_mask def __magic_name__ ( self ): a_ = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ = config_and_inputs a_ = {"""input_ids""": input_ids, """token_type_ids""": token_type_ids, """attention_mask""": attention_mask} return config, inputs_dict def __magic_name__ ( self ): a_ = self.prepare_config_and_inputs() a_ , a_ , a_ , a_ = config_and_inputs a_ = True a_ = floats_tensor([self.batch_size, self.seq_length, self.hidden_size] ) a_ = ids_tensor([self.batch_size, self.seq_length] , vocab_size=2 ) return ( config, input_ids, token_type_ids, encoder_hidden_states, encoder_attention_mask, ) @require_flax # Copied from tests.models.roberta.test_modelling_flax_roberta.FlaxRobertaPreLayerNormModelTest with ROBERTA->ROBERTA_PRELAYERNORM,Roberta->RobertaPreLayerNorm,roberta-base->andreasmadsen/efficient_mlm_m0.40 class lowerCamelCase_ ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): _lowerCamelCase : Optional[Any] = True _lowerCamelCase : List[Any] = ( ( FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, ) if is_flax_available() else () ) def __magic_name__ ( self ): a_ = FlaxRobertaPreLayerNormModelTester(self ) @slow def __magic_name__ ( self ): for model_class_name in self.all_model_classes: a_ = model_class_name.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_SCREAMING_SNAKE_CASE ) a_ = model(np.ones((1, 1) ) ) self.assertIsNotNone(_SCREAMING_SNAKE_CASE ) @require_flax class lowerCamelCase_ ( unittest.TestCase ): @slow def __magic_name__ ( self ): a_ = FlaxRobertaPreLayerNormForMaskedLM.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_SCREAMING_SNAKE_CASE ) a_ = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) a_ = model(_SCREAMING_SNAKE_CASE )[0] a_ = [1, 11, 5_0265] self.assertEqual(list(output.shape ) , _SCREAMING_SNAKE_CASE ) # compare the actual values for a slice. a_ = np.array( [[[4_0.4_8_8_0, 1_8.0_1_9_9, -5.2_3_6_7], [-1.8_8_7_7, -4.0_8_8_5, 1_0.7_0_8_5], [-2.2_6_1_3, -5.6_1_1_0, 7.2_6_6_5]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) ) @slow def __magic_name__ ( self ): a_ = FlaxRobertaPreLayerNormModel.from_pretrained("""andreasmadsen/efficient_mlm_m0.40""" , from_pt=_SCREAMING_SNAKE_CASE ) a_ = np.array([[0, 3_1414, 232, 328, 740, 1140, 1_2695, 69, 4_6078, 1588, 2]] , dtype=jnp.intaa ) a_ = model(_SCREAMING_SNAKE_CASE )[0] # compare the actual values for a slice. a_ = np.array( [[[0.0_2_0_8, -0.0_3_5_6, 0.0_2_3_7], [-0.1_5_6_9, -0.0_4_1_1, -0.2_6_2_6], [0.1_8_7_9, 0.0_1_2_5, -0.0_0_8_9]]] , dtype=np.floataa ) self.assertTrue(np.allclose(output[:, :3, :3] , _SCREAMING_SNAKE_CASE , atol=1E-4 ) )
403
0
'''simple docstring''' import argparse import ast import logging import os import sys import pandas as pd import torch from tqdm import tqdm from transformers import BartForConditionalGeneration, RagRetriever, RagSequenceForGeneration, RagTokenForGeneration from transformers import logging as transformers_logging sys.path.append(os.path.join(os.getcwd())) # noqa: E402 # isort:skip from utils_rag import exact_match_score, fa_score # noqa: E402 # isort:skip lowercase_ = logging.getLogger(__name__) logging.basicConfig(level=logging.INFO) transformers_logging.set_verbosity_info() def lowerCAmelCase (__A): """simple docstring""" if "token" in model_name_or_path: return "rag_token" if "sequence" in model_name_or_path: return "rag_sequence" if "bart" in model_name_or_path: return "bart" return None def lowerCAmelCase (__A , __A , __A): """simple docstring""" return max(metric_fn(__A , __A) for gt in ground_truths) def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = [line.strip() for line in open(__A , '''r''').readlines()] _a = [] if args.gold_data_mode == "qa": _a = pd.read_csv(__A , sep='''\t''' , header=__A) for answer_list in data[1]: _a = ast.literal_eval(__A) answers.append(__A) else: _a = [line.strip() for line in open(__A , '''r''').readlines()] _a = [[reference] for reference in references] _a = _a = _a = 0 for prediction, ground_truths in zip(__A , __A): total += 1 em += metric_max_over_ground_truths(__A , __A , __A) fa += metric_max_over_ground_truths(__A , __A , __A) _a = 1_00.0 * em / total _a = 1_00.0 * fa / total logger.info(F'''F1: {fa:.2f}''') logger.info(F'''EM: {em:.2f}''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" _a = args.k _a = [line.strip() for line in open(__A , '''r''').readlines()] _a = [line.strip() for line in open(__A , '''r''').readlines()] _a = _a = 0 for hypo, reference in zip(__A , __A): _a = set(hypo.split('''\t''')[:k]) _a = set(reference.split('''\t''')) total += 1 em += len(hypo_provenance & ref_provenance) / k _a = 1_00.0 * em / total logger.info(F'''Precision@{k}: {em: .2f}''') def lowerCAmelCase (__A , __A , __A): """simple docstring""" def strip_title(__A): if title.startswith('''"'''): _a = title[1:] if title.endswith('''"'''): _a = title[:-1] return title _a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __A , return_tensors='''pt''' , padding=__A , truncation=__A , )['''input_ids'''].to(args.device) _a = rag_model.rag.question_encoder(__A) _a = question_enc_outputs[0] _a = rag_model.retriever( __A , question_enc_pool_output.cpu().detach().to(torch.floataa).numpy() , prefix=rag_model.rag.generator.config.prefix , n_docs=rag_model.config.n_docs , return_tensors='''pt''' , ) _a = rag_model.retriever.index.get_doc_dicts(result.doc_ids) _a = [] for docs in all_docs: _a = [strip_title(__A) for title in docs['''title''']] provenance_strings.append('''\t'''.join(__A)) return provenance_strings def lowerCAmelCase (__A , __A , __A): """simple docstring""" with torch.no_grad(): _a = rag_model.retriever.question_encoder_tokenizer.batch_encode_plus( __A , return_tensors='''pt''' , padding=__A , truncation=__A) _a = inputs_dict.input_ids.to(args.device) _a = inputs_dict.attention_mask.to(args.device) _a = rag_model.generate( # rag_model overwrites generate __A , attention_mask=__A , num_beams=args.num_beams , min_length=args.min_length , max_length=args.max_length , early_stopping=__A , num_return_sequences=1 , bad_words_ids=[[0, 0]] , ) _a = rag_model.retriever.generator_tokenizer.batch_decode(__A , skip_special_tokens=__A) if args.print_predictions: for q, a in zip(__A , __A): logger.info('''Q: {} - A: {}'''.format(__A , __A)) return answers def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() parser.add_argument( '''--model_type''' , choices=['''rag_sequence''', '''rag_token''', '''bart'''] , type=__A , help=( '''RAG model type: rag_sequence, rag_token or bart, if none specified, the type is inferred from the''' ''' model_name_or_path''' ) , ) parser.add_argument( '''--index_name''' , default=__A , choices=['''exact''', '''compressed''', '''legacy'''] , type=__A , help='''RAG model retriever type''' , ) parser.add_argument( '''--index_path''' , default=__A , type=__A , help='''Path to the retrieval index''' , ) parser.add_argument('''--n_docs''' , default=5 , type=__A , help='''Number of retrieved docs''') parser.add_argument( '''--model_name_or_path''' , default=__A , type=__A , required=__A , help='''Path to pretrained checkpoints or model identifier from huggingface.co/models''' , ) parser.add_argument( '''--eval_mode''' , choices=['''e2e''', '''retrieval'''] , default='''e2e''' , type=__A , help=( '''Evaluation mode, e2e calculates exact match and F1 of the downstream task, retrieval calculates''' ''' precision@k.''' ) , ) parser.add_argument('''--k''' , default=1 , type=__A , help='''k for the precision@k calculation''') parser.add_argument( '''--evaluation_set''' , default=__A , type=__A , required=__A , help='''Path to a file containing evaluation samples''' , ) parser.add_argument( '''--gold_data_path''' , default=__A , type=__A , required=__A , help='''Path to a tab-separated file with gold samples''' , ) parser.add_argument( '''--gold_data_mode''' , default='''qa''' , type=__A , choices=['''qa''', '''ans'''] , help=( '''Format of the gold data file''' '''qa - a single line in the following format: question [tab] answer_list''' '''ans - a single line of the gold file contains the expected answer string''' ) , ) parser.add_argument( '''--predictions_path''' , type=__A , default='''predictions.txt''' , help='''Name of the predictions file, to be stored in the checkpoints directory''' , ) parser.add_argument( '''--eval_all_checkpoints''' , action='''store_true''' , help='''Evaluate all checkpoints starting with the same prefix as model_name ending and ending with step number''' , ) parser.add_argument( '''--eval_batch_size''' , default=8 , type=__A , help='''Batch size per GPU/CPU for evaluation.''' , ) parser.add_argument( '''--recalculate''' , help='''Recalculate predictions even if the prediction file exists''' , action='''store_true''' , ) parser.add_argument( '''--num_beams''' , default=4 , type=__A , help='''Number of beams to be used when generating answers''' , ) parser.add_argument('''--min_length''' , default=1 , type=__A , help='''Min length of the generated answers''') parser.add_argument('''--max_length''' , default=50 , type=__A , help='''Max length of the generated answers''') parser.add_argument( '''--print_predictions''' , action='''store_true''' , help='''If True, prints predictions while evaluating.''' , ) parser.add_argument( '''--print_docs''' , action='''store_true''' , help='''If True, prints docs retried while generating.''' , ) _a = parser.parse_args() _a = torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''') return args def lowerCAmelCase (__A): """simple docstring""" _a = {} if args.model_type is None: _a = infer_model_type(args.model_name_or_path) assert args.model_type is not None if args.model_type.startswith('''rag'''): _a = RagTokenForGeneration if args.model_type == '''rag_token''' else RagSequenceForGeneration _a = args.n_docs if args.index_name is not None: _a = args.index_name if args.index_path is not None: _a = args.index_path else: _a = BartForConditionalGeneration _a = ( [f.path for f in os.scandir(args.model_name_or_path) if f.is_dir()] if args.eval_all_checkpoints else [args.model_name_or_path] ) logger.info('''Evaluate the following checkpoints: %s''' , __A) _a = get_scores if args.eval_mode == '''e2e''' else get_precision_at_k _a = evaluate_batch_eae if args.eval_mode == '''e2e''' else evaluate_batch_retrieval for checkpoint in checkpoints: if os.path.exists(args.predictions_path) and (not args.recalculate): logger.info('''Calculating metrics based on an existing predictions file: {}'''.format(args.predictions_path)) score_fn(__A , args.predictions_path , args.gold_data_path) continue logger.info('''***** Running evaluation for {} *****'''.format(__A)) logger.info(''' Batch size = %d''' , args.eval_batch_size) logger.info(''' Predictions will be stored under {}'''.format(args.predictions_path)) if args.model_type.startswith('''rag'''): _a = RagRetriever.from_pretrained(__A , **__A) _a = model_class.from_pretrained(__A , retriever=__A , **__A) model.retriever.init_retrieval() else: _a = model_class.from_pretrained(__A , **__A) model.to(args.device) with open(args.evaluation_set , '''r''') as eval_file, open(args.predictions_path , '''w''') as preds_file: _a = [] for line in tqdm(__A): questions.append(line.strip()) if len(__A) == args.eval_batch_size: _a = evaluate_batch_fn(__A , __A , __A) preds_file.write('''\n'''.join(__A) + '''\n''') preds_file.flush() _a = [] if len(__A) > 0: _a = evaluate_batch_fn(__A , __A , __A) preds_file.write('''\n'''.join(__A)) preds_file.flush() score_fn(__A , args.predictions_path , args.gold_data_path) if __name__ == "__main__": lowercase_ = get_args() main(args)
11
'''simple docstring''' import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class __A : '''simple docstring''' def __init__(self , A , A=13 , A=7 , A=True , A=True , A=False , A=True , A=99 , A=32 , A=5 , A=4 , A=37 , A="gelu" , A=0.1 , A=0.1 , A=512 , A=16 , A=2 , A=0.02 , A=3 , A=4 , A=None , ) -> str: """simple docstring""" _a = parent _a = batch_size _a = seq_length _a = is_training _a = use_input_mask _a = use_token_type_ids _a = use_labels _a = vocab_size _a = hidden_size _a = num_hidden_layers _a = num_attention_heads _a = intermediate_size _a = hidden_act _a = hidden_dropout_prob _a = attention_probs_dropout_prob _a = max_position_embeddings _a = type_vocab_size _a = type_sequence_label_size _a = initializer_range _a = num_labels _a = num_choices _a = scope def a__ (self ) -> List[str]: """simple docstring""" _a = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _a = None if self.use_input_mask: _a = random_attention_mask([self.batch_size, self.seq_length] ) _a = None if self.use_token_type_ids: _a = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _a = None _a = None _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _a = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _a = ids_tensor([self.batch_size] , self.num_choices ) _a = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a__ (self ) -> Optional[int]: """simple docstring""" return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=A , initializer_range=self.initializer_range , use_stable_embedding=A , ) def a__ (self , A , A , A , A , A , A , A ) -> Any: """simple docstring""" _a = OpenLlamaModel(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A ) _a = model(A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Any: """simple docstring""" _a = True _a = OpenLlamaModel(A ) model.to(A ) model.eval() _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , ) _a = model( A , attention_mask=A , encoder_hidden_states=A , ) _a = model(A , attention_mask=A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Tuple: """simple docstring""" _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a__ (self , A , A , A , A , A , A , A , A , A , ) -> Dict: """simple docstring""" _a = True _a = True _a = OpenLlamaForCausalLM(config=A ) model.to(A ) model.eval() # first forward pass _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , use_cache=A , ) _a = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _a = ids_tensor((self.batch_size, 3) , config.vocab_size ) _a = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _a = torch.cat([input_ids, next_tokens] , dim=-1 ) _a = torch.cat([input_mask, next_mask] , dim=-1 ) _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , output_hidden_states=A , )['''hidden_states'''][0] _a = model( A , attention_mask=A , encoder_hidden_states=A , encoder_attention_mask=A , past_key_values=A , output_hidden_states=A , )['''hidden_states'''][0] # select random slice _a = ids_tensor((1,) , output_from_past.shape[-1] ).item() _a = output_from_no_past[:, -3:, random_slice_idx].detach() _a = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(A , A , atol=1E-3 ) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a = self.prepare_config_and_inputs() ( ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ( _a ) , ) = config_and_inputs _a = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class __A ( A , A , A , unittest.TestCase ): '''simple docstring''' __lowerCamelCase : Optional[int] = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) __lowerCamelCase : Any = (OpenLlamaForCausalLM,) if is_torch_available() else () __lowerCamelCase : List[Any] = ( { 'feature-extraction': OpenLlamaModel, 'text-classification': OpenLlamaForSequenceClassification, 'text-generation': OpenLlamaForCausalLM, 'zero-shot': OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) __lowerCamelCase : List[str] = False __lowerCamelCase : List[str] = False def a__ (self ) -> Tuple: """simple docstring""" _a = OpenLlamaModelTester(self ) _a = ConfigTester(self , config_class=A , hidden_size=37 ) def a__ (self ) -> List[str]: """simple docstring""" self.config_tester.run_common_tests() def a__ (self ) -> Union[str, Any]: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A ) def a__ (self ) -> str: """simple docstring""" _a = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _a = type self.model_tester.create_and_check_model(*A ) def a__ (self ) -> Any: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Dict: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''single_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def a__ (self ) -> Optional[Any]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = 3 _a = '''multi_label_classification''' _a = input_dict['''input_ids'''] _a = input_ids.ne(1 ).to(A ) _a = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _a = OpenLlamaForSequenceClassification(A ) model.to(A ) model.eval() _a = model(A , attention_mask=A , labels=A ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def a__ (self ) -> Optional[Any]: """simple docstring""" pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def a__ (self , A ) -> Optional[int]: """simple docstring""" _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ids_tensor([1, 10] , config.vocab_size ) _a = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = OpenLlamaModel(A ) original_model.to(A ) original_model.eval() _a = original_model(A ).last_hidden_state _a = original_model(A ).last_hidden_state set_seed(42 ) # Fixed seed at init time so the two models get the same random weights _a = {'''type''': scaling_type, '''factor''': 10.0} _a = OpenLlamaModel(A ) scaled_model.to(A ) scaled_model.eval() _a = scaled_model(A ).last_hidden_state _a = scaled_model(A ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(A , A , atol=1E-5 ) ) else: self.assertFalse(torch.allclose(A , A , atol=1E-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(A , A , atol=1E-5 ) )
11
1
'''simple docstring''' class SCREAMING_SNAKE_CASE__ : def __init__( self : Any , a_ : int ): """simple docstring""" __snake_case = n __snake_case = [None] * self.n __snake_case = 0 # index of the first element __snake_case = 0 __snake_case = 0 def __len__( self : Optional[Any] ): """simple docstring""" return self.size def A ( self : Optional[int] ): """simple docstring""" return self.size == 0 def A ( self : int ): """simple docstring""" return False if self.is_empty() else self.array[self.front] def A ( self : Any , a_ : List[str] ): """simple docstring""" if self.size >= self.n: raise Exception("QUEUE IS FULL" ) __snake_case = data __snake_case = (self.rear + 1) % self.n self.size += 1 return self def A ( self : Dict ): """simple docstring""" if self.size == 0: raise Exception("UNDERFLOW" ) __snake_case = self.array[self.front] __snake_case = None __snake_case = (self.front + 1) % self.n self.size -= 1 return temp
680
'''simple docstring''' import math import sys import cva import numpy as np def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float ) -> np.ndarray: # For applying gaussian function for each element in matrix. __snake_case = math.sqrt(_UpperCAmelCase ) __snake_case = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : int , _UpperCAmelCase : int , _UpperCAmelCase : int ) -> np.ndarray: __snake_case = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __UpperCAmelCase ( _UpperCAmelCase : int , _UpperCAmelCase : float ) -> np.ndarray: # Creates a gaussian kernel of given dimension. __snake_case = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCAmelCase ): for j in range(0 , _UpperCAmelCase ): __snake_case = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) def __UpperCAmelCase ( _UpperCAmelCase : np.ndarray , _UpperCAmelCase : float , _UpperCAmelCase : float , _UpperCAmelCase : int , ) -> np.ndarray: __snake_case = np.zeros(img.shape ) __snake_case = get_gauss_kernel(_UpperCAmelCase , _UpperCAmelCase ) __snake_case , __snake_case = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): __snake_case = get_slice(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) __snake_case = img_s - img_s[kernel_size // 2, kernel_size // 2] __snake_case = vec_gaussian(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.multiply(_UpperCAmelCase , _UpperCAmelCase ) __snake_case = np.sum(_UpperCAmelCase ) / np.sum(_UpperCAmelCase ) __snake_case = val return imga def __UpperCAmelCase ( _UpperCAmelCase : list ) -> tuple: __snake_case = args[1] if args[1:] else "../image_data/lena.jpg" __snake_case = float(args[2] ) if args[2:] else 1.0 __snake_case = float(args[3] ) if args[3:] else 1.0 if args[4:]: __snake_case = int(args[4] ) __snake_case = kernel_size + abs(kernel_size % 2 - 1 ) else: __snake_case = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": a , a , a , a : Tuple = parse_args(sys.argv) a : Tuple = cva.imread(filename, 0) cva.imshow('''input image''', img) a : Dict = img / 255 a : str = out.astype('''float32''') a : Union[str, Any] = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) a : Dict = out * 255 a : List[str] = np.uinta(out) cva.imshow('''output image''', out) cva.waitKey(0) cva.destroyAllWindows()
680
1
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available _lowerCAmelCase = {"""configuration_mmbt""": ["""MMBTConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCAmelCase = ["""MMBTForClassification""", """MMBTModel""", """ModalEmbeddings"""] if TYPE_CHECKING: from .configuration_mmbt import MMBTConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mmbt import MMBTForClassification, MMBTModel, ModalEmbeddings else: import sys _lowerCAmelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
569
import tempfile import unittest from make_student import create_student_by_copying_alternating_layers from transformers import AutoConfig from transformers.file_utils import cached_property from transformers.testing_utils import require_torch _lowerCAmelCase = """sshleifer/bart-tiny-random""" _lowerCAmelCase = """patrickvonplaten/t5-tiny-random""" @require_torch class _UpperCAmelCase ( unittest.TestCase ): @cached_property def _lowerCamelCase ( self ): return AutoConfig.from_pretrained(a__ ) def _lowerCamelCase ( self ): A_ , *A_ : Optional[Any] = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.num_hidden_layers , 1 ) def _lowerCamelCase ( self ): A_ , *A_ : Tuple = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ ) def _lowerCamelCase ( self ): A_ , *A_ : int = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=a__ ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , self.teacher_config.encoder_layers ) def _lowerCamelCase ( self ): A_ , *A_ : Tuple = create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=1 , d=1 ) self.assertEqual(student.config.encoder_layers , 1 ) self.assertEqual(student.config.decoder_layers , 1 ) def _lowerCamelCase ( self ): with self.assertRaises(a__ ): create_student_by_copying_alternating_layers(a__ , tempfile.mkdtemp() , e=a__ , d=a__ )
569
1
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCAmelCase : str = {"configuration_xlnet": ["XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP", "XLNetConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : List[str] = ["XLNetTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : str = ["XLNetTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : int = [ "XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "XLNetForMultipleChoice", "XLNetForQuestionAnswering", "XLNetForQuestionAnsweringSimple", "XLNetForSequenceClassification", "XLNetForTokenClassification", "XLNetLMHeadModel", "XLNetModel", "XLNetPreTrainedModel", "load_tf_weights_in_xlnet", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase : Any = [ "TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST", "TFXLNetForMultipleChoice", "TFXLNetForQuestionAnsweringSimple", "TFXLNetForSequenceClassification", "TFXLNetForTokenClassification", "TFXLNetLMHeadModel", "TFXLNetMainLayer", "TFXLNetModel", "TFXLNetPreTrainedModel", ] if TYPE_CHECKING: from .configuration_xlnet import XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP, XLNetConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet import XLNetTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_xlnet_fast import XLNetTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlnet import ( XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, XLNetForMultipleChoice, XLNetForQuestionAnswering, XLNetForQuestionAnsweringSimple, XLNetForSequenceClassification, XLNetForTokenClassification, XLNetLMHeadModel, XLNetModel, XLNetPreTrainedModel, load_tf_weights_in_xlnet, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_xlnet import ( TF_XLNET_PRETRAINED_MODEL_ARCHIVE_LIST, TFXLNetForMultipleChoice, TFXLNetForQuestionAnsweringSimple, TFXLNetForSequenceClassification, TFXLNetForTokenClassification, TFXLNetLMHeadModel, TFXLNetMainLayer, TFXLNetModel, TFXLNetPreTrainedModel, ) else: import sys __lowerCAmelCase : Dict = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
674
"""simple docstring""" import argparse import pickle import numpy as np import torch from torch import nn from transformers import ReformerConfig, ReformerModelWithLMHead from transformers.utils import logging logging.set_verbosity_info() def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None ): """simple docstring""" assert torch_layer.weight.shape == weight.shape, f"""{torch_layer} layer.weight does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) if bias is not None: assert torch_layer.bias.shape == bias.shape, f"""{torch_layer} layer.bias does not match""" lowerCAmelCase__ = nn.Parameter(lowerCamelCase__ ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) set_param( torch_layer.self_attention.query_key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = np.asarray(weights[0] ) lowerCAmelCase__ = np.asarray(weights[1] ) lowerCAmelCase__ = np.asarray(weights[2] ) lowerCAmelCase__ = np.asarray(weights[3] ) set_param( torch_layer.self_attention.query , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.key , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.self_attention.value , torch.tensor(lowerCamelCase__ ).transpose(1 , 2 ).contiguous().view(-1 , lowerCamelCase__ ) , ) set_param( torch_layer.output.dense , torch.tensor(lowerCamelCase__ ).view(-1 , lowerCamelCase__ ).contiguous().transpose(0 , 1 ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = weights[0][0][0] lowerCAmelCase__ = np.asarray(layer_norm_a[0] ) lowerCAmelCase__ = np.asarray(layer_norm_a[1] ) set_param( torch_block.attention.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # lsh weights + output lowerCAmelCase__ = weights[0][1] if len(lowerCamelCase__ ) < 4: set_layer_weights_in_torch_lsh(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) else: set_layer_weights_in_torch_local(lowerCamelCase__ , torch_block.attention , lowerCamelCase__ ) # intermediate weighs lowerCAmelCase__ = weights[2][0][1][2] # Chunked Feed Forward if len(lowerCamelCase__ ) == 4: lowerCAmelCase__ = intermediate_weights[2] # layernorm 2 lowerCAmelCase__ = np.asarray(intermediate_weights[0][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[0][1] ) set_param( torch_block.feed_forward.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # intermediate dense lowerCAmelCase__ = np.asarray(intermediate_weights[1][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[1][1] ) set_param( torch_block.feed_forward.dense.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) # intermediate out lowerCAmelCase__ = np.asarray(intermediate_weights[4][0] ) lowerCAmelCase__ = np.asarray(intermediate_weights[4][1] ) set_param( torch_block.feed_forward.output.dense , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = torch_model.reformer # word embeds lowerCAmelCase__ = np.asarray(weights[1] ) set_param( torch_model_reformer.embeddings.word_embeddings , torch.tensor(lowerCamelCase__ ) , ) if isinstance(weights[3] , lowerCamelCase__ ): lowerCAmelCase__ = torch_model_reformer.embeddings.position_embeddings for emb_idx in range(len(position_embeddings.weights ) ): lowerCAmelCase__ = np.asarray(weights[3][emb_idx][0] ) assert ( position_embeddings.weights[emb_idx].shape == emb_weights.shape ), f"""{position_embeddings[emb_idx]} emb does not match""" lowerCAmelCase__ = nn.Parameter(torch.tensor(lowerCamelCase__ ) ) lowerCAmelCase__ = weights[5] assert len(torch_model_reformer.encoder.layers ) * 4 == len( lowerCamelCase__ ), "HF and trax model do not have the same number of layers" for layer_idx, layer in enumerate(torch_model_reformer.encoder.layers ): lowerCAmelCase__ = trax_layer_weights[4 * layer_idx : 4 * (layer_idx + 1)] set_block_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # output layer norm lowerCAmelCase__ = np.asarray(weights[7][0] ) lowerCAmelCase__ = np.asarray(weights[7][1] ) set_param( torch_model_reformer.encoder.layer_norm , torch.tensor(lowerCamelCase__ ) , torch.tensor(lowerCamelCase__ ) , ) # output embeddings lowerCAmelCase__ = np.asarray(weights[9][0] ) lowerCAmelCase__ = np.asarray(weights[9][1] ) set_param( torch_model.lm_head.decoder , torch.tensor(lowerCamelCase__ ).transpose(0 , 1 ).contiguous() , torch.tensor(lowerCamelCase__ ) , ) def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): """simple docstring""" lowerCAmelCase__ = ReformerConfig.from_json_file(lowerCamelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) lowerCAmelCase__ = ReformerModelWithLMHead(lowerCamelCase__ ) with open(lowerCamelCase__ , """rb""" ) as f: lowerCAmelCase__ = pickle.load(lowerCamelCase__ )["""weights"""] set_model_weights_in_torch(lowerCamelCase__ , lowerCamelCase__ , config.hidden_size ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , lowerCamelCase__ ) if __name__ == "__main__": __lowerCAmelCase : List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--trax_model_pkl_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained Reformer model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) __lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_trax_checkpoint_to_pytorch(args.trax_model_pkl_path, args.config_file, args.pytorch_dump_path)
674
1
"""simple docstring""" from __future__ import annotations import os from collections.abc import Mapping A_ = tuple[int, int] class __lowerCAmelCase : '''simple docstring''' def __init__( self: Optional[Any] , UpperCamelCase_: List[Any] , UpperCamelCase_: List[Any] ): UpperCamelCase_ =vertices UpperCamelCase_ ={ (min(UpperCamelCase_ ), max(UpperCamelCase_ )): weight for edge, weight in edges.items() } def UpperCamelCase__ ( self: Dict , UpperCamelCase_: Optional[int] , UpperCamelCase_: int ): self.vertices.add(edge[0] ) self.vertices.add(edge[1] ) UpperCamelCase_ =weight def UpperCamelCase__ ( self: List[Any] ): UpperCamelCase_ =Graph({min(self.vertices )} , {} ) UpperCamelCase_ =42 UpperCamelCase_ =42 UpperCamelCase_ =42 UpperCamelCase_ =42 while len(subgraph.vertices ) < len(self.vertices ): UpperCamelCase_ =max(self.edges.values() ) + 1 for edge, weight in self.edges.items(): if (edge[0] in subgraph.vertices) ^ (edge[1] in subgraph.vertices): if weight < min_weight: UpperCamelCase_ =edge UpperCamelCase_ =weight subgraph.add_edge(UpperCamelCase_ , UpperCamelCase_ ) return subgraph def _UpperCamelCase ( A = "p107_network.txt" ): UpperCamelCase_ =os.path.abspath(os.path.dirname(__snake_case ) ) UpperCamelCase_ =os.path.join(__snake_case , __snake_case ) UpperCamelCase_ ={} UpperCamelCase_ =42 UpperCamelCase_ =42 UpperCamelCase_ =42 with open(__snake_case ) as f: UpperCamelCase_ =f.read().strip().split("\n" ) UpperCamelCase_ =[line.split("," ) for line in data] for edgea in range(1 , len(__snake_case ) ): for edgea in range(__snake_case ): if adjaceny_matrix[edgea][edgea] != "-": UpperCamelCase_ =int(adjaceny_matrix[edgea][edgea] ) UpperCamelCase_ =Graph(set(range(len(__snake_case ) ) ) , __snake_case ) UpperCamelCase_ =graph.prims_algorithm() UpperCamelCase_ =sum(graph.edges.values() ) UpperCamelCase_ =sum(subgraph.edges.values() ) return initial_total - optimal_total if __name__ == "__main__": print(f'''{solution() = }''')
391
"""simple docstring""" import random def _snake_case ( __snake_case : List[Any] , __snake_case : List[Any] , __snake_case : int ): """simple docstring""" _lowerCamelCase : List[str] = a[left_index] _lowerCamelCase : Dict = left_index + 1 for j in range(left_index + 1 , __snake_case ): if a[j] < pivot: _lowerCamelCase , _lowerCamelCase : List[str] = a[i], a[j] i += 1 _lowerCamelCase , _lowerCamelCase : Optional[int] = a[i - 1], a[left_index] return i - 1 def _snake_case ( __snake_case : Tuple , __snake_case : List[str] , __snake_case : List[str] ): """simple docstring""" if left < right: _lowerCamelCase : Any = random.randint(__snake_case , right - 1 ) _lowerCamelCase , _lowerCamelCase : Optional[Any] = ( a[left], a[pivot], ) # switches the pivot with the left most bound _lowerCamelCase : List[str] = partition(__snake_case , __snake_case , __snake_case ) quick_sort_random( __snake_case , __snake_case , __snake_case ) # recursive quicksort to the left of the pivot point quick_sort_random( __snake_case , pivot_index + 1 , __snake_case ) # recursive quicksort to the right of the pivot point def _snake_case ( ): """simple docstring""" _lowerCamelCase : Union[str, Any] = input("""Enter numbers separated by a comma:\n""" ).strip() _lowerCamelCase : int = [int(__snake_case ) for item in user_input.split(""",""" )] quick_sort_random(__snake_case , 0 , len(__snake_case ) ) print(__snake_case ) if __name__ == "__main__": main()
88
0
"""simple docstring""" from collections.abc import Generator def __UpperCAmelCase ( ) -> Generator[int, None, None]: lowercase__ , lowercase__ : int = 0, 1 while True: lowercase__ , lowercase__ : int = b, a + b yield b def __UpperCAmelCase ( __lowerCamelCase = 10_00 ) -> int: lowercase__ : Union[str, Any] = 1 lowercase__ : Any = fibonacci_generator() while len(str(next(__lowerCamelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
122
"""simple docstring""" from ..utils import DummyObject, requires_backends class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Optional[Any] = ["flax", "transformers"] def __init__( self : Union[str, Any] ,*_snake_case : str ,**_snake_case : List[str] ) -> Any: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase ( cls : Any ,*_snake_case : List[Any] ,**_snake_case : Dict ) -> Any: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : List[Any] ,**_snake_case : List[Any] ) -> Tuple: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : str = ["flax", "transformers"] def __init__( self : str ,*_snake_case : Union[str, Any] ,**_snake_case : Dict ) -> List[Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase ( cls : List[str] ,*_snake_case : Any ,**_snake_case : str ) -> Optional[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase ( cls : Optional[int] ,*_snake_case : List[Any] ,**_snake_case : int ) -> List[Any]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : Dict = ["flax", "transformers"] def __init__( self : Any ,*_snake_case : str ,**_snake_case : Optional[int] ) -> Optional[Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase ( cls : List[Any] ,*_snake_case : int ,**_snake_case : Tuple ) -> List[str]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase ( cls : Union[str, Any] ,*_snake_case : Optional[Any] ,**_snake_case : Tuple ) -> int: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) class __A ( metaclass=A_ ): '''simple docstring''' lowerCAmelCase : List[str] = ["flax", "transformers"] def __init__( self : Optional[Any] ,*_snake_case : List[str] ,**_snake_case : List[Any] ) -> Optional[Any]: """simple docstring""" requires_backends(self ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase ( cls : Optional[Any] ,*_snake_case : int ,**_snake_case : Optional[int] ) -> List[str]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] ) @classmethod def UpperCAmelCase ( cls : Tuple ,*_snake_case : Any ,**_snake_case : Dict ) -> List[str]: """simple docstring""" requires_backends(cls ,['''flax''', '''transformers'''] )
122
1
"""simple docstring""" import inspect from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel, VQModel from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class __a ( _lowerCAmelCase ): def __init__( self : List[Any] , UpperCAmelCase_ : VQModel , UpperCAmelCase_ : UNetaDModel , UpperCAmelCase_ : DDIMScheduler )-> str: """simple docstring""" super().__init__() self.register_modules(vqvae=UpperCAmelCase_ , unet=UpperCAmelCase_ , scheduler=UpperCAmelCase_ ) @torch.no_grad() def __call__( self : Optional[int] , UpperCAmelCase_ : int = 1 , UpperCAmelCase_ : Optional[Union[torch.Generator, List[torch.Generator]]] = None , UpperCAmelCase_ : float = 0.0 , UpperCAmelCase_ : int = 50 , UpperCAmelCase_ : Optional[str] = "pil" , UpperCAmelCase_ : bool = True , **UpperCAmelCase_ : List[str] , )-> Union[Tuple, ImagePipelineOutput]: """simple docstring""" UpperCamelCase = randn_tensor( (batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size) , generator=UpperCAmelCase_ , ) UpperCamelCase = latents.to(self.device ) # scale the initial noise by the standard deviation required by the scheduler UpperCamelCase = latents * self.scheduler.init_noise_sigma self.scheduler.set_timesteps(UpperCAmelCase_ ) # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature UpperCamelCase = "eta" in set(inspect.signature(self.scheduler.step ).parameters.keys() ) UpperCamelCase = {} if accepts_eta: UpperCamelCase = eta for t in self.progress_bar(self.scheduler.timesteps ): UpperCamelCase = self.scheduler.scale_model_input(UpperCAmelCase_ , UpperCAmelCase_ ) # predict the noise residual UpperCamelCase = self.unet(UpperCAmelCase_ , UpperCAmelCase_ ).sample # compute the previous noisy sample x_t -> x_t-1 UpperCamelCase = self.scheduler.step(UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , **UpperCAmelCase_ ).prev_sample # decode the image latents with the VAE UpperCamelCase = self.vqvae.decode(UpperCAmelCase_ ).sample UpperCamelCase = (image / 2 + 0.5).clamp(0 , 1 ) UpperCamelCase = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": UpperCamelCase = self.numpy_to_pil(UpperCAmelCase_ ) if not return_dict: return (image,) return ImagePipelineOutput(images=UpperCAmelCase_ )
554
"""simple docstring""" SCREAMING_SNAKE_CASE = {} def lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ )-> int: """simple docstring""" # if we are absent twice, or late 3 consecutive days, # no further prize strings are possible if late == 3 or absent == 2: return 0 # if we have no days left, and have not failed any other rules, # we have a prize string if days == 0: return 1 # No easy solution, so now we need to do the recursive calculation # First, check if the combination is already in the cache, and # if yes, return the stored value from there since we already # know the number of possible prize strings from this point on UpperCamelCase = (days, absent, late) if key in cache: return cache[key] # now we calculate the three possible ways that can unfold from # this point on, depending on our attendance today # 1) if we are late (but not absent), the "absent" counter stays as # it is, but the "late" counter increases by one UpperCamelCase = _calculate(days - 1 , UpperCAmelCase_ , late + 1 ) # 2) if we are absent, the "absent" counter increases by 1, and the # "late" counter resets to 0 UpperCamelCase = _calculate(days - 1 , absent + 1 , 0 ) # 3) if we are on time, this resets the "late" counter and keeps the # absent counter UpperCamelCase = _calculate(days - 1 , UpperCAmelCase_ , 0 ) UpperCamelCase = state_late + state_absent + state_ontime UpperCamelCase = prizestrings return prizestrings def lowerCamelCase__ ( UpperCAmelCase_ = 30 )-> int: """simple docstring""" return _calculate(UpperCAmelCase_ , absent=0 , late=0 ) if __name__ == "__main__": print(solution())
554
1
import logging import os import sys import warnings from dataclasses import dataclass, field from random import randint from typing import Optional import datasets import evaluate import numpy as np from datasets import DatasetDict, load_dataset import transformers from transformers import ( AutoConfig, AutoFeatureExtractor, AutoModelForAudioClassification, HfArgumentParser, Trainer, TrainingArguments, set_seed, ) from transformers.trainer_utils import get_last_checkpoint from transformers.utils import check_min_version, send_example_telemetry from transformers.utils.versions import require_version lowerCamelCase__ = logging.getLogger(__name__) # Will error if the minimal version of Transformers is not installed. Remove at your own risks. check_min_version("4.31.0") require_version("datasets>=1.14.0", "To fix: pip install -r examples/pytorch/audio-classification/requirements.txt") def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1_6_0_0_0 ) -> int: """simple docstring""" _UpperCamelCase = int(round(sample_rate * max_length ) ) if len(lowerCAmelCase ) <= sample_length: return wav _UpperCamelCase = randint(0 , len(lowerCAmelCase ) - sample_length - 1 ) return wav[random_offset : random_offset + sample_length] @dataclass class lowerCAmelCase__ : UpperCamelCase_ : Optional[str] = field(default=__lowercase , metadata={"help": "Name of a dataset from the datasets package"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "The configuration name of the dataset to use (via the datasets library)."} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "A file containing the training audio paths and labels."} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "A file containing the validation audio paths and labels."} ) UpperCamelCase_ : str = field( default="train" , metadata={ "help": "The name of the training data set split to use (via the datasets library). Defaults to 'train'" } , ) UpperCamelCase_ : str = field( default="validation" , metadata={ "help": ( "The name of the training data set split to use (via the datasets library). Defaults to 'validation'" ) } , ) UpperCamelCase_ : str = field( default="audio" , metadata={"help": "The name of the dataset column containing the audio data. Defaults to 'audio'"} , ) UpperCamelCase_ : str = field( default="label" , metadata={"help": "The name of the dataset column containing the labels. Defaults to 'label'"} ) UpperCamelCase_ : Optional[int] = field( default=__lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of training examples to this " "value if set." ) } , ) UpperCamelCase_ : Optional[int] = field( default=__lowercase , metadata={ "help": ( "For debugging purposes or quicker training, truncate the number of evaluation examples to this " "value if set." ) } , ) UpperCamelCase_ : float = field( default=20 , metadata={"help": "Audio clips will be randomly cut to this length during training if the value is set."} , ) @dataclass class lowerCAmelCase__ : UpperCamelCase_ : str = field( default="facebook/wav2vec2-base" , metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"} , ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Pretrained config name or path if not the same as model_name"} ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Where do you want to store the pretrained models downloaded from the Hub"} ) UpperCamelCase_ : str = field( default="main" , metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."} , ) UpperCamelCase_ : Optional[str] = field( default=__lowercase , metadata={"help": "Name or path of preprocessor config."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "Whether to freeze the feature encoder layers of the model."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "Whether to generate an attention mask in the feature extractor."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={ "help": ( "Will use the token generated when running `huggingface-cli login` (necessary to use this script " "with private models)." ) } , ) UpperCamelCase_ : Optional[bool] = field( default=__lowercase , metadata={"help": "Whether to freeze the feature extractor layers of the model."} ) UpperCamelCase_ : bool = field( default=__lowercase , metadata={"help": "Will enable to load a pretrained model whose head dimensions are different."} , ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.freeze_feature_extractor and self.freeze_feature_encoder: warnings.warn( """The argument `--freeze_feature_extractor` is deprecated and """ """will be removed in a future version. Use `--freeze_feature_encoder`""" """instead. Setting `freeze_feature_encoder==True`.""" , a , ) if self.freeze_feature_extractor and not self.freeze_feature_encoder: raise ValueError( """The argument `--freeze_feature_extractor` is deprecated and """ """should not be used in combination with `--freeze_feature_encoder`.""" """Only make use of `--freeze_feature_encoder`.""" ) def __A() -> int: """simple docstring""" _UpperCamelCase = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments) ) if len(sys.argv ) == 2 and sys.argv[1].endswith(""".json""" ): # If we pass only one argument to the script and it's the path to a json file, # let's parse it to get our arguments. _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_json_file(json_file=os.path.abspath(sys.argv[1] ) ) else: _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = parser.parse_args_into_dataclasses() # Sending telemetry. Tracking the example usage helps us better allocate resources to maintain them. The # information sent is the one passed as arguments along with your Python/PyTorch versions. send_example_telemetry("""run_audio_classification""" , lowerCAmelCase , lowerCAmelCase ) # Setup logging logging.basicConfig( format="""%(asctime)s - %(levelname)s - %(name)s - %(message)s""" , datefmt="""%m/%d/%Y %H:%M:%S""" , handlers=[logging.StreamHandler(sys.stdout )] , ) if training_args.should_log: # The default of training_args.log_level is passive, so we set log level at info here to have that default. transformers.utils.logging.set_verbosity_info() _UpperCamelCase = training_args.get_process_log_level() logger.setLevel(lowerCAmelCase ) transformers.utils.logging.set_verbosity(lowerCAmelCase ) transformers.utils.logging.enable_default_handler() transformers.utils.logging.enable_explicit_format() # Log on each process the small summary: logger.warning( F'Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu} ' + F'distributed training: {bool(training_args.local_rank != -1 )}, 16-bits training: {training_args.fpaa}' ) logger.info(F'Training/evaluation parameters {training_args}' ) # Set seed before initializing model. set_seed(training_args.seed ) # Detecting last checkpoint. _UpperCamelCase = None if os.path.isdir(training_args.output_dir ) and training_args.do_train and not training_args.overwrite_output_dir: _UpperCamelCase = get_last_checkpoint(training_args.output_dir ) if last_checkpoint is None and len(os.listdir(training_args.output_dir ) ) > 0: raise ValueError( F'Output directory ({training_args.output_dir}) already exists and is not empty. ' """Use --overwrite_output_dir to train from scratch.""" ) elif last_checkpoint is not None and training_args.resume_from_checkpoint is None: logger.info( F'Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change ' """the `--output_dir` or add `--overwrite_output_dir` to train from scratch.""" ) # Initialize our dataset and prepare it for the audio classification task. _UpperCamelCase = DatasetDict() _UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.train_split_name , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase = load_dataset( data_args.dataset_name , data_args.dataset_config_name , split=data_args.eval_split_name , use_auth_token=True if model_args.use_auth_token else None , ) if data_args.audio_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--audio_column_name {data_args.audio_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--audio_column_name` to the correct audio column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) if data_args.label_column_name not in raw_datasets["train"].column_names: raise ValueError( F'--label_column_name {data_args.label_column_name} not found in dataset \'{data_args.dataset_name}\'. ' """Make sure to set `--label_column_name` to the correct text column - one of """ F'{", ".join(raw_datasets["train"].column_names )}.' ) # Setting `return_attention_mask=True` is the way to get a correctly masked mean-pooling over # transformer outputs in the classifier, but it doesn't always lead to better accuracy _UpperCamelCase = AutoFeatureExtractor.from_pretrained( model_args.feature_extractor_name or model_args.model_name_or_path , return_attention_mask=model_args.attention_mask , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) # `datasets` takes care of automatically loading and resampling the audio, # so we just need to set the correct target sampling rate. _UpperCamelCase = raw_datasets.cast_column( data_args.audio_column_name , datasets.features.Audio(sampling_rate=feature_extractor.sampling_rate ) ) _UpperCamelCase = feature_extractor.model_input_names[0] def train_transforms(lowerCAmelCase ): _UpperCamelCase = [] for audio in batch[data_args.audio_column_name]: _UpperCamelCase = random_subsample( audio["""array"""] , max_length=data_args.max_length_seconds , sample_rate=feature_extractor.sampling_rate ) subsampled_wavs.append(lowerCAmelCase ) _UpperCamelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) _UpperCamelCase = {model_input_name: inputs.get(lowerCAmelCase )} _UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch def val_transforms(lowerCAmelCase ): _UpperCamelCase = [audio["""array"""] for audio in batch[data_args.audio_column_name]] _UpperCamelCase = feature_extractor(lowerCAmelCase , sampling_rate=feature_extractor.sampling_rate ) _UpperCamelCase = {model_input_name: inputs.get(lowerCAmelCase )} _UpperCamelCase = list(batch[data_args.label_column_name] ) return output_batch # Prepare label mappings. # We'll include these in the model's config to get human readable labels in the Inference API. _UpperCamelCase = raw_datasets["""train"""].features[data_args.label_column_name].names _UpperCamelCase , _UpperCamelCase = {}, {} for i, label in enumerate(lowerCAmelCase ): _UpperCamelCase = str(lowerCAmelCase ) _UpperCamelCase = label # Load the accuracy metric from the datasets package _UpperCamelCase = evaluate.load("""accuracy""" ) # Define our compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with # `predictions` and `label_ids` fields) and has to return a dictionary string to float. def compute_metrics(lowerCAmelCase ): _UpperCamelCase = np.argmax(eval_pred.predictions , axis=1 ) return metric.compute(predictions=lowerCAmelCase , references=eval_pred.label_ids ) _UpperCamelCase = AutoConfig.from_pretrained( model_args.config_name or model_args.model_name_or_path , num_labels=len(lowerCAmelCase ) , labelaid=lowerCAmelCase , idalabel=lowerCAmelCase , finetuning_task="""audio-classification""" , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ) _UpperCamelCase = AutoModelForAudioClassification.from_pretrained( model_args.model_name_or_path , from_tf=bool(""".ckpt""" in model_args.model_name_or_path ) , config=lowerCAmelCase , cache_dir=model_args.cache_dir , revision=model_args.model_revision , use_auth_token=True if model_args.use_auth_token else None , ignore_mismatched_sizes=model_args.ignore_mismatched_sizes , ) # freeze the convolutional waveform encoder if model_args.freeze_feature_encoder: model.freeze_feature_encoder() if training_args.do_train: if data_args.max_train_samples is not None: _UpperCamelCase = ( raw_datasets["""train"""].shuffle(seed=training_args.seed ).select(range(data_args.max_train_samples ) ) ) # Set the training transforms raw_datasets["train"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) if training_args.do_eval: if data_args.max_eval_samples is not None: _UpperCamelCase = ( raw_datasets["""eval"""].shuffle(seed=training_args.seed ).select(range(data_args.max_eval_samples ) ) ) # Set the validation transforms raw_datasets["eval"].set_transform(lowerCAmelCase , output_all_columns=lowerCAmelCase ) # Initialize our trainer _UpperCamelCase = Trainer( model=lowerCAmelCase , args=lowerCAmelCase , train_dataset=raw_datasets["""train"""] if training_args.do_train else None , eval_dataset=raw_datasets["""eval"""] if training_args.do_eval else None , compute_metrics=lowerCAmelCase , tokenizer=lowerCAmelCase , ) # Training if training_args.do_train: _UpperCamelCase = None if training_args.resume_from_checkpoint is not None: _UpperCamelCase = training_args.resume_from_checkpoint elif last_checkpoint is not None: _UpperCamelCase = last_checkpoint _UpperCamelCase = trainer.train(resume_from_checkpoint=lowerCAmelCase ) trainer.save_model() trainer.log_metrics("""train""" , train_result.metrics ) trainer.save_metrics("""train""" , train_result.metrics ) trainer.save_state() # Evaluation if training_args.do_eval: _UpperCamelCase = trainer.evaluate() trainer.log_metrics("""eval""" , lowerCAmelCase ) trainer.save_metrics("""eval""" , lowerCAmelCase ) # Write model card and (optionally) push to hub _UpperCamelCase = { """finetuned_from""": model_args.model_name_or_path, """tasks""": """audio-classification""", """dataset""": data_args.dataset_name, """tags""": ["""audio-classification"""], } if training_args.push_to_hub: trainer.push_to_hub(**lowerCAmelCase ) else: trainer.create_model_card(**lowerCAmelCase ) if __name__ == "__main__": main()
202
import argparse import torch from transformers import YosoConfig, YosoForMaskedLM def __A(lowerCAmelCase ) -> List[str]: """simple docstring""" if "model" in orig_key: _UpperCamelCase = orig_key.replace("""model.""" , """""" ) if "norm1" in orig_key: _UpperCamelCase = orig_key.replace("""norm1""" , """attention.output.LayerNorm""" ) if "norm2" in orig_key: _UpperCamelCase = orig_key.replace("""norm2""" , """output.LayerNorm""" ) if "norm" in orig_key: _UpperCamelCase = orig_key.replace("""norm""" , """LayerNorm""" ) if "transformer" in orig_key: _UpperCamelCase = orig_key.split(""".""" )[0].split("""_""" )[-1] _UpperCamelCase = orig_key.replace(F'transformer_{layer_num}' , F'encoder.layer.{layer_num}' ) if "mha.attn" in orig_key: _UpperCamelCase = orig_key.replace("""mha.attn""" , """attention.self""" ) if "mha" in orig_key: _UpperCamelCase = orig_key.replace("""mha""" , """attention""" ) if "W_q" in orig_key: _UpperCamelCase = orig_key.replace("""W_q""" , """self.query""" ) if "W_k" in orig_key: _UpperCamelCase = orig_key.replace("""W_k""" , """self.key""" ) if "W_v" in orig_key: _UpperCamelCase = orig_key.replace("""W_v""" , """self.value""" ) if "ff1" in orig_key: _UpperCamelCase = orig_key.replace("""ff1""" , """intermediate.dense""" ) if "ff2" in orig_key: _UpperCamelCase = orig_key.replace("""ff2""" , """output.dense""" ) if "ff" in orig_key: _UpperCamelCase = orig_key.replace("""ff""" , """output.dense""" ) if "mlm_class" in orig_key: _UpperCamelCase = orig_key.replace("""mlm.mlm_class""" , """cls.predictions.decoder""" ) if "mlm" in orig_key: _UpperCamelCase = orig_key.replace("""mlm""" , """cls.predictions.transform""" ) if "cls" not in orig_key: _UpperCamelCase = """yoso.""" + orig_key return orig_key def __A(lowerCAmelCase , lowerCAmelCase ) -> List[str]: """simple docstring""" for key in orig_state_dict.copy().keys(): _UpperCamelCase = orig_state_dict.pop(lowerCAmelCase ) if ("pooler" in key) or ("sen_class" in key): continue else: _UpperCamelCase = val _UpperCamelCase = orig_state_dict["""cls.predictions.decoder.bias"""] _UpperCamelCase = torch.arange(lowerCAmelCase ).expand((1, -1) ) + 2 return orig_state_dict def __A(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase ) -> Optional[int]: """simple docstring""" _UpperCamelCase = torch.load(lowerCAmelCase , map_location="""cpu""" )["""model_state_dict"""] _UpperCamelCase = YosoConfig.from_json_file(lowerCAmelCase ) _UpperCamelCase = YosoForMaskedLM(lowerCAmelCase ) _UpperCamelCase = convert_checkpoint_helper(config.max_position_embeddings , lowerCAmelCase ) print(model.load_state_dict(lowerCAmelCase ) ) model.eval() model.save_pretrained(lowerCAmelCase ) print(F'Checkpoint successfuly converted. Model saved at {pytorch_dump_path}' ) if __name__ == "__main__": lowerCamelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to YOSO pytorch checkpoint." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for YOSO model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCamelCase__ = parser.parse_args() convert_yoso_checkpoint(args.pytorch_model_path, args.config_file, args.pytorch_dump_path)
202
1
"""simple docstring""" import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = "▁" SCREAMING_SNAKE_CASE_ = {"vocab_file": "sentencepiece.bpe.model"} SCREAMING_SNAKE_CASE_ = { "vocab_file": { "xlm-roberta-base": "https://huggingface.co/xlm-roberta-base/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large": "https://huggingface.co/xlm-roberta-large/resolve/main/sentencepiece.bpe.model", "xlm-roberta-large-finetuned-conll02-dutch": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-dutch/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll02-spanish": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll02-spanish/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-english": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-english/resolve/main/sentencepiece.bpe.model" ), "xlm-roberta-large-finetuned-conll03-german": ( "https://huggingface.co/xlm-roberta-large-finetuned-conll03-german/resolve/main/sentencepiece.bpe.model" ), } } SCREAMING_SNAKE_CASE_ = { "xlm-roberta-base": 512, "xlm-roberta-large": 512, "xlm-roberta-large-finetuned-conll02-dutch": 512, "xlm-roberta-large-finetuned-conll02-spanish": 512, "xlm-roberta-large-finetuned-conll03-english": 512, "xlm-roberta-large-finetuned-conll03-german": 512, } class lowerCAmelCase_ ( _UpperCAmelCase ): '''simple docstring''' _snake_case = VOCAB_FILES_NAMES _snake_case = PRETRAINED_VOCAB_FILES_MAP _snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES _snake_case = ['''input_ids''', '''attention_mask'''] def __init__( self , snake_case_ , snake_case_="<s>" , snake_case_="</s>" , snake_case_="</s>" , snake_case_="<s>" , snake_case_="<unk>" , snake_case_="<pad>" , snake_case_="<mask>" , snake_case_ = None , **snake_case_ , ) -> None: # Mask token behave like a normal word, i.e. include the space before it __lowerCAmelCase = AddedToken(A_ , lstrip=A_ , rstrip=A_ ) if isinstance(A_ , A_ ) else mask_token __lowerCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=A_ , eos_token=A_ , unk_token=A_ , sep_token=A_ , cls_token=A_ , pad_token=A_ , mask_token=A_ , sp_model_kwargs=self.sp_model_kwargs , **A_ , ) __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(A_ ) ) __lowerCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token __lowerCAmelCase = {"""<s>""": 0, """<pad>""": 1, """</s>""": 2, """<unk>""": 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab __lowerCAmelCase = 1 __lowerCAmelCase = len(self.sp_model ) + self.fairseq_offset __lowerCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} def __getstate__( self ) -> Union[str, Any]: __lowerCAmelCase = self.__dict__.copy() __lowerCAmelCase = None __lowerCAmelCase = self.sp_model.serialized_model_proto() return state def __setstate__( self , snake_case_ ) -> str: __lowerCAmelCase = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): __lowerCAmelCase = {} __lowerCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.LoadFromSerializedProto(self.sp_model_proto ) def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] __lowerCAmelCase = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self , snake_case_ , snake_case_ = None , snake_case_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) if token_ids_a is None: return [1] + ([0] * len(A_ )) + [1] return [1] + ([0] * len(A_ )) + [1, 1] + ([0] * len(A_ )) + [1] def A__ ( self , snake_case_ , snake_case_ = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] @property def A__ ( self ) -> str: return len(self.sp_model ) + self.fairseq_offset + 1 # Add the <mask> token def A__ ( self ) -> Union[str, Any]: __lowerCAmelCase = {self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def A__ ( self , snake_case_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def A__ ( self , snake_case_ ) -> Union[str, Any]: if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] __lowerCAmelCase = self.sp_model.PieceToId(A_ ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def A__ ( self , snake_case_ ) -> str: if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def A__ ( self , snake_case_ ) -> Any: __lowerCAmelCase = """""".join(A_ ).replace(A_ , """ """ ).strip() return out_string def A__ ( self , snake_case_ , snake_case_ = None ) -> Tuple[str]: if not os.path.isdir(A_ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return __lowerCAmelCase = os.path.join( A_ , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A_ ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A_ ) elif not os.path.isfile(self.vocab_file ): with open(A_ , """wb""" ) as fi: __lowerCAmelCase = self.sp_model.serialized_model_proto() fi.write(A_ ) return (out_vocab_file,)
465
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase : Union[str, Any] = {"configuration_ibert": ["IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP", "IBertConfig", "IBertOnnxConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase : Any = [ "IBERT_PRETRAINED_MODEL_ARCHIVE_LIST", "IBertForMaskedLM", "IBertForMultipleChoice", "IBertForQuestionAnswering", "IBertForSequenceClassification", "IBertForTokenClassification", "IBertModel", "IBertPreTrainedModel", ] if TYPE_CHECKING: from .configuration_ibert import IBERT_PRETRAINED_CONFIG_ARCHIVE_MAP, IBertConfig, IBertOnnxConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_ibert import ( IBERT_PRETRAINED_MODEL_ARCHIVE_LIST, IBertForMaskedLM, IBertForMultipleChoice, IBertForQuestionAnswering, IBertForSequenceClassification, IBertForTokenClassification, IBertModel, IBertPreTrainedModel, ) else: import sys __lowercase : List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
564
0
from __future__ import annotations from sys import maxsize from typing import Generic, TypeVar A_ = TypeVar("T") def __UpperCAmelCase ( UpperCAmelCase )-> List[Any]: """simple docstring""" return (position - 1) // 2 def __UpperCAmelCase ( UpperCAmelCase )-> List[str]: """simple docstring""" return (2 * position) + 1 def __UpperCAmelCase ( UpperCAmelCase )-> Dict: """simple docstring""" return (2 * position) + 2 class __lowercase ( Generic[T] ): def __init__( self : int ) -> None: '''simple docstring''' lowercase = [] lowercase = {} lowercase = 0 def __len__( self : Optional[int] ) -> int: '''simple docstring''' return self.elements def __repr__( self : str ) -> str: '''simple docstring''' return str(self.heap ) def __a ( self : Optional[Any] ) -> bool: '''simple docstring''' return self.elements == 0 def __a ( self : List[str] , __lowerCamelCase : T , __lowerCamelCase : int ) -> None: '''simple docstring''' self.heap.append((elem, weight) ) lowercase = self.elements self.elements += 1 self._bubble_up(_UpperCAmelCase ) def __a ( self : int ) -> T: '''simple docstring''' if self.elements > 1: self._swap_nodes(0 , self.elements - 1 ) lowercase ,lowercase = self.heap.pop() del self.position_map[elem] self.elements -= 1 if self.elements > 0: lowercase ,lowercase = self.heap[0] self._bubble_down(_UpperCAmelCase ) return elem def __a ( self : Dict , __lowerCamelCase : T , __lowerCamelCase : int ) -> None: '''simple docstring''' lowercase = self.position_map[elem] lowercase = (elem, weight) if position > 0: lowercase = get_parent_position(_UpperCAmelCase ) lowercase ,lowercase = self.heap[parent_position] if parent_weight > weight: self._bubble_up(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) else: self._bubble_down(_UpperCAmelCase ) def __a ( self : Union[str, Any] , __lowerCamelCase : T ) -> None: '''simple docstring''' lowercase = self.position_map[elem] if curr_pos == 0: return None lowercase = get_parent_position(_UpperCAmelCase ) lowercase ,lowercase = self.heap[curr_pos] lowercase ,lowercase = self.heap[parent_position] if parent_weight > weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_up(_UpperCAmelCase ) return None def __a ( self : Any , __lowerCamelCase : T ) -> None: '''simple docstring''' lowercase = self.position_map[elem] lowercase ,lowercase = self.heap[curr_pos] lowercase = get_child_left_position(_UpperCAmelCase ) lowercase = get_child_right_position(_UpperCAmelCase ) if child_left_position < self.elements and child_right_position < self.elements: lowercase ,lowercase = self.heap[child_left_position] lowercase ,lowercase = self.heap[child_right_position] if child_right_weight < child_left_weight and child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) if child_left_position < self.elements: lowercase ,lowercase = self.heap[child_left_position] if child_left_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) else: return None if child_right_position < self.elements: lowercase ,lowercase = self.heap[child_right_position] if child_right_weight < weight: self._swap_nodes(_UpperCAmelCase , _UpperCAmelCase ) return self._bubble_down(_UpperCAmelCase ) return None def __a ( self : Tuple , __lowerCamelCase : int , __lowerCamelCase : int ) -> None: '''simple docstring''' lowercase = self.heap[nodea_pos][0] lowercase = self.heap[nodea_pos][0] lowercase ,lowercase = ( self.heap[nodea_pos], self.heap[nodea_pos], ) lowercase = nodea_pos lowercase = nodea_pos class __lowercase ( Generic[T] ): def __init__( self : Any ) -> None: '''simple docstring''' lowercase = {} lowercase = 0 def __repr__( self : List[str] ) -> str: '''simple docstring''' return str(self.connections ) def __len__( self : Optional[Any] ) -> int: '''simple docstring''' return self.nodes def __a ( self : int , __lowerCamelCase : T ) -> None: '''simple docstring''' if node not in self.connections: lowercase = {} self.nodes += 1 def __a ( self : int , __lowerCamelCase : T , __lowerCamelCase : T , __lowerCamelCase : int ) -> None: '''simple docstring''' self.add_node(_UpperCAmelCase ) self.add_node(_UpperCAmelCase ) lowercase = weight lowercase = weight def __UpperCAmelCase ( UpperCAmelCase, )-> Union[str, Any]: """simple docstring""" lowercase = {node: maxsize for node in graph.connections} lowercase = {node: None for node in graph.connections} lowercase = MinPriorityQueue() for node, weight in dist.items(): priority_queue.push(lowerCAmelCase__, lowerCAmelCase__ ) if priority_queue.is_empty(): return dist, parent # initialization lowercase = priority_queue.extract_min() lowercase = 0 for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__, dist[neighbour] ) lowercase = node # running prim's algorithm while not priority_queue.is_empty(): lowercase = priority_queue.extract_min() for neighbour in graph.connections[node]: if dist[neighbour] > dist[node] + graph.connections[node][neighbour]: lowercase = dist[node] + graph.connections[node][neighbour] priority_queue.update_key(lowerCAmelCase__, dist[neighbour] ) lowercase = node return dist, parent
714
from __future__ import annotations from fractions import Fraction from math import gcd, sqrt def __UpperCAmelCase ( UpperCAmelCase )-> bool: """simple docstring""" lowercase = int(number**0.5 ) return number == sq * sq def __UpperCAmelCase ( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase )-> tuple[int, int]: """simple docstring""" lowercase = x_num * y_den * z_den + y_num * x_den * z_den + z_num * x_den * y_den lowercase = x_den * y_den * z_den lowercase = gcd(UpperCAmelCase, UpperCAmelCase ) top //= hcf bottom //= hcf return top, bottom def __UpperCAmelCase ( UpperCAmelCase = 35 )-> int: """simple docstring""" lowercase = set() lowercase = 42 lowercase = Fraction(0 ) lowercase = 42 for x_num in range(1, order + 1 ): for x_den in range(x_num + 1, order + 1 ): for y_num in range(1, order + 1 ): for y_den in range(y_num + 1, order + 1 ): # n=1 lowercase = x_num * y_den + x_den * y_num lowercase = x_den * y_den lowercase = gcd(UpperCAmelCase, UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) unique_s.add(UpperCAmelCase ) # n=2 lowercase = ( x_num * x_num * y_den * y_den + x_den * x_den * y_num * y_num ) lowercase = x_den * x_den * y_den * y_den if is_sq(UpperCAmelCase ) and is_sq(UpperCAmelCase ): lowercase = int(sqrt(UpperCAmelCase ) ) lowercase = int(sqrt(UpperCAmelCase ) ) lowercase = gcd(UpperCAmelCase, UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) unique_s.add(UpperCAmelCase ) # n=-1 lowercase = x_num * y_num lowercase = x_den * y_num + x_num * y_den lowercase = gcd(UpperCAmelCase, UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) unique_s.add(UpperCAmelCase ) # n=2 lowercase = x_num * x_num * y_num * y_num lowercase = ( x_den * x_den * y_num * y_num + x_num * x_num * y_den * y_den ) if is_sq(UpperCAmelCase ) and is_sq(UpperCAmelCase ): lowercase = int(sqrt(UpperCAmelCase ) ) lowercase = int(sqrt(UpperCAmelCase ) ) lowercase = gcd(UpperCAmelCase, UpperCAmelCase ) z_num //= hcf z_den //= hcf if 0 < z_num < z_den <= order: lowercase = add_three( UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase, UpperCAmelCase ) unique_s.add(UpperCAmelCase ) for num, den in unique_s: total += Fraction(UpperCAmelCase, UpperCAmelCase ) return total.denominator + total.numerator if __name__ == "__main__": print(F"{solution() = }")
479
0
import unittest from transformers import CamembertTokenizer, CamembertTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import is_torch_available from ...test_tokenization_common import TokenizerTesterMixin lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece.model") lowerCamelCase__ = get_tests_dir("fixtures/test_sentencepiece_bpe.model") lowerCamelCase__ = "pt" if is_torch_available() else "tf" @require_sentencepiece @require_tokenizers class lowerCAmelCase__ ( __lowercase , unittest.TestCase ): UpperCamelCase_ : Optional[int] = CamembertTokenizer UpperCamelCase_ : int = CamembertTokenizerFast UpperCamelCase_ : Any = True UpperCamelCase_ : Optional[Any] = True def A_ ( self ) -> List[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing _UpperCamelCase = CamembertTokenizer(a ) tokenizer.save_pretrained(self.tmpdirname ) def A_ ( self ) -> Union[str, Any]: '''simple docstring''' _UpperCamelCase = """<pad>""" _UpperCamelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(a ) , a ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(a ) , a ) def A_ ( self ) -> List[str]: '''simple docstring''' _UpperCamelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>NOTUSED""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(a ) , 10_04 ) def A_ ( self ) -> List[Any]: '''simple docstring''' self.assertEqual(self.get_tokenizer().vocab_size , 10_05 ) def A_ ( self ) -> Dict: '''simple docstring''' _UpperCamelCase = CamembertTokenizer(a ) tokenizer.save_pretrained(self.tmpdirname ) _UpperCamelCase = CamembertTokenizerFast.from_pretrained(self.tmpdirname ) _UpperCamelCase = """I was born in 92000, and this is falsé.""" _UpperCamelCase = tokenizer.encode(a ) _UpperCamelCase = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) _UpperCamelCase = tokenizer.encode(a , add_special_tokens=a ) _UpperCamelCase = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) # <unk> tokens are not the same for `rust` than for `slow`. # Because spm gives back raw token instead of `unk` in EncodeAsPieces # tokens = tokenizer.tokenize(sequence) _UpperCamelCase = tokenizer.convert_ids_to_tokens(a ) _UpperCamelCase = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) def A_ ( self ) -> Optional[Any]: '''simple docstring''' if not self.test_rust_tokenizer: return _UpperCamelCase = self.get_tokenizer() _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = """I was born in 92000, and this is falsé.""" _UpperCamelCase = tokenizer.tokenize(a ) _UpperCamelCase = rust_tokenizer.tokenize(a ) self.assertListEqual(a , a ) _UpperCamelCase = tokenizer.encode(a , add_special_tokens=a ) _UpperCamelCase = rust_tokenizer.encode(a , add_special_tokens=a ) self.assertListEqual(a , a ) _UpperCamelCase = self.get_rust_tokenizer() _UpperCamelCase = tokenizer.encode(a ) _UpperCamelCase = rust_tokenizer.encode(a ) self.assertListEqual(a , a ) @slow def A_ ( self ) -> Optional[Any]: '''simple docstring''' _UpperCamelCase = {"""input_ids""": [[5, 54, 71_96, 2_97, 30, 23, 7_76, 18, 11, 32_15, 37_05, 82_52, 22, 31_64, 11_81, 21_16, 29, 16, 8_13, 25, 7_91, 33_14, 20, 34_46, 38, 2_75_75, 1_20, 6, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [5, 4_68, 17, 11, 90_88, 20, 15_17, 8, 2_28_04, 1_88_18, 10, 38, 6_29, 6_07, 6_07, 1_42, 19, 71_96, 8_67, 56, 1_03_26, 24, 22_67, 20, 4_16, 50_72, 1_56_12, 2_33, 7_34, 7, 23_99, 27, 16, 30_15, 16_49, 7, 24, 20, 43_38, 23_99, 27, 13, 34_00, 14, 13, 61_89, 8, 9_30, 9, 6]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on # camembert is a french model. So we also use french texts. _UpperCamelCase = [ """Le transformeur est un modèle d'apprentissage profond introduit en 2017, """ """utilisé principalement dans le domaine du traitement automatique des langues (TAL).""", """À l'instar des réseaux de neurones récurrents (RNN), les transformeurs sont conçus """ """pour gérer des données séquentielles, telles que le langage naturel, pour des tâches """ """telles que la traduction et la synthèse de texte.""", ] self.tokenizer_integration_test_util( expected_encoding=a , model_name="""camembert-base""" , revision="""3a0641d9a1aeb7e848a74299e7e4c4bca216b4cf""" , sequences=a , )
612
from typing import Dict, List, Optional, Union import numpy as np from ...image_processing_utils import BaseImageProcessor, BatchFeature, get_size_dict from ...image_transforms import ( center_crop, get_resize_output_image_size, normalize, rescale, resize, to_channel_dimension_format, ) from ...image_utils import ( IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD, ChannelDimension, ImageInput, PILImageResampling, make_list_of_images, to_numpy_array, valid_images, ) from ...utils import TensorType, is_vision_available, logging if is_vision_available(): import PIL lowerCamelCase__ = logging.get_logger(__name__) class lowerCAmelCase__ ( __lowercase ): UpperCamelCase_ : Dict = ["pixel_values"] def __init__( self , a = True , a = None , a = None , a = PILImageResampling.BILINEAR , a = True , a = 1 / 2_55 , a = True , a = None , a = None , **a , ) -> None: '''simple docstring''' super().__init__(**a ) _UpperCamelCase = size if size is not None else {"""shortest_edge""": 3_84} _UpperCamelCase = get_size_dict(a , default_to_square=a ) _UpperCamelCase = do_resize _UpperCamelCase = size # Default value set here for backwards compatibility where the value in config is None _UpperCamelCase = crop_pct if crop_pct is not None else 2_24 / 2_56 _UpperCamelCase = resample _UpperCamelCase = do_rescale _UpperCamelCase = rescale_factor _UpperCamelCase = do_normalize _UpperCamelCase = image_mean if image_mean is not None else IMAGENET_STANDARD_MEAN _UpperCamelCase = image_std if image_std is not None else IMAGENET_STANDARD_STD def A_ ( self , a , a , a , a = PILImageResampling.BICUBIC , a = None , **a , ) -> np.ndarray: '''simple docstring''' _UpperCamelCase = get_size_dict(a , default_to_square=a ) if "shortest_edge" not in size: raise ValueError(F'Size dictionary must contain \'shortest_edge\' key. Got {size.keys()}' ) _UpperCamelCase = size["""shortest_edge"""] if shortest_edge < 3_84: # maintain same ratio, resizing shortest edge to shortest_edge/crop_pct _UpperCamelCase = int(shortest_edge / crop_pct ) _UpperCamelCase = get_resize_output_image_size(a , size=a , default_to_square=a ) _UpperCamelCase = resize(image=a , size=a , resample=a , data_format=a , **a ) # then crop to (shortest_edge, shortest_edge) return center_crop(image=a , size=(shortest_edge, shortest_edge) , data_format=a , **a ) else: # warping (no cropping) when evaluated at 384 or larger return resize( a , size=(shortest_edge, shortest_edge) , resample=a , data_format=a , **a ) def A_ ( self , a , a , a = None , **a , ) -> Optional[int]: '''simple docstring''' return rescale(a , scale=a , data_format=a , **a ) def A_ ( self , a , a , a , a = None , **a , ) -> np.ndarray: '''simple docstring''' return normalize(a , mean=a , std=a , data_format=a , **a ) def A_ ( self , a , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = None , a = ChannelDimension.FIRST , **a , ) -> PIL.Image.Image: '''simple docstring''' _UpperCamelCase = do_resize if do_resize is not None else self.do_resize _UpperCamelCase = crop_pct if crop_pct is not None else self.crop_pct _UpperCamelCase = resample if resample is not None else self.resample _UpperCamelCase = do_rescale if do_rescale is not None else self.do_rescale _UpperCamelCase = rescale_factor if rescale_factor is not None else self.rescale_factor _UpperCamelCase = do_normalize if do_normalize is not None else self.do_normalize _UpperCamelCase = image_mean if image_mean is not None else self.image_mean _UpperCamelCase = image_std if image_std is not None else self.image_std _UpperCamelCase = size if size is not None else self.size _UpperCamelCase = get_size_dict(a , default_to_square=a ) _UpperCamelCase = make_list_of_images(a ) if not valid_images(a ): raise ValueError( """Invalid image type. Must be of type PIL.Image.Image, numpy.ndarray, """ """torch.Tensor, tf.Tensor or jax.ndarray.""" ) if do_resize and size is None or resample is None: raise ValueError("""Size and resample must be specified if do_resize is True.""" ) if do_resize and size["shortest_edge"] < 3_84 and crop_pct is None: raise ValueError("""crop_pct must be specified if size < 384.""" ) if do_rescale and rescale_factor is None: raise ValueError("""Rescale factor must be specified if do_rescale is True.""" ) if do_normalize and (image_mean is None or image_std is None): raise ValueError("""Image mean and std must be specified if do_normalize is True.""" ) # All transformations expect numpy arrays. _UpperCamelCase = [to_numpy_array(a ) for image in images] if do_resize: _UpperCamelCase = [self.resize(image=a , size=a , crop_pct=a , resample=a ) for image in images] if do_rescale: _UpperCamelCase = [self.rescale(image=a , scale=a ) for image in images] if do_normalize: _UpperCamelCase = [self.normalize(image=a , mean=a , std=a ) for image in images] _UpperCamelCase = [to_channel_dimension_format(a , a ) for image in images] _UpperCamelCase = {"""pixel_values""": images} return BatchFeature(data=a , tensor_type=a )
612
1
"""simple docstring""" import os from itertools import chain from random import randrange, shuffle import pytest from .sola import PokerHand snake_case_ : List[str] = ( """4S 3H 2C 7S 5H""", """9D 8H 2C 6S 7H""", """2D 6D 9D TH 7D""", """TC 8C 2S JH 6C""", """JH 8S TH AH QH""", """TS KS 5S 9S AC""", """KD 6S 9D TH AD""", """KS 8D 4D 9S 4S""", # pair """8C 4S KH JS 4D""", # pair """QH 8H KD JH 8S""", # pair """KC 4H KS 2H 8D""", # pair """KD 4S KC 3H 8S""", # pair """AH 8S AS KC JH""", # pair """3H 4C 4H 3S 2H""", # 2 pairs """5S 5D 2C KH KH""", # 2 pairs """3C KH 5D 5S KH""", # 2 pairs """AS 3C KH AD KH""", # 2 pairs """7C 7S 3S 7H 5S""", # 3 of a kind """7C 7S KH 2H 7H""", # 3 of a kind """AC KH QH AH AS""", # 3 of a kind """2H 4D 3C AS 5S""", # straight (low ace) """3C 5C 4C 2C 6H""", # straight """6S 8S 7S 5H 9H""", # straight """JS QS 9H TS KH""", # straight """QC KH TS JS AH""", # straight (high ace) """8C 9C 5C 3C TC""", # flush """3S 8S 9S 5S KS""", # flush """4C 5C 9C 8C KC""", # flush """JH 8H AH KH QH""", # flush """3D 2H 3H 2C 2D""", # full house """2H 2C 3S 3H 3D""", # full house """KH KC 3S 3H 3D""", # full house """JC 6H JS JD JH""", # 4 of a kind """JC 7H JS JD JH""", # 4 of a kind """JC KH JS JD JH""", # 4 of a kind """2S AS 4S 5S 3S""", # straight flush (low ace) """2D 6D 3D 4D 5D""", # straight flush """5C 6C 3C 7C 4C""", # straight flush """JH 9H TH KH QH""", # straight flush """JH AH TH KH QH""", # royal flush (high ace straight flush) ) snake_case_ : str = ( ("""2H 3H 4H 5H 6H""", """KS AS TS QS JS""", """Loss"""), ("""2H 3H 4H 5H 6H""", """AS AD AC AH JD""", """Win"""), ("""AS AH 2H AD AC""", """JS JD JC JH 3D""", """Win"""), ("""2S AH 2H AS AC""", """JS JD JC JH AD""", """Loss"""), ("""2S AH 2H AS AC""", """2H 3H 5H 6H 7H""", """Win"""), ("""AS 3S 4S 8S 2S""", """2H 3H 5H 6H 7H""", """Win"""), ("""2H 3H 5H 6H 7H""", """2S 3H 4H 5S 6C""", """Win"""), ("""2S 3H 4H 5S 6C""", """3D 4C 5H 6H 2S""", """Tie"""), ("""2S 3H 4H 5S 6C""", """AH AC 5H 6H AS""", """Win"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H AS""", """Loss"""), ("""2S 2H 4H 5S 4C""", """AH AC 5H 6H 7S""", """Win"""), ("""6S AD 7H 4S AS""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S AH 4H 5S KC""", """AH AC 5H 6H 7S""", """Loss"""), ("""2S 3H 6H 7S 9C""", """7H 3C TH 6H 9S""", """Loss"""), ("""4S 5H 6H TS AC""", """3S 5H 6H TS AC""", """Win"""), ("""2S AH 4H 5S 6C""", """AD 4C 5H 6H 2C""", """Tie"""), ("""AS AH 3H AD AC""", """AS AH 2H AD AC""", """Win"""), ("""AH AC 5H 5C QS""", """AH AC 5H 5C KS""", """Loss"""), ("""AH AC 5H 5C QS""", """KH KC 5H 5C QS""", """Win"""), ("""7C 7S KH 2H 7H""", """3C 3S AH 2H 3H""", """Win"""), ("""3C 3S AH 2H 3H""", """7C 7S KH 2H 7H""", """Loss"""), ("""6H 5H 4H 3H 2H""", """5H 4H 3H 2H AH""", """Win"""), ("""5H 4H 3H 2H AH""", """5H 4H 3H 2H AH""", """Tie"""), ("""5H 4H 3H 2H AH""", """6H 5H 4H 3H 2H""", """Loss"""), ("""AH AD KS KC AC""", """AH KD KH AC KC""", """Win"""), ("""2H 4D 3C AS 5S""", """2H 4D 3C 6S 5S""", """Loss"""), ("""2H 3S 3C 3H 2S""", """3S 3C 2S 2H 2D""", """Win"""), ("""4D 6D 5D 2D JH""", """3S 8S 3H TC KH""", """Loss"""), ("""4S 6C 8S 3S 7S""", """AD KS 2D 7D 7C""", """Loss"""), ("""6S 4C 7H 8C 3H""", """5H JC AH 9D 9C""", """Loss"""), ("""9D 9H JH TC QH""", """3C 2S JS 5C 7H""", """Win"""), ("""2H TC 8S AD 9S""", """4H TS 7H 2C 5C""", """Win"""), ("""9D 3S 2C 7S 7C""", """JC TD 3C TC 9H""", """Loss"""), ) snake_case_ : Union[str, Any] = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", True), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", False), ("""AS 3S 4S 8S 2S""", True), ) snake_case_ : int = ( ("""2H 3H 4H 5H 6H""", True), ("""AS AH 2H AD AC""", False), ("""2H 3H 5H 6H 7H""", False), ("""KS AS TS QS JS""", True), ("""8H 9H QS JS TH""", True), ) snake_case_ : Any = ( ("""2H 4D 3C AS 5S""", True, [5, 4, 3, 2, 1_4]), ("""2H 5D 3C AS 5S""", False, [1_4, 5, 5, 3, 2]), ("""JH QD KC AS TS""", False, [1_4, 1_3, 1_2, 1_1, 1_0]), ("""9D 3S 2C 7S 7C""", False, [9, 7, 7, 3, 2]), ) snake_case_ : Union[str, Any] = ( ("""JH AH TH KH QH""", 0), ("""JH 9H TH KH QH""", 0), ("""JC KH JS JD JH""", 7), ("""KH KC 3S 3H 3D""", 6), ("""8C 9C 5C 3C TC""", 0), ("""JS QS 9H TS KH""", 0), ("""7C 7S KH 2H 7H""", 3), ("""3C KH 5D 5S KH""", 2), ("""QH 8H KD JH 8S""", 1), ("""2D 6D 9D TH 7D""", 0), ) snake_case_ : Optional[Any] = ( ("""JH AH TH KH QH""", 2_3), ("""JH 9H TH KH QH""", 2_2), ("""JC KH JS JD JH""", 2_1), ("""KH KC 3S 3H 3D""", 2_0), ("""8C 9C 5C 3C TC""", 1_9), ("""JS QS 9H TS KH""", 1_8), ("""7C 7S KH 2H 7H""", 1_7), ("""3C KH 5D 5S KH""", 1_6), ("""QH 8H KD JH 8S""", 1_5), ("""2D 6D 9D TH 7D""", 1_4), ) def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : List[Any] = randrange(len(_lowercase ) ), randrange(len(_lowercase ) ) UpperCAmelCase : Dict = ["Loss", "Tie", "Win"][(play >= oppo) + (play > oppo)] UpperCAmelCase : Optional[Any] = SORTED_HANDS[play], SORTED_HANDS[oppo] return hand, other, expected def lowercase_ ( _lowercase : int = 1_00 ): '''simple docstring''' return (generate_random_hand() for _ in range(_lowercase )) @pytest.mark.parametrize("hand, expected" , _lowercase ) def lowercase_ ( _lowercase : List[Any] , _lowercase : List[str] ): '''simple docstring''' assert PokerHand(_lowercase )._is_flush() == expected @pytest.mark.parametrize("hand, expected" , _lowercase ) def lowercase_ ( _lowercase : str , _lowercase : str ): '''simple docstring''' assert PokerHand(_lowercase )._is_straight() == expected @pytest.mark.parametrize("hand, expected, card_values" , _lowercase ) def lowercase_ ( _lowercase : str , _lowercase : int , _lowercase : List[Any] ): '''simple docstring''' UpperCAmelCase : Tuple = PokerHand(_lowercase ) assert player._is_five_high_straight() == expected assert player._card_values == card_values @pytest.mark.parametrize("hand, expected" , _lowercase ) def lowercase_ ( _lowercase : Optional[int] , _lowercase : Any ): '''simple docstring''' assert PokerHand(_lowercase )._is_same_kind() == expected @pytest.mark.parametrize("hand, expected" , _lowercase ) def lowercase_ ( _lowercase : Union[str, Any] , _lowercase : Dict ): '''simple docstring''' assert PokerHand(_lowercase )._hand_type == expected @pytest.mark.parametrize("hand, other, expected" , _lowercase ) def lowercase_ ( _lowercase : Any , _lowercase : List[str] , _lowercase : Dict ): '''simple docstring''' assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected @pytest.mark.parametrize("hand, other, expected" , generate_random_hands() ) def lowercase_ ( _lowercase : str , _lowercase : str , _lowercase : Union[str, Any] ): '''simple docstring''' assert PokerHand(_lowercase ).compare_with(PokerHand(_lowercase ) ) == expected def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : List[Any] = [PokerHand(_lowercase ) for hand in SORTED_HANDS] UpperCAmelCase : Any = poker_hands.copy() shuffle(_lowercase ) UpperCAmelCase : Any = chain(sorted(_lowercase ) ) for index, hand in enumerate(_lowercase ): assert hand == poker_hands[index] def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : Any = [PokerHand("2D AC 3H 4H 5S" ), PokerHand("2S 3H 4H 5S 6C" )] pokerhands.sort(reverse=_lowercase ) assert pokerhands[0].__str__() == "2S 3H 4H 5S 6C" def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : Optional[int] = PokerHand("2C 4S AS 3D 5C" ) UpperCAmelCase : Optional[Any] = True UpperCAmelCase : Optional[Any] = [5, 4, 3, 2, 14] for _ in range(10 ): assert pokerhand._is_five_high_straight() == expected assert pokerhand._card_values == expected_card_values def lowercase_ ( ): '''simple docstring''' UpperCAmelCase : Union[str, Any] = 0 UpperCAmelCase : Optional[Any] = os.path.abspath(os.path.dirname(_lowercase ) ) UpperCAmelCase : List[str] = os.path.join(_lowercase , "poker_hands.txt" ) with open(_lowercase ) as file_hand: for line in file_hand: UpperCAmelCase : str = line[:14].strip() UpperCAmelCase : int = line[15:].strip() UpperCAmelCase : Union[str, Any] = PokerHand(_lowercase ), PokerHand(_lowercase ) UpperCAmelCase : str = player.compare_with(_lowercase ) if output == "Win": answer += 1 assert answer == 3_76
708
"""simple docstring""" def lowercase_ ( _lowercase : str ): '''simple docstring''' if not all(x.isalpha() for x in string ): raise ValueError("String must only contain alphabetic characters." ) UpperCAmelCase : Optional[int] = sorted(string.lower() ) return len(_lowercase ) == len(set(_lowercase ) ) if __name__ == "__main__": snake_case_ : Tuple = input("""Enter a string """).strip() snake_case_ : str = is_isogram(input_str) print(f'''{input_str} is {"an" if isogram else "not an"} isogram.''')
292
0
from __future__ import annotations import math import random from collections.abc import Collection from typing import overload class lowerCamelCase_ : def __init__( self , __lowerCAmelCase = None ): """simple docstring""" if components is None: __magic_name__ :List[Any] = [] __magic_name__ :str = list(__lowerCAmelCase ) def __len__( self ): """simple docstring""" return len(self.__components ) def __str__( self ): """simple docstring""" return "(" + ",".join(map(__lowerCAmelCase , self.__components ) ) + ")" def __add__( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Dict = len(self ) if size == len(__lowerCAmelCase ): __magic_name__ :Dict = [self.__components[i] + other.component(__lowerCAmelCase ) for i in range(__lowerCAmelCase )] return Vector(__lowerCAmelCase ) else: raise Exception('''must have the same size''' ) def __sub__( self , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Union[str, Any] = len(self ) if size == len(__lowerCAmelCase ): __magic_name__ :Tuple = [self.__components[i] - other.component(__lowerCAmelCase ) for i in range(__lowerCAmelCase )] return Vector(__lowerCAmelCase ) else: # error case raise Exception('''must have the same size''' ) @overload def __mul__( self , __lowerCAmelCase ): """simple docstring""" ... @overload def __mul__( self , __lowerCAmelCase ): """simple docstring""" ... def __mul__( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , (float, int) ): __magic_name__ :List[str] = [c * other for c in self.__components] return Vector(__lowerCAmelCase ) elif isinstance(__lowerCAmelCase , __lowerCAmelCase ) and len(self ) == len(__lowerCAmelCase ): __magic_name__ :Optional[int] = len(self ) __magic_name__ :Union[str, Any] = [self.__components[i] * other.component(__lowerCAmelCase ) for i in range(__lowerCAmelCase )] return sum(__lowerCAmelCase ) else: # error case raise Exception('''invalid operand!''' ) def A ( self ): """simple docstring""" return Vector(self.__components ) def A ( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ) and -len(self.__components ) <= i < len(self.__components ): return self.__components[i] else: raise Exception('''index out of range''' ) def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" assert -len(self.__components ) <= pos < len(self.__components ) __magic_name__ :Optional[int] = value def A ( self ): """simple docstring""" if len(self.__components ) == 0: raise Exception('''Vector is empty''' ) __magic_name__ :Dict = [c**2 for c in self.__components] return math.sqrt(sum(__lowerCAmelCase ) ) def A ( self , __lowerCAmelCase , __lowerCAmelCase = False ): """simple docstring""" __magic_name__ :str = self * other __magic_name__ :int = self.euclidean_length() * other.euclidean_length() if deg: return math.degrees(math.acos(num / den ) ) else: return math.acos(num / den ) def __lowercase ( snake_case ): """simple docstring""" assert isinstance(snake_case, snake_case ) return Vector([0] * dimension ) def __lowercase ( snake_case, snake_case ): """simple docstring""" assert isinstance(snake_case, snake_case ) and (isinstance(snake_case, snake_case )) __magic_name__ :List[str] = [0] * dimension __magic_name__ :int = 1 return Vector(snake_case ) def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" assert ( isinstance(snake_case, snake_case ) and isinstance(snake_case, snake_case ) and (isinstance(snake_case, (int, float) )) ) return x * scalar + y def __lowercase ( snake_case, snake_case, snake_case ): """simple docstring""" random.seed(snake_case ) __magic_name__ :Any = [random.randint(snake_case, snake_case ) for _ in range(snake_case )] return Vector(snake_case ) class lowerCamelCase_ : def __init__( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" __magic_name__ :Optional[Any] = matrix __magic_name__ :Union[str, Any] = w __magic_name__ :Union[str, Any] = h def __str__( self ): """simple docstring""" __magic_name__ :List[Any] = '''''' for i in range(self.__height ): ans += "|" for j in range(self.__width ): if j < self.__width - 1: ans += str(self.__matrix[i][j] ) + "," else: ans += str(self.__matrix[i][j] ) + "|\n" return ans def __add__( self , __lowerCAmelCase ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __magic_name__ :str = [] for i in range(self.__height ): __magic_name__ :List[str] = [ self.__matrix[i][j] + other.component(__lowerCAmelCase , __lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(__lowerCAmelCase ) return Matrix(__lowerCAmelCase , self.__width , self.__height ) else: raise Exception('''matrix must have the same dimension!''' ) def __sub__( self , __lowerCAmelCase ): """simple docstring""" if self.__width == other.width() and self.__height == other.height(): __magic_name__ :int = [] for i in range(self.__height ): __magic_name__ :Tuple = [ self.__matrix[i][j] - other.component(__lowerCAmelCase , __lowerCAmelCase ) for j in range(self.__width ) ] matrix.append(__lowerCAmelCase ) return Matrix(__lowerCAmelCase , self.__width , self.__height ) else: raise Exception('''matrices must have the same dimension!''' ) @overload def __mul__( self , __lowerCAmelCase ): """simple docstring""" ... @overload def __mul__( self , __lowerCAmelCase ): """simple docstring""" ... def __mul__( self , __lowerCAmelCase ): """simple docstring""" if isinstance(__lowerCAmelCase , __lowerCAmelCase ): # matrix-vector if len(__lowerCAmelCase ) == self.__width: __magic_name__ :Tuple = zero_vector(self.__height ) for i in range(self.__height ): __magic_name__ :Optional[int] = [ self.__matrix[i][j] * other.component(__lowerCAmelCase ) for j in range(self.__width ) ] ans.change_component(__lowerCAmelCase , sum(__lowerCAmelCase ) ) return ans else: raise Exception( '''vector must have the same size as the ''' '''number of columns of the matrix!''' ) elif isinstance(__lowerCAmelCase , (int, float) ): # matrix-scalar __magic_name__ :Optional[Any] = [ [self.__matrix[i][j] * other for j in range(self.__width )] for i in range(self.__height ) ] return Matrix(__lowerCAmelCase , self.__width , self.__height ) return None def A ( self ): """simple docstring""" return self.__height def A ( self ): """simple docstring""" return self.__width def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: return self.__matrix[x][y] else: raise Exception('''change_component: indices out of bounds''' ) def A ( self , __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if 0 <= x < self.__height and 0 <= y < self.__width: __magic_name__ :Union[str, Any] = value else: raise Exception('''change_component: indices out of bounds''' ) def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) __magic_name__ :Optional[int] = self.__matrix[:x] + self.__matrix[x + 1 :] for i in range(len(__lowerCAmelCase ) ): __magic_name__ :Optional[Any] = minor[i][:y] + minor[i][y + 1 :] return Matrix(__lowerCAmelCase , self.__width - 1 , self.__height - 1 ).determinant() def A ( self , __lowerCAmelCase , __lowerCAmelCase ): """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if 0 <= x < self.__height and 0 <= y < self.__width: return (-1) ** (x + y) * self.minor(__lowerCAmelCase , __lowerCAmelCase ) else: raise Exception('''Indices out of bounds''' ) def A ( self ): """simple docstring""" if self.__height != self.__width: raise Exception('''Matrix is not square''' ) if self.__height < 1: raise Exception('''Matrix has no element''' ) elif self.__height == 1: return self.__matrix[0][0] elif self.__height == 2: return ( self.__matrix[0][0] * self.__matrix[1][1] - self.__matrix[0][1] * self.__matrix[1][0] ) else: __magic_name__ :int = [ self.__matrix[0][y] * self.cofactor(0 , __lowerCAmelCase ) for y in range(self.__width ) ] return sum(__lowerCAmelCase ) def __lowercase ( snake_case ): """simple docstring""" __magic_name__ :list[list[float]] = [[0] * n for _ in range(snake_case )] return Matrix(snake_case, snake_case, snake_case ) def __lowercase ( snake_case, snake_case, snake_case, snake_case ): """simple docstring""" random.seed(snake_case ) __magic_name__ :list[list[float]] = [ [random.randint(snake_case, snake_case ) for _ in range(snake_case )] for _ in range(snake_case ) ] return Matrix(snake_case, snake_case, snake_case )
0
import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCamelCase_ ( lowerCamelCase ): a__ = ['''image_processor''', '''tokenizer'''] a__ = '''ChineseCLIPImageProcessor''' a__ = ('''BertTokenizer''', '''BertTokenizerFast''') def __init__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" __magic_name__ :Tuple = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , __lowerCAmelCase , ) __magic_name__ :Optional[Any] = kwargs.pop('''feature_extractor''' ) __magic_name__ :Tuple = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(__lowerCAmelCase , __lowerCAmelCase ) __magic_name__ :List[Any] = self.image_processor def __call__( self , __lowerCAmelCase=None , __lowerCAmelCase=None , __lowerCAmelCase=None , **__lowerCAmelCase ): """simple docstring""" if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: __magic_name__ :int = self.tokenizer(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if images is not None: __magic_name__ :Dict = self.image_processor(__lowerCAmelCase , return_tensors=__lowerCAmelCase , **__lowerCAmelCase ) if text is not None and images is not None: __magic_name__ :Union[str, Any] = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**__lowerCAmelCase ) , tensor_type=__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.batch_decode(*__lowerCAmelCase , **__lowerCAmelCase ) def A ( self , *__lowerCAmelCase , **__lowerCAmelCase ): """simple docstring""" return self.tokenizer.decode(*__lowerCAmelCase , **__lowerCAmelCase ) @property def A ( self ): """simple docstring""" __magic_name__ :List[Any] = self.tokenizer.model_input_names __magic_name__ :Any = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def A ( self ): """simple docstring""" warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , __lowerCAmelCase , ) return self.image_processor_class
0
1
from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase : str = logging.get_logger(__name__) lowercase : List[Any] = { '''RWKV/rwkv-4-169m-pile''': '''https://huggingface.co/RWKV/rwkv-4-169m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-430m-pile''': '''https://huggingface.co/RWKV/rwkv-4-430m-pile/resolve/main/config.json''', '''RWKV/rwkv-4-1b5-pile''': '''https://huggingface.co/RWKV/rwkv-4-1b5-pile/resolve/main/config.json''', '''RWKV/rwkv-4-3b-pile''': '''https://huggingface.co/RWKV/rwkv-4-3b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-7b-pile''': '''https://huggingface.co/RWKV/rwkv-4-7b-pile/resolve/main/config.json''', '''RWKV/rwkv-4-14b-pile''': '''https://huggingface.co/RWKV/rwkv-4-14b-pile/resolve/main/config.json''', '''RWKV/rwkv-raven-1b5''': '''https://huggingface.co/RWKV/rwkv-raven-1b5/resolve/main/config.json''', '''RWKV/rwkv-raven-3b''': '''https://huggingface.co/RWKV/rwkv-raven-3b/resolve/main/config.json''', '''RWKV/rwkv-raven-7b''': '''https://huggingface.co/RWKV/rwkv-raven-7b/resolve/main/config.json''', '''RWKV/rwkv-raven-14b''': '''https://huggingface.co/RWKV/rwkv-raven-14b/resolve/main/config.json''', } class lowerCamelCase__ ( UpperCAmelCase__): '''simple docstring''' _A = 'rwkv' _A = {'max_position_embeddings': 'context_length'} def __init__( self :List[str] , a :Union[str, Any]=5_0_2_7_7 , a :str=1_0_2_4 , a :Union[str, Any]=4_0_9_6 , a :Optional[int]=3_2 , a :Optional[int]=None , a :Optional[Any]=None , a :List[Any]=1E-5 , a :Union[str, Any]=0 , a :Optional[Any]=0 , a :Dict=6 , a :int=False , a :Tuple=True , **a :List[str] , ) -> List[Any]: __UpperCamelCase : List[Any] = vocab_size __UpperCamelCase : Dict = context_length __UpperCamelCase : Dict = hidden_size __UpperCamelCase : Any = num_hidden_layers __UpperCamelCase : Tuple = attention_hidden_size if attention_hidden_size is not None else hidden_size __UpperCamelCase : List[Any] = intermediate_size if intermediate_size is not None else 4 * hidden_size __UpperCamelCase : int = layer_norm_epsilon __UpperCamelCase : int = rescale_every __UpperCamelCase : str = use_cache __UpperCamelCase : List[Any] = bos_token_id __UpperCamelCase : Optional[int] = eos_token_id super().__init__( tie_word_embeddings=__lowerCAmelCase , bos_token_id=__lowerCAmelCase , eos_token_id=__lowerCAmelCase , **__lowerCAmelCase )
710
import argparse from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection from diffusers import UnCLIPImageVariationPipeline, UnCLIPPipeline if __name__ == "__main__": lowercase : List[str] = argparse.ArgumentParser() parser.add_argument('--dump_path', default=None, type=str, required=True, help='Path to the output model.') parser.add_argument( '--txt2img_unclip', default='kakaobrain/karlo-v1-alpha', type=str, required=False, help='The pretrained txt2img unclip.', ) lowercase : int = parser.parse_args() lowercase : str = UnCLIPPipeline.from_pretrained(args.txtaimg_unclip) lowercase : int = CLIPImageProcessor() lowercase : Optional[int] = CLIPVisionModelWithProjection.from_pretrained('openai/clip-vit-large-patch14') lowercase : int = UnCLIPImageVariationPipeline( decoder=txtaimg.decoder, text_encoder=txtaimg.text_encoder, tokenizer=txtaimg.tokenizer, text_proj=txtaimg.text_proj, feature_extractor=feature_extractor, image_encoder=image_encoder, super_res_first=txtaimg.super_res_first, super_res_last=txtaimg.super_res_last, decoder_scheduler=txtaimg.decoder_scheduler, super_res_scheduler=txtaimg.super_res_scheduler, ) imgaimg.save_pretrained(args.dump_path)
94
0
from __future__ import annotations def SCREAMING_SNAKE_CASE_ ( __A : int ) -> bool: """simple docstring""" a_ : Union[str, Any] = str(__A ) return len(__A ) == 9 and set(__A ) == set('123456789' ) def SCREAMING_SNAKE_CASE_ ( ) -> int | None: """simple docstring""" for base_num in range(99_99 , 49_99 , -1 ): a_ : int = 10_00_02 * base_num if is_9_pandigital(__A ): return candidate for base_num in range(3_33 , 99 , -1 ): a_ : List[str] = 1_00_20_03 * base_num if is_9_pandigital(__A ): return candidate return None if __name__ == "__main__": print(F'{solution() = }')
570
from ..utils import DummyObject, requires_backends class SCREAMING_SNAKE_CASE__ ( metaclass=lowercase__ ): snake_case__ : List[str] = ['''onnx'''] def __init__( self : List[Any] , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : Dict ) -> Any: requires_backends(self , ['onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : List[Any] , *SCREAMING_SNAKE_CASE__ : int , **SCREAMING_SNAKE_CASE__ : Any ) -> Optional[int]: requires_backends(cls , ['onnx'] ) @classmethod def SCREAMING_SNAKE_CASE ( cls : str , *SCREAMING_SNAKE_CASE__ : Dict , **SCREAMING_SNAKE_CASE__ : List[Any] ) -> Union[str, Any]: requires_backends(cls , ['onnx'] )
570
1
"""simple docstring""" import inspect import unittest from transformers import SegformerConfig, is_torch_available, is_vision_available from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_MAPPING, SegformerForImageClassification, SegformerForSemanticSegmentation, SegformerModel, ) from transformers.models.segformer.modeling_segformer import SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import SegformerImageProcessor class a_ ( _UpperCamelCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase_, 'hidden_sizes' ) ) self.parent.assertTrue(hasattr(lowerCamelCase_, 'num_attention_heads' ) ) self.parent.assertTrue(hasattr(lowerCamelCase_, 'num_encoder_blocks' ) ) class a_ : '''simple docstring''' def __init__(self, lowerCamelCase_, lowerCamelCase_=1_3, lowerCamelCase_=6_4, lowerCamelCase_=3, lowerCamelCase_=4, lowerCamelCase_=[2, 2, 2, 2], lowerCamelCase_=[8, 4, 2, 1], lowerCamelCase_=[1_6, 3_2, 6_4, 1_2_8], lowerCamelCase_=[1, 4, 8, 1_6], lowerCamelCase_=[1, 2, 4, 8], lowerCamelCase_=True, lowerCamelCase_=True, lowerCamelCase_="gelu", lowerCamelCase_=0.1, lowerCamelCase_=0.1, lowerCamelCase_=0.02, lowerCamelCase_=3, lowerCamelCase_=None, ): '''simple docstring''' lowerCamelCase__ : Optional[int] = parent lowerCamelCase__ : Optional[Any] = batch_size lowerCamelCase__ : Tuple = image_size lowerCamelCase__ : int = num_channels lowerCamelCase__ : Optional[int] = num_encoder_blocks lowerCamelCase__ : Optional[Any] = sr_ratios lowerCamelCase__ : Any = depths lowerCamelCase__ : Dict = hidden_sizes lowerCamelCase__ : Union[str, Any] = downsampling_rates lowerCamelCase__ : str = num_attention_heads lowerCamelCase__ : List[Any] = is_training lowerCamelCase__ : Dict = use_labels lowerCamelCase__ : str = hidden_act lowerCamelCase__ : Optional[Any] = hidden_dropout_prob lowerCamelCase__ : Optional[int] = attention_probs_dropout_prob lowerCamelCase__ : Tuple = initializer_range lowerCamelCase__ : int = num_labels lowerCamelCase__ : Union[str, Any] = scope def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase__ : List[Any] = None if self.use_labels: lowerCamelCase__ : Union[str, Any] = ids_tensor([self.batch_size, self.image_size, self.image_size], self.num_labels ) lowerCamelCase__ : List[Any] = self.get_config() return config, pixel_values, labels def a__ (self ): '''simple docstring''' return SegformerConfig( image_size=self.image_size, num_channels=self.num_channels, num_encoder_blocks=self.num_encoder_blocks, depths=self.depths, hidden_sizes=self.hidden_sizes, num_attention_heads=self.num_attention_heads, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, initializer_range=self.initializer_range, ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : Tuple = SegformerModel(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = self.image_size // (self.downsampling_rates[-1] * 2) self.parent.assertEqual( result.last_hidden_state.shape, (self.batch_size, self.hidden_sizes[-1], expected_height, expected_width) ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = self.num_labels lowerCamelCase__ : List[str] = SegformerForSemanticSegmentation(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = model(lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertEqual( result.logits.shape, (self.batch_size, self.num_labels, self.image_size // 4, self.image_size // 4) ) self.parent.assertGreater(result.loss, 0.0 ) def a__ (self, lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): '''simple docstring''' lowerCamelCase__ : List[str] = 1 lowerCamelCase__ : List[Any] = SegformerForSemanticSegmentation(config=lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() lowerCamelCase__ : int = torch.randint(0, 1, (self.batch_size, self.image_size, self.image_size) ).to(lowerCamelCase_ ) lowerCamelCase__ : int = model(lowerCamelCase_, labels=lowerCamelCase_ ) self.parent.assertGreater(result.loss, 0.0 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.prepare_config_and_inputs() lowerCamelCase__ : Any = config_and_inputs lowerCamelCase__ : Optional[int] = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class a_ ( _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ : Dict = ( ( SegformerModel, SegformerForSemanticSegmentation, SegformerForImageClassification, ) if is_torch_available() else () ) lowerCamelCase__ : Union[str, Any] = ( { 'feature-extraction': SegformerModel, 'image-classification': SegformerForImageClassification, 'image-segmentation': SegformerForSemanticSegmentation, } if is_torch_available() else {} ) lowerCamelCase__ : Any = True lowerCamelCase__ : List[Any] = False lowerCamelCase__ : str = False lowerCamelCase__ : Any = False def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = SegformerModelTester(self ) lowerCamelCase__ : Union[str, Any] = SegformerConfigTester(self, config_class=lowerCamelCase_ ) def a__ (self ): '''simple docstring''' self.config_tester.run_common_tests() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_binary_image_segmentation(*lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_segmentation(*lowerCamelCase_ ) @unittest.skip('SegFormer does not use inputs_embeds' ) def a__ (self ): '''simple docstring''' pass @unittest.skip('SegFormer does not have get_input_embeddings method and get_output_embeddings methods' ) def a__ (self ): '''simple docstring''' pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : Any = model_class(lowerCamelCase_ ) lowerCamelCase__ : Dict = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase__ : Tuple = [*signature.parameters.keys()] lowerCamelCase__ : Dict = ["pixel_values"] self.assertListEqual(arg_names[:1], lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : Union[str, Any] = True for model_class in self.all_model_classes: lowerCamelCase__ : Any = True lowerCamelCase__ : int = False lowerCamelCase__ : str = True lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[int] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Dict = outputs.attentions lowerCamelCase__ : Optional[int] = sum(self.model_tester.depths ) self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase__ : Union[str, Any] = True lowerCamelCase__ : Union[str, Any] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : List[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Optional[int] = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # verify the first attentions (first block, first layer) lowerCamelCase__ : Optional[int] = (self.model_tester.image_size // 4) ** 2 lowerCamelCase__ : Dict = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) # verify the last attentions (last block, last layer) lowerCamelCase__ : Tuple = (self.model_tester.image_size // 3_2) ** 2 lowerCamelCase__ : Optional[int] = (self.model_tester.image_size // (3_2 * self.model_tester.sr_ratios[-1])) ** 2 self.assertListEqual( list(attentions[-1].shape[-3:] ), [self.model_tester.num_attention_heads[-1], expected_seq_len, expected_reduced_seq_len], ) lowerCamelCase__ : Optional[Any] = len(lowerCamelCase_ ) # Check attention is always last and order is fine lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : Optional[int] = True lowerCamelCase__ : List[str] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) self.assertEqual(out_len + 1, len(lowerCamelCase_ ) ) lowerCamelCase__ : Any = outputs.attentions self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # verify the first attentions (first block, first layer) lowerCamelCase__ : Dict = (self.model_tester.image_size // 4) ** 2 lowerCamelCase__ : int = (self.model_tester.image_size // (4 * self.model_tester.sr_ratios[0])) ** 2 self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads[0], expected_seq_len, expected_reduced_seq_len], ) def a__ (self ): '''simple docstring''' def check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ): lowerCamelCase__ : List[str] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.eval() with torch.no_grad(): lowerCamelCase__ : str = model(**self._prepare_for_class(lowerCamelCase_, lowerCamelCase_ ) ) lowerCamelCase__ : Dict = outputs.hidden_states lowerCamelCase__ : int = self.model_tester.num_encoder_blocks self.assertEqual(len(lowerCamelCase_ ), lowerCamelCase_ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ), [ self.model_tester.hidden_sizes[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ], ) lowerCamelCase__ : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase__ : List[Any] = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase__ : str = True check_hidden_states_output(lowerCamelCase_, lowerCamelCase_, lowerCamelCase_ ) def a__ (self ): '''simple docstring''' if not self.model_tester.is_training: return lowerCamelCase__ : Tuple = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase__ : List[Any] = True for model_class in self.all_model_classes: if model_class in get_values(lowerCamelCase_ ): continue lowerCamelCase__ : Optional[int] = model_class(lowerCamelCase_ ) model.to(lowerCamelCase_ ) model.train() lowerCamelCase__ : List[Any] = self._prepare_for_class(lowerCamelCase_, lowerCamelCase_, return_labels=lowerCamelCase_ ) lowerCamelCase__ : Any = model(**lowerCamelCase_ ).loss loss.backward() @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def a__ (self ): '''simple docstring''' pass @slow def a__ (self ): '''simple docstring''' for model_name in SEGFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase__ : List[str] = SegformerModel.from_pretrained(lowerCamelCase_ ) self.assertIsNotNone(lowerCamelCase_ ) def lowerCamelCase_ ( ): lowerCamelCase__ : Dict = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class a_ ( unittest.TestCase ): '''simple docstring''' @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2), keep_ratio=lowerCamelCase_, align=lowerCamelCase_, do_random_crop=lowerCamelCase_ ) lowerCamelCase__ : str = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( lowerCamelCase_ ) lowerCamelCase__ : str = prepare_img() lowerCamelCase__ : List[Any] = image_processor(images=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : Optional[Any] = encoded_inputs.pixel_values.to(lowerCamelCase_ ) with torch.no_grad(): lowerCamelCase__ : Optional[Any] = model(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : int = torch.tensor( [ [[-4.6_310, -5.5_232, -6.2_356], [-5.1_921, -6.1_444, -6.5_996], [-5.4_424, -6.2_790, -6.7_574]], [[-12.1_391, -13.3_122, -13.9_554], [-12.8_732, -13.9_352, -14.3_563], [-12.9_438, -13.8_226, -14.2_513]], [[-12.5_134, -13.4_686, -14.4_915], [-12.8_669, -14.4_343, -14.7_758], [-13.2_523, -14.5_819, -15.0_694]], ] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], lowerCamelCase_, atol=1e-4 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[Any] = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2), keep_ratio=lowerCamelCase_, align=lowerCamelCase_, do_random_crop=lowerCamelCase_ ) lowerCamelCase__ : Dict = SegformerForSemanticSegmentation.from_pretrained( 'nvidia/segformer-b1-finetuned-cityscapes-1024-1024' ).to(lowerCamelCase_ ) lowerCamelCase__ : Union[str, Any] = prepare_img() lowerCamelCase__ : List[str] = image_processor(images=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : Any = encoded_inputs.pixel_values.to(lowerCamelCase_ ) with torch.no_grad(): lowerCamelCase__ : Any = model(lowerCamelCase_ ) lowerCamelCase__ : List[Any] = torch.Size((1, model.config.num_labels, 1_2_8, 1_2_8) ) self.assertEqual(outputs.logits.shape, lowerCamelCase_ ) lowerCamelCase__ : Dict = torch.tensor( [ [[-13.5_748, -13.9_111, -12.6_500], [-14.3_500, -15.3_683, -14.2_328], [-14.7_532, -16.0_424, -15.6_087]], [[-17.1_651, -15.8_725, -12.9_653], [-17.2_580, -17.3_718, -14.8_223], [-16.6_058, -16.8_783, -16.7_452]], [[-3.6_456, -3.0_209, -1.4_203], [-3.0_797, -3.1_959, -2.0_000], [-1.8_757, -1.9_217, -1.6_997]], ] ).to(lowerCamelCase_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3, :3], lowerCamelCase_, atol=1e-1 ) ) @slow def a__ (self ): '''simple docstring''' lowerCamelCase__ : int = SegformerImageProcessor( image_scale=(5_1_2, 5_1_2), keep_ratio=lowerCamelCase_, align=lowerCamelCase_, do_random_crop=lowerCamelCase_ ) lowerCamelCase__ : Dict = SegformerForSemanticSegmentation.from_pretrained('nvidia/segformer-b0-finetuned-ade-512-512' ).to( lowerCamelCase_ ) lowerCamelCase__ : Tuple = prepare_img() lowerCamelCase__ : Dict = image_processor(images=lowerCamelCase_, return_tensors='pt' ) lowerCamelCase__ : int = encoded_inputs.pixel_values.to(lowerCamelCase_ ) with torch.no_grad(): lowerCamelCase__ : List[str] = model(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = outputs.logits.detach().cpu() lowerCamelCase__ : Union[str, Any] = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_, target_sizes=[(5_0_0, 3_0_0)] ) lowerCamelCase__ : Union[str, Any] = torch.Size((5_0_0, 3_0_0) ) self.assertEqual(segmentation[0].shape, lowerCamelCase_ ) lowerCamelCase__ : Any = image_processor.post_process_semantic_segmentation(outputs=lowerCamelCase_ ) lowerCamelCase__ : List[str] = torch.Size((1_2_8, 1_2_8) ) self.assertEqual(segmentation[0].shape, lowerCamelCase_ )
715
"""simple docstring""" import json import os import shutil import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from requests.exceptions import HTTPError from transformers import AutoConfig, BertConfig, GPTaConfig from transformers.configuration_utils import PretrainedConfig from transformers.testing_utils import TOKEN, USER, is_staging_test sys.path.append(str(Path(__file__).parent.parent / "utils")) from test_module.custom_configuration import CustomConfig # noqa E402 A_ : int = { "return_dict": False, "output_hidden_states": True, "output_attentions": True, "torchscript": True, "torch_dtype": "float16", "use_bfloat16": True, "tf_legacy_loss": True, "pruned_heads": {"a": 1}, "tie_word_embeddings": False, "is_decoder": True, "cross_attention_hidden_size": 1_28, "add_cross_attention": True, "tie_encoder_decoder": True, "max_length": 50, "min_length": 3, "do_sample": True, "early_stopping": True, "num_beams": 3, "num_beam_groups": 3, "diversity_penalty": 0.5, "temperature": 2.0, "top_k": 10, "top_p": 0.7, "typical_p": 0.2, "repetition_penalty": 0.8, "length_penalty": 0.8, "no_repeat_ngram_size": 5, "encoder_no_repeat_ngram_size": 5, "bad_words_ids": [1, 2, 3], "num_return_sequences": 3, "chunk_size_feed_forward": 5, "output_scores": True, "return_dict_in_generate": True, "forced_bos_token_id": 2, "forced_eos_token_id": 3, "remove_invalid_values": True, "architectures": ["BertModel"], "finetuning_task": "translation", "id2label": {0: "label"}, "label2id": {"label": "0"}, "tokenizer_class": "BertTokenizerFast", "prefix": "prefix", "bos_token_id": 6, "pad_token_id": 7, "eos_token_id": 8, "sep_token_id": 9, "decoder_start_token_id": 10, "exponential_decay_length_penalty": (5, 1.01), "suppress_tokens": [0, 1], "begin_suppress_tokens": 2, "task_specific_params": {"translation": "some_params"}, "problem_type": "regression", } @is_staging_test class a_ ( unittest.TestCase ): '''simple docstring''' @classmethod def a__ (cls ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = TOKEN HfFolder.save_token(lowerCamelCase_ ) @classmethod def a__ (cls ): '''simple docstring''' try: delete_repo(token=cls._token, repo_id='test-config' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='valid_org/test-config-org' ) except HTTPError: pass try: delete_repo(token=cls._token, repo_id='test-dynamic-config' ) except HTTPError: pass def a__ (self ): '''simple docstring''' lowerCamelCase__ : Union[str, Any] = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('test-config', use_auth_token=self._token ) lowerCamelCase__ : Optional[int] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='test-config' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCamelCase_, repo_id='test-config', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : List[str] = BertConfig.from_pretrained(f'''{USER}/test-config''' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = BertConfig( vocab_size=9_9, hidden_size=3_2, num_hidden_layers=5, num_attention_heads=4, intermediate_size=3_7 ) config.push_to_hub('valid_org/test-config-org', use_auth_token=self._token ) lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) # Reset repo delete_repo(token=self._token, repo_id='valid_org/test-config-org' ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained( lowerCamelCase_, repo_id='valid_org/test-config-org', push_to_hub=lowerCamelCase_, use_auth_token=self._token ) lowerCamelCase__ : str = BertConfig.from_pretrained('valid_org/test-config-org' ) for k, v in config.to_dict().items(): if k != "transformers_version": self.assertEqual(lowerCamelCase_, getattr(lowerCamelCase_, lowerCamelCase_ ) ) def a__ (self ): '''simple docstring''' CustomConfig.register_for_auto_class() lowerCamelCase__ : Optional[int] = CustomConfig(attribute=4_2 ) config.push_to_hub('test-dynamic-config', use_auth_token=self._token ) # This has added the proper auto_map field to the config self.assertDictEqual(config.auto_map, {'AutoConfig': 'custom_configuration.CustomConfig'} ) lowerCamelCase__ : List[str] = AutoConfig.from_pretrained(f'''{USER}/test-dynamic-config''', trust_remote_code=lowerCamelCase_ ) # Can't make an isinstance check because the new_config is from the FakeConfig class of a dynamic module self.assertEqual(new_config.__class__.__name__, 'CustomConfig' ) self.assertEqual(new_config.attribute, 4_2 ) class a_ ( unittest.TestCase ): '''simple docstring''' def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = GPTaConfig() # attempt to modify each of int/float/bool/str config records and verify they were updated lowerCamelCase__ : Tuple = c.n_embd + 1 # int lowerCamelCase__ : Union[str, Any] = c.resid_pdrop + 1.0 # float lowerCamelCase__ : List[Any] = not c.scale_attn_weights # bool lowerCamelCase__ : List[Any] = c.summary_type + 'foo' # str c.update_from_string( f'''n_embd={n_embd},resid_pdrop={resid_pdrop},scale_attn_weights={scale_attn_weights},summary_type={summary_type}''' ) self.assertEqual(lowerCamelCase_, c.n_embd, 'mismatch for key: n_embd' ) self.assertEqual(lowerCamelCase_, c.resid_pdrop, 'mismatch for key: resid_pdrop' ) self.assertEqual(lowerCamelCase_, c.scale_attn_weights, 'mismatch for key: scale_attn_weights' ) self.assertEqual(lowerCamelCase_, c.summary_type, 'mismatch for key: summary_type' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : List[str] = PretrainedConfig() lowerCamelCase__ : Optional[Any] = [key for key in base_config.__dict__ if key not in config_common_kwargs] # If this part of the test fails, you have arguments to addin config_common_kwargs above. self.assertListEqual( lowerCamelCase_, ['is_encoder_decoder', '_name_or_path', '_commit_hash', 'transformers_version'] ) lowerCamelCase__ : Any = [key for key, value in config_common_kwargs.items() if value == getattr(lowerCamelCase_, lowerCamelCase_ )] if len(lowerCamelCase_ ) > 0: raise ValueError( 'The following keys are set with the default values in' ' `test_configuration_common.config_common_kwargs` pick another value for them:' f''' {', '.join(lowerCamelCase_ )}.''' ) def a__ (self ): '''simple docstring''' with self.assertRaises(lowerCamelCase_ ): # config is in subfolder, the following should not work without specifying the subfolder lowerCamelCase__ : Union[str, Any] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder' ) lowerCamelCase__ : int = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert-subfolder', subfolder='bert' ) self.assertIsNotNone(lowerCamelCase_ ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : str = mock.Mock() lowerCamelCase__ : List[str] = 5_0_0 lowerCamelCase__ : Any = {} lowerCamelCase__ : int = HTTPError lowerCamelCase__ : Optional[Any] = {} # Download this model to make sure it's in the cache. lowerCamelCase__ : Any = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # Under the mock environment we get a 500 error when trying to reach the model. with mock.patch('requests.Session.request', return_value=lowerCamelCase_ ) as mock_head: lowerCamelCase__ : List[str] = BertConfig.from_pretrained('hf-internal-testing/tiny-random-bert' ) # This check we did call the fake head request mock_head.assert_called() def a__ (self ): '''simple docstring''' lowerCamelCase__ : Dict = BertConfig.from_pretrained( 'https://huggingface.co/hf-internal-testing/tiny-random-bert/resolve/main/config.json' ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Tuple = AutoConfig.from_pretrained('bert-base-cased' ) lowerCamelCase__ : str = ['config.4.0.0.json'] with tempfile.TemporaryDirectory() as tmp_dir: configuration.save_pretrained(lowerCamelCase_ ) lowerCamelCase__ : Optional[Any] = 2 json.dump(configuration.to_dict(), open(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), 'w' ) ) # This should pick the new configuration file as the version of Transformers is > 4.0.0 lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # Will need to be adjusted if we reach v42 and this test is still here. # Should pick the old configuration file as the version of Transformers is < 4.42.0 lowerCamelCase__ : str = ['config.42.0.0.json'] lowerCamelCase__ : Union[str, Any] = 7_6_8 configuration.save_pretrained(lowerCamelCase_ ) shutil.move(os.path.join(lowerCamelCase_, 'config.4.0.0.json' ), os.path.join(lowerCamelCase_, 'config.42.0.0.json' ) ) lowerCamelCase__ : Union[str, Any] = AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 7_6_8 ) def a__ (self ): '''simple docstring''' lowerCamelCase__ : Optional[int] = 'hf-internal-testing/test-two-configs' import transformers as new_transformers lowerCamelCase__ : Optional[int] = 'v4.0.0' lowerCamelCase__ , lowerCamelCase__ : Union[str, Any] = new_transformers.models.auto.AutoConfig.from_pretrained( lowerCamelCase_, return_unused_kwargs=lowerCamelCase_ ) self.assertEqual(new_configuration.hidden_size, 2 ) # This checks `_configuration_file` ia not kept in the kwargs by mistake. self.assertDictEqual(lowerCamelCase_, {} ) # Testing an older version by monkey-patching the version in the module it's used. import transformers as old_transformers lowerCamelCase__ : Dict = 'v3.0.0' lowerCamelCase__ : List[str] = old_transformers.models.auto.AutoConfig.from_pretrained(lowerCamelCase_ ) self.assertEqual(old_configuration.hidden_size, 7_6_8 )
696
0
import collections import inspect import unittest from transformers import SwinvaConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwinvaForImageClassification, SwinvaForMaskedImageModeling, SwinvaModel from transformers.models.swinva.modeling_swinva import SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCamelCase__ : """simple docstring""" def __init__(self , __a , __a=13 , __a=32 , __a=2 , __a=3 , __a=16 , __a=[1, 2, 1] , __a=[2, 2, 4] , __a=2 , __a=2.0 , __a=True , __a=0.0 , __a=0.0 , __a=0.1 , __a="gelu" , __a=False , __a=True , __a=0.02 , __a=1E-5 , __a=True , __a=None , __a=True , __a=10 , __a=8 , ): '''simple docstring''' lowerCamelCase = parent lowerCamelCase = batch_size lowerCamelCase = image_size lowerCamelCase = patch_size lowerCamelCase = num_channels lowerCamelCase = embed_dim lowerCamelCase = depths lowerCamelCase = num_heads lowerCamelCase = window_size lowerCamelCase = mlp_ratio lowerCamelCase = qkv_bias lowerCamelCase = hidden_dropout_prob lowerCamelCase = attention_probs_dropout_prob lowerCamelCase = drop_path_rate lowerCamelCase = hidden_act lowerCamelCase = use_absolute_embeddings lowerCamelCase = patch_norm lowerCamelCase = layer_norm_eps lowerCamelCase = initializer_range lowerCamelCase = is_training lowerCamelCase = scope lowerCamelCase = use_labels lowerCamelCase = type_sequence_label_size lowerCamelCase = encoder_stride def _a (self ): '''simple docstring''' lowerCamelCase = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) lowerCamelCase = None if self.use_labels: lowerCamelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase = self.get_config() return config, pixel_values, labels def _a (self ): '''simple docstring''' return SwinvaConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , embed_dim=self.embed_dim , depths=self.depths , num_heads=self.num_heads , window_size=self.window_size , mlp_ratio=self.mlp_ratio , qkv_bias=self.qkv_bias , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , drop_path_rate=self.drop_path_rate , hidden_act=self.hidden_act , use_absolute_embeddings=self.use_absolute_embeddings , path_norm=self.patch_norm , layer_norm_eps=self.layer_norm_eps , initializer_range=self.initializer_range , encoder_stride=self.encoder_stride , ) def _a (self , __a , __a , __a ): '''simple docstring''' lowerCamelCase = SwinvaModel(config=__a ) model.to(__a ) model.eval() lowerCamelCase = model(__a ) lowerCamelCase = ((config.image_size // config.patch_size) ** 2) // (4 ** (len(config.depths ) - 1)) lowerCamelCase = int(config.embed_dim * 2 ** (len(config.depths ) - 1) ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, expected_seq_len, expected_dim) ) def _a (self , __a , __a , __a ): '''simple docstring''' lowerCamelCase = SwinvaForMaskedImageModeling(config=__a ) model.to(__a ) model.eval() lowerCamelCase = model(__a ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_channels, self.image_size, self.image_size) ) # test greyscale images lowerCamelCase = 1 lowerCamelCase = SwinvaForMaskedImageModeling(__a ) model.to(__a ) model.eval() lowerCamelCase = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) lowerCamelCase = model(__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, 1, self.image_size, self.image_size) ) def _a (self , __a , __a , __a ): '''simple docstring''' lowerCamelCase = self.type_sequence_label_size lowerCamelCase = SwinvaForImageClassification(__a ) model.to(__a ) model.eval() lowerCamelCase = model(__a , labels=__a ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _a (self ): '''simple docstring''' lowerCamelCase = self.prepare_config_and_inputs() lowerCamelCase , lowerCamelCase , lowerCamelCase = config_and_inputs lowerCamelCase = {"pixel_values": pixel_values} return config, inputs_dict @require_torch class lowerCamelCase__ ( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase): """simple docstring""" _A = ( (SwinvaModel, SwinvaForImageClassification, SwinvaForMaskedImageModeling) if is_torch_available() else () ) _A = ( {'feature-extraction': SwinvaModel, 'image-classification': SwinvaForImageClassification} if is_torch_available() else {} ) _A = False _A = False _A = False _A = False def _a (self ): '''simple docstring''' lowerCamelCase = SwinvaModelTester(self ) lowerCamelCase = ConfigTester(self , config_class=__a , embed_dim=37 ) def _a (self ): '''simple docstring''' self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__a ) @unittest.skip(reason="Got `CUDA error: misaligned address` with PyTorch 2.0.0." ) def _a (self ): '''simple docstring''' pass @unittest.skip(reason="Swinv2 does not use inputs_embeds" ) def _a (self ): '''simple docstring''' pass def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(__a ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) lowerCamelCase = model.get_output_embeddings() self.assertTrue(x is None or isinstance(__a , nn.Linear ) ) def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: lowerCamelCase = model_class(__a ) lowerCamelCase = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic lowerCamelCase = [*signature.parameters.keys()] lowerCamelCase = ["pixel_values"] self.assertListEqual(arg_names[:1] , __a ) def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = True for model_class in self.all_model_classes: lowerCamelCase = True lowerCamelCase = False lowerCamelCase = True lowerCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCamelCase = model(**self._prepare_for_class(__a , __a ) ) lowerCamelCase = outputs.attentions lowerCamelCase = len(self.model_tester.depths ) self.assertEqual(len(__a ) , __a ) # check that output_attentions also work using config del inputs_dict["output_attentions"] lowerCamelCase = True lowerCamelCase = config.window_size**2 lowerCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCamelCase = model(**self._prepare_for_class(__a , __a ) ) lowerCamelCase = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) lowerCamelCase = len(__a ) # Check attention is always last and order is fine lowerCamelCase = True lowerCamelCase = True lowerCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCamelCase = model(**self._prepare_for_class(__a , __a ) ) if hasattr(self.model_tester , "num_hidden_states_types" ): lowerCamelCase = self.model_tester.num_hidden_states_types else: # also another +1 for reshaped_hidden_states lowerCamelCase = 2 self.assertEqual(out_len + added_hidden_states , len(__a ) ) lowerCamelCase = outputs.attentions self.assertEqual(len(__a ) , __a ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_heads[0], window_size_squared, window_size_squared] , ) def _a (self , __a , __a , __a , __a ): '''simple docstring''' lowerCamelCase = model_class(__a ) model.to(__a ) model.eval() with torch.no_grad(): lowerCamelCase = model(**self._prepare_for_class(__a , __a ) ) lowerCamelCase = outputs.hidden_states lowerCamelCase = getattr( self.model_tester , "expected_num_hidden_layers" , len(self.model_tester.depths ) + 1 ) self.assertEqual(len(__a ) , __a ) # Swinv2 has a different seq_length lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase = (image_size[1] // patch_size[1]) * (image_size[0] // patch_size[0]) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) lowerCamelCase = outputs.reshaped_hidden_states self.assertEqual(len(__a ) , __a ) lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = reshaped_hidden_states[0].shape lowerCamelCase = ( reshaped_hidden_states[0].view(__a , __a , height * width ).permute(0 , 2 , 1 ) ) self.assertListEqual( list(reshaped_hidden_states.shape[-2:] ) , [num_patches, self.model_tester.embed_dim] , ) def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) for model_class in self.all_model_classes: lowerCamelCase = True self.check_hidden_states_output(__a , __a , __a , __a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True self.check_hidden_states_output(__a , __a , __a , __a ) def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = 3 lowerCamelCase = ( self.model_tester.image_size if isinstance(self.model_tester.image_size , collections.abc.Iterable ) else (self.model_tester.image_size, self.model_tester.image_size) ) lowerCamelCase = ( config.patch_size if isinstance(config.patch_size , collections.abc.Iterable ) else (config.patch_size, config.patch_size) ) lowerCamelCase = image_size[0] + patch_size[0] - (image_size[0] % patch_size[0]) lowerCamelCase = image_size[1] + patch_size[1] - (image_size[1] % patch_size[1]) for model_class in self.all_model_classes: lowerCamelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] lowerCamelCase = True self.check_hidden_states_output(__a , __a , __a , (padded_height, padded_width) ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_image_modeling(*__a ) def _a (self ): '''simple docstring''' lowerCamelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*__a ) @slow def _a (self ): '''simple docstring''' for model_name in SWINV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: lowerCamelCase = SwinvaModel.from_pretrained(__a ) self.assertIsNotNone(__a ) def _a (self ): '''simple docstring''' lowerCamelCase , lowerCamelCase = self.model_tester.prepare_config_and_inputs_for_common() lowerCamelCase = _config_zero_init(__a ) for model_class in self.all_model_classes: lowerCamelCase = model_class(config=__a ) for name, param in model.named_parameters(): if "embeddings" not in name and "logit_scale" not in name and param.requires_grad: self.assertIn( ((param.data.mean() * 1E9).round() / 1E9).item() , [0.0, 1.0] , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) @require_vision @require_torch class lowerCamelCase__ ( unittest.TestCase): """simple docstring""" @cached_property def _a (self ): '''simple docstring''' return ( AutoImageProcessor.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ) if is_vision_available() else None ) @slow def _a (self ): '''simple docstring''' lowerCamelCase = SwinvaForImageClassification.from_pretrained("microsoft/swinv2-tiny-patch4-window8-256" ).to( __a ) lowerCamelCase = self.default_image_processor lowerCamelCase = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) lowerCamelCase = image_processor(images=__a , return_tensors="pt" ).to(__a ) # forward pass with torch.no_grad(): lowerCamelCase = model(**__a ) # verify the logits lowerCamelCase = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , __a ) lowerCamelCase = torch.tensor([-0.3947, -0.4306, 0.0026] ).to(__a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , __a , atol=1E-4 ) )
623
import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a_ : Union[str, Any] = NewType('DataClass', Any) a_ : int = NewType('DataClassType', Any) def __lowercase( UpperCAmelCase__ ): """simple docstring""" if isinstance(UpperCAmelCase__ , UpperCAmelCase__ ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"""Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive).""" ) def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = {str(UpperCAmelCase__ ): choice for choice in choices} return lambda UpperCAmelCase__ : str_to_choice.get(UpperCAmelCase__ , UpperCAmelCase__ ) def __lowercase( *, UpperCAmelCase__ = None , UpperCAmelCase__ = None , UpperCAmelCase__ = dataclasses.MISSING , UpperCAmelCase__ = dataclasses.MISSING , UpperCAmelCase__ = None , **UpperCAmelCase__ , ): """simple docstring""" if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls lowerCamelCase = {} if aliases is not None: lowerCamelCase = aliases if help is not None: lowerCamelCase = help return dataclasses.field(metadata=UpperCAmelCase__ , default=UpperCAmelCase__ , default_factory=UpperCAmelCase__ , **UpperCAmelCase__ ) class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" _A = 42 def __init__(self , __a , **__a ): '''simple docstring''' if "formatter_class" not in kwargs: lowerCamelCase = ArgumentDefaultsHelpFormatter super().__init__(**__a ) if dataclasses.is_dataclass(__a ): lowerCamelCase = [dataclass_types] lowerCamelCase = list(__a ) for dtype in self.dataclass_types: self._add_dataclass_arguments(__a ) @staticmethod def _a (__a , __a ): '''simple docstring''' lowerCamelCase = F"""--{field.name}""" lowerCamelCase = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , __a ): raise RuntimeError( "Unresolved type detected, which should have been done with the help of " "`typing.get_type_hints` method by default" ) lowerCamelCase = kwargs.pop("aliases" , [] ) if isinstance(__a , __a ): lowerCamelCase = [aliases] lowerCamelCase = getattr(field.type , "__origin__" , field.type ) if origin_type is Union or (hasattr(__a , "UnionType" ) and isinstance(__a , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(__a ) not in field.type.__args__ ): raise ValueError( "Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because" " the argument parser only supports one type per argument." F""" Problem encountered in field '{field.name}'.""" ) if type(__a ) not in field.type.__args__: # filter `str` in Union lowerCamelCase = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] lowerCamelCase = getattr(field.type , "__origin__" , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) lowerCamelCase = ( field.type.__args__[0] if isinstance(__a , field.type.__args__[1] ) else field.type.__args__[1] ) lowerCamelCase = getattr(field.type , "__origin__" , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) lowerCamelCase = {} if origin_type is Literal or (isinstance(field.type , __a ) and issubclass(field.type , __a )): if origin_type is Literal: lowerCamelCase = field.type.__args__ else: lowerCamelCase = [x.value for x in field.type] lowerCamelCase = make_choice_type_function(kwargs["choices"] ) if field.default is not dataclasses.MISSING: lowerCamelCase = field.default else: lowerCamelCase = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument lowerCamelCase = copy(__a ) # Hack because type=bool in argparse does not behave as we want. lowerCamelCase = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. lowerCamelCase = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way lowerCamelCase = default # This tells argparse we accept 0 or 1 value after --field_name lowerCamelCase = "?" # This is the value that will get picked if we do --field_name (without value) lowerCamelCase = True elif isclass(__a ) and issubclass(__a , __a ): lowerCamelCase = field.type.__args__[0] lowerCamelCase = "+" if field.default_factory is not dataclasses.MISSING: lowerCamelCase = field.default_factory() elif field.default is dataclasses.MISSING: lowerCamelCase = True else: lowerCamelCase = field.type if field.default is not dataclasses.MISSING: lowerCamelCase = field.default elif field.default_factory is not dataclasses.MISSING: lowerCamelCase = field.default_factory() else: lowerCamelCase = True parser.add_argument(__a , *__a , **__a ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): lowerCamelCase = False parser.add_argument(F"""--no_{field.name}""" , action="store_false" , dest=field.name , **__a ) def _a (self , __a ): '''simple docstring''' if hasattr(__a , "_argument_group_name" ): lowerCamelCase = self.add_argument_group(dtype._argument_group_name ) else: lowerCamelCase = self try: lowerCamelCase = get_type_hints(__a ) except NameError: raise RuntimeError( F"""Type resolution failed for {dtype}. Try declaring the class in global scope or """ "removing line of `from __future__ import annotations` which opts in Postponed " "Evaluation of Annotations (PEP 563)" ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(__a ): lowerCamelCase = ".".join(map(__a , sys.version_info[:3] ) ) raise RuntimeError( F"""Type resolution failed for {dtype} on Python {python_version}. Try removing """ "line of `from __future__ import annotations` which opts in union types as " "`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To " "support Python versions that lower than 3.10, you need to use " "`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of " "`X | None`." ) from ex raise for field in dataclasses.fields(__a ): if not field.init: continue lowerCamelCase = type_hints[field.name] self._parse_dataclass_field(__a , __a ) def _a (self , __a=None , __a=False , __a=True , __a=None , __a=None , ): '''simple docstring''' if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): lowerCamelCase = [] if args_filename: args_files.append(Path(__a ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix(".args" ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values lowerCamelCase = ArgumentParser() args_file_parser.add_argument(__a , type=__a , action="append" ) # Use only remaining args for further parsing (remove the args_file_flag) lowerCamelCase , lowerCamelCase = args_file_parser.parse_known_args(args=__a ) lowerCamelCase = vars(__a ).get(args_file_flag.lstrip("-" ) , __a ) if cmd_args_file_paths: args_files.extend([Path(__a ) for p in cmd_args_file_paths] ) lowerCamelCase = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last lowerCamelCase = file_args + args if args is not None else file_args + sys.argv[1:] lowerCamelCase , lowerCamelCase = self.parse_known_args(args=__a ) lowerCamelCase = [] for dtype in self.dataclass_types: lowerCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} lowerCamelCase = {k: v for k, v in vars(__a ).items() if k in keys} for k in keys: delattr(__a , __a ) lowerCamelCase = dtype(**__a ) outputs.append(__a ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(__a ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"""Some specified arguments are not used by the HfArgumentParser: {remaining_args}""" ) return (*outputs,) def _a (self , __a , __a = False ): '''simple docstring''' lowerCamelCase = set(args.keys() ) lowerCamelCase = [] for dtype in self.dataclass_types: lowerCamelCase = {f.name for f in dataclasses.fields(__a ) if f.init} lowerCamelCase = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) lowerCamelCase = dtype(**__a ) outputs.append(__a ) if not allow_extra_keys and unused_keys: raise ValueError(F"""Some keys are not used by the HfArgumentParser: {sorted(__a )}""" ) return tuple(__a ) def _a (self , __a , __a = False ): '''simple docstring''' with open(Path(__a ) , encoding="utf-8" ) as open_json_file: lowerCamelCase = json.loads(open_json_file.read() ) lowerCamelCase = self.parse_dict(__a , allow_extra_keys=__a ) return tuple(__a ) def _a (self , __a , __a = False ): '''simple docstring''' lowerCamelCase = self.parse_dict(yaml.safe_load(Path(__a ).read_text() ) , allow_extra_keys=__a ) return tuple(__a )
623
1
"""simple docstring""" import logging from transformers import PretrainedConfig __lowerCAmelCase : List[str] = logging.getLogger(__name__) __lowerCAmelCase : Optional[Any] = { "bertabs-finetuned-cnndm": "https://huggingface.co/remi/bertabs-finetuned-cnndm-extractive-abstractive-summarization/resolve/main/config.json", } class a_ ( __UpperCamelCase ): UpperCamelCase_ : Tuple = "bertabs" def __init__( self : Union[str, Any] , snake_case__ : Dict=30522 , snake_case__ : List[str]=512 , snake_case__ : Any=6 , snake_case__ : Optional[Any]=512 , snake_case__ : Optional[Any]=8 , snake_case__ : Union[str, Any]=512 , snake_case__ : int=0.2 , snake_case__ : Any=6 , snake_case__ : str=768 , snake_case__ : Optional[Any]=8 , snake_case__ : Dict=2048 , snake_case__ : Union[str, Any]=0.2 , **snake_case__ : Optional[int] , ): super().__init__(**snake_case__ ) lowerCAmelCase__ = vocab_size lowerCAmelCase__ = max_pos lowerCAmelCase__ = enc_layers lowerCAmelCase__ = enc_hidden_size lowerCAmelCase__ = enc_heads lowerCAmelCase__ = enc_ff_size lowerCAmelCase__ = enc_dropout lowerCAmelCase__ = dec_layers lowerCAmelCase__ = dec_hidden_size lowerCAmelCase__ = dec_heads lowerCAmelCase__ = dec_ff_size lowerCAmelCase__ = dec_dropout
719
"""simple docstring""" import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a_ : def __init__( self : Optional[int] , snake_case__ : List[Any]=2 , snake_case__ : Any=3 , snake_case__ : Union[str, Any]=64 , snake_case__ : Any=None ): lowerCAmelCase__ = np.random.default_rng(snake_case__ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self : Optional[Any] ): return self.length def __getitem__( self : List[str] , snake_case__ : Optional[int] ): return {"x": self.x[i], "y": self.y[i]} class a_ ( torch.nn.Module ): def __init__( self : List[str] , snake_case__ : str=0 , snake_case__ : Dict=0 , snake_case__ : Any=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : int , snake_case__ : Any=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a_ ( torch.nn.Module ): def __init__( self : Any , snake_case__ : Union[str, Any]=0 , snake_case__ : Union[str, Any]=0 , snake_case__ : List[Any]=False ): super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(snake_case__ ).float() ) lowerCAmelCase__ = True def _SCREAMING_SNAKE_CASE ( self : Tuple , snake_case__ : Optional[Any]=None ): if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _UpperCAmelCase ( lowerCamelCase__ , lowerCamelCase__ = 16 ): """simple docstring""" from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained("""bert-base-cased""" ) lowerCAmelCase__ = {"""train""": """tests/test_samples/MRPC/train.csv""", """validation""": """tests/test_samples/MRPC/dev.csv"""} lowerCAmelCase__ = load_dataset("""csv""" , data_files=lowerCamelCase__ ) lowerCAmelCase__ = datasets["""train"""].unique("""label""" ) lowerCAmelCase__ = {v: i for i, v in enumerate(lowerCamelCase__ )} def tokenize_function(lowerCamelCase__ ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples["""sentence1"""] , examples["""sentence2"""] , truncation=lowerCamelCase__ , max_length=lowerCamelCase__ , padding="""max_length""" ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples["""label"""]] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( lowerCamelCase__ , batched=lowerCamelCase__ , remove_columns=["""sentence1""", """sentence2""", """label"""] , ) def collate_fn(lowerCamelCase__ ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(lowerCamelCase__ , padding="""max_length""" , max_length=128 , return_tensors="""pt""" ) return tokenizer.pad(lowerCamelCase__ , padding="""longest""" , return_tensors="""pt""" ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets["""train"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets["""validation"""] , shuffle=lowerCamelCase__ , collate_fn=lowerCamelCase__ , batch_size=1 ) return train_dataloader, eval_dataloader
674
0
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() SCREAMING_SNAKE_CASE :str = logging.get_logger(__name__) def _lowerCAmelCase ( lowerCAmelCase_ :Tuple )->List[str]: '''simple docstring''' snake_case_ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: snake_case_ = 128 elif "12-12" in model_name: snake_case_ = 12 snake_case_ = 12 elif "14-14" in model_name: snake_case_ = 14 snake_case_ = 14 elif "16-16" in model_name: snake_case_ = 16 snake_case_ = 16 else: raise ValueError("Model not supported" ) snake_case_ = '''huggingface/label-files''' if "speech-commands" in model_name: snake_case_ = 35 snake_case_ = '''speech-commands-v2-id2label.json''' else: snake_case_ = 527 snake_case_ = '''audioset-id2label.json''' snake_case_ = json.load(open(hf_hub_download(lowerCAmelCase_ , lowerCAmelCase_ , repo_type="dataset" ) , "r" ) ) snake_case_ = {int(lowerCAmelCase_ ): v for k, v in idalabel.items()} snake_case_ = idalabel snake_case_ = {v: k for k, v in idalabel.items()} return config def _lowerCAmelCase ( lowerCAmelCase_ :Any )->int: '''simple docstring''' if "module.v" in name: snake_case_ = name.replace("module.v" , "audio_spectrogram_transformer" ) if "cls_token" in name: snake_case_ = name.replace("cls_token" , "embeddings.cls_token" ) if "dist_token" in name: snake_case_ = name.replace("dist_token" , "embeddings.distillation_token" ) if "pos_embed" in name: snake_case_ = name.replace("pos_embed" , "embeddings.position_embeddings" ) if "patch_embed.proj" in name: snake_case_ = name.replace("patch_embed.proj" , "embeddings.patch_embeddings.projection" ) # transformer blocks if "blocks" in name: snake_case_ = name.replace("blocks" , "encoder.layer" ) if "attn.proj" in name: snake_case_ = name.replace("attn.proj" , "attention.output.dense" ) if "attn" in name: snake_case_ = name.replace("attn" , "attention.self" ) if "norm1" in name: snake_case_ = name.replace("norm1" , "layernorm_before" ) if "norm2" in name: snake_case_ = name.replace("norm2" , "layernorm_after" ) if "mlp.fc1" in name: snake_case_ = name.replace("mlp.fc1" , "intermediate.dense" ) if "mlp.fc2" in name: snake_case_ = name.replace("mlp.fc2" , "output.dense" ) # final layernorm if "audio_spectrogram_transformer.norm" in name: snake_case_ = name.replace("audio_spectrogram_transformer.norm" , "audio_spectrogram_transformer.layernorm" ) # classifier head if "module.mlp_head.0" in name: snake_case_ = name.replace("module.mlp_head.0" , "classifier.layernorm" ) if "module.mlp_head.1" in name: snake_case_ = name.replace("module.mlp_head.1" , "classifier.dense" ) return name def _lowerCAmelCase ( lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Optional[Any] )->Any: '''simple docstring''' for key in orig_state_dict.copy().keys(): snake_case_ = orig_state_dict.pop(lowerCAmelCase_ ) if "qkv" in key: snake_case_ = key.split("." ) snake_case_ = int(key_split[3] ) snake_case_ = config.hidden_size if "weight" in key: snake_case_ = val[:dim, :] snake_case_ = val[dim : dim * 2, :] snake_case_ = val[-dim:, :] else: snake_case_ = val[:dim] snake_case_ = val[dim : dim * 2] snake_case_ = val[-dim:] else: snake_case_ = val return orig_state_dict def _lowerCAmelCase ( lowerCAmelCase_ :str )->Optional[Any]: '''simple docstring''' snake_case_ = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(lowerCAmelCase_ , lowerCAmelCase_ ) @torch.no_grad() def _lowerCAmelCase ( lowerCAmelCase_ :Dict , lowerCAmelCase_ :Optional[int] , lowerCAmelCase_ :Any=False )->Tuple: '''simple docstring''' snake_case_ = get_audio_spectrogram_transformer_config(lowerCAmelCase_ ) snake_case_ = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict snake_case_ = model_name_to_url[model_name] snake_case_ = torch.hub.load_state_dict_from_url(lowerCAmelCase_ , map_location="cpu" ) # remove some keys remove_keys(lowerCAmelCase_ ) # rename some keys snake_case_ = convert_state_dict(lowerCAmelCase_ , lowerCAmelCase_ ) # load 🤗 model snake_case_ = ASTForAudioClassification(lowerCAmelCase_ ) model.eval() model.load_state_dict(lowerCAmelCase_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 snake_case_ = -4.2_6_7_7_3_9_3 if '''speech-commands''' not in model_name else -6.8_4_5_9_7_8 snake_case_ = 4.5_6_8_9_9_7_4 if '''speech-commands''' not in model_name else 5.5_6_5_4_5_2_6 snake_case_ = 1_024 if '''speech-commands''' not in model_name else 128 snake_case_ = ASTFeatureExtractor(mean=lowerCAmelCase_ , std=lowerCAmelCase_ , max_length=lowerCAmelCase_ ) if "speech-commands" in model_name: snake_case_ = load_dataset("speech_commands" , "v0.02" , split="validation" ) snake_case_ = dataset[0]['''audio''']['''array'''] else: snake_case_ = hf_hub_download( repo_id="nielsr/audio-spectogram-transformer-checkpoint" , filename="sample_audio.flac" , repo_type="dataset" , ) snake_case_ = torchaudio.load(lowerCAmelCase_ ) snake_case_ = waveform.squeeze().numpy() snake_case_ = feature_extractor(lowerCAmelCase_ , sampling_rate=16_000 , return_tensors="pt" ) # forward pass snake_case_ = model(**lowerCAmelCase_ ) snake_case_ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": snake_case_ = torch.tensor([-0.8_7_6_0, -7.0_0_4_2, -8.6_6_0_2] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": snake_case_ = torch.tensor([-1.1_9_8_6, -7.0_9_0_3, -8.2_7_1_8] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": snake_case_ = torch.tensor([-2.6_1_2_8, -8.0_0_8_0, -9.4_3_4_4] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": snake_case_ = torch.tensor([-1.5_0_8_0, -7.4_5_3_4, -8.8_9_1_7] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": snake_case_ = torch.tensor([-0.5_0_5_0, -6.5_8_3_3, -8.0_8_4_3] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": snake_case_ = torch.tensor([-0.3_8_2_6, -7.0_3_3_6, -8.2_4_1_3] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": snake_case_ = torch.tensor([-1.2_1_1_3, -6.9_1_0_1, -8.3_4_7_0] ) elif model_name == "ast-finetuned-speech-commands-v2": snake_case_ = torch.tensor([6.1_5_8_9, -8.0_5_6_6, -8.7_9_8_4] ) else: raise ValueError("Unknown model name" ) if not torch.allclose(logits[0, :3] , lowerCAmelCase_ , atol=1e-4 ): raise ValueError("Logits don\'t match" ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: Path(lowerCAmelCase_ ).mkdir(exist_ok=lowerCAmelCase_ ) print(F'''Saving model {model_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(lowerCAmelCase_ ) print(F'''Saving feature extractor to {pytorch_dump_folder_path}''' ) feature_extractor.save_pretrained(lowerCAmelCase_ ) if push_to_hub: print("Pushing model and feature extractor to the hub..." ) model.push_to_hub(F'''MIT/{model_name}''' ) feature_extractor.push_to_hub(F'''MIT/{model_name}''' ) if __name__ == "__main__": SCREAMING_SNAKE_CASE :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''ast-finetuned-audioset-10-10-0.4593''', type=str, help='''Name of the Audio Spectrogram Transformer model you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) SCREAMING_SNAKE_CASE :Optional[Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
283
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ = logging.get_logger(__name__) lowerCAmelCase_ = { """naver-clova-ix/donut-base""": """https://huggingface.co/naver-clova-ix/donut-base/resolve/main/config.json""", # See all Donut models at https://huggingface.co/models?filter=donut-swin } class _lowerCAmelCase ( _lowercase ): A__ = 'donut-swin' A__ = { 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self , __UpperCAmelCase=224 , __UpperCAmelCase=4 , __UpperCAmelCase=3 , __UpperCAmelCase=96 , __UpperCAmelCase=[2, 2, 6, 2] , __UpperCAmelCase=[3, 6, 12, 24] , __UpperCAmelCase=7 , __UpperCAmelCase=4.0 , __UpperCAmelCase=True , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.0 , __UpperCAmelCase=0.1 , __UpperCAmelCase="gelu" , __UpperCAmelCase=False , __UpperCAmelCase=0.02 , __UpperCAmelCase=1e-5 , **__UpperCAmelCase , ): super().__init__(**__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = image_size lowerCAmelCase__ : List[str] = patch_size lowerCAmelCase__ : int = num_channels lowerCAmelCase__ : Optional[Any] = embed_dim lowerCAmelCase__ : int = depths lowerCAmelCase__ : Dict = len(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = num_heads lowerCAmelCase__ : Dict = window_size lowerCAmelCase__ : str = mlp_ratio lowerCAmelCase__ : Optional[int] = qkv_bias lowerCAmelCase__ : Any = hidden_dropout_prob lowerCAmelCase__ : Union[str, Any] = attention_probs_dropout_prob lowerCAmelCase__ : List[str] = drop_path_rate lowerCAmelCase__ : Tuple = hidden_act lowerCAmelCase__ : List[str] = use_absolute_embeddings lowerCAmelCase__ : Dict = layer_norm_eps lowerCAmelCase__ : Any = initializer_range # we set the hidden_size attribute in order to make Swin work with VisionEncoderDecoderModel # this indicates the channel dimension after the last stage of the model lowerCAmelCase__ : List[Any] = int(embed_dim * 2 ** (len(__UpperCAmelCase ) - 1) )
678
0
import flax.linen as nn import jax.numpy as jnp from .attention_flax import FlaxTransformeraDModel from .resnet_flax import FlaxDownsampleaD, FlaxResnetBlockaD, FlaxUpsampleaD class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Optional[Any] = [] _lowerCAmelCase :List[Any] = [] for i in range(self.num_layers ): _lowerCAmelCase :List[str] = self.in_channels if i == 0 else self.out_channels _lowerCAmelCase :str = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :Dict = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = resnets _lowerCAmelCase :Tuple = attentions if self.add_downsample: _lowerCAmelCase :List[Any] = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Tuple , _UpperCAmelCase: Tuple , _UpperCAmelCase: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: List[str]=True ): _lowerCAmelCase :Optional[int] = () for resnet, attn in zip(self.resnets , self.attentions ): _lowerCAmelCase :List[str] = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _lowerCAmelCase :int = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase :Any = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: Dict ): _lowerCAmelCase :str = [] for i in range(self.num_layers ): _lowerCAmelCase :Optional[int] = self.in_channels if i == 0 else self.out_channels _lowerCAmelCase :str = FlaxResnetBlockaD( in_channels=_UpperCAmelCase , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :Tuple = resnets if self.add_downsample: _lowerCAmelCase :Dict = FlaxDownsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Dict , _UpperCAmelCase: Tuple , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: int=True ): _lowerCAmelCase :Union[str, Any] = () for resnet in self.resnets: _lowerCAmelCase :Tuple = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) output_states += (hidden_states,) if self.add_downsample: _lowerCAmelCase :Dict = self.downsamplers_a(_UpperCAmelCase ) output_states += (hidden_states,) return hidden_states, output_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: Tuple ): _lowerCAmelCase :Dict = [] _lowerCAmelCase :Optional[Any] = [] for i in range(self.num_layers ): _lowerCAmelCase :Dict = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase :Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase :int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :List[Any] = FlaxTransformeraDModel( in_channels=self.out_channels , n_heads=self.num_attention_heads , d_head=self.out_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , only_cross_attention=self.only_cross_attention , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _lowerCAmelCase :str = resnets _lowerCAmelCase :List[str] = attentions if self.add_upsample: _lowerCAmelCase :Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Optional[int] , _UpperCAmelCase: Any , _UpperCAmelCase: int , _UpperCAmelCase: Any , _UpperCAmelCase: str , _UpperCAmelCase: Tuple=True ): for resnet, attn in zip(self.resnets , self.attentions ): # pop res hidden states _lowerCAmelCase :str = res_hidden_states_tuple[-1] _lowerCAmelCase :Tuple = res_hidden_states_tuple[:-1] _lowerCAmelCase :Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCAmelCase :Any = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _lowerCAmelCase :List[Any] = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _lowerCAmelCase :int = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : int lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : bool = True lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: int ): _lowerCAmelCase :Union[str, Any] = [] for i in range(self.num_layers ): _lowerCAmelCase :List[str] = self.in_channels if (i == self.num_layers - 1) else self.out_channels _lowerCAmelCase :Optional[Any] = self.prev_output_channel if i == 0 else self.out_channels _lowerCAmelCase :int = FlaxResnetBlockaD( in_channels=resnet_in_channels + res_skip_channels , out_channels=self.out_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :Optional[int] = resnets if self.add_upsample: _lowerCAmelCase :Union[str, Any] = FlaxUpsampleaD(self.out_channels , dtype=self.dtype ) def __call__( self: Optional[Any] , _UpperCAmelCase: Any , _UpperCAmelCase: Any , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[Any]=True ): for resnet in self.resnets: # pop res hidden states _lowerCAmelCase :List[str] = res_hidden_states_tuple[-1] _lowerCAmelCase :int = res_hidden_states_tuple[:-1] _lowerCAmelCase :Tuple = jnp.concatenate((hidden_states, res_hidden_states) , axis=-1 ) _lowerCAmelCase :Union[str, Any] = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) if self.add_upsample: _lowerCAmelCase :str = self.upsamplers_a(_UpperCAmelCase ) return hidden_states class UpperCAmelCase_ (nn.Module ): """simple docstring""" lowerCamelCase : int lowerCamelCase : float = 0.0 lowerCamelCase : int = 1 lowerCamelCase : int = 1 lowerCamelCase : bool = False lowerCamelCase : bool = False lowerCamelCase : jnp.dtype = jnp.floataa def SCREAMING_SNAKE_CASE__ ( self: List[Any] ): # there is always at least one resnet _lowerCAmelCase :Optional[int] = [ FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) ] _lowerCAmelCase :List[str] = [] for _ in range(self.num_layers ): _lowerCAmelCase :Optional[int] = FlaxTransformeraDModel( in_channels=self.in_channels , n_heads=self.num_attention_heads , d_head=self.in_channels // self.num_attention_heads , depth=1 , use_linear_projection=self.use_linear_projection , use_memory_efficient_attention=self.use_memory_efficient_attention , dtype=self.dtype , ) attentions.append(_UpperCAmelCase ) _lowerCAmelCase :Dict = FlaxResnetBlockaD( in_channels=self.in_channels , out_channels=self.in_channels , dropout_prob=self.dropout , dtype=self.dtype , ) resnets.append(_UpperCAmelCase ) _lowerCAmelCase :str = resnets _lowerCAmelCase :Optional[Any] = attentions def __call__( self: List[str] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict , _UpperCAmelCase: List[Any]=True ): _lowerCAmelCase :Any = self.resnets[0](_UpperCAmelCase , _UpperCAmelCase ) for attn, resnet in zip(self.attentions , self.resnets[1:] ): _lowerCAmelCase :Union[str, Any] = attn(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) _lowerCAmelCase :Tuple = resnet(_UpperCAmelCase , _UpperCAmelCase , deterministic=_UpperCAmelCase ) return hidden_states
382
# Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse from ...utils.dataclasses import ( ComputeEnvironment, DistributedType, DynamoBackend, PrecisionType, SageMakerDistributedType, ) from ..menu import BulletMenu a = [ """EAGER""", """AOT_EAGER""", """INDUCTOR""", """NVFUSER""", """AOT_NVFUSER""", """AOT_CUDAGRAPHS""", """OFI""", """FX2TRT""", """ONNXRT""", """IPEX""", ] def UpperCamelCase_( __magic_name__ : Tuple , __magic_name__ : str=None , __magic_name__ : str=None , __magic_name__ : Dict=None ): """simple docstring""" _lowerCAmelCase :Union[str, Any] = True while ask_again: _lowerCAmelCase :int = input(__magic_name__ ) try: if default is not None and len(__magic_name__ ) == 0: return default return convert_value(__magic_name__ ) if convert_value is not None else result except Exception: if error_message is not None: print(__magic_name__ ) def UpperCamelCase_( __magic_name__ : int , __magic_name__ : str=[] , __magic_name__ : Optional[Any]=None , __magic_name__ : List[str]=0 ): """simple docstring""" _lowerCAmelCase :Tuple = BulletMenu(__magic_name__ , __magic_name__ ) _lowerCAmelCase :int = menu.run(default_choice=__magic_name__ ) return convert_value(__magic_name__ ) if convert_value is not None else result def UpperCamelCase_( __magic_name__ : int ): """simple docstring""" _lowerCAmelCase :int = int(__magic_name__ ) return ComputeEnvironment(['LOCAL_MACHINE', 'AMAZON_SAGEMAKER'][value] ) def UpperCamelCase_( __magic_name__ : Union[str, Any] ): """simple docstring""" _lowerCAmelCase :int = int(__magic_name__ ) return DistributedType(['NO', 'MULTI_CPU', 'MULTI_XPU', 'MULTI_GPU', 'MULTI_NPU', 'TPU'][value] ) def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Tuple = int(__magic_name__ ) return DynamoBackend(DYNAMO_BACKENDS[value] ).value def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" _lowerCAmelCase :Optional[Any] = int(__magic_name__ ) return PrecisionType(['no', 'fp16', 'bf16', 'fp8'][value] ) def UpperCamelCase_( __magic_name__ : Dict ): """simple docstring""" _lowerCAmelCase :Tuple = int(__magic_name__ ) return SageMakerDistributedType(['NO', 'DATA_PARALLEL', 'MODEL_PARALLEL'][value] ) def UpperCamelCase_( __magic_name__ : Any ): """simple docstring""" return {"yes": True, "no": False}[value.lower()] class UpperCAmelCase_ (argparse.RawDescriptionHelpFormatter ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self: List[Any] , _UpperCAmelCase: str , _UpperCAmelCase: Optional[Any] , _UpperCAmelCase: Optional[int] , _UpperCAmelCase: Dict ): _lowerCAmelCase :int = super()._format_usage(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ) _lowerCAmelCase :List[Any] = usage.replace('<command> [<args>] ' , '' ) return usage
382
1
'''simple docstring''' def _SCREAMING_SNAKE_CASE ( ): """simple docstring""" a_ : Union[str, Any] = [] a_ : Optional[Any] = 1 while len(UpperCamelCase__ ) < 1E6: constant.append(str(UpperCamelCase__ ) ) i += 1 a_ : Optional[int] = """""".join(UpperCamelCase__ ) return ( int(constant[0] ) * int(constant[9] ) * int(constant[99] ) * int(constant[999] ) * int(constant[9999] ) * int(constant[9_9999] ) * int(constant[99_9999] ) ) if __name__ == "__main__": print(solution())
442
'''simple docstring''' import os from typing import Dict, List, Union import tensorflow as tf from keras_nlp.tokenizers import BytePairTokenizer from tensorflow_text import pad_model_inputs from .tokenization_gpta import GPTaTokenizer class SCREAMING_SNAKE_CASE ( tf.keras.layers.Layer ): def __init__( self : List[Any] , lowercase__ : Dict[str, int] , lowercase__ : List[str] , lowercase__ : int = None , lowercase__ : int = None ): '''simple docstring''' super().__init__() a_ : Optional[Any] = pad_token_id a_ : str = max_length a_ : List[str] = vocab a_ : Union[str, Any] = merges a_ : Union[str, Any] = BytePairTokenizer(lowercase__ , lowercase__ , sequence_length=lowercase__ ) @classmethod def lowercase_ ( cls : List[Any] , lowercase__ : GPTaTokenizer , *lowercase__ : Optional[Any] , **lowercase__ : int ): '''simple docstring''' a_ : str = [""" """.join(lowercase__ ) for m in tokenizer.bpe_ranks.keys()] a_ : Any = tokenizer.get_vocab() return cls(lowercase__ , lowercase__ , *lowercase__ , **lowercase__ ) @classmethod def lowercase_ ( cls : Dict , lowercase__ : Union[str, os.PathLike] , *lowercase__ : str , **lowercase__ : Optional[int] ): '''simple docstring''' a_ : Optional[int] = GPTaTokenizer.from_pretrained(lowercase__ , *lowercase__ , **lowercase__ ) return cls.from_tokenizer(lowercase__ , *lowercase__ , **lowercase__ ) @classmethod def lowercase_ ( cls : Dict , lowercase__ : Optional[Any] ): '''simple docstring''' return cls(**lowercase__ ) def lowercase_ ( self : Optional[Any] ): '''simple docstring''' return { "vocab": self.vocab, "merges": self.merges, "max_length": self.max_length, "pad_token_id": self.pad_token_id, } def lowercase_ ( self : Dict , lowercase__ : Union[str, Any] , lowercase__ : int = None ): '''simple docstring''' a_ : List[str] = self.tf_tokenizer(lowercase__ ) a_ : int = tf.ones_like(lowercase__ ) if self.pad_token_id is not None: # pad the tokens up to max length a_ : int = max_length if max_length is not None else self.max_length if max_length is not None: a_ , a_ : int = pad_model_inputs( lowercase__ , max_seq_length=lowercase__ , pad_value=self.pad_token_id ) return {"attention_mask": attention_mask, "input_ids": input_ids}
442
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import HeunDiscreteScheduler, PriorTransformer, ShapEPipeline from diffusers.pipelines.shap_e import ShapERenderer from diffusers.utils import load_numpy, slow from diffusers.utils.testing_utils import require_torch_gpu, torch_device from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference class a ( UpperCAmelCase__ ,unittest.TestCase ): UpperCAmelCase__ : Dict = ShapEPipeline UpperCAmelCase__ : List[Any] = ["prompt"] UpperCAmelCase__ : Union[str, Any] = ["prompt"] UpperCAmelCase__ : str = [ "num_images_per_prompt", "num_inference_steps", "generator", "latents", "guidance_scale", "frame_size", "output_type", "return_dict", ] UpperCAmelCase__ : Optional[Any] = False @property def SCREAMING_SNAKE_CASE__ ( self : int ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : List[str] ): return 32 @property def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): return self.time_input_dim * 4 @property def SCREAMING_SNAKE_CASE__ ( self : Any ): return 8 @property def SCREAMING_SNAKE_CASE__ ( self : Tuple ): __lowerCamelCase: str = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) return tokenizer @property def SCREAMING_SNAKE_CASE__ ( self : str ): torch.manual_seed(0 ) __lowerCamelCase: Optional[Any] = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=self.text_embedder_hidden_size , projection_dim=self.text_embedder_hidden_size , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) return CLIPTextModelWithProjection(lowerCamelCase__ ) @property def SCREAMING_SNAKE_CASE__ ( self : int ): torch.manual_seed(0 ) __lowerCamelCase: Union[str, Any] = { "num_attention_heads": 2, "attention_head_dim": 16, "embedding_dim": self.time_input_dim, "num_embeddings": 32, "embedding_proj_dim": self.text_embedder_hidden_size, "time_embed_dim": self.time_embed_dim, "num_layers": 1, "clip_embed_dim": self.time_input_dim * 2, "additional_embeddings": 0, "time_embed_act_fn": "gelu", "norm_in_type": "layer", "encoder_hid_proj_type": None, "added_emb_type": None, } __lowerCamelCase: int = PriorTransformer(**lowerCamelCase__ ) return model @property def SCREAMING_SNAKE_CASE__ ( self : str ): torch.manual_seed(0 ) __lowerCamelCase: str = { "param_shapes": ( (self.renderer_dim, 93), (self.renderer_dim, 8), (self.renderer_dim, 8), (self.renderer_dim, 8), ), "d_latent": self.time_input_dim, "d_hidden": self.renderer_dim, "n_output": 12, "background": ( 0.1, 0.1, 0.1, ), } __lowerCamelCase: int = ShapERenderer(**lowerCamelCase__ ) return model def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): __lowerCamelCase: int = self.dummy_prior __lowerCamelCase: Optional[Any] = self.dummy_text_encoder __lowerCamelCase: Optional[Any] = self.dummy_tokenizer __lowerCamelCase: Dict = self.dummy_renderer __lowerCamelCase: Tuple = HeunDiscreteScheduler( beta_schedule="""exp""" , num_train_timesteps=1024 , prediction_type="""sample""" , use_karras_sigmas=lowerCamelCase__ , clip_sample=lowerCamelCase__ , clip_sample_range=1.0 , ) __lowerCamelCase: Optional[int] = { "prior": prior, "text_encoder": text_encoder, "tokenizer": tokenizer, "renderer": renderer, "scheduler": scheduler, } return components def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : List[str]=0 ): if str(lowerCamelCase__ ).startswith("""mps""" ): __lowerCamelCase: Dict = torch.manual_seed(lowerCamelCase__ ) else: __lowerCamelCase: int = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) __lowerCamelCase: Any = { "prompt": "horse", "generator": generator, "num_inference_steps": 1, "frame_size": 32, "output_type": "np", } return inputs def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): __lowerCamelCase: Tuple = "cpu" __lowerCamelCase: Dict = self.get_dummy_components() __lowerCamelCase: Optional[Any] = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase: Optional[Any] = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase: Optional[Any] = pipe(**self.get_dummy_inputs(lowerCamelCase__ ) ) __lowerCamelCase: str = output.images[0] __lowerCamelCase: List[str] = image[0, -3:, -3:, -1] assert image.shape == (20, 32, 32, 3) __lowerCamelCase: Optional[Any] = np.array( [ 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, 0.0003_9216, ] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 def SCREAMING_SNAKE_CASE__ ( self : Tuple ): self._test_inference_batch_consistent(batch_sizes=[1, 2] ) def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): __lowerCamelCase: int = torch_device == "cpu" __lowerCamelCase: int = True self._test_inference_batch_single_identical( batch_size=2 , test_max_difference=lowerCamelCase__ , relax_max_difference=lowerCamelCase__ , ) def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): __lowerCamelCase: int = self.get_dummy_components() __lowerCamelCase: Union[str, Any] = self.pipeline_class(**lowerCamelCase__ ) __lowerCamelCase: str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase: List[Any] = 1 __lowerCamelCase: Union[str, Any] = 2 __lowerCamelCase: int = self.get_dummy_inputs(lowerCamelCase__ ) for key in inputs.keys(): if key in self.batch_params: __lowerCamelCase: Any = batch_size * [inputs[key]] __lowerCamelCase: str = pipe(**lowerCamelCase__ , num_images_per_prompt=lowerCamelCase__ )[0] assert images.shape[0] == batch_size * num_images_per_prompt @slow @require_torch_gpu class a ( unittest.TestCase ): def SCREAMING_SNAKE_CASE__ ( self : Any ): super().tearDown() gc.collect() torch.cuda.empty_cache() def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): __lowerCamelCase: Optional[int] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/shap_e/test_shap_e_np_out.npy""" ) __lowerCamelCase: Optional[Any] = ShapEPipeline.from_pretrained("""openai/shap-e""" ) __lowerCamelCase: Dict = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) __lowerCamelCase: Dict = torch.Generator(device=lowerCamelCase__ ).manual_seed(0 ) __lowerCamelCase: Optional[Any] = pipe( """a shark""" , generator=lowerCamelCase__ , guidance_scale=15.0 , num_inference_steps=64 , frame_size=64 , output_type="""np""" , ).images[0] assert images.shape == (20, 64, 64, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ )
718
_A : Tuple = '''ABCDEFGHIJKLMNOPQRSTUVWXYZ''' def __lowerCAmelCase ( ) -> None: __lowerCamelCase: Optional[int] = input("""Enter message: """ ) __lowerCamelCase: Dict = input("""Enter key [alphanumeric]: """ ) __lowerCamelCase: List[Any] = input("""Encrypt/Decrypt [e/d]: """ ) if mode.lower().startswith("""e""" ): __lowerCamelCase: Optional[int] = """encrypt""" __lowerCamelCase: Optional[int] = encrypt_message(snake_case , snake_case ) elif mode.lower().startswith("""d""" ): __lowerCamelCase: Union[str, Any] = """decrypt""" __lowerCamelCase: Optional[Any] = decrypt_message(snake_case , snake_case ) print(f'\n{mode.title()}ed message:' ) print(snake_case ) def __lowerCAmelCase ( snake_case : str , snake_case : str ) -> str: return translate_message(snake_case , snake_case , """encrypt""" ) def __lowerCAmelCase ( snake_case : str , snake_case : str ) -> str: return translate_message(snake_case , snake_case , """decrypt""" ) def __lowerCAmelCase ( snake_case : str , snake_case : str , snake_case : str ) -> str: __lowerCamelCase: Any = [] __lowerCamelCase: Optional[int] = 0 __lowerCamelCase: Any = key.upper() for symbol in message: __lowerCamelCase: int = LETTERS.find(symbol.upper() ) if num != -1: if mode == "encrypt": num += LETTERS.find(key[key_index] ) elif mode == "decrypt": num -= LETTERS.find(key[key_index] ) num %= len(snake_case ) if symbol.isupper(): translated.append(LETTERS[num] ) elif symbol.islower(): translated.append(LETTERS[num].lower() ) key_index += 1 if key_index == len(snake_case ): __lowerCamelCase: Union[str, Any] = 0 else: translated.append(snake_case ) return "".join(snake_case ) if __name__ == "__main__": main()
189
0