code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __SCREAMING_SNAKE_CASE = logging.get_logger(__name__) __SCREAMING_SNAKE_CASE = {'ctrl': 'https://huggingface.co/ctrl/resolve/main/config.json'} class __snake_case ( A__ ): """simple docstring""" lowerCAmelCase_ : Optional[Any] = '''ctrl''' lowerCAmelCase_ : str = ['''past_key_values'''] lowerCAmelCase_ : Optional[Any] = { '''max_position_embeddings''': '''n_positions''', '''hidden_size''': '''n_embd''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self :Union[str, Any] , UpperCamelCase__ :List[str]=246_534 , UpperCamelCase__ :Tuple=256 , UpperCamelCase__ :Any=1_280 , UpperCamelCase__ :Dict=8_192 , UpperCamelCase__ :Dict=48 , UpperCamelCase__ :List[str]=16 , UpperCamelCase__ :Dict=0.1 , UpperCamelCase__ :Union[str, Any]=0.1 , UpperCamelCase__ :Optional[Any]=1E-6 , UpperCamelCase__ :Dict=0.02 , UpperCamelCase__ :List[Any]=True , **UpperCamelCase__ :Tuple , ): _a = vocab_size _a = n_positions _a = n_embd _a = n_layer _a = n_head _a = dff _a = resid_pdrop _a = embd_pdrop _a = layer_norm_epsilon _a = initializer_range _a = use_cache super().__init__(**UpperCamelCase__ )
388
def lowerCamelCase__ (_UpperCAmelCase = 10 , _UpperCAmelCase = 1000 , _UpperCAmelCase = True): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase) and isinstance(_UpperCAmelCase , _UpperCAmelCase) and isinstance(_UpperCAmelCase , _UpperCAmelCase) ), "Invalid type of value(s) specified to function!" if min_val > max_val: raise ValueError('Invalid value for min_val or max_val (min_value < max_value)') return min_val if option else max_val def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase): return int((number_a + number_a) / 2) def lowerCamelCase__ (_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase): assert ( isinstance(_UpperCAmelCase , _UpperCAmelCase) and isinstance(_UpperCAmelCase , _UpperCAmelCase) and isinstance(_UpperCAmelCase , _UpperCAmelCase) ), 'argument values must be type of "int"' if lower > higher: raise ValueError('argument value for lower and higher must be(lower > higher)') if not lower < to_guess < higher: raise ValueError( 'guess value must be within the range of lower and higher value') def answer(_UpperCAmelCase) -> str: if number > to_guess: return "high" elif number < to_guess: return "low" else: return "same" print('started...') SCREAMING_SNAKE_CASE = lower SCREAMING_SNAKE_CASE = higher SCREAMING_SNAKE_CASE = [] while True: SCREAMING_SNAKE_CASE = get_avg(_UpperCAmelCase , _UpperCAmelCase) last_numbers.append(_UpperCAmelCase) if answer(_UpperCAmelCase) == "low": SCREAMING_SNAKE_CASE = number elif answer(_UpperCAmelCase) == "high": SCREAMING_SNAKE_CASE = number else: break print(F'''guess the number : {last_numbers[-1]}''') print(F'''details : {last_numbers!s}''') def lowerCamelCase__ (): SCREAMING_SNAKE_CASE = int(input('Enter lower value : ').strip()) SCREAMING_SNAKE_CASE = int(input('Enter high value : ').strip()) SCREAMING_SNAKE_CASE = int(input('Enter value to guess : ').strip()) guess_the_number(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase) if __name__ == "__main__": main()
73
0
import copy import json import os import tempfile from transformers import is_torch_available from .test_configuration_utils import config_common_kwargs class __UpperCAmelCase ( snake_case__ ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=None , SCREAMING_SNAKE_CASE=True , SCREAMING_SNAKE_CASE=None , **SCREAMING_SNAKE_CASE ) -> int: """simple docstring""" UpperCamelCase = parent UpperCamelCase = config_class UpperCamelCase = has_text_modality UpperCamelCase = kwargs UpperCamelCase = common_properties def __lowerCAmelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) UpperCamelCase = ( ["hidden_size", "num_attention_heads", "num_hidden_layers"] if self.common_properties is None else self.common_properties ) # Add common fields for text models if self.has_text_modality: common_properties.extend(["vocab_size"] ) # Test that config has the common properties as getters for prop in common_properties: self.parent.assertTrue(hasattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , msg=f'''`{prop}` does not exist''' ) # Test that config has the common properties as setter for idx, name in enumerate(SCREAMING_SNAKE_CASE ): try: setattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , msg=f'''`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass # Test if config class can be called with Config(prop_name=..) for idx, name in enumerate(SCREAMING_SNAKE_CASE ): try: UpperCamelCase = self.config_class(**{name: idx} ) self.parent.assertEqual( getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) , SCREAMING_SNAKE_CASE , msg=f'''`{name} value {idx} expected, but was {getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE )}''' ) except NotImplementedError: # Some models might not be able to implement setters for common_properties # In that case, a NotImplementedError is raised pass def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) UpperCamelCase = json.loads(config.to_json_string() ) for key, value in self.inputs_dict.items(): self.parent.assertEqual(obj[key] , SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Optional[int]: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE , "config.json" ) config_first.to_json_file(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.config_class.from_json_file(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self ) -> int: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) with tempfile.TemporaryDirectory() as tmpdirname: config_first.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self ) -> Any: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict ) UpperCamelCase = "test" with tempfile.TemporaryDirectory() as tmpdirname: UpperCamelCase = os.path.join(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) config_first.save_pretrained(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.config_class.from_pretrained(SCREAMING_SNAKE_CASE , subfolder=SCREAMING_SNAKE_CASE ) self.parent.assertEqual(config_second.to_dict() , config_first.to_dict() ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" UpperCamelCase = self.config_class(**self.inputs_dict , num_labels=5 ) self.parent.assertEqual(len(config.idalabel ) , 5 ) self.parent.assertEqual(len(config.labelaid ) , 5 ) UpperCamelCase = 3 self.parent.assertEqual(len(config.idalabel ) , 3 ) self.parent.assertEqual(len(config.labelaid ) , 3 ) def __lowerCAmelCase ( self ) -> Dict: """simple docstring""" if self.config_class.is_composition: return UpperCamelCase = self.config_class() self.parent.assertIsNotNone(SCREAMING_SNAKE_CASE ) def __lowerCAmelCase ( self ) -> Tuple: """simple docstring""" UpperCamelCase = copy.deepcopy(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.config_class(**SCREAMING_SNAKE_CASE ) UpperCamelCase = [] for key, value in config_common_kwargs.items(): if key == "torch_dtype": if not is_torch_available(): continue else: import torch if config.torch_dtype != torch.floataa: wrong_values.append(("torch_dtype", config.torch_dtype, torch.floataa) ) elif getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) != value: wrong_values.append((key, getattr(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ), value) ) if len(SCREAMING_SNAKE_CASE ) > 0: UpperCamelCase = "\n".join([f'''- {v[0]}: got {v[1]} instead of {v[2]}''' for v in wrong_values] ) raise ValueError(f'''The following keys were not properly set in the config:\n{errors}''' ) def __lowerCAmelCase ( self ) -> str: """simple docstring""" self.create_and_test_config_common_properties() self.create_and_test_config_to_json_string() self.create_and_test_config_to_json_file() self.create_and_test_config_from_and_save_pretrained() self.create_and_test_config_from_and_save_pretrained_subfolder() self.create_and_test_config_with_num_labels() self.check_config_can_be_init_without_params() self.check_config_arguments_init()
414
from __future__ import annotations import time from math import sqrt # 1 for manhattan, 0 for euclidean __a : int = 0 __a : List[str] = [ [0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [1, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0], ] __a : Any = [[-1, 0], [0, -1], [1, 0], [0, 1]] # up, left, down, right __a : Union[str, Any] = tuple[int, int] class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , ) -> None: """simple docstring""" UpperCamelCase = pos_x UpperCamelCase = pos_y UpperCamelCase = (pos_y, pos_x) UpperCamelCase = goal_x UpperCamelCase = goal_y UpperCamelCase = g_cost UpperCamelCase = parent UpperCamelCase = self.calculate_heuristic() UpperCamelCase = self.g_cost + self.h_cost def __lowerCAmelCase ( self ) -> float: """simple docstring""" UpperCamelCase = self.pos_x - self.goal_x UpperCamelCase = self.pos_y - self.goal_y if HEURISTIC == 1: return abs(SCREAMING_SNAKE_CASE ) + abs(SCREAMING_SNAKE_CASE ) else: return sqrt(dy**2 + dx**2 ) def __lt__( self , SCREAMING_SNAKE_CASE ) -> bool: """simple docstring""" return self.f_cost < other.f_cost class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> str: """simple docstring""" UpperCamelCase = Node(start[1] , start[0] , goal[1] , goal[0] , 0 , SCREAMING_SNAKE_CASE ) UpperCamelCase = Node(goal[1] , goal[0] , goal[1] , goal[0] , 99999 , SCREAMING_SNAKE_CASE ) UpperCamelCase = [self.start] UpperCamelCase = [] UpperCamelCase = False def __lowerCAmelCase ( self ) -> list[TPosition]: """simple docstring""" while self.open_nodes: # Open Nodes are sorted using __lt__ self.open_nodes.sort() UpperCamelCase = self.open_nodes.pop(0 ) if current_node.pos == self.target.pos: return self.retrace_path(SCREAMING_SNAKE_CASE ) self.closed_nodes.append(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.get_successors(SCREAMING_SNAKE_CASE ) for child_node in successors: if child_node in self.closed_nodes: continue if child_node not in self.open_nodes: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path UpperCamelCase = self.open_nodes.pop(self.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: self.open_nodes.append(SCREAMING_SNAKE_CASE ) else: self.open_nodes.append(SCREAMING_SNAKE_CASE ) return [self.start.pos] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[Node]: """simple docstring""" UpperCamelCase = [] for action in delta: UpperCamelCase = parent.pos_x + action[1] UpperCamelCase = parent.pos_y + action[0] if not (0 <= pos_x <= len(grid[0] ) - 1 and 0 <= pos_y <= len(SCREAMING_SNAKE_CASE ) - 1): continue if grid[pos_y][pos_x] != 0: continue successors.append( Node( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , self.target.pos_y , self.target.pos_x , parent.g_cost + 1 , SCREAMING_SNAKE_CASE , ) ) return successors def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE ) -> list[TPosition]: """simple docstring""" UpperCamelCase = node UpperCamelCase = [] while current_node is not None: path.append((current_node.pos_y, current_node.pos_x) ) UpperCamelCase = current_node.parent path.reverse() return path class __UpperCAmelCase : """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> None: """simple docstring""" UpperCamelCase = AStar(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = AStar(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) UpperCamelCase = False def __lowerCAmelCase ( self ) -> list[TPosition]: """simple docstring""" while self.fwd_astar.open_nodes or self.bwd_astar.open_nodes: self.fwd_astar.open_nodes.sort() self.bwd_astar.open_nodes.sort() UpperCamelCase = self.fwd_astar.open_nodes.pop(0 ) UpperCamelCase = self.bwd_astar.open_nodes.pop(0 ) if current_bwd_node.pos == current_fwd_node.pos: return self.retrace_bidirectional_path( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) self.fwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE ) self.bwd_astar.closed_nodes.append(SCREAMING_SNAKE_CASE ) UpperCamelCase = current_bwd_node UpperCamelCase = current_fwd_node UpperCamelCase = { self.fwd_astar: self.fwd_astar.get_successors(SCREAMING_SNAKE_CASE ), self.bwd_astar: self.bwd_astar.get_successors(SCREAMING_SNAKE_CASE ), } for astar in [self.fwd_astar, self.bwd_astar]: for child_node in successors[astar]: if child_node in astar.closed_nodes: continue if child_node not in astar.open_nodes: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) else: # retrieve the best current path UpperCamelCase = astar.open_nodes.pop( astar.open_nodes.index(SCREAMING_SNAKE_CASE ) ) if child_node.g_cost < better_node.g_cost: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) else: astar.open_nodes.append(SCREAMING_SNAKE_CASE ) return [self.fwd_astar.start.pos] def __lowerCAmelCase ( self , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> list[TPosition]: """simple docstring""" UpperCamelCase = self.fwd_astar.retrace_path(SCREAMING_SNAKE_CASE ) UpperCamelCase = self.bwd_astar.retrace_path(SCREAMING_SNAKE_CASE ) bwd_path.pop() bwd_path.reverse() UpperCamelCase = fwd_path + bwd_path return path if __name__ == "__main__": # all coordinates are given in format [y,x] __a : List[Any] = (0, 0) __a : Optional[Any] = (len(grid) - 1, len(grid[0]) - 1) for elem in grid: print(elem) __a : str = time.time() __a : Any = AStar(init, goal) __a : List[Any] = a_star.search() __a : Dict = time.time() - start_time print(F'AStar execution time = {end_time:f} seconds') __a : List[str] = time.time() __a : Optional[int] = BidirectionalAStar(init, goal) __a : Any = time.time() - bd_start_time print(F'BidirectionalAStar execution time = {bd_end_time:f} seconds')
414
1
import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import CLIPTokenizer, CLIPTokenizerFast from transformers.models.clip.tokenization_clip import VOCAB_FILES_NAMES from transformers.testing_utils import require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_vision_available if is_vision_available(): from PIL import Image from transformers import CLIPSegProcessor, ViTImageProcessor @require_vision class A__ ( unittest.TestCase ): """simple docstring""" def _UpperCamelCase( self : str ): a__ : Tuple = tempfile.mkdtemp() # fmt: off a__ : Optional[Any] = ['''l''', '''o''', '''w''', '''e''', '''r''', '''s''', '''t''', '''i''', '''d''', '''n''', '''lo''', '''l</w>''', '''w</w>''', '''r</w>''', '''t</w>''', '''low</w>''', '''er</w>''', '''lowest</w>''', '''newer</w>''', '''wider''', '''<unk>''', '''<|startoftext|>''', '''<|endoftext|>'''] # fmt: on a__ : Dict = dict(zip(lowerCamelCase__ , range(len(lowerCamelCase__ ) ) ) ) a__ : Union[str, Any] = ['''#version: 0.2''', '''l o''', '''lo w</w>''', '''e r</w>''', ''''''] a__ : Optional[int] = {'''unk_token''': '''<unk>'''} a__ : Any = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["vocab_file"] ) a__ : List[str] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["merges_file"] ) with open(self.vocab_file , "w" , encoding="utf-8" ) as fp: fp.write(json.dumps(lowerCamelCase__ ) + "\n" ) with open(self.merges_file , "w" , encoding="utf-8" ) as fp: fp.write("\n".join(lowerCamelCase__ ) ) a__ : Optional[int] = { '''do_resize''': True, '''size''': 20, '''do_center_crop''': True, '''crop_size''': 18, '''do_normalize''': True, '''image_mean''': [0.4814_5466, 0.457_8275, 0.4082_1073], '''image_std''': [0.2686_2954, 0.2613_0258, 0.2757_7711], } a__ : Any = os.path.join(self.tmpdirname , lowerCamelCase__ ) with open(self.image_processor_file , "w" , encoding="utf-8" ) as fp: json.dump(lowerCamelCase__ , lowerCamelCase__ ) def _UpperCamelCase( self : Any , **lowerCamelCase__ : List[Any] ): return CLIPTokenizer.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Optional[int] , **lowerCamelCase__ : List[str] ): return CLIPTokenizerFast.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Dict , **lowerCamelCase__ : Union[str, Any] ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): shutil.rmtree(self.tmpdirname ) def _UpperCamelCase( self : List[str] ): a__ : Tuple = [np.random.randint(255 , size=(3, 30, 400) , dtype=np.uinta )] a__ : Optional[Any] = [Image.fromarray(np.moveaxis(lowerCamelCase__ , 0 , -1 ) ) for x in image_inputs] return image_inputs def _UpperCamelCase( self : Dict ): a__ : Any = self.get_tokenizer() a__ : Optional[int] = self.get_rust_tokenizer() a__ : Union[str, Any] = self.get_image_processor() a__ : Optional[int] = CLIPSegProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_slow.save_pretrained(self.tmpdirname ) a__ : str = CLIPSegProcessor.from_pretrained(self.tmpdirname , use_fast=lowerCamelCase__ ) a__ : List[str] = CLIPSegProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) processor_fast.save_pretrained(self.tmpdirname ) a__ : Dict = CLIPSegProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor_slow.tokenizer.get_vocab() , tokenizer_slow.get_vocab() ) self.assertEqual(processor_fast.tokenizer.get_vocab() , tokenizer_fast.get_vocab() ) self.assertEqual(tokenizer_slow.get_vocab() , tokenizer_fast.get_vocab() ) self.assertIsInstance(processor_slow.tokenizer , lowerCamelCase__ ) self.assertIsInstance(processor_fast.tokenizer , lowerCamelCase__ ) self.assertEqual(processor_slow.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertEqual(processor_fast.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor_slow.image_processor , lowerCamelCase__ ) self.assertIsInstance(processor_fast.image_processor , lowerCamelCase__ ) def _UpperCamelCase( self : Tuple ): a__ : Tuple = CLIPSegProcessor(tokenizer=self.get_tokenizer() , image_processor=self.get_image_processor() ) processor.save_pretrained(self.tmpdirname ) a__ : Dict = self.get_tokenizer(bos_token="(BOS)" , eos_token="(EOS)" ) a__ : List[str] = self.get_image_processor(do_normalize=lowerCamelCase__ , padding_value=1.0 ) a__ : Optional[int] = CLIPSegProcessor.from_pretrained( self.tmpdirname , bos_token="(BOS)" , eos_token="(EOS)" , do_normalize=lowerCamelCase__ , padding_value=1.0 ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.tokenizer , lowerCamelCase__ ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , lowerCamelCase__ ) def _UpperCamelCase( self : Union[str, Any] ): a__ : Any = self.get_image_processor() a__ : Any = self.get_tokenizer() a__ : Optional[int] = CLIPSegProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) a__ : Union[str, Any] = self.prepare_image_inputs() a__ : Any = image_processor(lowerCamelCase__ , return_tensors="np" ) a__ : str = processor(images=lowerCamelCase__ , return_tensors="np" ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1E-2 ) def _UpperCamelCase( self : int ): a__ : Optional[int] = self.get_image_processor() a__ : Optional[int] = self.get_tokenizer() a__ : int = CLIPSegProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) a__ : Any = '''lower newer''' a__ : List[Any] = processor(text=lowerCamelCase__ ) a__ : Tuple = tokenizer(lowerCamelCase__ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def _UpperCamelCase( self : List[str] ): a__ : Tuple = self.get_image_processor() a__ : Optional[Any] = self.get_tokenizer() a__ : int = CLIPSegProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) a__ : Optional[Any] = '''lower newer''' a__ : Dict = self.prepare_image_inputs() a__ : Dict = processor(text=lowerCamelCase__ , images=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["input_ids", "attention_mask", "pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _UpperCamelCase( self : int ): a__ : Optional[Any] = self.get_image_processor() a__ : List[Any] = self.get_tokenizer() a__ : Optional[Any] = CLIPSegProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) a__ : Any = self.prepare_image_inputs() a__ : Optional[Any] = self.prepare_image_inputs() a__ : List[str] = processor(images=lowerCamelCase__ , visual_prompt=lowerCamelCase__ ) self.assertListEqual(list(inputs.keys() ) , ["pixel_values", "conditional_pixel_values"] ) # test if it raises when no input is passed with pytest.raises(lowerCamelCase__ ): processor() def _UpperCamelCase( self : List[Any] ): a__ : List[str] = self.get_image_processor() a__ : Tuple = self.get_tokenizer() a__ : Optional[Any] = CLIPSegProcessor(tokenizer=lowerCamelCase__ , image_processor=lowerCamelCase__ ) a__ : Optional[Any] = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9]] a__ : Any = processor.batch_decode(lowerCamelCase__ ) a__ : Any = tokenizer.batch_decode(lowerCamelCase__ ) self.assertListEqual(lowerCamelCase__ , lowerCamelCase__ )
37
from dataclasses import dataclass, field from typing import Tuple from ..utils import cached_property, is_torch_available, is_torch_tpu_available, logging, requires_backends from .benchmark_args_utils import BenchmarkArguments if is_torch_available(): import torch if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm lowercase_ : List[Any] = logging.get_logger(__name__) @dataclass class _lowerCamelCase ( UpperCamelCase_ ): __a = [ "no_inference", "no_cuda", "no_tpu", "no_speed", "no_memory", "no_env_print", "no_multi_process", ] def __init__( self , **lowerCAmelCase ) -> str: for deprecated_arg in self.deprecated_args: if deprecated_arg in kwargs: SCREAMING_SNAKE_CASE__: str= deprecated_arg[3:] setattr(self , lowerCAmelCase , not kwargs.pop(lowerCAmelCase ) ) logger.warning( f'{deprecated_arg} is depreciated. Please use --no_{positive_arg} or' f' {positive_arg}={kwargs[positive_arg]}' ) SCREAMING_SNAKE_CASE__: Tuple= kwargs.pop('''torchscript''' , self.torchscript ) SCREAMING_SNAKE_CASE__: Union[str, Any]= kwargs.pop('''torch_xla_tpu_print_metrics''' , self.torch_xla_tpu_print_metrics ) SCREAMING_SNAKE_CASE__: Any= kwargs.pop('''fp16_opt_level''' , self.fpaa_opt_level ) super().__init__(**lowerCAmelCase ) __a = field(default=UpperCamelCase_ , metadata={"help": "Trace the models using torchscript"} ) __a = field(default=UpperCamelCase_ , metadata={"help": "Print Xla/PyTorch tpu metrics"} ) __a = field( default="O1" , metadata={ "help": ( "For fp16: Apex AMP optimization level selected in ['O0', 'O1', 'O2', and 'O3']. " "See details at https://nvidia.github.io/apex/amp.html" ) } , ) @cached_property def UpperCamelCase_ ( self ) -> Tuple["torch.device", int]: requires_backends(self , ['''torch'''] ) logger.info('''PyTorch: setting up devices''' ) if not self.cuda: SCREAMING_SNAKE_CASE__: Any= torch.device('''cpu''' ) SCREAMING_SNAKE_CASE__: Union[str, Any]= 0 elif is_torch_tpu_available(): SCREAMING_SNAKE_CASE__: List[str]= xm.xla_device() SCREAMING_SNAKE_CASE__: Any= 0 else: SCREAMING_SNAKE_CASE__: List[Any]= torch.device('''cuda''' if torch.cuda.is_available() else '''cpu''' ) SCREAMING_SNAKE_CASE__: List[str]= torch.cuda.device_count() return device, n_gpu @property def UpperCamelCase_ ( self ) -> Optional[Any]: return is_torch_tpu_available() and self.tpu @property def UpperCamelCase_ ( self ) -> int: requires_backends(self , ['''torch'''] ) # TODO(PVP): currently only single GPU is supported return torch.cuda.current_device() @property def UpperCamelCase_ ( self ) -> "torch.device": requires_backends(self , ['''torch'''] ) return self._setup_devices[0] @property def UpperCamelCase_ ( self ) -> int: requires_backends(self , ['''torch'''] ) return self._setup_devices[1] @property def UpperCamelCase_ ( self ) -> str: return self.n_gpu > 0
64
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import XLMRobertaTokenizerFast from diffusers import DDIMScheduler, KandinskyImgaImgPipeline, KandinskyPriorPipeline, UNetaDConditionModel, VQModel from diffusers.pipelines.kandinsky.text_encoder import MCLIPConfig, MultilingualCLIP from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ , unittest.TestCase ): """simple docstring""" snake_case = KandinskyImgaImgPipeline snake_case = ["""prompt""", """image_embeds""", """negative_image_embeds""", """image"""] snake_case = [ """prompt""", """negative_prompt""", """image_embeds""", """negative_image_embeds""", """image""", ] snake_case = [ """generator""", """height""", """width""", """strength""", """guidance_scale""", """negative_prompt""", """num_inference_steps""", """return_dict""", """guidance_scale""", """num_images_per_prompt""", """output_type""", """return_dict""", ] snake_case = False @property def _lowercase ( self ): return 32 @property def _lowercase ( self ): return 32 @property def _lowercase ( self ): return self.time_input_dim @property def _lowercase ( self ): return self.time_input_dim * 4 @property def _lowercase ( self ): return 1_00 @property def _lowercase ( self ): snake_case_ = XLMRobertaTokenizerFast.from_pretrained("YiYiXu/tiny-random-mclip-base" ) return tokenizer @property def _lowercase ( self ): torch.manual_seed(0 ) snake_case_ = MCLIPConfig( numDims=self.cross_attention_dim , transformerDimensions=self.text_embedder_hidden_size , hidden_size=self.text_embedder_hidden_size , intermediate_size=37 , num_attention_heads=4 , num_hidden_layers=5 , vocab_size=10_05 , ) snake_case_ = MultilingualCLIP(UpperCAmelCase_ ) snake_case_ = text_encoder.eval() return text_encoder @property def _lowercase ( self ): torch.manual_seed(0 ) snake_case_ = { "in_channels": 4, # Out channels is double in channels because predicts mean and variance "out_channels": 8, "addition_embed_type": "text_image", "down_block_types": ("ResnetDownsampleBlock2D", "SimpleCrossAttnDownBlock2D"), "up_block_types": ("SimpleCrossAttnUpBlock2D", "ResnetUpsampleBlock2D"), "mid_block_type": "UNetMidBlock2DSimpleCrossAttn", "block_out_channels": (self.block_out_channels_a, self.block_out_channels_a * 2), "layers_per_block": 1, "encoder_hid_dim": self.text_embedder_hidden_size, "encoder_hid_dim_type": "text_image_proj", "cross_attention_dim": self.cross_attention_dim, "attention_head_dim": 4, "resnet_time_scale_shift": "scale_shift", "class_embed_type": None, } snake_case_ = UNetaDConditionModel(**UpperCAmelCase_ ) return model @property def _lowercase ( self ): return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _lowercase ( self ): torch.manual_seed(0 ) snake_case_ = VQModel(**self.dummy_movq_kwargs ) return model def _lowercase ( self ): snake_case_ = self.dummy_text_encoder snake_case_ = self.dummy_tokenizer snake_case_ = self.dummy_unet snake_case_ = self.dummy_movq snake_case_ = { "num_train_timesteps": 10_00, "beta_schedule": "linear", "beta_start": 0.00_085, "beta_end": 0.012, "clip_sample": False, "set_alpha_to_one": False, "steps_offset": 0, "prediction_type": "epsilon", "thresholding": False, } snake_case_ = DDIMScheduler(**UpperCAmelCase_ ) snake_case_ = { "text_encoder": text_encoder, "tokenizer": tokenizer, "unet": unet, "scheduler": scheduler, "movq": movq, } return components def _lowercase ( self , UpperCAmelCase_ , UpperCAmelCase_=0 ): snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = floats_tensor((1, self.cross_attention_dim) , rng=random.Random(seed + 1 ) ).to(UpperCAmelCase_ ) # create init_image snake_case_ = floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase_ ) ).to(UpperCAmelCase_ ) snake_case_ = image.cpu().permute(0 , 2 , 3 , 1 )[0] snake_case_ = Image.fromarray(np.uinta(UpperCAmelCase_ ) ).convert("RGB" ).resize((2_56, 2_56) ) if str(UpperCAmelCase_ ).startswith("mps" ): snake_case_ = torch.manual_seed(UpperCAmelCase_ ) else: snake_case_ = torch.Generator(device=UpperCAmelCase_ ).manual_seed(UpperCAmelCase_ ) snake_case_ = { "prompt": "horse", "image": init_image, "image_embeds": image_embeds, "negative_image_embeds": negative_image_embeds, "generator": generator, "height": 64, "width": 64, "num_inference_steps": 10, "guidance_scale": 7.0, "strength": 0.2, "output_type": "np", } return inputs def _lowercase ( self ): snake_case_ = "cpu" snake_case_ = self.get_dummy_components() snake_case_ = self.pipeline_class(**UpperCAmelCase_ ) snake_case_ = pipe.to(UpperCAmelCase_ ) pipe.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = pipe(**self.get_dummy_inputs(UpperCAmelCase_ ) ) snake_case_ = output.images snake_case_ = pipe( **self.get_dummy_inputs(UpperCAmelCase_ ) , return_dict=UpperCAmelCase_ , )[0] snake_case_ = image[0, -3:, -3:, -1] snake_case_ = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case_ = np.array( [0.61_474_943, 0.6_073_539, 0.43_308_544, 0.5_928_269, 0.47_493_595, 0.46_755_973, 0.4_613_838, 0.45_368_797, 0.50_119_233] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 ), f''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class UpperCAmelCase_ ( unittest.TestCase ): """simple docstring""" def _lowercase ( self ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _lowercase ( self ): snake_case_ = load_numpy( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/kandinsky_img2img_frog.npy" ) snake_case_ = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/kandinsky/cat.png" ) snake_case_ = "A red cartoon frog, 4k" snake_case_ = KandinskyPriorPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1-prior" , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase_ ) snake_case_ = KandinskyImgaImgPipeline.from_pretrained( "kandinsky-community/kandinsky-2-1" , torch_dtype=torch.floataa ) snake_case_ = pipeline.to(UpperCAmelCase_ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase_ ) snake_case_ = torch.Generator(device="cpu" ).manual_seed(0 ) snake_case_ , snake_case_ = pipe_prior( UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=5 , negative_prompt="" , ).to_tuple() snake_case_ = pipeline( UpperCAmelCase_ , image=UpperCAmelCase_ , image_embeds=UpperCAmelCase_ , negative_image_embeds=UpperCAmelCase_ , generator=UpperCAmelCase_ , num_inference_steps=1_00 , height=7_68 , width=7_68 , strength=0.2 , output_type="np" , ) snake_case_ = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(UpperCAmelCase_ , UpperCAmelCase_ )
420
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging lowercase__ = logging.get_logger(__name__) lowercase__ = { '''EleutherAI/gpt-neox-20b''': '''https://huggingface.co/EleutherAI/gpt-neox-20b/resolve/main/config.json''', # See all GPTNeoX models at https://huggingface.co/models?filter=gpt_neox } class UpperCAmelCase_ ( SCREAMING_SNAKE_CASE__ ): """simple docstring""" snake_case = """gpt_neox""" def __init__( self , UpperCAmelCase_=5_04_32 , UpperCAmelCase_=61_44 , UpperCAmelCase_=44 , UpperCAmelCase_=64 , UpperCAmelCase_=2_45_76 , UpperCAmelCase_="gelu" , UpperCAmelCase_=0.25 , UpperCAmelCase_=1_00_00 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.0 , UpperCAmelCase_=0.1 , UpperCAmelCase_=20_48 , UpperCAmelCase_=0.02 , UpperCAmelCase_=1e-5 , UpperCAmelCase_=True , UpperCAmelCase_=0 , UpperCAmelCase_=2 , UpperCAmelCase_=False , UpperCAmelCase_=True , UpperCAmelCase_=None , **UpperCAmelCase_ , ): super().__init__(bos_token_id=UpperCAmelCase_ , eos_token_id=UpperCAmelCase_ , **UpperCAmelCase_ ) snake_case_ = vocab_size snake_case_ = max_position_embeddings snake_case_ = hidden_size snake_case_ = num_hidden_layers snake_case_ = num_attention_heads snake_case_ = intermediate_size snake_case_ = hidden_act snake_case_ = rotary_pct snake_case_ = rotary_emb_base snake_case_ = attention_dropout snake_case_ = hidden_dropout snake_case_ = classifier_dropout snake_case_ = initializer_range snake_case_ = layer_norm_eps snake_case_ = use_cache snake_case_ = tie_word_embeddings snake_case_ = use_parallel_residual snake_case_ = rope_scaling self._rope_scaling_validation() if self.hidden_size % self.num_attention_heads != 0: raise ValueError( "The hidden size is not divisble by the number of attention heads! Make sure to update them!" ) def _lowercase ( self ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling , UpperCAmelCase_ ) or len(self.rope_scaling ) != 2: raise ValueError( "`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, " f'''got {self.rope_scaling}''' ) snake_case_ = self.rope_scaling.get("type" , UpperCAmelCase_ ) snake_case_ = self.rope_scaling.get("factor" , UpperCAmelCase_ ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( f'''`rope_scaling`\'s name field must be one of [\'linear\', \'dynamic\'], got {rope_scaling_type}''' ) if rope_scaling_factor is None or not isinstance(UpperCAmelCase_ , UpperCAmelCase_ ) or rope_scaling_factor <= 1.0: raise ValueError(f'''`rope_scaling`\'s factor field must be an float > 1, got {rope_scaling_factor}''' )
420
1
"""simple docstring""" import os from datetime import datetime as dt from github import Github _snake_case = [ "good first issue", "good second issue", "good difficult issue", "enhancement", "new pipeline/model", "new scheduler", "wip", ] def snake_case ( )-> int: '''simple docstring''' lowerCamelCase__ = Github(os.environ['GITHUB_TOKEN'] ) lowerCamelCase__ = g.get_repo('huggingface/diffusers' ) lowerCamelCase__ = repo.get_issues(state='open' ) for issue in open_issues: lowerCamelCase__ = sorted(issue.get_comments() , key=lambda _a : i.created_at , reverse=_a ) lowerCamelCase__ = comments[0] if len(_a ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='closed' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='open' ) issue.remove_from_labels('stale' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( 'This issue has been automatically marked as stale because it has not had ' 'recent activity. If you think this still needs to be addressed ' 'please comment on this thread.\n\nPlease note that issues that do not follow the ' '[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ' 'are likely to be ignored.' ) issue.add_to_labels('stale' ) if __name__ == "__main__": main()
510
"""simple docstring""" import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class _a : def __init__( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : Optional[int]=13 , SCREAMING_SNAKE_CASE__ : Tuple=7 , SCREAMING_SNAKE_CASE__ : Optional[Any]=True , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[Any]=False , SCREAMING_SNAKE_CASE__ : int=True , SCREAMING_SNAKE_CASE__ : Any=99 , SCREAMING_SNAKE_CASE__ : str=64 , SCREAMING_SNAKE_CASE__ : Any=5 , SCREAMING_SNAKE_CASE__ : str=4 , SCREAMING_SNAKE_CASE__ : int=64 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : Any=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=0.1 , SCREAMING_SNAKE_CASE__ : Any=5_12 , SCREAMING_SNAKE_CASE__ : Any=16 , SCREAMING_SNAKE_CASE__ : Dict=2 , SCREAMING_SNAKE_CASE__ : str=0.02 , SCREAMING_SNAKE_CASE__ : Tuple=3 , SCREAMING_SNAKE_CASE__ : int=4 , SCREAMING_SNAKE_CASE__ : Optional[int]=None , ): lowerCamelCase__ = parent lowerCamelCase__ = batch_size lowerCamelCase__ = seq_length lowerCamelCase__ = is_training lowerCamelCase__ = use_input_mask lowerCamelCase__ = use_token_type_ids lowerCamelCase__ = use_labels lowerCamelCase__ = vocab_size lowerCamelCase__ = hidden_size lowerCamelCase__ = num_hidden_layers lowerCamelCase__ = num_attention_heads lowerCamelCase__ = intermediate_size lowerCamelCase__ = hidden_act lowerCamelCase__ = hidden_dropout_prob lowerCamelCase__ = attention_probs_dropout_prob lowerCamelCase__ = max_position_embeddings lowerCamelCase__ = type_vocab_size lowerCamelCase__ = type_sequence_label_size lowerCamelCase__ = initializer_range lowerCamelCase__ = num_labels lowerCamelCase__ = num_choices lowerCamelCase__ = scope def _UpperCamelCase ( self : Dict ): return MPNetConfig.from_pretrained('microsoft/mpnet-base' ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCamelCase__ = None if self.use_input_mask: lowerCamelCase__ = random_attention_mask([self.batch_size, self.seq_length] ) lowerCamelCase__ = None lowerCamelCase__ = None lowerCamelCase__ = None if self.use_labels: lowerCamelCase__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) lowerCamelCase__ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) lowerCamelCase__ = ids_tensor([self.batch_size] , self.num_choices ) lowerCamelCase__ = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self : Optional[Any] ): return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCamelCase ( self : Tuple , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = MPNetModel(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCamelCase ( self : List[Any] , SCREAMING_SNAKE_CASE__ : List[Any] , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] ): lowerCamelCase__ = MPNetForQuestionAnswering(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , start_positions=SCREAMING_SNAKE_CASE__ , end_positions=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : int ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MPNetForSequenceClassification(SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self : Union[str, Any] , SCREAMING_SNAKE_CASE__ : int , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : str ): lowerCamelCase__ = self.num_choices lowerCamelCase__ = MPNetForMultipleChoice(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() lowerCamelCase__ = model( SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self : Dict , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ): lowerCamelCase__ = self.num_labels lowerCamelCase__ = MPNetForTokenClassification(config=SCREAMING_SNAKE_CASE__ ) model.to(SCREAMING_SNAKE_CASE__ ) model.eval() lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ , labels=SCREAMING_SNAKE_CASE__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self : List[str] ): lowerCamelCase__ = self.prepare_config_and_inputs() ((lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__) , (lowerCamelCase__)) = config_and_inputs lowerCamelCase__ = {'input_ids': input_ids, 'attention_mask': input_mask} return config, inputs_dict @require_torch class _a ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , unittest.TestCase ): a_ : Any = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) a_ : Optional[Any] = ( { 'feature-extraction': MPNetModel, 'fill-mask': MPNetForMaskedLM, 'question-answering': MPNetForQuestionAnswering, 'text-classification': MPNetForSequenceClassification, 'token-classification': MPNetForTokenClassification, 'zero-shot': MPNetForSequenceClassification, } if is_torch_available() else {} ) a_ : Optional[Any] = False a_ : Any = True def _UpperCamelCase ( self : str ): lowerCamelCase__ = MPNetModelTester(self ) lowerCamelCase__ = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE__ , hidden_size=37 ) def _UpperCamelCase ( self : Tuple ): self.config_tester.run_common_tests() def _UpperCamelCase ( self : int ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Dict ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : int ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Union[str, Any] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*SCREAMING_SNAKE_CASE__ ) def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*SCREAMING_SNAKE_CASE__ ) @require_torch class _a ( unittest.TestCase ): @slow def _UpperCamelCase ( self : Optional[int] ): lowerCamelCase__ = MPNetModel.from_pretrained('microsoft/mpnet-base' ) lowerCamelCase__ = torch.tensor([[0, 3_45, 2_32, 3_28, 7_40, 1_40, 16_95, 69, 60_78, 15_88, 2]] ) lowerCamelCase__ = model(SCREAMING_SNAKE_CASE__ )[0] lowerCamelCase__ = torch.Size((1, 11, 7_68) ) self.assertEqual(output.shape , SCREAMING_SNAKE_CASE__ ) lowerCamelCase__ = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , SCREAMING_SNAKE_CASE__ , atol=1e-4 ) )
510
1
from maths.prime_factors import prime_factors def __lowercase( UpperCAmelCase__ ): """simple docstring""" if not isinstance(__UpperCamelCase , __UpperCamelCase ): lowerCamelCase = F"""Input value of [number={number}] must be an integer""" raise TypeError(__UpperCamelCase ) if number < 1: raise ValueError("Input must be a positive integer" ) return -1 if len(prime_factors(__UpperCamelCase ) ) % 2 else 1 if __name__ == "__main__": import doctest doctest.testmod()
711
from __future__ import annotations from collections.abc import Iterable, Iterator from dataclasses import dataclass a_ : Optional[int] = (3, 9, -1_1, 0, 7, 5, 1, -1) a_ : str = (4, 6, 2, 0, 8, 1_0, 3, -2) @dataclass class lowerCamelCase__ : """simple docstring""" _A = 42 _A = 42 class lowerCamelCase__ : """simple docstring""" def __init__(self , __a ): '''simple docstring''' lowerCamelCase = None for i in sorted(__a , reverse=__a ): lowerCamelCase = Node(__a , self.head ) def __iter__(self ): '''simple docstring''' lowerCamelCase = self.head while node: yield node.data lowerCamelCase = node.next_node def __len__(self ): '''simple docstring''' return sum(1 for _ in self ) def __str__(self ): '''simple docstring''' return " -> ".join([str(__a ) for node in self] ) def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" return SortedLinkedList(list(UpperCAmelCase__ ) + list(UpperCAmelCase__ ) ) if __name__ == "__main__": import doctest doctest.testmod() a_ : Any = SortedLinkedList print(merge_lists(SSL(test_data_odd), SSL(test_data_even)))
484
0
def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: float , lowerCAmelCase: float ) -> float: if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
300
from statistics import mean, stdev def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list , lowerCAmelCase: int = 3 ) -> list: _UpperCAmelCase : Tuple = min(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = max(lowerCAmelCase ) # normalize data return [round((x - x_min) / (x_max - x_min) , lowerCAmelCase ) for x in data] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: list , lowerCAmelCase: int = 3 ) -> list: _UpperCAmelCase : Union[str, Any] = mean(lowerCAmelCase ) _UpperCAmelCase : Optional[Any] = stdev(lowerCAmelCase ) # standardize data return [round((x - mu) / (sigma) , lowerCAmelCase ) for x in data]
300
1
'''simple docstring''' import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version _UpperCamelCase = get_logger(__name__) class lowerCamelCase__ : '''simple docstring''' A__ = '''dummy_data''' A__ = '''datasets''' A__ = False def __init__( self : Dict , __A : str , __A : str , __A : Union[Version, str] , __A : Optional[str] = None , __A : bool = False , __A : bool = True , __A : Optional[List[Callable]] = None , ) -> Tuple: '''simple docstring''' lowerCAmelCase__ = 0 lowerCAmelCase__ = dataset_name lowerCAmelCase__ = cache_dir lowerCAmelCase__ = use_local_dummy_data lowerCAmelCase__ = config # download_callbacks take a single url as input lowerCAmelCase__ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCAmelCase__ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCAmelCase__ = str(__A ) # to be downloaded lowerCAmelCase__ = None lowerCAmelCase__ = None @property def lowercase__ ( self : Optional[int] ) -> List[Any]: '''simple docstring''' if self._dummy_file is None: lowerCAmelCase__ = self.download_dummy_data() return self._dummy_file @property def lowercase__ ( self : int ) -> List[str]: '''simple docstring''' if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("""dummy""" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("""dummy""" , self.version_name ) @property def lowercase__ ( self : Optional[Any] ) -> List[Any]: '''simple docstring''' return os.path.join(self.dummy_data_folder , """dummy_data.zip""" ) def lowercase__ ( self : Tuple ) -> int: '''simple docstring''' lowerCAmelCase__ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCAmelCase__ = cached_path( __A , cache_dir=self.cache_dir , extract_compressed_file=__A , force_extract=__A ) return os.path.join(__A , self.dummy_file_name ) @property def lowercase__ ( self : Union[str, Any] ) -> List[Any]: '''simple docstring''' return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def lowercase__ ( self : str ) -> List[Any]: '''simple docstring''' if self._bucket_url is None: lowerCAmelCase__ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , """/""" ) ) return self._bucket_url @property def lowercase__ ( self : Dict ) -> List[Any]: '''simple docstring''' if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , """/""" ).split("""/""" )[:-1] ) def lowercase__ ( self : Optional[Any] , __A : Any , *__A : Dict ) -> Any: '''simple docstring''' if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCAmelCase__ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCAmelCase__ = self.dummy_file_name # special case when data_url is a dict if isinstance(__A , __A ): return self.create_dummy_data_dict(__A , __A ) elif isinstance(__A , (list, tuple) ): return self.create_dummy_data_list(__A , __A ) else: return self.create_dummy_data_single(__A , __A ) def lowercase__ ( self : str , __A : str , *__A : Dict ) -> Any: '''simple docstring''' return self.download_and_extract(__A ) def lowercase__ ( self : Union[str, Any] , __A : Dict , __A : Tuple ) -> Tuple: '''simple docstring''' return self.download_and_extract(__A ) def lowercase__ ( self : Tuple , __A : Optional[int] , *__A : Tuple , **__A : Tuple ) -> Tuple: '''simple docstring''' return path def lowercase__ ( self : str ) -> str: '''simple docstring''' return {} def lowercase__ ( self : Union[str, Any] , __A : Optional[Any] , __A : str ) -> Union[str, Any]: '''simple docstring''' lowerCAmelCase__ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(__A , __A ): for single_url in single_urls: download_callback(__A ) else: lowerCAmelCase__ = single_urls download_callback(__A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(__A , __A ): lowerCAmelCase__ = [os.path.join(__A , urllib.parse.quote_plus(Path(__A ).name ) ) for x in single_urls] else: lowerCAmelCase__ = single_urls lowerCAmelCase__ = os.path.join(__A , urllib.parse.quote_plus(Path(__A ).name ) ) lowerCAmelCase__ = value # make sure that values are unique if all(isinstance(__A , __A ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCAmelCase__ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def lowercase__ ( self : List[str] , __A : Tuple , __A : List[Any] ) -> Any: '''simple docstring''' lowerCAmelCase__ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCAmelCase__ = all(bool(re.findall("""[0-9]{3,}-of-[0-9]{3,}""" , __A ) ) for url in data_url ) lowerCAmelCase__ = all( url.startswith("""https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed""" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCAmelCase__ = [data_url[0]] * len(__A ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(__A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase__ = os.path.join(__A , urllib.parse.quote_plus(single_url.split("""/""" )[-1] ) ) dummy_data_list.append(__A ) return dummy_data_list def lowercase__ ( self : Any , __A : Optional[int] , __A : Any ) -> List[str]: '''simple docstring''' for download_callback in self.download_callbacks: download_callback(__A ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCAmelCase__ = os.path.join(__A , urllib.parse.quote_plus(data_url.split("""/""" )[-1] ) ) if os.path.exists(__A ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def lowercase__ ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' pass def lowercase__ ( self : Dict ) -> List[str]: '''simple docstring''' pass def lowercase__ ( self : str , __A : Optional[int] ) -> Dict: '''simple docstring''' def _iter_archive_members(__A : Optional[int] ): # this preserves the order of the members inside the ZIP archive lowerCAmelCase__ = Path(self.dummy_file ).parent lowerCAmelCase__ = path.relative_to(__A ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCAmelCase__ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(__A ) lowerCAmelCase__ = Path(__A ) lowerCAmelCase__ = _iter_archive_members(__A ) if self.use_local_dummy_data else path.rglob("""*""" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((""".""", """__""") ): yield file_path.relative_to(__A ).as_posix(), file_path.open("""rb""" ) def lowercase__ ( self : Union[str, Any] , __A : Dict ) -> int: '''simple docstring''' if not isinstance(__A , __A ): lowerCAmelCase__ = [paths] for path in paths: if os.path.isfile(__A ): if os.path.basename(__A ).startswith((""".""", """__""") ): return yield path else: for dirpath, dirnames, filenames in os.walk(__A ): if os.path.basename(__A ).startswith((""".""", """__""") ): continue dirnames.sort() for filename in sorted(__A ): if filename.startswith((""".""", """__""") ): continue yield os.path.join(__A , __A )
712
'''simple docstring''' def _lowerCAmelCase( UpperCAmelCase_ : str ) -> int: assert column_title.isupper() lowerCAmelCase__ = 0 lowerCAmelCase__ = len(UpperCAmelCase_ ) - 1 lowerCAmelCase__ = 0 while index >= 0: lowerCAmelCase__ = (ord(column_title[index] ) - 64) * pow(26 , UpperCAmelCase_ ) answer += value power += 1 index -= 1 return answer if __name__ == "__main__": from doctest import testmod testmod()
211
0
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def lowerCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ : dict[int, int] = {} UpperCAmelCase__ : Optional[int] = 2 while True: UpperCAmelCase__ : Dict = factor_map.pop(__UpperCamelCase , __UpperCamelCase ) if factor: UpperCAmelCase__ : Tuple = factor + prime while x in factor_map: x += factor UpperCAmelCase__ : int = factor else: UpperCAmelCase__ : Optional[Any] = prime yield prime prime += 1 def lowerCAmelCase ( __UpperCamelCase = 1e10 ): '''simple docstring''' UpperCAmelCase__ : Any = sieve() UpperCAmelCase__ : Any = 1 while True: UpperCAmelCase__ : List[Any] = next(__UpperCamelCase ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(__UpperCamelCase ) n += 2 if __name__ == "__main__": print(solution())
65
"""simple docstring""" import os import sys import tempfile import unittest import unittest.mock as mock from pathlib import Path from huggingface_hub import HfFolder, delete_repo from huggingface_hub.file_download import http_get from requests.exceptions import HTTPError from transformers import ( AlbertTokenizer, AutoTokenizer, BertTokenizer, BertTokenizerFast, GPTaTokenizerFast, is_tokenizers_available, ) from transformers.testing_utils import TOKEN, USER, is_staging_test, require_tokenizers from transformers.tokenization_utils import Trie sys.path.append(str(Path(__file__).parent.parent / '''utils''')) from test_module.custom_tokenization import CustomTokenizer # noqa E402 if is_tokenizers_available(): from test_module.custom_tokenization_fast import CustomTokenizerFast class __a ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' # A mock response for an HTTP head request to emulate server down __lowercase = mock.Mock() __lowercase = 500 __lowercase = {} __lowercase = HTTPError __lowercase = {} # Download this model to make sure it's in the cache. __lowercase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=_lowerCamelCase ) as mock_head: __lowercase = BertTokenizer.from_pretrained("hf-internal-testing/tiny-random-bert" ) # This check we did call the fake head request mock_head.assert_called() @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' # A mock response for an HTTP head request to emulate server down __lowercase = mock.Mock() __lowercase = 500 __lowercase = {} __lowercase = HTTPError __lowercase = {} # Download this model to make sure it's in the cache. __lowercase = GPTaTokenizerFast.from_pretrained("gpt2" ) # Under the mock environment we get a 500 error when trying to reach the tokenizer. with mock.patch("requests.Session.request" , return_value=_lowerCamelCase ) as mock_head: __lowercase = GPTaTokenizerFast.from_pretrained("gpt2" ) # This check we did call the fake head request mock_head.assert_called() def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 try: __lowercase = tempfile.mktemp() with open(_lowerCamelCase , "wb" ) as f: http_get("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" , _lowerCamelCase ) __lowercase = AlbertTokenizer.from_pretrained(_lowerCamelCase ) finally: os.remove(_lowerCamelCase ) # Supporting this legacy load introduced a weird bug where the tokenizer would load local files if they are in # the current folder and have the right name. if os.path.isfile("tokenizer.json" ): # We skip the test if the user has a `tokenizer.json` in this folder to avoid deleting it. return try: with open("tokenizer.json" , "wb" ) as f: http_get("https://huggingface.co/hf-internal-testing/tiny-random-bert/blob/main/tokenizer.json" , _lowerCamelCase ) __lowercase = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-gpt2" ) # The tiny random BERT has a vocab size of 1024, tiny gpt2 as a vocab size of 1000 self.assertEqual(tokenizer.vocab_size , 1_000 ) # Tokenizer should depend on the remote checkpoint, not the local tokenizer.json file. finally: os.remove("tokenizer.json" ) def SCREAMING_SNAKE_CASE ( self ) -> int: '''simple docstring''' # This test is for deprecated behavior and can be removed in v5 __lowercase = AlbertTokenizer.from_pretrained("https://huggingface.co/albert-base-v1/resolve/main/spiece.model" ) @is_staging_test class __a ( unittest.TestCase ): '''simple docstring''' _lowerCamelCase : str = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """bla""", """blou"""] @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> List[Any]: '''simple docstring''' __lowercase = TOKEN HfFolder.save_token(_lowerCamelCase ) @classmethod def SCREAMING_SNAKE_CASE ( cls ) -> List[str]: '''simple docstring''' try: delete_repo(token=cls._token , repo_id="test-tokenizer" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="valid_org/test-tokenizer-org" ) except HTTPError: pass try: delete_repo(token=cls._token , repo_id="test-dynamic-tokenizer" ) except HTTPError: pass def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase , "vocab.txt" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __lowercase = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub("test-tokenizer" , use_auth_token=self._token ) __lowercase = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="test-tokenizer" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained(_lowerCamelCase , repo_id="test-tokenizer" , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) __lowercase = BertTokenizer.from_pretrained(f'''{USER}/test-tokenizer''' ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase , "vocab.txt" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __lowercase = BertTokenizer(_lowerCamelCase ) tokenizer.push_to_hub("valid_org/test-tokenizer-org" , use_auth_token=self._token ) __lowercase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) # Reset repo delete_repo(token=self._token , repo_id="valid_org/test-tokenizer-org" ) # Push to hub via save_pretrained with tempfile.TemporaryDirectory() as tmp_dir: tokenizer.save_pretrained( _lowerCamelCase , repo_id="valid_org/test-tokenizer-org" , push_to_hub=_lowerCamelCase , use_auth_token=self._token ) __lowercase = BertTokenizer.from_pretrained("valid_org/test-tokenizer-org" ) self.assertDictEqual(new_tokenizer.vocab , tokenizer.vocab ) @require_tokenizers def SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: '''simple docstring''' CustomTokenizer.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase , "vocab.txt" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __lowercase = CustomTokenizer(_lowerCamelCase ) # No fast custom tokenizer tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) __lowercase = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the CustomTokenizer class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) # Fast and slow custom tokenizer CustomTokenizerFast.register_for_auto_class() with tempfile.TemporaryDirectory() as tmp_dir: __lowercase = os.path.join(_lowerCamelCase , "vocab.txt" ) with open(_lowerCamelCase , "w" , encoding="utf-8" ) as vocab_writer: vocab_writer.write("".join([x + "\n" for x in self.vocab_tokens] ) ) __lowercase = BertTokenizerFast.from_pretrained(_lowerCamelCase ) bert_tokenizer.save_pretrained(_lowerCamelCase ) __lowercase = CustomTokenizerFast.from_pretrained(_lowerCamelCase ) tokenizer.push_to_hub("test-dynamic-tokenizer" , use_auth_token=self._token ) __lowercase = AutoTokenizer.from_pretrained(f'''{USER}/test-dynamic-tokenizer''' , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizerFast" ) __lowercase = AutoTokenizer.from_pretrained( f'''{USER}/test-dynamic-tokenizer''' , use_fast=_lowerCamelCase , trust_remote_code=_lowerCamelCase ) # Can't make an isinstance check because the new_model.config is from the FakeConfig class of a dynamic module self.assertEqual(tokenizer.__class__.__name__ , "CustomTokenizer" ) class __a ( unittest.TestCase ): '''simple docstring''' def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = Trie() trie.add("Hello 友達" ) self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {" ": {"友": {"達": {"": 1}}}}}}}}} ) trie.add("Hello" ) trie.data self.assertEqual(trie.data , {"H": {"e": {"l": {"l": {"o": {"": 1, " ": {"友": {"達": {"": 1}}}}}}}}} ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = Trie() self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS] This is a extra_id_100"] ) trie.add("[CLS]" ) trie.add("extra_id_1" ) trie.add("extra_id_100" ) self.assertEqual(trie.split("[CLS] This is a extra_id_100" ) , ["[CLS]", " This is a ", "extra_id_100"] ) def SCREAMING_SNAKE_CASE ( self ) -> Dict: '''simple docstring''' __lowercase = Trie() trie.add("A" ) self.assertEqual(trie.split("ABC" ) , ["A", "BC"] ) self.assertEqual(trie.split("BCA" ) , ["BC", "A"] ) def SCREAMING_SNAKE_CASE ( self ) -> str: '''simple docstring''' __lowercase = Trie() trie.add("TOKEN]" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: '''simple docstring''' __lowercase = Trie() trie.add("A" ) trie.add("P" ) trie.add("[SPECIAL_TOKEN]" ) self.assertEqual(trie.split("This is something [SPECIAL_TOKEN]" ) , ["This is something ", "[SPECIAL_TOKEN]"] ) def SCREAMING_SNAKE_CASE ( self ) -> Any: '''simple docstring''' __lowercase = Trie() trie.add("AB" ) trie.add("B" ) trie.add("C" ) self.assertEqual(trie.split("ABC" ) , ["AB", "C"] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' __lowercase = Trie() trie.add("ABC" ) trie.add("B" ) trie.add("CD" ) self.assertEqual(trie.split("ABCD" ) , ["ABC", "D"] ) def SCREAMING_SNAKE_CASE ( self ) -> Tuple: '''simple docstring''' # Even if the offsets are wrong, we necessarily output correct string # parts. __lowercase = Trie() __lowercase = trie.cut_text("ABC" , [0, 0, 2, 1, 2, 3] ) self.assertEqual(_lowerCamelCase , ["AB", "C"] )
118
0
'''simple docstring''' import gc import unittest from parameterized import parameterized from diffusers import FlaxUNetaDConditionModel from diffusers.utils import is_flax_available from diffusers.utils.testing_utils import load_hf_numpy, require_flax, slow if is_flax_available(): import jax import jax.numpy as jnp @slow @require_flax class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" def __lowercase ( self : str ,_a : Any ,_a : List[Any] ): '''simple docstring''' return F"""gaussian_noise_s={seed}_shape={'_'.join([str(_a ) for s in shape] )}.npy""" def __lowercase ( self : Union[str, Any] ): '''simple docstring''' super().tearDown() gc.collect() def __lowercase ( self : List[Any] ,_a : Optional[Any]=0 ,_a : Union[str, Any]=(4, 4, 64, 64) ,_a : Any=False ): '''simple docstring''' _a : List[str] = jnp.bfloataa if fpaa else jnp.floataa _a : Dict = jnp.array(load_hf_numpy(self.get_file_format(_a ,_a ) ) ,dtype=_a ) return image def __lowercase ( self : str ,_a : List[Any]=False ,_a : Dict="CompVis/stable-diffusion-v1-4" ): '''simple docstring''' _a : Optional[Any] = jnp.bfloataa if fpaa else jnp.floataa _a : Optional[Any] = 'bf16' if fpaa else None _a, _a : Tuple = FlaxUNetaDConditionModel.from_pretrained( _a ,subfolder='unet' ,dtype=_a ,revision=_a ) return model, params def __lowercase ( self : Optional[int] ,_a : str=0 ,_a : Optional[Any]=(4, 77, 768) ,_a : int=False ): '''simple docstring''' _a : Tuple = jnp.bfloataa if fpaa else jnp.floataa _a : Union[str, Any] = jnp.array(load_hf_numpy(self.get_file_format(_a ,_a ) ) ,dtype=_a ) return hidden_states @parameterized.expand( [ # fmt: off [83, 4, [-0.2323, -0.1304, 0.0813, -0.3093, -0.0919, -0.1571, -0.1125, -0.5806]], [17, 0.55, [-0.0831, -0.2443, 0.0901, -0.0919, 0.3396, 0.0103, -0.3743, 0.0701]], [8, 0.89, [-0.4863, 0.0859, 0.0875, -0.1658, 0.9199, -0.0114, 0.4839, 0.4639]], [3, 1000, [-0.5649, 0.2402, -0.5518, 0.1248, 1.1328, -0.2443, -0.0325, -1.0078]], # fmt: on ] ) def __lowercase ( self : str ,_a : Optional[int] ,_a : Optional[Any] ,_a : Tuple ): '''simple docstring''' _a, _a : Optional[Any] = self.get_unet_model(model_id='CompVis/stable-diffusion-v1-4' ,fpaa=_a ) _a : Dict = self.get_latents(_a ,fpaa=_a ) _a : Any = self.get_encoder_hidden_states(_a ,fpaa=_a ) _a : Dict = model.apply( {'params': params} ,_a ,jnp.array(_a ,dtype=jnp.intaa ) ,encoder_hidden_states=_a ,).sample assert sample.shape == latents.shape _a : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) ,dtype=jnp.floataa ) _a : List[Any] = jnp.array(_a ,dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, in the same hardware assert jnp.allclose(_a ,_a ,atol=1E-2 ) @parameterized.expand( [ # fmt: off [83, 4, [0.1514, 0.0807, 0.1624, 0.1016, -0.1896, 0.0263, 0.0677, 0.2310]], [17, 0.55, [0.1164, -0.0216, 0.0170, 0.1589, -0.3120, 0.1005, -0.0581, -0.1458]], [8, 0.89, [-0.1758, -0.0169, 0.1004, -0.1411, 0.1312, 0.1103, -0.1996, 0.2139]], [3, 1000, [0.1214, 0.0352, -0.0731, -0.1562, -0.0994, -0.0906, -0.2340, -0.0539]], # fmt: on ] ) def __lowercase ( self : Any ,_a : int ,_a : Union[str, Any] ,_a : List[Any] ): '''simple docstring''' _a, _a : Tuple = self.get_unet_model(model_id='stabilityai/stable-diffusion-2' ,fpaa=_a ) _a : List[str] = self.get_latents(_a ,shape=(4, 4, 96, 96) ,fpaa=_a ) _a : Optional[Any] = self.get_encoder_hidden_states(_a ,shape=(4, 77, 1024) ,fpaa=_a ) _a : Tuple = model.apply( {'params': params} ,_a ,jnp.array(_a ,dtype=jnp.intaa ) ,encoder_hidden_states=_a ,).sample assert sample.shape == latents.shape _a : List[Any] = jnp.asarray(jax.device_get((sample[-1, -2:, -2:, :2].flatten()) ) ,dtype=jnp.floataa ) _a : List[str] = jnp.array(_a ,dtype=jnp.floataa ) # Found torch (float16) and flax (bfloat16) outputs to be within this tolerance, on the same hardware assert jnp.allclose(_a ,_a ,atol=1E-2 )
319
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase__ ( lowercase__ ): """simple docstring""" def __lowercase ( self : List[Any] ): '''simple docstring''' _a : Optional[int] = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(_a ,'embed_dim' ) ) self.parent.assertTrue(hasattr(_a ,'num_heads' ) ) class UpperCAmelCase__ : """simple docstring""" def __init__( self : Optional[Any] ,_a : List[str] ,_a : Tuple=13 ,_a : Optional[int]=64 ,_a : List[Any]=3 ,_a : Union[str, Any]=[16, 48, 96] ,_a : List[Any]=[1, 3, 6] ,_a : Optional[Any]=[1, 2, 10] ,_a : List[Any]=[7, 3, 3] ,_a : Tuple=[4, 2, 2] ,_a : List[str]=[2, 1, 1] ,_a : int=[2, 2, 2] ,_a : List[Any]=[False, False, True] ,_a : List[Any]=[0.0, 0.0, 0.0] ,_a : Dict=0.02 ,_a : str=1E-12 ,_a : Optional[Any]=True ,_a : List[str]=True ,_a : List[str]=2 ,): '''simple docstring''' _a : Union[str, Any] = parent _a : Optional[int] = batch_size _a : int = image_size _a : Tuple = patch_sizes _a : str = patch_stride _a : Optional[Any] = patch_padding _a : str = is_training _a : Dict = use_labels _a : Optional[Any] = num_labels _a : Any = num_channels _a : str = embed_dim _a : Optional[Any] = num_heads _a : Optional[int] = stride_kv _a : str = depth _a : int = cls_token _a : Optional[int] = attention_drop_rate _a : Any = initializer_range _a : int = layer_norm_eps def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : Optional[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a : Optional[Any] = None if self.use_labels: _a : Tuple = ids_tensor([self.batch_size] ,self.num_labels ) _a : Optional[int] = self.get_config() return config, pixel_values, labels def __lowercase ( self : Any ): '''simple docstring''' return CvtConfig( image_size=self.image_size ,num_labels=self.num_labels ,num_channels=self.num_channels ,embed_dim=self.embed_dim ,num_heads=self.num_heads ,patch_sizes=self.patch_sizes ,patch_padding=self.patch_padding ,patch_stride=self.patch_stride ,stride_kv=self.stride_kv ,depth=self.depth ,cls_token=self.cls_token ,attention_drop_rate=self.attention_drop_rate ,initializer_range=self.initializer_range ,) def __lowercase ( self : List[str] ,_a : Tuple ,_a : str ,_a : Any ): '''simple docstring''' _a : Optional[Any] = CvtModel(config=_a ) model.to(_a ) model.eval() _a : Optional[int] = model(_a ) _a : int = (self.image_size, self.image_size) _a, _a : str = image_size[0], image_size[1] for i in range(len(self.depth ) ): _a : Dict = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) _a : Union[str, Any] = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape ,(self.batch_size, self.embed_dim[-1], height, width) ) def __lowercase ( self : Optional[int] ,_a : List[Any] ,_a : int ,_a : int ): '''simple docstring''' _a : Tuple = self.num_labels _a : Any = CvtForImageClassification(_a ) model.to(_a ) model.eval() _a : Optional[Any] = model(_a ,labels=_a ) self.parent.assertEqual(result.logits.shape ,(self.batch_size, self.num_labels) ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' _a : List[str] = self.prepare_config_and_inputs() _a, _a, _a : Union[str, Any] = config_and_inputs _a : List[str] = {'pixel_values': pixel_values} return config, inputs_dict @require_torch class UpperCAmelCase__ ( lowercase__ , lowercase__ , unittest.TestCase ): """simple docstring""" __UpperCAmelCase : List[Any] = (CvtModel, CvtForImageClassification) if is_torch_available() else () __UpperCAmelCase : Optional[int] = ( {'''feature-extraction''': CvtModel, '''image-classification''': CvtForImageClassification} if is_torch_available() else {} ) __UpperCAmelCase : Tuple = False __UpperCAmelCase : Any = False __UpperCAmelCase : Optional[int] = False __UpperCAmelCase : Optional[Any] = False __UpperCAmelCase : Dict = False def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : Dict = CvtModelTester(self ) _a : Optional[Any] = ConfigTester(self ,config_class=_a ,has_text_modality=_a ,hidden_size=37 ) def __lowercase ( self : List[Any] ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowercase ( self : Optional[Any] ): '''simple docstring''' return @unittest.skip(reason='Cvt does not output attentions' ) def __lowercase ( self : Union[str, Any] ): '''simple docstring''' pass @unittest.skip(reason='Cvt does not use inputs_embeds' ) def __lowercase ( self : Tuple ): '''simple docstring''' pass @unittest.skip(reason='Cvt does not support input and output embeddings' ) def __lowercase ( self : Optional[int] ): '''simple docstring''' pass def __lowercase ( self : Tuple ): '''simple docstring''' _a, _a : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : List[Any] = model_class(_a ) _a : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a : int = [*signature.parameters.keys()] _a : Any = ['pixel_values'] self.assertListEqual(arg_names[:1] ,_a ) def __lowercase ( self : Optional[int] ): '''simple docstring''' _a : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_a ) def __lowercase ( self : List[Any] ): '''simple docstring''' def check_hidden_states_output(_a : Optional[int] ,_a : Optional[int] ,_a : List[str] ): _a : str = model_class(_a ) model.to(_a ) model.eval() with torch.no_grad(): _a : Union[str, Any] = model(**self._prepare_for_class(_a ,_a ) ) _a : List[Any] = outputs.hidden_states _a : Union[str, Any] = len(self.model_tester.depth ) self.assertEqual(len(_a ) ,_a ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) ,[ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] ,) _a, _a : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a : Optional[Any] = True check_hidden_states_output(_a ,_a ,_a ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a : int = True check_hidden_states_output(_a ,_a ,_a ) def __lowercase ( self : Optional[Any] ): '''simple docstring''' _a : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_a ) @unittest.skip('Will be fixed soon by reducing the size of the model used for common tests.' ) def __lowercase ( self : List[Any] ): '''simple docstring''' pass @slow def __lowercase ( self : Optional[Any] ): '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a : List[str] = CvtModel.from_pretrained(_a ) self.assertIsNotNone(_a ) def UpperCAmelCase_ (): """simple docstring""" _a : Union[str, Any] = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def __lowercase ( self : Union[str, Any] ): '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def __lowercase ( self : Dict ): '''simple docstring''' _a : Dict = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(_a ) _a : Any = self.default_image_processor _a : Dict = prepare_img() _a : int = image_processor(images=_a ,return_tensors='pt' ).to(_a ) # forward pass with torch.no_grad(): _a : Any = model(**_a ) # verify the logits _a : Union[str, Any] = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape ,_a ) _a : Optional[int] = torch.tensor([0.9285, 0.9015, -0.3150] ).to(_a ) self.assertTrue(torch.allclose(outputs.logits[0, :3] ,_a ,atol=1E-4 ) )
319
1
import inspect import os import unittest import torch import accelerate from accelerate import Accelerator from accelerate.test_utils import execute_subprocess_async, require_multi_gpu from accelerate.utils import patch_environment class _A ( unittest.TestCase): def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = inspect.getfile(accelerate.test_utils ) SCREAMING_SNAKE_CASE_ : Optional[Any] = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_script.py'] ) SCREAMING_SNAKE_CASE_ : Optional[int] = os.path.sep.join( mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_distributed_data_loop.py'] ) SCREAMING_SNAKE_CASE_ : Dict = os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['scripts', 'test_ops.py'] ) @require_multi_gpu def UpperCAmelCase ( self ): """simple docstring""" print(f"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE_ : List[str] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.test_file_path] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self ): """simple docstring""" print(f"Found {torch.cuda.device_count()} devices." ) SCREAMING_SNAKE_CASE_ : Tuple = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.operation_file_path] print(f"Command: {cmd}" ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", inspect.getfile(self.__class__ )] with patch_environment(omp_num_threads=1 ): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy() ) @require_multi_gpu def UpperCAmelCase ( self ): """simple docstring""" print(f"Found {torch.cuda.device_count()} devices, using 2 devices only" ) SCREAMING_SNAKE_CASE_ : Optional[int] = ['torchrun', f"--nproc_per_node={torch.cuda.device_count()}", self.data_loop_file_path] with patch_environment(omp_num_threads=1 , cuda_visible_devices='0,1' ): execute_subprocess_async(_SCREAMING_SNAKE_CASE , env=os.environ.copy() ) if __name__ == "__main__": lowerCAmelCase : Dict = Accelerator() lowerCAmelCase : Union[str, Any] = (accelerator.state.process_index + 2, 10) lowerCAmelCase : List[str] = torch.randint(0, 10, shape).to(accelerator.device) lowerCAmelCase : Tuple = '' lowerCAmelCase : str = accelerator.pad_across_processes(tensor) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." if not torch.equal(tensora[: accelerator.state.process_index + 2], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[accelerator.state.process_index + 2 :] == 0): error_msg += "Padding was not done with the right value (0)." lowerCAmelCase : List[Any] = accelerator.pad_across_processes(tensor, pad_first=True) if tensora.shape[0] != accelerator.state.num_processes + 1: error_msg += F"Found shape {tensora.shape} but should have {accelerator.state.num_processes + 1} at dim 0." lowerCAmelCase : List[Any] = accelerator.state.num_processes - accelerator.state.process_index - 1 if not torch.equal(tensora[index:], tensor): error_msg += "Tensors have different values." if not torch.all(tensora[:index] == 0): error_msg += "Padding was not done with the right value (0)." # Raise error at the end to make sure we don't stop at the first failure. if len(error_msg) > 0: raise ValueError(error_msg)
511
import os import sys import warnings from dataclasses import dataclass, field from io import BytesIO from typing import TYPE_CHECKING, Any, ClassVar, Dict, List, Optional, Union import numpy as np import pyarrow as pa from .. import config from ..download.streaming_download_manager import xopen from ..table import array_cast from ..utils.file_utils import is_local_path from ..utils.py_utils import first_non_null_value, no_op_if_value_is_null, string_to_dict if TYPE_CHECKING: import PIL.Image from .features import FeatureType lowerCAmelCase : Optional[List[str]] = None lowerCAmelCase : Optional[Any] = '<' if sys.byteorder == 'little' else '>' # Origin: https://github.com/python-pillow/Pillow/blob/698951e19e19972aeed56df686868f1329981c12/src/PIL/Image.py#L3126 minus "|i1" which values are not preserved correctly when saving and loading an image lowerCAmelCase : str = [ np.dtype('|b1'), np.dtype('|u1'), np.dtype('<u2'), np.dtype('>u2'), np.dtype('<i2'), np.dtype('>i2'), np.dtype('<u4'), np.dtype('>u4'), np.dtype('<i4'), np.dtype('>i4'), np.dtype('<f4'), np.dtype('>f4'), np.dtype('<f8'), np.dtype('>f8'), ] @dataclass class _A : SCREAMING_SNAKE_CASE : bool = True SCREAMING_SNAKE_CASE : Optional[str] = None # Automatically constructed SCREAMING_SNAKE_CASE : ClassVar[str] = "PIL.Image.Image" SCREAMING_SNAKE_CASE : ClassVar[Any] = pa.struct({'''bytes''': pa.binary(), '''path''': pa.string()}) SCREAMING_SNAKE_CASE : str = field(default='''Image''' , init=__magic_name__ , repr=__magic_name__) def __call__( self ): """simple docstring""" return self.pa_type def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : str = np.array(_SCREAMING_SNAKE_CASE ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": value, "bytes": None} elif isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): return {"path": None, "bytes": value} elif isinstance(_SCREAMING_SNAKE_CASE , np.ndarray ): # convert the image array to PNG/TIFF bytes return encode_np_array(_SCREAMING_SNAKE_CASE ) elif isinstance(_SCREAMING_SNAKE_CASE , PIL.Image.Image ): # convert the PIL image to bytes (default format is PNG/TIFF) return encode_pil_image(_SCREAMING_SNAKE_CASE ) elif value.get('path' ) is not None and os.path.isfile(value['path'] ): # we set "bytes": None to not duplicate the data if they're already available locally return {"bytes": None, "path": value.get('path' )} elif value.get('bytes' ) is not None or value.get('path' ) is not None: # store the image bytes, and path is used to infer the image format using the file extension return {"bytes": value.get('bytes' ), "path": value.get('path' )} else: raise ValueError( f"An image sample should have one of 'path' or 'bytes' but they are missing or None in {value}." ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE=None ): """simple docstring""" if not self.decode: raise RuntimeError('Decoding is disabled for this feature. Please use Image(decode=True) instead.' ) if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support decoding images, please install \'Pillow\'.' ) if token_per_repo_id is None: SCREAMING_SNAKE_CASE_ : Optional[Any] = {} SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Dict = value['path'], value['bytes'] if bytes_ is None: if path is None: raise ValueError(f"An image should have one of 'path' or 'bytes' but both are None in {value}." ) else: if is_local_path(_SCREAMING_SNAKE_CASE ): SCREAMING_SNAKE_CASE_ : List[str] = PIL.Image.open(_SCREAMING_SNAKE_CASE ) else: SCREAMING_SNAKE_CASE_ : List[Any] = path.split('::' )[-1] try: SCREAMING_SNAKE_CASE_ : Union[str, Any] = string_to_dict(_SCREAMING_SNAKE_CASE , config.HUB_DATASETS_URL )['repo_id'] SCREAMING_SNAKE_CASE_ : Optional[int] = token_per_repo_id.get(_SCREAMING_SNAKE_CASE ) except ValueError: SCREAMING_SNAKE_CASE_ : Tuple = None with xopen(_SCREAMING_SNAKE_CASE , 'rb' , use_auth_token=_SCREAMING_SNAKE_CASE ) as f: SCREAMING_SNAKE_CASE_ : Any = BytesIO(f.read() ) SCREAMING_SNAKE_CASE_ : Tuple = PIL.Image.open(bytes_ ) else: SCREAMING_SNAKE_CASE_ : Union[str, Any] = PIL.Image.open(BytesIO(bytes_ ) ) image.load() # to avoid "Too many open files" errors return image def UpperCAmelCase ( self ): """simple docstring""" from .features import Value return ( self if self.decode else { "bytes": Value('binary' ), "path": Value('string' ), } ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" if pa.types.is_string(storage.type ): SCREAMING_SNAKE_CASE_ : Optional[int] = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) SCREAMING_SNAKE_CASE_ : str = pa.StructArray.from_arrays([bytes_array, storage] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_binary(storage.type ): SCREAMING_SNAKE_CASE_ : int = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ : Optional[int] = pa.StructArray.from_arrays([storage, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_struct(storage.type ): if storage.type.get_field_index('bytes' ) >= 0: SCREAMING_SNAKE_CASE_ : str = storage.field('bytes' ) else: SCREAMING_SNAKE_CASE_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.binary() ) if storage.type.get_field_index('path' ) >= 0: SCREAMING_SNAKE_CASE_ : Dict = storage.field('path' ) else: SCREAMING_SNAKE_CASE_ : Dict = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ : Tuple = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=storage.is_null() ) elif pa.types.is_list(storage.type ): SCREAMING_SNAKE_CASE_ : Optional[Any] = pa.array( [encode_np_array(np.array(_SCREAMING_SNAKE_CASE ) )['bytes'] if arr is not None else None for arr in storage.to_pylist()] , type=pa.binary() , ) SCREAMING_SNAKE_CASE_ : Any = pa.array([None] * len(_SCREAMING_SNAKE_CASE ) , type=pa.string() ) SCREAMING_SNAKE_CASE_ : Dict = pa.StructArray.from_arrays( [bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" @no_op_if_value_is_null def path_to_bytes(_SCREAMING_SNAKE_CASE ): with xopen(_SCREAMING_SNAKE_CASE , 'rb' ) as f: SCREAMING_SNAKE_CASE_ : int = f.read() return bytes_ SCREAMING_SNAKE_CASE_ : Optional[int] = pa.array( [ (path_to_bytes(x['path'] ) if x['bytes'] is None else x['bytes']) if x is not None else None for x in storage.to_pylist() ] , type=pa.binary() , ) SCREAMING_SNAKE_CASE_ : Optional[int] = pa.array( [os.path.basename(_SCREAMING_SNAKE_CASE ) if path is not None else None for path in storage.field('path' ).to_pylist()] , type=pa.string() , ) SCREAMING_SNAKE_CASE_ : Any = pa.StructArray.from_arrays([bytes_array, path_array] , ['bytes', 'path'] , mask=bytes_array.is_null() ) return array_cast(_SCREAMING_SNAKE_CASE , self.pa_type ) def A_ ( ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) global _IMAGE_COMPRESSION_FORMATS if _IMAGE_COMPRESSION_FORMATS is None: PIL.Image.init() SCREAMING_SNAKE_CASE_ : Tuple = list(set(PIL.Image.OPEN.keys() ) & set(PIL.Image.SAVE.keys() ) ) return _IMAGE_COMPRESSION_FORMATS def A_ ( a ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Tuple = BytesIO() if image.format in list_image_compression_formats(): SCREAMING_SNAKE_CASE_ : Dict = image.format else: SCREAMING_SNAKE_CASE_ : Optional[Any] = 'PNG' if image.mode in ['1', 'L', 'LA', 'RGB', 'RGBA'] else 'TIFF' image.save(a , format=a ) return buffer.getvalue() def A_ ( a ): """simple docstring""" if hasattr(a , 'filename' ) and image.filename != "": return {"path": image.filename, "bytes": None} else: return {"path": None, "bytes": image_to_bytes(a )} def A_ ( a ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = array.dtype SCREAMING_SNAKE_CASE_ : Any = dtype.byteorder if dtype.byteorder != '=' else _NATIVE_BYTEORDER SCREAMING_SNAKE_CASE_ : Optional[int] = dtype.kind SCREAMING_SNAKE_CASE_ : str = dtype.itemsize SCREAMING_SNAKE_CASE_ : Any = None # Multi-channel array case (only np.dtype("|u1") is allowed) if array.shape[2:]: SCREAMING_SNAKE_CASE_ : List[str] = np.dtype('|u1' ) if dtype_kind not in ["u", "i"]: raise TypeError( f"Unsupported array dtype {dtype} for image encoding. Only {dest_dtype} is supported for multi-channel arrays." ) if dtype is not dest_dtype: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) # Exact match elif dtype in _VALID_IMAGE_ARRAY_DTPYES: SCREAMING_SNAKE_CASE_ : Tuple = dtype else: # Downcast the type within the kind (np.can_cast(from_type, to_type, casting="same_kind") doesn't behave as expected, so do it manually) while dtype_itemsize >= 1: SCREAMING_SNAKE_CASE_ : int = dtype_byteorder + dtype_kind + str(a ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = np.dtype(a ) if dest_dtype in _VALID_IMAGE_ARRAY_DTPYES: warnings.warn(f"Downcasting array dtype {dtype} to {dest_dtype} to be compatible with 'Pillow'" ) break else: dtype_itemsize //= 2 if dest_dtype is None: raise TypeError( f"Cannot convert dtype {dtype} to a valid image dtype. Valid image dtypes: {_VALID_IMAGE_ARRAY_DTPYES}" ) SCREAMING_SNAKE_CASE_ : List[str] = PIL.Image.fromarray(array.astype(a ) ) return {"path": None, "bytes": image_to_bytes(a )} def A_ ( a ): """simple docstring""" if config.PIL_AVAILABLE: import PIL.Image else: raise ImportError('To support encoding images, please install \'Pillow\'.' ) if objs: SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : str = first_non_null_value(a ) if isinstance(a , a ): return [{"path": obj, "bytes": None} if obj is not None else None for obj in objs] if isinstance(a , np.ndarray ): SCREAMING_SNAKE_CASE_ : int = no_op_if_value_is_null(a ) return [obj_to_image_dict_func(a ) for obj in objs] elif isinstance(a , PIL.Image.Image ): SCREAMING_SNAKE_CASE_ : Union[str, Any] = no_op_if_value_is_null(a ) return [obj_to_image_dict_func(a ) for obj in objs] else: return objs else: return objs
511
1
'''simple docstring''' import warnings warnings.warn( """memory_utils has been reorganized to utils.memory. Import `find_executable_batchsize` from the main `__init__`: """ """`from accelerate import find_executable_batch_size` to avoid this warning.""", FutureWarning, )
427
'''simple docstring''' from __future__ import annotations def lowerCamelCase__ ( a , a ): print(f'Vertex\tShortest Distance from vertex {src}' ) for i, d in enumerate(a ): print(f'{i}\t\t{d}' ) def lowerCamelCase__ ( a , a , a ): for j in range(a ): __snake_case , __snake_case , __snake_case = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: return True return False def lowerCamelCase__ ( a , a , a , a ): __snake_case = [float('inf' )] * vertex_count __snake_case = 0.0 for _ in range(vertex_count - 1 ): for j in range(a ): __snake_case , __snake_case , __snake_case = (graph[j][k] for k in ['src', 'dst', 'weight']) if distance[u] != float('inf' ) and distance[u] + w < distance[v]: __snake_case = distance[u] + w __snake_case = check_negative_cycle(a , a , a ) if negative_cycle_exists: raise Exception('Negative cycle found' ) return distance if __name__ == "__main__": import doctest doctest.testmod() _lowercase = int(input("""Enter number of vertices: """).strip()) _lowercase = int(input("""Enter number of edges: """).strip()) _lowercase = [{} for _ in range(E)] for i in range(E): print("""Edge """, i + 1) _lowercase , _lowercase , _lowercase = ( int(x) for x in input("""Enter source, destination, weight: """).strip().split(""" """) ) _lowercase = {"""src""": src, """dst""": dest, """weight""": weight} _lowercase = int(input("""\nEnter shortest path source:""").strip()) _lowercase = bellman_ford(graph, V, E, source) print_distance(shortest_distance, 0)
427
1
import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_mobilebert import MobileBertTokenizer _snake_case : Dict = logging.get_logger(__name__) _snake_case : List[Any] = {'vocab_file': 'vocab.txt', 'tokenizer_file': 'tokenizer.json'} _snake_case : List[Any] = { 'vocab_file': {'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/vocab.txt'}, 'tokenizer_file': { 'mobilebert-uncased': 'https://huggingface.co/google/mobilebert-uncased/resolve/main/tokenizer.json' }, } _snake_case : List[Any] = {'mobilebert-uncased': 512} _snake_case : Optional[int] = {} class _UpperCAmelCase ( _UpperCamelCase ): """simple docstring""" a_ = VOCAB_FILES_NAMES a_ = PRETRAINED_VOCAB_FILES_MAP a_ = PRETRAINED_INIT_CONFIGURATION a_ = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES a_ = MobileBertTokenizer def __init__( self : Any , lowerCAmelCase_ : Optional[Any]=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Optional[int]=True , lowerCAmelCase_ : Tuple="[UNK]" , lowerCAmelCase_ : Optional[int]="[SEP]" , lowerCAmelCase_ : Optional[int]="[PAD]" , lowerCAmelCase_ : Tuple="[CLS]" , lowerCAmelCase_ : List[Any]="[MASK]" , lowerCAmelCase_ : Optional[Any]=True , lowerCAmelCase_ : Optional[Any]=None , **lowerCAmelCase_ : int , ) -> Optional[Any]: super().__init__( lowerCAmelCase_ , tokenizer_file=lowerCAmelCase_ , do_lower_case=lowerCAmelCase_ , unk_token=lowerCAmelCase_ , sep_token=lowerCAmelCase_ , pad_token=lowerCAmelCase_ , cls_token=lowerCAmelCase_ , mask_token=lowerCAmelCase_ , tokenize_chinese_chars=lowerCAmelCase_ , strip_accents=lowerCAmelCase_ , **lowerCAmelCase_ , ) __lowerCAmelCase = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get('lowercase' , lowerCAmelCase_ ) != do_lower_case or normalizer_state.get('strip_accents' , lowerCAmelCase_ ) != strip_accents or normalizer_state.get('handle_chinese_chars' , lowerCAmelCase_ ) != tokenize_chinese_chars ): __lowerCAmelCase = getattr(lowerCAmelCase_ , normalizer_state.pop('type' ) ) __lowerCAmelCase = do_lower_case __lowerCAmelCase = strip_accents __lowerCAmelCase = tokenize_chinese_chars __lowerCAmelCase = normalizer_class(**lowerCAmelCase_ ) __lowerCAmelCase = do_lower_case def lowercase ( self : List[str] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any=None ) -> List[str]: __lowerCAmelCase = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowercase ( self : Union[str, Any] , lowerCAmelCase_ : List[int] , lowerCAmelCase_ : Optional[List[int]] = None ) -> List[int]: __lowerCAmelCase = [self.sep_token_id] __lowerCAmelCase = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowercase ( self : Tuple , lowerCAmelCase_ : str , lowerCAmelCase_ : Optional[str] = None ) -> Tuple[str]: __lowerCAmelCase = self._tokenizer.model.save(lowerCAmelCase_ , name=lowerCAmelCase_ ) return tuple(lowerCAmelCase_ )
53
'''simple docstring''' import argparse import gc import json import os import shutil import warnings import torch from transformers import LlamaConfig, LlamaForCausalLM, LlamaTokenizer try: from transformers import LlamaTokenizerFast except ImportError as e: warnings.warn(e) warnings.warn( 'The converted tokenizer will be the `slow` tokenizer. To use the fast, update your `tokenizers` library and re-run the tokenizer conversion' ) lowercase : Dict = None lowercase : Union[str, Any] = { '7B': 1_1_0_0_8, '13B': 1_3_8_2_4, '30B': 1_7_9_2_0, '65B': 2_2_0_1_6, '70B': 2_8_6_7_2, } lowercase : Tuple = { '7B': 1, '7Bf': 1, '13B': 2, '13Bf': 2, '30B': 4, '65B': 8, '70B': 8, '70Bf': 8, } def __a ( A__ , A__=1 , A__=256 ) -> List[str]: return multiple_of * ((int(ffn_dim_multiplier * int(8 * n / 3 ) ) + multiple_of - 1) // multiple_of) def __a ( A__ ) -> Optional[int]: with open(A__ , "r" ) as f: return json.load(A__ ) def __a ( A__ , A__ ) -> Any: with open(A__ , "w" ) as f: json.dump(A__ , A__ ) def __a ( A__ , A__ , A__ , A__=True ) -> Union[str, Any]: os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase = os.path.join(A__ , "tmp" ) os.makedirs(A__ , exist_ok=A__ ) lowerCAmelCase = read_json(os.path.join(A__ , "params.json" ) ) lowerCAmelCase = NUM_SHARDS[model_size] lowerCAmelCase = params["n_layers"] lowerCAmelCase = params["n_heads"] lowerCAmelCase = n_heads // num_shards lowerCAmelCase = params["dim"] lowerCAmelCase = dim // n_heads lowerCAmelCase = 10_000.0 lowerCAmelCase = 1.0 / (base ** (torch.arange(0 , A__ , 2 ).float() / dims_per_head)) if "n_kv_heads" in params: lowerCAmelCase = params["n_kv_heads"] # for GQA / MQA lowerCAmelCase = n_heads_per_shard // num_key_value_heads lowerCAmelCase = dim // num_key_value_heads else: # compatibility with other checkpoints lowerCAmelCase = n_heads lowerCAmelCase = n_heads_per_shard lowerCAmelCase = dim # permute for sliced rotary def permute(A__ , A__=n_heads , A__=dim , A__=dim ): return w.view(A__ , dima // n_heads // 2 , 2 , A__ ).transpose(1 , 2 ).reshape(A__ , A__ ) print(f"Fetching all parameters from the checkpoint at {input_base_path}." ) # Load weights if model_size == "7B": # Not sharded # (The sharded implementation would also work, but this is simpler.) lowerCAmelCase = torch.load(os.path.join(A__ , "consolidated.00.pth" ) , map_location="cpu" ) else: # Sharded lowerCAmelCase = [ torch.load(os.path.join(A__ , f"consolidated.{i:02d}.pth" ) , map_location="cpu" ) for i in range(A__ ) ] lowerCAmelCase = 0 lowerCAmelCase = {"weight_map": {}} for layer_i in range(A__ ): lowerCAmelCase = f"pytorch_model-{layer_i + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCAmelCase = { f"model.layers.{layer_i}.self_attn.q_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wq.weight"] ), f"model.layers.{layer_i}.self_attn.k_proj.weight": permute( loaded[f"layers.{layer_i}.attention.wk.weight"] ), f"model.layers.{layer_i}.self_attn.v_proj.weight": loaded[f"layers.{layer_i}.attention.wv.weight"], f"model.layers.{layer_i}.self_attn.o_proj.weight": loaded[f"layers.{layer_i}.attention.wo.weight"], f"model.layers.{layer_i}.mlp.gate_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w1.weight"], f"model.layers.{layer_i}.mlp.down_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w2.weight"], f"model.layers.{layer_i}.mlp.up_proj.weight": loaded[f"layers.{layer_i}.feed_forward.w3.weight"], f"model.layers.{layer_i}.input_layernorm.weight": loaded[f"layers.{layer_i}.attention_norm.weight"], f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[f"layers.{layer_i}.ffn_norm.weight"], } else: # Sharded # Note that attention.w{q,k,v,o}, feed_fordward.w[1,2,3], attention_norm.weight and ffn_norm.weight share # the same storage object, saving attention_norm and ffn_norm will save other weights too, which is # redundant as other weights will be stitched from multiple shards. To avoid that, they are cloned. lowerCAmelCase = { f"model.layers.{layer_i}.input_layernorm.weight": loaded[0][ f"layers.{layer_i}.attention_norm.weight" ].clone(), f"model.layers.{layer_i}.post_attention_layernorm.weight": loaded[0][ f"layers.{layer_i}.ffn_norm.weight" ].clone(), } lowerCAmelCase = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wq.weight"].view(A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) ) lowerCAmelCase = permute( torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wk.weight"].view( A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) , A__ , A__ , A__ , ) lowerCAmelCase = torch.cat( [ loaded[i][f"layers.{layer_i}.attention.wv.weight"].view( A__ , A__ , A__ ) for i in range(A__ ) ] , dim=0 , ).reshape(A__ , A__ ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.attention.wo.weight"] for i in range(A__ )] , dim=1 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w1.weight"] for i in range(A__ )] , dim=0 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w2.weight"] for i in range(A__ )] , dim=1 ) lowerCAmelCase = torch.cat( [loaded[i][f"layers.{layer_i}.feed_forward.w3.weight"] for i in range(A__ )] , dim=0 ) lowerCAmelCase = inv_freq for k, v in state_dict.items(): lowerCAmelCase = filename param_count += v.numel() torch.save(A__ , os.path.join(A__ , A__ ) ) lowerCAmelCase = f"pytorch_model-{n_layers + 1}-of-{n_layers + 1}.bin" if model_size == "7B": # Unsharded lowerCAmelCase = { "model.embed_tokens.weight": loaded["tok_embeddings.weight"], "model.norm.weight": loaded["norm.weight"], "lm_head.weight": loaded["output.weight"], } else: lowerCAmelCase = { "model.norm.weight": loaded[0]["norm.weight"], "model.embed_tokens.weight": torch.cat( [loaded[i]["tok_embeddings.weight"] for i in range(A__ )] , dim=1 ), "lm_head.weight": torch.cat([loaded[i]["output.weight"] for i in range(A__ )] , dim=0 ), } for k, v in state_dict.items(): lowerCAmelCase = filename param_count += v.numel() torch.save(A__ , os.path.join(A__ , A__ ) ) # Write configs lowerCAmelCase = {"total_size": param_count * 2} write_json(A__ , os.path.join(A__ , "pytorch_model.bin.index.json" ) ) lowerCAmelCase = params["ffn_dim_multiplier"] if "ffn_dim_multiplier" in params else 1 lowerCAmelCase = params["multiple_of"] if "multiple_of" in params else 256 lowerCAmelCase = LlamaConfig( hidden_size=A__ , intermediate_size=compute_intermediate_size(A__ , A__ , A__ ) , num_attention_heads=params["n_heads"] , num_hidden_layers=params["n_layers"] , rms_norm_eps=params["norm_eps"] , num_key_value_heads=A__ , ) config.save_pretrained(A__ ) # Make space so we can load the model properly now. del state_dict del loaded gc.collect() print("Loading the checkpoint in a Llama model." ) lowerCAmelCase = LlamaForCausalLM.from_pretrained(A__ , torch_dtype=torch.floataa , low_cpu_mem_usage=A__ ) # Avoid saving this as part of the config. del model.config._name_or_path print("Saving in the Transformers format." ) model.save_pretrained(A__ , safe_serialization=A__ ) shutil.rmtree(A__ ) def __a ( A__ , A__ ) -> Any: # Initialize the tokenizer based on the `spm` model lowerCAmelCase = LlamaTokenizer if LlamaTokenizerFast is None else LlamaTokenizerFast print(f"Saving a {tokenizer_class.__name__} to {tokenizer_path}." ) lowerCAmelCase = tokenizer_class(A__ ) tokenizer.save_pretrained(A__ ) def __a ( ) -> Any: lowerCAmelCase = argparse.ArgumentParser() parser.add_argument( "--input_dir" , help="Location of LLaMA weights, which contains tokenizer.model and model folders" , ) parser.add_argument( "--model_size" , choices=["7B", "7Bf", "13B", "13Bf", "30B", "65B", "70B", "70Bf", "tokenizer_only"] , ) parser.add_argument( "--output_dir" , help="Location to write HF model and tokenizer" , ) parser.add_argument("--safe_serialization" , type=A__ , help="Whether or not to save using `safetensors`." ) lowerCAmelCase = parser.parse_args() if args.model_size != "tokenizer_only": write_model( model_path=args.output_dir , input_base_path=os.path.join(args.input_dir , args.model_size ) , model_size=args.model_size , safe_serialization=args.safe_serialization , ) lowerCAmelCase = os.path.join(args.input_dir , "tokenizer.model" ) write_tokenizer(args.output_dir , A__ ) if __name__ == "__main__": main()
649
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available UpperCamelCase_ = {'tokenization_herbert': ['HerbertTokenizer']} try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ['HerbertTokenizerFast'] if TYPE_CHECKING: from .tokenization_herbert import HerbertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_herbert_fast import HerbertTokenizerFast else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
710
import copy import inspect import unittest import numpy as np from huggingface_hub import hf_hub_download from transformers import VideoMAEConfig from transformers.models.auto import get_values from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import ( MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING, VideoMAEForPreTraining, VideoMAEForVideoClassification, VideoMAEModel, ) from transformers.models.videomae.modeling_videomae import VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from transformers import VideoMAEImageProcessor class snake_case_ : '''simple docstring''' def __init__( self, A_, A_=13, A_=10, A_=3, A_=2, A_=2, A_=2, A_=True, A_=True, A_=32, A_=5, A_=4, A_=37, A_="gelu", A_=0.1, A_=0.1, A_=10, A_=0.02, A_=0.9, A_=None, ) -> int: UpperCAmelCase__ =parent UpperCAmelCase__ =batch_size UpperCAmelCase__ =image_size UpperCAmelCase__ =num_channels UpperCAmelCase__ =patch_size UpperCAmelCase__ =tubelet_size UpperCAmelCase__ =num_frames UpperCAmelCase__ =is_training UpperCAmelCase__ =use_labels UpperCAmelCase__ =hidden_size UpperCAmelCase__ =num_hidden_layers UpperCAmelCase__ =num_attention_heads UpperCAmelCase__ =intermediate_size UpperCAmelCase__ =hidden_act UpperCAmelCase__ =hidden_dropout_prob UpperCAmelCase__ =attention_probs_dropout_prob UpperCAmelCase__ =type_sequence_label_size UpperCAmelCase__ =initializer_range UpperCAmelCase__ =mask_ratio UpperCAmelCase__ =scope # in VideoMAE, the number of tokens equals num_frames/tubelet_size * num_patches per frame UpperCAmelCase__ =(image_size // patch_size) ** 2 UpperCAmelCase__ =(num_frames // tubelet_size) * self.num_patches_per_frame # use this variable to define bool_masked_pos UpperCAmelCase__ =int(mask_ratio * self.seq_length ) def __UpperCAmelCase ( self ) -> Optional[Any]: UpperCAmelCase__ =floats_tensor( [self.batch_size, self.num_frames, self.num_channels, self.image_size, self.image_size] ) UpperCAmelCase__ =None if self.use_labels: UpperCAmelCase__ =ids_tensor([self.batch_size], self.type_sequence_label_size ) UpperCAmelCase__ =self.get_config() return config, pixel_values, labels def __UpperCAmelCase ( self ) -> Union[str, Any]: return VideoMAEConfig( image_size=self.image_size, patch_size=self.patch_size, num_channels=self.num_channels, num_frames=self.num_frames, tubelet_size=self.tubelet_size, hidden_size=self.hidden_size, num_hidden_layers=self.num_hidden_layers, num_attention_heads=self.num_attention_heads, intermediate_size=self.intermediate_size, hidden_act=self.hidden_act, hidden_dropout_prob=self.hidden_dropout_prob, attention_probs_dropout_prob=self.attention_probs_dropout_prob, is_decoder=A_, initializer_range=self.initializer_range, ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Dict: UpperCAmelCase__ =VideoMAEModel(config=A_ ) model.to(A_ ) model.eval() UpperCAmelCase__ =model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size) ) def __UpperCAmelCase ( self, A_, A_, A_ ) -> Optional[Any]: UpperCAmelCase__ =VideoMAEForPreTraining(A_ ) model.to(A_ ) model.eval() # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ =torch.ones((self.num_masks,) ) UpperCAmelCase__ =torch.cat([mask, torch.zeros(self.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ =mask.expand(self.batch_size, -1 ).bool() UpperCAmelCase__ =model(A_, A_ ) # model only returns predictions for masked patches UpperCAmelCase__ =mask.sum().item() UpperCAmelCase__ =3 * self.tubelet_size * self.patch_size**2 self.parent.assertEqual(result.logits.shape, (self.batch_size, num_masked_patches, decoder_num_labels) ) def __UpperCAmelCase ( self ) -> Union[str, Any]: UpperCAmelCase__ =self.prepare_config_and_inputs() UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ =config_and_inputs UpperCAmelCase__ ={"pixel_values": pixel_values} return config, inputs_dict @require_torch class snake_case_ ( a, a, unittest.TestCase ): '''simple docstring''' __UpperCamelCase = ( (VideoMAEModel, VideoMAEForPreTraining, VideoMAEForVideoClassification) if is_torch_available() else () ) __UpperCamelCase = ( {'feature-extraction': VideoMAEModel, 'video-classification': VideoMAEForVideoClassification} if is_torch_available() else {} ) __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False __UpperCamelCase = False def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase__ =VideoMAEModelTester(self ) UpperCAmelCase__ =ConfigTester(self, config_class=A_, has_text_modality=A_, hidden_size=37 ) def __UpperCAmelCase ( self, A_, A_, A_=False ) -> Optional[int]: UpperCAmelCase__ =copy.deepcopy(A_ ) if model_class == VideoMAEForPreTraining: # important: each video needs to have the same number of masked patches # hence we define a single mask, which we then repeat for each example in the batch UpperCAmelCase__ =torch.ones((self.model_tester.num_masks,) ) UpperCAmelCase__ =torch.cat([mask, torch.zeros(self.model_tester.seq_length - mask.size(0 ) )] ) UpperCAmelCase__ =mask.expand(self.model_tester.batch_size, -1 ).bool() UpperCAmelCase__ =bool_masked_pos.to(A_ ) if return_labels: if model_class in [ *get_values(A_ ), ]: UpperCAmelCase__ =torch.zeros( self.model_tester.batch_size, dtype=torch.long, device=A_ ) return inputs_dict def __UpperCAmelCase ( self ) -> Optional[Any]: self.config_tester.run_common_tests() @unittest.skip(reason="VideoMAE does not use inputs_embeds" ) def __UpperCAmelCase ( self ) -> Any: pass def __UpperCAmelCase ( self ) -> int: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(A_ ) self.assertIsInstance(model.get_input_embeddings(), (nn.Module) ) UpperCAmelCase__ =model.get_output_embeddings() self.assertTrue(x is None or isinstance(A_, nn.Linear ) ) def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =model_class(A_ ) UpperCAmelCase__ =inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic UpperCAmelCase__ =[*signature.parameters.keys()] UpperCAmelCase__ =["pixel_values"] self.assertListEqual(arg_names[:1], A_ ) def __UpperCAmelCase ( self ) -> Optional[int]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __UpperCAmelCase ( self ) -> List[Any]: UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_pretraining(*A_ ) @slow def __UpperCAmelCase ( self ) -> int: for model_name in VIDEOMAE_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: UpperCAmelCase__ =VideoMAEModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def __UpperCAmelCase ( self ) -> Tuple: if not self.has_attentions: pass else: UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() UpperCAmelCase__ =True for model_class in self.all_model_classes: UpperCAmelCase__ =self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ =( num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length ) UpperCAmelCase__ =True UpperCAmelCase__ =False UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) UpperCAmelCase__ =len(A_ ) # Check attention is always last and order is fine UpperCAmelCase__ =True UpperCAmelCase__ =True UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) self.assertEqual(out_len + 1, len(A_ ) ) UpperCAmelCase__ =outputs.attentions self.assertEqual(len(A_ ), self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ), [self.model_tester.num_attention_heads, seq_len, seq_len], ) def __UpperCAmelCase ( self ) -> Dict: def check_hidden_states_output(A_, A_, A_ ): UpperCAmelCase__ =model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): UpperCAmelCase__ =model(**self._prepare_for_class(A_, A_ ) ) UpperCAmelCase__ =outputs.hidden_states UpperCAmelCase__ =self.model_tester.num_hidden_layers + 1 self.assertEqual(len(A_ ), A_ ) UpperCAmelCase__ =self.model_tester.seq_length - self.model_tester.num_masks UpperCAmelCase__ =num_visible_patches if model_class == VideoMAEForPreTraining else self.model_tester.seq_length self.assertListEqual( list(hidden_states[0].shape[-2:] ), [seq_length, self.model_tester.hidden_size], ) UpperCAmelCase__ , UpperCAmelCase__ =self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: UpperCAmelCase__ =True check_hidden_states_output(A_, A_, A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] UpperCAmelCase__ =True check_hidden_states_output(A_, A_, A_ ) @unittest.skip("Will be fixed soon by reducing the size of the model used for common tests." ) def __UpperCAmelCase ( self ) -> Any: pass def _UpperCAmelCase ( ): '''simple docstring''' UpperCAmelCase__ =hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" , filename="eating_spaghetti.npy" , repo_type="dataset" ) UpperCAmelCase__ =np.load(A ) return list(A ) @require_torch @require_vision class snake_case_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __UpperCAmelCase ( self ) -> Any: # logits were tested with a different mean and std, so we use the same here return ( VideoMAEImageProcessor(image_mean=[0.5, 0.5, 0.5], image_std=[0.5, 0.5, 0.5] ) if is_vision_available() else None ) @slow def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =VideoMAEForVideoClassification.from_pretrained("MCG-NJU/videomae-base-finetuned-kinetics" ).to( A_ ) UpperCAmelCase__ =self.default_image_processor UpperCAmelCase__ =prepare_video() UpperCAmelCase__ =image_processor(A_, return_tensors="pt" ).to(A_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ =model(**A_ ) # verify the logits UpperCAmelCase__ =torch.Size((1, 400) ) self.assertEqual(outputs.logits.shape, A_ ) UpperCAmelCase__ =torch.tensor([0.36_69, -0.06_88, -0.24_21] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3], A_, atol=1E-4 ) ) @slow def __UpperCAmelCase ( self ) -> Dict: UpperCAmelCase__ =VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short" ).to(A_ ) UpperCAmelCase__ =self.default_image_processor UpperCAmelCase__ =prepare_video() UpperCAmelCase__ =image_processor(A_, return_tensors="pt" ).to(A_ ) # add boolean mask, indicating which patches to mask UpperCAmelCase__ =hf_hub_download(repo_id="hf-internal-testing/bool-masked-pos", filename="bool_masked_pos.pt" ) UpperCAmelCase__ =torch.load(A_ ) # forward pass with torch.no_grad(): UpperCAmelCase__ =model(**A_ ) # verify the logits UpperCAmelCase__ =torch.Size([1, 1408, 1536] ) UpperCAmelCase__ =torch.tensor( [[0.79_94, 0.96_12, 0.85_08], [0.74_01, 0.89_58, 0.83_02], [0.58_62, 0.74_68, 0.73_25]], device=A_ ) self.assertEqual(outputs.logits.shape, A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3], A_, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `True`) UpperCAmelCase__ =torch.tensor([0.51_42], device=A_ ) self.assertTrue(torch.allclose(outputs.loss, A_, atol=1E-4 ) ) # verify the loss (`config.norm_pix_loss` = `False`) UpperCAmelCase__ =VideoMAEForPreTraining.from_pretrained("MCG-NJU/videomae-base-short", norm_pix_loss=A_ ).to( A_ ) with torch.no_grad(): UpperCAmelCase__ =model(**A_ ) UpperCAmelCase__ =torch.tensor(torch.tensor([0.64_69] ), device=A_ ) self.assertTrue(torch.allclose(outputs.loss, A_, atol=1E-4 ) )
510
0
from arguments import InitializationArguments from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer, HfArgumentParser # Configuration SCREAMING_SNAKE_CASE__ = HfArgumentParser(InitializationArguments) SCREAMING_SNAKE_CASE__ = parser.parse_args() # Load codeparrot tokenizer trained for Python code tokenization SCREAMING_SNAKE_CASE__ = AutoTokenizer.from_pretrained(args.tokenizer_name) # Config: "scale_attn_by_layer_idx" and "reorder_and_upcast_attn" are Mistral stability tweaks SCREAMING_SNAKE_CASE__ = { '''vocab_size''': len(tokenizer), '''scale_attn_by_inverse_layer_idx''': True, '''reorder_and_upcast_attn''': True, } # Load model config (GPT-2 large in this case) SCREAMING_SNAKE_CASE__ = AutoConfig.from_pretrained(args.config_name, **config_kwargs) # Initialize new model with config SCREAMING_SNAKE_CASE__ = AutoModelForCausalLM.from_config(config) # Save model to the hub model.save_pretrained(args.model_name, push_to_hub=args.push_to_hub)
47
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_sentencepiece_available, is_tf_available, is_tokenizers_available, is_torch_available, ) UpperCamelCase_ = {"configuration_mbart": ["MBART_PRETRAINED_CONFIG_ARCHIVE_MAP", "MBartConfig", "MBartOnnxConfig"]} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["MBartTokenizer"] try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["MBartTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "MBART_PRETRAINED_MODEL_ARCHIVE_LIST", "MBartForCausalLM", "MBartForConditionalGeneration", "MBartForQuestionAnswering", "MBartForSequenceClassification", "MBartModel", "MBartPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "TFMBartForConditionalGeneration", "TFMBartModel", "TFMBartPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = [ "FlaxMBartForConditionalGeneration", "FlaxMBartForQuestionAnswering", "FlaxMBartForSequenceClassification", "FlaxMBartModel", "FlaxMBartPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mbart import MBART_PRETRAINED_CONFIG_ARCHIVE_MAP, MBartConfig, MBartOnnxConfig try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart import MBartTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_mbart_fast import MBartTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mbart import ( MBART_PRETRAINED_MODEL_ARCHIVE_LIST, MBartForCausalLM, MBartForConditionalGeneration, MBartForQuestionAnswering, MBartForSequenceClassification, MBartModel, MBartPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mbart import TFMBartForConditionalGeneration, TFMBartModel, TFMBartPreTrainedModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_mbart import ( FlaxMBartForConditionalGeneration, FlaxMBartForQuestionAnswering, FlaxMBartForSequenceClassification, FlaxMBartModel, FlaxMBartPreTrainedModel, ) else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
256
0
"""simple docstring""" def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase = False ) -> bool: '''simple docstring''' if n == 2: return True if not n % 2 or n < 2: return False if n > 5 and n % 10 not in (1, 3, 7, 9): # can quickly check last digit return False if n > 3_3170_4406_4679_8873_8596_1981 and not allow_probable: raise ValueError( "Warning: upper bound of deterministic test is exceeded. " "Pass allow_probable=True to allow probabilistic test. " "A return value of True indicates a probable prime." ) # array bounds provided by analysis lowerCamelCase__ =[ 2047, 137_3653, 2532_6001, 32_1503_1751, 2_1523_0289_8747, 3_4747_4966_0383, 341_5500_7172_8321, 1, 382_5123_0565_4641_3051, 1, 1, 3186_6585_7834_0311_5116_7461, 3_3170_4406_4679_8873_8596_1981, ] lowerCamelCase__ =[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41] for idx, _p in enumerate(__lowerCAmelCase , 1 ): if n < _p: # then we have our last prime to check lowerCamelCase__ =primes[:idx] break lowerCamelCase__ , lowerCamelCase__ =n - 1, 0 # break up n -1 into a power of 2 (s) and # remaining odd component # essentially, solve for d * 2 ** s == n - 1 while d % 2 == 0: d //= 2 s += 1 for prime in plist: lowerCamelCase__ =False for r in range(__lowerCAmelCase ): lowerCamelCase__ =pow(__lowerCAmelCase , d * 2**r , __lowerCAmelCase ) # see article for analysis explanation for m if (r == 0 and m == 1) or ((m + 1) % n == 0): lowerCamelCase__ =True # this loop will not determine compositeness break if pr: continue # if pr is False, then the above loop never evaluated to true, # and the n MUST be composite return False return True def lowerCamelCase_ ( ) -> None: '''simple docstring''' assert not miller_rabin(561 ) assert miller_rabin(563 ) # 2047 assert not miller_rabin(83_8201 ) assert miller_rabin(83_8207 ) # 1_373_653 assert not miller_rabin(1731_6001 ) assert miller_rabin(1731_6017 ) # 25_326_001 assert not miller_rabin(30_7838_6641 ) assert miller_rabin(30_7838_6653 ) # 3_215_031_751 assert not miller_rabin(1_7130_4557_4801 ) assert miller_rabin(1_7130_4557_4819 ) # 2_152_302_898_747 assert not miller_rabin(2_7797_9972_8307 ) assert miller_rabin(2_7797_9972_8327 ) # 3_474_749_660_383 assert not miller_rabin(113_8500_2390_9441 ) assert miller_rabin(113_8500_2390_9527 ) # 341_550_071_728_321 assert not miller_rabin(127_5041_0188_4880_4351 ) assert miller_rabin(127_5041_0188_4880_4391 ) # 3_825_123_056_546_413_051 assert not miller_rabin(796_6646_4458_5077_8779_1867 ) assert miller_rabin(796_6646_4458_5077_8779_1951 ) # 318_665_857_834_031_151_167_461 assert not miller_rabin(5528_4067_7446_6478_9766_0333 ) assert miller_rabin(5528_4067_7446_6478_9766_0359 ) # 3_317_044_064_679_887_385_961_981 # upper limit for probabilistic test if __name__ == "__main__": test_miller_rabin()
719
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def lowerCamelCase_ ( __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = None ) -> str: '''simple docstring''' if version.parse(hfh.__version__ ).release < version.parse("0.11.0" ).release: # old versions of hfh don't url-encode the file path lowerCamelCase__ =quote(__lowerCAmelCase ) return hfh.hf_hub_url(__lowerCAmelCase , __lowerCAmelCase , repo_type="dataset" , revision=__lowerCAmelCase )
132
0
'''simple docstring''' import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin __UpperCAmelCase = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class a__ ( a__ , unittest.TestCase ): '''simple docstring''' lowercase__ : List[Any] = XLMRobertaTokenizer lowercase__ : Optional[Any] = XLMRobertaTokenizerFast lowercase__ : Union[str, Any] = True lowercase__ : List[str] = True def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: super().setUp() # We have a SentencePiece fixture for testing lowerCAmelCase__ = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) tokenizer.save_pretrained(self.tmpdirname ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = '''<pad>''' lowerCAmelCase__ = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(lowerCamelCase_ ) , lowerCamelCase_ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(lowerCamelCase_ ) , lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: lowerCAmelCase__ = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<s>''' ) self.assertEqual(vocab_keys[1] , '''<pad>''' ) self.assertEqual(vocab_keys[-1] , '''<mask>''' ) self.assertEqual(len(lowerCamelCase_ ) , 10_02 ) def __SCREAMING_SNAKE_CASE ( self ) -> int: self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = XLMRobertaTokenizer(lowerCamelCase_ , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(lowerCamelCase_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) lowerCAmelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) lowerCAmelCase__ = tokenizer.convert_tokens_to_ids(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) lowerCAmelCase__ = tokenizer.convert_ids_to_tokens(lowerCamelCase_ ) self.assertListEqual( lowerCamelCase_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return lowerCAmelCase__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-xlm-roberta''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"""{tokenizer.__class__.__name__} ({pretrained_name})""" ): lowerCAmelCase__ = self.rust_tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = self.tokenizer_class.from_pretrained(lowerCamelCase_ , **lowerCamelCase_ ) lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) lowerCAmelCase__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=True lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it save with the same files self.assertSequenceEqual(lowerCamelCase_ , lowerCamelCase_ ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) # Save tokenizer rust, legacy_format=False lowerCAmelCase__ = tempfile.mkdtemp() lowerCAmelCase__ = tokenizer_r.save_pretrained(lowerCamelCase_ , legacy_format=lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.save_pretrained(lowerCamelCase_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way lowerCAmelCase__ = tokenizer_r.from_pretrained(lowerCamelCase_ ) lowerCAmelCase__ = tokenizer_p.from_pretrained(lowerCamelCase_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(lowerCamelCase_ , lowerCamelCase_ ) ) shutil.rmtree(lowerCamelCase_ ) @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: return XLMRobertaTokenizer.from_pretrained('''xlm-roberta-base''' ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: with tempfile.NamedTemporaryFile() as f: shutil.copyfile(lowerCamelCase_ , f.name ) lowerCAmelCase__ = XLMRobertaTokenizer(f.name , keep_accents=lowerCamelCase_ ) lowerCAmelCase__ = pickle.dumps(lowerCamelCase_ ) pickle.loads(lowerCamelCase_ ) def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: if not self.test_rust_tokenizer: return lowerCAmelCase__ = self.get_tokenizer() lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = '''I was born in 92000, and this is falsé.''' lowerCAmelCase__ = tokenizer.tokenize(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.tokenize(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ , add_special_tokens=lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) lowerCAmelCase__ = self.get_rust_tokenizer() lowerCAmelCase__ = tokenizer.encode(lowerCamelCase_ ) lowerCAmelCase__ = rust_tokenizer.encode(lowerCamelCase_ ) self.assertListEqual(lowerCamelCase_ , lowerCamelCase_ ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: lowerCAmelCase__ = '''Hello World!''' lowerCAmelCase__ = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: lowerCAmelCase__ = ( '''This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) " [ ] ! : - . Also we will''' ''' add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth''' ) lowerCAmelCase__ = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(lowerCamelCase_ , self.big_tokenizer.encode(lowerCamelCase_ ) ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[Any]: # fmt: off lowerCAmelCase__ = {'''input_ids''': [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=lowerCamelCase_ , model_name='''xlm-roberta-base''' , revision='''d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3''' , )
90
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE( A ): @staticmethod @abstractmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" raise NotImplementedError() @abstractmethod def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError()
498
0
from dataclasses import dataclass from typing import Dict, Optional, Tuple, Union import torch import torch.nn as nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput, apply_forward_hook from .attention_processor import AttentionProcessor, AttnProcessor from .modeling_utils import ModelMixin from .vae import Decoder, DecoderOutput, DiagonalGaussianDistribution, Encoder @dataclass class _snake_case ( _A ): _A = 42 class _snake_case ( _A , _A ): _A = True @register_to_config def __init__( self ,UpperCamelCase = 3 ,UpperCamelCase = 3 ,UpperCamelCase = ("DownEncoderBlock2D",) ,UpperCamelCase = ("UpDecoderBlock2D",) ,UpperCamelCase = (64,) ,UpperCamelCase = 1 ,UpperCamelCase = "silu" ,UpperCamelCase = 4 ,UpperCamelCase = 32 ,UpperCamelCase = 32 ,UpperCamelCase = 0.18215 ,) -> int: super().__init__() # pass init params to Encoder snake_case__ :Union[str, Any] = Encoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,down_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,act_fn=UpperCamelCase ,norm_num_groups=UpperCamelCase ,double_z=UpperCamelCase ,) # pass init params to Decoder snake_case__ :int = Decoder( in_channels=UpperCamelCase ,out_channels=UpperCamelCase ,up_block_types=UpperCamelCase ,block_out_channels=UpperCamelCase ,layers_per_block=UpperCamelCase ,norm_num_groups=UpperCamelCase ,act_fn=UpperCamelCase ,) snake_case__ :Any = nn.Convad(2 * latent_channels ,2 * latent_channels ,1 ) snake_case__ :List[Any] = nn.Convad(UpperCamelCase ,UpperCamelCase ,1 ) snake_case__ :List[str] = False snake_case__ :List[str] = False # only relevant if vae tiling is enabled snake_case__ :str = self.config.sample_size snake_case__ :Optional[Any] = ( self.config.sample_size[0] if isinstance(self.config.sample_size ,(list, tuple) ) else self.config.sample_size ) snake_case__ :str = int(sample_size / (2 ** (len(self.config.block_out_channels ) - 1)) ) snake_case__ :int = 0.25 def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase=False ) -> str: if isinstance(UpperCamelCase ,(Encoder, Decoder) ): snake_case__ :List[str] = value def lowerCAmelCase_ ( self ,UpperCamelCase = True ) -> List[str]: snake_case__ :Any = use_tiling def lowerCAmelCase_ ( self ) -> List[str]: self.enable_tiling(UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Dict: snake_case__ :Any = True def lowerCAmelCase_ ( self ) -> Tuple: snake_case__ :Any = False @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def lowerCAmelCase_ ( self ) -> Dict[str, AttentionProcessor]: snake_case__ :List[Any] = {} def fn_recursive_add_processors(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): if hasattr(UpperCamelCase ,"set_processor" ): snake_case__ :int = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(f'{name}.{sub_name}' ,UpperCamelCase ,UpperCamelCase ) return processors for name, module in self.named_children(): fn_recursive_add_processors(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) return processors def lowerCAmelCase_ ( self ,UpperCamelCase ) -> Optional[Any]: snake_case__ :List[str] = len(self.attn_processors.keys() ) if isinstance(UpperCamelCase ,UpperCamelCase ) and len(UpperCamelCase ) != count: raise ValueError( f'A dict of processors was passed, but the number of processors {len(UpperCamelCase )} does not match the' f' number of attention layers: {count}. Please make sure to pass {count} processor classes.' ) def fn_recursive_attn_processor(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ): if hasattr(UpperCamelCase ,"set_processor" ): if not isinstance(UpperCamelCase ,UpperCamelCase ): module.set_processor(UpperCamelCase ) else: module.set_processor(processor.pop(f'{name}.processor' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(f'{name}.{sub_name}' ,UpperCamelCase ,UpperCamelCase ) for name, module in self.named_children(): fn_recursive_attn_processor(UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) def lowerCAmelCase_ ( self ) -> Optional[int]: self.set_attn_processor(AttnProcessor() ) @apply_forward_hook def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> AutoencoderKLOutput: if self.use_tiling and (x.shape[-1] > self.tile_sample_min_size or x.shape[-2] > self.tile_sample_min_size): return self.tiled_encode(UpperCamelCase ,return_dict=UpperCamelCase ) if self.use_slicing and x.shape[0] > 1: snake_case__ :Optional[int] = [self.encoder(UpperCamelCase ) for x_slice in x.split(1 )] snake_case__ :Union[str, Any] = torch.cat(UpperCamelCase ) else: snake_case__ :Any = self.encoder(UpperCamelCase ) snake_case__ :str = self.quant_conv(UpperCamelCase ) snake_case__ :Dict = DiagonalGaussianDistribution(UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_tiling and (z.shape[-1] > self.tile_latent_min_size or z.shape[-2] > self.tile_latent_min_size): return self.tiled_decode(UpperCamelCase ,return_dict=UpperCamelCase ) snake_case__ :Dict = self.post_quant_conv(UpperCamelCase ) snake_case__ :List[str] = self.decoder(UpperCamelCase ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) @apply_forward_hook def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: if self.use_slicing and z.shape[0] > 1: snake_case__ :str = [self._decode(UpperCamelCase ).sample for z_slice in z.split(1 )] snake_case__ :Any = torch.cat(UpperCamelCase ) else: snake_case__ :List[Any] = self._decode(UpperCamelCase ).sample if not return_dict: return (decoded,) return DecoderOutput(sample=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :int = min(a.shape[2] ,b.shape[2] ,UpperCamelCase ) for y in range(UpperCamelCase ): snake_case__ :str = a[:, :, -blend_extent + y, :] * (1 - y / blend_extent) + b[:, :, y, :] * (y / blend_extent) return b def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase ,UpperCamelCase ) -> Dict: snake_case__ :Union[str, Any] = min(a.shape[3] ,b.shape[3] ,UpperCamelCase ) for x in range(UpperCamelCase ): snake_case__ :int = a[:, :, :, -blend_extent + x] * (1 - x / blend_extent) + b[:, :, :, x] * (x / blend_extent) return b def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> AutoencoderKLOutput: snake_case__ :int = int(self.tile_sample_min_size * (1 - self.tile_overlap_factor) ) snake_case__ :Optional[int] = int(self.tile_latent_min_size * self.tile_overlap_factor ) snake_case__ :Optional[int] = self.tile_latent_min_size - blend_extent # Split the image into 512x512 tiles and encode them separately. snake_case__ :List[Any] = [] for i in range(0 ,x.shape[2] ,UpperCamelCase ): snake_case__ :List[str] = [] for j in range(0 ,x.shape[3] ,UpperCamelCase ): snake_case__ :Union[str, Any] = x[:, :, i : i + self.tile_sample_min_size, j : j + self.tile_sample_min_size] snake_case__ :List[Any] = self.encoder(UpperCamelCase ) snake_case__ :Optional[Any] = self.quant_conv(UpperCamelCase ) row.append(UpperCamelCase ) rows.append(UpperCamelCase ) snake_case__ :Tuple = [] for i, row in enumerate(UpperCamelCase ): snake_case__ :Tuple = [] for j, tile in enumerate(UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: snake_case__ :List[Any] = self.blend_v(rows[i - 1][j] ,UpperCamelCase ,UpperCamelCase ) if j > 0: snake_case__ :List[str] = self.blend_h(row[j - 1] ,UpperCamelCase ,UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase ,dim=3 ) ) snake_case__ :Tuple = torch.cat(UpperCamelCase ,dim=2 ) snake_case__ :Dict = DiagonalGaussianDistribution(UpperCamelCase ) if not return_dict: return (posterior,) return AutoencoderKLOutput(latent_dist=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = True ) -> Union[DecoderOutput, torch.FloatTensor]: snake_case__ :Tuple = int(self.tile_latent_min_size * (1 - self.tile_overlap_factor) ) snake_case__ :Any = int(self.tile_sample_min_size * self.tile_overlap_factor ) snake_case__ :List[str] = self.tile_sample_min_size - blend_extent # Split z into overlapping 64x64 tiles and decode them separately. # The tiles have an overlap to avoid seams between tiles. snake_case__ :List[Any] = [] for i in range(0 ,z.shape[2] ,UpperCamelCase ): snake_case__ :Tuple = [] for j in range(0 ,z.shape[3] ,UpperCamelCase ): snake_case__ :Optional[Any] = z[:, :, i : i + self.tile_latent_min_size, j : j + self.tile_latent_min_size] snake_case__ :Union[str, Any] = self.post_quant_conv(UpperCamelCase ) snake_case__ :Tuple = self.decoder(UpperCamelCase ) row.append(UpperCamelCase ) rows.append(UpperCamelCase ) snake_case__ :Optional[int] = [] for i, row in enumerate(UpperCamelCase ): snake_case__ :Optional[int] = [] for j, tile in enumerate(UpperCamelCase ): # blend the above tile and the left tile # to the current tile and add the current tile to the result row if i > 0: snake_case__ :List[str] = self.blend_v(rows[i - 1][j] ,UpperCamelCase ,UpperCamelCase ) if j > 0: snake_case__ :str = self.blend_h(row[j - 1] ,UpperCamelCase ,UpperCamelCase ) result_row.append(tile[:, :, :row_limit, :row_limit] ) result_rows.append(torch.cat(UpperCamelCase ,dim=3 ) ) snake_case__ :Union[str, Any] = torch.cat(UpperCamelCase ,dim=2 ) if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase ) def lowerCAmelCase_ ( self ,UpperCamelCase ,UpperCamelCase = False ,UpperCamelCase = True ,UpperCamelCase = None ,) -> Union[DecoderOutput, torch.FloatTensor]: snake_case__ :Any = sample snake_case__ :Optional[Any] = self.encode(UpperCamelCase ).latent_dist if sample_posterior: snake_case__ :Dict = posterior.sample(generator=UpperCamelCase ) else: snake_case__ :int = posterior.mode() snake_case__ :Optional[int] = self.decode(UpperCamelCase ).sample if not return_dict: return (dec,) return DecoderOutput(sample=UpperCamelCase )
57
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_sentencepiece_available __UpperCAmelCase : Tuple = {} try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = ["BartphoTokenizer"] if TYPE_CHECKING: try: if not is_sentencepiece_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_bartpho import BartphoTokenizer else: import sys __UpperCAmelCase : Tuple = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
57
1
"""simple docstring""" from __future__ import annotations lowerCamelCase__ = [ [-1, 0], # left [0, -1], # down [1, 0], # right [0, 1], # up ] def _SCREAMING_SNAKE_CASE ( UpperCamelCase : list[list[int]] , UpperCamelCase : list[int] , UpperCamelCase : list[int] , UpperCamelCase : int , UpperCamelCase : list[list[int]] , ): A__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase ) ) ] # the reference grid A__ = 1 A__ = [ [0 for col in range(len(grid[0] ) )] for row in range(len(UpperCamelCase ) ) ] # the action grid A__ = init[0] A__ = init[1] A__ = 0 A__ = g + heuristic[x][y] # cost from starting cell to destination cell A__ = [[f, g, x, y]] A__ = False # flag that is set when search is complete A__ = False # flag set if we can't find expand while not found and not resign: if len(UpperCamelCase ) == 0: raise ValueError("""Algorithm is unable to find solution""" ) else: # to choose the least costliest action so as to move closer to the goal cell.sort() cell.reverse() A__ = cell.pop() A__ = next_cell[2] A__ = next_cell[3] A__ = next_cell[1] if x == goal[0] and y == goal[1]: A__ = True else: for i in range(len(UpperCamelCase ) ): # to try out different valid actions A__ = x + DIRECTIONS[i][0] A__ = y + DIRECTIONS[i][1] if xa >= 0 and xa < len(UpperCamelCase ) and ya >= 0 and ya < len(grid[0] ): if closed[xa][ya] == 0 and grid[xa][ya] == 0: A__ = g + cost A__ = ga + heuristic[xa][ya] cell.append([fa, ga, xa, ya] ) A__ = 1 A__ = i A__ = [] A__ = goal[0] A__ = goal[1] invpath.append([x, y] ) # we get the reverse path from here while x != init[0] or y != init[1]: A__ = x - DIRECTIONS[action[x][y]][0] A__ = y - DIRECTIONS[action[x][y]][1] A__ = xa A__ = ya invpath.append([x, y] ) A__ = [] for i in range(len(UpperCamelCase ) ): path.append(invpath[len(UpperCamelCase ) - 1 - i] ) return path, action if __name__ == "__main__": lowerCamelCase__ = [ [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0], # 0 are free path whereas 1's are obstacles [0, 1, 0, 0, 0, 0], [0, 1, 0, 0, 1, 0], [0, 0, 0, 0, 1, 0], ] lowerCamelCase__ = [0, 0] # all coordinates are given in format [y,x] lowerCamelCase__ = [len(grid) - 1, len(grid[0]) - 1] lowerCamelCase__ = 1 # the cost map which pushes the path closer to the goal lowerCamelCase__ = [[0 for row in range(len(grid[0]))] for col in range(len(grid))] for i in range(len(grid)): for j in range(len(grid[0])): lowerCamelCase__ = abs(i - goal[0]) + abs(j - goal[1]) if grid[i][j] == 1: # added extra penalty in the heuristic map lowerCamelCase__ = 99 lowerCamelCase__ , lowerCamelCase__ = search(grid, init, goal, cost, heuristic) print("ACTION MAP") for i in range(len(action)): print(action[i]) for i in range(len(path)): print(path[i])
574
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) lowerCamelCase__ = { "configuration_deberta": ["DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP", "DebertaConfig", "DebertaOnnxConfig"], "tokenization_deberta": ["DebertaTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = ["DebertaTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "DebertaForMaskedLM", "DebertaForQuestionAnswering", "DebertaForSequenceClassification", "DebertaForTokenClassification", "DebertaModel", "DebertaPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase__ = [ "TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST", "TFDebertaForMaskedLM", "TFDebertaForQuestionAnswering", "TFDebertaForSequenceClassification", "TFDebertaForTokenClassification", "TFDebertaModel", "TFDebertaPreTrainedModel", ] if TYPE_CHECKING: from .configuration_deberta import DEBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, DebertaConfig, DebertaOnnxConfig from .tokenization_deberta import DebertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_deberta_fast import DebertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_deberta import ( DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, DebertaForMaskedLM, DebertaForQuestionAnswering, DebertaForSequenceClassification, DebertaForTokenClassification, DebertaModel, DebertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_deberta import ( TF_DEBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFDebertaForMaskedLM, TFDebertaForQuestionAnswering, TFDebertaForSequenceClassification, TFDebertaForTokenClassification, TFDebertaModel, TFDebertaPreTrainedModel, ) else: import sys lowerCamelCase__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
574
1
"""simple docstring""" from typing import Optional from urllib.parse import quote import huggingface_hub as hfh from packaging import version def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : str , _lowerCamelCase : Optional[str] = None ): if version.parse(hfh.__version__ ).release < version.parse("""0.11.0""" ).release: # old versions of hfh don't url-encode the file path __a : List[Any] = quote(_lowerCamelCase ) return hfh.hf_hub_url(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" , revision=_lowerCamelCase )
63
"""simple docstring""" import unittest from knapsack import knapsack as k class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : str = 0 __a : Optional[Any] = [0] __a : int = [0] __a : str = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 ) __a : int = [60] __a : Union[str, Any] = [10] __a : Tuple = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 0 ) def lowerCAmelCase__(self ): '''simple docstring''' __a : int = 3 __a : str = [1, 2, 3] __a : Optional[Any] = [3, 2, 1] __a : int = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 5 ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = 50 __a : Tuple = [60, 100, 120] __a : List[str] = [10, 20, 30] __a : Union[str, Any] = len(_lowercase ) self.assertEqual(k.knapsack(_lowercase , _lowercase , _lowercase , _lowercase ) , 220 ) if __name__ == "__main__": unittest.main()
63
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __a: Optional[int] = {'''configuration_wavlm''': ['''WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''WavLMConfig''']} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __a: Any = [ '''WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST''', '''WavLMForAudioFrameClassification''', '''WavLMForCTC''', '''WavLMForSequenceClassification''', '''WavLMForXVector''', '''WavLMModel''', '''WavLMPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_wavlm import WAVLM_PRETRAINED_CONFIG_ARCHIVE_MAP, WavLMConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_wavlm import ( WAVLM_PRETRAINED_MODEL_ARCHIVE_LIST, WavLMForAudioFrameClassification, WavLMForCTC, WavLMForSequenceClassification, WavLMForXVector, WavLMModel, WavLMPreTrainedModel, ) else: import sys __a: Any = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
108
"""simple docstring""" import itertools import json import os import unittest from transformers import AddedToken, LongformerTokenizer, LongformerTokenizerFast from transformers.models.longformer.tokenization_longformer import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCAmelCase ( lowerCamelCase_ , unittest.TestCase ): '''simple docstring''' SCREAMING_SNAKE_CASE_ : Optional[Any] = LongformerTokenizer SCREAMING_SNAKE_CASE_ : List[str] = True SCREAMING_SNAKE_CASE_ : List[str] = LongformerTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[int] = True def __A ( self ) -> Optional[Any]: super().setUp() # Adapted from Sennrich et al. 2015 and https://github.com/rsennrich/subword-nmt SCREAMING_SNAKE_CASE = [ 'l', 'o', 'w', 'e', 'r', 's', 't', 'i', 'd', 'n', '\u0120', '\u0120l', '\u0120n', '\u0120lo', '\u0120low', 'er', '\u0120lowest', '\u0120newer', '\u0120wider', '<unk>', ] SCREAMING_SNAKE_CASE = dict(zip(lowerCAmelCase__ , range(len(lowerCAmelCase__ ) ) ) ) SCREAMING_SNAKE_CASE = ['#version: 0.2', '\u0120 l', '\u0120l o', '\u0120lo w', 'e r', ''] SCREAMING_SNAKE_CASE = {'unk_token': '<unk>'} SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) SCREAMING_SNAKE_CASE = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['merges_file'] ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(lowerCAmelCase__ ) + '\n' ) with open(self.merges_file , 'w' , encoding='utf-8' ) as fp: fp.write('\n'.join(lowerCAmelCase__ ) ) def __A ( self , **lowerCAmelCase__ ) -> str: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __A ( self , **lowerCAmelCase__ ) -> List[Any]: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **lowerCAmelCase__ ) def __A ( self , lowerCAmelCase__ ) -> Dict: SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = 'lower newer' return input_text, output_text def __A ( self ) -> str: SCREAMING_SNAKE_CASE = self.tokenizer_class(self.vocab_file , self.merges_file , **self.special_tokens_map ) SCREAMING_SNAKE_CASE = 'lower newer' SCREAMING_SNAKE_CASE = ['l', 'o', 'w', 'er', '\u0120', 'n', 'e', 'w', 'er'] SCREAMING_SNAKE_CASE = tokenizer.tokenize(lowerCAmelCase__ ) # , add_prefix_space=True) self.assertListEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokens + [tokenizer.unk_token] SCREAMING_SNAKE_CASE = [0, 1, 2, 15, 10, 9, 3, 2, 15, 19] self.assertListEqual(tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) , lowerCAmelCase__ ) def __A ( self ) -> Tuple: SCREAMING_SNAKE_CASE = self.get_tokenizer() self.assertListEqual(tokenizer.encode('Hello world!' , add_special_tokens=lowerCAmelCase__ ) , [0, 31_414, 232, 328, 2] ) self.assertListEqual( tokenizer.encode('Hello world! cécé herlolip 418' , add_special_tokens=lowerCAmelCase__ ) , [0, 31_414, 232, 328, 740, 1_140, 12_695, 69, 46_078, 1_588, 2] , ) @slow def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained('allenai/longformer-base-4096' ) SCREAMING_SNAKE_CASE = tokenizer.encode('sequence builders' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode('multi-sequence build' , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode( 'sequence builders' , 'multi-sequence build' , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.build_inputs_with_special_tokens(lowerCAmelCase__ , lowerCAmelCase__ ) assert encoded_sentence == encoded_text_from_decode assert encoded_pair == encoded_pair_from_decode def __A ( self ) -> List[Any]: SCREAMING_SNAKE_CASE = self.get_tokenizer() SCREAMING_SNAKE_CASE = 'Encode this sequence.' SCREAMING_SNAKE_CASE = tokenizer.byte_encoder[' '.encode('utf-8' )[0]] # Testing encoder arguments SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[0] )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) tokenizer.add_special_tokens({'bos_token': '<s>'} ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[1] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) # Testing spaces after special tokens SCREAMING_SNAKE_CASE = '<mask>' tokenizer.add_special_tokens( {'mask_token': AddedToken(lowerCAmelCase__ , lstrip=lowerCAmelCase__ , rstrip=lowerCAmelCase__ )} ) # mask token has a left space SCREAMING_SNAKE_CASE = tokenizer.convert_tokens_to_ids(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'Encode <mask> sequence' SCREAMING_SNAKE_CASE = 'Encode <mask>sequence' SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = encoded.index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertEqual(lowerCAmelCase__ , lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.encode(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = encoded.index(lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer.convert_ids_to_tokens(encoded[mask_loc + 1] )[0] self.assertNotEqual(lowerCAmelCase__ , lowerCAmelCase__ ) def __A ( self ) -> Dict: pass def __A ( self ) -> Union[str, Any]: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = self.tokenizer_class.from_pretrained(lowerCAmelCase__ , **lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = 'A, <mask> AllenNLP sentence.' SCREAMING_SNAKE_CASE = tokenizer_r.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_p.encode_plus(lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ , return_token_type_ids=lowerCAmelCase__ ) # token_type_ids should put 0 everywhere self.assertEqual(sum(tokens_r['token_type_ids'] ) , sum(tokens_p['token_type_ids'] ) ) # attention_mask should put 1 everywhere, so sum over length should be 1 self.assertEqual( sum(tokens_r['attention_mask'] ) / len(tokens_r['attention_mask'] ) , sum(tokens_p['attention_mask'] ) / len(tokens_p['attention_mask'] ) , ) SCREAMING_SNAKE_CASE = tokenizer_r.convert_ids_to_tokens(tokens_r['input_ids'] ) SCREAMING_SNAKE_CASE = tokenizer_p.convert_ids_to_tokens(tokens_p['input_ids'] ) # Rust correctly handles the space before the mask while python doesnt self.assertSequenceEqual(tokens_p['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual(tokens_r['input_ids'] , [0, 250, 6, 50_264, 3_823, 487, 21_992, 3_645, 4, 2] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) self.assertSequenceEqual( lowerCAmelCase__ , ['<s>', 'A', ',', '<mask>', 'ĠAllen', 'N', 'LP', 'Ġsentence', '.', '</s>'] ) def __A ( self ) -> Union[str, Any]: for trim_offsets, add_prefix_space in itertools.product([True, False] , repeat=2 ): SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( self.tmpdirname , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.pre_tokenizer.__getstate__() ) SCREAMING_SNAKE_CASE = json.loads(tokenizer_r.backend_tokenizer.post_processor.__getstate__() ) self.assertEqual(pre_tokenizer_state['add_prefix_space'] , lowerCAmelCase__ ) self.assertEqual(post_processor_state['add_prefix_space'] , lowerCAmelCase__ ) self.assertEqual(post_processor_state['trim_offsets'] , lowerCAmelCase__ ) def __A ( self ) -> Dict: # Test which aims to verify that the offsets are well adapted to the argument `add_prefix_space` and # `trim_offsets` for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F'{tokenizer.__class__.__name__} ({pretrained_name})' ): SCREAMING_SNAKE_CASE = 'hello' # `hello` is a token in the vocabulary of `pretrained_name` SCREAMING_SNAKE_CASE = F'{text_of_1_token} {text_of_1_token}' SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ) + 1, len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (len(lowerCAmelCase__ ), len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = F' {text}' # tokenizer_r = self.rust_tokenizer_class.from_pretrained( # pretrained_name, use_fast=True, add_prefix_space=True, trim_offsets=True # ) # encoding = tokenizer_r(text, return_offsets_mapping=True, add_special_tokens=False) # self.assertEqual(encoding.offset_mapping[0], (1, 1 + len(text_of_1_token))) # self.assertEqual( # encoding.offset_mapping[1], # (1 + len(text_of_1_token) + 1, 1 + len(text_of_1_token) + 1 + len(text_of_1_token)), # ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (1, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ) + 1, 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , ) SCREAMING_SNAKE_CASE = self.rust_tokenizer_class.from_pretrained( lowerCAmelCase__ , use_fast=lowerCAmelCase__ , add_prefix_space=lowerCAmelCase__ , trim_offsets=lowerCAmelCase__ ) SCREAMING_SNAKE_CASE = tokenizer_r(lowerCAmelCase__ , return_offsets_mapping=lowerCAmelCase__ , add_special_tokens=lowerCAmelCase__ ) self.assertEqual(encoding.offset_mapping[0] , (0, 1 + len(lowerCAmelCase__ )) ) self.assertEqual( encoding.offset_mapping[1] , (1 + len(lowerCAmelCase__ ), 1 + len(lowerCAmelCase__ ) + 1 + len(lowerCAmelCase__ )) , )
247
0
from ....utils import logging __snake_case :Any = logging.get_logger(__name__) class _A ( __UpperCAmelCase ): def __init__( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : Optional[Any]=None , __SCREAMING_SNAKE_CASE : Optional[Any]=2_048): '''simple docstring''' __a = config.__dict__ __a = modal_hidden_size if num_labels: __a = num_labels
60
__snake_case :str = [ [0, 16, 13, 0, 0, 0], [0, 0, 10, 12, 0, 0], [0, 4, 0, 0, 14, 0], [0, 0, 9, 0, 0, 20], [0, 0, 0, 7, 0, 4], [0, 0, 0, 0, 0, 0], ] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): # Return True if there is node that has not iterated. __a = [False] * len(_UpperCAmelCase ) __a = [s] __a = True while queue: __a = queue.pop(0 ) for ind in range(len(graph[u] ) ): if visited[ind] is False and graph[u][ind] > 0: queue.append(_UpperCAmelCase ) __a = True __a = u return visited[t] def __snake_case ( _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = [-1] * (len(_UpperCAmelCase )) __a = 0 __a = [] __a = [i[:] for i in graph] # Record original cut, copy. while bfs(_UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase , _UpperCAmelCase ): __a = float('''Inf''' ) __a = sink while s != source: # Find the minimum value in select path __a = min(_UpperCAmelCase , graph[parent[s]][s] ) __a = parent[s] max_flow += path_flow __a = sink while v != source: __a = parent[v] graph[u][v] -= path_flow graph[v][u] += path_flow __a = parent[v] for i in range(len(_UpperCAmelCase ) ): for j in range(len(graph[0] ) ): if graph[i][j] == 0 and temp[i][j] > 0: res.append((i, j) ) return res if __name__ == "__main__": print(mincut(test_graph, source=0, sink=5))
60
1
'''simple docstring''' import warnings from ...utils import logging from .image_processing_videomae import VideoMAEImageProcessor A__: Union[str, Any] = logging.get_logger(__name__) class A__ ( UpperCAmelCase__ ): def __init__( self :str , *SCREAMING_SNAKE_CASE :int , **SCREAMING_SNAKE_CASE :str ) -> None: '''simple docstring''' warnings.warn( """The class VideoMAEFeatureExtractor is deprecated and will be removed in version 5 of Transformers.""" """ Please use VideoMAEImageProcessor instead.""" , SCREAMING_SNAKE_CASE , ) super().__init__(*SCREAMING_SNAKE_CASE , **SCREAMING_SNAKE_CASE )
694
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() A__: Union[str, Any] = logging.get_logger('''transformers.models.speecht5''') def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : str ,_UpperCAmelCase : Any ) -> Dict: hf_model.apply_weight_norm() _a : Any =checkpoint["""input_conv.weight_g"""] _a : Union[str, Any] =checkpoint["""input_conv.weight_v"""] _a : Optional[int] =checkpoint["""input_conv.bias"""] for i in range(len(config.upsample_rates ) ): _a : Optional[int] =checkpoint[F"upsamples.{i}.1.weight_g"] _a : Optional[Any] =checkpoint[F"upsamples.{i}.1.weight_v"] _a : List[Any] =checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): _a : Optional[int] =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] _a : Tuple =checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] _a : Union[str, Any] =checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] _a : Dict =checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] _a : Tuple =checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] _a : Dict =checkpoint["""output_conv.1.weight_g"""] _a : str =checkpoint["""output_conv.1.weight_v"""] _a : Union[str, Any] =checkpoint["""output_conv.1.bias"""] hf_model.remove_weight_norm() @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( _UpperCAmelCase : List[Any] ,_UpperCAmelCase : int ,_UpperCAmelCase : Tuple ,_UpperCAmelCase : int=None ,_UpperCAmelCase : Tuple=None ,) -> List[Any]: if config_path is not None: _a : str =SpeechTaHifiGanConfig.from_pretrained(_UpperCAmelCase ) else: _a : str =SpeechTaHifiGanConfig() _a : Tuple =SpeechTaHifiGan(_UpperCAmelCase ) _a : int =torch.load(_UpperCAmelCase ) load_weights(orig_checkpoint["""model"""]["""generator"""] ,_UpperCAmelCase ,_UpperCAmelCase ) _a : Dict =np.load(_UpperCAmelCase ) _a : Union[str, Any] =stats[0].reshape(-1 ) _a : Any =stats[1].reshape(-1 ) _a : Tuple =torch.from_numpy(_UpperCAmelCase ).float() _a : List[str] =torch.from_numpy(_UpperCAmelCase ).float() model.save_pretrained(_UpperCAmelCase ) if repo_id: print("""Pushing to the hub...""" ) model.push_to_hub(_UpperCAmelCase ) if __name__ == "__main__": A__: Optional[int] = argparse.ArgumentParser() parser.add_argument('''--checkpoint_path''', required=True, default=None, type=str, help='''Path to original checkpoint''') parser.add_argument('''--stats_path''', required=True, default=None, type=str, help='''Path to stats.npy file''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, default=None, type=str, help='''Path to the output PyTorch model.''' ) parser.add_argument( '''--push_to_hub''', default=None, type=str, help='''Where to upload the converted model on the 🤗 hub.''' ) A__: Tuple = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
694
1
import warnings from functools import wraps from typing import Callable def UpperCamelCase_ ( lowerCAmelCase__ ): """simple docstring""" @wraps(lowerCAmelCase__ ) def _inner_fn(*lowerCAmelCase__ , **lowerCAmelCase__ ): warnings.warn( (f"""'{fn.__name__}' is experimental and might be subject to breaking changes in the future.""") , lowerCAmelCase__ , ) return fn(*lowerCAmelCase__ , **lowerCAmelCase__ ) return _inner_fn
587
def UpperCamelCase_ ( lowerCAmelCase__ , lowerCAmelCase__ ): """simple docstring""" if density <= 0: raise ValueError("Impossible fluid density" ) if bulk_modulus <= 0: raise ValueError("Impossible bulk modulus" ) return (bulk_modulus / density) ** 0.5 if __name__ == "__main__": import doctest doctest.testmod()
587
1
"""simple docstring""" import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch if is_torch_available(): import torch from transformers.generation import DisjunctiveConstraint @require_torch class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): def lowerCAmelCase__(self ): '''simple docstring''' __a : Dict = [[1, 2, 4], [1, 2, 3, 4]] __a : Optional[Any] = DisjunctiveConstraint(_lowercase ) self.assertTrue(isinstance(dc.token_ids , _lowercase ) ) with self.assertRaises(_lowercase ): DisjunctiveConstraint(torch.LongTensor([[1, 2, 4], [1, 2, 3]] ) ) with self.assertRaises(_lowercase ): DisjunctiveConstraint([torch.LongTensor([1, 2, 4] ), torch.LongTensor([1, 2, 3, 4, 5] )] ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Tuple = [[1, 2], [1, 2, 3, 4]] with self.assertRaises(_lowercase ): DisjunctiveConstraint(_lowercase ) # fails here def lowerCAmelCase__(self ): '''simple docstring''' __a : List[Any] = [[1, 2, 3], [1, 2, 4]] __a : Any = DisjunctiveConstraint(_lowercase ) __a , __a , __a : Dict = dc.update(1 ) __a : Tuple = stepped is True and completed is False and reset is False self.assertTrue(_lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __a , __a , __a : List[Any] = dc.update(2 ) __a : int = stepped is True and completed is False and reset is False self.assertTrue(_lowercase ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __a , __a , __a : List[str] = dc.update(3 ) __a : Union[str, Any] = stepped is True and completed is True and reset is False self.assertTrue(_lowercase ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 3] ) def lowerCAmelCase__(self ): '''simple docstring''' __a : Union[str, Any] = [[1, 2, 3], [1, 2, 4, 5], [1, 2, 5]] __a : Optional[int] = DisjunctiveConstraint(_lowercase ) __a , __a , __a : List[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1] ) __a , __a , __a : Optional[int] = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2] ) __a , __a , __a : Optional[int] = dc.update(4 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.current_seq == [1, 2, 4] ) __a , __a , __a : Union[str, Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.current_seq == [1, 2, 4, 5] ) dc.reset() __a , __a , __a : Optional[Any] = dc.update(1 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 3 ) self.assertTrue(dc.current_seq == [1] ) __a , __a , __a : Tuple = dc.update(2 ) self.assertTrue(not dc.completed ) self.assertTrue(dc.remaining() == 2 ) self.assertTrue(dc.current_seq == [1, 2] ) __a , __a , __a : List[Any] = dc.update(5 ) self.assertTrue(dc.completed ) # Completed! self.assertTrue(dc.remaining() == 0 ) self.assertTrue(dc.current_seq == [1, 2, 5] )
581
"""simple docstring""" import argparse import json from pathlib import Path import requests import timm import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import DeiTConfig, DeiTForImageClassificationWithTeacher, DeiTImageProcessor from transformers.utils import logging logging.set_verbosity_info() lowercase__ = logging.get_logger(__name__) def __magic_name__ ( _lowerCamelCase : str , _lowerCamelCase : Union[str, Any]=False ): __a : Union[str, Any] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'''blocks.{i}.norm1.weight''', F'''deit.encoder.layer.{i}.layernorm_before.weight''') ) rename_keys.append((F'''blocks.{i}.norm1.bias''', F'''deit.encoder.layer.{i}.layernorm_before.bias''') ) rename_keys.append((F'''blocks.{i}.attn.proj.weight''', F'''deit.encoder.layer.{i}.attention.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.attn.proj.bias''', F'''deit.encoder.layer.{i}.attention.output.dense.bias''') ) rename_keys.append((F'''blocks.{i}.norm2.weight''', F'''deit.encoder.layer.{i}.layernorm_after.weight''') ) rename_keys.append((F'''blocks.{i}.norm2.bias''', F'''deit.encoder.layer.{i}.layernorm_after.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.weight''', F'''deit.encoder.layer.{i}.intermediate.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc1.bias''', F'''deit.encoder.layer.{i}.intermediate.dense.bias''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.weight''', F'''deit.encoder.layer.{i}.output.dense.weight''') ) rename_keys.append((F'''blocks.{i}.mlp.fc2.bias''', F'''deit.encoder.layer.{i}.output.dense.bias''') ) # projection layer + position embeddings rename_keys.extend( [ ("""cls_token""", """deit.embeddings.cls_token"""), ("""dist_token""", """deit.embeddings.distillation_token"""), ("""patch_embed.proj.weight""", """deit.embeddings.patch_embeddings.projection.weight"""), ("""patch_embed.proj.bias""", """deit.embeddings.patch_embeddings.projection.bias"""), ("""pos_embed""", """deit.embeddings.position_embeddings"""), ] ) if base_model: # layernorm + pooler rename_keys.extend( [ ("""norm.weight""", """layernorm.weight"""), ("""norm.bias""", """layernorm.bias"""), ("""pre_logits.fc.weight""", """pooler.dense.weight"""), ("""pre_logits.fc.bias""", """pooler.dense.bias"""), ] ) # if just the base model, we should remove "deit" from all keys that start with "deit" __a : int = [(pair[0], pair[1][4:]) if pair[1].startswith("""deit""" ) else pair for pair in rename_keys] else: # layernorm + classification heads rename_keys.extend( [ ("""norm.weight""", """deit.layernorm.weight"""), ("""norm.bias""", """deit.layernorm.bias"""), ("""head.weight""", """cls_classifier.weight"""), ("""head.bias""", """cls_classifier.bias"""), ("""head_dist.weight""", """distillation_classifier.weight"""), ("""head_dist.bias""", """distillation_classifier.bias"""), ] ) return rename_keys def __magic_name__ ( _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : Tuple=False ): for i in range(config.num_hidden_layers ): if base_model: __a : str = """""" else: __a : Tuple = """deit.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) __a : Tuple = state_dict.pop(F'''blocks.{i}.attn.qkv.weight''' ) __a : List[Any] = state_dict.pop(F'''blocks.{i}.attn.qkv.bias''' ) # next, add query, keys and values (in that order) to the state dict __a : List[Any] = in_proj_weight[ : config.hidden_size, : ] __a : Any = in_proj_bias[: config.hidden_size] __a : str = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] __a : Union[str, Any] = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] __a : List[Any] = in_proj_weight[ -config.hidden_size :, : ] __a : Optional[int] = in_proj_bias[-config.hidden_size :] def __magic_name__ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : str ): __a : Any = dct.pop(_lowerCamelCase ) __a : List[Any] = val def __magic_name__ ( ): __a : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" __a : Any = Image.open(requests.get(_lowerCamelCase , stream=_lowerCamelCase ).raw ) return im @torch.no_grad() def __magic_name__ ( _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] ): __a : Optional[int] = DeiTConfig() # all deit models have fine-tuned heads __a : List[Any] = False # dataset (fine-tuned on ImageNet 2012), patch_size and image_size __a : Any = 1_0_0_0 __a : Tuple = """huggingface/label-files""" __a : int = """imagenet-1k-id2label.json""" __a : int = json.load(open(hf_hub_download(_lowerCamelCase , _lowerCamelCase , repo_type="""dataset""" ) , """r""" ) ) __a : str = {int(_lowerCamelCase ): v for k, v in idalabel.items()} __a : Any = idalabel __a : Tuple = {v: k for k, v in idalabel.items()} __a : int = int(deit_name[-6:-4] ) __a : Dict = int(deit_name[-3:] ) # size of the architecture if deit_name[9:].startswith("""tiny""" ): __a : str = 1_9_2 __a : Union[str, Any] = 7_6_8 __a : Any = 1_2 __a : Optional[int] = 3 elif deit_name[9:].startswith("""small""" ): __a : Union[str, Any] = 3_8_4 __a : int = 1_5_3_6 __a : Tuple = 1_2 __a : Dict = 6 if deit_name[9:].startswith("""base""" ): pass elif deit_name[4:].startswith("""large""" ): __a : Optional[Any] = 1_0_2_4 __a : Optional[Any] = 4_0_9_6 __a : Optional[int] = 2_4 __a : List[Any] = 1_6 # load original model from timm __a : List[Any] = timm.create_model(_lowerCamelCase , pretrained=_lowerCamelCase ) timm_model.eval() # load state_dict of original model, remove and rename some keys __a : List[str] = timm_model.state_dict() __a : Union[str, Any] = create_rename_keys(_lowerCamelCase , _lowerCamelCase ) for src, dest in rename_keys: rename_key(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) read_in_q_k_v(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # load HuggingFace model __a : Union[str, Any] = DeiTForImageClassificationWithTeacher(_lowerCamelCase ).eval() model.load_state_dict(_lowerCamelCase ) # Check outputs on an image, prepared by DeiTImageProcessor __a : Optional[int] = int( (2_5_6 / 2_2_4) * config.image_size ) # to maintain same ratio w.r.t. 224 images, see https://github.com/facebookresearch/deit/blob/ab5715372db8c6cad5740714b2216d55aeae052e/datasets.py#L103 __a : Dict = DeiTImageProcessor(size=_lowerCamelCase , crop_size=config.image_size ) __a : List[Any] = image_processor(images=prepare_img() , return_tensors="""pt""" ) __a : Tuple = encoding["""pixel_values"""] __a : int = model(_lowerCamelCase ) __a : Dict = timm_model(_lowerCamelCase ) assert timm_logits.shape == outputs.logits.shape assert torch.allclose(_lowerCamelCase , outputs.logits , atol=1E-3 ) Path(_lowerCamelCase ).mkdir(exist_ok=_lowerCamelCase ) print(F'''Saving model {deit_name} to {pytorch_dump_folder_path}''' ) model.save_pretrained(_lowerCamelCase ) print(F'''Saving image processor to {pytorch_dump_folder_path}''' ) image_processor.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": lowercase__ = argparse.ArgumentParser() # Required parameters parser.add_argument( "--deit_name", default="vit_deit_base_distilled_patch16_224", type=str, help="Name of the DeiT timm model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory." ) lowercase__ = parser.parse_args() convert_deit_checkpoint(args.deit_name, args.pytorch_dump_folder_path)
581
1
"""simple docstring""" import inspect import unittest from huggingface_hub import hf_hub_download from transformers import ConvNextConfig, UperNetConfig from transformers.testing_utils import require_torch, require_torch_multi_gpu, require_vision, slow, torch_device from transformers.utils import is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, _config_zero_init, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import UperNetForSemanticSegmentation from transformers.models.upernet.modeling_upernet import UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class __snake_case: def __init__( self , A_ , A_=13 , A_=32 , A_=3 , A_=4 , A_=[10, 20, 30, 40] , A_=[2, 2, 3, 2] , A_=True , A_=True , A_=37 , A_="gelu" , A_=10 , A_=0.02 , A_=["stage2", "stage3", "stage4"] , A_=3 , A_=None , ): '''simple docstring''' _SCREAMING_SNAKE_CASE = parent _SCREAMING_SNAKE_CASE = batch_size _SCREAMING_SNAKE_CASE = image_size _SCREAMING_SNAKE_CASE = num_channels _SCREAMING_SNAKE_CASE = num_stages _SCREAMING_SNAKE_CASE = hidden_sizes _SCREAMING_SNAKE_CASE = depths _SCREAMING_SNAKE_CASE = is_training _SCREAMING_SNAKE_CASE = use_labels _SCREAMING_SNAKE_CASE = intermediate_size _SCREAMING_SNAKE_CASE = hidden_act _SCREAMING_SNAKE_CASE = type_sequence_label_size _SCREAMING_SNAKE_CASE = initializer_range _SCREAMING_SNAKE_CASE = out_features _SCREAMING_SNAKE_CASE = num_labels _SCREAMING_SNAKE_CASE = scope _SCREAMING_SNAKE_CASE = num_stages def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _SCREAMING_SNAKE_CASE = None if self.use_labels: _SCREAMING_SNAKE_CASE = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _SCREAMING_SNAKE_CASE = self.get_config() return config, pixel_values, labels def A ( self ): '''simple docstring''' return ConvNextConfig( num_channels=self.num_channels , num_stages=self.num_stages , hidden_sizes=self.hidden_sizes , depths=self.depths , is_training=self.is_training , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , out_features=self.out_features , ) def A ( self ): '''simple docstring''' return UperNetConfig( backbone_config=self.get_backbone_config() , hidden_size=512 , pool_scales=[1, 2, 3, 6] , use_auxiliary_head=A_ , auxiliary_loss_weight=0.4 , auxiliary_in_channels=40 , auxiliary_channels=256 , auxiliary_num_convs=1 , auxiliary_concat_input=A_ , loss_ignore_index=255 , num_labels=self.num_labels , ) def A ( self , A_ , A_ , A_ ): '''simple docstring''' _SCREAMING_SNAKE_CASE = UperNetForSemanticSegmentation(config=A_ ) model.to(A_ ) model.eval() _SCREAMING_SNAKE_CASE = model(A_ ) self.parent.assertEqual( result.logits.shape , (self.batch_size, self.num_labels, self.image_size, self.image_size) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.prepare_config_and_inputs() ( ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ( _SCREAMING_SNAKE_CASE ) , ) = config_and_inputs _SCREAMING_SNAKE_CASE = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class __snake_case( __A , __A , unittest.TestCase ): _A = (UperNetForSemanticSegmentation,) if is_torch_available() else () _A = {'''image-segmentation''': UperNetForSemanticSegmentation} if is_torch_available() else {} _A = False _A = False _A = False _A = False _A = False _A = False def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = UperNetModelTester(self ) _SCREAMING_SNAKE_CASE = ConfigTester(self , config_class=A_ , has_text_modality=A_ , hidden_size=37 ) def A ( self ): '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def A ( self ): '''simple docstring''' return def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(A_ ) _SCREAMING_SNAKE_CASE = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _SCREAMING_SNAKE_CASE = [*signature.parameters.keys()] _SCREAMING_SNAKE_CASE = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_semantic_segmentation(*A_ ) @unittest.skip(reason='''UperNet does not use inputs_embeds''' ) def A ( self ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not support input and output embeddings''' ) def A ( self ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''' ) def A ( self ): '''simple docstring''' pass @unittest.skip(reason='''UperNet does not have a base model''' ) def A ( self ): '''simple docstring''' pass @require_torch_multi_gpu @unittest.skip(reason='''UperNet has some layers using `add_module` which doesn\'t work well with `nn.DataParallel`''' ) def A ( self ): '''simple docstring''' pass @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def A ( self ): '''simple docstring''' pass def A ( self ): '''simple docstring''' def check_hidden_states_output(A_ , A_ , A_ ): _SCREAMING_SNAKE_CASE = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**self._prepare_for_class(A_ , A_ ) ) _SCREAMING_SNAKE_CASE = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _SCREAMING_SNAKE_CASE = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # ConvNext's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _SCREAMING_SNAKE_CASE = True check_hidden_states_output(A_ , A_ , A_ ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = self.model_tester.prepare_config_and_inputs_for_common() _SCREAMING_SNAKE_CASE = _config_zero_init(A_ ) _SCREAMING_SNAKE_CASE = _config_zero_init(configs_no_init.backbone_config ) for model_class in self.all_model_classes: _SCREAMING_SNAKE_CASE = model_class(config=A_ ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9).round() / 1e9).item() , [0.0, 1.0] , msg=F'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip(reason='''UperNet does not have tied weights''' ) def A ( self ): '''simple docstring''' pass @slow def A ( self ): '''simple docstring''' for model_name in UPERNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _SCREAMING_SNAKE_CASE = UperNetForSemanticSegmentation.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def A__ ( ): '''simple docstring''' _SCREAMING_SNAKE_CASE = hf_hub_download( repo_id='''hf-internal-testing/fixtures_ade20k''' , repo_type='''dataset''' , filename='''ADE_val_00000001.jpg''' ) _SCREAMING_SNAKE_CASE = Image.open(UpperCamelCase__ ).convert('''RGB''' ) return image @require_torch @require_vision @slow class __snake_case( unittest.TestCase ): def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openmmlab/upernet-swin-tiny''' ) _SCREAMING_SNAKE_CASE = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-swin-tiny''' ).to(A_ ) _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = processor(images=A_ , return_tensors='''pt''' ).to(A_ ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**A_ ) _SCREAMING_SNAKE_CASE = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , A_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[-7.5_958, -7.5_958, -7.4_302], [-7.5_958, -7.5_958, -7.4_302], [-7.4_797, -7.4_797, -7.3_068]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A_ , atol=1e-4 ) ) def A ( self ): '''simple docstring''' _SCREAMING_SNAKE_CASE = AutoImageProcessor.from_pretrained('''openmmlab/upernet-convnext-tiny''' ) _SCREAMING_SNAKE_CASE = UperNetForSemanticSegmentation.from_pretrained('''openmmlab/upernet-convnext-tiny''' ).to(A_ ) _SCREAMING_SNAKE_CASE = prepare_img() _SCREAMING_SNAKE_CASE = processor(images=A_ , return_tensors='''pt''' ).to(A_ ) with torch.no_grad(): _SCREAMING_SNAKE_CASE = model(**A_ ) _SCREAMING_SNAKE_CASE = torch.Size((1, model.config.num_labels, 512, 512) ) self.assertEqual(outputs.logits.shape , A_ ) _SCREAMING_SNAKE_CASE = torch.tensor( [[-8.8_110, -8.8_110, -8.6_521], [-8.8_110, -8.8_110, -8.6_521], [-8.7_746, -8.7_746, -8.6_130]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, 0, :3, :3] , A_ , atol=1e-4 ) )
710
"""simple docstring""" from itertools import zip_longest import requests from bsa import BeautifulSoup from pandas import DataFrame def A__ ( UpperCamelCase__ = "laptop" ): '''simple docstring''' _SCREAMING_SNAKE_CASE = F'''https://www.amazon.in/laptop/s?k={product}''' _SCREAMING_SNAKE_CASE = { '''User-Agent''': '''Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko)Chrome/44.0.2403.157 Safari/537.36''', '''Accept-Language''': '''en-US, en;q=0.5''', } _SCREAMING_SNAKE_CASE = BeautifulSoup(requests.get(UpperCamelCase__ , headers=UpperCamelCase__ ).text ) # Initialize a Pandas dataframe with the column titles _SCREAMING_SNAKE_CASE = DataFrame( columns=[ '''Product Title''', '''Product Link''', '''Current Price of the product''', '''Product Rating''', '''MRP of the product''', '''Discount''', ] ) # Loop through each entry and store them in the dataframe for item, _ in zip_longest( soup.find_all( '''div''' , attrs={'''class''': '''s-result-item''', '''data-component-type''': '''s-search-result'''} , ) , soup.find_all('''div''' , attrs={'''class''': '''a-row a-size-base a-color-base'''} ) , ): try: _SCREAMING_SNAKE_CASE = item.ha.text _SCREAMING_SNAKE_CASE = '''https://www.amazon.in/''' + item.ha.a['''href'''] _SCREAMING_SNAKE_CASE = item.find('''span''' , attrs={'''class''': '''a-offscreen'''} ).text try: _SCREAMING_SNAKE_CASE = item.find('''span''' , attrs={'''class''': '''a-icon-alt'''} ).text except AttributeError: _SCREAMING_SNAKE_CASE = '''Not available''' try: _SCREAMING_SNAKE_CASE = ( '''₹''' + item.find( '''span''' , attrs={'''class''': '''a-price a-text-price'''} ).text.split('''₹''' )[1] ) except AttributeError: _SCREAMING_SNAKE_CASE = '''''' try: _SCREAMING_SNAKE_CASE = float( ( ( float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) - float(product_price.strip('''₹''' ).replace(''',''' , '''''' ) ) ) / float(product_mrp.strip('''₹''' ).replace(''',''' , '''''' ) ) ) * 100 ) except ValueError: _SCREAMING_SNAKE_CASE = float('''nan''' ) except AttributeError: pass _SCREAMING_SNAKE_CASE = [ product_title, product_link, product_price, product_rating, product_mrp, discount, ] _SCREAMING_SNAKE_CASE = ''' ''' _SCREAMING_SNAKE_CASE = ''' ''' data_frame.index += 1 return data_frame if __name__ == "__main__": lowerCamelCase : str = """headphones""" get_amazon_product_data(product).to_csv(F'''Amazon Product Data for {product}.csv''')
168
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaImgaImgPipeline, KandinskyVaaPriorPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class UpperCAmelCase ( _SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' snake_case__ : str = KandinskyVaaImgaImgPipeline snake_case__ : Union[str, Any] = ["image_embeds", "negative_image_embeds", "image"] snake_case__ : Tuple = [ "image_embeds", "negative_image_embeds", "image", ] snake_case__ : Dict = [ "generator", "height", "width", "strength", "guidance_scale", "num_inference_steps", "return_dict", "guidance_scale", "num_images_per_prompt", "output_type", "return_dict", ] snake_case__ : Optional[int] = False @property def _UpperCamelCase ( self ) -> int: return 32 @property def _UpperCamelCase ( self ) -> Tuple: return 32 @property def _UpperCamelCase ( self ) -> Union[str, Any]: return self.time_input_dim @property def _UpperCamelCase ( self ) -> Any: return self.time_input_dim * 4 @property def _UpperCamelCase ( self ) -> Optional[Any]: return 100 @property def _UpperCamelCase ( self ) -> Optional[Any]: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : Optional[int] = { 'in_channels': 4, # Out channels is double in channels because predicts mean and variance 'out_channels': 8, 'addition_embed_type': 'image', 'down_block_types': ('ResnetDownsampleBlock2D', 'SimpleCrossAttnDownBlock2D'), 'up_block_types': ('SimpleCrossAttnUpBlock2D', 'ResnetUpsampleBlock2D'), 'mid_block_type': 'UNetMidBlock2DSimpleCrossAttn', 'block_out_channels': (self.block_out_channels_a, self.block_out_channels_a * 2), 'layers_per_block': 1, 'encoder_hid_dim': self.text_embedder_hidden_size, 'encoder_hid_dim_type': 'image_proj', 'cross_attention_dim': self.cross_attention_dim, 'attention_head_dim': 4, 'resnet_time_scale_shift': 'scale_shift', 'class_embed_type': None, } SCREAMING_SNAKE_CASE : str = UNetaDConditionModel(**lowercase__ ) return model @property def _UpperCamelCase ( self ) -> Optional[Any]: return { "block_out_channels": [32, 64], "down_block_types": ["DownEncoderBlock2D", "AttnDownEncoderBlock2D"], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": [ "AttnUpDecoderBlock2D", "UpDecoderBlock2D", ], "vq_embed_dim": 4, } @property def _UpperCamelCase ( self ) -> Any: torch.manual_seed(0 ) SCREAMING_SNAKE_CASE : List[Any] = VQModel(**self.dummy_movq_kwargs ) return model def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_unet SCREAMING_SNAKE_CASE : Union[str, Any] = self.dummy_movq SCREAMING_SNAKE_CASE : Union[str, Any] = { 'num_train_timesteps': 1_000, 'beta_schedule': 'linear', 'beta_start': 0.0_0_0_8_5, 'beta_end': 0.0_1_2, 'clip_sample': False, 'set_alpha_to_one': False, 'steps_offset': 0, 'prediction_type': 'epsilon', 'thresholding': False, } SCREAMING_SNAKE_CASE : List[str] = DDIMScheduler(**lowercase__ ) SCREAMING_SNAKE_CASE : Union[str, Any] = { 'unet': unet, 'scheduler': scheduler, 'movq': movq, } return components def _UpperCamelCase ( self , lowercase__ , lowercase__=0 ) -> str: SCREAMING_SNAKE_CASE : Any = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( lowercase__ ) # create init_image SCREAMING_SNAKE_CASE : Union[str, Any] = floats_tensor((1, 3, 64, 64) , rng=random.Random(lowercase__ ) ).to(lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = image.cpu().permute(0 , 2 , 3 , 1 )[0] SCREAMING_SNAKE_CASE : Optional[Any] = Image.fromarray(np.uinta(lowercase__ ) ).convert('RGB' ).resize((256, 256) ) if str(lowercase__ ).startswith('mps' ): SCREAMING_SNAKE_CASE : Union[str, Any] = torch.manual_seed(lowercase__ ) else: SCREAMING_SNAKE_CASE : List[Any] = torch.Generator(device=lowercase__ ).manual_seed(lowercase__ ) SCREAMING_SNAKE_CASE : Dict = { 'image': init_image, 'image_embeds': image_embeds, 'negative_image_embeds': negative_image_embeds, 'generator': generator, 'height': 64, 'width': 64, 'num_inference_steps': 10, 'guidance_scale': 7.0, 'strength': 0.2, 'output_type': 'np', } return inputs def _UpperCamelCase ( self ) -> Dict: SCREAMING_SNAKE_CASE : List[Any] = 'cpu' SCREAMING_SNAKE_CASE : Optional[int] = self.get_dummy_components() SCREAMING_SNAKE_CASE : Union[str, Any] = self.pipeline_class(**lowercase__ ) SCREAMING_SNAKE_CASE : int = pipe.to(lowercase__ ) pipe.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : Optional[int] = pipe(**self.get_dummy_inputs(lowercase__ ) ) SCREAMING_SNAKE_CASE : Optional[Any] = output.images SCREAMING_SNAKE_CASE : Optional[int] = pipe( **self.get_dummy_inputs(lowercase__ ) , return_dict=lowercase__ , )[0] SCREAMING_SNAKE_CASE : Tuple = image[0, -3:, -3:, -1] SCREAMING_SNAKE_CASE : Optional[Any] = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) SCREAMING_SNAKE_CASE : Optional[Any] = np.array( [0.6_1_9_9_7_7_8, 0.6_3_9_8_4_4_0_6, 0.4_6_1_4_5_7_8_5, 0.6_2_9_4_4_9_8_4, 0.5_6_2_2_2_1_5, 0.4_7_3_0_6_1_3_2, 0.4_7_4_4_1_4_5_6, 0.4_6_0_7_6_0_6, 0.4_8_7_1_9_2_6_3] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_slice.flatten()}""" assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F""" expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}""" @slow @require_torch_gpu class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' def _UpperCamelCase ( self ) -> Optional[int]: # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE : Any = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinskyv22/kandinskyv22_img2img_frog.npy' ) SCREAMING_SNAKE_CASE : str = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/kandinsky/cat.png' ) SCREAMING_SNAKE_CASE : Optional[int] = 'A red cartoon frog, 4k' SCREAMING_SNAKE_CASE : Dict = KandinskyVaaPriorPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-prior' , torch_dtype=torch.floataa ) pipe_prior.to(lowercase__ ) SCREAMING_SNAKE_CASE : Tuple = KandinskyVaaImgaImgPipeline.from_pretrained( 'kandinsky-community/kandinsky-2-2-decoder' , torch_dtype=torch.floataa ) SCREAMING_SNAKE_CASE : Tuple = pipeline.to(lowercase__ ) pipeline.set_progress_bar_config(disable=lowercase__ ) SCREAMING_SNAKE_CASE : Optional[Any] = torch.Generator(device='cpu' ).manual_seed(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str = pipe_prior( lowercase__ , generator=lowercase__ , num_inference_steps=5 , negative_prompt='' , ).to_tuple() SCREAMING_SNAKE_CASE : str = pipeline( image=lowercase__ , image_embeds=lowercase__ , negative_image_embeds=lowercase__ , generator=lowercase__ , num_inference_steps=100 , height=768 , width=768 , strength=0.2 , output_type='np' , ) SCREAMING_SNAKE_CASE : int = output.images[0] assert image.shape == (768, 768, 3) assert_mean_pixel_difference(lowercase__ , lowercase__ )
251
'''simple docstring''' import unittest import numpy as np from transformers import MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING, TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING from transformers.pipelines import AudioClassificationPipeline, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_torchaudio, slow, ) from .test_pipelines_common import ANY @is_pipeline_test class UpperCAmelCase ( unittest.TestCase ): '''simple docstring''' snake_case__ : Tuple = MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING snake_case__ : Optional[int] = TF_MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING def _UpperCamelCase ( self , lowercase__ , lowercase__ , lowercase__ ) -> Any: SCREAMING_SNAKE_CASE : List[Any] = AudioClassificationPipeline(model=lowercase__ , feature_extractor=lowercase__ ) # test with a raw waveform SCREAMING_SNAKE_CASE : Optional[int] = np.zeros((34_000,) ) SCREAMING_SNAKE_CASE : Union[str, Any] = np.zeros((14_000,) ) return audio_classifier, [audioa, audio] def _UpperCamelCase ( self , lowercase__ , lowercase__ ) -> Tuple: SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[str] = examples SCREAMING_SNAKE_CASE : Optional[Any] = audio_classifier(lowercase__ ) # by default a model is initialized with num_labels=2 self.assertEqual( lowercase__ , [ {'score': ANY(lowercase__ ), 'label': ANY(lowercase__ )}, {'score': ANY(lowercase__ ), 'label': ANY(lowercase__ )}, ] , ) SCREAMING_SNAKE_CASE : Optional[Any] = audio_classifier(lowercase__ , top_k=1 ) self.assertEqual( lowercase__ , [ {'score': ANY(lowercase__ ), 'label': ANY(lowercase__ )}, ] , ) self.run_torchaudio(lowercase__ ) @require_torchaudio def _UpperCamelCase ( self , lowercase__ ) -> Dict: import datasets # test with a local file SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset('hf-internal-testing/librispeech_asr_dummy' , 'clean' , split='validation' ) SCREAMING_SNAKE_CASE : int = dataset[0]['audio']['array'] SCREAMING_SNAKE_CASE : List[str] = audio_classifier(lowercase__ ) self.assertEqual( lowercase__ , [ {'score': ANY(lowercase__ ), 'label': ANY(lowercase__ )}, {'score': ANY(lowercase__ ), 'label': ANY(lowercase__ )}, ] , ) @require_torch def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE : List[Any] = 'anton-l/wav2vec2-random-tiny-classifier' SCREAMING_SNAKE_CASE : Tuple = pipeline('audio-classification' , model=lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = np.ones((8_000,) ) SCREAMING_SNAKE_CASE : Tuple = audio_classifier(lowercase__ , top_k=4 ) SCREAMING_SNAKE_CASE : Dict = [ {'score': 0.0_8_4_2, 'label': 'no'}, {'score': 0.0_8_3_8, 'label': 'up'}, {'score': 0.0_8_3_7, 'label': 'go'}, {'score': 0.0_8_3_4, 'label': 'right'}, ] SCREAMING_SNAKE_CASE : Tuple = [ {'score': 0.0_8_4_5, 'label': 'stop'}, {'score': 0.0_8_4_4, 'label': 'on'}, {'score': 0.0_8_4_1, 'label': 'right'}, {'score': 0.0_8_3_4, 'label': 'left'}, ] self.assertIn(nested_simplify(lowercase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) SCREAMING_SNAKE_CASE : Tuple = {'array': np.ones((8_000,) ), 'sampling_rate': audio_classifier.feature_extractor.sampling_rate} SCREAMING_SNAKE_CASE : List[Any] = audio_classifier(lowercase__ , top_k=4 ) self.assertIn(nested_simplify(lowercase__ , decimals=4 ) , [EXPECTED_OUTPUT, EXPECTED_OUTPUT_PT_2] ) @require_torch @slow def _UpperCamelCase ( self ) -> Union[str, Any]: import datasets SCREAMING_SNAKE_CASE : List[str] = 'superb/wav2vec2-base-superb-ks' SCREAMING_SNAKE_CASE : Optional[int] = pipeline('audio-classification' , model=lowercase__ ) SCREAMING_SNAKE_CASE : List[str] = datasets.load_dataset('anton-l/superb_dummy' , 'ks' , split='test' ) SCREAMING_SNAKE_CASE : Tuple = np.array(dataset[3]['speech'] , dtype=np.floataa ) SCREAMING_SNAKE_CASE : str = audio_classifier(lowercase__ , top_k=4 ) self.assertEqual( nested_simplify(lowercase__ , decimals=3 ) , [ {'score': 0.9_8_1, 'label': 'go'}, {'score': 0.0_0_7, 'label': 'up'}, {'score': 0.0_0_6, 'label': '_unknown_'}, {'score': 0.0_0_1, 'label': 'down'}, ] , ) @require_tf @unittest.skip('Audio classification is not implemented for TF' ) def _UpperCamelCase ( self ) -> str: pass
251
1
"""simple docstring""" import enum import warnings from .. import MODEL_FOR_CAUSAL_LM_MAPPING, TF_MODEL_FOR_CAUSAL_LM_MAPPING from ..utils import add_end_docstrings, is_tf_available from .base import PIPELINE_INIT_ARGS, Pipeline if is_tf_available(): import tensorflow as tf class _UpperCAmelCase ( enum.Enum): __lowercase : str = 0 __lowercase : List[Any] = 1 __lowercase : Tuple = 2 @add_end_docstrings(_snake_case) class _UpperCAmelCase ( _snake_case): __lowercase : int = """ In 1991, the remains of Russian Tsar Nicholas II and his family (except for Alexei and Maria) are discovered. The voice of Nicholas's young son, Tsarevich Alexei Nikolaevich, narrates the remainder of the story. 1883 Western Siberia, a young Grigori Rasputin is asked by his father and a group of men to perform magic. Rasputin has a vision and denounces one of the men as a horse thief. Although his father initially slaps him for making such an accusation, Rasputin watches as the man is chased outside and beaten. Twenty years later, Rasputin sees a vision of the Virgin Mary, prompting him to become a priest. Rasputin quickly becomes famous, with people, even a bishop, begging for his blessing. <eod> </s> <eos> """ def __init__( self , *snake_case_ , **snake_case_ ): super().__init__(*snake_case_ , **snake_case_ ) self.check_model_type( TF_MODEL_FOR_CAUSAL_LM_MAPPING if self.framework == "tf" else MODEL_FOR_CAUSAL_LM_MAPPING ) if "prefix" not in self._preprocess_params: # This is very specific. The logic is quite complex and needs to be done # as a "default". # It also defines both some preprocess_kwargs and generate_kwargs # which is why we cannot put them in their respective methods. _snake_case : int = None if self.model.config.prefix is not None: _snake_case : str = self.model.config.prefix if prefix is None and self.model.__class__.__name__ in [ "XLNetLMHeadModel", "TransfoXLLMHeadModel", "TFXLNetLMHeadModel", "TFTransfoXLLMHeadModel", ]: # For XLNet and TransformerXL we add an article to the prompt to give more state to the model. _snake_case : Optional[Any] = self.XL_PREFIX if prefix is not None: # Recalculate some generate_kwargs linked to prefix. _snake_case , _snake_case , _snake_case : str = self._sanitize_parameters(prefix=snake_case_ , **self._forward_params ) _snake_case : str = {**self._preprocess_params, **preprocess_params} _snake_case : Optional[int] = {**self._forward_params, **forward_params} def lowerCamelCase__ ( self , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , snake_case_=None , **snake_case_ , ): _snake_case : Optional[int] = {} if prefix is not None: _snake_case : List[str] = prefix if prefix: _snake_case : Dict = self.tokenizer( snake_case_ , padding=snake_case_ , add_special_tokens=snake_case_ , return_tensors=self.framework ) _snake_case : Dict = prefix_inputs["input_ids"].shape[-1] if handle_long_generation is not None: if handle_long_generation not in {"hole"}: raise ValueError( F'{handle_long_generation} is not a valid value for `handle_long_generation` parameter expected' " [None, 'hole']" ) _snake_case : Any = handle_long_generation preprocess_params.update(snake_case_ ) _snake_case : int = generate_kwargs _snake_case : Union[str, Any] = {} if return_full_text is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_full_text`" ) if return_tensors is not None: raise ValueError("`return_full_text` is mutually exclusive with `return_tensors`" ) _snake_case : Optional[Any] = ReturnType.FULL_TEXT if return_full_text else ReturnType.NEW_TEXT if return_tensors is not None and return_type is None: if return_text is not None: raise ValueError("`return_text` is mutually exclusive with `return_tensors`" ) _snake_case : str = ReturnType.TENSORS if return_type is not None: _snake_case : List[str] = return_type if clean_up_tokenization_spaces is not None: _snake_case : Dict = clean_up_tokenization_spaces if stop_sequence is not None: _snake_case : List[str] = self.tokenizer.encode(snake_case_ , add_special_tokens=snake_case_ ) if len(snake_case_ ) > 1: warnings.warn( "Stopping on a multiple token sequence is not yet supported on transformers. The first token of" " the stop sequence will be used as the stop sequence string in the interim." ) _snake_case : Optional[int] = stop_sequence_ids[0] return preprocess_params, forward_params, postprocess_params def lowerCamelCase__ ( self , *snake_case_ , **snake_case_ ): # Parse arguments if self.model.__class__.__name__ in ["TransfoXLLMHeadModel"]: kwargs.update({"add_space_before_punct_symbol": True} ) return super()._parse_and_tokenize(*snake_case_ , **snake_case_ ) def __call__( self , snake_case_ , **snake_case_ ): return super().__call__(snake_case_ , **snake_case_ ) def lowerCamelCase__ ( self , snake_case_ , snake_case_="" , snake_case_=None , **snake_case_ ): _snake_case : Dict = self.tokenizer( prefix + prompt_text , padding=snake_case_ , add_special_tokens=snake_case_ , return_tensors=self.framework ) _snake_case : Any = prompt_text if handle_long_generation == "hole": _snake_case : Dict = inputs["input_ids"].shape[-1] if "max_new_tokens" in generate_kwargs: _snake_case : Union[str, Any] = generate_kwargs["max_new_tokens"] else: _snake_case : int = generate_kwargs.get("max_length" , self.model.config.max_length ) - cur_len if new_tokens < 0: raise ValueError("We cannot infer how many new tokens are expected" ) if cur_len + new_tokens > self.tokenizer.model_max_length: _snake_case : List[str] = self.tokenizer.model_max_length - new_tokens if keep_length <= 0: raise ValueError( "We cannot use `hole` to handle this generation the number of desired tokens exceeds the" " models max length" ) _snake_case : Optional[Any] = inputs["input_ids"][:, -keep_length:] if "attention_mask" in inputs: _snake_case : int = inputs["attention_mask"][:, -keep_length:] return inputs def lowerCamelCase__ ( self , snake_case_ , **snake_case_ ): _snake_case : str = model_inputs["input_ids"] _snake_case : Optional[Any] = model_inputs.get("attention_mask" , snake_case_ ) # Allow empty prompts if input_ids.shape[1] == 0: _snake_case : List[Any] = None _snake_case : str = None _snake_case : Tuple = 1 else: _snake_case : Optional[Any] = input_ids.shape[0] _snake_case : Optional[int] = model_inputs.pop("prompt_text" ) # If there is a prefix, we may need to adjust the generation length. Do so without permanently modifying # generate_kwargs, as some of the parameterization may come from the initialization of the pipeline. _snake_case : Union[str, Any] = generate_kwargs.pop("prefix_length" , 0 ) if prefix_length > 0: _snake_case : Any = "max_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].max_new_tokens is not None ) if not has_max_new_tokens: _snake_case : Optional[int] = generate_kwargs.get("max_length" ) or self.model.config.max_length generate_kwargs["max_length"] += prefix_length _snake_case : int = "min_new_tokens" in generate_kwargs or ( "generation_config" in generate_kwargs and generate_kwargs["generation_config"].min_new_tokens is not None ) if not has_min_new_tokens and "min_length" in generate_kwargs: generate_kwargs["min_length"] += prefix_length # BS x SL _snake_case : Optional[int] = self.model.generate(input_ids=snake_case_ , attention_mask=snake_case_ , **snake_case_ ) _snake_case : int = generated_sequence.shape[0] if self.framework == "pt": _snake_case : List[Any] = generated_sequence.reshape(snake_case_ , out_b // in_b , *generated_sequence.shape[1:] ) elif self.framework == "tf": _snake_case : Union[str, Any] = tf.reshape(snake_case_ , (in_b, out_b // in_b, *generated_sequence.shape[1:]) ) return {"generated_sequence": generated_sequence, "input_ids": input_ids, "prompt_text": prompt_text} def lowerCamelCase__ ( self , snake_case_ , snake_case_=ReturnType.FULL_TEXT , snake_case_=True ): _snake_case : str = model_outputs["generated_sequence"][0] _snake_case : int = model_outputs["input_ids"] _snake_case : Optional[int] = model_outputs["prompt_text"] _snake_case : List[Any] = generated_sequence.numpy().tolist() _snake_case : Union[str, Any] = [] for sequence in generated_sequence: if return_type == ReturnType.TENSORS: _snake_case : int = {"generated_token_ids": sequence} elif return_type in {ReturnType.NEW_TEXT, ReturnType.FULL_TEXT}: # Decode text _snake_case : int = self.tokenizer.decode( snake_case_ , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , ) # Remove PADDING prompt of the sequence if XLNet or Transfo-XL model is used if input_ids is None: _snake_case : Dict = 0 else: _snake_case : Any = len( self.tokenizer.decode( input_ids[0] , skip_special_tokens=snake_case_ , clean_up_tokenization_spaces=snake_case_ , ) ) if return_type == ReturnType.FULL_TEXT: _snake_case : str = prompt_text + text[prompt_length:] else: _snake_case : Tuple = text[prompt_length:] _snake_case : List[Any] = {"generated_text": all_text} records.append(snake_case_ ) return records
87
"""simple docstring""" from __future__ import annotations from numpy import array, cos, cross, floataa, radians, sin from numpy.typing import NDArray def a__ ( a : float , a : float , a : bool = False ): """simple docstring""" if radian_mode: return [magnitude * cos(a ), magnitude * sin(a )] return [magnitude * cos(radians(a ) ), magnitude * sin(radians(a ) )] def a__ ( a : NDArray[floataa] , a : NDArray[floataa] , a : float = 10**-1 ): """simple docstring""" _snake_case : NDArray[floataa] = cross(a , a ) _snake_case : float = sum(a ) return abs(a ) < eps if __name__ == "__main__": # Test to check if it works _a : Tuple = array( [ polar_force(718.4, 180 - 30), polar_force(879.54, 45), polar_force(100, -90), ] ) _a : NDArray[floataa] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem 1 in image_data/2D_problems.jpg _a : List[Any] = array( [ polar_force(30 * 9.81, 15), polar_force(215, 180 - 45), polar_force(264, 90 - 30), ] ) _a : List[Any] = array([[0, 0], [0, 0], [0, 0]]) assert in_static_equilibrium(forces, location) # Problem in image_data/2D_problems_1.jpg _a : List[str] = array([[0, -2_000], [0, -1_200], [0, 15_600], [0, -12_400]]) _a : Optional[int] = array([[0, 0], [6, 0], [10, 0], [12, 0]]) assert in_static_equilibrium(forces, location) import doctest doctest.testmod()
87
1
_snake_case = 65521 def lowerCAmelCase_ ( snake_case_ ): _A : Optional[int] = 1 _A : Tuple = 0 for plain_chr in plain_text: _A : Union[str, Any] = (a + ord(_lowercase )) % MOD_ADLER _A : Dict = (b + a) % MOD_ADLER return (b << 16) | a
307
import argparse import OmegaConf import torch from diffusers import DDIMScheduler, LDMPipeline, UNetLDMModel, VQModel def A ( _lowercase , _lowercase , _lowercase ): SCREAMING_SNAKE_CASE : List[Any] = OmegaConf.load(_lowercase ) SCREAMING_SNAKE_CASE : int = torch.load(_lowercase , map_location='''cpu''' )['''model'''] SCREAMING_SNAKE_CASE : int = list(state_dict.keys() ) # extract state_dict for VQVAE SCREAMING_SNAKE_CASE : Union[str, Any] = {} SCREAMING_SNAKE_CASE : List[str] = '''first_stage_model.''' for key in keys: if key.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] # extract state_dict for UNetLDM SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : Any = '''model.diffusion_model.''' for key in keys: if key.startswith(_lowercase ): SCREAMING_SNAKE_CASE : List[Any] = state_dict[key] SCREAMING_SNAKE_CASE : int = config.model.params.first_stage_config.params SCREAMING_SNAKE_CASE : Tuple = config.model.params.unet_config.params SCREAMING_SNAKE_CASE : Union[str, Any] = VQModel(**_lowercase ).eval() vqvae.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Optional[int] = UNetLDMModel(**_lowercase ).eval() unet.load_state_dict(_lowercase ) SCREAMING_SNAKE_CASE : Union[str, Any] = DDIMScheduler( timesteps=config.model.params.timesteps , beta_schedule='''scaled_linear''' , beta_start=config.model.params.linear_start , beta_end=config.model.params.linear_end , clip_sample=_lowercase , ) SCREAMING_SNAKE_CASE : Optional[Any] = LDMPipeline(_lowercase , _lowercase , _lowercase ) pipeline.save_pretrained(_lowercase ) if __name__ == "__main__": __UpperCamelCase : Optional[int] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', type=str, required=True) parser.add_argument('--config_path', type=str, required=True) parser.add_argument('--output_path', type=str, required=True) __UpperCamelCase : List[str] = parser.parse_args() convert_ldm_original(args.checkpoint_path, args.config_path, args.output_path)
248
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available lowerCamelCase :Dict = { 'configuration_chinese_clip': [ 'CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP', 'ChineseCLIPConfig', 'ChineseCLIPOnnxConfig', 'ChineseCLIPTextConfig', 'ChineseCLIPVisionConfig', ], 'processing_chinese_clip': ['ChineseCLIPProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[int] = ['ChineseCLIPFeatureExtractor'] lowerCamelCase :str = ['ChineseCLIPImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowerCamelCase :Optional[int] = [ 'CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST', 'ChineseCLIPModel', 'ChineseCLIPPreTrainedModel', 'ChineseCLIPTextModel', 'ChineseCLIPVisionModel', ] if TYPE_CHECKING: from .configuration_chinese_clip import ( CHINESE_CLIP_PRETRAINED_CONFIG_ARCHIVE_MAP, ChineseCLIPConfig, ChineseCLIPOnnxConfig, ChineseCLIPTextConfig, ChineseCLIPVisionConfig, ) from .processing_chinese_clip import ChineseCLIPProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_chinese_clip import ChineseCLIPFeatureExtractor, ChineseCLIPImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_chinese_clip import ( CHINESE_CLIP_PRETRAINED_MODEL_ARCHIVE_LIST, ChineseCLIPModel, ChineseCLIPPreTrainedModel, ChineseCLIPTextModel, ChineseCLIPVisionModel, ) else: import sys lowerCamelCase :List[str] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
704
import math import sys import cva import numpy as np def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> np.ndarray: # For applying gaussian function for each element in matrix. _a = math.sqrt(_UpperCamelCase ) _a = 1 / (sigma * math.sqrt(2 * math.pi )) return cons * np.exp(-((img / sigma) ** 2) * 0.5 ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) -> np.ndarray: _a = kernel_size // 2 return img[x - half : x + half + 1, y - half : y + half + 1] def __snake_case ( _UpperCamelCase , _UpperCamelCase ) -> np.ndarray: # Creates a gaussian kernel of given dimension. _a = np.zeros((kernel_size, kernel_size) ) for i in range(0 , _UpperCamelCase ): for j in range(0 , _UpperCamelCase ): _a = math.sqrt( abs(i - kernel_size // 2 ) ** 2 + abs(j - kernel_size // 2 ) ** 2 ) return vec_gaussian(_UpperCamelCase , _UpperCamelCase ) def __snake_case ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , ) -> np.ndarray: _a = np.zeros(img.shape ) _a = get_gauss_kernel(_UpperCamelCase , _UpperCamelCase ) _a , _a = img.shape for i in range(kernel_size // 2 , size_x - kernel_size // 2 ): for j in range(kernel_size // 2 , size_y - kernel_size // 2 ): _a = get_slice(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) _a = img_s - img_s[kernel_size // 2, kernel_size // 2] _a = vec_gaussian(_UpperCamelCase , _UpperCamelCase ) _a = np.multiply(_UpperCamelCase , _UpperCamelCase ) _a = np.multiply(_UpperCamelCase , _UpperCamelCase ) _a = np.sum(_UpperCamelCase ) / np.sum(_UpperCamelCase ) _a = val return imga def __snake_case ( _UpperCamelCase ) -> tuple: _a = args[1] if args[1:] else '''../image_data/lena.jpg''' _a = float(args[2] ) if args[2:] else 1.0 _a = float(args[3] ) if args[3:] else 1.0 if args[4:]: _a = int(args[4] ) _a = kernel_size + abs(kernel_size % 2 - 1 ) else: _a = 5 return filename, spatial_variance, intensity_variance, kernel_size if __name__ == "__main__": lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase :List[Any] = parse_args(sys.argv) lowerCamelCase :List[Any] = cva.imread(filename, 0) cva.imshow('input image', img) lowerCamelCase :Optional[Any] = img / 255 lowerCamelCase :Any = out.astype('float32') lowerCamelCase :Tuple = bilateral_filter(out, spatial_variance, intensity_variance, kernel_size) lowerCamelCase :Dict = out * 255 lowerCamelCase :Any = np.uinta(out) cva.imshow('output image', out) cva.waitKey(0) cva.destroyAllWindows()
346
0
from __future__ import annotations import unittest from transformers import BlenderbotConfig, BlenderbotTokenizer, is_tf_available from transformers.testing_utils import require_tf, require_tokenizers, slow from transformers.utils import cached_property from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFAutoModelForSeqaSeqLM, TFBlenderbotForConditionalGeneration, TFBlenderbotModel @require_tf class _lowerCAmelCase: """simple docstring""" a : List[str] =BlenderbotConfig a : Union[str, Any] ={} a : Any ='''gelu''' def __init__( self , _lowerCamelCase , _lowerCamelCase=1_3 , _lowerCamelCase=7 , _lowerCamelCase=True , _lowerCamelCase=False , _lowerCamelCase=9_9 , _lowerCamelCase=3_2 , _lowerCamelCase=2 , _lowerCamelCase=4 , _lowerCamelCase=3_7 , _lowerCamelCase=0.1 , _lowerCamelCase=0.1 , _lowerCamelCase=2_0 , _lowerCamelCase=2 , _lowerCamelCase=1 , _lowerCamelCase=0 , ): UpperCamelCase_: List[str] = parent UpperCamelCase_: int = batch_size UpperCamelCase_: Optional[int] = seq_length UpperCamelCase_: Any = is_training UpperCamelCase_: Any = use_labels UpperCamelCase_: Dict = vocab_size UpperCamelCase_: Optional[Any] = hidden_size UpperCamelCase_: Tuple = num_hidden_layers UpperCamelCase_: List[str] = num_attention_heads UpperCamelCase_: List[Any] = intermediate_size UpperCamelCase_: List[str] = hidden_dropout_prob UpperCamelCase_: Optional[int] = attention_probs_dropout_prob UpperCamelCase_: Union[str, Any] = max_position_embeddings UpperCamelCase_: Optional[Any] = eos_token_id UpperCamelCase_: Union[str, Any] = pad_token_id UpperCamelCase_: Optional[Any] = bos_token_id def _a ( self ): UpperCamelCase_: List[str] = ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) UpperCamelCase_: str = tf.expand_dims(tf.constant([self.eos_token_id] * self.batch_size ) , 1 ) UpperCamelCase_: int = tf.concat([input_ids, eos_tensor] , axis=1 ) UpperCamelCase_: Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) UpperCamelCase_: str = self.config_cls( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_ids=[2] , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , decoder_start_token_id=self.pad_token_id , **self.config_updates , ) UpperCamelCase_: Optional[int] = prepare_blenderbot_inputs_dict(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) return config, inputs_dict def _a ( self , _lowerCamelCase , _lowerCamelCase ): UpperCamelCase_: Dict = TFBlenderbotModel(config=_lowerCamelCase ).get_decoder() UpperCamelCase_: Any = inputs_dict['input_ids'] UpperCamelCase_: Dict = input_ids[:1, :] UpperCamelCase_: Dict = inputs_dict['attention_mask'][:1, :] UpperCamelCase_: Optional[Any] = inputs_dict['head_mask'] UpperCamelCase_: List[Any] = 1 # first forward pass UpperCamelCase_: Optional[int] = model(_lowerCamelCase , attention_mask=_lowerCamelCase , head_mask=_lowerCamelCase , use_cache=_lowerCamelCase ) UpperCamelCase_ ,UpperCamelCase_: List[Any] = outputs.to_tuple() # create hypothetical next token and extent to next_input_ids UpperCamelCase_: Union[str, Any] = ids_tensor((self.batch_size, 3) , config.vocab_size ) UpperCamelCase_: int = tf.cast(ids_tensor((self.batch_size, 3) , 2 ) , tf.inta ) # append to next input_ids and UpperCamelCase_: List[str] = tf.concat([input_ids, next_tokens] , axis=-1 ) UpperCamelCase_: int = tf.concat([attention_mask, next_attn_mask] , axis=-1 ) UpperCamelCase_: int = model(_lowerCamelCase , attention_mask=_lowerCamelCase )[0] UpperCamelCase_: Any = model(_lowerCamelCase , attention_mask=_lowerCamelCase , past_key_values=_lowerCamelCase )[0] self.parent.assertEqual(next_tokens.shape[1] , output_from_past.shape[1] ) # select random slice UpperCamelCase_: Optional[Any] = int(ids_tensor((1,) , output_from_past.shape[-1] ) ) UpperCamelCase_: str = output_from_no_past[:, -3:, random_slice_idx] UpperCamelCase_: str = output_from_past[:, :, random_slice_idx] # test that outputs are equal for slice tf.debugging.assert_near(_lowerCamelCase , _lowerCamelCase , rtol=1e-3 ) def snake_case (UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , UpperCAmelCase__=None , ) -> List[Any]: if attention_mask is None: UpperCamelCase_: List[Any] = tf.cast(tf.math.not_equal(UpperCAmelCase__ , config.pad_token_id ) , tf.inta ) if decoder_attention_mask is None: UpperCamelCase_: Union[str, Any] = tf.concat( [ tf.ones(decoder_input_ids[:, :1].shape , dtype=tf.inta ), tf.cast(tf.math.not_equal(decoder_input_ids[:, 1:] , config.pad_token_id ) , tf.inta ), ] , axis=-1 , ) if head_mask is None: UpperCamelCase_: Optional[int] = tf.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: UpperCamelCase_: Dict = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: UpperCamelCase_: Union[str, Any] = tf.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": decoder_attention_mask, "head_mask": head_mask, "decoder_head_mask": decoder_head_mask, "cross_attn_head_mask": cross_attn_head_mask, } @require_tf class _lowerCAmelCase( UpperCAmelCase_ , UpperCAmelCase_ , unittest.TestCase ): """simple docstring""" a : Optional[Any] =(TFBlenderbotForConditionalGeneration, TFBlenderbotModel) if is_tf_available() else () a : List[str] =(TFBlenderbotForConditionalGeneration,) if is_tf_available() else () a : Optional[Any] =( { '''conversational''': TFBlenderbotForConditionalGeneration, '''feature-extraction''': TFBlenderbotModel, '''summarization''': TFBlenderbotForConditionalGeneration, '''text2text-generation''': TFBlenderbotForConditionalGeneration, '''translation''': TFBlenderbotForConditionalGeneration, } if is_tf_available() else {} ) a : List[str] =True a : Optional[int] =False a : Tuple =False def _a ( self ): UpperCamelCase_: Any = TFBlenderbotModelTester(self ) UpperCamelCase_: int = ConfigTester(self , config_class=_lowerCamelCase ) def _a ( self ): self.config_tester.run_common_tests() def _a ( self ): UpperCamelCase_: Tuple = self.model_tester.prepare_config_and_inputs_for_common() self.model_tester.check_decoder_model_past_large_inputs(*_lowerCamelCase ) @require_tokenizers @require_tf class _lowerCAmelCase( unittest.TestCase ): """simple docstring""" a : Union[str, Any] =['''My friends are cool but they eat too many carbs.'''] a : Union[str, Any] ='''facebook/blenderbot-400M-distill''' @cached_property def _a ( self ): return BlenderbotTokenizer.from_pretrained(self.model_name ) @cached_property def _a ( self ): UpperCamelCase_: Any = TFAutoModelForSeqaSeqLM.from_pretrained(self.model_name ) return model @slow def _a ( self ): UpperCamelCase_: Union[str, Any] = self.tokenizer(self.src_text , return_tensors='tf' ) UpperCamelCase_: List[Any] = self.model.generate( model_inputs.input_ids , ) UpperCamelCase_: List[str] = self.tokenizer.batch_decode(generated_ids.numpy() , skip_special_tokens=_lowerCamelCase )[0] assert ( generated_words == " That's unfortunate. Are they trying to lose weight or are they just trying to be healthier?" )
57
import argparse import os import numpy as np import tensorflow as tf import torch from transformers import BertModel def _A ( __snake_case :BertModel , __snake_case :str , __snake_case :str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = ("dense.weight", "attention.self.query", "attention.self.key", "attention.self.value") __SCREAMING_SNAKE_CASE = ( ("layer.", "layer_"), ("word_embeddings.weight", "word_embeddings"), ("position_embeddings.weight", "position_embeddings"), ("token_type_embeddings.weight", "token_type_embeddings"), (".", "/"), ("LayerNorm/weight", "LayerNorm/gamma"), ("LayerNorm/bias", "LayerNorm/beta"), ("weight", "kernel"), ) if not os.path.isdir(__snake_case ): os.makedirs(__snake_case ) __SCREAMING_SNAKE_CASE = model.state_dict() def to_tf_var_name(__snake_case :str ): for patt, repl in iter(__snake_case ): __SCREAMING_SNAKE_CASE = name.replace(__snake_case , __snake_case ) return f'''bert/{name}''' def create_tf_var(__snake_case :np.ndarray , __snake_case :str , __snake_case :tf.Session ): __SCREAMING_SNAKE_CASE = tf.dtypes.as_dtype(tensor.dtype ) __SCREAMING_SNAKE_CASE = tf.get_variable(dtype=__snake_case , shape=tensor.shape , name=__snake_case , initializer=tf.zeros_initializer() ) session.run(tf.variables_initializer([tf_var] ) ) session.run(__snake_case ) return tf_var tf.reset_default_graph() with tf.Session() as session: for var_name in state_dict: __SCREAMING_SNAKE_CASE = to_tf_var_name(__snake_case ) __SCREAMING_SNAKE_CASE = state_dict[var_name].numpy() if any(x in var_name for x in tensors_to_transpose ): __SCREAMING_SNAKE_CASE = torch_tensor.T __SCREAMING_SNAKE_CASE = create_tf_var(tensor=__snake_case , name=__snake_case , session=__snake_case ) tf.keras.backend.set_value(__snake_case , __snake_case ) __SCREAMING_SNAKE_CASE = session.run(__snake_case ) print(f'''Successfully created {tf_name}: {np.allclose(__snake_case , __snake_case )}''' ) __SCREAMING_SNAKE_CASE = tf.train.Saver(tf.trainable_variables() ) saver.save(__snake_case , os.path.join(__snake_case , model_name.replace("-" , "_" ) + ".ckpt" ) ) def _A ( __snake_case :str=None ) -> Dict: """simple docstring""" __SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument("--model_name" , type=__snake_case , required=__snake_case , help="model name e.g. bert-base-uncased" ) parser.add_argument( "--cache_dir" , type=__snake_case , default=__snake_case , required=__snake_case , help="Directory containing pytorch model" ) parser.add_argument("--pytorch_model_path" , type=__snake_case , required=__snake_case , help="/path/to/<pytorch-model-name>.bin" ) parser.add_argument("--tf_cache_dir" , type=__snake_case , required=__snake_case , help="Directory in which to save tensorflow model" ) __SCREAMING_SNAKE_CASE = parser.parse_args(__snake_case ) __SCREAMING_SNAKE_CASE = BertModel.from_pretrained( pretrained_model_name_or_path=args.model_name , state_dict=torch.load(args.pytorch_model_path ) , cache_dir=args.cache_dir , ) convert_pytorch_checkpoint_to_tf(model=__snake_case , ckpt_dir=args.tf_cache_dir , model_name=args.model_name ) if __name__ == "__main__": main()
693
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available lowercase__ :List[Any] = {"configuration_sew": ["SEW_PRETRAINED_CONFIG_ARCHIVE_MAP", "SEWConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: lowercase__ :Optional[Any] = [ "SEW_PRETRAINED_MODEL_ARCHIVE_LIST", "SEWForCTC", "SEWForSequenceClassification", "SEWModel", "SEWPreTrainedModel", ] if TYPE_CHECKING: from .configuration_sew import SEW_PRETRAINED_CONFIG_ARCHIVE_MAP, SEWConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_sew import ( SEW_PRETRAINED_MODEL_ARCHIVE_LIST, SEWForCTC, SEWForSequenceClassification, SEWModel, SEWPreTrainedModel, ) else: import sys lowercase__ :List[str] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
705
import tempfile import torch from diffusers import ( DEISMultistepScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, UniPCMultistepScheduler, ) from .test_schedulers import SchedulerCommonTest class lowercase ( SCREAMING_SNAKE_CASE__ ): lowercase_ : List[str] =(UniPCMultistepScheduler,) lowercase_ : Tuple =(('''num_inference_steps''', 25),) def A__ ( self ,**A__): lowercase = { '''num_train_timesteps''': 1_0_0_0, '''beta_start''': 0.0001, '''beta_end''': 0.02, '''beta_schedule''': '''linear''', '''solver_order''': 2, '''solver_type''': '''bh2''', } config.update(**A__) return config def A__ ( self ,A__=0 ,**A__): lowercase = dict(self.forward_default_kwargs) lowercase = kwargs.pop('''num_inference_steps''' ,A__) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**A__) lowercase = scheduler_class(**A__) scheduler.set_timesteps(A__) # copy over dummy past residuals lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A__) lowercase = scheduler_class.from_pretrained(A__) new_scheduler.set_timesteps(A__) # copy over dummy past residuals lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase , lowercase = sample, sample for t in range(A__ ,time_step + scheduler.config.solver_order + 1): lowercase = scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample lowercase = new_scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def A__ ( self ,A__=0 ,**A__): lowercase = dict(self.forward_default_kwargs) lowercase = kwargs.pop('''num_inference_steps''' ,A__) lowercase = self.dummy_sample lowercase = 0.1 * sample lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**A__) scheduler.set_timesteps(A__) # copy over dummy past residuals (must be after setting timesteps) lowercase = dummy_past_residuals[: scheduler.config.solver_order] with tempfile.TemporaryDirectory() as tmpdirname: scheduler.save_config(A__) lowercase = scheduler_class.from_pretrained(A__) # copy over dummy past residuals new_scheduler.set_timesteps(A__) # copy over dummy past residual (must be after setting timesteps) lowercase = dummy_past_residuals[: new_scheduler.config.solver_order] lowercase = scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample lowercase = new_scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample assert torch.sum(torch.abs(output - new_output)) < 1E-5, "Scheduler outputs are not identical" def A__ ( self ,A__=None ,**A__): if scheduler is None: lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**A__) lowercase = scheduler_class(**A__) lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(**A__) lowercase = scheduler_class(**A__) lowercase = 1_0 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter scheduler.set_timesteps(A__) for i, t in enumerate(scheduler.timesteps): lowercase = model(A__ ,A__) lowercase = scheduler.step(A__ ,A__ ,A__).prev_sample return sample def A__ ( self): lowercase = dict(self.forward_default_kwargs) lowercase = kwargs.pop('''num_inference_steps''' ,A__) for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config() lowercase = scheduler_class(**A__) lowercase = self.dummy_sample lowercase = 0.1 * sample if num_inference_steps is not None and hasattr(A__ ,'''set_timesteps'''): scheduler.set_timesteps(A__) elif num_inference_steps is not None and not hasattr(A__ ,'''set_timesteps'''): lowercase = num_inference_steps # copy over dummy past residuals (must be done after set_timesteps) lowercase = [residual + 0.2, residual + 0.15, residual + 0.10] lowercase = dummy_past_residuals[: scheduler.config.solver_order] lowercase = scheduler.timesteps[5] lowercase = scheduler.timesteps[6] lowercase = scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample lowercase = scheduler.step(A__ ,A__ ,A__ ,**A__).prev_sample self.assertEqual(output_a.shape ,sample.shape) self.assertEqual(output_a.shape ,output_a.shape) def A__ ( self): # make sure that iterating over schedulers with same config names gives same results # for defaults lowercase = UniPCMultistepScheduler(**self.get_scheduler_config()) lowercase = self.full_loop(scheduler=A__) lowercase = torch.mean(torch.abs(A__)) assert abs(result_mean.item() - 0.2464) < 1E-3 lowercase = DPMSolverSinglestepScheduler.from_config(scheduler.config) lowercase = DEISMultistepScheduler.from_config(scheduler.config) lowercase = DPMSolverMultistepScheduler.from_config(scheduler.config) lowercase = UniPCMultistepScheduler.from_config(scheduler.config) lowercase = self.full_loop(scheduler=A__) lowercase = torch.mean(torch.abs(A__)) assert abs(result_mean.item() - 0.2464) < 1E-3 def A__ ( self): for timesteps in [2_5, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_configs(num_train_timesteps=A__) def A__ ( self): self.check_over_configs(thresholding=A__) for order in [1, 2, 3]: for solver_type in ["bh1", "bh2"]: for threshold in [0.5, 1.0, 2.0]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( thresholding=A__ ,prediction_type=A__ ,sample_max_value=A__ ,solver_order=A__ ,solver_type=A__ ,) def A__ ( self): for prediction_type in ["epsilon", "v_prediction"]: self.check_over_configs(prediction_type=A__) def A__ ( self): for solver_type in ["bh1", "bh2"]: for order in [1, 2, 3]: for prediction_type in ["epsilon", "sample"]: self.check_over_configs( solver_order=A__ ,solver_type=A__ ,prediction_type=A__ ,) lowercase = self.full_loop( solver_order=A__ ,solver_type=A__ ,prediction_type=A__ ,) assert not torch.isnan(A__).any(), "Samples have nan numbers" def A__ ( self): self.check_over_configs(lower_order_final=A__) self.check_over_configs(lower_order_final=A__) def A__ ( self): for num_inference_steps in [1, 2, 3, 5, 1_0, 5_0, 1_0_0, 9_9_9, 1_0_0_0]: self.check_over_forward(num_inference_steps=A__ ,time_step=0) def A__ ( self): lowercase = self.full_loop() lowercase = torch.mean(torch.abs(A__)) assert abs(result_mean.item() - 0.2464) < 1E-3 def A__ ( self): lowercase = self.full_loop(prediction_type='''v_prediction''') lowercase = torch.mean(torch.abs(A__)) assert abs(result_mean.item() - 0.1014) < 1E-3 def A__ ( self): lowercase = self.scheduler_classes[0] lowercase = self.get_scheduler_config(thresholding=A__ ,dynamic_thresholding_ratio=0) lowercase = scheduler_class(**A__) lowercase = 1_0 lowercase = self.dummy_model() lowercase = self.dummy_sample_deter.half() scheduler.set_timesteps(A__) for i, t in enumerate(scheduler.timesteps): lowercase = model(A__ ,A__) lowercase = scheduler.step(A__ ,A__ ,A__).prev_sample assert sample.dtype == torch.floataa def A__ ( self ,**A__): for scheduler_class in self.scheduler_classes: lowercase = self.get_scheduler_config(**A__) lowercase = scheduler_class(**A__) scheduler.set_timesteps(scheduler.config.num_train_timesteps) assert len(scheduler.timesteps.unique()) == scheduler.num_inference_steps
633
0
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCAmelCase = { 'configuration_pegasus_x': ['PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP', 'PegasusXConfig'], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCAmelCase = [ 'PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST', 'PegasusXForConditionalGeneration', 'PegasusXModel', 'PegasusXPreTrainedModel', ] if TYPE_CHECKING: from .configuration_pegasus_x import PEGASUS_X_PRETRAINED_CONFIG_ARCHIVE_MAP, PegasusXConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_pegasus_x import ( PEGASUS_X_PRETRAINED_MODEL_ARCHIVE_LIST, PegasusXForConditionalGeneration, PegasusXModel, PegasusXPreTrainedModel, ) else: import sys __lowerCAmelCase = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
466
import math import time from transformers import Trainer, is_torch_tpu_available from transformers.trainer_utils import PredictionOutput, speed_metrics if is_torch_tpu_available(check_device=False): import torch_xla.core.xla_model as xm import torch_xla.debug.metrics as met class __lowercase ( __snake_case ): def __init__( self : Dict , *__lowerCamelCase : Dict , __lowerCamelCase : Union[str, Any]=None , __lowerCamelCase : str=None , **__lowerCamelCase : Optional[int] ) -> Optional[int]: """simple docstring""" super().__init__(*__lowerCamelCase , **__lowerCamelCase ) UpperCAmelCase = eval_examples UpperCAmelCase = post_process_function def _lowercase ( self : Any , __lowerCamelCase : int=None , __lowerCamelCase : int=None , __lowerCamelCase : Tuple=None , __lowerCamelCase : str = "eval" ) -> List[str]: """simple docstring""" UpperCAmelCase = self.eval_dataset if eval_dataset is None else eval_dataset UpperCAmelCase = self.get_eval_dataloader(__lowerCamelCase ) UpperCAmelCase = self.eval_examples if eval_examples is None else eval_examples # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( __lowerCamelCase , description="""Evaluation""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is not None and self.compute_metrics is not None and self.args.should_save: # Only the main node write the results by default UpperCAmelCase = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions ) UpperCAmelCase = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) else: UpperCAmelCase = output.metrics if self.args.should_log: # Only the main node log the results by default self.log(__lowerCamelCase ) if self.args.tpu_metrics_debug or self.args.debug: # tpu-comment: Logging debug metrics for PyTorch/XLA (compile, execute times, ops, etc.) xm.master_print(met.metrics_report() ) UpperCAmelCase = self.callback_handler.on_evaluate(self.args , self.state , self.control , __lowerCamelCase ) return metrics def _lowercase ( self : Optional[Any] , __lowerCamelCase : Union[str, Any] , __lowerCamelCase : Any , __lowerCamelCase : Dict=None , __lowerCamelCase : str = "test" ) -> Dict: """simple docstring""" UpperCAmelCase = self.get_test_dataloader(__lowerCamelCase ) # Temporarily disable metric computation, we will do it in the loop here. UpperCAmelCase = self.compute_metrics UpperCAmelCase = None UpperCAmelCase = self.prediction_loop if self.args.use_legacy_prediction_loop else self.evaluation_loop UpperCAmelCase = time.time() try: UpperCAmelCase = eval_loop( __lowerCamelCase , description="""Prediction""" , prediction_loss_only=True if compute_metrics is None else None , ignore_keys=__lowerCamelCase , metric_key_prefix=__lowerCamelCase , ) finally: UpperCAmelCase = compute_metrics UpperCAmelCase = self.args.eval_batch_size * self.args.world_size if F"""{metric_key_prefix}_jit_compilation_time""" in output.metrics: start_time += output.metrics[F"""{metric_key_prefix}_jit_compilation_time"""] output.metrics.update( speed_metrics( __lowerCamelCase , __lowerCamelCase , num_samples=output.num_samples , num_steps=math.ceil(output.num_samples / total_batch_size ) , ) ) if self.post_process_function is None or self.compute_metrics is None: return output UpperCAmelCase = self.post_process_function(__lowerCamelCase , __lowerCamelCase , output.predictions , """predict""" ) UpperCAmelCase = self.compute_metrics(__lowerCamelCase ) # Prefix all keys with metric_key_prefix + '_' for key in list(metrics.keys() ): if not key.startswith(F"""{metric_key_prefix}_""" ): UpperCAmelCase = metrics.pop(__lowerCamelCase ) metrics.update(output.metrics ) return PredictionOutput(predictions=predictions.predictions , label_ids=predictions.label_ids , metrics=__lowerCamelCase )
377
0
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ....tokenization_utils_fast import PreTrainedTokenizerFast from ....utils import logging from .tokenization_retribert import RetriBertTokenizer UpperCamelCase_ : Any = logging.get_logger(__name__) UpperCamelCase_ : Any = {'''vocab_file''': '''vocab.txt''', '''tokenizer_file''': '''tokenizer.json'''} UpperCamelCase_ : List[str] = { '''vocab_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/vocab.txt''' ), }, '''tokenizer_file''': { '''yjernite/retribert-base-uncased''': ( '''https://huggingface.co/yjernite/retribert-base-uncased/resolve/main/tokenizer.json''' ), }, } UpperCamelCase_ : Union[str, Any] = { '''yjernite/retribert-base-uncased''': 512, } UpperCamelCase_ : str = { '''yjernite/retribert-base-uncased''': {'''do_lower_case''': True}, } class __lowerCAmelCase ( _lowercase ): """simple docstring""" snake_case = VOCAB_FILES_NAMES snake_case = PRETRAINED_VOCAB_FILES_MAP snake_case = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES snake_case = PRETRAINED_INIT_CONFIGURATION snake_case = RetriBertTokenizer snake_case = ["input_ids", "attention_mask"] def __init__( self : Tuple , _snake_case : int=None , _snake_case : Any=None , _snake_case : str=True , _snake_case : List[Any]="[UNK]" , _snake_case : Optional[Any]="[SEP]" , _snake_case : str="[PAD]" , _snake_case : List[str]="[CLS]" , _snake_case : List[str]="[MASK]" , _snake_case : Dict=True , _snake_case : Optional[int]=None , **_snake_case : Tuple , ) -> Union[str, Any]: """simple docstring""" super().__init__( _snake_case , tokenizer_file=_snake_case , do_lower_case=_snake_case , unk_token=_snake_case , sep_token=_snake_case , pad_token=_snake_case , cls_token=_snake_case , mask_token=_snake_case , tokenize_chinese_chars=_snake_case , strip_accents=_snake_case , **_snake_case , ) A_ = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , _snake_case ) != do_lower_case or normalizer_state.get("strip_accents" , _snake_case ) != strip_accents or normalizer_state.get("handle_chinese_chars" , _snake_case ) != tokenize_chinese_chars ): A_ = getattr(_snake_case , normalizer_state.pop("type" ) ) A_ = do_lower_case A_ = strip_accents A_ = tokenize_chinese_chars A_ = normalizer_class(**_snake_case ) A_ = do_lower_case def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : List[Any] , _snake_case : Union[str, Any]=None ) -> List[Any]: """simple docstring""" A_ = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def lowerCamelCase__ ( self : Any , _snake_case : List[int] , _snake_case : Optional[List[int]] = None ) -> List[int]: """simple docstring""" A_ = [self.sep_token_id] A_ = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : str , _snake_case : Optional[str] = None ) -> Tuple[str]: """simple docstring""" A_ = self._tokenizer.model.save(_snake_case , name=_snake_case ) return tuple(_snake_case )
482
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class __lowerCAmelCase : """simple docstring""" def __init__( self : int ) -> List[Any]: """simple docstring""" A_ = {} def lowerCamelCase__ ( self : List[Any] , _snake_case : str ) -> None: """simple docstring""" A_ = {} def lowerCamelCase__ ( self : Optional[int] , _snake_case : str , _snake_case : str , _snake_case : float ) -> None: """simple docstring""" if nodea not in self.connections: self.add_node(_snake_case ) if nodea not in self.connections: self.add_node(_snake_case ) A_ = probability def lowerCamelCase__ ( self : Tuple ) -> list[str]: """simple docstring""" return list(self.connections ) def lowerCamelCase__ ( self : Union[str, Any] , _snake_case : str ) -> str: """simple docstring""" A_ = 0 A_ = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def A_ (__a , __a , __a ): '''simple docstring''' A_ = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(__a , __a , __a ) A_ = Counter(graph.get_nodes() ) A_ = start for _ in range(__a ): A_ = graph.transition(__a ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
482
1
"""simple docstring""" from maths.is_square_free import is_square_free from maths.prime_factors import prime_factors def snake_case ( lowerCAmelCase_ ) -> int: _snake_case = prime_factors(lowerCAmelCase_ ) if is_square_free(lowerCAmelCase_ ): return -1 if len(lowerCAmelCase_ ) % 2 else 1 return 0 if __name__ == "__main__": import doctest doctest.testmod()
103
from __future__ import annotations class lowerCamelCase_ : '''simple docstring''' def __init__( self , snake_case_ ) -> None: '''simple docstring''' __lowercase = order # a_{0} ... a_{k} __lowercase = [1.0] + [0.0] * order # b_{0} ... b_{k} __lowercase = [1.0] + [0.0] * order # x[n-1] ... x[n-k] __lowercase = [0.0] * self.order # y[n-1] ... y[n-k] __lowercase = [0.0] * self.order def A ( self , snake_case_ , snake_case_ ) -> None: '''simple docstring''' if len(snake_case_ ) < self.order: __lowercase = [1.0, *a_coeffs] if len(snake_case_ ) != self.order + 1: __lowercase = ( F'Expected a_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case_ )}' ) raise ValueError(snake_case_ ) if len(snake_case_ ) != self.order + 1: __lowercase = ( F'Expected b_coeffs to have {self.order + 1} elements ' F'for {self.order}-order filter, got {len(snake_case_ )}' ) raise ValueError(snake_case_ ) __lowercase = a_coeffs __lowercase = b_coeffs def A ( self , snake_case_ ) -> float: '''simple docstring''' __lowercase = 0.0 # Start at index 1 and do index 0 at the end. for i in range(1 , self.order + 1 ): result += ( self.b_coeffs[i] * self.input_history[i - 1] - self.a_coeffs[i] * self.output_history[i - 1] ) __lowercase = (result + self.b_coeffs[0] * sample) / self.a_coeffs[0] __lowercase = self.input_history[:-1] __lowercase = self.output_history[:-1] __lowercase = sample __lowercase = result return result
639
0
'''simple docstring''' import argparse import torch from huggingface_hub import hf_hub_download from transformers import AutoTokenizer, RobertaPreLayerNormConfig, RobertaPreLayerNormForMaskedLM from transformers.utils import logging logging.set_verbosity_info() lowerCamelCase :str = logging.get_logger(__name__) def a ( lowerCamelCase__ , lowerCamelCase__ ): '''simple docstring''' A_ : Any = RobertaPreLayerNormConfig.from_pretrained( lowerCamelCase__ , architectures=["""RobertaPreLayerNormForMaskedLM"""] ) # convert state_dict A_ : Optional[Any] = torch.load(hf_hub_download(repo_id=lowerCamelCase__ , filename="""pytorch_model.bin""" ) ) A_ : List[Any] = {} for tensor_key, tensor_value in original_state_dict.items(): # The transformer implementation gives the model a unique name, rather than overwiriting 'roberta' if tensor_key.startswith("""roberta.""" ): A_ : Dict = """roberta_prelayernorm.""" + tensor_key[len("""roberta.""" ) :] # The original implementation contains weights which are not used, remove them from the state_dict if tensor_key.endswith(""".self.LayerNorm.weight""" ) or tensor_key.endswith(""".self.LayerNorm.bias""" ): continue A_ : Dict = tensor_value A_ : Tuple = RobertaPreLayerNormForMaskedLM.from_pretrained( pretrained_model_name_or_path=lowerCamelCase__ , config=lowerCamelCase__ , state_dict=lowerCamelCase__ ) model.save_pretrained(lowerCamelCase__ ) # convert tokenizer A_ : str = AutoTokenizer.from_pretrained(lowerCamelCase__ ) tokenizer.save_pretrained(lowerCamelCase__ ) if __name__ == "__main__": lowerCamelCase :List[str] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint-repo''', default=None, type=str, required=True, help='''Path the official PyTorch dump, e.g. \'andreasmadsen/efficient_mlm_m0.40\'.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, required=True, help='''Path to the output PyTorch model.''' ) lowerCamelCase :Any = parser.parse_args() convert_roberta_prelayernorm_checkpoint_to_pytorch(args.checkpoint_repo, args.pytorch_dump_folder_path)
686
'''simple docstring''' from jiwer import compute_measures import datasets lowerCamelCase :int = '''\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } ''' lowerCamelCase :int = '''\ Word error rate (WER) is a common metric of the performance of an automatic speech recognition system. The general difficulty of measuring performance lies in the fact that the recognized word sequence can have a different length from the reference word sequence (supposedly the correct one). The WER is derived from the Levenshtein distance, working at the word level instead of the phoneme level. The WER is a valuable tool for comparing different systems as well as for evaluating improvements within one system. This kind of measurement, however, provides no details on the nature of translation errors and further work is therefore required to identify the main source(s) of error and to focus any research effort. This problem is solved by first aligning the recognized word sequence with the reference (spoken) word sequence using dynamic string alignment. Examination of this issue is seen through a theory called the power law that states the correlation between perplexity and word error rate. Word error rate can then be computed as: WER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct words, N is the number of words in the reference (N=S+D+C). This value indicates the average number of errors per reference word. The lower the value, the better the performance of the ASR system with a WER of 0 being a perfect score. ''' lowerCamelCase :Optional[Any] = ''' Compute WER score of transcribed segments against references. Args: references: List of references for each speech input. predictions: List of transcriptions to score. concatenate_texts (bool, default=False): Whether to concatenate all input texts or compute WER iteratively. Returns: (float): the word error rate Examples: >>> predictions = ["this is the prediction", "there is an other sample"] >>> references = ["this is the reference", "there is another one"] >>> wer = datasets.load_metric("wer") >>> wer_score = wer.compute(predictions=predictions, references=references) >>> print(wer_score) 0.5 ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class _lowerCAmelCase ( datasets.Metric ): def _a (self ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""string""" , id="""sequence""" ), """references""": datasets.Value("""string""" , id="""sequence""" ), } ) , codebase_urls=["""https://github.com/jitsi/jiwer/"""] , reference_urls=[ """https://en.wikipedia.org/wiki/Word_error_rate""", ] , ) def _a (self , lowercase=None , lowercase=None , lowercase=False ): if concatenate_texts: return compute_measures(lowercase , lowercase )["wer"] else: A_ : List[Any] = 0 A_ : Optional[int] = 0 for prediction, reference in zip(lowercase , lowercase ): A_ : Any = compute_measures(lowercase , lowercase ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
686
1
'''simple docstring''' import argparse import json from collections import OrderedDict from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import PoolFormerConfig, PoolFormerForImageClassification, PoolFormerImageProcessor from transformers.utils import logging logging.set_verbosity_info() UpperCAmelCase_ : str = logging.get_logger(__name__) def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] , _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = original_name.split("." )[0] _lowerCamelCase : List[Any] = key.split("." ) _lowerCamelCase : Dict = int(key_list[key_list.index(_lowerCAmelCase ) - 2] ) _lowerCamelCase : Union[str, Any] = int(key_list[key_list.index(_lowerCAmelCase ) - 1] ) _lowerCamelCase : Optional[int] = orig_block_num - offset _lowerCamelCase : Dict = key.replace(F'{orig_block_num}.{layer_num}.{original_name}' , F'block.{new_block_num}.{layer_num}.{new_name}' ) return key def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" _lowerCamelCase : Dict = OrderedDict() _lowerCamelCase , _lowerCamelCase : Tuple = 0, 0 for key, value in state_dict.items(): if key.startswith("network" ): _lowerCamelCase : List[str] = key.replace("network" , "poolformer.encoder" ) if "proj" in key: # Works for the first embedding as well as the internal embedding layers if key.endswith("bias" ) and "patch_embed" not in key: patch_emb_offset += 1 _lowerCamelCase : Dict = key[: key.find("proj" )] _lowerCamelCase : int = key.replace(_lowerCAmelCase , F'patch_embeddings.{total_embed_found}.' ) _lowerCamelCase : Tuple = key.replace("proj" , "projection" ) if key.endswith("bias" ): total_embed_found += 1 if "patch_embeddings" in key: _lowerCamelCase : List[Any] = "poolformer.encoder." + key if "mlp.fc1" in key: _lowerCamelCase : Optional[int] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , "mlp.fc1" , "output.conv1" ) if "mlp.fc2" in key: _lowerCamelCase : str = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , "mlp.fc2" , "output.conv2" ) if "norm1" in key: _lowerCamelCase : int = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , "norm1" , "before_norm" ) if "norm2" in key: _lowerCamelCase : int = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , "norm2" , "after_norm" ) if "layer_scale_1" in key: _lowerCamelCase : str = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , "layer_scale_1" , "layer_scale_1" ) if "layer_scale_2" in key: _lowerCamelCase : Optional[int] = replace_key_with_offset(_lowerCAmelCase , _lowerCAmelCase , "layer_scale_2" , "layer_scale_2" ) if "head" in key: _lowerCamelCase : Tuple = key.replace("head" , "classifier" ) _lowerCamelCase : Tuple = value return new_state_dict def A_ ( ): """simple docstring""" _lowerCamelCase : Optional[int] = "http://images.cocodataset.org/val2017/000000039769.jpg" _lowerCamelCase : List[str] = Image.open(requests.get(_lowerCAmelCase , stream=_lowerCAmelCase ).raw ) return image @torch.no_grad() def A_ ( _lowerCAmelCase : str , _lowerCAmelCase : Tuple , _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = PoolFormerConfig() # set attributes based on model_name _lowerCamelCase : Optional[int] = "huggingface/label-files" _lowerCamelCase : Optional[Any] = model_name[-3:] _lowerCamelCase : str = 1000 _lowerCamelCase : Union[str, Any] = "imagenet-1k-id2label.json" _lowerCamelCase : Optional[Any] = (1, 1000) # set config attributes _lowerCamelCase : Union[str, Any] = json.load(open(hf_hub_download(_lowerCAmelCase , _lowerCAmelCase , repo_type="dataset" ) , "r" ) ) _lowerCamelCase : List[str] = {int(_lowerCAmelCase ): v for k, v in idalabel.items()} _lowerCamelCase : Tuple = idalabel _lowerCamelCase : int = {v: k for k, v in idalabel.items()} if size == "s12": _lowerCamelCase : List[Any] = [2, 2, 6, 2] _lowerCamelCase : Optional[int] = [64, 128, 320, 512] _lowerCamelCase : Any = 4.0 _lowerCamelCase : int = 0.9 elif size == "s24": _lowerCamelCase : List[str] = [4, 4, 12, 4] _lowerCamelCase : Tuple = [64, 128, 320, 512] _lowerCamelCase : Union[str, Any] = 4.0 _lowerCamelCase : Dict = 0.9 elif size == "s36": _lowerCamelCase : List[str] = [6, 6, 18, 6] _lowerCamelCase : int = [64, 128, 320, 512] _lowerCamelCase : Optional[Any] = 4.0 _lowerCamelCase : Optional[int] = 1E-6 _lowerCamelCase : Union[str, Any] = 0.9 elif size == "m36": _lowerCamelCase : Optional[Any] = [6, 6, 18, 6] _lowerCamelCase : Dict = [96, 192, 384, 768] _lowerCamelCase : Optional[Any] = 4.0 _lowerCamelCase : Union[str, Any] = 1E-6 _lowerCamelCase : Tuple = 0.9_5 elif size == "m48": _lowerCamelCase : Optional[Any] = [8, 8, 24, 8] _lowerCamelCase : Optional[Any] = [96, 192, 384, 768] _lowerCamelCase : List[str] = 4.0 _lowerCamelCase : Union[str, Any] = 1E-6 _lowerCamelCase : str = 0.9_5 else: raise ValueError(F'Size {size} not supported' ) # load image processor _lowerCamelCase : Union[str, Any] = PoolFormerImageProcessor(crop_pct=_lowerCAmelCase ) # Prepare image _lowerCamelCase : Dict = prepare_img() _lowerCamelCase : List[str] = image_processor(images=_lowerCAmelCase , return_tensors="pt" ).pixel_values logger.info(F'Converting model {model_name}...' ) # load original state dict _lowerCamelCase : Any = torch.load(_lowerCAmelCase , map_location=torch.device("cpu" ) ) # rename keys _lowerCamelCase : Dict = rename_keys(_lowerCAmelCase ) # create HuggingFace model and load state dict _lowerCamelCase : Optional[Any] = PoolFormerForImageClassification(_lowerCAmelCase ) model.load_state_dict(_lowerCAmelCase ) model.eval() # Define image processor _lowerCamelCase : Optional[Any] = PoolFormerImageProcessor(crop_pct=_lowerCAmelCase ) _lowerCamelCase : Optional[int] = image_processor(images=prepare_img() , return_tensors="pt" ).pixel_values # forward pass _lowerCamelCase : Union[str, Any] = model(_lowerCAmelCase ) _lowerCamelCase : Any = outputs.logits # define expected logit slices for different models if size == "s12": _lowerCamelCase : Tuple = torch.tensor([-0.3_0_4_5, -0.6_7_5_8, -0.4_8_6_9] ) elif size == "s24": _lowerCamelCase : Tuple = torch.tensor([0.4_4_0_2, -0.1_3_7_4, -0.8_0_4_5] ) elif size == "s36": _lowerCamelCase : Tuple = torch.tensor([-0.6_0_8_0, -0.5_1_3_3, -0.5_8_9_8] ) elif size == "m36": _lowerCamelCase : Dict = torch.tensor([0.3_9_5_2, 0.2_2_6_3, -1.2_6_6_8] ) elif size == "m48": _lowerCamelCase : str = torch.tensor([0.1_1_6_7, -0.0_6_5_6, -0.3_4_2_3] ) else: raise ValueError(F'Size {size} not supported' ) # verify logits assert logits.shape == expected_shape assert torch.allclose(logits[0, :3] , _lowerCAmelCase , atol=1E-2 ) # finally, save model and image processor logger.info(F'Saving PyTorch model and image processor to {pytorch_dump_folder_path}...' ) Path(_lowerCAmelCase ).mkdir(exist_ok=_lowerCAmelCase ) model.save_pretrained(_lowerCAmelCase ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(_lowerCAmelCase ) if __name__ == "__main__": UpperCAmelCase_ : Optional[Any] = argparse.ArgumentParser() parser.add_argument( '--model_name', default='poolformer_s12', type=str, help='Name of the model you\'d like to convert.', ) parser.add_argument( '--checkpoint_path', default=None, type=str, help='Path to the original PyTorch checkpoint (.pth file).' ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the folder to output PyTorch model.' ) UpperCAmelCase_ : Tuple = parser.parse_args() convert_poolformer_checkpoint(args.model_name, args.checkpoint_path, args.pytorch_dump_folder_path)
44
'''simple docstring''' import os import textwrap import pyarrow as pa import pytest from datasets import ClassLabel, Features, Image from datasets.packaged_modules.csv.csv import Csv from ..utils import require_pil @pytest.fixture def A_ ( _lowerCAmelCase : Optional[Any] ): """simple docstring""" _lowerCamelCase : Tuple = tmp_path / "file.csv" _lowerCamelCase : Optional[int] = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" _lowerCamelCase : Any = tmp_path / "malformed_file.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n header1,header2\n 1,2\n 10,20,\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Any , _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : int = tmp_path / "csv_with_image.csv" _lowerCamelCase : int = textwrap.dedent( F'\\n image\n {image_file}\n ' ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : List[str] ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_label.csv" _lowerCamelCase : int = textwrap.dedent( "\\n label\n good\n bad\n good\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) @pytest.fixture def A_ ( _lowerCAmelCase : Dict ): """simple docstring""" _lowerCamelCase : Dict = tmp_path / "csv_with_int_list.csv" _lowerCamelCase : Any = textwrap.dedent( "\\n int_list\n 1 2 3\n 4 5 6\n 7 8 9\n " ) with open(_lowerCAmelCase , "w" ) as f: f.write(_lowerCAmelCase ) return str(_lowerCAmelCase ) def A_ ( _lowerCAmelCase : List[Any] , _lowerCAmelCase : int , _lowerCAmelCase : Tuple ): """simple docstring""" _lowerCamelCase : List[Any] = Csv() _lowerCamelCase : Any = csv._generate_tables([[csv_file, malformed_csv_file]] ) with pytest.raises(_lowerCAmelCase , match="Error tokenizing data" ): for _ in generator: pass assert any( record.levelname == "ERROR" and "Failed to read file" in record.message and os.path.basename(_lowerCAmelCase ) in record.message for record in caplog.records ) @require_pil def A_ ( _lowerCAmelCase : Union[str, Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : Any = f.read().splitlines()[1] _lowerCamelCase : Optional[Any] = Csv(encoding="utf-8" , features=Features({"image": Image()} ) ) _lowerCamelCase : Union[str, Any] = csv._generate_tables([[csv_file_with_image]] ) _lowerCamelCase : List[str] = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("image" ).type == Image()() _lowerCamelCase : int = pa_table.to_pydict()["image"] assert generated_content == [{"path": image_file, "bytes": None}] def A_ ( _lowerCAmelCase : List[Any] ): """simple docstring""" with open(_lowerCAmelCase , encoding="utf-8" ) as f: _lowerCamelCase : List[Any] = f.read().splitlines()[1:] _lowerCamelCase : int = Csv(encoding="utf-8" , features=Features({"label": ClassLabel(names=["good", "bad"] )} ) ) _lowerCamelCase : Tuple = csv._generate_tables([[csv_file_with_label]] ) _lowerCamelCase : int = pa.concat_tables([table for _, table in generator] ) assert pa_table.schema.field("label" ).type == ClassLabel(names=["good", "bad"] )() _lowerCamelCase : Union[str, Any] = pa_table.to_pydict()["label"] assert generated_content == [ClassLabel(names=["good", "bad"] ).straint(_lowerCAmelCase ) for label in labels] def A_ ( _lowerCAmelCase : str ): """simple docstring""" _lowerCamelCase : Dict = Csv(encoding="utf-8" , sep="," , converters={"int_list": lambda _lowerCAmelCase : [int(_lowerCAmelCase ) for i in x.split()]} ) _lowerCamelCase : List[Any] = csv._generate_tables([[csv_file_with_int_list]] ) _lowerCamelCase : Optional[int] = pa.concat_tables([table for _, table in generator] ) assert pa.types.is_list(pa_table.schema.field("int_list" ).type ) _lowerCamelCase : Optional[Any] = pa_table.to_pydict()["int_list"] assert generated_content == [[1, 2, 3], [4, 5, 6], [7, 8, 9]]
44
1
def snake_case (UpperCamelCase : list[int] ): '''simple docstring''' if not nums: # Makes sure that the list is not empty raise ValueError("""List is empty""" ) lowerCamelCase__ = sum(UpperCamelCase ) / len(UpperCamelCase ) # Calculate the average return sum(abs(x - average ) for x in nums ) / len(UpperCamelCase ) if __name__ == "__main__": import doctest doctest.testmod()
235
import unittest from transformers import ( MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING, TextaTextGenerationPipeline, pipeline, ) from transformers.testing_utils import is_pipeline_test, require_tf, require_torch from transformers.utils import is_torch_available from .test_pipelines_common import ANY if is_torch_available(): import torch @is_pipeline_test class lowercase ( unittest.TestCase ): """simple docstring""" snake_case_ = MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING snake_case_ = TF_MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING def _UpperCamelCase ( self : str , a_ : Optional[int] , a_ : str , a_ : Tuple ): """simple docstring""" lowerCamelCase__ = TextaTextGenerationPipeline(model=a_ , tokenizer=a_ ) return generator, ["Something to write", "Something else"] def _UpperCamelCase ( self : Tuple , a_ : int , a_ : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = generator("""Something there""" ) self.assertEqual(a_ , [{"""generated_text""": ANY(a_ )}] ) # These are encoder decoder, they don't just append to incoming string self.assertFalse(outputs[0]["""generated_text"""].startswith("""Something there""" ) ) lowerCamelCase__ = generator(["""This is great !""", """Something else"""] , num_return_sequences=2 , do_sample=a_ ) self.assertEqual( a_ , [ [{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}], [{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}], ] , ) lowerCamelCase__ = generator( ["""This is great !""", """Something else"""] , num_return_sequences=2 , batch_size=2 , do_sample=a_ ) self.assertEqual( a_ , [ [{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}], [{"""generated_text""": ANY(a_ )}, {"""generated_text""": ANY(a_ )}], ] , ) with self.assertRaises(a_ ): generator(4 ) @require_torch def _UpperCamelCase ( self : List[Any] ): """simple docstring""" lowerCamelCase__ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""pt""" ) # do_sample=False necessary for reproducibility lowerCamelCase__ = generator("""Something there""" , do_sample=a_ ) self.assertEqual(a_ , [{"""generated_text""": """"""}] ) lowerCamelCase__ = 3 lowerCamelCase__ = generator( """Something there""" , num_return_sequences=a_ , num_beams=a_ , ) lowerCamelCase__ = [ {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """Beide Beide Beide Beide Beide Beide Beide Beide"""}, {"""generated_text""": """"""}, ] self.assertEqual(a_ , a_ ) lowerCamelCase__ = generator("""This is a test""" , do_sample=a_ , num_return_sequences=2 , return_tensors=a_ ) self.assertEqual( a_ , [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ] , ) lowerCamelCase__ = generator.model.config.eos_token_id lowerCamelCase__ = """<pad>""" lowerCamelCase__ = generator( ["""This is a test""", """This is a second test"""] , do_sample=a_ , num_return_sequences=2 , batch_size=2 , return_tensors=a_ , ) self.assertEqual( a_ , [ [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], [ {"""generated_token_ids""": ANY(torch.Tensor )}, {"""generated_token_ids""": ANY(torch.Tensor )}, ], ] , ) @require_tf def _UpperCamelCase ( self : Union[str, Any] ): """simple docstring""" lowerCamelCase__ = pipeline("""text2text-generation""" , model="""patrickvonplaten/t5-tiny-random""" , framework="""tf""" ) # do_sample=False necessary for reproducibility lowerCamelCase__ = generator("""Something there""" , do_sample=a_ ) self.assertEqual(a_ , [{"""generated_text""": """"""}] )
235
1
"""simple docstring""" from datetime import datetime import requests from bsa import BeautifulSoup if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = input("Enter image url: ").strip() print(f'Downloading image from {url} ...') SCREAMING_SNAKE_CASE__ = BeautifulSoup(requests.get(url).content, "html.parser") # The image URL is in the content field of the first meta tag with property og:image SCREAMING_SNAKE_CASE__ = soup.find("meta", {"property": "og:image"})["content"] SCREAMING_SNAKE_CASE__ = requests.get(image_url).content SCREAMING_SNAKE_CASE__ = f'{datetime.now():%Y-%m-%d_%H:%M:%S}.jpg' with open(file_name, "wb") as fp: fp.write(image_data) print(f'Done. Image saved to disk as {file_name}.')
532
"""simple docstring""" from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) SCREAMING_SNAKE_CASE__ = { "configuration_roformer": ["ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP", "RoFormerConfig", "RoFormerOnnxConfig"], "tokenization_roformer": ["RoFormerTokenizer"], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = ["RoFormerTokenizerFast"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "RoFormerForCausalLM", "RoFormerForMaskedLM", "RoFormerForMultipleChoice", "RoFormerForQuestionAnswering", "RoFormerForSequenceClassification", "RoFormerForTokenClassification", "RoFormerLayer", "RoFormerModel", "RoFormerPreTrainedModel", "load_tf_weights_in_roformer", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "TFRoFormerForCausalLM", "TFRoFormerForMaskedLM", "TFRoFormerForMultipleChoice", "TFRoFormerForQuestionAnswering", "TFRoFormerForSequenceClassification", "TFRoFormerForTokenClassification", "TFRoFormerLayer", "TFRoFormerModel", "TFRoFormerPreTrainedModel", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: SCREAMING_SNAKE_CASE__ = [ "FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST", "FlaxRoFormerForMaskedLM", "FlaxRoFormerForMultipleChoice", "FlaxRoFormerForQuestionAnswering", "FlaxRoFormerForSequenceClassification", "FlaxRoFormerForTokenClassification", "FlaxRoFormerModel", "FlaxRoFormerPreTrainedModel", ] if TYPE_CHECKING: from .configuration_roformer import ROFORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, RoFormerConfig, RoFormerOnnxConfig from .tokenization_roformer import RoFormerTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roformer_fast import RoFormerTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roformer import ( ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, RoFormerForCausalLM, RoFormerForMaskedLM, RoFormerForMultipleChoice, RoFormerForQuestionAnswering, RoFormerForSequenceClassification, RoFormerForTokenClassification, RoFormerLayer, RoFormerModel, RoFormerPreTrainedModel, load_tf_weights_in_roformer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roformer import ( TF_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerLayer, TFRoFormerModel, TFRoFormerPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roformer import ( FLAX_ROFORMER_PRETRAINED_MODEL_ARCHIVE_LIST, FlaxRoFormerForMaskedLM, FlaxRoFormerForMultipleChoice, FlaxRoFormerForQuestionAnswering, FlaxRoFormerForSequenceClassification, FlaxRoFormerForTokenClassification, FlaxRoFormerModel, FlaxRoFormerPreTrainedModel, ) else: import sys SCREAMING_SNAKE_CASE__ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
532
1
"""simple docstring""" from __future__ import annotations from collections.abc import Callable lowerCamelCase__ = list[list[float | int]] def __lowerCAmelCase (_UpperCamelCase , _UpperCamelCase ): __lowerCAmelCase : int = len(_UpperCamelCase ) __lowerCAmelCase : Matrix = [[0 for _ in range(size + 1 )] for _ in range(_UpperCamelCase )] __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : float for row in range(_UpperCamelCase ): for col in range(_UpperCamelCase ): __lowerCAmelCase : Union[str, Any] = matrix[row][col] __lowerCAmelCase : Optional[int] = vector[row][0] __lowerCAmelCase : Union[str, Any] = 0 __lowerCAmelCase : str = 0 while row < size and col < size: # pivoting __lowerCAmelCase : Tuple = max((abs(augmented[rowa][col] ), rowa) for rowa in range(_UpperCamelCase , _UpperCamelCase ) )[ 1 ] if augmented[pivot_row][col] == 0: col += 1 continue else: __lowerCAmelCase , __lowerCAmelCase : Optional[Any] = augmented[pivot_row], augmented[row] for rowa in range(row + 1 , _UpperCamelCase ): __lowerCAmelCase : Tuple = augmented[rowa][col] / augmented[row][col] __lowerCAmelCase : Optional[Any] = 0 for cola in range(col + 1 , size + 1 ): augmented[rowa][cola] -= augmented[row][cola] * ratio row += 1 col += 1 # back substitution for col in range(1 , _UpperCamelCase ): for row in range(_UpperCamelCase ): __lowerCAmelCase : Optional[Any] = augmented[row][col] / augmented[col][col] for cola in range(_UpperCamelCase , size + 1 ): augmented[row][cola] -= augmented[col][cola] * ratio # round to get rid of numbers like 2.000000000000004 return [ [round(augmented[row][size] / augmented[row][row] , 10 )] for row in range(_UpperCamelCase ) ] def __lowerCAmelCase (_UpperCamelCase ): __lowerCAmelCase : int = len(_UpperCamelCase ) __lowerCAmelCase : Matrix = [[0 for _ in range(_UpperCamelCase )] for _ in range(_UpperCamelCase )] __lowerCAmelCase : Matrix = [[0] for _ in range(_UpperCamelCase )] __lowerCAmelCase : Matrix __lowerCAmelCase : int __lowerCAmelCase : int __lowerCAmelCase : int for x_val, y_val in enumerate(_UpperCamelCase ): for col in range(_UpperCamelCase ): __lowerCAmelCase : List[Any] = (x_val + 1) ** (size - col - 1) __lowerCAmelCase : int = y_val __lowerCAmelCase : Union[str, Any] = solve(_UpperCamelCase , _UpperCamelCase ) def interpolated_func(_UpperCamelCase ) -> int: return sum( round(coeffs[x_val][0] ) * (var ** (size - x_val - 1)) for x_val in range(_UpperCamelCase ) ) return interpolated_func def __lowerCAmelCase (_UpperCamelCase ): return ( 1 - variable + variable**2 - variable**3 + variable**4 - variable**5 + variable**6 - variable**7 + variable**8 - variable**9 + variable**10 ) def __lowerCAmelCase (_UpperCamelCase = question_function , _UpperCamelCase = 10 ): __lowerCAmelCase : list[int] = [func(_UpperCamelCase ) for x_val in range(1 , order + 1 )] __lowerCAmelCase : list[Callable[[int], int]] = [ interpolate(data_points[:max_coeff] ) for max_coeff in range(1 , order + 1 ) ] __lowerCAmelCase : int = 0 __lowerCAmelCase : Callable[[int], int] __lowerCAmelCase : int for poly in polynomials: __lowerCAmelCase : Optional[Any] = 1 while func(_UpperCamelCase ) == poly(_UpperCamelCase ): x_val += 1 ret += poly(_UpperCamelCase ) return ret if __name__ == "__main__": print(f'{solution() = }')
549
"""simple docstring""" import darl # noqa import gym import tqdm from diffusers.experimental import ValueGuidedRLPipeline lowerCamelCase__ = { """n_samples""": 64, """horizon""": 32, """num_inference_steps""": 20, """n_guide_steps""": 2, # can set to 0 for faster sampling, does not use value network """scale_grad_by_std""": True, """scale""": 0.1, """eta""": 0.0, """t_grad_cutoff""": 2, """device""": """cpu""", } if __name__ == "__main__": lowerCamelCase__ = """hopper-medium-v2""" lowerCamelCase__ = gym.make(env_name) lowerCamelCase__ = ValueGuidedRLPipeline.from_pretrained( """bglick13/hopper-medium-v2-value-function-hor32""", env=env, ) env.seed(0) lowerCamelCase__ = env.reset() lowerCamelCase__ = 0 lowerCamelCase__ = 0 lowerCamelCase__ = 1_000 lowerCamelCase__ = [obs.copy()] try: for t in tqdm.tqdm(range(T)): # call the policy lowerCamelCase__ = pipeline(obs, planning_horizon=32) # execute action in environment lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ = env.step(denorm_actions) lowerCamelCase__ = env.get_normalized_score(total_reward) # update return total_reward += reward total_score += score print( f'Step: {t}, Reward: {reward}, Total Reward: {total_reward}, Score: {score}, Total Score:' f' {total_score}' ) # save observations for rendering rollout.append(next_observation.copy()) lowerCamelCase__ = next_observation except KeyboardInterrupt: pass print(f'Total reward: {total_reward}')
549
1
"""simple docstring""" import os import socket from contextlib import contextmanager import torch from ..commands.config.default import write_basic_config # noqa: F401 from ..state import PartialState from .dataclasses import DistributedType from .imports import is_deepspeed_available, is_tpu_available from .transformer_engine import convert_model from .versions import is_torch_version if is_deepspeed_available(): from deepspeed import DeepSpeedEngine if is_tpu_available(check_device=False): import torch_xla.core.xla_model as xm def snake_case ( lowerCAmelCase_ ) -> Optional[Any]: if is_torch_version('''<''' , '''2.0.0''' ) or not hasattr(lowerCAmelCase_ , '''_dynamo''' ): return False return isinstance(lowerCAmelCase_ , torch._dynamo.eval_frame.OptimizedModule ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ = True ) -> Dict: _snake_case = (torch.nn.parallel.DistributedDataParallel, torch.nn.DataParallel) _snake_case = is_compiled_module(lowerCAmelCase_ ) if is_compiled: _snake_case = model _snake_case = model._orig_mod if is_deepspeed_available(): options += (DeepSpeedEngine,) while isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = model.module if not keep_fpaa_wrapper: _snake_case = getattr(lowerCAmelCase_ , '''forward''' ) _snake_case = model.__dict__.pop('''_original_forward''' , lowerCAmelCase_ ) if original_forward is not None: while hasattr(lowerCAmelCase_ , '''__wrapped__''' ): _snake_case = forward.__wrapped__ if forward == original_forward: break _snake_case = forward if getattr(lowerCAmelCase_ , '''_converted_to_transformer_engine''' , lowerCAmelCase_ ): convert_model(lowerCAmelCase_ , to_transformer_engine=lowerCAmelCase_ ) if is_compiled: _snake_case = model _snake_case = compiled_model return model def snake_case ( ) -> str: PartialState().wait_for_everyone() def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Dict: if PartialState().distributed_type == DistributedType.TPU: xm.save(lowerCAmelCase_ , lowerCAmelCase_ ) elif PartialState().local_process_index == 0: torch.save(lowerCAmelCase_ , lowerCAmelCase_ ) @contextmanager def snake_case ( **lowerCAmelCase_ ) -> str: for key, value in kwargs.items(): _snake_case = str(lowerCAmelCase_ ) yield for key in kwargs: if key.upper() in os.environ: del os.environ[key.upper()] def snake_case ( lowerCAmelCase_ ) -> Tuple: if not hasattr(lowerCAmelCase_ , '''__qualname__''' ) and not hasattr(lowerCAmelCase_ , '''__name__''' ): _snake_case = getattr(lowerCAmelCase_ , '''__class__''' , lowerCAmelCase_ ) if hasattr(lowerCAmelCase_ , '''__qualname__''' ): return obj.__qualname__ if hasattr(lowerCAmelCase_ , '''__name__''' ): return obj.__name__ return str(lowerCAmelCase_ ) def snake_case ( lowerCAmelCase_ , lowerCAmelCase_ ) -> Tuple: for key, value in source.items(): if isinstance(lowerCAmelCase_ , lowerCAmelCase_ ): _snake_case = destination.setdefault(lowerCAmelCase_ , {} ) merge_dicts(lowerCAmelCase_ , lowerCAmelCase_ ) else: _snake_case = value return destination def snake_case ( lowerCAmelCase_ = None ) -> bool: if port is None: _snake_case = 29500 with socket.socket(socket.AF_INET , socket.SOCK_STREAM ) as s: return s.connect_ex(('''localhost''', port) ) == 0
103
"""simple docstring""" from math import sqrt def snake_case ( lowerCAmelCase_ = 1000000 ) -> int: _snake_case = 0 _snake_case = 0 _snake_case = 42 while num_cuboids <= limit: max_cuboid_size += 1 for sum_shortest_sides in range(2 , 2 * max_cuboid_size + 1 ): if sqrt(sum_shortest_sides**2 + max_cuboid_size**2 ).is_integer(): num_cuboids += ( min(lowerCAmelCase_ , sum_shortest_sides // 2 ) - max(1 , sum_shortest_sides - max_cuboid_size ) + 1 ) return max_cuboid_size if __name__ == "__main__": print(F"{solution() = }")
103
1
'''simple docstring''' from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def lowerCAmelCase_ ( __A : Optional[Any] ): '''simple docstring''' return getitem, k def lowerCAmelCase_ ( __A : Any , __A : Optional[int] ): '''simple docstring''' return setitem, k, v def lowerCAmelCase_ ( __A : List[str] ): '''simple docstring''' return delitem, k def lowerCAmelCase_ ( __A : str , __A : int , *__A : Tuple ): '''simple docstring''' try: return fun(__A , *__A ), None except Exception as e: return None, e __UpperCAmelCase = ( _set("key_a", "val_a"), _set("key_b", "val_b"), ) __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_a", "val_b"), ] __UpperCAmelCase = [ _set("key_a", "val_a"), _set("key_b", "val_b"), _del("key_a"), _del("key_b"), _set("key_a", "val_a"), _del("key_a"), ] __UpperCAmelCase = [ _get("key_a"), _del("key_a"), _set("key_a", "val_a"), _del("key_a"), _del("key_a"), _get("key_a"), ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] __UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set("key_a", "val_b"), ] @pytest.mark.parametrize( 'operations' , ( pytest.param(_add_items , id='add items' ), pytest.param(_overwrite_items , id='overwrite items' ), pytest.param(_delete_items , id='delete items' ), pytest.param(_access_absent_items , id='access absent items' ), pytest.param(_add_with_resize_up , id='add with resize up' ), pytest.param(_add_with_resize_down , id='add with resize down' ), ) , ) def lowerCAmelCase_ ( __A : str ): '''simple docstring''' snake_case: List[Any] = HashMap(initial_block_size=4 ) snake_case: List[Any] = {} for _, (fun, *args) in enumerate(__A ): snake_case , snake_case: Optional[int] = _run_operation(__A , __A , *__A ) snake_case , snake_case: str = _run_operation(__A , __A , *__A ) assert my_res == py_res assert str(__A ) == str(__A ) assert set(__A ) == set(__A ) assert len(__A ) == len(__A ) assert set(my.items() ) == set(py.items() ) def lowerCAmelCase_ ( ): '''simple docstring''' def is_public(__A : str ) -> bool: return not name.startswith('_' ) snake_case: Dict = {name for name in dir({} ) if is_public(__A )} snake_case: List[str] = {name for name in dir(HashMap() ) if is_public(__A )} assert dict_public_names > hash_public_names
692
'''simple docstring''' from queue import PriorityQueue from typing import Any import numpy as np def lowerCAmelCase_ ( __A : dict , __A : str , __A : set , __A : set , __A : dict , __A : dict , __A : PriorityQueue , __A : dict , __A : float | int , ): '''simple docstring''' for nxt, d in graph[v]: if nxt in visited_forward: continue snake_case: Any = cst_fwd.get(__A , np.inf ) snake_case: int = cst_fwd[v] + d if new_cost_f < old_cost_f: queue.put((new_cost_f, nxt) ) snake_case: Union[str, Any] = new_cost_f snake_case: Tuple = v if nxt in visited_backward: if cst_fwd[v] + d + cst_bwd[nxt] < shortest_distance: snake_case: List[str] = cst_fwd[v] + d + cst_bwd[nxt] return shortest_distance def lowerCAmelCase_ ( __A : str , __A : str , __A : dict , __A : dict ): '''simple docstring''' snake_case: Optional[Any] = -1 snake_case: Any = set() snake_case: str = set() snake_case: int = {source: 0} snake_case: Dict = {destination: 0} snake_case: int = {source: None} snake_case: Union[str, Any] = {destination: None} snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: PriorityQueue[Any] = PriorityQueue() snake_case: Tuple = np.inf queue_forward.put((0, source) ) queue_backward.put((0, destination) ) if source == destination: return 0 while not queue_forward.empty() and not queue_backward.empty(): snake_case , snake_case: List[str] = queue_forward.get() visited_forward.add(__A ) snake_case , snake_case: int = queue_backward.get() visited_backward.add(__A ) snake_case: str = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) snake_case: Optional[Any] = pass_and_relaxation( __A , __A , __A , __A , __A , __A , __A , __A , __A , ) if cst_fwd[v_fwd] + cst_bwd[v_bwd] >= shortest_distance: break if shortest_distance != np.inf: snake_case: Any = shortest_distance return shortest_path_distance __UpperCAmelCase = { "B": [["C", 1]], "C": [["D", 1]], "D": [["F", 1]], "E": [["B", 1], ["G", 2]], "F": [], "G": [["F", 1]], } __UpperCAmelCase = { "B": [["E", 1]], "C": [["B", 1]], "D": [["C", 1]], "F": [["D", 1], ["G", 1]], "E": [[None, np.inf]], "G": [["E", 2]], } if __name__ == "__main__": import doctest doctest.testmod()
692
1
'''simple docstring''' import os import sys import unittest UpperCamelCase_ = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, "utils")) import check_dummies # noqa: E402 from check_dummies import create_dummy_files, create_dummy_object, find_backend, read_init # noqa: E402 # Align TRANSFORMERS_PATH in check_dummies with the current path UpperCamelCase_ = os.path.join(git_repo_path, "src", "transformers") UpperCamelCase_ = "\n{0} = None\n" UpperCamelCase_ = "\nclass {0}(metaclass=DummyObject):\n _backends = {1}\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, {1})\n" UpperCamelCase_ = "\ndef {0}(*args, **kwargs):\n requires_backends({0}, {1})\n" class _a ( unittest.TestCase ): '''simple docstring''' def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = find_backend(' _import_structure["models.albert"].append("AlbertTokenizerFast")' ) self.assertIsNone(A ) SCREAMING_SNAKE_CASE : List[str] = find_backend(' if not is_tokenizers_available():' ) self.assertEqual(A, 'tokenizers' ) SCREAMING_SNAKE_CASE : Optional[int] = find_backend(' if not is_tensorflow_text_available():' ) self.assertEqual(A, 'tensorflow_text' ) SCREAMING_SNAKE_CASE : Union[str, Any] = find_backend(' if not (is_sentencepiece_available() and is_tokenizers_available()):' ) self.assertEqual(A, 'sentencepiece_and_tokenizers' ) SCREAMING_SNAKE_CASE : Dict = find_backend( ' if not (is_sentencepiece_available() and is_tensorflow_text_available()):' ) self.assertEqual(A, 'sentencepiece_and_tensorflow_text' ) SCREAMING_SNAKE_CASE : List[Any] = find_backend( ' if not (is_sentencepiece_available() and is_tokenizers_available() and is_vision_available()):' ) self.assertEqual(A, 'sentencepiece_and_tokenizers_and_vision' ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = read_init() # We don't assert on the exact list of keys to allow for smooth grow of backend-specific objects self.assertIn('torch', A ) self.assertIn('tensorflow_text', A ) self.assertIn('sentencepiece_and_tokenizers', A ) # Likewise, we can't assert on the exact content of a key self.assertIn('BertModel', objects['torch'] ) self.assertIn('TFBertModel', objects['tf'] ) self.assertIn('FlaxBertModel', objects['flax'] ) self.assertIn('BertModel', objects['torch'] ) self.assertIn('TFBertTokenizer', objects['tensorflow_text'] ) self.assertIn('convert_slow_tokenizer', objects['sentencepiece_and_tokenizers'] ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[Any] = create_dummy_object('CONSTANT', '\'torch\'' ) self.assertEqual(A, '\nCONSTANT = None\n' ) SCREAMING_SNAKE_CASE : str = create_dummy_object('function', '\'torch\'' ) self.assertEqual( A, '\ndef function(*args, **kwargs):\n requires_backends(function, \'torch\')\n' ) SCREAMING_SNAKE_CASE : str = '\nclass FakeClass(metaclass=DummyObject):\n _backends = \'torch\'\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, \'torch\')\n' SCREAMING_SNAKE_CASE : Optional[int] = create_dummy_object('FakeClass', '\'torch\'' ) self.assertEqual(A, A ) def UpperCamelCase_ ( self ): '''simple docstring''' SCREAMING_SNAKE_CASE : str = '# This file is autogenerated by the command `make fix-copies`, do not edit.\nfrom ..utils import DummyObject, requires_backends\n\n\nCONSTANT = None\n\n\ndef function(*args, **kwargs):\n requires_backends(function, ["torch"])\n\n\nclass FakeClass(metaclass=DummyObject):\n _backends = ["torch"]\n\n def __init__(self, *args, **kwargs):\n requires_backends(self, ["torch"])\n' SCREAMING_SNAKE_CASE : Dict = create_dummy_files({'torch': ['CONSTANT', 'function', 'FakeClass']} ) self.assertEqual(dummy_files['torch'], A )
28
'''simple docstring''' import warnings from transformers import AutoTokenizer from transformers.utils import is_torch_available from transformers.utils.generic import ExplicitEnum from ...processing_utils import ProcessorMixin if is_torch_available(): import torch class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : Dict = '''char''' A : Any = '''bpe''' A : Dict = '''wp''' UpperCamelCase_ = (DecodeType.CHARACTER, DecodeType.BPE, DecodeType.WORDPIECE) class _a ( SCREAMING_SNAKE_CASE ): '''simple docstring''' A : List[Any] = ['''image_processor''', '''char_tokenizer'''] A : int = '''ViTImageProcessor''' A : List[str] = '''MgpstrTokenizer''' def __init__( self, A=None, A=None, **A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Optional[int] = None if "feature_extractor" in kwargs: warnings.warn( 'The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`' ' instead.', A, ) SCREAMING_SNAKE_CASE : str = kwargs.pop('feature_extractor' ) SCREAMING_SNAKE_CASE : Optional[Any] = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('You need to specify an `image_processor`.' ) if tokenizer is None: raise ValueError('You need to specify a `tokenizer`.' ) SCREAMING_SNAKE_CASE : Union[str, Any] = tokenizer SCREAMING_SNAKE_CASE : Optional[int] = AutoTokenizer.from_pretrained('gpt2' ) SCREAMING_SNAKE_CASE : Optional[Any] = AutoTokenizer.from_pretrained('bert-base-uncased' ) super().__init__(A, A ) def __call__( self, A=None, A=None, A=None, **A ): '''simple docstring''' if images is None and text is None: raise ValueError('You need to specify either an `images` or `text` input to process.' ) if images is not None: SCREAMING_SNAKE_CASE : Optional[Any] = self.image_processor(A, return_tensors=A, **A ) if text is not None: SCREAMING_SNAKE_CASE : int = self.char_tokenizer(A, return_tensors=A, **A ) if text is None: return inputs elif images is None: return encodings else: SCREAMING_SNAKE_CASE : Any = encodings['input_ids'] return inputs def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = sequences SCREAMING_SNAKE_CASE : List[str] = char_preds.size(0 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Dict = self._decode_helper(A, 'char' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : int = self._decode_helper(A, 'bpe' ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = self._decode_helper(A, 'wp' ) SCREAMING_SNAKE_CASE : Optional[Any] = [] SCREAMING_SNAKE_CASE : Tuple = [] for i in range(A ): SCREAMING_SNAKE_CASE : str = [char_scores[i], bpe_scores[i], wp_scores[i]] SCREAMING_SNAKE_CASE : Dict = [char_strs[i], bpe_strs[i], wp_strs[i]] SCREAMING_SNAKE_CASE : List[str] = scores.index(max(A ) ) final_strs.append(strs[max_score_index] ) final_scores.append(scores[max_score_index] ) SCREAMING_SNAKE_CASE : List[Any] = {} SCREAMING_SNAKE_CASE : int = final_strs SCREAMING_SNAKE_CASE : Any = final_scores SCREAMING_SNAKE_CASE : Dict = char_strs SCREAMING_SNAKE_CASE : Any = bpe_strs SCREAMING_SNAKE_CASE : Union[str, Any] = wp_strs return out def UpperCamelCase_ ( self, A, A ): '''simple docstring''' if format == DecodeType.CHARACTER: SCREAMING_SNAKE_CASE : List[Any] = self.char_decode SCREAMING_SNAKE_CASE : Optional[int] = 1 SCREAMING_SNAKE_CASE : str = '[s]' elif format == DecodeType.BPE: SCREAMING_SNAKE_CASE : str = self.bpe_decode SCREAMING_SNAKE_CASE : str = 2 SCREAMING_SNAKE_CASE : List[str] = '#' elif format == DecodeType.WORDPIECE: SCREAMING_SNAKE_CASE : Any = self.wp_decode SCREAMING_SNAKE_CASE : Tuple = 102 SCREAMING_SNAKE_CASE : List[Any] = '[SEP]' else: raise ValueError(F"Format {format} is not supported." ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[Any] = [], [] SCREAMING_SNAKE_CASE : Union[str, Any] = pred_logits.size(0 ) SCREAMING_SNAKE_CASE : Any = pred_logits.size(1 ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : List[Any] = pred_logits.topk(1, dim=-1, largest=A, sorted=A ) SCREAMING_SNAKE_CASE : Optional[int] = preds_index.view(-1, A )[:, 1:] SCREAMING_SNAKE_CASE : List[Any] = decoder(A ) SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : Optional[int] = torch.nn.functional.softmax(A, dim=2 ).max(dim=2 ) SCREAMING_SNAKE_CASE : Dict = preds_max_prob[:, 1:] for index in range(A ): SCREAMING_SNAKE_CASE : Optional[int] = preds_str[index].find(A ) SCREAMING_SNAKE_CASE : List[Any] = preds_str[index][:pred_eos] SCREAMING_SNAKE_CASE : Dict = preds_index[index].cpu().tolist() SCREAMING_SNAKE_CASE : Union[str, Any] = pred_index.index(A ) if eos_token in pred_index else -1 SCREAMING_SNAKE_CASE : Optional[int] = preds_max_prob[index][: pred_eos_index + 1] SCREAMING_SNAKE_CASE : Optional[int] = pred_max_prob.cumprod(dim=0 )[-1] if pred_max_prob.nelement() != 0 else 0.0 dec_strs.append(A ) conf_scores.append(A ) return dec_strs, conf_scores def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : Union[str, Any] = [seq.replace(' ', '' ) for seq in self.char_tokenizer.batch_decode(A )] return decode_strs def UpperCamelCase_ ( self, A ): '''simple docstring''' return self.bpe_tokenizer.batch_decode(A ) def UpperCamelCase_ ( self, A ): '''simple docstring''' SCREAMING_SNAKE_CASE : List[str] = [seq.replace(' ', '' ) for seq in self.wp_tokenizer.batch_decode(A )] return decode_strs
28
1
'''simple docstring''' import PIL.Image import PIL.ImageOps from packaging import version from PIL import Image if version.parse(version.parse(PIL.__version__).base_version) >= version.parse("9.1.0"): UpperCamelCase_ = { "linear": PIL.Image.Resampling.BILINEAR, "bilinear": PIL.Image.Resampling.BILINEAR, "bicubic": PIL.Image.Resampling.BICUBIC, "lanczos": PIL.Image.Resampling.LANCZOS, "nearest": PIL.Image.Resampling.NEAREST, } else: UpperCamelCase_ = { "linear": PIL.Image.LINEAR, "bilinear": PIL.Image.BILINEAR, "bicubic": PIL.Image.BICUBIC, "lanczos": PIL.Image.LANCZOS, "nearest": PIL.Image.NEAREST, } def lowerCAmelCase__ ( a_ : int ) -> Optional[Any]: UpperCAmelCase__ : Dict = (images / 2 + 0.5).clamp(0 , 1 ) UpperCAmelCase__ : str = images.cpu().permute(0 , 2 , 3 , 1 ).float().numpy() UpperCAmelCase__ : Optional[Any] = numpy_to_pil(_lowercase ) return images def lowerCAmelCase__ ( a_ : Dict ) -> Optional[Any]: if images.ndim == 3: UpperCAmelCase__ : Optional[int] = images[None, ...] UpperCAmelCase__ : Any = (images * 2_5_5).round().astype('''uint8''' ) if images.shape[-1] == 1: # special case for grayscale (single channel) images UpperCAmelCase__ : Tuple = [Image.fromarray(image.squeeze() , mode='''L''' ) for image in images] else: UpperCAmelCase__ : int = [Image.fromarray(_lowercase ) for image in images] return pil_images
718
'''simple docstring''' from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_torch_available UpperCamelCase_ = {"configuration_speech_encoder_decoder": ["SpeechEncoderDecoderConfig"]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["SpeechEncoderDecoderModel"] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase_ = ["FlaxSpeechEncoderDecoderModel"] if TYPE_CHECKING: from .configuration_speech_encoder_decoder import SpeechEncoderDecoderConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_speech_encoder_decoder import SpeechEncoderDecoderModel try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_speech_encoder_decoder import FlaxSpeechEncoderDecoderModel else: import sys UpperCamelCase_ = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
599
0
"""simple docstring""" lowercase_ = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/" def A_ ( lowercase ) -> bytes: """simple docstring""" if not isinstance(lowercase , lowercase ): UpperCAmelCase_ : Optional[int] = f'''a bytes-like object is required, not \'{data.__class__.__name__}\'''' raise TypeError(lowercase ) UpperCAmelCase_ : List[str] = """""".join(bin(lowercase )[2:].zfill(8 ) for byte in data ) UpperCAmelCase_ : str = len(lowercase ) % 6 != 0 if padding_needed: # The padding that will be added later UpperCAmelCase_ : Any = b"""=""" * ((6 - len(lowercase ) % 6) // 2) # Append binary_stream with arbitrary binary digits (0's by default) to make its # length a multiple of 6. binary_stream += "0" * (6 - len(lowercase ) % 6) else: UpperCAmelCase_ : Dict = b"""""" # Encode every 6 binary digits to their corresponding Base64 character return ( "".join( B64_CHARSET[int(binary_stream[index : index + 6] , 2 )] for index in range(0 , len(lowercase ) , 6 ) ).encode() + padding ) def A_ ( lowercase ) -> bytes: """simple docstring""" if not isinstance(lowercase , lowercase ) and not isinstance(lowercase , lowercase ): UpperCAmelCase_ : Any = ( """argument should be a bytes-like object or ASCII string, """ f'''not \'{encoded_data.__class__.__name__}\'''' ) raise TypeError(lowercase ) # In case encoded_data is a bytes-like object, make sure it contains only # ASCII characters so we convert it to a string object if isinstance(lowercase , lowercase ): try: UpperCAmelCase_ : Dict = encoded_data.decode("""utf-8""" ) except UnicodeDecodeError: raise ValueError("""base64 encoded data should only contain ASCII characters""" ) UpperCAmelCase_ : int = encoded_data.count("""=""" ) # Check if the encoded string contains non base64 characters if padding: assert all( char in B64_CHARSET for char in encoded_data[:-padding] ), "Invalid base64 character(s) found." else: assert all( char in B64_CHARSET for char in encoded_data ), "Invalid base64 character(s) found." # Check the padding assert len(lowercase ) % 4 == 0 and padding < 3, "Incorrect padding" if padding: # Remove padding if there is one UpperCAmelCase_ : Optional[Any] = encoded_data[:-padding] UpperCAmelCase_ : Optional[Any] = """""".join( bin(B64_CHARSET.index(lowercase ) )[2:].zfill(6 ) for char in encoded_data )[: -padding * 2] else: UpperCAmelCase_ : List[Any] = """""".join( bin(B64_CHARSET.index(lowercase ) )[2:].zfill(6 ) for char in encoded_data ) UpperCAmelCase_ : List[Any] = [ int(binary_stream[index : index + 8] , 2 ) for index in range(0 , len(lowercase ) , 8 ) ] return bytes(lowercase ) if __name__ == "__main__": import doctest doctest.testmod()
470
"""simple docstring""" class UpperCAmelCase_ : """simple docstring""" def __init__( self : Optional[Any] , a_ : int )-> str: """simple docstring""" UpperCAmelCase_ : Any = n UpperCAmelCase_ : str = [None] * self.n UpperCAmelCase_ : List[Any] = 0 # index of the first element UpperCAmelCase_ : List[Any] = 0 UpperCAmelCase_ : Dict = 0 def __len__( self : Union[str, Any] )-> int: """simple docstring""" return self.size def a ( self : Dict )-> bool: """simple docstring""" return self.size == 0 def a ( self : List[Any] )-> Optional[int]: """simple docstring""" return False if self.is_empty() else self.array[self.front] def a ( self : Dict , a_ : int )-> Optional[int]: """simple docstring""" if self.size >= self.n: raise Exception("""QUEUE IS FULL""" ) UpperCAmelCase_ : List[str] = data UpperCAmelCase_ : Optional[int] = (self.rear + 1) % self.n self.size += 1 return self def a ( self : Union[str, Any] )-> List[Any]: """simple docstring""" if self.size == 0: raise Exception("""UNDERFLOW""" ) UpperCAmelCase_ : Tuple = self.array[self.front] UpperCAmelCase_ : List[str] = None UpperCAmelCase_ : Dict = (self.front + 1) % self.n self.size -= 1 return temp
470
1
from __future__ import annotations def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> tuple[float, list[float]]: lowerCamelCase : List[str] =list(range(len(SCREAMING_SNAKE_CASE_ ) ) ) lowerCamelCase : List[str] =[v / w for v, w in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ )] index.sort(key=lambda SCREAMING_SNAKE_CASE_ : ratio[i] , reverse=SCREAMING_SNAKE_CASE_ ) lowerCamelCase : float =0 lowerCamelCase : list[float] =[0] * len(SCREAMING_SNAKE_CASE_ ) for i in index: if weight[i] <= capacity: lowerCamelCase : Dict =1 max_value += value[i] capacity -= weight[i] else: lowerCamelCase : Union[str, Any] =capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
262
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging snake_case_ = logging.get_logger(__name__) snake_case_ = '''▁''' snake_case_ = { '''vocab_file''': '''vocab.json''', '''spm_file''': '''sentencepiece.bpe.model''', '''tokenizer_config_file''': '''tokenizer_config.json''', } snake_case_ = { '''vocab_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json''', }, '''spm_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model''', }, '''tokenizer_config_file''': { '''facebook/m2m100_418M''': '''https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json''', '''facebook/m2m100_1.2B''': '''https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json''', }, } snake_case_ = { '''facebook/m2m100_418M''': 1_0_2_4, } # fmt: off snake_case_ = { '''m2m100''': ['''af''', '''am''', '''ar''', '''ast''', '''az''', '''ba''', '''be''', '''bg''', '''bn''', '''br''', '''bs''', '''ca''', '''ceb''', '''cs''', '''cy''', '''da''', '''de''', '''el''', '''en''', '''es''', '''et''', '''fa''', '''ff''', '''fi''', '''fr''', '''fy''', '''ga''', '''gd''', '''gl''', '''gu''', '''ha''', '''he''', '''hi''', '''hr''', '''ht''', '''hu''', '''hy''', '''id''', '''ig''', '''ilo''', '''is''', '''it''', '''ja''', '''jv''', '''ka''', '''kk''', '''km''', '''kn''', '''ko''', '''lb''', '''lg''', '''ln''', '''lo''', '''lt''', '''lv''', '''mg''', '''mk''', '''ml''', '''mn''', '''mr''', '''ms''', '''my''', '''ne''', '''nl''', '''no''', '''ns''', '''oc''', '''or''', '''pa''', '''pl''', '''ps''', '''pt''', '''ro''', '''ru''', '''sd''', '''si''', '''sk''', '''sl''', '''so''', '''sq''', '''sr''', '''ss''', '''su''', '''sv''', '''sw''', '''ta''', '''th''', '''tl''', '''tn''', '''tr''', '''uk''', '''ur''', '''uz''', '''vi''', '''wo''', '''xh''', '''yi''', '''yo''', '''zh''', '''zu'''], '''wmt21''': ['''en''', '''ha''', '''is''', '''ja''', '''cs''', '''ru''', '''zh''', '''de'''] } class snake_case_ ( _A): lowerCamelCase :Union[str, Any] = VOCAB_FILES_NAMES lowerCamelCase :List[Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES lowerCamelCase :str = PRETRAINED_VOCAB_FILES_MAP lowerCamelCase :Union[str, Any] = ["input_ids", "attention_mask"] lowerCamelCase :List[int] = [] lowerCamelCase :List[int] = [] def __init__( self , __lowercase , __lowercase , __lowercase=None , __lowercase=None , __lowercase="<s>" , __lowercase="</s>" , __lowercase="</s>" , __lowercase="<pad>" , __lowercase="<unk>" , __lowercase="m2m100" , __lowercase = None , __lowercase=8 , **__lowercase , ) -> None: lowerCamelCase : Union[str, Any] ={} if sp_model_kwargs is None else sp_model_kwargs lowerCamelCase : List[str] =language_codes lowerCamelCase : int =FAIRSEQ_LANGUAGE_CODES[language_codes] lowerCamelCase : str ={lang_code: F"__{lang_code}__" for lang_code in fairseq_language_code} lowerCamelCase : List[Any] =kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(__lowercase ) for lang_code in fairseq_language_code if self.get_lang_token(__lowercase ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=__lowercase , tgt_lang=__lowercase , bos_token=__lowercase , eos_token=__lowercase , sep_token=__lowercase , unk_token=__lowercase , pad_token=__lowercase , language_codes=__lowercase , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=__lowercase , **__lowercase , ) lowerCamelCase : Dict =vocab_file lowerCamelCase : List[Any] =load_json(__lowercase ) lowerCamelCase : Optional[int] ={v: k for k, v in self.encoder.items()} lowerCamelCase : List[Any] =spm_file lowerCamelCase : str =load_spm(__lowercase , self.sp_model_kwargs ) lowerCamelCase : Tuple =len(self.encoder ) lowerCamelCase : Optional[int] ={ self.get_lang_token(__lowercase ): self.encoder_size + i for i, lang_code in enumerate(__lowercase ) } lowerCamelCase : Tuple ={lang_code: self.encoder_size + i for i, lang_code in enumerate(__lowercase )} lowerCamelCase : Tuple ={v: k for k, v in self.lang_token_to_id.items()} lowerCamelCase : Optional[Any] =src_lang if src_lang is not None else '''en''' lowerCamelCase : Any =tgt_lang lowerCamelCase : List[Any] =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) lowerCamelCase : Optional[Any] =num_madeup_words @property def __lowercase ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def __lowercase ( self ) -> str: return self._src_lang @src_lang.setter def __lowercase ( self , __lowercase ) -> None: lowerCamelCase : Any =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __lowercase ( self , __lowercase ) -> List[str]: return self.sp_model.encode(__lowercase , out_type=__lowercase ) def __lowercase ( self , __lowercase ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(__lowercase , self.encoder[self.unk_token] ) def __lowercase ( self , __lowercase ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(__lowercase , self.unk_token ) def __lowercase ( self , __lowercase ) -> str: lowerCamelCase : Dict =[] lowerCamelCase : Dict ='''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(__lowercase ) + token lowerCamelCase : str =[] else: current_sub_tokens.append(__lowercase ) out_string += self.sp_model.decode(__lowercase ) return out_string.strip() def __lowercase ( self , __lowercase , __lowercase = None , __lowercase = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=__lowercase , token_ids_a=__lowercase , already_has_special_tokens=__lowercase ) lowerCamelCase : int =[1] * len(self.prefix_tokens ) lowerCamelCase : List[str] =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(__lowercase )) + suffix_ones return prefix_ones + ([0] * len(__lowercase )) + ([0] * len(__lowercase )) + suffix_ones def __lowercase ( self , __lowercase , __lowercase = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def __lowercase ( self ) -> Dict: lowerCamelCase : Dict ={self.convert_ids_to_tokens(__lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: lowerCamelCase : Optional[Any] =self.__dict__.copy() lowerCamelCase : Union[str, Any] =None return state def __setstate__( self , __lowercase ) -> None: lowerCamelCase : int =d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): lowerCamelCase : Optional[int] ={} lowerCamelCase : Optional[Any] =load_spm(self.spm_file , self.sp_model_kwargs ) def __lowercase ( self , __lowercase , __lowercase = None ) -> Tuple[str]: lowerCamelCase : Optional[Any] =Path(__lowercase ) if not save_dir.is_dir(): raise OSError(F"{save_directory} should be a directory" ) lowerCamelCase : List[str] =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) lowerCamelCase : Tuple =save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , __lowercase ) if os.path.abspath(self.spm_file ) != os.path.abspath(__lowercase ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , __lowercase ) elif not os.path.isfile(self.spm_file ): with open(__lowercase , '''wb''' ) as fi: lowerCamelCase : List[Any] =self.sp_model.serialized_model_proto() fi.write(__lowercase ) return (str(__lowercase ), str(__lowercase )) def __lowercase ( self , __lowercase , __lowercase = "en" , __lowercase = None , __lowercase = "ro" , **__lowercase , ) -> BatchEncoding: lowerCamelCase : Union[str, Any] =src_lang lowerCamelCase : Optional[int] =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(__lowercase , __lowercase , **__lowercase ) def __lowercase ( self , __lowercase , __lowercase , __lowercase , **__lowercase ) -> Optional[int]: if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) lowerCamelCase : List[Any] =src_lang lowerCamelCase : str =self(__lowercase , add_special_tokens=__lowercase , **__lowercase ) lowerCamelCase : Tuple =self.get_lang_id(__lowercase ) lowerCamelCase : Optional[int] =tgt_lang_id return inputs def __lowercase ( self ) -> List[str]: self.set_src_lang_special_tokens(self.src_lang ) def __lowercase ( self ) -> List[str]: self.set_tgt_lang_special_tokens(self.tgt_lang ) def __lowercase ( self , __lowercase ) -> None: lowerCamelCase : Union[str, Any] =self.get_lang_token(__lowercase ) lowerCamelCase : List[Any] =self.lang_token_to_id[lang_token] lowerCamelCase : Optional[Any] =[self.cur_lang_id] lowerCamelCase : Union[str, Any] =[self.eos_token_id] def __lowercase ( self , __lowercase ) -> None: lowerCamelCase : Tuple =self.get_lang_token(__lowercase ) lowerCamelCase : Tuple =self.lang_token_to_id[lang_token] lowerCamelCase : List[Any] =[self.cur_lang_id] lowerCamelCase : Tuple =[self.eos_token_id] def __lowercase ( self , __lowercase ) -> str: return self.lang_code_to_token[lang] def __lowercase ( self , __lowercase ) -> int: lowerCamelCase : List[str] =self.get_lang_token(__lowercase ) return self.lang_token_to_id[lang_token] def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> sentencepiece.SentencePieceProcessor: lowerCamelCase : List[Any] =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE_ ) spm.Load(str(SCREAMING_SNAKE_CASE_ ) ) return spm def A__ ( SCREAMING_SNAKE_CASE_ ) -> Union[Dict, List]: with open(SCREAMING_SNAKE_CASE_ , '''r''' ) as f: return json.load(SCREAMING_SNAKE_CASE_ ) def A__ ( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) -> None: with open(SCREAMING_SNAKE_CASE_ , '''w''' ) as f: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , indent=2 )
262
1
import gc import random import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, DDPMScheduler, StableDiffusionUpscalePipeline, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu enable_full_determinism() class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCamelCase_ ( self : int ): '''simple docstring''' lowerCamelCase__: Optional[Any] = 1 lowerCamelCase__: Union[str, Any] = 3 lowerCamelCase__: str = (32, 32) lowerCamelCase__: str = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__a ) return image @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: Dict = UNetaDConditionModel( block_out_channels=(32, 32, 64) , layers_per_block=2 , sample_size=32 , in_channels=7 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , attention_head_dim=8 , use_linear_projection=__a , only_cross_attention=(True, True, False) , num_class_embeds=100 , ) return model @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: Dict = AutoencoderKL( block_out_channels=[32, 32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCamelCase_ ( self : int ): '''simple docstring''' torch.manual_seed(0 ) lowerCamelCase__: str = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , hidden_act="""gelu""" , projection_dim=512 , ) return CLIPTextModel(__a ) def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' lowerCamelCase__: str = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: List[str] = self.dummy_cond_unet_upscale lowerCamelCase__: Optional[Any] = DDPMScheduler() lowerCamelCase__: Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" ) lowerCamelCase__: Tuple = self.dummy_vae lowerCamelCase__: Optional[int] = self.dummy_text_encoder lowerCamelCase__: Optional[int] = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__: Dict = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__: Optional[Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) lowerCamelCase__: Any = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: List[str] = """A painting of a squirrel eating a burger""" lowerCamelCase__: Dict = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase__: Any = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase__: List[str] = output.images lowerCamelCase__: Union[str, Any] = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase__: List[str] = sd_pipe( [prompt] , image=__a , generator=__a , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , return_dict=__a , )[0] lowerCamelCase__: Tuple = image[0, -3:, -3:, -1] lowerCamelCase__: int = image_from_tuple[0, -3:, -3:, -1] lowerCamelCase__: int = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) lowerCamelCase__: List[str] = np.array([0.3_113, 0.3_910, 0.4_272, 0.4_859, 0.5_061, 0.4_652, 0.5_362, 0.5_715, 0.5_661] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowerCamelCase__: Optional[Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator lowerCamelCase__: List[str] = self.dummy_cond_unet_upscale lowerCamelCase__: Optional[int] = DDPMScheduler() lowerCamelCase__: Any = DDIMScheduler(prediction_type="""v_prediction""" ) lowerCamelCase__: List[str] = self.dummy_vae lowerCamelCase__: Optional[Any] = self.dummy_text_encoder lowerCamelCase__: Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__: str = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__: List[str] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # make sure here that pndm scheduler skips prk lowerCamelCase__: Tuple = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) lowerCamelCase__: List[str] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: Any = """A painting of a squirrel eating a burger""" lowerCamelCase__: str = sd_pipe( 2 * [prompt] , image=2 * [low_res_image] , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase__: Any = output.images assert image.shape[0] == 2 lowerCamelCase__: Optional[Any] = torch.Generator(device=__a ).manual_seed(0 ) lowerCamelCase__: Dict = sd_pipe( [prompt] , image=__a , generator=__a , num_images_per_prompt=2 , guidance_scale=6.0 , noise_level=20 , num_inference_steps=2 , output_type="""np""" , ) lowerCamelCase__: Tuple = output.images assert image.shape[0] == 2 @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: int = self.dummy_cond_unet_upscale lowerCamelCase__: Dict = DDPMScheduler() lowerCamelCase__: Union[str, Any] = DDIMScheduler(prediction_type="""v_prediction""" ) lowerCamelCase__: List[str] = self.dummy_vae lowerCamelCase__: Tuple = self.dummy_text_encoder lowerCamelCase__: int = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) lowerCamelCase__: Optional[int] = self.dummy_image.cpu().permute(0 , 2 , 3 , 1 )[0] lowerCamelCase__: Union[str, Any] = Image.fromarray(np.uinta(__a ) ).convert("""RGB""" ).resize((64, 64) ) # put models in fp16, except vae as it overflows in fp16 lowerCamelCase__: Optional[int] = unet.half() lowerCamelCase__: Optional[Any] = text_encoder.half() # make sure here that pndm scheduler skips prk lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline( unet=__a , low_res_scheduler=__a , scheduler=__a , vae=__a , text_encoder=__a , tokenizer=__a , max_noise_level=350 , ) lowerCamelCase__: List[Any] = sd_pipe.to(__a ) sd_pipe.set_progress_bar_config(disable=__a ) lowerCamelCase__: Tuple = """A painting of a squirrel eating a burger""" lowerCamelCase__: Optional[int] = torch.manual_seed(0 ) lowerCamelCase__: Optional[Any] = sd_pipe( [prompt] , image=__a , generator=__a , num_inference_steps=2 , output_type="""np""" , ).images lowerCamelCase__: Optional[int] = low_res_image.size[0] * 4 assert image.shape == (1, expected_height_width, expected_height_width, 3) @slow @require_torch_gpu class lowerCamelCase__ ( unittest.TestCase ): def lowerCamelCase_ ( self : Dict ): '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) lowerCamelCase__: List[str] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat.npy""" ) lowerCamelCase__: Dict = """stabilityai/stable-diffusion-x4-upscaler""" lowerCamelCase__: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained(__a ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase__: List[Any] = """a cat sitting on a park bench""" lowerCamelCase__: Dict = torch.manual_seed(0 ) lowerCamelCase__: Any = pipe( prompt=__a , image=__a , generator=__a , output_type="""np""" , ) lowerCamelCase__: Dict = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 1e-3 def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) lowerCamelCase__: int = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd2-upscale""" """/upsampled_cat_fp16.npy""" ) lowerCamelCase__: int = """stabilityai/stable-diffusion-x4-upscaler""" lowerCamelCase__: List[str] = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing() lowerCamelCase__: Any = """a cat sitting on a park bench""" lowerCamelCase__: Tuple = torch.manual_seed(0 ) lowerCamelCase__: Optional[int] = pipe( prompt=__a , image=__a , generator=__a , output_type="""np""" , ) lowerCamelCase__: int = output.images[0] assert image.shape == (512, 512, 3) assert np.abs(expected_image - image ).max() < 5e-1 def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() lowerCamelCase__: Tuple = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main""" """/sd2-upscale/low_res_cat.png""" ) lowerCamelCase__: Tuple = """stabilityai/stable-diffusion-x4-upscaler""" lowerCamelCase__: Optional[int] = StableDiffusionUpscalePipeline.from_pretrained( __a , torch_dtype=torch.floataa , ) pipe.to(__a ) pipe.set_progress_bar_config(disable=__a ) pipe.enable_attention_slicing(1 ) pipe.enable_sequential_cpu_offload() lowerCamelCase__: str = """a cat sitting on a park bench""" lowerCamelCase__: int = torch.manual_seed(0 ) lowerCamelCase__: Optional[Any] = pipe( prompt=__a , image=__a , generator=__a , num_inference_steps=5 , output_type="""np""" , ) lowerCamelCase__: Optional[int] = torch.cuda.max_memory_allocated() # make sure that less than 2.9 GB is allocated assert mem_bytes < 2.9 * 10**9
306
import os import unittest from transformers import LayoutLMTokenizer, LayoutLMTokenizerFast from transformers.models.layoutlm.tokenization_layoutlm import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class lowerCamelCase__ ( A__ , unittest.TestCase ): __lowerCamelCase = LayoutLMTokenizer __lowerCamelCase = LayoutLMTokenizerFast __lowerCamelCase = True __lowerCamelCase = True def lowerCamelCase_ ( self : int ): '''simple docstring''' super().setUp() lowerCamelCase__: Dict = [ """[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing""", """,""", """low""", """lowest""", ] lowerCamelCase__: Dict = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) def lowerCamelCase_ ( self : int , **__a : Union[str, Any] ): '''simple docstring''' return LayoutLMTokenizer.from_pretrained(self.tmpdirname , **__a ) def lowerCamelCase_ ( self : List[Any] , __a : List[str] ): '''simple docstring''' lowerCamelCase__: str = """UNwant\u00E9d,running""" lowerCamelCase__: Any = """unwanted, running""" return input_text, output_text def lowerCamelCase_ ( self : Union[str, Any] ): '''simple docstring''' lowerCamelCase__: List[str] = self.tokenizer_class(self.vocab_file ) lowerCamelCase__: Tuple = tokenizer.tokenize("""UNwant\u00E9d,running""" ) self.assertListEqual(__a , ["""un""", """##want""", """##ed""", """,""", """runn""", """##ing"""] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(__a ) , [7, 4, 5, 10, 8, 9] ) def lowerCamelCase_ ( self : Any ): '''simple docstring''' pass
306
1
def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ,lowercase=False ) -> Optional[int]: if isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) and isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): snake_case : List[Any] = len(set_a.intersection(SCREAMING_SNAKE_CASE_ ) ) if alternative_union: snake_case : List[str] = len(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) else: snake_case : Union[str, Any] = len(set_a.union(SCREAMING_SNAKE_CASE_ ) ) return intersection / union if isinstance(SCREAMING_SNAKE_CASE_ ,(list, tuple) ) and isinstance(SCREAMING_SNAKE_CASE_ ,(list, tuple) ): snake_case : List[str] = [element for element in set_a if element in set_b] if alternative_union: snake_case : str = len(SCREAMING_SNAKE_CASE_ ) + len(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) / union else: snake_case : List[str] = set_a + [element for element in set_b if element not in set_a] return len(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) return len(SCREAMING_SNAKE_CASE_ ) / len(SCREAMING_SNAKE_CASE_ ) return None if __name__ == "__main__": lowerCamelCase : Optional[Any] = {'a', 'b', 'c', 'd', 'e'} lowerCamelCase : Optional[Any] = {'c', 'd', 'e', 'f', 'h', 'i'} print(jaccard_similarity(set_a, set_b))
715
import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller lowerCamelCase : List[str] = 3 def SCREAMING_SNAKE_CASE__ ( lowercase ) -> int: print("""Generating primitive root of p""" ) while True: snake_case : Optional[int] = random.randrange(3 ,lowercase ) if pow(lowercase ,2 ,lowercase ) == 1: continue if pow(lowercase ,lowercase ,lowercase ) == 1: continue return g def SCREAMING_SNAKE_CASE__ ( lowercase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print("""Generating prime p...""" ) snake_case : Optional[int] = rabin_miller.generate_large_prime(lowercase ) # select large prime number. snake_case : Optional[int] = primitive_root(lowercase ) # one primitive root on modulo p. snake_case : Optional[Any] = random.randrange(3 ,lowercase ) # private_key -> have to be greater than 2 for safety. snake_case : Tuple = cryptomath.find_mod_inverse(pow(lowercase ,lowercase ,lowercase ) ,lowercase ) snake_case : str = (key_size, e_a, e_a, p) snake_case : Optional[Any] = (key_size, d) return public_key, private_key def SCREAMING_SNAKE_CASE__ ( lowercase ,lowercase ) -> None: if os.path.exists(f"""{name}_pubkey.txt""" ) or os.path.exists(f"""{name}_privkey.txt""" ): print("""\nWARNING:""" ) print( f"""\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n""" """Use a different name or delete these files and re-run this program.""" ) sys.exit() snake_case , snake_case : Optional[Any] = generate_key(lowercase ) print(f"""\nWriting public key to file {name}_pubkey.txt...""" ) with open(f"""{name}_pubkey.txt""" ,"""w""" ) as fo: fo.write(f"""{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}""" ) print(f"""Writing private key to file {name}_privkey.txt...""" ) with open(f"""{name}_privkey.txt""" ,"""w""" ) as fo: fo.write(f"""{private_key[0]},{private_key[1]}""" ) def SCREAMING_SNAKE_CASE__ ( ) -> None: print("""Making key files...""" ) make_key_files("""elgamal""" ,2048 ) print("""Key files generation successful""" ) if __name__ == "__main__": main()
684
0
"""simple docstring""" from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase :Tuple = logging.get_logger(__name__) __lowerCamelCase :Any = { 'facebook/s2t-wav2vec2-large-en-de': ( 'https://huggingface.co/facebook/s2t-wav2vec2-large-en-de/resolve/main/config.json' ), # See all Speech2Text models at https://huggingface.co/models?filter=speech2text2 } class A__ ( __lowercase): """simple docstring""" snake_case__ : int ='''speech_to_text_2''' snake_case__ : str =['''past_key_values'''] snake_case__ : Dict ={'''num_attention_heads''': '''decoder_attention_heads''', '''hidden_size''': '''d_model'''} def __init__( self: List[Any] , __a: List[Any]=10_000 , __a: Optional[int]=6 , __a: str=2_048 , __a: Optional[Any]=4 , __a: Any=0.0 , __a: Optional[int]=True , __a: Optional[int]="relu" , __a: str=256 , __a: Union[str, Any]=0.1 , __a: Any=0.0 , __a: int=0.0 , __a: Tuple=0.02 , __a: Optional[Any]=2 , __a: int=True , __a: Tuple=1 , __a: Any=0 , __a: Any=2 , __a: List[str]=1_024 , **__a: Optional[Any] , )-> Tuple: lowerCamelCase : Any = vocab_size lowerCamelCase : Dict = d_model lowerCamelCase : Dict = decoder_ffn_dim lowerCamelCase : Optional[Any] = decoder_layers lowerCamelCase : Tuple = decoder_attention_heads lowerCamelCase : str = dropout lowerCamelCase : List[str] = attention_dropout lowerCamelCase : Optional[Any] = activation_dropout lowerCamelCase : Tuple = activation_function lowerCamelCase : Optional[Any] = init_std lowerCamelCase : Optional[Any] = decoder_layerdrop lowerCamelCase : int = use_cache lowerCamelCase : Tuple = decoder_layers lowerCamelCase : Union[str, Any] = scale_embedding # scale factor will be sqrt(d_model) if True lowerCamelCase : Union[str, Any] = max_target_positions super().__init__( pad_token_id=__a , bos_token_id=__a , eos_token_id=__a , decoder_start_token_id=__a , **__a , )
222
"""simple docstring""" from __future__ import annotations from collections.abc import Generator def snake_case ( ) -> Generator[int, None, None]: lowerCamelCase : dict[int, int] = {} lowerCamelCase : str = 2 while True: lowerCamelCase : int = factor_map.pop(UpperCamelCase__ , UpperCamelCase__ ) if factor: lowerCamelCase : List[Any] = factor + prime while x in factor_map: x += factor lowerCamelCase : int = factor else: lowerCamelCase : Optional[int] = prime yield prime prime += 1 def snake_case ( UpperCamelCase__ : float = 1E10 ) -> int: lowerCamelCase : Optional[int] = sieve() lowerCamelCase : List[str] = 1 while True: lowerCamelCase : Tuple = next(UpperCamelCase__ ) if (2 * prime * n) > limit: return n # Ignore the next prime as the reminder will be 2. next(UpperCamelCase__ ) n += 2 if __name__ == "__main__": print(solution())
222
1
from __future__ import annotations def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> float: if days_between_payments <= 0: raise ValueError('days_between_payments must be > 0' ) if daily_interest_rate < 0: raise ValueError('daily_interest_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * daily_interest_rate * days_between_payments def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> float: if number_of_compounding_periods <= 0: raise ValueError('number_of_compounding_periods must be > 0' ) if nominal_annual_interest_rate_percentage < 0: raise ValueError('nominal_annual_interest_rate_percentage must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return principal * ( (1 + nominal_annual_interest_rate_percentage) ** number_of_compounding_periods - 1 ) def _a ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , ) -> float: if number_of_years <= 0: raise ValueError('number_of_years must be > 0' ) if nominal_annual_percentage_rate < 0: raise ValueError('nominal_annual_percentage_rate must be >= 0' ) if principal <= 0: raise ValueError('principal must be > 0' ) return compound_interest( lowerCamelCase__ , nominal_annual_percentage_rate / 3_65 , number_of_years * 3_65 ) if __name__ == "__main__": import doctest doctest.testmod()
144
from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxSeqaSeqConfigWithPast from ...utils import logging UpperCamelCase = logging.get_logger(__name__) UpperCamelCase = { '''google/umt5-small''': '''https://huggingface.co/google/umt5-small/resolve/main/config.json''', # See all umt5 models at https://huggingface.co/models?filter=umt5 } class lowerCamelCase__ ( UpperCAmelCase ): lowerCamelCase_ : Tuple = 'umt5' lowerCamelCase_ : Any = ['past_key_values'] def __init__(self : Tuple , _snake_case : Optional[int]=25_0112 , _snake_case : str=512 , _snake_case : Optional[int]=64 , _snake_case : Dict=1024 , _snake_case : Tuple=8 , _snake_case : Dict=None , _snake_case : Dict=6 , _snake_case : int=32 , _snake_case : Optional[int]=128 , _snake_case : Tuple=0.1 , _snake_case : List[Any]=1e-6 , _snake_case : List[Any]=1.0 , _snake_case : Optional[int]="gated-gelu" , _snake_case : Tuple=True , _snake_case : Tuple=True , _snake_case : List[str]="T5Tokenizer" , _snake_case : int=True , _snake_case : Any=0 , _snake_case : Optional[Any]=1 , _snake_case : str=0 , **_snake_case : Optional[int] , ) -> int: """simple docstring""" super().__init__( is_encoder_decoder=_snake_case , tokenizer_class=_snake_case , tie_word_embeddings=_snake_case , pad_token_id=_snake_case , eos_token_id=_snake_case , decoder_start_token_id=_snake_case , **_snake_case , ) lowerCamelCase_ : int = vocab_size lowerCamelCase_ : List[str] = d_model lowerCamelCase_ : Tuple = d_kv lowerCamelCase_ : Tuple = d_ff lowerCamelCase_ : List[Any] = num_layers lowerCamelCase_ : Tuple = ( num_decoder_layers if num_decoder_layers is not None else self.num_layers ) # default = symmetry lowerCamelCase_ : int = num_heads lowerCamelCase_ : str = relative_attention_num_buckets lowerCamelCase_ : List[Any] = relative_attention_max_distance lowerCamelCase_ : str = dropout_rate lowerCamelCase_ : List[str] = layer_norm_epsilon lowerCamelCase_ : Optional[Any] = initializer_factor lowerCamelCase_ : Optional[Any] = feed_forward_proj lowerCamelCase_ : List[Any] = use_cache lowerCamelCase_ : int = self.feed_forward_proj.split('-' ) lowerCamelCase_ : Optional[int] = act_info[-1] lowerCamelCase_ : int = act_info[0] == 'gated' if len(_snake_case ) > 1 and act_info[0] != "gated" or len(_snake_case ) > 2: raise ValueError( f'`feed_forward_proj`: {feed_forward_proj} is not a valid activation function of the dense layer.' 'Please make sure `feed_forward_proj` is of the format `gated-{ACT_FN}` or `{ACT_FN}`, e.g. ' '\'gated-gelu\' or \'relu\'' ) if feed_forward_proj == "gated-gelu": lowerCamelCase_ : Dict = 'gelu_new' @property def UpperCAmelCase_ (self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" return self.d_model @property def UpperCAmelCase_ (self : Optional[int] ) -> int: """simple docstring""" return self.num_heads @property def UpperCAmelCase_ (self : int ) -> str: """simple docstring""" return self.num_layers class lowerCamelCase__ ( UpperCAmelCase ): @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.inputs def UpperCAmelCase_ (self : Union[str, Any] ) -> Mapping[str, Mapping[int, str]]: """simple docstring""" lowerCamelCase_ : Union[str, Any] = { 'input_ids': {0: 'batch', 1: 'encoder_sequence'}, 'attention_mask': {0: 'batch', 1: 'encoder_sequence'}, } if self.use_past: lowerCamelCase_ : Optional[Any] = 'past_encoder_sequence + sequence' lowerCamelCase_ : List[str] = {0: 'batch'} lowerCamelCase_ : Any = {0: 'batch', 1: 'past_decoder_sequence + sequence'} else: lowerCamelCase_ : List[Any] = {0: 'batch', 1: 'decoder_sequence'} lowerCamelCase_ : Union[str, Any] = {0: 'batch', 1: 'decoder_sequence'} if self.use_past: self.fill_with_past_key_values_(_snake_case , direction='inputs' ) return common_inputs @property # Copied from transformers.models.t5.configuration_t5.T5OnnxConfig.default_onnx_opset def UpperCAmelCase_ (self : Union[str, Any] ) -> int: """simple docstring""" return 13 @property def UpperCAmelCase_ (self : List[str] ) -> float: """simple docstring""" return 5e-4
144
1
'''simple docstring''' import dataclasses import json import sys import types from argparse import ArgumentDefaultsHelpFormatter, ArgumentParser, ArgumentTypeError from copy import copy from enum import Enum from inspect import isclass from pathlib import Path from typing import Any, Callable, Dict, Iterable, List, Literal, NewType, Optional, Tuple, Union, get_type_hints import yaml a : str = NewType('DataClass', Any) a : int = NewType('DataClassType', Any) def __magic_name__ ( __UpperCAmelCase ) -> Dict: '''simple docstring''' if isinstance(__UpperCAmelCase, __UpperCAmelCase ): return v if v.lower() in ("yes", "true", "t", "y", "1"): return True elif v.lower() in ("no", "false", "f", "n", "0"): return False else: raise ArgumentTypeError( F"Truthy value expected: got {v} but expected one of yes/no, true/false, t/f, y/n, 1/0 (case insensitive)." ) def __magic_name__ ( __UpperCAmelCase ) -> Callable[[str], Any]: '''simple docstring''' snake_case_ = {str(__UpperCAmelCase ): choice for choice in choices} return lambda __UpperCAmelCase : str_to_choice.get(__UpperCAmelCase, __UpperCAmelCase ) def __magic_name__ ( *, __UpperCAmelCase = None, __UpperCAmelCase = None, __UpperCAmelCase = dataclasses.MISSING, __UpperCAmelCase = dataclasses.MISSING, __UpperCAmelCase = None, **__UpperCAmelCase, ) -> dataclasses.Field: '''simple docstring''' if metadata is None: # Important, don't use as default param in function signature because dict is mutable and shared across function calls snake_case_ = {} if aliases is not None: snake_case_ = aliases if help is not None: snake_case_ = help return dataclasses.field(metadata=__UpperCAmelCase, default=__UpperCAmelCase, default_factory=__UpperCAmelCase, **__UpperCAmelCase ) class a ( _lowerCamelCase ): snake_case_ = 42 def __init__( self : Union[str, Any] , lowercase_ : Union[DataClassType, Iterable[DataClassType]] , **lowercase_ : Optional[int] ): # To make the default appear when using --help if "formatter_class" not in kwargs: snake_case_ = ArgumentDefaultsHelpFormatter super().__init__(**lowercase_ ) if dataclasses.is_dataclass(lowercase_ ): snake_case_ = [dataclass_types] snake_case_ = list(lowercase_ ) for dtype in self.dataclass_types: self._add_dataclass_arguments(lowercase_ ) @staticmethod def A_ ( lowercase_ : ArgumentParser , lowercase_ : dataclasses.Field ): snake_case_ = F"--{field.name}" snake_case_ = field.metadata.copy() # field.metadata is not used at all by Data Classes, # it is provided as a third-party extension mechanism. if isinstance(field.type , lowercase_ ): raise RuntimeError( '''Unresolved type detected, which should have been done with the help of ''' '''`typing.get_type_hints` method by default''' ) snake_case_ = kwargs.pop('''aliases''' , [] ) if isinstance(lowercase_ , lowercase_ ): snake_case_ = [aliases] snake_case_ = getattr(field.type , '''__origin__''' , field.type ) if origin_type is Union or (hasattr(lowercase_ , '''UnionType''' ) and isinstance(lowercase_ , types.UnionType )): if str not in field.type.__args__ and ( len(field.type.__args__ ) != 2 or type(lowercase_ ) not in field.type.__args__ ): raise ValueError( '''Only `Union[X, NoneType]` (i.e., `Optional[X]`) is allowed for `Union` because''' ''' the argument parser only supports one type per argument.''' F" Problem encountered in field '{field.name}'." ) if type(lowercase_ ) not in field.type.__args__: # filter `str` in Union snake_case_ = field.type.__args__[0] if field.type.__args__[1] == str else field.type.__args__[1] snake_case_ = getattr(field.type , '''__origin__''' , field.type ) elif bool not in field.type.__args__: # filter `NoneType` in Union (except for `Union[bool, NoneType]`) snake_case_ = ( field.type.__args__[0] if isinstance(lowercase_ , field.type.__args__[1] ) else field.type.__args__[1] ) snake_case_ = getattr(field.type , '''__origin__''' , field.type ) # A variable to store kwargs for a boolean field, if needed # so that we can init a `no_*` complement argument (see below) snake_case_ = {} if origin_type is Literal or (isinstance(field.type , lowercase_ ) and issubclass(field.type , lowercase_ )): if origin_type is Literal: snake_case_ = field.type.__args__ else: snake_case_ = [x.value for x in field.type] snake_case_ = make_choice_type_function(kwargs['''choices'''] ) if field.default is not dataclasses.MISSING: snake_case_ = field.default else: snake_case_ = True elif field.type is bool or field.type == Optional[bool]: # Copy the currect kwargs to use to instantiate a `no_*` complement argument below. # We do not initialize it here because the `no_*` alternative must be instantiated after the real argument snake_case_ = copy(lowercase_ ) # Hack because type=bool in argparse does not behave as we want. snake_case_ = string_to_bool if field.type is bool or (field.default is not None and field.default is not dataclasses.MISSING): # Default value is False if we have no default when of type bool. snake_case_ = False if field.default is dataclasses.MISSING else field.default # This is the value that will get picked if we don't include --field_name in any way snake_case_ = default # This tells argparse we accept 0 or 1 value after --field_name snake_case_ = '''?''' # This is the value that will get picked if we do --field_name (without value) snake_case_ = True elif isclass(lowercase_ ) and issubclass(lowercase_ , lowercase_ ): snake_case_ = field.type.__args__[0] snake_case_ = '''+''' if field.default_factory is not dataclasses.MISSING: snake_case_ = field.default_factory() elif field.default is dataclasses.MISSING: snake_case_ = True else: snake_case_ = field.type if field.default is not dataclasses.MISSING: snake_case_ = field.default elif field.default_factory is not dataclasses.MISSING: snake_case_ = field.default_factory() else: snake_case_ = True parser.add_argument(lowercase_ , *lowercase_ , **lowercase_ ) # Add a complement `no_*` argument for a boolean field AFTER the initial field has already been added. # Order is important for arguments with the same destination! # We use a copy of earlier kwargs because the original kwargs have changed a lot before reaching down # here and we do not need those changes/additional keys. if field.default is True and (field.type is bool or field.type == Optional[bool]): snake_case_ = False parser.add_argument(F"--no_{field.name}" , action='''store_false''' , dest=field.name , **lowercase_ ) def A_ ( self : str , lowercase_ : DataClassType ): if hasattr(lowercase_ , '''_argument_group_name''' ): snake_case_ = self.add_argument_group(dtype._argument_group_name ) else: snake_case_ = self try: snake_case_ = get_type_hints(lowercase_ ) except NameError: raise RuntimeError( F"Type resolution failed for {dtype}. Try declaring the class in global scope or " '''removing line of `from __future__ import annotations` which opts in Postponed ''' '''Evaluation of Annotations (PEP 563)''' ) except TypeError as ex: # Remove this block when we drop Python 3.9 support if sys.version_info[:2] < (3, 10) and "unsupported operand type(s) for |" in str(lowercase_ ): snake_case_ = '''.'''.join(map(lowercase_ , sys.version_info[:3] ) ) raise RuntimeError( F"Type resolution failed for {dtype} on Python {python_version}. Try removing " '''line of `from __future__ import annotations` which opts in union types as ''' '''`X | Y` (PEP 604) via Postponed Evaluation of Annotations (PEP 563). To ''' '''support Python versions that lower than 3.10, you need to use ''' '''`typing.Union[X, Y]` instead of `X | Y` and `typing.Optional[X]` instead of ''' '''`X | None`.''' ) from ex raise for field in dataclasses.fields(lowercase_ ): if not field.init: continue snake_case_ = type_hints[field.name] self._parse_dataclass_field(lowercase_ , lowercase_ ) def A_ ( self : Union[str, Any] , lowercase_ : Tuple=None , lowercase_ : Union[str, Any]=False , lowercase_ : Optional[int]=True , lowercase_ : Dict=None , lowercase_ : str=None , ): if args_file_flag or args_filename or (look_for_args_file and len(sys.argv )): snake_case_ = [] if args_filename: args_files.append(Path(lowercase_ ) ) elif look_for_args_file and len(sys.argv ): args_files.append(Path(sys.argv[0] ).with_suffix('''.args''' ) ) # args files specified via command line flag should overwrite default args files so we add them last if args_file_flag: # Create special parser just to extract the args_file_flag values snake_case_ = ArgumentParser() args_file_parser.add_argument(lowercase_ , type=lowercase_ , action='''append''' ) # Use only remaining args for further parsing (remove the args_file_flag) snake_case_ ,snake_case_ = args_file_parser.parse_known_args(args=lowercase_ ) snake_case_ = vars(lowercase_ ).get(args_file_flag.lstrip('''-''' ) , lowercase_ ) if cmd_args_file_paths: args_files.extend([Path(lowercase_ ) for p in cmd_args_file_paths] ) snake_case_ = [] for args_file in args_files: if args_file.exists(): file_args += args_file.read_text().split() # in case of duplicate arguments the last one has precedence # args specified via the command line should overwrite args from files, so we add them last snake_case_ = file_args + args if args is not None else file_args + sys.argv[1:] snake_case_ ,snake_case_ = self.parse_known_args(args=lowercase_ ) snake_case_ = [] for dtype in self.dataclass_types: snake_case_ = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} snake_case_ = {k: v for k, v in vars(lowercase_ ).items() if k in keys} for k in keys: delattr(lowercase_ , lowercase_ ) snake_case_ = dtype(**lowercase_ ) outputs.append(lowercase_ ) if len(namespace.__dict__ ) > 0: # additional namespace. outputs.append(lowercase_ ) if return_remaining_strings: return (*outputs, remaining_args) else: if remaining_args: raise ValueError(F"Some specified arguments are not used by the HfArgumentParser: {remaining_args}" ) return (*outputs,) def A_ ( self : Union[str, Any] , lowercase_ : Dict[str, Any] , lowercase_ : bool = False ): snake_case_ = set(args.keys() ) snake_case_ = [] for dtype in self.dataclass_types: snake_case_ = {f.name for f in dataclasses.fields(lowercase_ ) if f.init} snake_case_ = {k: v for k, v in args.items() if k in keys} unused_keys.difference_update(inputs.keys() ) snake_case_ = dtype(**lowercase_ ) outputs.append(lowercase_ ) if not allow_extra_keys and unused_keys: raise ValueError(F"Some keys are not used by the HfArgumentParser: {sorted(lowercase_ )}" ) return tuple(lowercase_ ) def A_ ( self : str , lowercase_ : str , lowercase_ : bool = False ): with open(Path(lowercase_ ) , encoding='''utf-8''' ) as open_json_file: snake_case_ = json.loads(open_json_file.read() ) snake_case_ = self.parse_dict(lowercase_ , allow_extra_keys=lowercase_ ) return tuple(lowercase_ ) def A_ ( self : List[Any] , lowercase_ : str , lowercase_ : bool = False ): snake_case_ = self.parse_dict(yaml.safe_load(Path(lowercase_ ).read_text() ) , allow_extra_keys=lowercase_ ) return tuple(lowercase_ )
640
'''simple docstring''' from collections.abc import Generator def __magic_name__ ( ) -> Generator[int, None, None]: '''simple docstring''' snake_case_ ,snake_case_ = 0, 1 while True: snake_case_ ,snake_case_ = b, a + b yield b def __magic_name__ ( __UpperCAmelCase = 1000 ) -> int: '''simple docstring''' snake_case_ = 1 snake_case_ = fibonacci_generator() while len(str(next(__UpperCAmelCase ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
640
1
from __future__ import annotations import unittest from transformers import RoFormerConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import ( TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForMultipleChoice, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerModel, ) from transformers.models.roformer.modeling_tf_roformer import ( TFRoFormerSelfAttention, TFRoFormerSinusoidalPositionalEmbedding, ) class UpperCamelCase__ : """simple docstring""" def __init__( self , _A , _A=13 , _A=7 , _A=True , _A=True , _A=True , _A=True , _A=99 , _A=32 , _A=2 , _A=4 , _A=37 , _A="gelu" , _A=0.1 , _A=0.1 , _A=512 , _A=16 , _A=2 , _A=0.02 , _A=3 , _A=4 , _A=None , ) -> Any: SCREAMING_SNAKE_CASE_ = parent SCREAMING_SNAKE_CASE_ = 13 SCREAMING_SNAKE_CASE_ = 7 SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = 99 SCREAMING_SNAKE_CASE_ = 32 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = 37 SCREAMING_SNAKE_CASE_ = '''gelu''' SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = 0.1 SCREAMING_SNAKE_CASE_ = 512 SCREAMING_SNAKE_CASE_ = 16 SCREAMING_SNAKE_CASE_ = 2 SCREAMING_SNAKE_CASE_ = 0.02 SCREAMING_SNAKE_CASE_ = 3 SCREAMING_SNAKE_CASE_ = 4 SCREAMING_SNAKE_CASE_ = None def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) SCREAMING_SNAKE_CASE_ = None if self.use_input_mask: SCREAMING_SNAKE_CASE_ = random_attention_mask([self.batch_size, self.seq_length] ) SCREAMING_SNAKE_CASE_ = None if self.use_token_type_ids: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None SCREAMING_SNAKE_CASE_ = None if self.use_labels: SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) SCREAMING_SNAKE_CASE_ = ids_tensor([self.batch_size] , self.num_choices ) SCREAMING_SNAKE_CASE_ = RoFormerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , return_dict=_A , ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A , _A ) -> str: SCREAMING_SNAKE_CASE_ = TFRoFormerModel(config=_A ) SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids} SCREAMING_SNAKE_CASE_ = [input_ids, input_mask] SCREAMING_SNAKE_CASE_ = model(_A ) SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A , _A ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = TFRoFormerForCausalLM(config=_A ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE_ = model(_A )['''logits'''] self.parent.assertListEqual( list(prediction_scores.numpy().shape ) , [self.batch_size, self.seq_length, self.vocab_size] ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A , _A ) -> int: SCREAMING_SNAKE_CASE_ = TFRoFormerForMaskedLM(config=_A ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFRoFormerForSequenceClassification(config=_A ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A , _A ) -> str: SCREAMING_SNAKE_CASE_ = self.num_choices SCREAMING_SNAKE_CASE_ = TFRoFormerForMultipleChoice(config=_A ) SCREAMING_SNAKE_CASE_ = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ = tf.tile(tf.expand_dims(_A , 1 ) , (1, self.num_choices, 1) ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': multiple_choice_inputs_ids, '''attention_mask''': multiple_choice_input_mask, '''token_type_ids''': multiple_choice_token_type_ids, } SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A , _A ) -> Dict: SCREAMING_SNAKE_CASE_ = self.num_labels SCREAMING_SNAKE_CASE_ = TFRoFormerForTokenClassification(config=_A ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCamelCase ( self , _A , _A , _A , _A , _A , _A , _A ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = TFRoFormerForQuestionAnswering(config=_A ) SCREAMING_SNAKE_CASE_ = { '''input_ids''': input_ids, '''attention_mask''': input_mask, '''token_type_ids''': token_type_ids, } SCREAMING_SNAKE_CASE_ = model(_A ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.prepare_config_and_inputs() ( ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ( SCREAMING_SNAKE_CASE_ ) , ) = config_and_inputs SCREAMING_SNAKE_CASE_ = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_tf class UpperCamelCase__ ( lowercase_ , lowercase_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =( ( TFRoFormerModel, TFRoFormerForCausalLM, TFRoFormerForMaskedLM, TFRoFormerForQuestionAnswering, TFRoFormerForSequenceClassification, TFRoFormerForTokenClassification, TFRoFormerForMultipleChoice, ) if is_tf_available() else () ) UpperCAmelCase_ =( { '''feature-extraction''': TFRoFormerModel, '''fill-mask''': TFRoFormerForMaskedLM, '''question-answering''': TFRoFormerForQuestionAnswering, '''text-classification''': TFRoFormerForSequenceClassification, '''text-generation''': TFRoFormerForCausalLM, '''token-classification''': TFRoFormerForTokenClassification, '''zero-shot''': TFRoFormerForSequenceClassification, } if is_tf_available() else {} ) UpperCAmelCase_ =False UpperCAmelCase_ =False def _UpperCamelCase ( self , _A , _A , _A , _A , _A ) -> List[Any]: if pipeline_test_casse_name == "TextGenerationPipelineTests": return True return False def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = TFRoFormerModelTester(self ) SCREAMING_SNAKE_CASE_ = ConfigTester(self , config_class=_A , hidden_size=37 ) def _UpperCamelCase ( self ) -> Tuple: self.config_tester.run_common_tests() def _UpperCamelCase ( self ) -> Union[str, Any]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_A ) def _UpperCamelCase ( self ) -> int: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_lm_head(*_A ) def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*_A ) def _UpperCamelCase ( self ) -> Tuple: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_A ) def _UpperCamelCase ( self ) -> Any: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_A ) def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_A ) @slow def _UpperCamelCase ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE_ = TFRoFormerModel.from_pretrained('''junnyu/roformer_chinese_base''' ) self.assertIsNotNone(_A ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" @slow def _UpperCamelCase ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE_ = TFRoFormerForMaskedLM.from_pretrained('''junnyu/roformer_chinese_base''' ) SCREAMING_SNAKE_CASE_ = tf.constant([[0, 1, 2, 3, 4, 5]] ) SCREAMING_SNAKE_CASE_ = model(_A )[0] # TODO Replace vocab size SCREAMING_SNAKE_CASE_ = 50000 SCREAMING_SNAKE_CASE_ = [1, 6, vocab_size] self.assertEqual(output.shape , _A ) print(output[:, :3, :3] ) # TODO Replace values below with what was printed above. SCREAMING_SNAKE_CASE_ = tf.constant( [ [ [-0.1205_3341, -1.026_4901, 0.2922_1946], [-1.513_3783, 0.19_7433, 0.1519_0607], [-5.013_5403, -3.90_0256, -0.8403_8764], ] ] ) tf.debugging.assert_near(output[:, :3, :3] , _A , atol=1E-4 ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =1E-4 def _UpperCamelCase ( self ) -> str: SCREAMING_SNAKE_CASE_ = tf.constant([[4, 10]] ) SCREAMING_SNAKE_CASE_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=6 , embedding_dim=6 ) SCREAMING_SNAKE_CASE_ = emba(input_ids.shape ) SCREAMING_SNAKE_CASE_ = tf.constant( [[0.0000, 0.0000, 0.0000, 1.0000, 1.0000, 1.0000], [0.8415, 0.0464, 0.0022, 0.5403, 0.9989, 1.0000]] ) tf.debugging.assert_near(_A , _A , atol=self.tolerance ) def _UpperCamelCase ( self ) -> List[str]: SCREAMING_SNAKE_CASE_ = tf.constant( [ [0.0000, 0.0000, 0.0000, 0.0000, 0.0000], [0.8415, 0.8219, 0.8020, 0.7819, 0.7617], [0.9093, 0.9364, 0.9581, 0.9749, 0.9870], ] ) SCREAMING_SNAKE_CASE_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=512 , embedding_dim=512 ) emba([2, 16, 512] ) SCREAMING_SNAKE_CASE_ = emba.weight[:3, :5] tf.debugging.assert_near(_A , _A , atol=self.tolerance ) @require_tf class UpperCamelCase__ ( unittest.TestCase ): """simple docstring""" UpperCAmelCase_ =1E-4 def _UpperCamelCase ( self ) -> Tuple: # 2,12,16,64 SCREAMING_SNAKE_CASE_ = tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 SCREAMING_SNAKE_CASE_ = -tf.reshape(tf.range(2 * 12 * 16 * 64 , dtype=tf.floataa ) , shape=(2, 12, 16, 64) ) / 100 SCREAMING_SNAKE_CASE_ = TFRoFormerSinusoidalPositionalEmbedding(num_positions=32 , embedding_dim=64 ) SCREAMING_SNAKE_CASE_ = embed_positions([2, 16, 768] )[None, None, :, :] SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = TFRoFormerSelfAttention.apply_rotary_position_embeddings( _A , _A , _A ) SCREAMING_SNAKE_CASE_ = tf.constant( [ [0.0000, 0.0100, 0.0200, 0.0300, 0.0400, 0.0500, 0.0600, 0.0700], [-0.2012, 0.8897, 0.0263, 0.9401, 0.2074, 0.9463, 0.3481, 0.9343], [-1.7057, 0.6271, -1.2145, 1.3897, -0.6303, 1.7647, -0.1173, 1.8985], [-2.1731, -1.6397, -2.7358, 0.2854, -2.1840, 1.7183, -1.3018, 2.4871], [0.2717, -3.6173, -2.9206, -2.1988, -3.6638, 0.3858, -2.9155, 2.2980], [3.9859, -2.1580, -0.7984, -4.4904, -4.1181, -2.0252, -4.4782, 1.1253], ] ) SCREAMING_SNAKE_CASE_ = tf.constant( [ [0.0000, -0.0100, -0.0200, -0.0300, -0.0400, -0.0500, -0.0600, -0.0700], [0.2012, -0.8897, -0.0263, -0.9401, -0.2074, -0.9463, -0.3481, -0.9343], [1.7057, -0.6271, 1.2145, -1.3897, 0.6303, -1.7647, 0.1173, -1.8985], [2.1731, 1.6397, 2.7358, -0.2854, 2.1840, -1.7183, 1.3018, -2.4871], [-0.2717, 3.6173, 2.9206, 2.1988, 3.6638, -0.3858, 2.9155, -2.2980], [-3.9859, 2.1580, 0.7984, 4.4904, 4.1181, 2.0252, 4.4782, -1.1253], ] ) tf.debugging.assert_near(query_layer[0, 0, :6, :8] , _A , atol=self.tolerance ) tf.debugging.assert_near(key_layer[0, 0, :6, :8] , _A , atol=self.tolerance )
720
from PIL import Image def A__ ( __lowerCamelCase ): SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ = image.size SCREAMING_SNAKE_CASE_ = 0 SCREAMING_SNAKE_CASE_ = image.load() for i in range(__lowerCamelCase ): for j in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = pixels[j, i] mean += pixel mean //= width * height for j in range(__lowerCamelCase ): for i in range(__lowerCamelCase ): SCREAMING_SNAKE_CASE_ = 2_55 if pixels[i, j] > mean else 0 return image if __name__ == "__main__": __UpperCAmelCase = mean_threshold(Image.open("path_to_image").convert("L")) image.save("output_image_path")
597
0
import numpy as np class lowerCamelCase_ : def __init__( self : Dict ): '''simple docstring''' a = (0, 0) a = None a = 0 a = 0 a = 0 def __eq__( self : Optional[int] ,__lowerCamelCase : Optional[int] ): '''simple docstring''' return self.position == cell.position def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' print(self.position ) class lowerCamelCase_ : def __init__( self : List[str] ,__lowerCamelCase : List[Any]=(5, 5) ): '''simple docstring''' a = np.zeros(__lowerCamelCase ) a = world_size[0] a = world_size[1] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' print(self.w ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] a = cell.position[0] a = cell.position[1] a = [] for n in neughbour_cord: a = current_x + n[0] a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: a = Cell() a = (x, y) a = cell neighbours.append(__lowerCamelCase ) return neighbours def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> str: """simple docstring""" a = [] a = [] _open.append(snake_case_ ) while _open: a = np.argmin([n.f for n in _open] ) a = _open[min_f] _closed.append(_open.pop(snake_case_ ) ) if current == goal: break for n in world.get_neigbours(snake_case_ ): for c in _closed: if c == n: continue a = current.g + 1 a , a = n.position a , a = goal.position a = (ya - ya) ** 2 + (xa - xa) ** 2 a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(snake_case_ ) a = [] while current.parent is not None: path.append(current.position ) a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCamelCase__ : List[str] = Gridworld() # Start position and goal UpperCamelCase__ : Optional[int] = Cell() UpperCamelCase__ : List[str] = (0, 0) UpperCamelCase__ : Union[str, Any] = Cell() UpperCamelCase__ : List[str] = (4, 4) print(F"path from {start.position} to {goal.position}") UpperCamelCase__ : Union[str, Any] = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCamelCase__ : Union[str, Any] = 1 print(world.w)
387
import numpy as np class lowerCamelCase_ : def __init__( self : Dict ): '''simple docstring''' a = (0, 0) a = None a = 0 a = 0 a = 0 def __eq__( self : Optional[int] ,__lowerCamelCase : Optional[int] ): '''simple docstring''' return self.position == cell.position def SCREAMING_SNAKE_CASE_ ( self : Tuple ): '''simple docstring''' print(self.position ) class lowerCamelCase_ : def __init__( self : List[str] ,__lowerCamelCase : List[Any]=(5, 5) ): '''simple docstring''' a = np.zeros(__lowerCamelCase ) a = world_size[0] a = world_size[1] def SCREAMING_SNAKE_CASE_ ( self : Union[str, Any] ): '''simple docstring''' print(self.w ) def SCREAMING_SNAKE_CASE_ ( self : List[Any] ,__lowerCamelCase : Union[str, Any] ): '''simple docstring''' a = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] a = cell.position[0] a = cell.position[1] a = [] for n in neughbour_cord: a = current_x + n[0] a = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: a = Cell() a = (x, y) a = cell neighbours.append(__lowerCamelCase ) return neighbours def SCREAMING_SNAKE_CASE__ ( snake_case_, snake_case_, snake_case_ ) -> str: """simple docstring""" a = [] a = [] _open.append(snake_case_ ) while _open: a = np.argmin([n.f for n in _open] ) a = _open[min_f] _closed.append(_open.pop(snake_case_ ) ) if current == goal: break for n in world.get_neigbours(snake_case_ ): for c in _closed: if c == n: continue a = current.g + 1 a , a = n.position a , a = goal.position a = (ya - ya) ** 2 + (xa - xa) ** 2 a = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(snake_case_ ) a = [] while current.parent is not None: path.append(current.position ) a = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": UpperCamelCase__ : List[str] = Gridworld() # Start position and goal UpperCamelCase__ : Optional[int] = Cell() UpperCamelCase__ : List[str] = (0, 0) UpperCamelCase__ : Union[str, Any] = Cell() UpperCamelCase__ : List[str] = (4, 4) print(F"path from {start.position} to {goal.position}") UpperCamelCase__ : Union[str, Any] = astar(world, start, goal) # Just for visual reasons. for i in s: UpperCamelCase__ : Union[str, Any] = 1 print(world.w)
387
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) _SCREAMING_SNAKE_CASE = { """configuration_lxmert""": ["""LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP""", """LxmertConfig"""], """tokenization_lxmert""": ["""LxmertTokenizer"""], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = ["""LxmertTokenizerFast"""] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """LxmertEncoder""", """LxmertForPreTraining""", """LxmertForQuestionAnswering""", """LxmertModel""", """LxmertPreTrainedModel""", """LxmertVisualFeatureEncoder""", """LxmertXLayer""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _SCREAMING_SNAKE_CASE = [ """TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFLxmertForPreTraining""", """TFLxmertMainLayer""", """TFLxmertModel""", """TFLxmertPreTrainedModel""", """TFLxmertVisualFeatureEncoder""", ] if TYPE_CHECKING: from .configuration_lxmert import LXMERT_PRETRAINED_CONFIG_ARCHIVE_MAP, LxmertConfig from .tokenization_lxmert import LxmertTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_lxmert_fast import LxmertTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_lxmert import ( LxmertEncoder, LxmertForPreTraining, LxmertForQuestionAnswering, LxmertModel, LxmertPreTrainedModel, LxmertVisualFeatureEncoder, LxmertXLayer, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_lxmert import ( TF_LXMERT_PRETRAINED_MODEL_ARCHIVE_LIST, TFLxmertForPreTraining, TFLxmertMainLayer, TFLxmertModel, TFLxmertPreTrainedModel, TFLxmertVisualFeatureEncoder, ) else: import sys _SCREAMING_SNAKE_CASE = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
534
def SCREAMING_SNAKE_CASE__ ( __a ): if not isinstance(__a , __a ): raise ValueError('Input must be an integer' ) if input_num <= 0: raise ValueError('Input must be positive' ) return sum( divisor for divisor in range(1 , input_num // 2 + 1 ) if input_num % divisor == 0 ) if __name__ == "__main__": import doctest doctest.testmod()
534
1
'''simple docstring''' import os import sys __UpperCAmelCase = os.path.join(os.path.dirname(__file__), '''src''') sys.path.append(SRC_DIR) from transformers import ( AutoConfig, AutoModel, AutoModelForCausalLM, AutoModelForMaskedLM, AutoModelForQuestionAnswering, AutoModelForSequenceClassification, AutoTokenizer, add_start_docstrings, ) __UpperCAmelCase = [ '''torch''', '''numpy''', '''tokenizers''', '''filelock''', '''requests''', '''tqdm''', '''regex''', '''sentencepiece''', '''sacremoses''', '''importlib_metadata''', '''huggingface_hub''', ] @add_start_docstrings(AutoConfig.__doc__ ) def _snake_case ( *A , **A ) -> Optional[int]: return AutoConfig.from_pretrained(*A , **A ) @add_start_docstrings(AutoTokenizer.__doc__ ) def _snake_case ( *A , **A ) -> Optional[int]: return AutoTokenizer.from_pretrained(*A , **A ) @add_start_docstrings(AutoModel.__doc__ ) def _snake_case ( *A , **A ) -> List[Any]: return AutoModel.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForCausalLM.__doc__ ) def _snake_case ( *A , **A ) -> Any: return AutoModelForCausalLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForMaskedLM.__doc__ ) def _snake_case ( *A , **A ) -> Union[str, Any]: return AutoModelForMaskedLM.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForSequenceClassification.__doc__ ) def _snake_case ( *A , **A ) -> int: return AutoModelForSequenceClassification.from_pretrained(*A , **A ) @add_start_docstrings(AutoModelForQuestionAnswering.__doc__ ) def _snake_case ( *A , **A ) -> Optional[Any]: return AutoModelForQuestionAnswering.from_pretrained(*A , **A )
90
'''simple docstring''' import numpy as np import torch from torch.utils.data import DataLoader from accelerate.utils.dataclasses import DistributedType class a__ : '''simple docstring''' def __init__( self , lowerCamelCase_=2 , lowerCamelCase_=3 , lowerCamelCase_=64 , lowerCamelCase_=None ) -> Dict: lowerCAmelCase__ = np.random.default_rng(lowerCamelCase_ ) lowerCAmelCase__ = length lowerCAmelCase__ = rng.normal(size=(length,) ).astype(np.floataa ) lowerCAmelCase__ = a * self.x + b + rng.normal(scale=0.1 , size=(length,) ).astype(np.floataa ) def __len__( self ) -> Any: return self.length def __getitem__( self , lowerCamelCase_ ) -> List[str]: return {"x": self.x[i], "y": self.y[i]} class a__ ( torch.nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_=0 , lowerCamelCase_=0 , lowerCamelCase_=False ) -> List[Any]: super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor([2, 3] ).float() ) lowerCAmelCase__ = True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None ) -> Optional[Any]: if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a[0] + self.b[0] class a__ ( torch.nn.Module ): '''simple docstring''' def __init__( self , lowerCamelCase_=0 , lowerCamelCase_=0 , lowerCamelCase_=False ) -> Any: super().__init__() lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) lowerCAmelCase__ = torch.nn.Parameter(torch.tensor(lowerCamelCase_ ).float() ) lowerCAmelCase__ = True def __SCREAMING_SNAKE_CASE ( self , lowerCamelCase_=None ) -> Any: if self.first_batch: print(F"""Model dtype: {self.a.dtype}, {self.b.dtype}. Input dtype: {x.dtype}""" ) lowerCAmelCase__ = False return x * self.a + self.b def _snake_case ( A , A = 16 ) -> Any: from datasets import load_dataset from transformers import AutoTokenizer lowerCAmelCase__ = AutoTokenizer.from_pretrained('''bert-base-cased''' ) lowerCAmelCase__ = {'''train''': '''tests/test_samples/MRPC/train.csv''', '''validation''': '''tests/test_samples/MRPC/dev.csv'''} lowerCAmelCase__ = load_dataset('''csv''' , data_files=A ) lowerCAmelCase__ = datasets['''train'''].unique('''label''' ) lowerCAmelCase__ = {v: i for i, v in enumerate(A )} def tokenize_function(A ): # max_length=None => use the model max length (it's actually the default) lowerCAmelCase__ = tokenizer( examples['''sentence1'''] , examples['''sentence2'''] , truncation=A , max_length=A , padding='''max_length''' ) if "label" in examples: lowerCAmelCase__ = [label_to_id[l] for l in examples['''label''']] return outputs # Apply the method we just defined to all the examples in all the splits of the dataset lowerCAmelCase__ = datasets.map( A , batched=A , remove_columns=['''sentence1''', '''sentence2''', '''label'''] , ) def collate_fn(A ): # On TPU it's best to pad everything to the same length or training will be very slow. if accelerator.distributed_type == DistributedType.TPU: return tokenizer.pad(A , padding='''max_length''' , max_length=128 , return_tensors='''pt''' ) return tokenizer.pad(A , padding='''longest''' , return_tensors='''pt''' ) # Instantiate dataloaders. lowerCAmelCase__ = DataLoader(tokenized_datasets['''train'''] , shuffle=A , collate_fn=A , batch_size=2 ) lowerCAmelCase__ = DataLoader(tokenized_datasets['''validation'''] , shuffle=A , collate_fn=A , batch_size=1 ) return train_dataloader, eval_dataloader
90
1
from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCamelCase : Any = logging.get_logger(__name__) __lowerCamelCase : str = { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/config.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/config.json''' # See all FNet models at https://huggingface.co/models?filter=fnet } class a__ ( A__ ): A = 'fnet' def __init__( self : Any,_A : str=3_2000,_A : Union[str, Any]=768,_A : int=12,_A : List[Any]=3072,_A : Dict="gelu_new",_A : Optional[int]=0.1,_A : Tuple=512,_A : Optional[Any]=4,_A : Any=0.02,_A : Optional[Any]=1E-12,_A : List[Any]=False,_A : Union[str, Any]=512,_A : Any=3,_A : str=1,_A : Any=2,**_A : int,): """simple docstring""" super().__init__(pad_token_id=_A,bos_token_id=_A,eos_token_id=_A,**_A ) SCREAMING_SNAKE_CASE_ : Optional[int] = vocab_size SCREAMING_SNAKE_CASE_ : Optional[int] = max_position_embeddings SCREAMING_SNAKE_CASE_ : List[str] = hidden_size SCREAMING_SNAKE_CASE_ : List[Any] = num_hidden_layers SCREAMING_SNAKE_CASE_ : Optional[Any] = intermediate_size SCREAMING_SNAKE_CASE_ : Dict = hidden_act SCREAMING_SNAKE_CASE_ : List[Any] = hidden_dropout_prob SCREAMING_SNAKE_CASE_ : Optional[int] = initializer_range SCREAMING_SNAKE_CASE_ : Tuple = type_vocab_size SCREAMING_SNAKE_CASE_ : Tuple = layer_norm_eps SCREAMING_SNAKE_CASE_ : Dict = use_tpu_fourier_optimizations SCREAMING_SNAKE_CASE_ : List[Any] = tpu_short_seq_length
316
# Copyright 2023 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import re from ..models.auto import AutoProcessor from ..models.vision_encoder_decoder import VisionEncoderDecoderModel from ..utils import is_vision_available from .base import PipelineTool if is_vision_available(): from PIL import Image class a__ ( A__ ): A = 'naver-clova-ix/donut-base-finetuned-docvqa' A = ( 'This is a tool that answers a question about an document (pdf). It takes an input named `document` which ' 'should be the document containing the information, as well as a `question` that is the question about the ' 'document. It returns a text that contains the answer to the question.' ) A = 'document_qa' A = AutoProcessor A = VisionEncoderDecoderModel A = ['image', 'text'] A = ['text'] def __init__( self : List[Any],*_A : Any,**_A : Dict ): """simple docstring""" if not is_vision_available(): raise ValueError("Pillow must be installed to use the DocumentQuestionAnsweringTool." ) super().__init__(*_A,**_A ) def __UpperCamelCase ( self : int,_A : "Image",_A : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Optional[Any] = "<s_docvqa><s_question>{user_input}</s_question><s_answer>" SCREAMING_SNAKE_CASE_ : List[str] = task_prompt.replace("{user_input}",_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = self.pre_processor.tokenizer( _A,add_special_tokens=_A,return_tensors="pt" ).input_ids SCREAMING_SNAKE_CASE_ : str = self.pre_processor(_A,return_tensors="pt" ).pixel_values return {"decoder_input_ids": decoder_input_ids, "pixel_values": pixel_values} def __UpperCamelCase ( self : Tuple,_A : str ): """simple docstring""" return self.model.generate( inputs["pixel_values"].to(self.device ),decoder_input_ids=inputs["decoder_input_ids"].to(self.device ),max_length=self.model.decoder.config.max_position_embeddings,early_stopping=_A,pad_token_id=self.pre_processor.tokenizer.pad_token_id,eos_token_id=self.pre_processor.tokenizer.eos_token_id,use_cache=_A,num_beams=1,bad_words_ids=[[self.pre_processor.tokenizer.unk_token_id]],return_dict_in_generate=_A,).sequences def __UpperCamelCase ( self : List[Any],_A : int ): """simple docstring""" SCREAMING_SNAKE_CASE_ : str = self.pre_processor.batch_decode(_A )[0] SCREAMING_SNAKE_CASE_ : Optional[Any] = sequence.replace(self.pre_processor.tokenizer.eos_token,"" ) SCREAMING_SNAKE_CASE_ : Any = sequence.replace(self.pre_processor.tokenizer.pad_token,"" ) SCREAMING_SNAKE_CASE_ : Optional[int] = re.sub(R"<.*?>","",_A,count=1 ).strip() # remove first task start token SCREAMING_SNAKE_CASE_ : Any = self.pre_processor.tokenajson(_A ) return sequence["answer"]
316
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class UpperCAmelCase: """simple docstring""" @staticmethod def __a ( *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" pass @is_pipeline_test @require_vision @require_timm @require_torch class UpperCAmelCase( unittest.TestCase ): """simple docstring""" a : Tuple = MODEL_FOR_OBJECT_DETECTION_MAPPING def __a ( self , lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> List[Any]: """simple docstring""" lowercase__ : Optional[int] = ObjectDetectionPipeline(model=lowerCamelCase , image_processor=lowerCamelCase ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def __a ( self , lowerCamelCase , lowerCamelCase ) -> Optional[int]: """simple docstring""" lowercase__ : Optional[int] = object_detector("./tests/fixtures/tests_samples/COCO/000000039769.png" , threshold=0.0 ) self.assertGreater(len(lowerCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase , { "score": ANY(lowerCamelCase ), "label": ANY(lowerCamelCase ), "box": {"xmin": ANY(lowerCamelCase ), "ymin": ANY(lowerCamelCase ), "xmax": ANY(lowerCamelCase ), "ymax": ANY(lowerCamelCase )}, } , ) import datasets lowercase__ : int = datasets.load_dataset("hf-internal-testing/fixtures_image_utils" , "image" , split="test" ) lowercase__ : Optional[Any] = [ Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ), "http://images.cocodataset.org/val2017/000000039769.jpg", # RGBA dataset[0]["file"], # LA dataset[1]["file"], # L dataset[2]["file"], ] lowercase__ : int = object_detector(lowerCamelCase , threshold=0.0 ) self.assertEqual(len(lowerCamelCase ) , len(lowerCamelCase ) ) for outputs in batch_outputs: self.assertGreater(len(lowerCamelCase ) , 0 ) for detected_object in outputs: self.assertEqual( lowerCamelCase , { "score": ANY(lowerCamelCase ), "label": ANY(lowerCamelCase ), "box": {"xmin": ANY(lowerCamelCase ), "ymin": ANY(lowerCamelCase ), "xmax": ANY(lowerCamelCase ), "ymax": ANY(lowerCamelCase )}, } , ) @require_tf @unittest.skip("Object detection not implemented in TF" ) def __a ( self ) -> Optional[Any]: """simple docstring""" pass @require_torch def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : int = "hf-internal-testing/tiny-detr-mobilenetsv3" lowercase__ : Dict = AutoModelForObjectDetection.from_pretrained(lowerCamelCase ) lowercase__ : List[Any] = AutoFeatureExtractor.from_pretrained(lowerCamelCase ) lowercase__ : Dict = ObjectDetectionPipeline(model=lowerCamelCase , feature_extractor=lowerCamelCase ) lowercase__ : Any = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=0.0 ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ] , ) lowercase__ : Dict = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], [ {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, {"score": 0.33_76, "label": "LABEL_0", "box": {"xmin": 159, "ymin": 120, "xmax": 480, "ymax": 359}}, ], ] , ) @require_torch @slow def __a ( self ) -> Optional[int]: """simple docstring""" lowercase__ : List[Any] = "facebook/detr-resnet-50" lowercase__ : int = AutoModelForObjectDetection.from_pretrained(lowerCamelCase ) lowercase__ : Any = AutoFeatureExtractor.from_pretrained(lowerCamelCase ) lowercase__ : Any = ObjectDetectionPipeline(model=lowerCamelCase , feature_extractor=lowerCamelCase ) lowercase__ : str = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowercase__ : List[str] = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __a ( self ) -> List[Any]: """simple docstring""" lowercase__ : str = "facebook/detr-resnet-50" lowercase__ : str = pipeline("object-detection" , model=lowerCamelCase ) lowercase__ : int = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) lowercase__ : int = object_detector( [ "http://images.cocodataset.org/val2017/000000039769.jpg", "http://images.cocodataset.org/val2017/000000039769.jpg", ] ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], [ {"score": 0.99_82, "label": "remote", "box": {"xmin": 40, "ymin": 70, "xmax": 175, "ymax": 117}}, {"score": 0.99_60, "label": "remote", "box": {"xmin": 333, "ymin": 72, "xmax": 368, "ymax": 187}}, {"score": 0.99_55, "label": "couch", "box": {"xmin": 0, "ymin": 1, "xmax": 639, "ymax": 473}}, {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ], ] , ) @require_torch @slow def __a ( self ) -> str: """simple docstring""" lowercase__ : Optional[Any] = 0.99_85 lowercase__ : List[Any] = "facebook/detr-resnet-50" lowercase__ : Tuple = pipeline("object-detection" , model=lowerCamelCase ) lowercase__ : Union[str, Any] = object_detector("http://images.cocodataset.org/val2017/000000039769.jpg" , threshold=lowerCamelCase ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.99_88, "label": "cat", "box": {"xmin": 13, "ymin": 52, "xmax": 314, "ymax": 470}}, {"score": 0.99_87, "label": "cat", "box": {"xmin": 345, "ymin": 23, "xmax": 640, "ymax": 368}}, ] , ) @require_torch @require_pytesseract @slow def __a ( self ) -> Tuple: """simple docstring""" lowercase__ : int = "Narsil/layoutlmv3-finetuned-funsd" lowercase__ : Any = 0.99_93 lowercase__ : Union[str, Any] = pipeline("object-detection" , model=lowerCamelCase , threshold=lowerCamelCase ) lowercase__ : int = object_detector( "https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png" ) self.assertEqual( nested_simplify(lowerCamelCase , decimals=4 ) , [ {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, {"score": 0.99_93, "label": "I-ANSWER", "box": {"xmin": 294, "ymin": 254, "xmax": 343, "ymax": 264}}, ] , )
397
from math import factorial def snake_case_ ( SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) -> float: if successes > trials: raise ValueError("successes must be lower or equal to trials" ) if trials < 0 or successes < 0: raise ValueError("the function is defined for non-negative integers" ) if not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ) or not isinstance(SCREAMING_SNAKE_CASE_ ,SCREAMING_SNAKE_CASE_ ): raise ValueError("the function is defined for non-negative integers" ) if not 0 < prob < 1: raise ValueError("prob has to be in range of 1 - 0" ) lowercase__ : Dict = (prob**successes) * ((1 - prob) ** (trials - successes)) # Calculate the binomial coefficient: n! / k!(n-k)! lowercase__ : Tuple = float(factorial(SCREAMING_SNAKE_CASE_ ) ) coefficient /= factorial(SCREAMING_SNAKE_CASE_ ) * factorial(trials - successes ) return probability * coefficient if __name__ == "__main__": from doctest import testmod testmod() print('''Probability of 2 successes out of 4 trails''') print('''with probability of 0.75 is:''', end=''' ''') print(binomial_distribution(2, 4, 0.75))
397
1
'''simple docstring''' import torch from torch import nn class __lowerCamelCase ( nn.Module ): '''simple docstring''' def __init__( self , a__ , a__ , a__ , a__ , a__=1 , a__=False ): super().__init__() __SCREAMING_SNAKE_CASE : Dict = n_token __SCREAMING_SNAKE_CASE : List[Any] = d_embed __SCREAMING_SNAKE_CASE : Tuple = d_proj __SCREAMING_SNAKE_CASE : Optional[int] = cutoffs + [n_token] __SCREAMING_SNAKE_CASE : str = [0] + self.cutoffs __SCREAMING_SNAKE_CASE : str = div_val __SCREAMING_SNAKE_CASE : List[str] = self.cutoffs[0] __SCREAMING_SNAKE_CASE : Union[str, Any] = len(self.cutoffs ) - 1 __SCREAMING_SNAKE_CASE : str = self.shortlist_size + self.n_clusters if self.n_clusters > 0: __SCREAMING_SNAKE_CASE : Optional[Any] = nn.Parameter(torch.zeros(self.n_clusters , self.d_embed ) ) __SCREAMING_SNAKE_CASE : List[str] = nn.Parameter(torch.zeros(self.n_clusters ) ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.ModuleList() __SCREAMING_SNAKE_CASE : List[str] = nn.ParameterList() if div_val == 1: for i in range(len(self.cutoffs ) ): if d_proj != d_embed: self.out_projs.append(nn.Parameter(torch.FloatTensor(a__ , a__ ) ) ) else: self.out_projs.append(a__ ) self.out_layers.append(nn.Linear(a__ , a__ ) ) else: for i in range(len(self.cutoffs ) ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = self.cutoff_ends[i], self.cutoff_ends[i + 1] __SCREAMING_SNAKE_CASE : str = d_embed // (div_val**i) self.out_projs.append(nn.Parameter(torch.FloatTensor(a__ , a__ ) ) ) self.out_layers.append(nn.Linear(a__ , r_idx - l_idx ) ) __SCREAMING_SNAKE_CASE : List[str] = keep_order def a_ ( self , a__ , a__ , a__ , a__ ): if proj is None: __SCREAMING_SNAKE_CASE : List[str] = nn.functional.linear(a__ , a__ , bias=a__ ) else: # if CUDA_MAJOR <= 9 and CUDA_MINOR <= 1: __SCREAMING_SNAKE_CASE : Optional[int] = nn.functional.linear(a__ , proj.t().contiguous() ) __SCREAMING_SNAKE_CASE : List[str] = nn.functional.linear(a__ , a__ , bias=a__ ) # else: # logit = torch.einsum('bd,de,ev->bv', (hidden, proj, weight.t())) # if bias is not None: # logit = logit + bias return logit def a_ ( self , a__ , a__=None , a__=False ): if labels is not None: # Shift so that tokens < n predict n __SCREAMING_SNAKE_CASE : str = hidden[..., :-1, :].contiguous() __SCREAMING_SNAKE_CASE : Tuple = labels[..., 1:].contiguous() __SCREAMING_SNAKE_CASE : Tuple = hidden.view(-1 , hidden.size(-1 ) ) __SCREAMING_SNAKE_CASE : int = labels.view(-1 ) if hidden.size(0 ) != labels.size(0 ): raise RuntimeError("Input and labels should have the same size in the batch dimension." ) else: __SCREAMING_SNAKE_CASE : List[Any] = hidden.view(-1 , hidden.size(-1 ) ) if self.n_clusters == 0: __SCREAMING_SNAKE_CASE : List[str] = self._compute_logit(a__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) if labels is not None: __SCREAMING_SNAKE_CASE : Optional[int] = labels != -100 __SCREAMING_SNAKE_CASE : Any = torch.zeros_like(a__ , dtype=hidden.dtype , device=hidden.device ) __SCREAMING_SNAKE_CASE : str = ( -nn.functional.log_softmax(a__ , dim=-1 )[mask].gather(1 , labels[mask].unsqueeze(1 ) ).squeeze(1 ) ) else: __SCREAMING_SNAKE_CASE : Dict = nn.functional.log_softmax(a__ , dim=-1 ) else: # construct weights and biases __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Tuple = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __SCREAMING_SNAKE_CASE : int = self.out_layers[0].weight[l_idx:r_idx] __SCREAMING_SNAKE_CASE : Any = self.out_layers[0].bias[l_idx:r_idx] else: __SCREAMING_SNAKE_CASE : Optional[int] = self.out_layers[i].weight __SCREAMING_SNAKE_CASE : Dict = self.out_layers[i].bias if i == 0: __SCREAMING_SNAKE_CASE : str = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __SCREAMING_SNAKE_CASE : Optional[Any] = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a__ ) biases.append(a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = weights[0], biases[0], self.out_projs[0] __SCREAMING_SNAKE_CASE : Tuple = self._compute_logit(a__ , a__ , a__ , a__ ) __SCREAMING_SNAKE_CASE : List[Any] = nn.functional.log_softmax(a__ , dim=1 ) if labels is None: __SCREAMING_SNAKE_CASE : Optional[Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) else: __SCREAMING_SNAKE_CASE : List[Any] = torch.zeros_like(a__ , dtype=hidden.dtype , device=hidden.device ) __SCREAMING_SNAKE_CASE : Optional[int] = 0 __SCREAMING_SNAKE_CASE : str = [0] + self.cutoffs for i in range(len(a__ ) - 1 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : str = cutoff_values[i], cutoff_values[i + 1] if labels is not None: __SCREAMING_SNAKE_CASE : List[Any] = (labels >= l_idx) & (labels < r_idx) __SCREAMING_SNAKE_CASE : List[str] = mask_i.nonzero().squeeze() if indices_i.numel() == 0: continue __SCREAMING_SNAKE_CASE : List[Any] = labels.index_select(0 , a__ ) - l_idx __SCREAMING_SNAKE_CASE : Optional[int] = head_logprob.index_select(0 , a__ ) __SCREAMING_SNAKE_CASE : List[Any] = hidden.index_select(0 , a__ ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden if i == 0: if labels is not None: __SCREAMING_SNAKE_CASE : Any = head_logprob_i.gather(1 , target_i[:, None] ).squeeze(1 ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = head_logprob[:, : self.cutoffs[0]] else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Union[str, Any] = weights[i], biases[i], self.out_projs[i] __SCREAMING_SNAKE_CASE : List[Any] = self._compute_logit(a__ , a__ , a__ , a__ ) __SCREAMING_SNAKE_CASE : Optional[Any] = nn.functional.log_softmax(a__ , dim=1 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = self.cutoffs[0] + i - 1 # No probability for the head cluster if labels is not None: __SCREAMING_SNAKE_CASE : Optional[int] = head_logprob_i[:, cluster_prob_idx] + tail_logprob_i.gather( 1 , target_i[:, None] ).squeeze(1 ) else: __SCREAMING_SNAKE_CASE : Union[str, Any] = head_logprob[:, cluster_prob_idx, None] + tail_logprob_i __SCREAMING_SNAKE_CASE : int = logprob_i if labels is not None: if (hasattr(self , "keep_order" ) and self.keep_order) or keep_order: out.index_copy_(0 , a__ , -logprob_i ) else: out[offset : offset + logprob_i.size(0 )].copy_(-logprob_i ) offset += logprob_i.size(0 ) return out def a_ ( self , a__ ): if self.n_clusters == 0: __SCREAMING_SNAKE_CASE : List[str] = self._compute_logit(a__ , self.out_layers[0].weight , self.out_layers[0].bias , self.out_projs[0] ) return nn.functional.log_softmax(a__ , dim=-1 ) else: # construct weights and biases __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : int = [], [] for i in range(len(self.cutoffs ) ): if self.div_val == 1: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Optional[Any] = self.cutoff_ends[i], self.cutoff_ends[i + 1] __SCREAMING_SNAKE_CASE : Any = self.out_layers[0].weight[l_idx:r_idx] __SCREAMING_SNAKE_CASE : int = self.out_layers[0].bias[l_idx:r_idx] else: __SCREAMING_SNAKE_CASE : str = self.out_layers[i].weight __SCREAMING_SNAKE_CASE : str = self.out_layers[i].bias if i == 0: __SCREAMING_SNAKE_CASE : Tuple = torch.cat([weight_i, self.cluster_weight] , dim=0 ) __SCREAMING_SNAKE_CASE : Dict = torch.cat([bias_i, self.cluster_bias] , dim=0 ) weights.append(a__ ) biases.append(a__ ) __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = weights[0], biases[0], self.out_projs[0] __SCREAMING_SNAKE_CASE : str = self._compute_logit(a__ , a__ , a__ , a__ ) __SCREAMING_SNAKE_CASE : Union[str, Any] = hidden.new_empty((head_logit.size(0 ), self.n_token) ) __SCREAMING_SNAKE_CASE : Any = nn.functional.log_softmax(a__ , dim=1 ) __SCREAMING_SNAKE_CASE : Tuple = [0] + self.cutoffs for i in range(len(a__ ) - 1 ): __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : List[str] = cutoff_values[i], cutoff_values[i + 1] if i == 0: __SCREAMING_SNAKE_CASE : Any = head_logprob[:, : self.cutoffs[0]] else: __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE : Any = weights[i], biases[i], self.out_projs[i] __SCREAMING_SNAKE_CASE : int = self._compute_logit(a__ , a__ , a__ , a__ ) __SCREAMING_SNAKE_CASE : Optional[int] = nn.functional.log_softmax(a__ , dim=1 ) __SCREAMING_SNAKE_CASE : Union[str, Any] = head_logprob[:, -i] + tail_logprob_i __SCREAMING_SNAKE_CASE : Any = logprob_i return out
564
'''simple docstring''' def __A ( _SCREAMING_SNAKE_CASE : int = 1_0_0_0 ): """simple docstring""" return sum(2 * a * ((a - 1) // 2) for a in range(3 , n + 1 ) ) if __name__ == "__main__": print(solution())
564
1
'''simple docstring''' from math import atan, cos, radians, sin, tan from .haversine_distance import haversine_distance UpperCAmelCase__ : Optional[int] = 6_3_7_8_1_3_7.0 UpperCAmelCase__ : Any = 6_3_5_6_7_5_2.3_1_4_2_4_5 UpperCAmelCase__ : List[str] = 6_37_81_37 def A ( UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float , UpperCamelCase_ : float ) -> float: '''simple docstring''' lowerCAmelCase__ = (AXIS_A - AXIS_B) / AXIS_A # Parametric latitudes # https://en.wikipedia.org/wiki/Latitude#Parametric_(or_reduced)_latitude lowerCAmelCase__ = atan((1 - flattening) * tan(radians(UpperCamelCase_ ) ) ) lowerCAmelCase__ = atan((1 - flattening) * tan(radians(UpperCamelCase_ ) ) ) # Compute central angle between two points # using haversine theta. sigma = haversine_distance / equatorial radius lowerCAmelCase__ = haversine_distance(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) / EQUATORIAL_RADIUS # Intermediate P and Q values lowerCAmelCase__ = (b_lata + b_lata) / 2 lowerCAmelCase__ = (b_lata - b_lata) / 2 # Intermediate X value # X = (sigma - sin(sigma)) * sin^2Pcos^2Q / cos^2(sigma/2) lowerCAmelCase__ = (sin(UpperCamelCase_ ) ** 2) * (cos(UpperCamelCase_ ) ** 2) lowerCAmelCase__ = cos(sigma / 2 ) ** 2 lowerCAmelCase__ = (sigma - sin(UpperCamelCase_ )) * (x_numerator / x_demonimator) # Intermediate Y value # Y = (sigma + sin(sigma)) * cos^2Psin^2Q / sin^2(sigma/2) lowerCAmelCase__ = (cos(UpperCamelCase_ ) ** 2) * (sin(UpperCamelCase_ ) ** 2) lowerCAmelCase__ = sin(sigma / 2 ) ** 2 lowerCAmelCase__ = (sigma + sin(UpperCamelCase_ )) * (y_numerator / y_denominator) return EQUATORIAL_RADIUS * (sigma - ((flattening / 2) * (x_value + y_value))) if __name__ == "__main__": import doctest doctest.testmod()
48
'''simple docstring''' import unittest import numpy as np from diffusers import OnnxStableDiffusionInpaintPipelineLegacy from diffusers.utils.testing_utils import ( is_onnx_available, load_image, load_numpy, nightly, require_onnxruntime, require_torch_gpu, ) if is_onnx_available(): import onnxruntime as ort @nightly @require_onnxruntime @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): @property def __magic_name__ ( self : List[Any] ) -> List[str]: return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __magic_name__ ( self : Optional[Any] ) -> Union[str, Any]: SCREAMING_SNAKE_CASE__ : Tuple =ort.SessionOptions() SCREAMING_SNAKE_CASE__ : Dict =False return options def __magic_name__ ( self : Tuple ) -> int: SCREAMING_SNAKE_CASE__ : Optional[int] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo.png''' ) SCREAMING_SNAKE_CASE__ : List[str] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/overture-creations-5sI6fQgYIuo_mask.png''' ) SCREAMING_SNAKE_CASE__ : Tuple =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/in_paint/red_cat_sitting_on_a_park_bench_onnx.npy''' ) # using the PNDM scheduler by default SCREAMING_SNAKE_CASE__ : str =OnnxStableDiffusionInpaintPipelineLegacy.from_pretrained( '''CompVis/stable-diffusion-v1-4''' , revision='''onnx''' , safety_checker=__lowercase , feature_extractor=__lowercase , provider=self.gpu_provider , sess_options=self.gpu_options , ) pipe.set_progress_bar_config(disable=__lowercase ) SCREAMING_SNAKE_CASE__ : Any ='''A red cat sitting on a park bench''' SCREAMING_SNAKE_CASE__ : Optional[int] =np.random.RandomState(0 ) SCREAMING_SNAKE_CASE__ : int =pipe( prompt=__lowercase , image=__lowercase , mask_image=__lowercase , strength=0.75 , guidance_scale=7.5 , num_inference_steps=15 , generator=__lowercase , output_type='''np''' , ) SCREAMING_SNAKE_CASE__ : Optional[Any] =output.images[0] assert image.shape == (5_12, 5_12, 3) assert np.abs(expected_image - image ).max() < 1e-2
296
0
import unittest from transformers import MPNetConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) class a : def __init__( self , A_ , A_=13 , A_=7 , A_=True , A_=True , A_=False , A_=True , A_=99 , A_=64 , A_=5 , A_=4 , A_=64 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=3 , A_=4 , A_=None , ): '''simple docstring''' _UpperCAmelCase : Dict = parent _UpperCAmelCase : str = batch_size _UpperCAmelCase : List[Any] = seq_length _UpperCAmelCase : Optional[Any] = is_training _UpperCAmelCase : Optional[int] = use_input_mask _UpperCAmelCase : Union[str, Any] = use_token_type_ids _UpperCAmelCase : Optional[int] = use_labels _UpperCAmelCase : str = vocab_size _UpperCAmelCase : Any = hidden_size _UpperCAmelCase : Optional[Any] = num_hidden_layers _UpperCAmelCase : List[str] = num_attention_heads _UpperCAmelCase : Any = intermediate_size _UpperCAmelCase : Optional[int] = hidden_act _UpperCAmelCase : Optional[int] = hidden_dropout_prob _UpperCAmelCase : str = attention_probs_dropout_prob _UpperCAmelCase : List[str] = max_position_embeddings _UpperCAmelCase : Any = type_vocab_size _UpperCAmelCase : str = type_sequence_label_size _UpperCAmelCase : int = initializer_range _UpperCAmelCase : List[Any] = num_labels _UpperCAmelCase : Tuple = num_choices _UpperCAmelCase : Optional[int] = scope def _UpperCAmelCase ( self ): '''simple docstring''' return MPNetConfig.from_pretrained("microsoft/mpnet-base" ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase : Optional[int] = None if self.use_input_mask: _UpperCAmelCase : int = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase : List[str] = None _UpperCAmelCase : List[Any] = None _UpperCAmelCase : Optional[int] = None if self.use_labels: _UpperCAmelCase : Dict = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase : Any = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase : str = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase : Optional[int] = self.get_config() return config, input_ids, input_mask, sequence_labels, token_labels, choice_labels def _UpperCAmelCase ( self ): '''simple docstring''' return MPNetConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , initializer_range=self.initializer_range , ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Any = MPNetModel(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : str = model(A_ , A_ ) _UpperCAmelCase : List[Any] = model(A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : List[str] = MPNetForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : Dict = model( A_ , attention_mask=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : str = MPNetForSequenceClassification(A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : Optional[Any] = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : Tuple = self.num_choices _UpperCAmelCase : List[str] = MPNetForMultipleChoice(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : Any = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Tuple = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() _UpperCAmelCase : Any = model( A_ , attention_mask=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def _UpperCAmelCase ( self , A_ , A_ , A_ , A_ , A_ , A_ ): '''simple docstring''' _UpperCAmelCase : int = self.num_labels _UpperCAmelCase : Dict = MPNetForTokenClassification(config=A_ ) model.to(A_ ) model.eval() _UpperCAmelCase : Tuple = model(A_ , attention_mask=A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.prepare_config_and_inputs() ((_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase) , (_UpperCAmelCase)) : Optional[Any] = config_and_inputs _UpperCAmelCase : List[str] = {"input_ids": input_ids, "attention_mask": input_mask} return config, inputs_dict @require_torch class a ( UpperCAmelCase , UpperCAmelCase , unittest.TestCase ): _lowercase = ( ( MPNetForMaskedLM, MPNetForMultipleChoice, MPNetForQuestionAnswering, MPNetForSequenceClassification, MPNetForTokenClassification, MPNetModel, ) if is_torch_available() else () ) _lowercase = ( { "feature-extraction": MPNetModel, "fill-mask": MPNetForMaskedLM, "question-answering": MPNetForQuestionAnswering, "text-classification": MPNetForSequenceClassification, "token-classification": MPNetForTokenClassification, "zero-shot": MPNetForSequenceClassification, } if is_torch_available() else {} ) _lowercase = False _lowercase = True def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[int] = MPNetModelTester(self ) _UpperCAmelCase : Tuple = ConfigTester(self , config_class=A_ , hidden_size=37 ) def _UpperCAmelCase ( self ): '''simple docstring''' self.config_tester.run_common_tests() def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_model(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_sequence_classification(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_multiple_choice(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_token_classification(*A_ ) def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_mpnet_for_question_answering(*A_ ) @require_torch class a ( unittest.TestCase ): @slow def _UpperCAmelCase ( self ): '''simple docstring''' _UpperCAmelCase : Dict = MPNetModel.from_pretrained("microsoft/mpnet-base" ) _UpperCAmelCase : str = torch.tensor([[0, 345, 232, 328, 740, 140, 1695, 69, 6078, 1588, 2]] ) _UpperCAmelCase : Optional[Any] = model(A_ )[0] _UpperCAmelCase : Any = torch.Size((1, 11, 768) ) self.assertEqual(output.shape , A_ ) _UpperCAmelCase : Optional[Any] = torch.tensor( [[[-0.05_50, 0.19_43, -0.07_40], [-0.05_62, 0.22_11, -0.05_79], [-0.04_37, 0.33_37, -0.06_41]]] ) # compare the actual values for a slice. self.assertTrue(torch.allclose(output[:, :3, :3] , A_ , atol=1e-4 ) )
467
import warnings from pathlib import Path from typing import List, Tuple, Union import fire from torch import nn from transformers import AutoModelForSeqaSeqLM, AutoTokenizer, PreTrainedModel from transformers.utils import logging SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: nn.ModuleList , lowerCAmelCase: nn.ModuleList , lowerCAmelCase: List[int] ) -> None: _UpperCAmelCase : str = nn.ModuleList([src_layers[i] for i in layers_to_copy] ) assert len(lowerCAmelCase ) == len(lowerCAmelCase ), F'{len(lowerCAmelCase )} != {len(lowerCAmelCase )}' dest_layers.load_state_dict(layers_to_copy.state_dict() ) SCREAMING_SNAKE_CASE_ = { # maps num layers in teacher -> num_layers in student -> which teacher layers to copy. # 12: bart, 16: pegasus, 6: marian/Helsinki-NLP 12: { 1: [0], # This says that if the teacher has 12 layers and the student has 1, copy layer 0 of the teacher 2: [0, 6], 3: [0, 6, 11], 4: [0, 4, 8, 11], 6: [0, 2, 4, 7, 9, 11], 9: [0, 1, 2, 4, 5, 7, 9, 10, 11], 12: list(range(12)), }, 16: { # maps num layers in student -> which teacher layers to copy 1: [0], 2: [0, 15], 3: [0, 8, 15], 4: [0, 5, 10, 15], 6: [0, 3, 6, 9, 12, 15], 8: [0, 2, 4, 6, 8, 10, 12, 15], 9: [0, 1, 3, 5, 7, 9, 11, 13, 15], 12: [0, 1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 15], 16: list(range(16)), }, 6: {1: [0], 2: [0, 5], 3: [0, 2, 5], 4: [0, 1, 3, 5], 6: list(range(6))}, } SCREAMING_SNAKE_CASE_ = { # maps num layers in student -> which teacher layers to copy. 6: {1: [5], 2: [3, 5], 3: [1, 4, 5], 4: [1, 2, 4, 5]}, 12: {1: [11], 2: [5, 11], 3: [3, 7, 11], 6: [1, 3, 5, 8, 10, 11]}, 16: {1: [15], 4: [4, 9, 12, 15], 8: [1, 3, 5, 7, 9, 11, 13, 15]}, } def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Any , lowerCAmelCase: List[str] ) -> Dict: try: _UpperCAmelCase : int = LAYERS_TO_COPY[n_teacher][n_student] return val except KeyError: if n_student != n_teacher: warnings.warn( F'no hardcoded layers to copy for teacher {n_teacher} -> student {n_student}, defaulting to first' F' {n_student}' ) return list(range(lowerCAmelCase ) ) def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: List[Any] , lowerCAmelCase: Optional[Any] ) -> List[int]: if n_student > n_teacher: raise ValueError(F'Cannot perform intermediate supervision for student {n_student} > teacher {n_teacher}' ) elif n_teacher == n_student: return list(range(lowerCAmelCase ) ) elif n_student == 1: return [n_teacher - 1] else: return LAYERS_TO_SUPERVISE[n_teacher][n_student] def __SCREAMING_SNAKE_CASE ( lowerCAmelCase: Union[str, PreTrainedModel] , lowerCAmelCase: Union[str, Path] = "student" , lowerCAmelCase: Union[int, None] = None , lowerCAmelCase: Union[int, None] = None , lowerCAmelCase: str=False , lowerCAmelCase: Union[str, Any]=None , lowerCAmelCase: Any=None , **lowerCAmelCase: str , ) -> Tuple[PreTrainedModel, List[int], List[int]]: _UpperCAmelCase : Dict = "encoder_layers and decoder_layers cannot be both None-- you would just have an identical teacher." assert (e is not None) or (d is not None), _msg if isinstance(lowerCAmelCase , lowerCAmelCase ): AutoTokenizer.from_pretrained(lowerCAmelCase ).save_pretrained(lowerCAmelCase ) # purely for convenience _UpperCAmelCase : Dict = AutoModelForSeqaSeqLM.from_pretrained(lowerCAmelCase ).eval() else: assert isinstance(lowerCAmelCase , lowerCAmelCase ), F'teacher must be a model or string got type {type(lowerCAmelCase )}' _UpperCAmelCase : List[str] = teacher.config.to_diff_dict() try: _UpperCAmelCase , _UpperCAmelCase : Any = teacher.config.encoder_layers, teacher.config.decoder_layers if e is None: _UpperCAmelCase : int = teacher_e if d is None: _UpperCAmelCase : Optional[Any] = teacher_d init_kwargs.update({"encoder_layers": e, "decoder_layers": d} ) except AttributeError: # T5 if hasattr(teacher.config , "num_encoder_layers" ): _UpperCAmelCase , _UpperCAmelCase : int = teacher.config.num_encoder_layers, teacher.config.num_decoder_layers else: _UpperCAmelCase , _UpperCAmelCase : Dict = teacher.config.num_layers, teacher.config.num_decoder_layers if e is None: _UpperCAmelCase : List[Any] = teacher_e if d is None: _UpperCAmelCase : Optional[int] = teacher_d if hasattr(teacher.config , "num_encoder_layers" ): init_kwargs.update({"num_encoder_layers": e, "num_decoder_layers": d} ) else: init_kwargs.update({"num_layers": e, "num_decoder_layers": d} ) # Kwargs to instantiate student: teacher kwargs with updated layer numbers + **extra_config_kwargs init_kwargs.update(lowerCAmelCase ) # Copy weights _UpperCAmelCase : Any = teacher.config_class(**lowerCAmelCase ) _UpperCAmelCase : Tuple = AutoModelForSeqaSeqLM.from_config(lowerCAmelCase ) # Start by copying the full teacher state dict this will copy the first N teacher layers to the student. _UpperCAmelCase : List[Any] = student.load_state_dict(teacher.state_dict() , strict=lowerCAmelCase ) assert info.missing_keys == [], info.missing_keys # every student key should have a teacher keys. if copy_first_teacher_layers: # Our copying is done. We just log and save _UpperCAmelCase , _UpperCAmelCase : Any = list(range(lowerCAmelCase ) ), list(range(lowerCAmelCase ) ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to' F' {save_path}' ) student.save_pretrained(lowerCAmelCase ) return student, e_layers_to_copy, d_layers_to_copy # Decide which layers of the teacher to copy. Not exactly alternating -- we try to keep first and last layer. if e_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) if d_layers_to_copy is None: _UpperCAmelCase : List[int] = pick_layers_to_copy(lowerCAmelCase , lowerCAmelCase ) try: if hasattr( lowerCAmelCase , "prophetnet" ): # For ProphetNet, student.model.encoder.layers is called student.prophetnet.encoder.layers copy_layers(teacher.prophetnet.encoder.layers , student.prophetnet.encoder.layers , lowerCAmelCase ) copy_layers(teacher.prophetnet.decoder.layers , student.prophetnet.decoder.layers , lowerCAmelCase ) else: copy_layers(teacher.model.encoder.layers , student.model.encoder.layers , lowerCAmelCase ) copy_layers(teacher.model.decoder.layers , student.model.decoder.layers , lowerCAmelCase ) except AttributeError: # For t5, student.model.encoder.layers is called student.encoder.block copy_layers(teacher.encoder.block , student.encoder.block , lowerCAmelCase ) copy_layers(teacher.decoder.block , student.decoder.block , lowerCAmelCase ) logger.info( F'Copied encoder layers {e_layers_to_copy} and decoder layers {d_layers_to_copy}. Saving them to {save_path}' ) _UpperCAmelCase : str = { "teacher_type": teacher.config.model_type, "copied_encoder_layers": e_layers_to_copy, "copied_decoder_layers": d_layers_to_copy, } student.save_pretrained(lowerCAmelCase ) # Save information about copying for easier reproducibility return student, e_layers_to_copy, d_layers_to_copy if __name__ == "__main__": fire.Fire(create_student_by_copying_alternating_layers)
467
1
import argparse import json import os import fairseq import torch from torch import nn from transformers import ( SpeechaTextaConfig, SpeechaTextaForCausalLM, SpeechaTextaTokenizer, SpeechEncoderDecoderConfig, SpeechEncoderDecoderModel, WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaModel, logging, ) logging.set_verbosity_info() __magic_name__ =logging.get_logger(__name__) __magic_name__ ={ '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.k_proj''': '''encoder.layers.*.attention.k_proj''', '''self_attn.v_proj''': '''encoder.layers.*.attention.v_proj''', '''self_attn.q_proj''': '''encoder.layers.*.attention.q_proj''', '''self_attn.out_proj''': '''encoder.layers.*.attention.out_proj''', '''self_attn_layer_norm''': '''encoder.layers.*.layer_norm''', '''fc1''': '''encoder.layers.*.feed_forward.intermediate_dense''', '''fc2''': '''encoder.layers.*.feed_forward.output_dense''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } __magic_name__ =[ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def __UpperCamelCase ( A , A , A , A , A ): for attribute in key.split('''.''' ): UpperCamelCase__ = getattr(A , A ) if weight_type is not None: UpperCamelCase__ = getattr(A , A ).shape else: UpperCamelCase__ = hf_pointer.shape assert hf_shape == value.shape, ( f"Shape of hf {key + '.' + weight_type if weight_type is not None else ''} is {hf_shape}, but should be" f" {value.shape} for {full_name}" ) if weight_type == "weight": UpperCamelCase__ = value elif weight_type == "weight_g": UpperCamelCase__ = value elif weight_type == "weight_v": UpperCamelCase__ = value elif weight_type == "bias": UpperCamelCase__ = value else: UpperCamelCase__ = value logger.info(f"{key + '.' + weight_type if weight_type is not None else ''} was initialized from {full_name}." ) def __UpperCamelCase ( A , A ): UpperCamelCase__ = [] UpperCamelCase__ = fairseq_model.state_dict() UpperCamelCase__ = hf_model.feature_extractor # if encoder has different dim to decoder -> use proj_weight UpperCamelCase__ = None for name, value in fairseq_dict.items(): UpperCamelCase__ = False if "conv_layers" in name: load_conv_layer( A , A , A , A , hf_model.config.feat_extract_norm == '''group''' , ) UpperCamelCase__ = True elif name.split('''.''' )[0] == "proj": UpperCamelCase__ = fairseq_model.proj UpperCamelCase__ = True else: for key, mapped_key in MAPPING.items(): if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: UpperCamelCase__ = True if "*" in mapped_key: UpperCamelCase__ = name.split(A )[0].split('''.''' )[-2] UpperCamelCase__ = mapped_key.replace('''*''' , A ) if "weight_g" in name: UpperCamelCase__ = '''weight_g''' elif "weight_v" in name: UpperCamelCase__ = '''weight_v''' elif "bias" in name: UpperCamelCase__ = '''bias''' elif "weight" in name: UpperCamelCase__ = '''weight''' else: UpperCamelCase__ = None set_recursively(A , A , A , A , A ) continue if not is_used: unused_weights.append(A ) logger.warning(f"Unused weights: {unused_weights}" ) return proj_weight def __UpperCamelCase ( A , A , A , A , A ): UpperCamelCase__ = full_name.split('''conv_layers.''' )[-1] UpperCamelCase__ = name.split('''.''' ) UpperCamelCase__ = int(items[0] ) UpperCamelCase__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found." ) UpperCamelCase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found." ) UpperCamelCase__ = value logger.info(f"Feat extract conv layer {layer_id} was initialized from {full_name}." ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( f"{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was" " found." ) UpperCamelCase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( f"{full_name} has size {value.shape}, but" f" {feature_extractor[layer_id].layer_norm.weight.data.shape} was found." ) UpperCamelCase__ = value logger.info(f"Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}." ) else: unused_weights.append(A ) def __UpperCamelCase ( A ): UpperCamelCase__ , UpperCamelCase__ = emb.weight.shape UpperCamelCase__ = nn.Linear(A , A , bias=A ) UpperCamelCase__ = emb.weight.data return lin_layer def __UpperCamelCase ( A ): with open(A , '''r''' , encoding='''utf-8''' ) as f: UpperCamelCase__ = f.readlines() UpperCamelCase__ = [line.split(''' ''' )[0] for line in lines] UpperCamelCase__ = len(A ) UpperCamelCase__ = { '''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3, } vocab_dict.update(dict(zip(A , range(4 , num_words + 4 ) ) ) ) return vocab_dict @torch.no_grad() def __UpperCamelCase ( A , A , A , A , A , A , A , ): UpperCamelCase__ = WavaVecaConfig.from_pretrained(A ) UpperCamelCase__ = SpeechaTextaConfig.from_pretrained( A , vocab_size=A , decoder_layers=A , do_stable_layer_norm=A ) UpperCamelCase__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=A , return_attention_mask=A , ) UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) UpperCamelCase__ = model[0].eval() # set weights for wav2vec2 encoder UpperCamelCase__ = WavaVecaModel(A ) UpperCamelCase__ = recursively_load_weights_wavaveca(model.encoder , A ) UpperCamelCase__ = SpeechaTextaForCausalLM(A ) UpperCamelCase__ , UpperCamelCase__ = hf_decoder.model.decoder.load_state_dict(model.decoder.state_dict() , strict=A ) # set output linear layer unexpected_keys.remove('''embed_out''' ) UpperCamelCase__ = nn.Parameter(model.decoder.embed_out.detach() ) # layer norm is init to identity matrix so leaving it is fine logger.warning(f"The following keys are missing when loading the decoder weights: {missing_keys}" ) logger.warning(f"The following keys are unexpected when loading the decoder weights: {unexpected_keys}" ) UpperCamelCase__ = SpeechEncoderDecoderModel(encoder=A , decoder=A ) UpperCamelCase__ = False # add projection layer UpperCamelCase__ = nn.Parameter(projection_layer.weight ) UpperCamelCase__ = nn.Parameter(projection_layer.bias ) UpperCamelCase__ = create_vocab_dict(A ) with open(os.path.join(A , '''vocab.json''' ) , '''w''' ) as fp: json.dump(A , A ) UpperCamelCase__ = SpeechaTextaTokenizer(os.path.join(A , '''vocab.json''' ) ) tokenizer.save_pretrained(A ) UpperCamelCase__ = hf_wavavec.config.to_dict() UpperCamelCase__ = tokenizer.pad_token_id UpperCamelCase__ = tokenizer.bos_token_id UpperCamelCase__ = tokenizer.eos_token_id UpperCamelCase__ = '''speech_to_text_2''' UpperCamelCase__ = '''wav2vec2''' UpperCamelCase__ = SpeechEncoderDecoderConfig.from_dict(A ) hf_wavavec.save_pretrained(A ) feature_extractor.save_pretrained(A ) if __name__ == "__main__": __magic_name__ =argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument( '''--encoder_config_path''', default='''facebook/wav2vec2-large-lv60''', type=str, help='''Path to hf encoder wav2vec2 checkpoint config''', ) parser.add_argument( '''--decoder_config_path''', default='''facebook/s2t-small-mustc-en-fr-st''', type=str, help='''Path to hf decoder s2t checkpoint config''', ) parser.add_argument('''--vocab_size''', default=10224, type=int, help='''Vocab size of decoder''') parser.add_argument('''--num_decoder_layers''', default=7, type=int, help='''Number of decoder layers''') __magic_name__ =parser.parse_args() convert_wavaveca_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.dict_path, encoder_config_path=args.encoder_config_path, decoder_config_path=args.decoder_config_path, vocab_size=args.vocab_size, num_decoder_layers=args.num_decoder_layers, )
415
import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, BatchEncoding, MBartTokenizer, MBartTokenizerFast, is_torch_available from transformers.testing_utils import ( get_tests_dir, nested_simplify, require_sentencepiece, require_tokenizers, require_torch, ) from ...test_tokenization_common import TokenizerTesterMixin __magic_name__ =get_tests_dir('''fixtures/test_sentencepiece.model''') if is_torch_available(): from transformers.models.mbart.modeling_mbart import shift_tokens_right __magic_name__ =250004 __magic_name__ =250020 @require_sentencepiece @require_tokenizers class _A ( __UpperCamelCase , unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Any =MBartTokenizer SCREAMING_SNAKE_CASE_ : Any =MBartTokenizerFast SCREAMING_SNAKE_CASE_ : Optional[int] =True SCREAMING_SNAKE_CASE_ : Optional[Any] =True def _a (self ) -> Optional[Any]: '''simple docstring''' super().setUp() # We have a SentencePiece fixture for testing UpperCamelCase__ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) tokenizer.save_pretrained(self.tmpdirname ) def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = MBartTokenizer(SCREAMING_SNAKE_CASE_ , keep_accents=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) , [value + tokenizer.fairseq_offset for value in [285, 46, 10, 170, 382]] , ) UpperCamelCase__ = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) UpperCamelCase__ = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 602, 347, 347, 347, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCamelCase__ = tokenizer.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_ ) self.assertListEqual( SCREAMING_SNAKE_CASE_ , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def _a (self ) -> Dict: '''simple docstring''' if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCamelCase__ = (self.rust_tokenizer_class, '''hf-internal-testing/tiny-random-mbart''', {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(F"{tokenizer.__class__.__name__} ({pretrained_name})" ): UpperCamelCase__ = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) UpperCamelCase__ = tuple(f for f in tokenizer_r_files if '''tokenizer.json''' not in f ) self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=True UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it save with the same files self.assertSequenceEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) # Save tokenizer rust, legacy_format=False UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = tokenizer_r.save_pretrained(SCREAMING_SNAKE_CASE_ , legacy_format=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_p.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Checks it saved the tokenizer.json file self.assertTrue(any('''tokenizer.json''' in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCamelCase__ = tokenizer_r.from_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = tokenizer_p.from_pretrained(SCREAMING_SNAKE_CASE_ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) shutil.rmtree(SCREAMING_SNAKE_CASE_ ) @require_torch @require_sentencepiece @require_tokenizers class _A ( unittest.TestCase ): SCREAMING_SNAKE_CASE_ : Union[str, Any] ="facebook/mbart-large-en-ro" SCREAMING_SNAKE_CASE_ : Any =[ " UN Chief Says There Is No Military Solution in Syria", " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for Syria is that \"there is no military solution\" to the nearly five-year conflict and more weapons will only worsen the violence and misery for millions of people.", ] SCREAMING_SNAKE_CASE_ : Union[str, Any] =[ "Şeful ONU declară că nu există o soluţie militară în Siria", "Secretarul General Ban Ki-moon declară că răspunsul său la intensificarea sprijinului militar al Rusiei" " pentru Siria este că \"nu există o soluţie militară\" la conflictul de aproape cinci ani şi că noi arme nu vor" " face decât să înrăutăţească violenţele şi mizeria pentru milioane de oameni.", ] SCREAMING_SNAKE_CASE_ : str =[82_74, 12_78_73, 2_59_16, 7, 86_22, 20_71, 4_38, 6_74_85, 53, 18_78_95, 23, 5_17_12, 2, EN_CODE] @classmethod def _a (cls ) -> Optional[Any]: '''simple docstring''' UpperCamelCase__ = MBartTokenizer.from_pretrained( cls.checkpoint_name , src_lang='''en_XX''' , tgt_lang='''ro_RO''' ) UpperCamelCase__ = 1 return cls def _a (self ) -> Dict: '''simple docstring''' self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ar_AR'''] , 25_0001 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''en_EN'''] , 25_0004 ) self.assertEqual(self.tokenizer.fairseq_tokens_to_ids['''ro_RO'''] , 25_0020 ) def _a (self ) -> Union[str, Any]: '''simple docstring''' UpperCamelCase__ = self.tokenizer.batch_encode_plus(self.src_text ).input_ids[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Dict: '''simple docstring''' self.assertIn(SCREAMING_SNAKE_CASE_ , self.tokenizer.all_special_ids ) UpperCamelCase__ = [RO_CODE, 884, 9019, 96, 9, 916, 8_6792, 36, 1_8743, 1_5596, 5, 2] UpperCamelCase__ = self.tokenizer.decode(SCREAMING_SNAKE_CASE_ , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = self.tokenizer.decode(generated_ids[1:] , skip_special_tokens=SCREAMING_SNAKE_CASE_ ) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertNotIn(self.tokenizer.eos_token , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = ['''this is gunna be a long sentence ''' * 20] assert isinstance(src_text[0] , SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = 10 UpperCamelCase__ = self.tokenizer(SCREAMING_SNAKE_CASE_ , max_length=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ ).input_ids[0] self.assertEqual(ids[-2] , 2 ) self.assertEqual(ids[-1] , SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , SCREAMING_SNAKE_CASE_ ) def _a (self ) -> Optional[int]: '''simple docstring''' self.assertListEqual(self.tokenizer.convert_tokens_to_ids(['''<mask>''', '''ar_AR'''] ) , [25_0026, 25_0001] ) def _a (self ) -> Any: '''simple docstring''' UpperCamelCase__ = tempfile.mkdtemp() UpperCamelCase__ = self.tokenizer.fairseq_tokens_to_ids self.tokenizer.save_pretrained(SCREAMING_SNAKE_CASE_ ) UpperCamelCase__ = MBartTokenizer.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertDictEqual(new_tok.fairseq_tokens_to_ids , SCREAMING_SNAKE_CASE_ ) @require_torch def _a (self ) -> List[Any]: '''simple docstring''' UpperCamelCase__ = self.tokenizer(self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , return_tensors='''pt''' ) UpperCamelCase__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) # fairseq batch: https://gist.github.com/sshleifer/cba08bc2109361a74ac3760a7e30e4f4 assert batch.input_ids[1][-2:].tolist() == [2, EN_CODE] assert batch.decoder_input_ids[1][0].tolist() == RO_CODE assert batch.decoder_input_ids[1][-1] == 2 assert batch.labels[1][-2:].tolist() == [2, RO_CODE] @require_torch def _a (self ) -> Dict: '''simple docstring''' UpperCamelCase__ = self.tokenizer( self.src_text , text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=len(self.expected_src_tokens ) , return_tensors='''pt''' , ) UpperCamelCase__ = shift_tokens_right(batch['''labels'''] , self.tokenizer.pad_token_id ) self.assertIsInstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertEqual((2, 14) , batch.input_ids.shape ) self.assertEqual((2, 14) , batch.attention_mask.shape ) UpperCamelCase__ = batch.input_ids.tolist()[0] self.assertListEqual(self.expected_src_tokens , SCREAMING_SNAKE_CASE_ ) self.assertEqual(2 , batch.decoder_input_ids[0, -1] ) # EOS # Test that special tokens are reset self.assertEqual(self.tokenizer.prefix_tokens , [] ) self.assertEqual(self.tokenizer.suffix_tokens , [self.tokenizer.eos_token_id, EN_CODE] ) def _a (self ) -> str: '''simple docstring''' UpperCamelCase__ = self.tokenizer(self.src_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=3 , return_tensors='''pt''' ) UpperCamelCase__ = self.tokenizer( text_target=self.tgt_text , padding=SCREAMING_SNAKE_CASE_ , truncation=SCREAMING_SNAKE_CASE_ , max_length=10 , return_tensors='''pt''' ) UpperCamelCase__ = targets['''input_ids'''] UpperCamelCase__ = shift_tokens_right(SCREAMING_SNAKE_CASE_ , self.tokenizer.pad_token_id ) self.assertEqual(batch.input_ids.shape[1] , 3 ) self.assertEqual(batch.decoder_input_ids.shape[1] , 10 ) @require_torch def _a (self ) -> Tuple: '''simple docstring''' UpperCamelCase__ = self.tokenizer._build_translation_inputs( '''A test''' , return_tensors='''pt''' , src_lang='''en_XX''' , tgt_lang='''ar_AR''' ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ ) , { # A, test, EOS, en_XX '''input_ids''': [[62, 3034, 2, 25_0004]], '''attention_mask''': [[1, 1, 1, 1]], # ar_AR '''forced_bos_token_id''': 25_0001, } , )
415
1
import gc import random import tempfile import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, DDIMScheduler, LMSDiscreteScheduler, PNDMScheduler, UNetaDConditionModel from diffusers.pipelines.stable_diffusion_safe import StableDiffusionPipelineSafe as StableDiffusionPipeline from diffusers.utils import floats_tensor, nightly, torch_device from diffusers.utils.testing_utils import require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' snake_case: Optional[Any] = 1 snake_case: List[Any] = 3 snake_case: List[str] = (32, 32) snake_case: List[str] = floats_tensor((batch_size, num_channels) + sizes , rng=random.Random(0 ) ).to(__lowerCamelCase ) return image @property def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' torch.manual_seed(0 ) snake_case: Any = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""DownBlock2D""", """CrossAttnDownBlock2D""") , up_block_types=("""CrossAttnUpBlock2D""", """UpBlock2D""") , cross_attention_dim=32 , ) return model @property def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' torch.manual_seed(0 ) snake_case: List[Any] = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=["""DownEncoderBlock2D""", """DownEncoderBlock2D"""] , up_block_types=["""UpDecoderBlock2D""", """UpDecoderBlock2D"""] , latent_channels=4 , ) return model @property def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' torch.manual_seed(0 ) snake_case: Any = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) return CLIPTextModel(__lowerCamelCase ) @property def lowerCAmelCase_ ( self ) -> int: '''simple docstring''' def extract(*__lowerCamelCase , **__lowerCamelCase ): class lowerCamelCase : def __init__( self ) -> Optional[Any]: '''simple docstring''' snake_case: Union[str, Any] = torch.ones([0] ) def lowerCAmelCase_ ( self , __lowerCamelCase ) -> List[Any]: '''simple docstring''' self.pixel_values.to(__lowerCamelCase ) return self return Out() return extract def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' snake_case: Any = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case: Union[str, Any] = self.dummy_cond_unet snake_case: Tuple = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule="""scaled_linear""" , clip_sample=__lowerCamelCase , set_alpha_to_one=__lowerCamelCase , ) snake_case: Optional[Any] = self.dummy_vae snake_case: Optional[int] = self.dummy_text_encoder snake_case: Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk snake_case: List[str] = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) snake_case: Dict = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case: int = """A painting of a squirrel eating a burger""" snake_case: List[Any] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) snake_case: Optional[int] = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) snake_case: List[str] = output.images snake_case: Any = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) snake_case: List[str] = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCamelCase , )[0] snake_case: Optional[Any] = image[0, -3:, -3:, -1] snake_case: Dict = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case: Optional[Any] = np.array([0.5_756, 0.6_118, 0.5_005, 0.5_041, 0.5_471, 0.4_726, 0.4_976, 0.4_865, 0.4_864] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self ) -> List[str]: '''simple docstring''' snake_case: Union[str, Any] = """cpu""" # ensure determinism for the device-dependent torch.Generator snake_case: str = self.dummy_cond_unet snake_case: List[str] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) snake_case: Any = self.dummy_vae snake_case: int = self.dummy_text_encoder snake_case: Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # make sure here that pndm scheduler skips prk snake_case: Optional[Any] = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) snake_case: str = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case: str = """A painting of a squirrel eating a burger""" snake_case: Optional[int] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) snake_case: List[str] = sd_pipe([prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" ) snake_case: int = output.images snake_case: List[str] = torch.Generator(device=__lowerCamelCase ).manual_seed(0 ) snake_case: List[str] = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=6.0 , num_inference_steps=2 , output_type="""np""" , return_dict=__lowerCamelCase , )[0] snake_case: int = image[0, -3:, -3:, -1] snake_case: int = image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) snake_case: Union[str, Any] = np.array([0.5_125, 0.5_716, 0.4_828, 0.5_060, 0.5_650, 0.4_768, 0.5_185, 0.4_895, 0.4_993] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 assert np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self ) -> str: '''simple docstring''' snake_case: str = StableDiffusionPipeline.from_pretrained( """hf-internal-testing/tiny-stable-diffusion-lms-pipe""" , safety_checker=__lowerCamelCase ) assert isinstance(__lowerCamelCase , __lowerCamelCase ) assert isinstance(pipe.scheduler , __lowerCamelCase ) assert pipe.safety_checker is None snake_case: Optional[Any] = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None # check that there's no error when saving a pipeline with one of the models being None with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(__lowerCamelCase ) snake_case: List[Any] = StableDiffusionPipeline.from_pretrained(__lowerCamelCase ) # sanity check that the pipeline still works assert pipe.safety_checker is None snake_case: int = pipe("""example prompt""" , num_inference_steps=2 ).images[0] assert image is not None @unittest.skipIf(torch_device != """cuda""" , """This test requires a GPU""" ) def lowerCAmelCase_ ( self ) -> Optional[Any]: '''simple docstring''' snake_case: List[str] = self.dummy_cond_unet snake_case: Optional[Any] = PNDMScheduler(skip_prk_steps=__lowerCamelCase ) snake_case: List[Any] = self.dummy_vae snake_case: List[Any] = self.dummy_text_encoder snake_case: Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) # put models in fp16 snake_case: Tuple = unet.half() snake_case: Optional[Any] = vae.half() snake_case: Union[str, Any] = bert.half() # make sure here that pndm scheduler skips prk snake_case: str = StableDiffusionPipeline( unet=__lowerCamelCase , scheduler=__lowerCamelCase , vae=__lowerCamelCase , text_encoder=__lowerCamelCase , tokenizer=__lowerCamelCase , safety_checker=__lowerCamelCase , feature_extractor=self.dummy_extractor , ) snake_case: Dict = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case: List[Any] = """A painting of a squirrel eating a burger""" snake_case: Dict = sd_pipe([prompt] , num_inference_steps=2 , output_type="""np""" ).images assert image.shape == (1, 64, 64, 3) @nightly @require_torch_gpu class lowerCamelCase ( unittest.TestCase ): def lowerCAmelCase_ ( self ) -> Union[str, Any]: '''simple docstring''' super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' snake_case: str = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCamelCase ) snake_case: Optional[Any] = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) snake_case: Tuple = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case: List[str] = ( """portrait of girl with smokey eyes makeup in abandoned hotel, grange clothes, redshift, wide high angle""" """ coloured polaroid photograph with flash, kodak film, hyper real, stunning moody cinematography, with""" """ anamorphic lenses, by maripol, fallen angels by wong kar - wai, style of suspiria and neon demon and""" """ children from bahnhof zoo, detailed """ ) snake_case: List[str] = 40_03_66_03_46 snake_case: List[str] = 7 # without safety guidance (sld_guidance_scale = 0) snake_case: List[Any] = torch.manual_seed(__lowerCamelCase ) snake_case: str = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) snake_case: Optional[int] = output.images snake_case: int = image[0, -3:, -3:, -1] snake_case: Any = [0.2_278, 0.2_231, 0.2_249, 0.2_333, 0.2_303, 0.1_885, 0.2_273, 0.2_144, 0.2_176] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 # without safety guidance (strong configuration) snake_case: Optional[Any] = torch.manual_seed(__lowerCamelCase ) snake_case: List[Any] = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) snake_case: str = output.images snake_case: List[str] = image[0, -3:, -3:, -1] snake_case: Optional[Any] = [0.2_383, 0.2_276, 0.236, 0.2_192, 0.2_186, 0.2_053, 0.1_971, 0.1_901, 0.1_719] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self ) -> Tuple: '''simple docstring''' snake_case: int = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" , safety_checker=__lowerCamelCase ) snake_case: Dict = LMSDiscreteScheduler.from_config(sd_pipe.scheduler.config ) snake_case: Tuple = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case: str = """padme amidala taking a bath artwork, safe for work, no nudity""" snake_case: List[str] = 27_34_97_17_55 snake_case: Tuple = 7 snake_case: int = torch.manual_seed(__lowerCamelCase ) snake_case: str = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) snake_case: Optional[int] = output.images snake_case: Tuple = image[0, -3:, -3:, -1] snake_case: Any = [0.3_502, 0.3_622, 0.3_396, 0.3_642, 0.3_478, 0.3_318, 0.35, 0.3_348, 0.3_297] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 snake_case: str = torch.manual_seed(__lowerCamelCase ) snake_case: Optional[int] = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) snake_case: List[str] = output.images snake_case: List[str] = image[0, -3:, -3:, -1] snake_case: Optional[int] = [0.5_531, 0.5_206, 0.4_895, 0.5_156, 0.5_182, 0.4_751, 0.4_802, 0.4_803, 0.4_443] assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 def lowerCAmelCase_ ( self ) -> Optional[int]: '''simple docstring''' snake_case: str = StableDiffusionPipeline.from_pretrained("""runwayml/stable-diffusion-v1-5""" ) snake_case: int = sd_pipe.to(__lowerCamelCase ) sd_pipe.set_progress_bar_config(disable=__lowerCamelCase ) snake_case: List[Any] = ( """the four horsewomen of the apocalypse, painting by tom of finland, gaston bussiere, craig mullins, j. c.""" """ leyendecker""" ) snake_case: Tuple = 10_44_35_52_34 snake_case: List[Any] = 12 snake_case: str = torch.manual_seed(__lowerCamelCase ) snake_case: Optional[Any] = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=0 , ) snake_case: Optional[int] = output.images snake_case: Any = image[0, -3:, -3:, -1] snake_case: Optional[Any] = np.array([0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-7 snake_case: Union[str, Any] = torch.manual_seed(__lowerCamelCase ) snake_case: Optional[int] = sd_pipe( [prompt] , generator=__lowerCamelCase , guidance_scale=__lowerCamelCase , num_inference_steps=50 , output_type="""np""" , width=5_12 , height=5_12 , sld_guidance_scale=20_00 , sld_warmup_steps=7 , sld_threshold=0.025 , sld_momentum_scale=0.5 , sld_mom_beta=0.7 , ) snake_case: Any = output.images snake_case: Any = image[0, -3:, -3:, -1] snake_case: Dict = np.array([0.5_818, 0.6_285, 0.6_835, 0.6_019, 0.625, 0.6_754, 0.6_096, 0.6_334, 0.6_561] ) assert image.shape == (1, 5_12, 5_12, 3) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2
164
import math def a_ (_lowerCAmelCase : list , _lowerCAmelCase : int = 0 , _lowerCAmelCase : int = 0 )-> list: snake_case: List[str] = end or len(_lowerCAmelCase ) for i in range(_lowerCAmelCase , _lowerCAmelCase ): snake_case: Union[str, Any] = i snake_case: List[str] = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: snake_case: str = array[temp_index - 1] temp_index -= 1 snake_case: int = temp_index_value return array def a_ (_lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int )-> None: # Max Heap snake_case: str = index snake_case: Union[str, Any] = 2 * index + 1 # Left Node snake_case: List[Any] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: snake_case: List[str] = left_index if right_index < heap_size and array[largest] < array[right_index]: snake_case: Optional[Any] = right_index if largest != index: snake_case , snake_case: Optional[Any] = array[largest], array[index] heapify(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def a_ (_lowerCAmelCase : list )-> list: snake_case: List[str] = len(_lowerCAmelCase ) for i in range(n // 2 , -1 , -1 ): heapify(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) for i in range(n - 1 , 0 , -1 ): snake_case , snake_case: List[str] = array[0], array[i] heapify(_lowerCAmelCase , 0 , _lowerCAmelCase ) return array def a_ (_lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int )-> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a_ (_lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int )-> int: snake_case: str = low snake_case: Tuple = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i snake_case , snake_case: List[str] = array[j], array[i] i += 1 def a_ (_lowerCAmelCase : list )-> list: if len(_lowerCAmelCase ) == 0: return array snake_case: Union[str, Any] = 2 * math.ceil(math.loga(len(_lowerCAmelCase ) ) ) snake_case: Dict = 16 return intro_sort(_lowerCAmelCase , 0 , len(_lowerCAmelCase ) , _lowerCAmelCase , _lowerCAmelCase ) def a_ (_lowerCAmelCase : list , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int , _lowerCAmelCase : int )-> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(_lowerCAmelCase ) max_depth -= 1 snake_case: Optional[Any] = median_of_a(_lowerCAmelCase , _lowerCAmelCase , start + ((end - start) // 2) + 1 , end - 1 ) snake_case: Union[str, Any] = partition(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) intro_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) snake_case: Union[str, Any] = p return insertion_sort(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase : Any = input('Enter numbers separated by a comma : ').strip() __lowerCAmelCase : List[Any] = [float(item) for item in user_input.split(',')] print(sort(unsorted))
164
1
'''simple docstring''' import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( BertTokenizer, ViltConfig, ViltForImageAndTextRetrieval, ViltForImagesAndTextClassification, ViltForMaskedLM, ViltForQuestionAnswering, ViltImageProcessor, ViltProcessor, ) from transformers.utils import logging logging.set_verbosity_info() lowercase_ : str = logging.get_logger(__name__) def SCREAMING_SNAKE_CASE ( lowercase_ : Union[str, Any] , lowercase_ : Any=False , lowercase_ : Any=False , lowercase_ : Union[str, Any]=False ): lowercase = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F"""transformer.blocks.{i}.norm1.weight""", F"""vilt.encoder.layer.{i}.layernorm_before.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm1.bias""", F"""vilt.encoder.layer.{i}.layernorm_before.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.weight""", F"""vilt.encoder.layer.{i}.attention.output.dense.weight""") ) rename_keys.append( (F"""transformer.blocks.{i}.attn.proj.bias""", F"""vilt.encoder.layer.{i}.attention.output.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.weight""", F"""vilt.encoder.layer.{i}.layernorm_after.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.norm2.bias""", F"""vilt.encoder.layer.{i}.layernorm_after.bias""") ) rename_keys.append( (F"""transformer.blocks.{i}.mlp.fc1.weight""", F"""vilt.encoder.layer.{i}.intermediate.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc1.bias""", F"""vilt.encoder.layer.{i}.intermediate.dense.bias""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.weight""", F"""vilt.encoder.layer.{i}.output.dense.weight""") ) rename_keys.append((F"""transformer.blocks.{i}.mlp.fc2.bias""", F"""vilt.encoder.layer.{i}.output.dense.bias""") ) # embeddings rename_keys.extend( [ # text embeddings ("""text_embeddings.word_embeddings.weight""", """vilt.embeddings.text_embeddings.word_embeddings.weight"""), ( """text_embeddings.position_embeddings.weight""", """vilt.embeddings.text_embeddings.position_embeddings.weight""", ), ("""text_embeddings.position_ids""", """vilt.embeddings.text_embeddings.position_ids"""), ( """text_embeddings.token_type_embeddings.weight""", """vilt.embeddings.text_embeddings.token_type_embeddings.weight""", ), ("""text_embeddings.LayerNorm.weight""", """vilt.embeddings.text_embeddings.LayerNorm.weight"""), ("""text_embeddings.LayerNorm.bias""", """vilt.embeddings.text_embeddings.LayerNorm.bias"""), # patch embeddings ("""transformer.cls_token""", """vilt.embeddings.cls_token"""), ("""transformer.patch_embed.proj.weight""", """vilt.embeddings.patch_embeddings.projection.weight"""), ("""transformer.patch_embed.proj.bias""", """vilt.embeddings.patch_embeddings.projection.bias"""), ("""transformer.pos_embed""", """vilt.embeddings.position_embeddings"""), # token type embeddings ("""token_type_embeddings.weight""", """vilt.embeddings.token_type_embeddings.weight"""), ] ) # final layernorm + pooler rename_keys.extend( [ ("""transformer.norm.weight""", """vilt.layernorm.weight"""), ("""transformer.norm.bias""", """vilt.layernorm.bias"""), ("""pooler.dense.weight""", """vilt.pooler.dense.weight"""), ("""pooler.dense.bias""", """vilt.pooler.dense.bias"""), ] ) # classifier head(s) if vqa_model: # classification head rename_keys.extend( [ ("""vqa_classifier.0.weight""", """classifier.0.weight"""), ("""vqa_classifier.0.bias""", """classifier.0.bias"""), ("""vqa_classifier.1.weight""", """classifier.1.weight"""), ("""vqa_classifier.1.bias""", """classifier.1.bias"""), ("""vqa_classifier.3.weight""", """classifier.3.weight"""), ("""vqa_classifier.3.bias""", """classifier.3.bias"""), ] ) elif nlvr_model: # classification head rename_keys.extend( [ ("""nlvr2_classifier.0.weight""", """classifier.0.weight"""), ("""nlvr2_classifier.0.bias""", """classifier.0.bias"""), ("""nlvr2_classifier.1.weight""", """classifier.1.weight"""), ("""nlvr2_classifier.1.bias""", """classifier.1.bias"""), ("""nlvr2_classifier.3.weight""", """classifier.3.weight"""), ("""nlvr2_classifier.3.bias""", """classifier.3.bias"""), ] ) else: pass return rename_keys def SCREAMING_SNAKE_CASE ( lowercase_ : str , lowercase_ : Optional[int] ): for i in range(config.num_hidden_layers ): lowercase = """vilt.""" # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) lowercase = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.weight""" ) lowercase = state_dict.pop(F"""transformer.blocks.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict lowercase = in_proj_weight[ : config.hidden_size, : ] lowercase = in_proj_bias[: config.hidden_size] lowercase = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] lowercase = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] lowercase = in_proj_weight[ -config.hidden_size :, : ] lowercase = in_proj_bias[-config.hidden_size :] def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple ): lowercase = ["""head.weight""", """head.bias"""] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) def SCREAMING_SNAKE_CASE ( lowercase_ : Tuple , lowercase_ : Optional[Any] , lowercase_ : Union[str, Any] ): lowercase = dct.pop(lowercase_ ) lowercase = val @torch.no_grad() def SCREAMING_SNAKE_CASE ( lowercase_ : Dict , lowercase_ : Union[str, Any] ): lowercase = ViltConfig(image_size=384 , patch_size=32 , tie_word_embeddings=lowercase_ ) lowercase = False lowercase = False lowercase = False lowercase = False if "vqa" in checkpoint_url: lowercase = True lowercase = 3129 lowercase = """huggingface/label-files""" lowercase = """vqa2-id2label.json""" lowercase = json.load(open(hf_hub_download(lowercase_ , lowercase_ , repo_type="""dataset""" ) , """r""" ) ) lowercase = {int(lowercase_ ): v for k, v in idalabel.items()} lowercase = idalabel lowercase = {v: k for k, v in idalabel.items()} lowercase = ViltForQuestionAnswering(lowercase_ ) elif "nlvr" in checkpoint_url: lowercase = True lowercase = 2 lowercase = {0: """False""", 1: """True"""} lowercase = {v: k for k, v in config.idalabel.items()} lowercase = 3 lowercase = ViltForImagesAndTextClassification(lowercase_ ) elif "irtr" in checkpoint_url: lowercase = True lowercase = ViltForImageAndTextRetrieval(lowercase_ ) elif "mlm_itm" in checkpoint_url: lowercase = True lowercase = ViltForMaskedLM(lowercase_ ) else: raise ValueError("""Unknown model type""" ) # load state_dict of original model, remove and rename some keys lowercase = torch.hub.load_state_dict_from_url(lowercase_ , map_location="""cpu""" )["""state_dict"""] lowercase = create_rename_keys(lowercase_ , lowercase_ , lowercase_ , lowercase_ ) for src, dest in rename_keys: rename_key(lowercase_ , lowercase_ , lowercase_ ) read_in_q_k_v(lowercase_ , lowercase_ ) if mlm_model or irtr_model: lowercase = ["""itm_score.fc.weight""", """itm_score.fc.bias"""] for k in ignore_keys: state_dict.pop(lowercase_ , lowercase_ ) # load state dict into HuggingFace model model.eval() if mlm_model: lowercase , lowercase = model.load_state_dict(lowercase_ , strict=lowercase_ ) assert missing_keys == ["mlm_score.decoder.bias"] else: model.load_state_dict(lowercase_ ) # Define processor lowercase = ViltImageProcessor(size=384 ) lowercase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) lowercase = ViltProcessor(lowercase_ , lowercase_ ) # Forward pass on example inputs (image + text) if nlvr_model: lowercase = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowercase_ ).raw ) lowercase = Image.open(requests.get("""https://lil.nlp.cornell.edu/nlvr/exs/ex0_0.jpg""" , stream=lowercase_ ).raw ) lowercase = ( """The left image contains twice the number of dogs as the right image, and at least two dogs in total are""" """ standing.""" ) lowercase = processor(lowercase_ , lowercase_ , return_tensors="""pt""" ) lowercase = processor(lowercase_ , lowercase_ , return_tensors="""pt""" ) lowercase = model( input_ids=encoding_a.input_ids , pixel_values=encoding_a.pixel_values , pixel_values_a=encoding_a.pixel_values , ) else: lowercase = Image.open(requests.get("""http://images.cocodataset.org/val2017/000000039769.jpg""" , stream=lowercase_ ).raw ) if mlm_model: lowercase = """a bunch of [MASK] laying on a [MASK].""" else: lowercase = """How many cats are there?""" lowercase = processor(lowercase_ , lowercase_ , return_tensors="""pt""" ) lowercase = model(**lowercase_ ) # Verify outputs if mlm_model: lowercase = torch.Size([1, 11, 3_0522] ) lowercase = torch.tensor([-12.5_061, -12.5_123, -12.5_174] ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase_ , atol=1E-4 ) # verify masked token prediction equals "cats" lowercase = outputs.logits[0, 4, :].argmax(-1 ).item() assert tokenizer.decode([predicted_id] ) == "cats" elif vqa_model: lowercase = torch.Size([1, 3129] ) lowercase = torch.tensor([-15.9_495, -18.1_472, -10.3_041] ) assert torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape assert torch.allclose(outputs.logits[0, 0, :3] , lowercase_ , atol=1E-4 ) # verify vqa prediction equals "2" lowercase = outputs.logits.argmax(-1 ).item() assert model.config.idalabel[predicted_idx] == "2" elif nlvr_model: lowercase = torch.Size([1, 2] ) lowercase = torch.tensor([-2.8_721, 2.1_291] ) assert torch.allclose(outputs.logits[0, :3] , lowercase_ , atol=1E-4 ) assert outputs.logits.shape == expected_shape Path(lowercase_ ).mkdir(exist_ok=lowercase_ ) print(F"""Saving model and processor to {pytorch_dump_folder_path}""" ) model.save_pretrained(lowercase_ ) processor.save_pretrained(lowercase_ ) if __name__ == "__main__": lowercase_ : Optional[Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--checkpoint_url''', default='''https://github.com/dandelin/ViLT/releases/download/200k/vilt_200k_mlm_itm.ckpt''', type=str, help='''URL of the checkpoint you\'d like to convert.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) lowercase_ : Union[str, Any] = parser.parse_args() convert_vilt_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path)
588
'''simple docstring''' from __future__ import annotations import math import numpy as np from numpy.linalg import norm def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : np.ndarray ): return math.sqrt(sum(pow(a - b , 2 ) for a, b in zip(lowercase_ , lowercase_ ) ) ) def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : np.ndarray ): if dataset.ndim != value_array.ndim: lowercase = ( """Wrong input data's dimensions... """ F"""dataset : {dataset.ndim}, value_array : {value_array.ndim}""" ) raise ValueError(lowercase_ ) try: if dataset.shape[1] != value_array.shape[1]: lowercase = ( """Wrong input data's shape... """ F"""dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}""" ) raise ValueError(lowercase_ ) except IndexError: if dataset.ndim != value_array.ndim: raise TypeError("""Wrong shape""" ) if dataset.dtype != value_array.dtype: lowercase = ( """Input data have different datatype... """ F"""dataset : {dataset.dtype}, value_array : {value_array.dtype}""" ) raise TypeError(lowercase_ ) lowercase = [] for value in value_array: lowercase = euclidean(lowercase_ , dataset[0] ) lowercase = dataset[0].tolist() for dataset_value in dataset[1:]: lowercase = euclidean(lowercase_ , lowercase_ ) if dist > temp_dist: lowercase = temp_dist lowercase = dataset_value.tolist() answer.append([vector, dist] ) return answer def SCREAMING_SNAKE_CASE ( lowercase_ : np.ndarray , lowercase_ : np.ndarray ): return np.dot(lowercase_ , lowercase_ ) / (norm(lowercase_ ) * norm(lowercase_ )) if __name__ == "__main__": import doctest doctest.testmod()
588
1
"""simple docstring""" from __future__ import annotations import unittest import numpy as np from transformers import LayoutLMConfig, is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers.models.layoutlm.modeling_tf_layoutlm import ( TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST, TFLayoutLMForMaskedLM, TFLayoutLMForQuestionAnswering, TFLayoutLMForSequenceClassification, TFLayoutLMForTokenClassification, TFLayoutLMModel, ) class lowercase : def __init__( self : List[str] , _lowerCamelCase : Dict , _lowerCamelCase : List[Any]=13 , _lowerCamelCase : List[str]=7 , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : str=True , _lowerCamelCase : Optional[int]=True , _lowerCamelCase : str=True , _lowerCamelCase : str=99 , _lowerCamelCase : str=32 , _lowerCamelCase : List[str]=2 , _lowerCamelCase : List[str]=4 , _lowerCamelCase : Union[str, Any]=37 , _lowerCamelCase : List[str]="gelu" , _lowerCamelCase : Dict=0.1 , _lowerCamelCase : Any=0.1 , _lowerCamelCase : Tuple=5_12 , _lowerCamelCase : Optional[int]=16 , _lowerCamelCase : int=2 , _lowerCamelCase : Any=0.02 , _lowerCamelCase : Any=3 , _lowerCamelCase : Dict=4 , _lowerCamelCase : List[str]=None , _lowerCamelCase : Tuple=10_00 , ): """simple docstring""" A_ : Any = parent A_ : List[Any] = batch_size A_ : Dict = seq_length A_ : Tuple = is_training A_ : List[str] = use_input_mask A_ : List[Any] = use_token_type_ids A_ : str = use_labels A_ : Union[str, Any] = vocab_size A_ : Optional[Any] = hidden_size A_ : Union[str, Any] = num_hidden_layers A_ : List[Any] = num_attention_heads A_ : int = intermediate_size A_ : Union[str, Any] = hidden_act A_ : Any = hidden_dropout_prob A_ : Optional[Any] = attention_probs_dropout_prob A_ : int = max_position_embeddings A_ : List[Any] = type_vocab_size A_ : Optional[int] = type_sequence_label_size A_ : Tuple = initializer_range A_ : Tuple = num_labels A_ : Any = num_choices A_ : Union[str, Any] = scope A_ : Union[str, Any] = range_bbox def a_ ( self : int ): """simple docstring""" A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) # convert bbox to numpy since TF does not support item assignment A_ : str = ids_tensor([self.batch_size, self.seq_length, 4] , self.range_bbox ).numpy() # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: A_ : int = bbox[i, j, 3] A_ : Any = bbox[i, j, 1] A_ : List[Any] = t if bbox[i, j, 2] < bbox[i, j, 0]: A_ : int = bbox[i, j, 2] A_ : int = bbox[i, j, 0] A_ : List[Any] = t A_ : str = tf.convert_to_tensor(_lowerCamelCase ) A_ : Optional[int] = None if self.use_input_mask: A_ : List[Any] = random_attention_mask([self.batch_size, self.seq_length] ) A_ : Optional[Any] = None if self.use_token_type_ids: A_ : Optional[Any] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) A_ : int = None A_ : Any = None A_ : Optional[Any] = None if self.use_labels: A_ : Optional[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) A_ : List[Any] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) A_ : List[Any] = ids_tensor([self.batch_size] , self.num_choices ) A_ : Dict = LayoutLMConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , ) return config, input_ids, bbox, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def a_ ( self : str , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : int , _lowerCamelCase : Dict , _lowerCamelCase : int , _lowerCamelCase : Any ): """simple docstring""" A_ : str = TFLayoutLMModel(config=_lowerCamelCase ) A_ : str = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) A_ : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase , token_type_ids=_lowerCamelCase ) A_ : Dict = model(_lowerCamelCase , _lowerCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) self.parent.assertEqual(result.pooler_output.shape , (self.batch_size, self.hidden_size) ) def a_ ( self : str , _lowerCamelCase : Any , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Dict , _lowerCamelCase : Tuple , _lowerCamelCase : List[str] ): """simple docstring""" A_ : List[Any] = TFLayoutLMForMaskedLM(config=_lowerCamelCase ) A_ : Union[str, Any] = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def a_ ( self : Dict , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : List[str] , _lowerCamelCase : List[Any] , _lowerCamelCase : Dict , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] ): """simple docstring""" A_ : Union[str, Any] = self.num_labels A_ : Union[str, Any] = TFLayoutLMForSequenceClassification(config=_lowerCamelCase ) A_ : int = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def a_ ( self : Optional[Any] , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Tuple , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] , _lowerCamelCase : Optional[int] , _lowerCamelCase : List[Any] ): """simple docstring""" A_ : List[Any] = self.num_labels A_ : Tuple = TFLayoutLMForTokenClassification(config=_lowerCamelCase ) A_ : str = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def a_ ( self : List[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : int , _lowerCamelCase : int , _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Any , _lowerCamelCase : Optional[int] , _lowerCamelCase : Optional[Any] ): """simple docstring""" A_ : Dict = TFLayoutLMForQuestionAnswering(config=_lowerCamelCase ) A_ : Optional[int] = model(_lowerCamelCase , _lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = self.prepare_config_and_inputs() ( ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ( A_ ) , ) : Optional[int] = config_and_inputs A_ : Dict = { '''input_ids''': input_ids, '''bbox''': bbox, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask, } return config, inputs_dict @require_tf class lowercase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase ): __lowerCAmelCase : List[Any] = ( ( TFLayoutLMModel, TFLayoutLMForMaskedLM, TFLayoutLMForTokenClassification, TFLayoutLMForSequenceClassification, TFLayoutLMForQuestionAnswering, ) if is_tf_available() else () ) __lowerCAmelCase : List[str] = ( { 'feature-extraction': TFLayoutLMModel, 'fill-mask': TFLayoutLMForMaskedLM, 'text-classification': TFLayoutLMForSequenceClassification, 'token-classification': TFLayoutLMForTokenClassification, 'zero-shot': TFLayoutLMForSequenceClassification, } if is_tf_available() else {} ) __lowerCAmelCase : List[str] = False __lowerCAmelCase : Optional[int] = True __lowerCAmelCase : Optional[int] = 10 def a_ ( self : str ): """simple docstring""" A_ : str = TFLayoutLMModelTester(self ) A_ : Optional[Any] = ConfigTester(self , config_class=_lowerCamelCase , hidden_size=37 ) def a_ ( self : Optional[int] ): """simple docstring""" self.config_tester.run_common_tests() def a_ ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*_lowerCamelCase ) def a_ ( self : int ): """simple docstring""" A_ : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*_lowerCamelCase ) def a_ ( self : Tuple ): """simple docstring""" A_ : str = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*_lowerCamelCase ) def a_ ( self : Dict ): """simple docstring""" A_ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*_lowerCamelCase ) @slow def a_ ( self : List[Any] ): """simple docstring""" for model_name in TF_LAYOUTLM_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: A_ : int = TFLayoutLMModel.from_pretrained(_lowerCamelCase ) self.assertIsNotNone(_lowerCamelCase ) @unittest.skip('''Onnx compliancy broke with TF 2.10''' ) def a_ ( self : Optional[Any] ): """simple docstring""" pass def lowercase_ ( ): """simple docstring""" A_ : Any = tf.convert_to_tensor([[101,1019,1014,1016,1037,1_2849,4747,1004,1_4246,2278,5439,4524,5002,2930,2193,2930,4341,3208,1005,1055,2171,2848,1_1300,3531,102],[101,4070,4034,7020,1024,3058,1015,1013,2861,1013,6070,1_9274,2772,6205,2_7814,1_6147,1_6147,4343,2047,1_0283,1_0969,1_4389,1012,2338,102]] ) # noqa: E231 A_ : Union[str, Any] = tf.convert_to_tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1],] ) # noqa: E231 A_ : Tuple = tf.convert_to_tensor([[[0,0,0,0],[423,237,440,251],[427,272,441,287],[419,115,437,129],[961,885,992,912],[256,38,330,58],[256,38,330,58],[336,42,353,57],[360,39,401,56],[360,39,401,56],[411,39,471,59],[479,41,528,59],[533,39,630,60],[67,113,134,131],[141,115,209,132],[68,149,133,166],[141,149,187,164],[195,148,287,165],[195,148,287,165],[195,148,287,165],[295,148,349,165],[441,149,492,166],[497,149,546,164],[64,201,125,218],[1000,1000,1000,1000]],[[0,0,0,0],[662,150,754,166],[665,199,742,211],[519,213,554,228],[519,213,554,228],[134,433,187,454],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[130,467,204,480],[314,469,376,482],[504,684,582,706],[941,825,973,900],[941,825,973,900],[941,825,973,900],[941,825,973,900],[610,749,652,765],[130,659,168,672],[176,657,237,672],[238,657,312,672],[443,653,628,672],[443,653,628,672],[716,301,825,317],[1000,1000,1000,1000]]] ) # noqa: E231 A_ : Dict = tf.convert_to_tensor([[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],[0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]] ) # noqa: E231 # these are sequence labels (i.e. at the token level) A_ : Dict = tf.convert_to_tensor([[-100,10,10,10,9,1,-100,7,7,-100,7,7,4,2,5,2,8,8,-100,-100,5,0,3,2,-100],[-100,12,12,12,-100,12,10,-100,-100,-100,-100,10,12,9,-100,-100,-100,10,10,10,9,12,-100,10,-100]] ) # noqa: E231 # fmt: on return input_ids, attention_mask, bbox, token_type_ids, labels @require_tf class lowercase ( unittest.TestCase ): @slow def a_ ( self : Tuple ): """simple docstring""" A_ : Optional[Any] = TFLayoutLMModel.from_pretrained('''microsoft/layoutlm-base-uncased''' ) A_ , A_ , A_ , A_ , A_ : List[str] = prepare_layoutlm_batch_inputs() # forward pass A_ : Optional[Any] = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) # test the sequence output on [0, :3, :3] A_ : str = tf.convert_to_tensor( [[0.1785, -0.1947, -0.0425], [-0.3254, -0.2807, 0.2553], [-0.5391, -0.3322, 0.3364]] , ) self.assertTrue(np.allclose(outputs.last_hidden_state[0, :3, :3] , _lowerCamelCase , atol=1E-3 ) ) # test the pooled output on [1, :3] A_ : Optional[int] = tf.convert_to_tensor([-0.6580, -0.0214, 0.8552] ) self.assertTrue(np.allclose(outputs.pooler_output[1, :3] , _lowerCamelCase , atol=1E-3 ) ) @slow def a_ ( self : List[Any] ): """simple docstring""" A_ : Optional[int] = TFLayoutLMForSequenceClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=2 ) A_ , A_ , A_ , A_ , A_ : Optional[Any] = prepare_layoutlm_batch_inputs() # forward pass A_ : Optional[int] = model( input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=tf.convert_to_tensor([1, 1] ) , ) # test whether we get a loss as a scalar A_ : Optional[Any] = outputs.loss A_ : int = (2,) self.assertEqual(loss.shape , _lowerCamelCase ) # test the shape of the logits A_ : Optional[Any] = outputs.logits A_ : List[Any] = (2, 2) self.assertEqual(logits.shape , _lowerCamelCase ) @slow def a_ ( self : Optional[Any] ): """simple docstring""" A_ : List[str] = TFLayoutLMForTokenClassification.from_pretrained('''microsoft/layoutlm-base-uncased''' , num_labels=13 ) A_ , A_ , A_ , A_ , A_ : List[Any] = prepare_layoutlm_batch_inputs() # forward pass A_ : Optional[Any] = model( input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase , labels=_lowerCamelCase ) # test the shape of the logits A_ : int = outputs.logits A_ : List[str] = tf.convert_to_tensor((2, 25, 13) ) self.assertEqual(logits.shape , _lowerCamelCase ) @slow def a_ ( self : Union[str, Any] ): """simple docstring""" A_ : List[str] = TFLayoutLMForQuestionAnswering.from_pretrained('''microsoft/layoutlm-base-uncased''' ) A_ , A_ , A_ , A_ , A_ : Any = prepare_layoutlm_batch_inputs() # forward pass A_ : Optional[Any] = model(input_ids=_lowerCamelCase , bbox=_lowerCamelCase , attention_mask=_lowerCamelCase , token_type_ids=_lowerCamelCase ) # test the shape of the logits A_ : int = tf.convert_to_tensor((2, 25) ) self.assertEqual(outputs.start_logits.shape , _lowerCamelCase ) self.assertEqual(outputs.end_logits.shape , _lowerCamelCase )
701
"""simple docstring""" import unittest from transformers import SPIECE_UNDERLINE, XLNetTokenizer, XLNetTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin _lowerCamelCase : Tuple = get_tests_dir('fixtures/test_sentencepiece.model') @require_sentencepiece @require_tokenizers class lowercase ( __UpperCAmelCase , unittest.TestCase): __lowerCAmelCase : Tuple = XLNetTokenizer __lowerCAmelCase : Optional[int] = XLNetTokenizerFast __lowerCAmelCase : Union[str, Any] = True __lowerCAmelCase : Any = True def a_ ( self : List[str] ): """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing A_ : Optional[Any] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) tokenizer.sanitize_special_tokens() tokenizer.save_pretrained(self.tmpdirname ) def a_ ( self : List[str] ): """simple docstring""" A_ : Optional[int] = '''<s>''' A_ : int = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(_lowerCamelCase ) , _lowerCamelCase ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(_lowerCamelCase ) , _lowerCamelCase ) def a_ ( self : str ): """simple docstring""" A_ : Any = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , '''<unk>''' ) self.assertEqual(vocab_keys[1] , '''<s>''' ) self.assertEqual(vocab_keys[-1] , '''<eod>''' ) self.assertEqual(len(_lowerCamelCase ) , 10_06 ) def a_ ( self : Optional[int] ): """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_00 ) def a_ ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = XLNetTokenizer(_lowerCamelCase , keep_accents=_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.tokenize('''This is a test''' ) self.assertListEqual(_lowerCamelCase , ['''▁This''', '''▁is''', '''▁a''', '''▁t''', '''est'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_lowerCamelCase ) , [2_85, 46, 10, 1_70, 3_82] ) A_ : List[str] = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''é''', '''.''', ] , ) A_ : int = tokenizer.convert_tokens_to_ids(_lowerCamelCase ) self.assertListEqual(_lowerCamelCase , [8, 21, 84, 55, 24, 19, 7, 0, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 0, 4] ) A_ : Union[str, Any] = tokenizer.convert_ids_to_tokens(_lowerCamelCase ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''<unk>''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''s''', '''<unk>''', '''.''', ] , ) def a_ ( self : List[str] ): """simple docstring""" A_ : Optional[Any] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) A_ : str = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''''', '''i''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''▁he''', '''ll''', '''o'''] ) def a_ ( self : Optional[Any] ): """simple docstring""" A_ : Optional[int] = XLNetTokenizer(_lowerCamelCase , do_lower_case=_lowerCamelCase ) A_ : Tuple = tokenizer.tokenize('''I was born in 92000, and this is falsé.''' ) self.assertListEqual( _lowerCamelCase , [ SPIECE_UNDERLINE + '''I''', SPIECE_UNDERLINE + '''was''', SPIECE_UNDERLINE + '''b''', '''or''', '''n''', SPIECE_UNDERLINE + '''in''', SPIECE_UNDERLINE + '''''', '''9''', '''2''', '''0''', '''0''', '''0''', ''',''', SPIECE_UNDERLINE + '''and''', SPIECE_UNDERLINE + '''this''', SPIECE_UNDERLINE + '''is''', SPIECE_UNDERLINE + '''f''', '''al''', '''se''', '''.''', ] , ) @slow def a_ ( self : Dict ): """simple docstring""" A_ : int = XLNetTokenizer.from_pretrained('''xlnet-base-cased''' ) A_ : Optional[int] = tokenizer.encode('''sequence builders''' , add_special_tokens=_lowerCamelCase ) A_ : Optional[int] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_lowerCamelCase ) A_ : Tuple = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase ) A_ : Union[str, Any] = tokenizer.build_inputs_with_special_tokens(_lowerCamelCase , _lowerCamelCase ) assert encoded_sentence == text + [4, 3] assert encoded_pair == text + [4] + text_a + [4, 3] @slow def a_ ( self : List[str] ): """simple docstring""" A_ : Dict = {'''input_ids''': [[17, 2_14_42, 2_70, 17, 10, 1_46_45, 3_18, 34, 17, 45_46, 31_45, 7_87, 13, 77_52, 2_20_18, 23, 21, 17, 45_46, 31_45, 7_87, 13, 33_52, 1_44_31, 13, 55_00, 11, 11_76, 5_80, 13, 1_68_19, 47_97, 23, 17, 10, 1_71_35, 6_58, 19, 4_57, 79_32, 13, 1_84, 19, 31_54, 1_71_35, 64_68, 19, 14_04, 1_22_69, 19, 42_29, 53_56, 1_62_64, 46, 19, 17, 2_05_45, 1_03_95, 9, 9, 9, 11, 28, 64_21, 95_31, 2_07_29, 17, 10, 3_53, 1_70_22, 11, 21, 64_21, 95_31, 1_69_49, 17, 10, 1_15_09, 7_53, 11, 33, 95, 24_21, 73_85, 9_56, 1_44_31, 26_26, 25, 8_42, 73_85, 48_36, 21, 14_29, 22_72, 98_55, 31_20, 1_61, 2_47_38, 19, 1_32_03, 6_58, 2_18, 7_87, 21, 4_30, 1_84_82, 8_47, 26_37, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 3_22, 2_21_78, 27, 10_64, 22, 9_56, 13, 1_11_01, 14_29, 58_54, 2_43_13, 1_89_53, 40, 4_22, 2_43_66, 68, 17_58, 37, 1_04_83, 1_42_57, 31, 2_07, 2_63, 21, 2_03, 37_73, 25, 71, 97_35, 9, 4, 3], [5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 32, 20_49, 34_42, 17, 1_38_94, 33_80, 23, 95, 18, 1_76_34, 22_88, 9, 4, 3]], '''token_type_ids''': [[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2], [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2]], '''attention_mask''': [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=_lowerCamelCase , model_name='''xlnet-base-cased''' , revision='''c841166438c31ec7ca9a106dee7bb312b73ae511''' , )
361
0
import inspect import unittest from transformers import BitConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_backbone_common import BackboneTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import BitBackbone, BitForImageClassification, BitImageProcessor, BitModel from transformers.models.bit.modeling_bit import BIT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image class lowercase_ : '''simple docstring''' def __init__( self : List[Any] , __UpperCAmelCase : Dict , __UpperCAmelCase : Optional[Any]=3 , __UpperCAmelCase : Optional[int]=32 , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Tuple=10 , __UpperCAmelCase : Tuple=[8, 16, 32, 64] , __UpperCAmelCase : Optional[int]=[1, 1, 2, 1] , __UpperCAmelCase : int=True , __UpperCAmelCase : Dict=True , __UpperCAmelCase : Union[str, Any]="relu" , __UpperCAmelCase : Dict=3 , __UpperCAmelCase : Optional[int]=None , __UpperCAmelCase : int=["stage2", "stage3", "stage4"] , __UpperCAmelCase : Tuple=[2, 3, 4] , __UpperCAmelCase : List[str]=1 , ) ->str: """simple docstring""" a = parent a = batch_size a = image_size a = num_channels a = embeddings_size a = hidden_sizes a = depths a = is_training a = use_labels a = hidden_act a = num_labels a = scope a = len(A_ ) a = out_features a = out_indices a = num_groups def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a = None if self.use_labels: a = ids_tensor([self.batch_size] , self.num_labels ) a = self.get_config() return config, pixel_values, labels def __lowerCAmelCase ( self : Optional[Any] ) ->Any: """simple docstring""" return BitConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , out_features=self.out_features , out_indices=self.out_indices , num_groups=self.num_groups , ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : Any , __UpperCAmelCase : List[Any] ) ->Optional[Any]: """simple docstring""" a = BitModel(config=A_ ) model.to(A_ ) model.eval() a = model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def __lowerCAmelCase ( self : Optional[Any] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : int , __UpperCAmelCase : Tuple ) ->Tuple: """simple docstring""" a = self.num_labels a = BitForImageClassification(A_ ) model.to(A_ ) model.eval() a = model(A_ , labels=A_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def __lowerCAmelCase ( self : Optional[int] , __UpperCAmelCase : Union[str, Any] , __UpperCAmelCase : str , __UpperCAmelCase : Optional[Any] ) ->str: """simple docstring""" a = BitBackbone(config=A_ ) model.to(A_ ) model.eval() a = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None a = None a = BitBackbone(config=A_ ) model.to(A_ ) model.eval() a = model(A_ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def __lowerCAmelCase ( self : List[Any] ) ->Union[str, Any]: """simple docstring""" a = self.prepare_config_and_inputs() a , a , a = config_and_inputs a = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowercase_ ( _lowercase , _lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = (BitModel, BitForImageClassification, BitBackbone) if is_torch_available() else () __snake_case = ( {'''feature-extraction''': BitModel, '''image-classification''': BitForImageClassification} if is_torch_available() else {} ) __snake_case = False __snake_case = False __snake_case = False __snake_case = False __snake_case = False def __lowerCAmelCase ( self : List[str] ) ->Optional[int]: """simple docstring""" a = BitModelTester(self ) a = ConfigTester(self , config_class=A_ , has_text_modality=A_ ) def __lowerCAmelCase ( self : int ) ->Optional[int]: """simple docstring""" self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def __lowerCAmelCase ( self : Optional[Any] ) ->Optional[Any]: """simple docstring""" return @unittest.skip(reason='''Bit does not output attentions''' ) def __lowerCAmelCase ( self : Optional[int] ) ->List[str]: """simple docstring""" pass @unittest.skip(reason='''Bit does not use inputs_embeds''' ) def __lowerCAmelCase ( self : List[str] ) ->Union[str, Any]: """simple docstring""" pass @unittest.skip(reason='''Bit does not support input and output embeddings''' ) def __lowerCAmelCase ( self : Union[str, Any] ) ->Dict: """simple docstring""" pass def __lowerCAmelCase ( self : str ) ->List[Any]: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(A_ ) a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a = [*signature.parameters.keys()] a = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , A_ ) def __lowerCAmelCase ( self : Optional[Any] ) ->List[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def __lowerCAmelCase ( self : List[str] ) ->Tuple: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_backbone(*A_ ) def __lowerCAmelCase ( self : Any ) ->int: """simple docstring""" a , a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a = model_class(config=A_ ) for name, module in model.named_modules(): if isinstance(A_ , (nn.BatchNormad, nn.GroupNorm) ): self.assertTrue( torch.all(module.weight == 1 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) self.assertTrue( torch.all(module.bias == 0 ) , msg=F"""Parameter {name} of model {model_class} seems not properly initialized""" , ) def __lowerCAmelCase ( self : Tuple ) ->int: """simple docstring""" def check_hidden_states_output(__UpperCAmelCase : Any , __UpperCAmelCase : List[str] , __UpperCAmelCase : int ): a = model_class(A_ ) model.to(A_ ) model.eval() with torch.no_grad(): a = model(**self._prepare_for_class(A_ , A_ ) ) a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states a = self.model_tester.num_stages self.assertEqual(len(A_ ) , expected_num_stages + 1 ) # Bit's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) a , a = self.model_tester.prepare_config_and_inputs_for_common() a = ['''preactivation''', '''bottleneck'''] for model_class in self.all_model_classes: for layer_type in layers_type: a = layer_type a = True check_hidden_states_output(A_ , A_ , A_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] a = True check_hidden_states_output(A_ , A_ , A_ ) @unittest.skip(reason='''Bit does not use feedforward chunking''' ) def __lowerCAmelCase ( self : List[Any] ) ->Optional[Any]: """simple docstring""" pass def __lowerCAmelCase ( self : Union[str, Any] ) ->List[Any]: """simple docstring""" a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*A_ ) @slow def __lowerCAmelCase ( self : Optional[int] ) ->Optional[Any]: """simple docstring""" for model_name in BIT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: a = BitModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _a ( ) -> int: a = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowercase_ ( unittest.TestCase ): '''simple docstring''' @cached_property def __lowerCAmelCase ( self : List[Any] ) ->int: """simple docstring""" return ( BitImageProcessor.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def __lowerCAmelCase ( self : Optional[int] ) ->Any: """simple docstring""" a = BitForImageClassification.from_pretrained(BIT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(A_ ) a = self.default_image_processor a = prepare_img() a = image_processor(images=A_ , return_tensors='''pt''' ).to(A_ ) # forward pass with torch.no_grad(): a = model(**A_ ) # verify the logits a = torch.Size((1, 1_000) ) self.assertEqual(outputs.logits.shape , A_ ) a = torch.tensor([[-0.6526, -0.5263, -1.4398]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , A_ , atol=1e-4 ) ) @require_torch class lowercase_ ( _lowercase , unittest.TestCase ): '''simple docstring''' __snake_case = (BitBackbone,) if is_torch_available() else () __snake_case = BitConfig __snake_case = False def __lowerCAmelCase ( self : Optional[int] ) ->Union[str, Any]: """simple docstring""" a = BitModelTester(self )
117
"""simple docstring""" import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _snake_case ( ): with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(snake_case__ ): requests.request('GET' , 'https://huggingface.co' ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request('GET' , 'https://huggingface.co' , timeout=1.0 ) @pytest.mark.integration def _snake_case ( ): with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request('GET' , 'https://huggingface.co' ) def _snake_case ( ): with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(snake_case__ ): http_head('https://huggingface.co' )
91
0
'''simple docstring''' import faiss # noqa: F401 # Here to have a nice missing dependency error message early on import numpy # noqa: F401 # Here to have a nice missing dependency error message early on import requests # noqa: F401 # Here to have a nice missing dependency error message early on import sklearn # noqa: F401 # Here to have a nice missing dependency error message early on import tqdm # noqa: F401 # Here to have a nice missing dependency error message early on from mauve import compute_mauve # From: mauve-text import datasets _lowerCamelCase : Union[str, Any] = "\\n@inproceedings{pillutla-etal:mauve:neurips2021,\n title={MAUVE: Measuring the Gap Between Neural Text and Human Text using Divergence Frontiers},\n author={Pillutla, Krishna and Swayamdipta, Swabha and Zellers, Rowan and Thickstun, John and Welleck, Sean and Choi, Yejin and Harchaoui, Zaid},\n booktitle = {NeurIPS},\n year = {2021}\n}\n\n" _lowerCamelCase : Optional[Any] = "\\nMAUVE is a library built on PyTorch and HuggingFace Transformers to measure the gap between neural text and human text with the eponymous MAUVE measure.\n\nMAUVE summarizes both Type I and Type II errors measured softly using Kullback–Leibler (KL) divergences.\n\nFor details, see the MAUVE paper: https://arxiv.org/abs/2102.01454 (Neurips, 2021).\n\nThis metrics is a wrapper around the official implementation of MAUVE:\nhttps://github.com/krishnap25/mauve\n" _lowerCamelCase : Union[str, Any] = "\nCalculates MAUVE scores between two lists of generated text and reference text.\nArgs:\n predictions: list of generated text to score. Each predictions\n should be a string with tokens separated by spaces.\n references: list of reference for each prediction. Each\n reference should be a string with tokens separated by spaces.\nOptional Args:\n num_buckets: the size of the histogram to quantize P and Q. Options: 'auto' (default) or an integer\n pca_max_data: the number data points to use for PCA dimensionality reduction prior to clustering. If -1, use all the data. Default -1\n kmeans_explained_var: amount of variance of the data to keep in dimensionality reduction by PCA. Default 0.9\n kmeans_num_redo: number of times to redo k-means clustering (the best objective is kept). Default 5\n kmeans_max_iter: maximum number of k-means iterations. Default 500\n featurize_model_name: name of the model from which features are obtained. Default 'gpt2-large' Use one of ['gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'].\n device_id: Device for featurization. Supply a GPU id (e.g. 0 or 3) to use GPU. If no GPU with this id is found, use CPU\n max_text_length: maximum number of tokens to consider. Default 1024\n divergence_curve_discretization_size: Number of points to consider on the divergence curve. Default 25\n mauve_scaling_factor: \"c\" from the paper. Default 5.\n verbose: If True (default), print running time updates\n seed: random seed to initialize k-means cluster assignments.\nReturns:\n mauve: MAUVE score, a number between 0 and 1. Larger values indicate that P and Q are closer,\n frontier_integral: Frontier Integral, a number between 0 and 1. Smaller values indicate that P and Q are closer,\n divergence_curve: a numpy.ndarray of shape (m, 2); plot it with matplotlib to view the divergence curve,\n p_hist: a discrete distribution, which is a quantized version of the text distribution p_text,\n q_hist: same as above, but with q_text.\nExamples:\n\n >>> # faiss segfaults in doctest for some reason, so the .compute call is not tested with doctest\n >>> import datasets\n >>> mauve = datasets.load_metric('mauve')\n >>> predictions = [\"hello there\", \"general kenobi\"]\n >>> references = [\"hello there\", \"general kenobi\"]\n >>> out = mauve.compute(predictions=predictions, references=references) # doctest: +SKIP\n >>> print(out.mauve) # doctest: +SKIP\n 1.0\n" @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class snake_case__ ( datasets.Metric ): '''simple docstring''' def UpperCamelCase ( self : Any ) -> Optional[Any]: return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''https://github.com/krishnap25/mauve''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Value('''string''' , id='''sequence''' ), } ) , codebase_urls=['''https://github.com/krishnap25/mauve'''] , reference_urls=[ '''https://arxiv.org/abs/2102.01454''', '''https://github.com/krishnap25/mauve''', ] , ) def UpperCamelCase ( self : Any , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : Optional[Any] , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : Dict=None , lowerCAmelCase_ : Any=None , lowerCAmelCase_ : str=None , lowerCAmelCase_ : List[str]="auto" , lowerCAmelCase_ : List[Any]=-1 , lowerCAmelCase_ : str=0.9 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : List[str]=5_00 , lowerCAmelCase_ : Optional[int]="gpt2-large" , lowerCAmelCase_ : Union[str, Any]=-1 , lowerCAmelCase_ : Dict=10_24 , lowerCAmelCase_ : Optional[int]=25 , lowerCAmelCase_ : int=5 , lowerCAmelCase_ : List[str]=True , lowerCAmelCase_ : Tuple=25 , ) -> Dict: UpperCAmelCase_ = compute_mauve( p_text=lowerCamelCase_ , q_text=lowerCamelCase_ , p_features=lowerCamelCase_ , q_features=lowerCamelCase_ , p_tokens=lowerCamelCase_ , q_tokens=lowerCamelCase_ , num_buckets=lowerCamelCase_ , pca_max_data=lowerCamelCase_ , kmeans_explained_var=lowerCamelCase_ , kmeans_num_redo=lowerCamelCase_ , kmeans_max_iter=lowerCamelCase_ , featurize_model_name=lowerCamelCase_ , device_id=lowerCamelCase_ , max_text_length=lowerCamelCase_ , divergence_curve_discretization_size=lowerCamelCase_ , mauve_scaling_factor=lowerCamelCase_ , verbose=lowerCamelCase_ , seed=lowerCamelCase_ , ) return out
718
def _lowerCAmelCase ( __magic_name__ :int ): UpperCAmelCase_ = int(__magic_name__ ) if decimal in (0, 1): # Exit cases for the recursion return str(__magic_name__ ) UpperCAmelCase_, UpperCAmelCase_ = divmod(__magic_name__ , 2 ) return binary_recursive(__magic_name__ ) + str(__magic_name__ ) def _lowerCAmelCase ( __magic_name__ :str ): UpperCAmelCase_ = str(__magic_name__ ).strip() if not number: raise ValueError('''No input value was provided''' ) UpperCAmelCase_ = '''-''' if number.startswith('''-''' ) else '''''' UpperCAmelCase_ = number.lstrip('''-''' ) if not number.isnumeric(): raise ValueError('''Input value is not an integer''' ) return F'''{negative}0b{binary_recursive(int(__magic_name__ ) )}''' if __name__ == "__main__": from doctest import testmod testmod()
407
0
'''simple docstring''' import argparse import torch from transformers import ( WavaVecaConfig, WavaVecaFeatureExtractor, WavaVecaForAudioFrameClassification, WavaVecaForSequenceClassification, WavaVecaForXVector, logging, ) logging.set_verbosity_info() _SCREAMING_SNAKE_CASE = logging.get_logger(__name__) def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Tuple ) -> Dict: snake_case = WavaVecaForSequenceClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) snake_case = downstream_dict['''projector.weight'''] snake_case = downstream_dict['''projector.bias'''] snake_case = downstream_dict['''model.post_net.linear.weight'''] snake_case = downstream_dict['''model.post_net.linear.bias'''] return model def __lowerCamelCase ( __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Dict , __lowerCAmelCase : Optional[int] ) -> str: snake_case = WavaVecaForAudioFrameClassification.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) snake_case = downstream_dict['''model.linear.weight'''] snake_case = downstream_dict['''model.linear.bias'''] return model def __lowerCamelCase ( __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[int] , __lowerCAmelCase : Optional[int] ) -> Any: snake_case = WavaVecaForXVector.from_pretrained(lowerCamelCase_ , config=lowerCamelCase_ ) snake_case = downstream_dict['''connector.weight'''] snake_case = downstream_dict['''connector.bias'''] for i, kernel_size in enumerate(hf_config.tdnn_kernel ): snake_case = downstream_dict[ F'''model.framelevel_feature_extractor.module.{i}.kernel.weight''' ] snake_case = downstream_dict[F'''model.framelevel_feature_extractor.module.{i}.kernel.bias'''] snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear1.weight'''] snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear1.bias'''] snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear2.weight'''] snake_case = downstream_dict['''model.utterancelevel_feature_extractor.linear2.bias'''] snake_case = downstream_dict['''objective.W'''] return model @torch.no_grad() def __lowerCamelCase ( __lowerCAmelCase : Union[str, Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] , __lowerCAmelCase : Optional[Any] ) -> Tuple: snake_case = torch.load(lowerCamelCase_ , map_location="""cpu""" ) snake_case = checkpoint['''Downstream'''] snake_case = WavaVecaConfig.from_pretrained(lowerCamelCase_ ) snake_case = WavaVecaFeatureExtractor.from_pretrained( lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , do_normalize=lowerCamelCase_ ) snake_case = hf_config.architectures[0] if arch.endswith("""ForSequenceClassification""" ): snake_case = convert_classification(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith("""ForAudioFrameClassification""" ): snake_case = convert_diarization(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) elif arch.endswith("""ForXVector""" ): snake_case = convert_xvector(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) else: raise NotImplementedError(F'''S3PRL weights conversion is not supported for {arch}''' ) if hf_config.use_weighted_layer_sum: snake_case = checkpoint['''Featurizer''']['''weights'''] hf_feature_extractor.save_pretrained(lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _SCREAMING_SNAKE_CASE = argparse.ArgumentParser() parser.add_argument( "--base_model_name", default=None, type=str, help="Name of the huggingface pretrained base model." ) parser.add_argument("--config_path", default=None, type=str, help="Path to the huggingface classifier config.") parser.add_argument("--checkpoint_path", default=None, type=str, help="Path to the s3prl checkpoint.") parser.add_argument("--model_dump_path", default=None, type=str, help="Path to the final converted model.") _SCREAMING_SNAKE_CASE = parser.parse_args() convert_saprl_checkpoint(args.base_model_name, args.config_path, args.checkpoint_path, args.model_dump_path)
369
import unittest from transformers import is_flax_available from transformers.testing_utils import require_flax, require_sentencepiece, require_tokenizers, require_torch, slow if is_flax_available(): import optax from flax.training.common_utils import onehot from transformers import AutoTokenizer, FlaxMTaForConditionalGeneration from transformers.models.ta.modeling_flax_ta import shift_tokens_right @require_torch @require_sentencepiece @require_tokenizers @require_flax class lowerCamelCase__ ( unittest.TestCase): '''simple docstring''' @slow def lowerCAmelCase__ (self ) -> int: """simple docstring""" lowerCAmelCase__ : int = FlaxMTaForConditionalGeneration.from_pretrained('''google/mt5-small''' ) lowerCAmelCase__ : Optional[Any] = AutoTokenizer.from_pretrained('''google/mt5-small''' ) lowerCAmelCase__ : Any = tokenizer('''Hello there''' ,return_tensors='''np''' ).input_ids lowerCAmelCase__ : Optional[Any] = tokenizer('''Hi I am''' ,return_tensors='''np''' ).input_ids lowerCAmelCase__ : Any = shift_tokens_right(__lowerCamelCase ,model.config.pad_token_id ,model.config.decoder_start_token_id ) lowerCAmelCase__ : Any = model(__lowerCamelCase ,decoder_input_ids=__lowerCamelCase ).logits lowerCAmelCase__ : List[str] = optax.softmax_cross_entropy(__lowerCamelCase ,onehot(__lowerCamelCase ,logits.shape[-1] ) ).mean() lowerCAmelCase__ : Union[str, Any] = -(labels.shape[-1] * loss.item()) lowerCAmelCase__ : Any = -84.9127 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1e-4 )
647
0
'''simple docstring''' import warnings from ...utils import is_sklearn_available, requires_backends if is_sklearn_available(): from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef UpperCamelCase__ = ( '''This metric will be removed from the library soon, metrics should be handled with the 🤗 Evaluate ''' '''library. You can have a look at this example script for pointers: ''' '''https://github.com/huggingface/transformers/blob/main/examples/pytorch/text-classification/run_glue.py''' ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , '''sklearn''' ) return (preds == labels).mean() def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Tuple: warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , '''sklearn''' ) UpperCAmelCase__ : Any = simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = fa_score(y_true=lowerCAmelCase__ , y_pred=lowerCAmelCase__ ) return { "acc": acc, "f1": fa, "acc_and_f1": (acc + fa) / 2, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> Any: warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , '''sklearn''' ) UpperCAmelCase__ : Any = pearsonr(lowerCAmelCase__ , lowerCAmelCase__ )[0] UpperCAmelCase__ : List[str] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ )[0] return { "pearson": pearson_corr, "spearmanr": spearman_corr, "corr": (pearson_corr + spearman_corr) / 2, } def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[Any]: warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , '''sklearn''' ) assert len(lowerCAmelCase__ ) == len(lowerCAmelCase__ ), F"""Predictions and labels have mismatched lengths {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}""" if task_name == "cola": return {"mcc": matthews_corrcoef(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "sst-2": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "mrpc": return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "sts-b": return pearson_and_spearman(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "qqp": return acc_and_fa(lowerCAmelCase__ , lowerCAmelCase__ ) elif task_name == "mnli": return {"mnli/acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "mnli-mm": return {"mnli-mm/acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "qnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "rte": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "wnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} elif task_name == "hans": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError(lowerCAmelCase__ ) def a__ ( lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ) -> List[str]: warnings.warn(lowerCAmelCase__ , lowerCAmelCase__ ) requires_backends(lowerCAmelCase__ , '''sklearn''' ) if len(lowerCAmelCase__ ) != len(lowerCAmelCase__ ): raise ValueError(F"""Predictions and labels have mismatched lengths {len(lowerCAmelCase__ )} and {len(lowerCAmelCase__ )}""" ) if task_name == "xnli": return {"acc": simple_accuracy(lowerCAmelCase__ , lowerCAmelCase__ )} else: raise KeyError(lowerCAmelCase__ )
312
'''simple docstring''' def a__ ( lowerCAmelCase__ , lowerCAmelCase__ ) -> str: if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ): raise ValueError('''iterations must be defined as integers''' ) if not isinstance(lowerCAmelCase__ , lowerCAmelCase__ ) or not number >= 1: raise ValueError( '''starting number must be and integer and be more than 0''' ) if not iterations >= 1: raise ValueError('''Iterations must be done more than 0 times to play FizzBuzz''' ) UpperCAmelCase__ : Optional[Any] = '''''' while number <= iterations: if number % 3 == 0: out += "Fizz" if number % 5 == 0: out += "Buzz" if 0 not in (number % 3, number % 5): out += str(lowerCAmelCase__ ) # print(out) number += 1 out += " " return out if __name__ == "__main__": import doctest doctest.testmod()
312
1
'''simple docstring''' # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import os from accelerate.test_utils import execute_subprocess_async def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Optional[int]=None ): '''simple docstring''' if subparsers is not None: A: List[str] = subparsers.add_parser("""test""" ) else: A: str = argparse.ArgumentParser("""Accelerate test command""" ) parser.add_argument( """--config_file""" , default=lowerCamelCase__ , help=( """The path to use to store the config file. Will default to a file named default_config.yaml in the cache """ """location, which is the content of the environment `HF_HOME` suffixed with 'accelerate', or if you don't have """ """such an environment variable, your cache directory ('~/.cache' or the content of `XDG_CACHE_HOME`) suffixed """ """with 'huggingface'.""" ) , ) if subparsers is not None: parser.set_defaults(func=lowerCamelCase__ ) return parser def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : Tuple ): '''simple docstring''' A: List[str] = os.path.sep.join(__file__.split(os.path.sep )[:-2] + ["""test_utils""", """scripts""", """test_script.py"""] ) if args.config_file is None: A: str = script_name else: A: Any = f'--config_file={args.config_file} {script_name}' A: Any = ["""accelerate-launch"""] + test_args.split() A: List[str] = execute_subprocess_async(lowerCamelCase__ , env=os.environ.copy() ) if result.returncode == 0: print("""Test is a success! You are ready for your distributed training!""" ) def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' A: Optional[Any] = test_command_parser() A: Optional[Any] = parser.parse_args() test_command(lowerCamelCase__ ) if __name__ == "__main__": main()
135
'''simple docstring''' import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging __SCREAMING_SNAKE_CASE : Optional[Any] =logging.get_logger(__name__) __SCREAMING_SNAKE_CASE : Tuple ={'vocab_file': 'spiece.model'} __SCREAMING_SNAKE_CASE : Any ={ 'vocab_file': { 'albert-base-v1': 'https://huggingface.co/albert-base-v1/resolve/main/spiece.model', 'albert-large-v1': 'https://huggingface.co/albert-large-v1/resolve/main/spiece.model', 'albert-xlarge-v1': 'https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model', 'albert-xxlarge-v1': 'https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model', 'albert-base-v2': 'https://huggingface.co/albert-base-v2/resolve/main/spiece.model', 'albert-large-v2': 'https://huggingface.co/albert-large-v2/resolve/main/spiece.model', 'albert-xlarge-v2': 'https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model', 'albert-xxlarge-v2': 'https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model', } } __SCREAMING_SNAKE_CASE : Optional[Any] ={ 'albert-base-v1': 512, 'albert-large-v1': 512, 'albert-xlarge-v1': 512, 'albert-xxlarge-v1': 512, 'albert-base-v2': 512, 'albert-large-v2': 512, 'albert-xlarge-v2': 512, 'albert-xxlarge-v2': 512, } __SCREAMING_SNAKE_CASE : Optional[Any] ='▁' class SCREAMING_SNAKE_CASE__ ( snake_case_ ): """simple docstring""" A__ : Any = VOCAB_FILES_NAMES A__ : Any = PRETRAINED_VOCAB_FILES_MAP A__ : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self , A , A=True , A=True , A=False , A="[CLS]" , A="[SEP]" , A="<unk>" , A="[SEP]" , A="<pad>" , A="[CLS]" , A="[MASK]" , A = None , **A , ) -> None: # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. A: Optional[int] = ( AddedToken(A , lstrip=A , rstrip=A , normalized=A ) if isinstance(A , A ) else mask_token ) A: Tuple = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=A , remove_space=A , keep_accents=A , bos_token=A , eos_token=A , unk_token=A , sep_token=A , pad_token=A , cls_token=A , mask_token=A , sp_model_kwargs=self.sp_model_kwargs , **A , ) A: Tuple = do_lower_case A: Optional[Any] = remove_space A: int = keep_accents A: str = vocab_file A: Any = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(A ) @property def a__ ( self ) -> Dict: return len(self.sp_model ) def a__ ( self ) -> Any: A: Optional[Any] = {self.convert_ids_to_tokens(A ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> List[str]: A: List[Any] = self.__dict__.copy() A: List[str] = None return state def __setstate__( self , A ) -> Dict: A: str = d # for backward compatibility if not hasattr(self , """sp_model_kwargs""" ): A: Tuple = {} A: Dict = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__ ( self , A ) -> List[Any]: if self.remove_space: A: str = """ """.join(inputs.strip().split() ) else: A: Optional[Any] = inputs A: int = outputs.replace("""``""" , """\"""" ).replace("""''""" , """\"""" ) if not self.keep_accents: A: Tuple = unicodedata.normalize("""NFKD""" , A ) A: Optional[Any] = """""".join([c for c in outputs if not unicodedata.combining(A )] ) if self.do_lower_case: A: Tuple = outputs.lower() return outputs def a__ ( self , A ) -> List[str]: A: List[str] = self.preprocess_text(A ) A: str = self.sp_model.encode(A , out_type=A ) A: str = [] for piece in pieces: if len(A ) > 1 and piece[-1] == str(""",""" ) and piece[-2].isdigit(): A: Any = self.sp_model.EncodeAsPieces(piece[:-1].replace(A , """""" ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: A: List[Any] = cur_pieces[1:] else: A: Union[str, Any] = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(A ) else: new_pieces.append(A ) return new_pieces def a__ ( self , A ) -> Tuple: return self.sp_model.PieceToId(A ) def a__ ( self , A ) -> List[str]: return self.sp_model.IdToPiece(A ) def a__ ( self , A ) -> Any: A: Any = [] A: Dict = """""" A: int = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(A ) + token A: Dict = True A: str = [] else: current_sub_tokens.append(A ) A: List[Any] = False out_string += self.sp_model.decode(A ) return out_string.strip() def a__ ( self , A , A = None ) -> List[int]: A: Any = [self.sep_token_id] A: Optional[Any] = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def a__ ( self , A , A = None , A = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A , token_ids_a=A , already_has_special_tokens=A ) if token_ids_a is not None: return [1] + ([0] * len(A )) + [1] + ([0] * len(A )) + [1] return [1] + ([0] * len(A )) + [1] def a__ ( self , A , A = None ) -> List[int]: A: List[str] = [self.sep_token_id] A: List[str] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def a__ ( self , A , A = None ) -> Tuple[str]: if not os.path.isdir(A ): logger.error(f'Vocabulary path ({save_directory}) should be a directory' ) return A: Tuple = os.path.join( A , (filename_prefix + """-""" if filename_prefix else """""") + VOCAB_FILES_NAMES["""vocab_file"""] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , A ) elif not os.path.isfile(self.vocab_file ): with open(A , """wb""" ) as fi: A: Union[str, Any] = self.sp_model.serialized_model_proto() fi.write(A ) return (out_vocab_file,)
135
1
'''simple docstring''' import sys from collections import defaultdict class A : def __init__( self : Any ) -> Dict: """simple docstring""" _a = [] def __lowerCAmelCase ( self : int , lowerCAmelCase_ : List[str] ) -> Dict: """simple docstring""" return self.node_position[vertex] def __lowerCAmelCase ( self : Optional[Any] , lowerCAmelCase_ : Any , lowerCAmelCase_ : List[str] ) -> Optional[Any]: """simple docstring""" _a = pos def __lowerCAmelCase ( self : List[Any] , lowerCAmelCase_ : List[str] , lowerCAmelCase_ : Dict , lowerCAmelCase_ : Dict , lowerCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" if start > size // 2 - 1: return else: if 2 * start + 2 >= size: _a = 2 * start + 1 else: if heap[2 * start + 1] < heap[2 * start + 2]: _a = 2 * start + 1 else: _a = 2 * start + 2 if heap[smallest_child] < heap[start]: _a = heap[smallest_child], positions[smallest_child] _a = ( heap[start], positions[start], ) _a = temp, tempa _a = self.get_position(positions[smallest_child] ) self.set_position( positions[smallest_child] , self.get_position(positions[start] ) ) self.set_position(positions[start] , lowerCAmelCase_ ) self.top_to_bottom(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Tuple , lowerCAmelCase_ : Union[str, Any] , lowerCAmelCase_ : List[Any] ) -> Optional[int]: """simple docstring""" _a = position[index] while index != 0: _a = int((index - 2) / 2 ) if index % 2 == 0 else int((index - 1) / 2 ) if val < heap[parent]: _a = heap[parent] _a = position[parent] self.set_position(position[parent] , lowerCAmelCase_ ) else: _a = val _a = temp self.set_position(lowerCAmelCase_ , lowerCAmelCase_ ) break _a = parent else: _a = val _a = temp self.set_position(lowerCAmelCase_ , 0 ) def __lowerCAmelCase ( self : Union[str, Any] , lowerCAmelCase_ : int , lowerCAmelCase_ : List[str] ) -> Union[str, Any]: """simple docstring""" _a = len(lowerCAmelCase_ ) // 2 - 1 for i in range(lowerCAmelCase_ , -1 , -1 ): self.top_to_bottom(lowerCAmelCase_ , lowerCAmelCase_ , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) def __lowerCAmelCase ( self : Dict , lowerCAmelCase_ : List[Any] , lowerCAmelCase_ : Dict ) -> Optional[int]: """simple docstring""" _a = positions[0] _a = sys.maxsize self.top_to_bottom(lowerCAmelCase_ , 0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ) return temp def snake_case_ (UpperCamelCase : str ): '''simple docstring''' _a = Heap() _a = [0] * len(_lowerCamelCase ) _a = [-1] * len(_lowerCamelCase ) # Neighboring Tree Vertex of selected vertex # Minimum Distance of explored vertex with neighboring vertex of partial tree # formed in graph _a = [] # Heap of Distance of vertices from their neighboring vertex _a = [] for vertex in range(len(_lowerCamelCase ) ): distance_tv.append(sys.maxsize ) positions.append(_lowerCamelCase ) heap.node_position.append(_lowerCamelCase ) _a = [] _a = 1 _a = sys.maxsize for neighbor, distance in adjacency_list[0]: _a = 0 _a = distance heap.heapify(_lowerCamelCase , _lowerCamelCase ) for _ in range(1 , len(_lowerCamelCase ) ): _a = heap.delete_minimum(_lowerCamelCase , _lowerCamelCase ) if visited[vertex] == 0: tree_edges.append((nbr_tv[vertex], vertex) ) _a = 1 for neighbor, distance in adjacency_list[vertex]: if ( visited[neighbor] == 0 and distance < distance_tv[heap.get_position(_lowerCamelCase )] ): _a = distance heap.bottom_to_top( _lowerCamelCase , heap.get_position(_lowerCamelCase ) , _lowerCamelCase , _lowerCamelCase ) _a = vertex return tree_edges if __name__ == "__main__": # pragma: no cover # < --------- Prims Algorithm --------- > _snake_case = int(input('Enter number of edges: ').strip()) _snake_case = defaultdict(list) for _ in range(edges_number): _snake_case = [int(x) for x in input().strip().split()] adjacency_list[edge[0]].append([edge[1], edge[2]]) adjacency_list[edge[1]].append([edge[0], edge[2]]) print(prisms_algorithm(adjacency_list))
704
'''simple docstring''' import math import unittest def snake_case_ (UpperCamelCase : int ): '''simple docstring''' assert isinstance(UpperCamelCase , UpperCamelCase ) and ( number >= 0 ), "'number' must been an int and positive" if 1 < number < 4: # 2 and 3 are primes return True elif number < 2 or number % 2 == 0 or number % 3 == 0: # Negatives, 0, 1, all even numbers, all multiples of 3 are not primes return False # All primes number are in format of 6k +/- 1 for i in range(5 , int(math.sqrt(UpperCamelCase ) + 1 ) , 6 ): if number % i == 0 or number % (i + 2) == 0: return False return True class A ( unittest.TestCase ): def __lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" self.assertTrue(is_prime(2 ) ) self.assertTrue(is_prime(3 ) ) self.assertTrue(is_prime(5 ) ) self.assertTrue(is_prime(7 ) ) self.assertTrue(is_prime(11 ) ) self.assertTrue(is_prime(13 ) ) self.assertTrue(is_prime(17 ) ) self.assertTrue(is_prime(19 ) ) self.assertTrue(is_prime(23 ) ) self.assertTrue(is_prime(29 ) ) def __lowerCAmelCase ( self : Any ) -> Dict: """simple docstring""" with self.assertRaises(lowerCAmelCase_ ): is_prime(-19 ) self.assertFalse( is_prime(0 ) , '''Zero doesn\'t have any positive factors, primes must have exactly two.''' , ) self.assertFalse( is_prime(1 ) , '''One only has 1 positive factor, primes must have exactly two.''' , ) self.assertFalse(is_prime(2 * 2 ) ) self.assertFalse(is_prime(2 * 3 ) ) self.assertFalse(is_prime(3 * 3 ) ) self.assertFalse(is_prime(3 * 5 ) ) self.assertFalse(is_prime(3 * 5 * 7 ) ) if __name__ == "__main__": unittest.main()
377
0
'''simple docstring''' import unittest import numpy as np import timeout_decorator # noqa from transformers import BlenderbotSmallConfig, is_flax_available from transformers.testing_utils import require_flax, slow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor if is_flax_available(): import os # The slow tests are often failing with OOM error on GPU # This makes JAX allocate exactly what is needed on demand, and deallocate memory that is no longer needed # but will be slower as stated here https://jax.readthedocs.io/en/latest/gpu_memory_allocation.html _A : Optional[int] = '''platform''' import jax import jax.numpy as jnp from transformers.models.blenderbot_small.modeling_flax_blenderbot_small import ( FlaxBlenderbotSmallForConditionalGeneration, FlaxBlenderbotSmallModel, shift_tokens_right, ) def UpperCamelCase_ ( snake_case_ : int , snake_case_ : Tuple , snake_case_ : int=None , snake_case_ : Any=None , snake_case_ : Optional[Any]=None , snake_case_ : List[Any]=None , snake_case_ : Any=None , snake_case_ : Tuple=None , ) -> List[Any]: '''simple docstring''' if attention_mask is None: __lowerCAmelCase = np.where(input_ids != config.pad_token_id , 1 , 0 ) if decoder_attention_mask is None: __lowerCAmelCase = np.where(decoder_input_ids != config.pad_token_id , 1 , 0 ) if head_mask is None: __lowerCAmelCase = np.ones((config.encoder_layers, config.encoder_attention_heads) ) if decoder_head_mask is None: __lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) if cross_attn_head_mask is None: __lowerCAmelCase = np.ones((config.decoder_layers, config.decoder_attention_heads) ) return { "input_ids": input_ids, "decoder_input_ids": decoder_input_ids, "attention_mask": attention_mask, "decoder_attention_mask": attention_mask, } class _lowercase : '''simple docstring''' def __init__( self : str , SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[int]=13 , SCREAMING_SNAKE_CASE__ : List[Any]=7 , SCREAMING_SNAKE_CASE__ : str=True , SCREAMING_SNAKE_CASE__ : List[str]=False , SCREAMING_SNAKE_CASE__ : int=99 , SCREAMING_SNAKE_CASE__ : Tuple=16 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : Optional[Any]=4 , SCREAMING_SNAKE_CASE__ : Any=4 , SCREAMING_SNAKE_CASE__ : List[str]="gelu" , SCREAMING_SNAKE_CASE__ : str=0.1 , SCREAMING_SNAKE_CASE__ : Tuple=0.1 , SCREAMING_SNAKE_CASE__ : Optional[Any]=32 , SCREAMING_SNAKE_CASE__ : List[str]=2 , SCREAMING_SNAKE_CASE__ : List[str]=1 , SCREAMING_SNAKE_CASE__ : Tuple=0 , SCREAMING_SNAKE_CASE__ : Tuple=0.0_2 , ) -> Optional[Any]: __lowerCAmelCase = parent __lowerCAmelCase = batch_size __lowerCAmelCase = seq_length __lowerCAmelCase = is_training __lowerCAmelCase = use_labels __lowerCAmelCase = vocab_size __lowerCAmelCase = hidden_size __lowerCAmelCase = num_hidden_layers __lowerCAmelCase = num_attention_heads __lowerCAmelCase = intermediate_size __lowerCAmelCase = hidden_act __lowerCAmelCase = hidden_dropout_prob __lowerCAmelCase = attention_probs_dropout_prob __lowerCAmelCase = max_position_embeddings __lowerCAmelCase = eos_token_id __lowerCAmelCase = pad_token_id __lowerCAmelCase = bos_token_id __lowerCAmelCase = initializer_range def a ( self : List[str] ) -> List[str]: __lowerCAmelCase = np.clip(ids_tensor([self.batch_size, self.seq_length - 1] , self.vocab_size ) , 3 , self.vocab_size ) __lowerCAmelCase = np.concatenate((input_ids, 2 * np.ones((self.batch_size, 1) , dtype=np.intaa )) , -1 ) __lowerCAmelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 ) __lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=self.hidden_size , encoder_layers=self.num_hidden_layers , decoder_layers=self.num_hidden_layers , encoder_attention_heads=self.num_attention_heads , decoder_attention_heads=self.num_attention_heads , encoder_ffn_dim=self.intermediate_size , decoder_ffn_dim=self.intermediate_size , dropout=self.hidden_dropout_prob , attention_dropout=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , eos_token_id=self.eos_token_id , bos_token_id=self.bos_token_id , pad_token_id=self.pad_token_id , initializer_range=self.initializer_range , use_cache=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = prepare_blenderbot_inputs_dict(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) return config, inputs_dict def a ( self : Optional[int] ) -> Optional[Any]: __lowerCAmelCase , __lowerCAmelCase = self.prepare_config_and_inputs() return config, inputs_dict def a ( self : Any , SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Union[str, Any] , SCREAMING_SNAKE_CASE__ : Any ) -> Any: __lowerCAmelCase = 20 __lowerCAmelCase = model_class_name(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] ) __lowerCAmelCase , __lowerCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = jnp.ones((decoder_input_ids.shape[0], max_decoder_length) , dtype="""i4""" ) __lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) def a ( self : Optional[int] , SCREAMING_SNAKE_CASE__ : Any , SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : List[Any] ) -> int: __lowerCAmelCase = 20 __lowerCAmelCase = model_class_name(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] ) __lowerCAmelCase , __lowerCAmelCase = ( inputs_dict["""decoder_input_ids"""], inputs_dict["""decoder_attention_mask"""], ) __lowerCAmelCase = jnp.concatenate( [ decoder_attention_mask, jnp.zeros((decoder_attention_mask.shape[0], max_decoder_length - decoder_attention_mask.shape[1]) ), ] , axis=-1 , ) __lowerCAmelCase = model.init_cache(decoder_input_ids.shape[0] , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = jnp.broadcast_to( jnp.arange(decoder_input_ids.shape[-1] - 1 )[None, :] , (decoder_input_ids.shape[0], decoder_input_ids.shape[-1] - 1) , ) __lowerCAmelCase = model.decode( decoder_input_ids[:, :-1] , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , past_key_values=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = jnp.array(decoder_input_ids.shape[0] * [[decoder_input_ids.shape[-1] - 1]] , dtype="""i4""" ) __lowerCAmelCase = model.decode( decoder_input_ids[:, -1:] , SCREAMING_SNAKE_CASE__ , past_key_values=outputs_cache.past_key_values , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , decoder_position_ids=SCREAMING_SNAKE_CASE__ , ) __lowerCAmelCase = model.decode(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1e-3 , msg=f"""Max diff is {diff}""" ) @require_flax class _lowercase ( unittest.TestCase ): '''simple docstring''' _SCREAMING_SNAKE_CASE : Union[str, Any] = 99 def a ( self : Optional[Any] ) -> Optional[Any]: __lowerCAmelCase = np.array( [ [71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 82, 2], [5, 97, 17, 39, 94, 40, 2], [76, 83, 94, 25, 70, 78, 2], [87, 59, 41, 35, 48, 66, 2], [55, 13, 16, 58, 5, 2, 1], # note padding [64, 27, 31, 51, 12, 75, 2], [52, 64, 86, 17, 83, 39, 2], [48, 61, 9, 24, 71, 82, 2], [26, 1, 60, 48, 22, 13, 2], [21, 5, 62, 28, 14, 76, 2], [45, 98, 37, 86, 59, 48, 2], [70, 70, 50, 9, 28, 0, 2], ] , dtype=np.intaa , ) __lowerCAmelCase = input_ids.shape[0] __lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=24 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=32 , decoder_ffn_dim=32 , max_position_embeddings=48 , eos_token_id=2 , pad_token_id=1 , bos_token_id=0 , ) return config, input_ids, batch_size def a ( self : Union[str, Any] ) -> List[str]: __lowerCAmelCase , __lowerCAmelCase , __lowerCAmelCase = self._get_config_and_data() __lowerCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = lm_model(input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = (batch_size, input_ids.shape[1], config.vocab_size) self.assertEqual(outputs["""logits"""].shape , SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> Union[str, Any]: __lowerCAmelCase = BlenderbotSmallConfig( vocab_size=self.vocab_size , d_model=14 , encoder_layers=2 , decoder_layers=2 , encoder_attention_heads=2 , decoder_attention_heads=2 , encoder_ffn_dim=8 , decoder_ffn_dim=8 , max_position_embeddings=48 , ) __lowerCAmelCase = FlaxBlenderbotSmallForConditionalGeneration(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = np.array([[71, 82, 18, 33, 46, 91, 2], [68, 34, 26, 58, 30, 2, 1]] , dtype=np.intaa ) __lowerCAmelCase = np.array([[82, 71, 82, 18, 2], [58, 68, 2, 1, 1]] , dtype=np.intaa ) __lowerCAmelCase = lm_model(input_ids=SCREAMING_SNAKE_CASE__ , decoder_input_ids=SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = (*summary.shape, config.vocab_size) self.assertEqual(outputs["""logits"""].shape , SCREAMING_SNAKE_CASE__ ) def a ( self : Dict ) -> Optional[Any]: __lowerCAmelCase = np.array([[71, 82, 18, 33, 2, 1, 1], [68, 34, 26, 58, 30, 82, 2]] , dtype=np.intaa ) __lowerCAmelCase = shift_tokens_right(SCREAMING_SNAKE_CASE__ , 1 , 2 ) __lowerCAmelCase = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum() __lowerCAmelCase = np.equal(SCREAMING_SNAKE_CASE__ , 1 ).astype(np.floataa ).sum() self.assertEqual(shifted.shape , input_ids.shape ) self.assertEqual(SCREAMING_SNAKE_CASE__ , n_pad_before - 1 ) self.assertTrue(np.equal(shifted[:, 0] , 2 ).all() ) @require_flax class _lowercase ( UpperCAmelCase__ , unittest.TestCase , UpperCAmelCase__ ): '''simple docstring''' _SCREAMING_SNAKE_CASE : List[str] = True _SCREAMING_SNAKE_CASE : Optional[Any] = ( ( FlaxBlenderbotSmallModel, FlaxBlenderbotSmallForConditionalGeneration, ) if is_flax_available() else () ) _SCREAMING_SNAKE_CASE : str = (FlaxBlenderbotSmallForConditionalGeneration,) if is_flax_available() else () def a ( self : int ) -> Tuple: __lowerCAmelCase = FlaxBlenderbotSmallModelTester(self ) def a ( self : Tuple ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Union[str, Any] ) -> Any: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs() for model_class in self.all_model_classes: self.model_tester.check_use_cache_forward_with_attn_mask(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) def a ( self : Tuple ) -> int: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = self._prepare_for_class(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) @jax.jit def encode_jitted(SCREAMING_SNAKE_CASE__ : Dict , SCREAMING_SNAKE_CASE__ : Optional[Any]=None , **SCREAMING_SNAKE_CASE__ : Union[str, Any] ): return model.encode(input_ids=SCREAMING_SNAKE_CASE__ , attention_mask=SCREAMING_SNAKE_CASE__ ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase = encode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) def a ( self : Tuple ) -> Tuple: __lowerCAmelCase , __lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): __lowerCAmelCase = model_class(SCREAMING_SNAKE_CASE__ ) __lowerCAmelCase = model.encode(inputs_dict["""input_ids"""] , inputs_dict["""attention_mask"""] ) __lowerCAmelCase = { """decoder_input_ids""": inputs_dict["""decoder_input_ids"""], """decoder_attention_mask""": inputs_dict["""decoder_attention_mask"""], """encoder_outputs""": encoder_outputs, } @jax.jit def decode_jitted(SCREAMING_SNAKE_CASE__ : Optional[int] , SCREAMING_SNAKE_CASE__ : Optional[Any] , SCREAMING_SNAKE_CASE__ : List[str] ): return model.decode( decoder_input_ids=SCREAMING_SNAKE_CASE__ , decoder_attention_mask=SCREAMING_SNAKE_CASE__ , encoder_outputs=SCREAMING_SNAKE_CASE__ , ) with self.subTest("""JIT Enabled""" ): __lowerCAmelCase = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() with self.subTest("""JIT Disabled""" ): with jax.disable_jit(): __lowerCAmelCase = decode_jitted(**SCREAMING_SNAKE_CASE__ ).to_tuple() self.assertEqual(len(SCREAMING_SNAKE_CASE__ ) , len(SCREAMING_SNAKE_CASE__ ) ) for jitted_output, output in zip(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): self.assertEqual(jitted_output.shape , output.shape ) @slow def a ( self : Optional[Any] ) -> Tuple: for model_class_name in self.all_model_classes: __lowerCAmelCase = model_class_name.from_pretrained("""facebook/blenderbot_small-90M""" ) # FlaxBlenderbotForSequenceClassification expects eos token in input_ids __lowerCAmelCase = np.ones((1, 1) ) * model.config.eos_token_id __lowerCAmelCase = model(SCREAMING_SNAKE_CASE__ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE__ )
427
'''simple docstring''' import argparse import os import re _A : str = '''src/transformers''' # Pattern that looks at the indentation in a line. _A : List[str] = re.compile(r'''^(\s*)\S''') # Pattern that matches `"key":" and puts `key` in group 0. _A : List[str] = re.compile(r'''^\s*"([^"]+)":''') # Pattern that matches `_import_structure["key"]` and puts `key` in group 0. _A : Dict = re.compile(r'''^\s*_import_structure\["([^"]+)"\]''') # Pattern that matches `"key",` and puts `key` in group 0. _A : Union[str, Any] = re.compile(r'''^\s*"([^"]+)",\s*$''') # Pattern that matches any `[stuff]` and puts `stuff` in group 0. _A : Union[str, Any] = re.compile(r'''\[([^\]]+)\]''') def UpperCamelCase_ ( snake_case_ : List[str] ) -> Union[str, Any]: '''simple docstring''' __lowerCAmelCase = _re_indent.search(snake_case_ ) return "" if search is None else search.groups()[0] def UpperCamelCase_ ( snake_case_ : Any , snake_case_ : Optional[int]="" , snake_case_ : str=None , snake_case_ : Dict=None ) -> Optional[Any]: '''simple docstring''' __lowerCAmelCase = 0 __lowerCAmelCase = code.split("""\n""" ) if start_prompt is not None: while not lines[index].startswith(snake_case_ ): index += 1 __lowerCAmelCase = ["""\n""".join(lines[:index] )] else: __lowerCAmelCase = [] # We split into blocks until we get to the `end_prompt` (or the end of the block). __lowerCAmelCase = [lines[index]] index += 1 while index < len(snake_case_ ) and (end_prompt is None or not lines[index].startswith(snake_case_ )): if len(lines[index] ) > 0 and get_indent(lines[index] ) == indent_level: if len(snake_case_ ) > 0 and get_indent(current_block[-1] ).startswith(indent_level + """ """ ): current_block.append(lines[index] ) blocks.append("""\n""".join(snake_case_ ) ) if index < len(snake_case_ ) - 1: __lowerCAmelCase = [lines[index + 1]] index += 1 else: __lowerCAmelCase = [] else: blocks.append("""\n""".join(snake_case_ ) ) __lowerCAmelCase = [lines[index]] else: current_block.append(lines[index] ) index += 1 # Adds current block if it's nonempty. if len(snake_case_ ) > 0: blocks.append("""\n""".join(snake_case_ ) ) # Add final block after end_prompt if provided. if end_prompt is not None and index < len(snake_case_ ): blocks.append("""\n""".join(lines[index:] ) ) return blocks def UpperCamelCase_ ( snake_case_ : str ) -> Optional[int]: '''simple docstring''' def _inner(snake_case_ : Union[str, Any] ): return key(snake_case_ ).lower().replace("""_""" , """""" ) return _inner def UpperCamelCase_ ( snake_case_ : List[Any] , snake_case_ : List[Any]=None ) -> Any: '''simple docstring''' def noop(snake_case_ : Union[str, Any] ): return x if key is None: __lowerCAmelCase = noop # Constants are all uppercase, they go first. __lowerCAmelCase = [obj for obj in objects if key(snake_case_ ).isupper()] # Classes are not all uppercase but start with a capital, they go second. __lowerCAmelCase = [obj for obj in objects if key(snake_case_ )[0].isupper() and not key(snake_case_ ).isupper()] # Functions begin with a lowercase, they go last. __lowerCAmelCase = [obj for obj in objects if not key(snake_case_ )[0].isupper()] __lowerCAmelCase = ignore_underscore(snake_case_ ) return sorted(snake_case_ , key=snake_case_ ) + sorted(snake_case_ , key=snake_case_ ) + sorted(snake_case_ , key=snake_case_ ) def UpperCamelCase_ ( snake_case_ : Union[str, Any] ) -> Union[str, Any]: '''simple docstring''' def _replace(snake_case_ : Dict ): __lowerCAmelCase = match.groups()[0] if "," not in imports: return f"""[{imports}]""" __lowerCAmelCase = [part.strip().replace("""\"""" , """""" ) for part in imports.split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCAmelCase = keys[:-1] return "[" + ", ".join([f"""\"{k}\"""" for k in sort_objects(snake_case_ )] ) + "]" __lowerCAmelCase = import_statement.split("""\n""" ) if len(snake_case_ ) > 3: # Here we have to sort internal imports that are on several lines (one per name): # key: [ # "object1", # "object2", # ... # ] # We may have to ignore one or two lines on each side. __lowerCAmelCase = 2 if lines[1].strip() == """[""" else 1 __lowerCAmelCase = [(i, _re_strip_line.search(snake_case_ ).groups()[0]) for i, line in enumerate(lines[idx:-idx] )] __lowerCAmelCase = sort_objects(snake_case_ , key=lambda snake_case_ : x[1] ) __lowerCAmelCase = [lines[x[0] + idx] for x in sorted_indices] return "\n".join(lines[:idx] + sorted_lines + lines[-idx:] ) elif len(snake_case_ ) == 3: # Here we have to sort internal imports that are on one separate line: # key: [ # "object1", "object2", ... # ] if _re_bracket_content.search(lines[1] ) is not None: __lowerCAmelCase = _re_bracket_content.sub(_replace , lines[1] ) else: __lowerCAmelCase = [part.strip().replace("""\"""" , """""" ) for part in lines[1].split(""",""" )] # We will have a final empty element if the line finished with a comma. if len(keys[-1] ) == 0: __lowerCAmelCase = keys[:-1] __lowerCAmelCase = get_indent(lines[1] ) + """, """.join([f"""\"{k}\"""" for k in sort_objects(snake_case_ )] ) return "\n".join(snake_case_ ) else: # Finally we have to deal with imports fitting on one line __lowerCAmelCase = _re_bracket_content.sub(_replace , snake_case_ ) return import_statement def UpperCamelCase_ ( snake_case_ : str , snake_case_ : Dict=True ) -> int: '''simple docstring''' with open(snake_case_ , encoding="""utf-8""" ) as f: __lowerCAmelCase = f.read() if "_import_structure" not in code: return # Blocks of indent level 0 __lowerCAmelCase = split_code_in_indented_blocks( snake_case_ , start_prompt="""_import_structure = {""" , end_prompt="""if TYPE_CHECKING:""" ) # We ignore block 0 (everything untils start_prompt) and the last block (everything after end_prompt). for block_idx in range(1 , len(snake_case_ ) - 1 ): # Check if the block contains some `_import_structure`s thingy to sort. __lowerCAmelCase = main_blocks[block_idx] __lowerCAmelCase = block.split("""\n""" ) # Get to the start of the imports. __lowerCAmelCase = 0 while line_idx < len(snake_case_ ) and "_import_structure" not in block_lines[line_idx]: # Skip dummy import blocks if "import dummy" in block_lines[line_idx]: __lowerCAmelCase = len(snake_case_ ) else: line_idx += 1 if line_idx >= len(snake_case_ ): continue # Ignore beginning and last line: they don't contain anything. __lowerCAmelCase = """\n""".join(block_lines[line_idx:-1] ) __lowerCAmelCase = get_indent(block_lines[1] ) # Slit the internal block into blocks of indent level 1. __lowerCAmelCase = split_code_in_indented_blocks(snake_case_ , indent_level=snake_case_ ) # We have two categories of import key: list or _import_structure[key].append/extend __lowerCAmelCase = _re_direct_key if """_import_structure = {""" in block_lines[0] else _re_indirect_key # Grab the keys, but there is a trap: some lines are empty or just comments. __lowerCAmelCase = [(pattern.search(snake_case_ ).groups()[0] if pattern.search(snake_case_ ) is not None else None) for b in internal_blocks] # We only sort the lines with a key. __lowerCAmelCase = [(i, key) for i, key in enumerate(snake_case_ ) if key is not None] __lowerCAmelCase = [x[0] for x in sorted(snake_case_ , key=lambda snake_case_ : x[1] )] # We reorder the blocks by leaving empty lines/comments as they were and reorder the rest. __lowerCAmelCase = 0 __lowerCAmelCase = [] for i in range(len(snake_case_ ) ): if keys[i] is None: reorderded_blocks.append(internal_blocks[i] ) else: __lowerCAmelCase = sort_objects_in_import(internal_blocks[sorted_indices[count]] ) reorderded_blocks.append(snake_case_ ) count += 1 # And we put our main block back together with its first and last line. __lowerCAmelCase = """\n""".join(block_lines[:line_idx] + reorderded_blocks + [block_lines[-1]] ) if code != "\n".join(snake_case_ ): if check_only: return True else: print(f"""Overwriting {file}.""" ) with open(snake_case_ , """w""" , encoding="""utf-8""" ) as f: f.write("""\n""".join(snake_case_ ) ) def UpperCamelCase_ ( snake_case_ : int=True ) -> List[str]: '''simple docstring''' __lowerCAmelCase = [] for root, _, files in os.walk(snake_case_ ): if "__init__.py" in files: __lowerCAmelCase = sort_imports(os.path.join(snake_case_ , """__init__.py""" ) , check_only=snake_case_ ) if result: __lowerCAmelCase = [os.path.join(snake_case_ , """__init__.py""" )] if len(snake_case_ ) > 0: raise ValueError(f"""Would overwrite {len(snake_case_ )} files, run `make style`.""" ) if __name__ == "__main__": _A : Union[str, Any] = argparse.ArgumentParser() parser.add_argument('''--check_only''', action='''store_true''', help='''Whether to only check or fix style.''') _A : Optional[int] = parser.parse_args() sort_imports_in_all_inits(check_only=args.check_only)
427
1
"""simple docstring""" from __future__ import annotations from math import gcd def a_ ( lowerCamelCase , lowerCamelCase = 2 , lowerCamelCase = 1 , lowerCamelCase = 3 , ): # A value less than 2 can cause an infinite loop in the algorithm. if num < 2: raise ValueError('The input value cannot be less than 2' ) # Because of the relationship between ``f(f(x))`` and ``f(x)``, this # algorithm struggles to find factors that are divisible by two. # As a workaround, we specifically check for two and even inputs. # See: https://math.stackexchange.com/a/2856214/165820 if num > 2 and num % 2 == 0: return 2 # Pollard's Rho algorithm requires a function that returns pseudorandom # values between 0 <= X < ``num``. It doesn't need to be random in the # sense that the output value is cryptographically secure or difficult # to calculate, it only needs to be random in the sense that all output # values should be equally likely to appear. # For this reason, Pollard suggested using ``f(x) = (x**2 - 1) % num`` # However, the success of Pollard's algorithm isn't guaranteed and is # determined in part by the initial seed and the chosen random function. # To make retries easier, we will instead use ``f(x) = (x**2 + C) % num`` # where ``C`` is a value that we can modify between each attempt. def rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) -> int: return (pow(lowerCamelCase , 2 ) + step) % modulus for _ in range(lowerCamelCase ): # These track the position within the cycle detection logic. UpperCAmelCase__ = seed UpperCAmelCase__ = seed while True: # At each iteration, the tortoise moves one step and the hare moves two. UpperCAmelCase__ = rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) UpperCAmelCase__ = rand_fn(lowerCamelCase , lowerCamelCase , lowerCamelCase ) # At some point both the tortoise and the hare will enter a cycle whose # length ``p`` is a divisor of ``num``. Once in that cycle, at some point # the tortoise and hare will end up on the same value modulo ``p``. # We can detect when this happens because the position difference between # the tortoise and the hare will share a common divisor with ``num``. UpperCAmelCase__ = gcd(hare - tortoise , lowerCamelCase ) if divisor == 1: # No common divisor yet, just keep searching. continue else: # We found a common divisor! if divisor == num: # Unfortunately, the divisor is ``num`` itself and is useless. break else: # The divisor is a nontrivial factor of ``num``! return divisor # If we made it here, then this attempt failed. # We need to pick a new starting seed for the tortoise and hare # in addition to a new step value for the random function. # To keep this example implementation deterministic, the # new values will be generated based on currently available # values instead of using something like ``random.randint``. # We can use the hare's position as the new seed. # This is actually what Richard Brent's the "optimized" variant does. UpperCAmelCase__ = hare # The new step value for the random function can just be incremented. # At first the results will be similar to what the old function would # have produced, but the value will quickly diverge after a bit. step += 1 # We haven't found a divisor within the requested number of attempts. # We were unlucky or ``num`` itself is actually prime. return None if __name__ == "__main__": import argparse lowerCAmelCase__ : int = argparse.ArgumentParser() parser.add_argument( 'num', type=int, help='The value to find a divisor of', ) parser.add_argument( '--attempts', type=int, default=3, help='The number of attempts before giving up', ) lowerCAmelCase__ : Optional[Any] = parser.parse_args() lowerCAmelCase__ : Tuple = pollard_rho(args.num, attempts=args.attempts) if divisor is None: print(F"""{args.num} is probably prime""") else: lowerCAmelCase__ : Tuple = args.num // divisor print(F"""{args.num} = {divisor} * {quotient}""")
711
"""simple docstring""" import random class snake_case : """simple docstring""" @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : str ): UpperCAmelCase__ = [ord(lowerCamelCase__ ) for i in text] UpperCAmelCase__ = [] UpperCAmelCase__ = [] for i in plain: UpperCAmelCase__ = random.randint(1 ,300 ) UpperCAmelCase__ = (i + k) * k cipher.append(lowerCamelCase__ ) key.append(lowerCamelCase__ ) return cipher, key @staticmethod def __lowerCAmelCase ( lowerCamelCase__ : list[int] ,lowerCamelCase__ : list[int] ): UpperCAmelCase__ = [] for i in range(len(lowerCamelCase__ ) ): UpperCAmelCase__ = int((cipher[i] - (key[i]) ** 2) / key[i] ) plain.append(chr(lowerCamelCase__ ) ) return "".join(lowerCamelCase__ ) if __name__ == "__main__": lowerCAmelCase__ , lowerCAmelCase__ : Dict = Onepad().encrypt('Hello') print(c, k) print(Onepad().decrypt(c, k))
632
0
def UpperCamelCase( ): for n in range(1 ,1000000 ): yield n * (n + 1) // 2 def UpperCamelCase( __UpperCamelCase : Union[str, Any] ): lowerCAmelCase_ : Optional[Any] = 1 lowerCAmelCase_ : List[Any] = 2 while i * i <= n: lowerCAmelCase_ : Tuple = 0 while n % i == 0: n //= i multiplicity += 1 divisors_count *= multiplicity + 1 i += 1 if n > 1: divisors_count *= 2 return divisors_count def UpperCamelCase( ): return next(i for i in triangle_number_generator() if count_divisors(__UpperCamelCase ) > 500 ) if __name__ == "__main__": print(solution())
171
import fire from utils import calculate_rouge, save_json def UpperCamelCase( __UpperCamelCase : str ,__UpperCamelCase : str ,__UpperCamelCase : str=None ,**__UpperCamelCase : Optional[Any] ): lowerCAmelCase_ : int = [x.strip() for x in open(__UpperCamelCase ).readlines()] lowerCAmelCase_ : Optional[Any] = [x.strip() for x in open(__UpperCamelCase ).readlines()][: len(__UpperCamelCase )] lowerCAmelCase_ : Tuple = calculate_rouge(__UpperCamelCase ,__UpperCamelCase ,**__UpperCamelCase ) if save_path is not None: save_json(__UpperCamelCase ,__UpperCamelCase ,indent=__UpperCamelCase ) return metrics # these print nicely if __name__ == "__main__": fire.Fire(calculate_rouge_path)
171
1
'''simple docstring''' import logging import os from dataclasses import dataclass from enum import Enum from typing import List, Optional, Union from filelock import FileLock from transformers import PreTrainedTokenizer, is_tf_available, is_torch_available _lowerCAmelCase : Tuple = logging.getLogger(__name__) @dataclass class lowerCAmelCase : _lowerCamelCase : str _lowerCamelCase : List[str] _lowerCamelCase : Optional[List[str]] @dataclass class lowerCAmelCase : _lowerCamelCase : List[int] _lowerCamelCase : List[int] _lowerCamelCase : Optional[List[int]] = None _lowerCamelCase : Optional[List[int]] = None class lowerCAmelCase ( a ): _lowerCamelCase : List[str] = """train""" _lowerCamelCase : Optional[int] = """dev""" _lowerCamelCase : Tuple = """test""" class lowerCAmelCase : @staticmethod def lowercase ( snake_case__ , snake_case__ ): raise NotImplementedError @staticmethod def lowercase ( snake_case__ ): raise NotImplementedError @staticmethod def lowercase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__=False , snake_case__="[CLS]" , snake_case__=1 , snake_case__="[SEP]" , snake_case__=False , snake_case__=False , snake_case__=0 , snake_case__=0 , snake_case__=-100 , snake_case__=0 , snake_case__=True , ): lowerCAmelCase : Optional[int] = {label: i for i, label in enumerate(snake_case__ )} lowerCAmelCase : Tuple = [] for ex_index, example in enumerate(snake_case__ ): if ex_index % 1_0000 == 0: logger.info('Writing example %d of %d' , snake_case__ , len(snake_case__ ) ) lowerCAmelCase : Dict = [] lowerCAmelCase : Union[str, Any] = [] for word, label in zip(example.words , example.labels ): lowerCAmelCase : Any = tokenizer.tokenize(snake_case__ ) # bert-base-multilingual-cased sometimes output "nothing ([]) when calling tokenize with just a space. if len(snake_case__ ) > 0: tokens.extend(snake_case__ ) # Use the real label id for the first token of the word, and padding ids for the remaining tokens label_ids.extend([label_map[label]] + [pad_token_label_id] * (len(snake_case__ ) - 1) ) # Account for [CLS] and [SEP] with "- 2" and with "- 3" for RoBERTa. lowerCAmelCase : Optional[int] = tokenizer.num_special_tokens_to_add() if len(snake_case__ ) > max_seq_length - special_tokens_count: lowerCAmelCase : Optional[Any] = tokens[: (max_seq_length - special_tokens_count)] lowerCAmelCase : List[Any] = label_ids[: (max_seq_length - special_tokens_count)] # The convention in BERT is: # (a) For sequence pairs: # tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP] # type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1 # (b) For single sequences: # tokens: [CLS] the dog is hairy . [SEP] # type_ids: 0 0 0 0 0 0 0 # # Where "type_ids" are used to indicate whether this is the first # sequence or the second sequence. The embedding vectors for `type=0` and # `type=1` were learned during pre-training and are added to the wordpiece # embedding vector (and position vector). This is not *strictly* necessary # since the [SEP] token unambiguously separates the sequences, but it makes # it easier for the model to learn the concept of sequences. # # For classification tasks, the first vector (corresponding to [CLS]) is # used as the "sentence vector". Note that this only makes sense because # the entire model is fine-tuned. tokens += [sep_token] label_ids += [pad_token_label_id] if sep_token_extra: # roberta uses an extra separator b/w pairs of sentences tokens += [sep_token] label_ids += [pad_token_label_id] lowerCAmelCase : Optional[Any] = [sequence_a_segment_id] * len(snake_case__ ) if cls_token_at_end: tokens += [cls_token] label_ids += [pad_token_label_id] segment_ids += [cls_token_segment_id] else: lowerCAmelCase : List[str] = [cls_token] + tokens lowerCAmelCase : List[str] = [pad_token_label_id] + label_ids lowerCAmelCase : List[str] = [cls_token_segment_id] + segment_ids lowerCAmelCase : Optional[Any] = tokenizer.convert_tokens_to_ids(snake_case__ ) # The mask has 1 for real tokens and 0 for padding tokens. Only real # tokens are attended to. lowerCAmelCase : Dict = [1 if mask_padding_with_zero else 0] * len(snake_case__ ) # Zero-pad up to the sequence length. lowerCAmelCase : Any = max_seq_length - len(snake_case__ ) if pad_on_left: lowerCAmelCase : Union[str, Any] = ([pad_token] * padding_length) + input_ids lowerCAmelCase : Tuple = ([0 if mask_padding_with_zero else 1] * padding_length) + input_mask lowerCAmelCase : Union[str, Any] = ([pad_token_segment_id] * padding_length) + segment_ids lowerCAmelCase : Any = ([pad_token_label_id] * padding_length) + label_ids else: input_ids += [pad_token] * padding_length input_mask += [0 if mask_padding_with_zero else 1] * padding_length segment_ids += [pad_token_segment_id] * padding_length label_ids += [pad_token_label_id] * padding_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length assert len(snake_case__ ) == max_seq_length if ex_index < 5: logger.info('*** Example ***' ) logger.info('guid: %s' , example.guid ) logger.info('tokens: %s' , ' '.join([str(snake_case__ ) for x in tokens] ) ) logger.info('input_ids: %s' , ' '.join([str(snake_case__ ) for x in input_ids] ) ) logger.info('input_mask: %s' , ' '.join([str(snake_case__ ) for x in input_mask] ) ) logger.info('segment_ids: %s' , ' '.join([str(snake_case__ ) for x in segment_ids] ) ) logger.info('label_ids: %s' , ' '.join([str(snake_case__ ) for x in label_ids] ) ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase : Optional[Any] = None features.append( InputFeatures( input_ids=snake_case__ , attention_mask=snake_case__ , token_type_ids=snake_case__ , label_ids=snake_case__ ) ) return features if is_torch_available(): import torch from torch import nn from torch.utils.data import Dataset class lowerCAmelCase ( a ): _lowerCamelCase : List[InputFeatures] _lowerCamelCase : int = nn.CrossEntropyLoss().ignore_index def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=False , snake_case__ = Split.train , ): # Load data features from cache or dataset file lowerCAmelCase : List[Any] = os.path.join( snake_case__ , 'cached_{}_{}_{}'.format(mode.value , tokenizer.__class__.__name__ , str(snake_case__ ) ) , ) # Make sure only the first process in distributed training processes the dataset, # and the others will use the cache. lowerCAmelCase : str = cached_features_file + '.lock' with FileLock(snake_case__ ): if os.path.exists(snake_case__ ) and not overwrite_cache: logger.info(f"Loading features from cached file {cached_features_file}" ) lowerCAmelCase : Any = torch.load(snake_case__ ) else: logger.info(f"Creating features from dataset file at {data_dir}" ) lowerCAmelCase : Union[str, Any] = token_classification_task.read_examples_from_file(snake_case__ , snake_case__ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase : str = token_classification_task.convert_examples_to_features( snake_case__ , snake_case__ , snake_case__ , snake_case__ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case__ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) logger.info(f"Saving features into cached file {cached_features_file}" ) torch.save(self.features , snake_case__ ) def __len__( self ): return len(self.features ) def __getitem__( self , snake_case__ ): return self.features[i] if is_tf_available(): import tensorflow as tf class lowerCAmelCase : _lowerCamelCase : List[InputFeatures] _lowerCamelCase : int = -100 def __init__( self , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ = None , snake_case__=False , snake_case__ = Split.train , ): lowerCAmelCase : Any = token_classification_task.read_examples_from_file(snake_case__ , snake_case__ ) # TODO clean up all this to leverage built-in features of tokenizers lowerCAmelCase : Dict = token_classification_task.convert_examples_to_features( snake_case__ , snake_case__ , snake_case__ , snake_case__ , cls_token_at_end=bool(model_type in ['xlnet'] ) , cls_token=tokenizer.cls_token , cls_token_segment_id=2 if model_type in ['xlnet'] else 0 , sep_token=tokenizer.sep_token , sep_token_extra=snake_case__ , pad_on_left=bool(tokenizer.padding_side == 'left' ) , pad_token=tokenizer.pad_token_id , pad_token_segment_id=tokenizer.pad_token_type_id , pad_token_label_id=self.pad_token_label_id , ) def gen(): for ex in self.features: if ex.token_type_ids is None: yield ( {"input_ids": ex.input_ids, "attention_mask": ex.attention_mask}, ex.label_ids, ) else: yield ( { "input_ids": ex.input_ids, "attention_mask": ex.attention_mask, "token_type_ids": ex.token_type_ids, }, ex.label_ids, ) if "token_type_ids" not in tokenizer.model_input_names: lowerCAmelCase : List[Any] = tf.data.Dataset.from_generator( snake_case__ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa}, tf.intaa) , ( {'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] )}, tf.TensorShape([None] ), ) , ) else: lowerCAmelCase : Tuple = tf.data.Dataset.from_generator( snake_case__ , ({'input_ids': tf.intaa, 'attention_mask': tf.intaa, 'token_type_ids': tf.intaa}, tf.intaa) , ( { 'input_ids': tf.TensorShape([None] ), 'attention_mask': tf.TensorShape([None] ), 'token_type_ids': tf.TensorShape([None] ), }, tf.TensorShape([None] ), ) , ) def lowercase ( self ): lowerCAmelCase : List[str] = self.dataset.apply(tf.data.experimental.assert_cardinality(len(self.features ) ) ) return self.dataset def __len__( self ): return len(self.features ) def __getitem__( self , snake_case__ ): return self.features[i]
646
'''simple docstring''' import argparse import numpy as np import torch from transformers import SpeechTaHifiGan, SpeechTaHifiGanConfig, logging logging.set_verbosity_info() _lowerCAmelCase : List[str] = logging.get_logger('transformers.models.speecht5') def __UpperCamelCase ( _A : Any , _A : Dict , _A : Any ) -> Union[str, Any]: """simple docstring""" hf_model.apply_weight_norm() lowerCAmelCase : int = checkpoint['input_conv.weight_g'] lowerCAmelCase : Optional[int] = checkpoint['input_conv.weight_v'] lowerCAmelCase : Dict = checkpoint['input_conv.bias'] for i in range(len(config.upsample_rates ) ): lowerCAmelCase : Optional[Any] = checkpoint[F"upsamples.{i}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.weight_v"] lowerCAmelCase : str = checkpoint[F"upsamples.{i}.1.bias"] for i in range(len(config.upsample_rates ) * len(config.resblock_kernel_sizes ) ): for j in range(len(config.resblock_dilation_sizes ) ): lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_g"] lowerCAmelCase : str = checkpoint[F"blocks.{i}.convs1.{j}.1.weight_v"] lowerCAmelCase : int = checkpoint[F"blocks.{i}.convs1.{j}.1.bias"] lowerCAmelCase : Optional[Any] = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_g"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.weight_v"] lowerCAmelCase : Tuple = checkpoint[F"blocks.{i}.convs2.{j}.1.bias"] lowerCAmelCase : List[Any] = checkpoint['output_conv.1.weight_g'] lowerCAmelCase : List[str] = checkpoint['output_conv.1.weight_v'] lowerCAmelCase : Optional[Any] = checkpoint['output_conv.1.bias'] hf_model.remove_weight_norm() @torch.no_grad() def __UpperCamelCase ( _A : Dict , _A : Union[str, Any] , _A : List[Any] , _A : Any=None , _A : Any=None , ) -> Dict: """simple docstring""" if config_path is not None: lowerCAmelCase : Dict = SpeechTaHifiGanConfig.from_pretrained(_A ) else: lowerCAmelCase : Union[str, Any] = SpeechTaHifiGanConfig() lowerCAmelCase : List[Any] = SpeechTaHifiGan(_A ) lowerCAmelCase : List[str] = torch.load(_A ) load_weights(orig_checkpoint['model']['generator'] , _A , _A ) lowerCAmelCase : Tuple = np.load(_A ) lowerCAmelCase : List[Any] = stats[0].reshape(-1 ) lowerCAmelCase : int = stats[1].reshape(-1 ) lowerCAmelCase : Union[str, Any] = torch.from_numpy(_A ).float() lowerCAmelCase : int = torch.from_numpy(_A ).float() model.save_pretrained(_A ) if repo_id: print('Pushing to the hub...' ) model.push_to_hub(_A ) if __name__ == "__main__": _lowerCAmelCase : List[Any] = argparse.ArgumentParser() parser.add_argument('--checkpoint_path', required=True, default=None, type=str, help='Path to original checkpoint') parser.add_argument('--stats_path', required=True, default=None, type=str, help='Path to stats.npy file') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--pytorch_dump_folder_path', required=True, default=None, type=str, help='Path to the output PyTorch model.' ) parser.add_argument( '--push_to_hub', default=None, type=str, help='Where to upload the converted model on the 🤗 hub.' ) _lowerCAmelCase : Union[str, Any] = parser.parse_args() convert_hifigan_checkpoint( args.checkpoint_path, args.stats_path, args.pytorch_dump_folder_path, args.config_path, args.push_to_hub, )
646
1
'''simple docstring''' import argparse from transformers import BigBirdConfig, BigBirdForPreTraining, BigBirdForQuestionAnswering, load_tf_weights_in_big_bird from transformers.utils import logging logging.set_verbosity_info() def A ( UpperCamelCase_ : Optional[int] , UpperCamelCase_ : Dict , UpperCamelCase_ : Dict , UpperCamelCase_ : int ) -> Any: '''simple docstring''' lowerCAmelCase__ = BigBirdConfig.from_json_file(UpperCamelCase_ ) print(F"""Building PyTorch model from configuration: {config}""" ) if is_trivia_qa: lowerCAmelCase__ = BigBirdForQuestionAnswering(UpperCamelCase_ ) else: lowerCAmelCase__ = BigBirdForPreTraining(UpperCamelCase_ ) # Load weights from tf checkpoint load_tf_weights_in_big_bird(UpperCamelCase_ , UpperCamelCase_ , is_trivia_qa=UpperCamelCase_ ) # Save pytorch-model print(F"""Save PyTorch model to {pytorch_dump_path}""" ) model.save_pretrained(UpperCamelCase_ ) if __name__ == "__main__": UpperCAmelCase__ : Union[str, Any] = argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--big_bird_config_file", default=None, type=str, required=True, help=( "The config json file corresponding to the pre-trained BERT model. \n" "This specifies the model architecture." ), ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument( "--is_trivia_qa", action="store_true", help="Whether to convert a model with a trivia_qa head." ) UpperCAmelCase__ : int = parser.parse_args() convert_tf_checkpoint_to_pytorch( args.tf_checkpoint_path, args.big_bird_config_file, args.pytorch_dump_path, args.is_trivia_qa )
48
'''simple docstring''' def A ( UpperCamelCase_ : str , UpperCamelCase_ : int ) -> list: '''simple docstring''' lowerCAmelCase__ = word.split() def justify(UpperCamelCase_ : list , UpperCamelCase_ : int , UpperCamelCase_ : int ) -> str: lowerCAmelCase__ = max_width - width lowerCAmelCase__ = len(UpperCamelCase_ ) if len(UpperCamelCase_ ) == 1: # if there is only word in line # just insert overall_spaces_count for the remainder of line return line[0] + " " * overall_spaces_count else: lowerCAmelCase__ = words_count - 1 # num_spaces_between_words_list[i] : tells you to insert # num_spaces_between_words_list[i] spaces # after word on line[i] lowerCAmelCase__ = spaces_to_insert_between_words * [ overall_spaces_count // spaces_to_insert_between_words ] lowerCAmelCase__ = ( overall_spaces_count % spaces_to_insert_between_words ) # distribute spaces via round robin to the left words for i in range(UpperCamelCase_ ): num_spaces_between_words_list[i] += 1 lowerCAmelCase__ = [] for i in range(UpperCamelCase_ ): # add the word aligned_words_list.append(line[i] ) # add the spaces to insert aligned_words_list.append(num_spaces_between_words_list[i] * " " ) # just add the last word to the sentence aligned_words_list.append(line[-1] ) # join the aligned words list to form a justified line return "".join(UpperCamelCase_ ) lowerCAmelCase__ = [] lowerCAmelCase__ = [] lowerCAmelCase__ = 0 for word in words: if width + len(UpperCamelCase_ ) + len(UpperCamelCase_ ) <= max_width: # keep adding words until we can fill out max_width # width = sum of length of all words (without overall_spaces_count) # len(word) = length of current word # len(line) = number of overall_spaces_count to insert between words line.append(UpperCamelCase_ ) width += len(UpperCamelCase_ ) else: # justify the line and add it to result answer.append(justify(UpperCamelCase_ , UpperCamelCase_ , UpperCamelCase_ ) ) # reset new line and new width lowerCAmelCase__ ,lowerCAmelCase__ = [word], len(UpperCamelCase_ ) lowerCAmelCase__ = max_width - width - len(UpperCamelCase_ ) answer.append(" ".join(UpperCamelCase_ ) + (remaining_spaces + 1) * " " ) return answer if __name__ == "__main__": from doctest import testmod testmod()
48
1
'''simple docstring''' # This model implementation is heavily inspired by https://github.com/haofanwang/ControlNet-for-Diffusers/ import gc import random import tempfile import unittest import numpy as np import torch from PIL import Image from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, ControlNetModel, DDIMScheduler, StableDiffusionControlNetImgaImgPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet import MultiControlNetModel from diffusers.utils import floats_tensor, load_image, load_numpy, randn_tensor, slow, torch_device from diffusers.utils.import_utils import is_xformers_available from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, ) enable_full_determinism() class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : str = StableDiffusionControlNetImgaImgPipeline __magic_name__ : Optional[Any] = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __magic_name__ : int = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ : str = IMAGE_TO_IMAGE_IMAGE_PARAMS.union({"control_image"} ) __magic_name__ : List[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS def a__( self : Any )-> Tuple: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) UpperCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a__( self : Any , lowerCAmelCase : int , lowerCAmelCase : List[str]=0 )-> Any: """simple docstring""" if str(lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase = 2 UpperCAmelCase = randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ) UpperCAmelCase = floats_tensor(control_image.shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def a__( self : List[str] )-> int: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__( self : Dict )-> str: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def a__( self : Optional[int] )-> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) class UpperCamelCase__( lowerCAmelCase , lowerCAmelCase , unittest.TestCase ): __magic_name__ : Tuple = StableDiffusionControlNetImgaImgPipeline __magic_name__ : str = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - {"height", "width"} __magic_name__ : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS __magic_name__ : Any = frozenset([] ) # TO_DO: add image_params once refactored VaeImageProcessor.preprocess def a__( self : Dict )-> List[Any]: """simple docstring""" torch.manual_seed(0 ) UpperCAmelCase = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) torch.manual_seed(0 ) def init_weights(lowerCAmelCase : Tuple ): if isinstance(lowerCAmelCase , torch.nn.Convad ): torch.nn.init.normal(m.weight ) m.bias.data.fill_(1.0 ) UpperCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase ) torch.manual_seed(0 ) UpperCAmelCase = ControlNetModel( block_out_channels=(32, 64) , layers_per_block=2 , in_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , cross_attention_dim=32 , conditioning_embedding_out_channels=(16, 32) , ) controlneta.controlnet_down_blocks.apply(lowerCAmelCase ) torch.manual_seed(0 ) UpperCAmelCase = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=lowerCAmelCase , set_alpha_to_one=lowerCAmelCase , ) torch.manual_seed(0 ) UpperCAmelCase = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) UpperCAmelCase = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1000 , ) UpperCAmelCase = CLIPTextModel(lowerCAmelCase ) UpperCAmelCase = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) UpperCAmelCase = MultiControlNetModel([controlneta, controlneta] ) UpperCAmelCase = { '''unet''': unet, '''controlnet''': controlnet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def a__( self : List[str] , lowerCAmelCase : int , lowerCAmelCase : Union[str, Any]=0 )-> List[str]: """simple docstring""" if str(lowerCAmelCase ).startswith('''mps''' ): UpperCAmelCase = torch.manual_seed(lowerCAmelCase ) else: UpperCAmelCase = torch.Generator(device=lowerCAmelCase ).manual_seed(lowerCAmelCase ) UpperCAmelCase = 2 UpperCAmelCase = [ randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ), randn_tensor( (1, 3, 32 * controlnet_embedder_scale_factor, 32 * controlnet_embedder_scale_factor) , generator=lowerCAmelCase , device=torch.device(lowerCAmelCase ) , ), ] UpperCAmelCase = floats_tensor(control_image[0].shape , rng=random.Random(lowerCAmelCase ) ).to(lowerCAmelCase ) UpperCAmelCase = image.cpu().permute(0 , 2 , 3 , 1 )[0] UpperCAmelCase = Image.fromarray(np.uinta(lowerCAmelCase ) ).convert('''RGB''' ).resize((64, 64) ) UpperCAmelCase = { '''prompt''': '''A painting of a squirrel eating a burger''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 6.0, '''output_type''': '''numpy''', '''image''': image, '''control_image''': control_image, } return inputs def a__( self : List[Any] )-> Optional[Any]: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) UpperCAmelCase = 10.0 UpperCAmelCase = 4 UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = steps UpperCAmelCase = scale UpperCAmelCase = pipe(**lowerCAmelCase )[0] UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = steps UpperCAmelCase = scale UpperCAmelCase = pipe(**lowerCAmelCase , control_guidance_start=0.1 , control_guidance_end=0.2 )[0] UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = steps UpperCAmelCase = scale UpperCAmelCase = pipe(**lowerCAmelCase , control_guidance_start=[0.1, 0.3] , control_guidance_end=[0.2, 0.7] )[0] UpperCAmelCase = self.get_dummy_inputs(lowerCAmelCase ) UpperCAmelCase = steps UpperCAmelCase = scale UpperCAmelCase = pipe(**lowerCAmelCase , control_guidance_start=0.4 , control_guidance_end=[0.5, 0.8] )[0] # make sure that all outputs are different assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 assert np.sum(np.abs(output_a - output_a ) ) > 1E-3 def a__( self : str )-> List[str]: """simple docstring""" return self._test_attention_slicing_forward_pass(expected_max_diff=2E-3 ) @unittest.skipIf( torch_device != '''cuda''' or not is_xformers_available() , reason='''XFormers attention is only available with CUDA and `xformers` installed''' , ) def a__( self : Tuple )-> Tuple: """simple docstring""" self._test_xformers_attention_forwardGenerator_pass(expected_max_diff=2E-3 ) def a__( self : int )-> Optional[int]: """simple docstring""" self._test_inference_batch_single_identical(expected_max_diff=2E-3 ) def a__( self : int )-> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_dummy_components() UpperCAmelCase = self.pipeline_class(**lowerCAmelCase ) pipe.to(lowerCAmelCase ) pipe.set_progress_bar_config(disable=lowerCAmelCase ) with tempfile.TemporaryDirectory() as tmpdir: try: # save_pretrained is not implemented for Multi-ControlNet pipe.save_pretrained(lowerCAmelCase ) except NotImplementedError: pass @slow @require_torch_gpu class UpperCamelCase__( unittest.TestCase ): def a__( self : Optional[Any] )-> int: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def a__( self : Optional[Any] )-> List[Any]: """simple docstring""" UpperCAmelCase = ControlNetModel.from_pretrained('''lllyasviel/sd-controlnet-canny''' ) UpperCAmelCase = StableDiffusionControlNetImgaImgPipeline.from_pretrained( '''runwayml/stable-diffusion-v1-5''' , safety_checker=lowerCAmelCase , controlnet=lowerCAmelCase ) pipe.enable_model_cpu_offload() pipe.set_progress_bar_config(disable=lowerCAmelCase ) UpperCAmelCase = torch.Generator(device='''cpu''' ).manual_seed(0 ) UpperCAmelCase = '''evil space-punk bird''' UpperCAmelCase = load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/bird_canny.png''' ).resize((512, 512) ) UpperCAmelCase = load_image( '''https://huggingface.co/lllyasviel/sd-controlnet-canny/resolve/main/images/bird.png''' ).resize((512, 512) ) UpperCAmelCase = pipe( lowerCAmelCase , lowerCAmelCase , control_image=lowerCAmelCase , generator=lowerCAmelCase , output_type='''np''' , num_inference_steps=50 , strength=0.6 , ) UpperCAmelCase = output.images[0] assert image.shape == (512, 512, 3) UpperCAmelCase = load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/sd_controlnet/img2img.npy''' ) assert np.abs(expected_image - image ).max() < 9E-2
50
'''simple docstring''' import os from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, BatchEncoding, PreTrainedTokenizer from ...utils import logging _lowercase : str = logging.get_logger(__name__) _lowercase : List[Any] = """▁""" _lowercase : Optional[Any] = {"""vocab_file""": """sentencepiece.bpe.model"""} _lowercase : Any = { """vocab_file""": { """facebook/mbart-large-50-one-to-many-mmt""": ( """https://huggingface.co/facebook/mbart-large-50-one-to-many-mmt/resolve/main/sentencepiece.bpe.model""" ), } } _lowercase : int = { """facebook/mbart-large-50-one-to-many-mmt""": 1024, } # fmt: off _lowercase : int = ["""ar_AR""", """cs_CZ""", """de_DE""", """en_XX""", """es_XX""", """et_EE""", """fi_FI""", """fr_XX""", """gu_IN""", """hi_IN""", """it_IT""", """ja_XX""", """kk_KZ""", """ko_KR""", """lt_LT""", """lv_LV""", """my_MM""", """ne_NP""", """nl_XX""", """ro_RO""", """ru_RU""", """si_LK""", """tr_TR""", """vi_VN""", """zh_CN""", """af_ZA""", """az_AZ""", """bn_IN""", """fa_IR""", """he_IL""", """hr_HR""", """id_ID""", """ka_GE""", """km_KH""", """mk_MK""", """ml_IN""", """mn_MN""", """mr_IN""", """pl_PL""", """ps_AF""", """pt_XX""", """sv_SE""", """sw_KE""", """ta_IN""", """te_IN""", """th_TH""", """tl_XX""", """uk_UA""", """ur_PK""", """xh_ZA""", """gl_ES""", """sl_SI"""] class UpperCamelCase__( lowerCAmelCase ): __magic_name__ : Optional[int] = VOCAB_FILES_NAMES __magic_name__ : Union[str, Any] = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __magic_name__ : Optional[int] = PRETRAINED_VOCAB_FILES_MAP __magic_name__ : Union[str, Any] = ["input_ids", "attention_mask"] __magic_name__ : List[int] = [] __magic_name__ : List[int] = [] def __init__( self : List[str] , lowerCAmelCase : Optional[int] , lowerCAmelCase : Optional[int]=None , lowerCAmelCase : str=None , lowerCAmelCase : List[Any]="</s>" , lowerCAmelCase : Union[str, Any]="</s>" , lowerCAmelCase : Union[str, Any]="<s>" , lowerCAmelCase : int="<unk>" , lowerCAmelCase : str="<pad>" , lowerCAmelCase : Optional[int]="<mask>" , lowerCAmelCase : Optional[Dict[str, Any]] = None , **lowerCAmelCase : List[Any] , )-> None: """simple docstring""" UpperCAmelCase = AddedToken(lowerCAmelCase , lstrip=lowerCAmelCase , rstrip=lowerCAmelCase ) if isinstance(lowerCAmelCase , lowerCAmelCase ) else mask_token UpperCAmelCase = {} if sp_model_kwargs is None else sp_model_kwargs UpperCAmelCase = kwargs.get('''additional_special_tokens''' , [] ) kwargs["additional_special_tokens"] += [ code for code in FAIRSEQ_LANGUAGE_CODES if code not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=lowerCAmelCase , tgt_lang=lowerCAmelCase , eos_token=lowerCAmelCase , unk_token=lowerCAmelCase , sep_token=lowerCAmelCase , cls_token=lowerCAmelCase , pad_token=lowerCAmelCase , mask_token=lowerCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **lowerCAmelCase , ) UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(str(lowerCAmelCase ) ) UpperCAmelCase = vocab_file # Original fairseq vocab and spm vocab must be "aligned": # Vocab | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 # -------- | ------- | ------- | ------ | ------- | --- | --- | --- | ----- | ----- | ---- # fairseq | '<s>' | '<pad>' | '</s>' | '<unk>' | ',' | '.' | '▁' | 's' | '▁de' | '-' # spm | '<unk>' | '<s>' | '</s>' | ',' | '.' | '▁' | 's' | '▁de' | '-' | '▁a' # Mimic fairseq token-to-id alignment for the first 4 token UpperCAmelCase = {'''<s>''': 0, '''<pad>''': 1, '''</s>''': 2, '''<unk>''': 3} # The first "real" token "," has position 4 in the original fairseq vocab and position 3 in the spm vocab UpperCAmelCase = 1 UpperCAmelCase = len(self.sp_model ) UpperCAmelCase = { code: self.sp_model_size + i + self.fairseq_offset for i, code in enumerate(lowerCAmelCase ) } UpperCAmelCase = {v: k for k, v in self.lang_code_to_id.items()} UpperCAmelCase = len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset self.fairseq_tokens_to_ids.update(self.lang_code_to_id ) UpperCAmelCase = {v: k for k, v in self.fairseq_tokens_to_ids.items()} UpperCAmelCase = src_lang if src_lang is not None else '''en_XX''' UpperCAmelCase = self.lang_code_to_id[self._src_lang] UpperCAmelCase = tgt_lang self.set_src_lang_special_tokens(self._src_lang ) @property def a__( self : Union[str, Any] )-> int: """simple docstring""" return len(self.sp_model ) + len(self.lang_code_to_id ) + self.fairseq_offset + 1 # Plus 1 for the mask token @property def a__( self : str )-> str: """simple docstring""" return self._src_lang @src_lang.setter def a__( self : Any , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def __getstate__( self : Tuple )-> Dict: """simple docstring""" UpperCAmelCase = self.__dict__.copy() UpperCAmelCase = None return state def __setstate__( self : Dict , lowerCAmelCase : Dict )-> None: """simple docstring""" UpperCAmelCase = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): UpperCAmelCase = {} UpperCAmelCase = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def a__( self : Union[str, Any] )-> Dict: """simple docstring""" UpperCAmelCase = {self.convert_ids_to_tokens(lowerCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def a__( self : str , lowerCAmelCase : str )-> List[str]: """simple docstring""" return self.sp_model.encode(lowerCAmelCase , out_type=lowerCAmelCase ) def a__( self : Optional[int] , lowerCAmelCase : str )-> int: """simple docstring""" if token in self.fairseq_tokens_to_ids: return self.fairseq_tokens_to_ids[token] UpperCAmelCase = self.sp_model.PieceToId(lowerCAmelCase ) # Need to return unknown token if the SP model returned 0 return spm_id + self.fairseq_offset if spm_id else self.unk_token_id def a__( self : List[Any] , lowerCAmelCase : int )-> str: """simple docstring""" if index in self.fairseq_ids_to_tokens: return self.fairseq_ids_to_tokens[index] return self.sp_model.IdToPiece(index - self.fairseq_offset ) def a__( self : int , lowerCAmelCase : List[Any] )-> Dict: """simple docstring""" UpperCAmelCase = [] UpperCAmelCase = '''''' UpperCAmelCase = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowerCAmelCase ) + token UpperCAmelCase = True UpperCAmelCase = [] else: current_sub_tokens.append(lowerCAmelCase ) UpperCAmelCase = False out_string += self.sp_model.decode(lowerCAmelCase ) return out_string.strip() def a__( self : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] = None )-> Tuple[str]: """simple docstring""" if not os.path.isdir(lowerCAmelCase ): logger.error(F"""Vocabulary path ({save_directory}) should be a directory""" ) return UpperCAmelCase = os.path.join( lowerCAmelCase , (filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowerCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowerCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(lowerCAmelCase , '''wb''' ) as fi: UpperCAmelCase = self.sp_model.serialized_model_proto() fi.write(lowerCAmelCase ) return (out_vocab_file,) def a__( self : List[str] , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None , lowerCAmelCase : bool = False )-> List[int]: """simple docstring""" if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=lowerCAmelCase , token_ids_a=lowerCAmelCase , already_has_special_tokens=lowerCAmelCase ) UpperCAmelCase = [1] * len(self.prefix_tokens ) UpperCAmelCase = [1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(lowerCAmelCase )) + suffix_ones return prefix_ones + ([0] * len(lowerCAmelCase )) + ([0] * len(lowerCAmelCase )) + suffix_ones def a__( self : Tuple , lowerCAmelCase : List[int] , lowerCAmelCase : Optional[List[int]] = None )-> List[int]: """simple docstring""" if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def a__( self : List[Any] , lowerCAmelCase : Union[str, Any] , lowerCAmelCase : str , lowerCAmelCase : Optional[str] , lowerCAmelCase : Optional[str] , **lowerCAmelCase : Optional[int] )-> Optional[Any]: """simple docstring""" if src_lang is None or tgt_lang is None: raise ValueError('''Translation requires a `src_lang` and a `tgt_lang` for this model''' ) UpperCAmelCase = src_lang UpperCAmelCase = self(lowerCAmelCase , add_special_tokens=lowerCAmelCase , return_tensors=lowerCAmelCase , **lowerCAmelCase ) UpperCAmelCase = self.convert_tokens_to_ids(lowerCAmelCase ) UpperCAmelCase = tgt_lang_id return inputs def a__( self : str , lowerCAmelCase : List[str] , lowerCAmelCase : str = "en_XX" , lowerCAmelCase : Optional[List[str]] = None , lowerCAmelCase : str = "ro_RO" , **lowerCAmelCase : List[str] , )-> BatchEncoding: """simple docstring""" UpperCAmelCase = src_lang UpperCAmelCase = tgt_lang return super().prepare_seqaseq_batch(lowerCAmelCase , lowerCAmelCase , **lowerCAmelCase ) def a__( self : Optional[int] )-> Union[str, Any]: """simple docstring""" return self.set_src_lang_special_tokens(self.src_lang ) def a__( self : List[Any] )-> int: """simple docstring""" return self.set_tgt_lang_special_tokens(self.tgt_lang ) def a__( self : List[Any] , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[src_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id] def a__( self : int , lowerCAmelCase : str )-> None: """simple docstring""" UpperCAmelCase = self.lang_code_to_id[tgt_lang] UpperCAmelCase = [self.cur_lang_code_id] UpperCAmelCase = [self.eos_token_id]
50
1
"""simple docstring""" import copy import os import cva import numpy as np from matplotlib import pyplot as plt class _UpperCAmelCase : def __init__( self : Tuple ): __UpperCAmelCase = '''''' __UpperCAmelCase = '''''' __UpperCAmelCase = [] __UpperCAmelCase = 0 __UpperCAmelCase = 2_56 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 __UpperCAmelCase = 0 def a ( self : List[Any] , _lowercase : List[Any] ): __UpperCAmelCase = cva.imread(_lowercase , 0 ) __UpperCAmelCase = copy.deepcopy(self.img ) __UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase = plt.hist(self.img.ravel() , 2_56 , [0, 2_56] , label='''x''' ) __UpperCAmelCase = np.sum(_lowercase ) for i in range(len(_lowercase ) ): __UpperCAmelCase = x[i] / self.k self.sk += prk __UpperCAmelCase = (self.L - 1) * self.sk if self.rem != 0: __UpperCAmelCase = int(last % last ) __UpperCAmelCase = int(last + 1 if self.rem >= 0.5 else last ) self.last_list.append(_lowercase ) __UpperCAmelCase = int(np.ma.count(self.img ) / self.img[1].size ) __UpperCAmelCase = self.img[1].size for i in range(self.number_of_cols ): for j in range(self.number_of_rows ): __UpperCAmelCase = self.img[j][i] if num != self.last_list[num]: __UpperCAmelCase = self.last_list[num] cva.imwrite('''output_data/output.jpg''' , self.img ) def a ( self : Tuple ): plt.hist(self.img.ravel() , 2_56 , [0, 2_56] ) def a ( self : Union[str, Any] ): cva.imshow('''Output-Image''' , self.img ) cva.imshow('''Input-Image''' , self.original_image ) cva.waitKey(50_00 ) cva.destroyAllWindows() if __name__ == "__main__": _lowercase : Optional[int] = os.path.join(os.path.basename(__file__), 'image_data/input.jpg') _lowercase : Union[str, Any] = ConstantStretch() stretcher.stretch(file_path) stretcher.plot_histogram() stretcher.show_image()
49
"""simple docstring""" # Copyright 2023 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING # rely on isort to merge the imports from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available _lowercase : List[Any] = { 'configuration_vivit': ['VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'VivitConfig'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : Dict = ['VivitImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowercase : List[str] = [ 'VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'VivitModel', 'VivitPreTrainedModel', 'VivitForVideoClassification', ] if TYPE_CHECKING: from .configuration_vivit import VIVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, VivitConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_vivit import VivitImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_vivit import ( VIVIT_PRETRAINED_MODEL_ARCHIVE_LIST, VivitForVideoClassification, VivitModel, VivitPreTrainedModel, ) else: import sys _lowercase : Optional[Any] = _LazyModule(__name__, globals()['__file__'], _import_structure, module_spec=__spec__)
49
1
import argparse import re from pathlib import Path import requests import torch from PIL import Image from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor from transformers import ( EfficientFormerConfig, EfficientFormerForImageClassificationWithTeacher, EfficientFormerImageProcessor, ) from transformers.image_utils import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, PILImageResampling def _SCREAMING_SNAKE_CASE ( lowercase : str , lowercase : Optional[Any] ): '''simple docstring''' lowerCamelCase_ = old_name if "patch_embed" in old_name: lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ = old_name.split('.' ) if layer == "0": lowerCamelCase_ = old_name.replace('0' , 'convolution1' ) elif layer == "1": lowerCamelCase_ = old_name.replace('1' , 'batchnorm_before' ) elif layer == "3": lowerCamelCase_ = old_name.replace('3' , 'convolution2' ) else: lowerCamelCase_ = old_name.replace('4' , 'batchnorm_after' ) if "network" in old_name and re.search(r'\d\.\d' , lowercase ): lowerCamelCase_ = r'\b\d{2}\b' if bool(re.search(lowercase , lowercase ) ): lowerCamelCase_ = re.search(r'\d\.\d\d.' , lowercase ).group() else: lowerCamelCase_ = re.search(r'\d\.\d.' , lowercase ).group() if int(match[0] ) < 6: lowerCamelCase_ = old_name.replace(lowercase , '' ) lowerCamelCase_ = trimmed_name.replace('network' , match[0] + '.meta4D_layers.blocks.' + match[2:-1] ) lowerCamelCase_ = 'intermediate_stages.' + trimmed_name else: lowerCamelCase_ = old_name.replace(lowercase , '' ) if int(match[2] ) < num_meta4D_last_stage: lowerCamelCase_ = trimmed_name.replace('network' , 'meta4D_layers.blocks.' + match[2] ) else: lowerCamelCase_ = str(int(match[2] ) - num_meta4D_last_stage ) lowerCamelCase_ = trimmed_name.replace('network' , 'meta3D_layers.blocks.' + layer_index ) if "norm1" in old_name: lowerCamelCase_ = trimmed_name.replace('norm1' , 'layernorm1' ) elif "norm2" in old_name: lowerCamelCase_ = trimmed_name.replace('norm2' , 'layernorm2' ) elif "fc1" in old_name: lowerCamelCase_ = trimmed_name.replace('fc1' , 'linear_in' ) elif "fc2" in old_name: lowerCamelCase_ = trimmed_name.replace('fc2' , 'linear_out' ) lowerCamelCase_ = 'last_stage.' + trimmed_name elif "network" in old_name and re.search(r'.\d.' , lowercase ): lowerCamelCase_ = old_name.replace('network' , 'intermediate_stages' ) if "fc" in new_name: lowerCamelCase_ = new_name.replace('fc' , 'convolution' ) elif ("norm1" in new_name) and ("layernorm1" not in new_name): lowerCamelCase_ = new_name.replace('norm1' , 'batchnorm_before' ) elif ("norm2" in new_name) and ("layernorm2" not in new_name): lowerCamelCase_ = new_name.replace('norm2' , 'batchnorm_after' ) if "proj" in new_name: lowerCamelCase_ = new_name.replace('proj' , 'projection' ) if "dist_head" in new_name: lowerCamelCase_ = new_name.replace('dist_head' , 'distillation_classifier' ) elif "head" in new_name: lowerCamelCase_ = new_name.replace('head' , 'classifier' ) elif "patch_embed" in new_name: lowerCamelCase_ = 'efficientformer.' + new_name elif new_name == "norm.weight" or new_name == "norm.bias": lowerCamelCase_ = new_name.replace('norm' , 'layernorm' ) lowerCamelCase_ = 'efficientformer.' + new_name else: lowerCamelCase_ = 'efficientformer.encoder.' + new_name return new_name def _SCREAMING_SNAKE_CASE ( lowercase : Optional[int] , lowercase : List[Any] ): '''simple docstring''' for key in checkpoint.copy().keys(): lowerCamelCase_ = checkpoint.pop(lowercase ) lowerCamelCase_ = val return checkpoint def _SCREAMING_SNAKE_CASE ( ): '''simple docstring''' lowerCamelCase_ = 'http://images.cocodataset.org/val2017/000000039769.jpg' lowerCamelCase_ = Image.open(requests.get(lowercase , stream=lowercase ).raw ) return image def _SCREAMING_SNAKE_CASE ( lowercase : Path , lowercase : Path , lowercase : Path , lowercase : bool ): '''simple docstring''' lowerCamelCase_ = torch.load(lowercase , map_location='cpu' )['model'] lowerCamelCase_ = EfficientFormerConfig.from_json_file(lowercase ) lowerCamelCase_ = EfficientFormerForImageClassificationWithTeacher(lowercase ) lowerCamelCase_ = '_'.join(checkpoint_path.split('/' )[-1].split('.' )[0].split('_' )[:-1] ) lowerCamelCase_ = config.depths[-1] - config.num_metaad_blocks + 1 lowerCamelCase_ = convert_torch_checkpoint(lowercase , lowercase ) model.load_state_dict(lowercase ) model.eval() lowerCamelCase_ = { 'bilinear': PILImageResampling.BILINEAR, 'bicubic': PILImageResampling.BICUBIC, 'nearest': PILImageResampling.NEAREST, } # prepare image lowerCamelCase_ = prepare_img() lowerCamelCase_ = 2_56 lowerCamelCase_ = 2_24 lowerCamelCase_ = EfficientFormerImageProcessor( size={'shortest_edge': image_size} , crop_size={'height': crop_size, 'width': crop_size} , resample=pillow_resamplings['bicubic'] , ) lowerCamelCase_ = processor(images=lowercase , return_tensors='pt' ).pixel_values # original processing pipeline lowerCamelCase_ = Compose( [ Resize(lowercase , interpolation=pillow_resamplings['bicubic'] ), CenterCrop(lowercase ), ToTensor(), Normalize(lowercase , lowercase ), ] ) lowerCamelCase_ = image_transforms(lowercase ).unsqueeze(0 ) assert torch.allclose(lowercase , lowercase ) lowerCamelCase_ = model(lowercase ) lowerCamelCase_ = outputs.logits lowerCamelCase_ = (1, 10_00) if "l1" in model_name: lowerCamelCase_ = torch.Tensor( [-0.1312, 0.4353, -1.0499, -0.5124, 0.4183, -0.6793, -1.3777, -0.0893, -0.7358, -2.4328] ) assert torch.allclose(logits[0, :10] , lowercase , atol=1e-3 ) assert logits.shape == expected_shape elif "l3" in model_name: lowerCamelCase_ = torch.Tensor( [-1.3150, -1.5456, -1.2556, -0.8496, -0.7127, -0.7897, -0.9728, -0.3052, 0.3751, -0.3127] ) assert torch.allclose(logits[0, :10] , lowercase , atol=1e-3 ) assert logits.shape == expected_shape elif "l7" in model_name: lowerCamelCase_ = torch.Tensor( [-1.0283, -1.4131, -0.5644, -1.3115, -0.5785, -1.2049, -0.7528, 0.1992, -0.3822, -0.0878] ) assert logits.shape == expected_shape else: raise ValueError( f"""Unknown model checkpoint: {checkpoint_path}. Supported version of efficientformer are l1, l3 and l7""" ) # Save Checkpoints Path(lowercase ).mkdir(exist_ok=lowercase ) model.save_pretrained(lowercase ) print(f"""Checkpoint successfuly converted. Model saved at {pytorch_dump_path}""" ) processor.save_pretrained(lowercase ) print(f"""Processor successfuly saved at {pytorch_dump_path}""" ) if push_to_hub: print('Pushing model to the hub...' ) model.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add model' , use_temp_dir=lowercase , ) processor.push_to_hub( repo_id=f"""Bearnardd/{pytorch_dump_path}""" , commit_message='Add image processor' , use_temp_dir=lowercase , ) if __name__ == "__main__": lowerCamelCase : int = argparse.ArgumentParser() # Required parameters parser.add_argument( "--pytorch_model_path", default=None, type=str, required=True, help="Path to EfficientFormer pytorch checkpoint.", ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The json file for EfficientFormer model config.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) parser.add_argument("--push_to_hub", action="store_true", help="Push model and image processor to the hub") parser.add_argument( "--no-push_to_hub", dest="push_to_hub", action="store_false", help="Do not push model and image processor to the hub", ) parser.set_defaults(push_to_hub=True) lowerCamelCase : str = parser.parse_args() convert_efficientformer_checkpoint( checkpoint_path=args.pytorch_model_path, efficientformer_config_file=args.config_file, pytorch_dump_path=args.pytorch_dump_path, push_to_hub=args.push_to_hub, )
716
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase : str = logging.get_logger(__name__) lowerCamelCase : List[str] = { "abeja/gpt-neox-japanese-2.7b": "https://huggingface.co/abeja/gpt-neox-japanese-2.7b/resolve/main/config.json", } class A( UpperCamelCase ): '''simple docstring''' UpperCamelCase = '''gpt_neox_japanese''' def __init__( self : int , A_ : Dict=32000 , A_ : List[Any]=2560 , A_ : Dict=32 , A_ : Union[str, Any]=32 , A_ : List[Any]=4 , A_ : List[str]="gelu" , A_ : Dict=1.00 , A_ : int=10000 , A_ : Dict=2048 , A_ : Dict=0.02 , A_ : Any=1E-5 , A_ : Union[str, Any]=True , A_ : int=31996 , A_ : List[str]=31999 , A_ : List[Any]=0.1 , A_ : List[Any]=0.0 , **A_ : Tuple , ) -> Dict: """simple docstring""" super().__init__(bos_token_id=A_ , eos_token_id=A_ , **A_ ) lowerCamelCase_ = vocab_size lowerCamelCase_ = max_position_embeddings lowerCamelCase_ = hidden_size lowerCamelCase_ = num_hidden_layers lowerCamelCase_ = num_attention_heads lowerCamelCase_ = intermediate_multiple_size lowerCamelCase_ = hidden_act lowerCamelCase_ = rotary_pct lowerCamelCase_ = rotary_emb_base lowerCamelCase_ = initializer_range lowerCamelCase_ = layer_norm_eps lowerCamelCase_ = use_cache lowerCamelCase_ = attention_dropout lowerCamelCase_ = hidden_dropout
651
0
'''simple docstring''' import importlib import json import os import sys import tempfile import unittest from pathlib import Path import transformers import transformers.models.auto from transformers.models.auto.configuration_auto import CONFIG_MAPPING, AutoConfig from transformers.models.bert.configuration_bert import BertConfig from transformers.models.roberta.configuration_roberta import RobertaConfig from transformers.testing_utils import DUMMY_UNKNOWN_IDENTIFIER, get_tests_dir sys.path.append(str(Path(__file__).parent.parent.parent.parent / '''utils''')) from test_module.custom_configuration import CustomConfig # noqa E402 __lowerCamelCase : Any = get_tests_dir('''fixtures/dummy-config.json''') class A_ (unittest.TestCase ): """simple docstring""" def _A ( self :List[str] ) -> Tuple: '''simple docstring''' snake_case_ : List[str] = 0 def _A ( self :Tuple ) -> int: '''simple docstring''' self.assertIsNotNone(transformers.models.auto.__spec__ ) self.assertIsNotNone(importlib.util.find_spec("transformers.models.auto" ) ) def _A ( self :str ) -> Optional[Any]: '''simple docstring''' snake_case_ : str = AutoConfig.from_pretrained("bert-base-uncased" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :List[Any] ) -> Optional[Any]: '''simple docstring''' snake_case_ : Optional[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :List[Any] ) -> Tuple: '''simple docstring''' snake_case_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :Dict ) -> str: '''simple docstring''' snake_case_ : Tuple = AutoConfig.for_model("roberta" ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) def _A ( self :List[str] ) -> List[Any]: '''simple docstring''' with tempfile.TemporaryDirectory() as tmp_dir: # This model name contains bert and roberta, but roberta ends up being picked. snake_case_ : Union[str, Any] = os.path.join(lowerCAmelCase__ , "fake-roberta" ) os.makedirs(lowerCAmelCase__ , exist_ok=lowerCAmelCase__ ) with open(os.path.join(lowerCAmelCase__ , "config.json" ) , "w" ) as f: f.write(json.dumps({} ) ) snake_case_ : Any = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertEqual(type(lowerCAmelCase__ ) , lowerCAmelCase__ ) def _A ( self :Optional[Any] ) -> List[Any]: '''simple docstring''' try: AutoConfig.register("custom" , lowerCAmelCase__ ) # Wrong model type will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register("model" , lowerCAmelCase__ ) # Trying to register something existing in the Transformers library will raise an error with self.assertRaises(lowerCAmelCase__ ): AutoConfig.register("bert" , lowerCAmelCase__ ) # Now that the config is registered, it can be used as any other config with the auto-API snake_case_ : str = CustomConfig() with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) snake_case_ : str = AutoConfig.from_pretrained(lowerCAmelCase__ ) self.assertIsInstance(lowerCAmelCase__ , lowerCAmelCase__ ) finally: if "custom" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["custom"] def _A ( self :List[str] ) -> Dict: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase__ , "bert-base is not a local folder and is not a valid model identifier" ): snake_case_ : Tuple = AutoConfig.from_pretrained("bert-base" ) def _A ( self :int ) -> Union[str, Any]: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase__ , r"aaaaaa is not a valid git identifier \(branch name, tag name or commit id\)" ): snake_case_ : Any = AutoConfig.from_pretrained(lowerCAmelCase__ , revision="aaaaaa" ) def _A ( self :Any ) -> Any: '''simple docstring''' with self.assertRaisesRegex( lowerCAmelCase__ , "hf-internal-testing/no-config-test-repo does not appear to have a file named config.json." , ): snake_case_ : Dict = AutoConfig.from_pretrained("hf-internal-testing/no-config-test-repo" ) def _A ( self :List[Any] ) -> Union[str, Any]: '''simple docstring''' with self.assertRaises(lowerCAmelCase__ ): snake_case_ : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) # If remote code is disabled, we can't load this config. with self.assertRaises(lowerCAmelCase__ ): snake_case_ : Optional[int] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) snake_case_ : List[str] = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) # Test config can be reloaded. with tempfile.TemporaryDirectory() as tmp_dir: config.save_pretrained(lowerCAmelCase__ ) snake_case_ : List[Any] = AutoConfig.from_pretrained(lowerCAmelCase__ , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(reloaded_config.__class__.__name__ , "NewModelConfig" ) def _A ( self :Optional[Any] ) -> Union[str, Any]: '''simple docstring''' class A_ (a_ ): """simple docstring""" a__ = '''new-model''' try: AutoConfig.register("new-model" , lowerCAmelCase__ ) # If remote code is not set, the default is to use local snake_case_ : Tuple = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote code is disabled, we load the local one. snake_case_ : str = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfigLocal" ) # If remote is enabled, we load from the Hub snake_case_ : Any = AutoConfig.from_pretrained("hf-internal-testing/test_dynamic_model" , trust_remote_code=lowerCAmelCase__ ) self.assertEqual(config.__class__.__name__ , "NewModelConfig" ) finally: if "new-model" in CONFIG_MAPPING._extra_content: del CONFIG_MAPPING._extra_content["new-model"]
653
'''simple docstring''' from collections.abc import Iterator, MutableMapping from dataclasses import dataclass from typing import Generic, TypeVar __lowerCamelCase : Dict = TypeVar('''KEY''') __lowerCamelCase : int = TypeVar('''VAL''') @dataclass(frozen=a_ , slots=a_ ) class A_ (Generic[KEY, VAL] ): """simple docstring""" a__ = 42 a__ = 42 class A_ (_Item ): """simple docstring""" def __init__( self :List[Any] ) -> None: '''simple docstring''' super().__init__(lowerCAmelCase__ , lowerCAmelCase__ ) def __bool__( self :Optional[int] ) -> bool: '''simple docstring''' return False __lowerCamelCase : Dict = _DeletedItem() class A_ (MutableMapping[KEY, VAL] ): """simple docstring""" def __init__( self :Dict , lowerCAmelCase__ :int = 8 , lowerCAmelCase__ :float = 0.7_5 ) -> None: '''simple docstring''' snake_case_ : Any = initial_block_size snake_case_ : list[_Item | None] = [None] * initial_block_size assert 0.0 < capacity_factor < 1.0 snake_case_ : Tuple = capacity_factor snake_case_ : List[Any] = 0 def _A ( self :Tuple , lowerCAmelCase__ :KEY ) -> int: '''simple docstring''' return hash(lowerCAmelCase__ ) % len(self._buckets ) def _A ( self :Any , lowerCAmelCase__ :int ) -> int: '''simple docstring''' return (ind + 1) % len(self._buckets ) def _A ( self :str , lowerCAmelCase__ :int , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> bool: '''simple docstring''' snake_case_ : Optional[int] = self._buckets[ind] if not stored: snake_case_ : int = _Item(lowerCAmelCase__ , lowerCAmelCase__ ) self._len += 1 return True elif stored.key == key: snake_case_ : Optional[int] = _Item(lowerCAmelCase__ , lowerCAmelCase__ ) return True else: return False def _A ( self :int ) -> bool: '''simple docstring''' snake_case_ : Any = len(self._buckets ) * self._capacity_factor return len(self ) >= int(lowerCAmelCase__ ) def _A ( self :Any ) -> bool: '''simple docstring''' if len(self._buckets ) <= self._initial_block_size: return False snake_case_ : Optional[int] = len(self._buckets ) * self._capacity_factor / 2 return len(self ) < limit def _A ( self :Tuple , lowerCAmelCase__ :int ) -> None: '''simple docstring''' snake_case_ : Tuple = self._buckets snake_case_ : int = [None] * new_size snake_case_ : Any = 0 for item in old_buckets: if item: self._add_item(item.key , item.val ) def _A ( self :Optional[int] ) -> None: '''simple docstring''' self._resize(len(self._buckets ) * 2 ) def _A ( self :str ) -> None: '''simple docstring''' self._resize(len(self._buckets ) // 2 ) def _A ( self :Optional[int] , lowerCAmelCase__ :KEY ) -> Iterator[int]: '''simple docstring''' snake_case_ : str = self._get_bucket_index(lowerCAmelCase__ ) for _ in range(len(self._buckets ) ): yield ind snake_case_ : List[Any] = self._get_next_ind(lowerCAmelCase__ ) def _A ( self :Union[str, Any] , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> None: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): if self._try_set(lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ ): break def __setitem__( self :Optional[int] , lowerCAmelCase__ :KEY , lowerCAmelCase__ :VAL ) -> None: '''simple docstring''' if self._is_full(): self._size_up() self._add_item(lowerCAmelCase__ , lowerCAmelCase__ ) def __delitem__( self :List[Any] , lowerCAmelCase__ :KEY ) -> None: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): snake_case_ : int = self._buckets[ind] if item is None: raise KeyError(lowerCAmelCase__ ) if item is _deleted: continue if item.key == key: snake_case_ : List[str] = _deleted self._len -= 1 break if self._is_sparse(): self._size_down() def __getitem__( self :List[str] , lowerCAmelCase__ :KEY ) -> VAL: '''simple docstring''' for ind in self._iterate_buckets(lowerCAmelCase__ ): snake_case_ : Optional[Any] = self._buckets[ind] if item is None: break if item is _deleted: continue if item.key == key: return item.val raise KeyError(lowerCAmelCase__ ) def __len__( self :Optional[Any] ) -> int: '''simple docstring''' return self._len def __iter__( self :List[Any] ) -> Iterator[KEY]: '''simple docstring''' yield from (item.key for item in self._buckets if item) def __repr__( self :Any ) -> str: '''simple docstring''' snake_case_ : Dict = " ,".join( F'''{item.key}: {item.val}''' for item in self._buckets if item ) return F'''HashMap({val_string})'''
653
1
"""simple docstring""" from typing import List import jiwer import jiwer.transforms as tr from packaging import version import datasets from datasets.config import PY_VERSION if PY_VERSION < version.parse("""3.8"""): import importlib_metadata else: import importlib.metadata as importlib_metadata lowercase__ : Optional[Any] = """""" if version.parse(importlib_metadata.version("""jiwer""")) < version.parse("""2.3.0"""): class UpperCamelCase__ ( tr.AbstractTransform ): """simple docstring""" def __init__( self : int , SCREAMING_SNAKE_CASE_ : str = " " ): lowerCAmelCase_ : Optional[Any] = sentence_delimiter def SCREAMING_SNAKE_CASE__ ( self : List[str] , SCREAMING_SNAKE_CASE_ : str ): return list(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE__ ( self : Any , SCREAMING_SNAKE_CASE_ : List[str] ): lowerCAmelCase_ : Optional[Any] = [] for sent_idx, sentence in enumerate(SCREAMING_SNAKE_CASE_ ): chars.extend(self.process_string(SCREAMING_SNAKE_CASE_ ) ) if self.sentence_delimiter is not None and self.sentence_delimiter != "" and sent_idx < len(SCREAMING_SNAKE_CASE_ ) - 1: chars.append(self.sentence_delimiter ) return chars lowercase__ : Union[str, Any] = tr.Compose( [tr.RemoveMultipleSpaces(), tr.Strip(), SentencesToListOfCharacters(SENTENCE_DELIMITER)] ) else: lowercase__ : int = tr.Compose( [ tr.RemoveMultipleSpaces(), tr.Strip(), tr.ReduceToSingleSentence(SENTENCE_DELIMITER), tr.ReduceToListOfListOfChars(), ] ) lowercase__ : List[str] = """\ @inproceedings{inproceedings, author = {Morris, Andrew and Maier, Viktoria and Green, Phil}, year = {2004}, month = {01}, pages = {}, title = {From WER and RIL to MER and WIL: improved evaluation measures for connected speech recognition.} } """ lowercase__ : Optional[int] = """\ Character error rate (CER) is a common metric of the performance of an automatic speech recognition system. CER is similar to Word Error Rate (WER), but operates on character instead of word. Please refer to docs of WER for further information. Character error rate can be computed as: CER = (S + D + I) / N = (S + D + I) / (S + D + C) where S is the number of substitutions, D is the number of deletions, I is the number of insertions, C is the number of correct characters, N is the number of characters in the reference (N=S+D+C). CER's output is not always a number between 0 and 1, in particular when there is a high number of insertions. This value is often associated to the percentage of characters that were incorrectly predicted. The lower the value, the better the performance of the ASR system with a CER of 0 being a perfect score. """ lowercase__ : int = """ Computes CER score of transcribed segments against references. Args: references: list of references for each speech input. predictions: list of transcribtions to score. concatenate_texts: Whether or not to concatenate sentences before evaluation, set to True for more accurate result. Returns: (float): the character error rate Examples: >>> predictions = [\"this is the prediction\", \"there is an other sample\"] >>> references = [\"this is the reference\", \"there is another one\"] >>> cer = datasets.load_metric(\"cer\") >>> cer_score = cer.compute(predictions=predictions, references=references) >>> print(cer_score) 0.34146341463414637 """ @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): """simple docstring""" def SCREAMING_SNAKE_CASE__ ( self : Any ): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { 'predictions': datasets.Value('string' , id='sequence' ), 'references': datasets.Value('string' , id='sequence' ), } ) , codebase_urls=['https://github.com/jitsi/jiwer/'] , reference_urls=[ 'https://en.wikipedia.org/wiki/Word_error_rate', 'https://sites.google.com/site/textdigitisation/qualitymeasures/computingerrorrates', ] , ) def SCREAMING_SNAKE_CASE__ ( self : Dict , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : Dict=False ): if concatenate_texts: return jiwer.compute_measures( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , truth_transform=SCREAMING_SNAKE_CASE_ , hypothesis_transform=SCREAMING_SNAKE_CASE_ , )["wer"] lowerCAmelCase_ : Optional[Any] = 0 lowerCAmelCase_ : List[str] = 0 for prediction, reference in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): lowerCAmelCase_ : List[str] = jiwer.compute_measures( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , truth_transform=SCREAMING_SNAKE_CASE_ , hypothesis_transform=SCREAMING_SNAKE_CASE_ , ) incorrect += measures["substitutions"] + measures["deletions"] + measures["insertions"] total += measures["substitutions"] + measures["deletions"] + measures["hits"] return incorrect / total
317
"""simple docstring""" import unittest import torch from diffusers import VQModel from diffusers.utils import floats_tensor, torch_device from diffusers.utils.testing_utils import enable_full_determinism from .test_modeling_common import ModelTesterMixin, UNetTesterMixin enable_full_determinism() class UpperCamelCase__ ( lowercase_, lowercase_, unittest.TestCase ): """simple docstring""" _SCREAMING_SNAKE_CASE = VQModel _SCREAMING_SNAKE_CASE = """sample""" @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any]=(3_2, 3_2) ): lowerCAmelCase_ : Tuple = 4 lowerCAmelCase_ : Optional[Any] = 3 lowerCAmelCase_ : int = floats_tensor((batch_size, num_channels) + sizes ).to(SCREAMING_SNAKE_CASE_ ) return {"sample": image} @property def SCREAMING_SNAKE_CASE__ ( self : Optional[Any] ): return (3, 3_2, 3_2) @property def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): return (3, 3_2, 3_2) def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Union[str, Any] = { 'block_out_channels': [3_2, 6_4], 'in_channels': 3, 'out_channels': 3, 'down_block_types': ['DownEncoderBlock2D', 'DownEncoderBlock2D'], 'up_block_types': ['UpDecoderBlock2D', 'UpDecoderBlock2D'], 'latent_channels': 3, } lowerCAmelCase_ : Optional[Any] = self.dummy_input return init_dict, inputs_dict def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): pass def SCREAMING_SNAKE_CASE__ ( self : str ): pass def SCREAMING_SNAKE_CASE__ ( self : Union[str, Any] ): lowerCAmelCase_ ,lowerCAmelCase_ : Optional[Any] = VQModel.from_pretrained('fusing/vqgan-dummy' , output_loading_info=SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) self.assertEqual(len(loading_info['missing_keys'] ) , 0 ) model.to(SCREAMING_SNAKE_CASE_ ) lowerCAmelCase_ : Any = model(**self.dummy_input ) assert image is not None, "Make sure output is not None" def SCREAMING_SNAKE_CASE__ ( self : Dict ): lowerCAmelCase_ : Any = VQModel.from_pretrained('fusing/vqgan-dummy' ) model.to(SCREAMING_SNAKE_CASE_ ).eval() torch.manual_seed(0 ) if torch.cuda.is_available(): torch.cuda.manual_seed_all(0 ) lowerCAmelCase_ : int = torch.randn(1 , model.config.in_channels , model.config.sample_size , model.config.sample_size ) lowerCAmelCase_ : Dict = image.to(SCREAMING_SNAKE_CASE_ ) with torch.no_grad(): lowerCAmelCase_ : int = model(SCREAMING_SNAKE_CASE_ ).sample lowerCAmelCase_ : Union[str, Any] = output[0, -1, -3:, -3:].flatten().cpu() # fmt: off lowerCAmelCase_ : int = torch.tensor([-0.01_53, -0.40_44, -0.18_80, -0.51_61, -0.24_18, -0.40_72, -0.16_12, -0.06_33, -0.01_43] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=1E-3 ) )
317
1
from typing import Optional, Union import torch from torch import nn from ...configuration_utils import ConfigMixin, register_to_config from ...models.modeling_utils import ModelMixin class lowerCAmelCase_ ( __lowercase, __lowercase ): @register_to_config def __init__( self : Any , _A : int = 768 , ): super().__init__() _UpperCamelCase = nn.Parameter(torch.zeros(1 , _A ) ) _UpperCamelCase = nn.Parameter(torch.ones(1 , _A ) ) def UpperCamelCase_ ( self : List[str] , _A : Optional[Union[str, torch.device]] = None , _A : Optional[torch.dtype] = None , ): _UpperCamelCase = nn.Parameter(self.mean.to(_A ).to(_A ) ) _UpperCamelCase = nn.Parameter(self.std.to(_A ).to(_A ) ) return self def UpperCamelCase_ ( self : Optional[int] , _A : List[Any] ): _UpperCamelCase = (embeds - self.mean) * 1.0 / self.std return embeds def UpperCamelCase_ ( self : str , _A : List[str] ): _UpperCamelCase = (embeds * self.std) + self.mean return embeds
10
'''simple docstring''' import gc import random import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import AutoencoderKL, CycleDiffusionPipeline, DDIMScheduler, UNetaDConditionModel from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu, skip_mps from ..pipeline_params import ( IMAGE_TO_IMAGE_IMAGE_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS, TEXT_GUIDED_IMAGE_VARIATION_PARAMS, ) from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class __SCREAMING_SNAKE_CASE (__A , __A , unittest.TestCase ): """simple docstring""" _a : str = CycleDiffusionPipeline _a : int = TEXT_GUIDED_IMAGE_VARIATION_PARAMS - { '''negative_prompt''', '''height''', '''width''', '''negative_prompt_embeds''', } _a : str = PipelineTesterMixin.required_optional_params - {'''latents'''} _a : str = TEXT_GUIDED_IMAGE_VARIATION_BATCH_PARAMS.union({'''source_prompt'''} ) _a : Optional[Any] = IMAGE_TO_IMAGE_IMAGE_PARAMS _a : Optional[int] = IMAGE_TO_IMAGE_IMAGE_PARAMS def _a ( self ): """simple docstring""" torch.manual_seed(0 ) a_ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('DownBlock2D', 'CrossAttnDownBlock2D') , up_block_types=('CrossAttnUpBlock2D', 'UpBlock2D') , cross_attention_dim=32 , ) a_ = DDIMScheduler( beta_start=0.00_085 , beta_end=0.012 , beta_schedule='scaled_linear' , num_train_timesteps=1_000 , clip_sample=UpperCamelCase__ , set_alpha_to_one=UpperCamelCase__ , ) torch.manual_seed(0 ) a_ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['DownEncoderBlock2D', 'DownEncoderBlock2D'] , up_block_types=['UpDecoderBlock2D', 'UpDecoderBlock2D'] , latent_channels=4 , ) torch.manual_seed(0 ) a_ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) a_ = CLIPTextModel(UpperCamelCase__ ) a_ = CLIPTokenizer.from_pretrained('hf-internal-testing/tiny-random-clip' ) a_ = { 'unet': unet, 'scheduler': scheduler, 'vae': vae, 'text_encoder': text_encoder, 'tokenizer': tokenizer, 'safety_checker': None, 'feature_extractor': None, } return components def _a ( self , UpperCamelCase__ , UpperCamelCase__=0 ): """simple docstring""" a_ = floats_tensor((1, 3, 32, 32) , rng=random.Random(UpperCamelCase__ ) ).to(UpperCamelCase__ ) a_ = image / 2 + 0.5 if str(UpperCamelCase__ ).startswith('mps' ): a_ = torch.manual_seed(UpperCamelCase__ ) else: a_ = torch.Generator(device=UpperCamelCase__ ).manual_seed(UpperCamelCase__ ) a_ = { 'prompt': 'An astronaut riding an elephant', 'source_prompt': 'An astronaut riding a horse', 'image': image, 'generator': generator, 'num_inference_steps': 2, 'eta': 0.1, 'strength': 0.8, 'guidance_scale': 3, 'source_guidance_scale': 1, 'output_type': 'numpy', } return inputs def _a ( self ): """simple docstring""" a_ = 'cpu' # ensure determinism for the device-dependent torch.Generator a_ = self.get_dummy_components() a_ = CycleDiffusionPipeline(**UpperCamelCase__ ) a_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) a_ = self.get_dummy_inputs(UpperCamelCase__ ) a_ = pipe(**UpperCamelCase__ ) a_ = output.images a_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a_ = np.array([0.4_459, 0.4_943, 0.4_544, 0.6_643, 0.5_474, 0.4_327, 0.5_701, 0.5_959, 0.5_179] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @unittest.skipIf(torch_device != 'cuda' , 'This test requires a GPU' ) def _a ( self ): """simple docstring""" a_ = self.get_dummy_components() for name, module in components.items(): if hasattr(UpperCamelCase__ , 'half' ): a_ = module.half() a_ = CycleDiffusionPipeline(**UpperCamelCase__ ) a_ = pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) a_ = self.get_dummy_inputs(UpperCamelCase__ ) a_ = pipe(**UpperCamelCase__ ) a_ = output.images a_ = images[0, -3:, -3:, -1] assert images.shape == (1, 32, 32, 3) a_ = np.array([0.3_506, 0.4_543, 0.446, 0.4_575, 0.5_195, 0.4_155, 0.5_273, 0.518, 0.4_116] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-2 @skip_mps def _a ( self ): """simple docstring""" return super().test_save_load_local() @unittest.skip('non-deterministic pipeline' ) def _a ( self ): """simple docstring""" return super().test_inference_batch_single_identical() @skip_mps def _a ( self ): """simple docstring""" return super().test_dict_tuple_outputs_equivalent() @skip_mps def _a ( self ): """simple docstring""" return super().test_save_load_optional_components() @skip_mps def _a ( self ): """simple docstring""" return super().test_attention_slicing_forward_pass() @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE (unittest.TestCase ): """simple docstring""" def _a ( self ): """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def _a ( self ): """simple docstring""" a_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car_fp16.npy' ) a_ = init_image.resize((512, 512) ) a_ = 'CompVis/stable-diffusion-v1-4' a_ = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='scheduler' ) a_ = CycleDiffusionPipeline.from_pretrained( UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ , torch_dtype=torch.floataa , revision='fp16' ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() a_ = 'A black colored car' a_ = 'A blue colored car' a_ = torch.manual_seed(0 ) a_ = pipe( prompt=UpperCamelCase__ , source_prompt=UpperCamelCase__ , image=UpperCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCamelCase__ , output_type='np' , ) a_ = output.images # the values aren't exactly equal, but the images look the same visually assert np.abs(image - expected_image ).max() < 5e-1 def _a ( self ): """simple docstring""" a_ = load_image( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main' '/cycle-diffusion/black_colored_car.png' ) a_ = load_numpy( 'https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/cycle-diffusion/blue_colored_car.npy' ) a_ = init_image.resize((512, 512) ) a_ = 'CompVis/stable-diffusion-v1-4' a_ = DDIMScheduler.from_pretrained(UpperCamelCase__ , subfolder='scheduler' ) a_ = CycleDiffusionPipeline.from_pretrained(UpperCamelCase__ , scheduler=UpperCamelCase__ , safety_checker=UpperCamelCase__ ) pipe.to(UpperCamelCase__ ) pipe.set_progress_bar_config(disable=UpperCamelCase__ ) pipe.enable_attention_slicing() a_ = 'A black colored car' a_ = 'A blue colored car' a_ = torch.manual_seed(0 ) a_ = pipe( prompt=UpperCamelCase__ , source_prompt=UpperCamelCase__ , image=UpperCamelCase__ , num_inference_steps=100 , eta=0.1 , strength=0.85 , guidance_scale=3 , source_guidance_scale=1 , generator=UpperCamelCase__ , output_type='np' , ) a_ = output.images assert np.abs(image - expected_image ).max() < 2e-2
536
0
import json import sys def __lowercase( __snake_case : Tuple ,__snake_case : Optional[int] ) -> Tuple: with open(UpperCAmelCase__ ,encoding='utf-8' ) as f: __snake_case = json.load(UpperCAmelCase__ ) __snake_case = ['<details>', '<summary>Show updated benchmarks!</summary>', ' '] for benchmark_name in sorted(UpperCAmelCase__ ): __snake_case = results[benchmark_name] __snake_case = benchmark_name.split('/' )[-1] output_md.append(f'''### Benchmark: {benchmark_file_name}''' ) __snake_case = '| metric |' __snake_case = '|--------|' __snake_case = '| new / old (diff) |' for metric_name in sorted(UpperCAmelCase__ ): __snake_case = benchmark_res[metric_name] __snake_case = metric_vals['new'] __snake_case = metric_vals.get('old' ,UpperCAmelCase__ ) __snake_case = metric_vals.get('diff' ,UpperCAmelCase__ ) __snake_case = f''' {new_val:f}''' if isinstance(UpperCAmelCase__ ,(int, float) ) else 'None' if old_val is not None: val_str += f''' / {old_val:f}''' if isinstance(UpperCAmelCase__ ,(int, float) ) else "None" if dif_val is not None: val_str += f''' ({dif_val:f})''' if isinstance(UpperCAmelCase__ ,(int, float) ) else "None" title += " " + metric_name + " |" lines += "---|" value += val_str + " |" output_md += [title, lines, value, " "] output_md.append('</details>' ) with open(UpperCAmelCase__ ,'w' ,encoding='utf-8' ) as f: f.writelines('\n'.join(UpperCAmelCase__ ) ) if __name__ == "__main__": lowerCamelCase_ : Union[str, Any] = sys.argv[1] lowerCamelCase_ : Dict = sys.argv[2] format_json_to_md(input_json_file, output_md_file)
710
from ...utils import ( OptionalDependencyNotAvailable, is_flax_available, is_torch_available, is_transformers_available, ) try: if not (is_transformers_available() and is_torch_available()): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: from ...utils.dummy_torch_and_transformers_objects import * # noqa F403 else: from .multicontrolnet import MultiControlNetModel from .pipeline_controlnet import StableDiffusionControlNetPipeline from .pipeline_controlnet_imgaimg import StableDiffusionControlNetImgaImgPipeline from .pipeline_controlnet_inpaint import StableDiffusionControlNetInpaintPipeline if is_transformers_available() and is_flax_available(): from .pipeline_flax_controlnet import FlaxStableDiffusionControlNetPipeline
345
0
'''simple docstring''' import argparse import torch from torch import nn from transformers import MBartConfig, MBartForConditionalGeneration def lowerCamelCase (_SCREAMING_SNAKE_CASE : Optional[Any] ): __a : Dict = [ 'encoder.version', 'decoder.version', 'model.encoder.version', 'model.decoder.version', '_float_tensor', 'decoder.output_projection.weight', ] for k in ignore_keys: state_dict.pop(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def lowerCamelCase (_SCREAMING_SNAKE_CASE : str ): __a , __a : Optional[Any] = emb.weight.shape __a : Dict = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , bias=_SCREAMING_SNAKE_CASE ) __a : Tuple = emb.weight.data return lin_layer def lowerCamelCase (_SCREAMING_SNAKE_CASE : Dict , _SCREAMING_SNAKE_CASE : str="facebook/mbart-large-en-ro" , _SCREAMING_SNAKE_CASE : Any=False , _SCREAMING_SNAKE_CASE : Optional[int]=False ): __a : List[Any] = torch.load(_SCREAMING_SNAKE_CASE , map_location='cpu' )['model'] remove_ignore_keys_(_SCREAMING_SNAKE_CASE ) __a : int = state_dict['encoder.embed_tokens.weight'].shape[0] __a : List[Any] = MBartConfig.from_pretrained(_SCREAMING_SNAKE_CASE , vocab_size=_SCREAMING_SNAKE_CASE ) if mbart_aa and finetuned: __a : Union[str, Any] = 'relu' __a : Optional[Any] = state_dict['decoder.embed_tokens.weight'] __a : List[Any] = MBartForConditionalGeneration(_SCREAMING_SNAKE_CASE ) model.model.load_state_dict(_SCREAMING_SNAKE_CASE ) if finetuned: __a : Optional[Any] = make_linear_from_emb(model.model.shared ) return model if __name__ == "__main__": __lowercase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( 'fairseq_path', type=str, help='bart.large, bart.large.cnn or a path to a model.pt on local filesystem.' ) parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument( '--hf_config', default='facebook/mbart-large-cc25', type=str, help='Which huggingface architecture to use: mbart-large', ) parser.add_argument('--mbart_50', action='store_true', help='whether the model is mMART-50 checkpoint') parser.add_argument('--finetuned', action='store_true', help='whether the model is a fine-tuned checkpoint') __lowercase : Dict = parser.parse_args() __lowercase : List[Any] = convert_fairseq_mbart_checkpoint_from_disk( args.fairseq_path, hf_config_path=args.hf_config, finetuned=args.finetuned, mbart_aa=args.mbart_aa ) model.save_pretrained(args.pytorch_dump_folder_path)
476
'''simple docstring''' import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 __lowercase : Tuple = 0b101100111110110010010000011110111011000110011110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 __lowercase : Union[str, Any] = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class __UpperCamelCase : def __init__( self ): '''simple docstring''' __a : int = WATERMARK_BITS __a : Union[str, Any] = WatermarkEncoder() self.encoder.set_watermark('bits' , self.watermark ) def __UpperCAmelCase ( self , __a ): '''simple docstring''' if images.shape[-1] < 256: return images __a : List[str] = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() __a : List[str] = [self.encoder.encode(__a , 'dwtDct' ) for image in images] __a : str = torch.from_numpy(np.array(__a ) ).permute(0 , 3 , 1 , 2 ) __a : List[str] = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
476
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_torch_available, is_vision_available, ) __UpperCAmelCase : Optional[Any] = { "configuration_mobilevit": ["MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP", "MobileViTConfig", "MobileViTOnnxConfig"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = ["MobileViTFeatureExtractor"] __UpperCAmelCase : Optional[int] = ["MobileViTImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[Any] = [ "MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "MobileViTForImageClassification", "MobileViTForSemanticSegmentation", "MobileViTModel", "MobileViTPreTrainedModel", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : List[str] = [ "TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST", "TFMobileViTForImageClassification", "TFMobileViTForSemanticSegmentation", "TFMobileViTModel", "TFMobileViTPreTrainedModel", ] if TYPE_CHECKING: from .configuration_mobilevit import MOBILEVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, MobileViTConfig, MobileViTOnnxConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_mobilevit import MobileViTFeatureExtractor from .image_processing_mobilevit import MobileViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_mobilevit import ( MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, MobileViTForImageClassification, MobileViTForSemanticSegmentation, MobileViTModel, MobileViTPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_mobilevit import ( TF_MOBILEVIT_PRETRAINED_MODEL_ARCHIVE_LIST, TFMobileViTForImageClassification, TFMobileViTForSemanticSegmentation, TFMobileViTModel, TFMobileViTPreTrainedModel, ) else: import sys __UpperCAmelCase : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
643
import json import os import shutil import warnings from argparse import ArgumentParser, Namespace from pathlib import Path from typing import List from ..utils import logging from . import BaseTransformersCLICommand try: from cookiecutter.main import cookiecutter __UpperCAmelCase : List[Any] = True except ImportError: __UpperCAmelCase : List[str] = False __UpperCAmelCase : Any = logging.get_logger(__name__) # pylint: disable=invalid-name def a ( SCREAMING_SNAKE_CASE_ : Namespace ): """simple docstring""" return AddNewModelCommand(args.testing , args.testing_file , path=args.path ) class UpperCAmelCase_ ( _a): '''simple docstring''' @staticmethod def _lowercase ( __SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : List[Any] = parser.add_parser('''add-new-model''' ) add_new_model_parser.add_argument('''--testing''' , action='''store_true''' , help='''If in testing mode.''' ) add_new_model_parser.add_argument('''--testing_file''' , type=__SCREAMING_SNAKE_CASE , help='''Configuration file on which to run.''' ) add_new_model_parser.add_argument( '''--path''' , type=__SCREAMING_SNAKE_CASE , help='''Path to cookiecutter. Should only be used for testing purposes.''' ) add_new_model_parser.set_defaults(func=__SCREAMING_SNAKE_CASE ) def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=None , *__SCREAMING_SNAKE_CASE ): """simple docstring""" UpperCamelCase : Tuple = testing UpperCamelCase : Any = testing_file UpperCamelCase : Dict = path def _lowercase ( self ): """simple docstring""" warnings.warn( '''The command `transformers-cli add-new-model` is deprecated and will be removed in v5 of Transformers. ''' '''It is not actively maintained anymore, so might give a result that won\'t pass all tests and quality ''' '''checks, you should use `transformers-cli add-new-model-like` instead.''' ) if not _has_cookiecutter: raise ImportError( '''Model creation dependencies are required to use the `add_new_model` command. Install them by running ''' '''the following at the root of your `transformers` clone:\n\n\t$ pip install -e .[modelcreation]\n''' ) # Ensure that there is no other `cookiecutter-template-xxx` directory in the current working directory UpperCamelCase : List[str] = [directory for directory in os.listdir() if '''cookiecutter-template-''' == directory[:22]] if len(__SCREAMING_SNAKE_CASE ) > 0: raise ValueError( '''Several directories starting with `cookiecutter-template-` in current working directory. ''' '''Please clean your directory by removing all folders starting with `cookiecutter-template-` or ''' '''change your working directory.''' ) UpperCamelCase : Dict = ( Path(__SCREAMING_SNAKE_CASE ).parent.parent.parent.parent if self._path is None else Path(self._path ).parent.parent ) UpperCamelCase : List[Any] = path_to_transformer_root / '''templates''' / '''adding_a_new_model''' # Execute cookiecutter if not self._testing: cookiecutter(str(__SCREAMING_SNAKE_CASE ) ) else: with open(self._testing_file , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) cookiecutter( str(path_to_cookiecutter if self._path is None else self._path ) , no_input=__SCREAMING_SNAKE_CASE , extra_context=__SCREAMING_SNAKE_CASE , ) UpperCamelCase : Dict = [directory for directory in os.listdir() if '''cookiecutter-template-''' in directory[:22]][0] # Retrieve configuration with open(directory + '''/configuration.json''' , '''r''' ) as configuration_file: UpperCamelCase : Tuple = json.load(__SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = configuration['''lowercase_modelname'''] UpperCamelCase : int = configuration['''generate_tensorflow_pytorch_and_flax'''] os.remove(f"""{directory}/configuration.json""" ) UpperCamelCase : str = '''PyTorch''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Any = '''TensorFlow''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Union[str, Any] = '''Flax''' in generate_tensorflow_pytorch_and_flax UpperCamelCase : Optional[Any] = f"""{path_to_transformer_root}/src/transformers/models/{lowercase_model_name}""" os.makedirs(__SCREAMING_SNAKE_CASE , exist_ok=__SCREAMING_SNAKE_CASE ) os.makedirs(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}""" , exist_ok=__SCREAMING_SNAKE_CASE ) # Tests require submodules as they have parent imports with open(f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/__init__.py""" , '''w''' ): pass shutil.move( f"""{directory}/__init__.py""" , f"""{model_dir}/__init__.py""" , ) shutil.move( f"""{directory}/configuration_{lowercase_model_name}.py""" , f"""{model_dir}/configuration_{lowercase_model_name}.py""" , ) def remove_copy_lines(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE , '''r''' ) as f: UpperCamelCase : Any = f.readlines() with open(__SCREAMING_SNAKE_CASE , '''w''' ) as f: for line in lines: if "# Copied from transformers." not in line: f.write(__SCREAMING_SNAKE_CASE ) if output_pytorch: if not self._testing: remove_copy_lines(f"""{directory}/modeling_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_{lowercase_model_name}.py""" ) if output_tensorflow: if not self._testing: remove_copy_lines(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_tf_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_tf_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_tf_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_tf_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_tf_{lowercase_model_name}.py""" ) if output_flax: if not self._testing: remove_copy_lines(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/modeling_flax_{lowercase_model_name}.py""" , f"""{model_dir}/modeling_flax_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" , f"""{path_to_transformer_root}/tests/models/{lowercase_model_name}/test_modeling_flax_{lowercase_model_name}.py""" , ) else: os.remove(f"""{directory}/modeling_flax_{lowercase_model_name}.py""" ) os.remove(f"""{directory}/test_modeling_flax_{lowercase_model_name}.py""" ) shutil.move( f"""{directory}/{lowercase_model_name}.md""" , f"""{path_to_transformer_root}/docs/source/en/model_doc/{lowercase_model_name}.md""" , ) shutil.move( f"""{directory}/tokenization_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}.py""" , ) shutil.move( f"""{directory}/tokenization_fast_{lowercase_model_name}.py""" , f"""{model_dir}/tokenization_{lowercase_model_name}_fast.py""" , ) from os import fdopen, remove from shutil import copymode, move from tempfile import mkstemp def replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): # Create temp file UpperCamelCase , UpperCamelCase : Optional[Any] = mkstemp() UpperCamelCase : Tuple = False with fdopen(__SCREAMING_SNAKE_CASE , '''w''' ) as new_file: with open(__SCREAMING_SNAKE_CASE ) as old_file: for line in old_file: new_file.write(__SCREAMING_SNAKE_CASE ) if line_to_copy_below in line: UpperCamelCase : Optional[int] = True for line_to_copy in lines_to_copy: new_file.write(__SCREAMING_SNAKE_CASE ) if not line_found: raise ValueError(f"""Line {line_to_copy_below} was not found in file.""" ) # Copy the file permissions from the old file to the new file copymode(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) # Remove original file remove(__SCREAMING_SNAKE_CASE ) # Move new file move(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def skip_units(__SCREAMING_SNAKE_CASE ): return ( ("generating PyTorch" in line and not output_pytorch) or ("generating TensorFlow" in line and not output_tensorflow) or ("generating Flax" in line and not output_flax) ) def replace_in_files(__SCREAMING_SNAKE_CASE ): with open(__SCREAMING_SNAKE_CASE ) as datafile: UpperCamelCase : int = [] UpperCamelCase : Dict = False UpperCamelCase : List[Any] = False for line in datafile: if "# To replace in: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : int = skip_units(__SCREAMING_SNAKE_CASE ) elif "# Below: " in line and "##" not in line: UpperCamelCase : Dict = line.split('''"''' )[1] UpperCamelCase : List[str] = skip_units(__SCREAMING_SNAKE_CASE ) elif "# End." in line and "##" not in line: if not skip_file and not skip_snippet: replace(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) UpperCamelCase : Dict = [] elif "# Replace with" in line and "##" not in line: UpperCamelCase : Tuple = [] elif "##" not in line: lines_to_copy.append(__SCREAMING_SNAKE_CASE ) remove(__SCREAMING_SNAKE_CASE ) replace_in_files(f"""{directory}/to_replace_{lowercase_model_name}.py""" ) os.rmdir(__SCREAMING_SNAKE_CASE )
643
1
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowercase : @staticmethod def lowercase_ ( *SCREAMING_SNAKE_CASE__ , **SCREAMING_SNAKE_CASE__ ): """simple docstring""" pass @is_pipeline_test @require_vision @require_torch class lowercase ( unittest.TestCase ): __a = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : int = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCAmelCase__ : Union[str, Any] = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def lowercase_ ( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" lowerCAmelCase__ : Dict = object_detector(examples[0] , threshold=0.0 ) lowerCAmelCase__ : str = len(__lowerCAmelCase ) self.assertGreater(__lowerCAmelCase , 0 ) self.assertEqual( __lowerCAmelCase , [ { '''score''': ANY(__lowerCAmelCase ), '''label''': ANY(__lowerCAmelCase ), '''box''': {'''xmin''': ANY(__lowerCAmelCase ), '''ymin''': ANY(__lowerCAmelCase ), '''xmax''': ANY(__lowerCAmelCase ), '''ymax''': ANY(__lowerCAmelCase )}, } for i in range(__lowerCAmelCase ) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase_ ( self ): """simple docstring""" pass @require_torch def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Optional[int] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''' ) lowerCAmelCase__ : Tuple = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.7_235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) lowerCAmelCase__ : Any = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ [ {'''score''': 0.7_235, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_218, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.7_184, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.6_748, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_656, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_614, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.6_456, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.642, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.6_419, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase__ : Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) lowerCAmelCase__ : List[str] = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.1_474, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.1_208, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''' ) def lowercase_ ( self ): """simple docstring""" pass @require_torch @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Any = 0.2 lowerCAmelCase__ : Optional[Any] = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase__ : Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__lowerCAmelCase , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.2_537, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def lowercase_ ( self ): """simple docstring""" lowerCAmelCase__ : Union[str, Any] = 2 lowerCAmelCase__ : Dict = pipeline('''zero-shot-object-detection''' ) lowerCAmelCase__ : Tuple = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__lowerCAmelCase , ) self.assertEqual( nested_simplify(__lowerCAmelCase , decimals=4 ) , [ {'''score''': 0.2_868, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.277, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
233
"""simple docstring""" from transformers import BertTokenizer, EncoderDecoderModel, SeqaSeqTrainer, SeqaSeqTrainingArguments from transformers.testing_utils import TestCasePlus, require_torch, slow from transformers.utils import is_datasets_available if is_datasets_available(): import datasets class a ( lowerCAmelCase_ ): @slow @require_torch def lowerCAmelCase_ ( self : str ): _UpperCAmelCase = EncoderDecoderModel.from_encoder_decoder_pretrained("""prajjwal1/bert-tiny""" , """prajjwal1/bert-tiny""" ) _UpperCAmelCase = BertTokenizer.from_pretrained("""bert-base-uncased""" ) _UpperCAmelCase = bertabert.config.encoder.vocab_size _UpperCAmelCase = tokenizer.sep_token_id _UpperCAmelCase = tokenizer.cls_token_id _UpperCAmelCase = 128 _UpperCAmelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""train[:1%]""" ) _UpperCAmelCase = datasets.load_dataset("""cnn_dailymail""" , """3.0.0""" , split="""validation[:1%]""" ) _UpperCAmelCase = train_dataset.select(range(32 ) ) _UpperCAmelCase = val_dataset.select(range(16 ) ) _UpperCAmelCase = 4 def _map_to_encoder_decoder_inputs(__lowerCAmelCase : Dict ): # Tokenizer will automatically set [BOS] <text> [EOS] _UpperCAmelCase = tokenizer(batch["""article"""] , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=512 ) _UpperCAmelCase = tokenizer(batch["""highlights"""] , padding="""max_length""" , truncation=__lowerCAmelCase , max_length=128 ) _UpperCAmelCase = inputs.input_ids _UpperCAmelCase = inputs.attention_mask _UpperCAmelCase = outputs.input_ids _UpperCAmelCase = outputs.input_ids.copy() _UpperCAmelCase = [ [-100 if token == tokenizer.pad_token_id else token for token in labels] for labels in batch["""labels"""] ] _UpperCAmelCase = outputs.attention_mask assert all(len(__lowerCAmelCase ) == 512 for x in inputs.input_ids ) assert all(len(__lowerCAmelCase ) == 128 for x in outputs.input_ids ) return batch def _compute_metrics(__lowerCAmelCase : int ): _UpperCAmelCase = pred.label_ids _UpperCAmelCase = pred.predictions # all unnecessary tokens are removed _UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _UpperCAmelCase = tokenizer.batch_decode(__lowerCAmelCase , skip_special_tokens=__lowerCAmelCase ) _UpperCAmelCase = sum([int(pred_str[i] == label_str[i] ) for i in range(len(__lowerCAmelCase ) )] ) / len(__lowerCAmelCase ) return {"accuracy": accuracy} # map train dataset _UpperCAmelCase = train_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCAmelCase , batch_size=__lowerCAmelCase , remove_columns=["""article""", """highlights"""] , ) train_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) # same for validation dataset _UpperCAmelCase = val_dataset.map( _map_to_encoder_decoder_inputs , batched=__lowerCAmelCase , batch_size=__lowerCAmelCase , remove_columns=["""article""", """highlights"""] , ) val_dataset.set_format( type="""torch""" , columns=["""input_ids""", """attention_mask""", """decoder_input_ids""", """decoder_attention_mask""", """labels"""] , ) _UpperCAmelCase = self.get_auto_remove_tmp_dir() _UpperCAmelCase = SeqaSeqTrainingArguments( output_dir=__lowerCAmelCase , per_device_train_batch_size=__lowerCAmelCase , per_device_eval_batch_size=__lowerCAmelCase , predict_with_generate=__lowerCAmelCase , evaluation_strategy="""steps""" , do_train=__lowerCAmelCase , do_eval=__lowerCAmelCase , warmup_steps=0 , eval_steps=2 , logging_steps=2 , ) # instantiate trainer _UpperCAmelCase = SeqaSeqTrainer( model=__lowerCAmelCase , args=__lowerCAmelCase , compute_metrics=_compute_metrics , train_dataset=__lowerCAmelCase , eval_dataset=__lowerCAmelCase , tokenizer=__lowerCAmelCase , ) # start training trainer.train()
277
0
import pytest import datasets # Import fixture modules as plugins UpperCamelCase = ["""tests.fixtures.files""", """tests.fixtures.hub""", """tests.fixtures.fsspec"""] def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # Mark tests as "unit" by default if not marked as "integration" (or already marked as "unit") for item in items: if any(marker in item.keywords for marker in ['''integration''', '''unit'''] ): continue item.add_marker(pytest.mark.unit ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): config.addinivalue_line('''markers''' , '''torchaudio_latest: mark test to run with torchaudio>=0.12''' ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): # test_hf_cache_home = tmp_path_factory.mktemp("cache") # TODO: why a cache dir per test function does not work? A_ : Any = tmp_path_factory.getbasetemp() / '''cache''' A_ : Dict = test_hf_cache_home / '''datasets''' A_ : Union[str, Any] = test_hf_cache_home / '''metrics''' A_ : Union[str, Any] = test_hf_cache_home / '''modules''' monkeypatch.setattr('''datasets.config.HF_DATASETS_CACHE''' , str(SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('''datasets.config.HF_METRICS_CACHE''' , str(SCREAMING_SNAKE_CASE ) ) monkeypatch.setattr('''datasets.config.HF_MODULES_CACHE''' , str(SCREAMING_SNAKE_CASE ) ) A_ : Union[str, Any] = test_hf_datasets_cache / '''downloads''' monkeypatch.setattr('''datasets.config.DOWNLOADED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE ) ) A_ : List[str] = test_hf_datasets_cache / '''downloads''' / '''extracted''' monkeypatch.setattr('''datasets.config.EXTRACTED_DATASETS_PATH''' , str(SCREAMING_SNAKE_CASE ) ) @pytest.fixture(autouse=SCREAMING_SNAKE_CASE , scope='''session''' ) def _SCREAMING_SNAKE_CASE ( ): datasets.disable_progress_bar() @pytest.fixture(autouse=SCREAMING_SNAKE_CASE ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): # don't take tests into account when counting downloads monkeypatch.setattr('''datasets.config.HF_UPDATE_DOWNLOAD_COUNTS''' , SCREAMING_SNAKE_CASE ) @pytest.fixture def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE ): # Required to suppress RemovedIn20Warning when feature(s) are not compatible with SQLAlchemy 2.0 # To be removed once SQLAlchemy 2.0 supported monkeypatch.setattr('''sqlalchemy.util.deprecations.SILENCE_UBER_WARNING''' , SCREAMING_SNAKE_CASE )
152
from functools import reduce UpperCamelCase = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE = N ): return max( # mypy cannot properly interpret reduce int(reduce(lambda SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE : str(int(SCREAMING_SNAKE_CASE ) * int(SCREAMING_SNAKE_CASE ) ) , n[i : i + 13] ) ) for i in range(len(SCREAMING_SNAKE_CASE ) - 12 ) ) if __name__ == "__main__": print(F'''{solution() = }''')
152
1
'''simple docstring''' import os from datetime import datetime as dt from github import Github UpperCamelCase__ = [ '''good first issue''', '''good second issue''', '''good difficult issue''', '''enhancement''', '''new pipeline/model''', '''new scheduler''', '''wip''', ] def a__ ( ) -> List[Any]: UpperCAmelCase__ : int = Github(os.environ['''GITHUB_TOKEN'''] ) UpperCAmelCase__ : List[str] = g.get_repo('''huggingface/diffusers''' ) UpperCAmelCase__ : Optional[Any] = repo.get_issues(state='''open''' ) for issue in open_issues: UpperCAmelCase__ : Union[str, Any] = sorted(issue.get_comments() , key=lambda lowerCAmelCase__ : i.created_at , reverse=lowerCAmelCase__ ) UpperCAmelCase__ : Optional[int] = comments[0] if len(lowerCAmelCase__ ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Closes the issue after 7 days of inactivity since the Stalebot notification. issue.edit(state='''closed''' ) elif ( "stale" in issue.get_labels() and last_comment is not None and last_comment.user.login != "github-actions[bot]" ): # Opens the issue if someone other than Stalebot commented. issue.edit(state='''open''' ) issue.remove_from_labels('''stale''' ) elif ( (dt.utcnow() - issue.updated_at).days > 23 and (dt.utcnow() - issue.created_at).days >= 30 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # Post a Stalebot notification after 23 days of inactivity. issue.create_comment( '''This issue has been automatically marked as stale because it has not had ''' '''recent activity. If you think this still needs to be addressed ''' '''please comment on this thread.\n\nPlease note that issues that do not follow the ''' '''[contributing guidelines](https://github.com/huggingface/diffusers/blob/main/CONTRIBUTING.md) ''' '''are likely to be ignored.''' ) issue.add_to_labels('''stale''' ) if __name__ == "__main__": main()
75
'''simple docstring''' def __lowerCAmelCase ( UpperCamelCase__ , UpperCamelCase__ ) -> float: return base * power(UpperCamelCase__ , (exponent - 1) ) if exponent else 1 if __name__ == "__main__": print("Raise base to the power of exponent using recursion...") __UpperCAmelCase =int(input("Enter the base: ").strip()) __UpperCAmelCase =int(input("Enter the exponent: ").strip()) __UpperCAmelCase =power(base, abs(exponent)) if exponent < 0: # power() does not properly deal w/ negative exponents __UpperCAmelCase =1 / result print(f'{base} to the power of {exponent} is {result}')
546
0
"""simple docstring""" import os import unittest from transformers import BatchEncoding from transformers.models.bert.tokenization_bert import ( BasicTokenizer, WordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.models.prophetnet.tokenization_prophetnet import VOCAB_FILES_NAMES, ProphetNetTokenizer from transformers.testing_utils import require_torch, slow from ...test_tokenization_common import TokenizerTesterMixin class __magic_name__ ( snake_case__ , unittest.TestCase ): __A : Tuple = ProphetNetTokenizer __A : Tuple = False def __snake_case ( self : Tuple ): '''simple docstring''' super().setUp() lowercase :Any = [ '[UNK]', '[CLS]', '[SEP]', '[PAD]', '[MASK]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing', ',', 'low', 'lowest', ] lowercase :int = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['''vocab_file'''] ) with open(self.vocab_file , '''w''' , encoding='''utf-8''' ) as vocab_writer: vocab_writer.write(''''''.join([x + '''\n''' for x in vocab_tokens] ) ) def __snake_case ( self : Optional[Any] , snake_case__ : List[Any] ): '''simple docstring''' lowercase :List[Any] = 'UNwant\u00E9d,running' lowercase :List[str] = 'unwanted, running' return input_text, output_text def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Tuple = self.tokenizer_class(self.vocab_file ) lowercase :List[Any] = tokenizer.tokenize('''UNwant\u00E9d,running''' ) self.assertListEqual(_A , ['''un''', '''##want''', '''##ed''', ''',''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.convert_tokens_to_ids(_A ) , [9, 6, 7, 1_2, 1_0, 1_1] ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :int = BasicTokenizer() self.assertListEqual(tokenizer.tokenize('''ah\u535A\u63A8zz''' ) , ['''ah''', '''\u535A''', '''\u63A8''', '''zz'''] ) def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :Union[str, Any] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''hello''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self : List[str] ): '''simple docstring''' lowercase :Optional[Any] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hällo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''h\u00E9llo'''] ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :List[str] = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :Optional[int] = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''hallo''', '''!''', '''how''', '''are''', '''you''', '''?'''] ) self.assertListEqual(tokenizer.tokenize('''H\u00E9llo''' ) , ['''hello'''] ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :Tuple = BasicTokenizer(do_lower_case=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? ''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self : Any ): '''simple docstring''' lowercase :Tuple = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HäLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self : Tuple ): '''simple docstring''' lowercase :Dict = BasicTokenizer(do_lower_case=_A , strip_accents=_A ) self.assertListEqual( tokenizer.tokenize(''' \tHäLLo!how \n Are yoU? ''' ) , ['''HaLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?'''] ) def __snake_case ( self : List[Any] ): '''simple docstring''' lowercase :List[Any] = BasicTokenizer(do_lower_case=_A , never_split=['''[UNK]'''] ) self.assertListEqual( tokenizer.tokenize(''' \tHeLLo!how \n Are yoU? [UNK]''' ) , ['''HeLLo''', '''!''', '''how''', '''Are''', '''yoU''', '''?''', '''[UNK]'''] ) def __snake_case ( self : str ): '''simple docstring''' lowercase :Optional[int] = ['[UNK]', '[CLS]', '[SEP]', 'want', '##want', '##ed', 'wa', 'un', 'runn', '##ing'] lowercase :Optional[int] = {} for i, token in enumerate(_A ): lowercase :Tuple = i lowercase :Tuple = WordpieceTokenizer(vocab=_A , unk_token='''[UNK]''' ) self.assertListEqual(tokenizer.tokenize('''''' ) , [] ) self.assertListEqual(tokenizer.tokenize('''unwanted running''' ) , ['''un''', '''##want''', '''##ed''', '''runn''', '''##ing'''] ) self.assertListEqual(tokenizer.tokenize('''unwantedX running''' ) , ['''[UNK]''', '''runn''', '''##ing'''] ) @require_torch def __snake_case ( self : Union[str, Any] ): '''simple docstring''' lowercase :int = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) lowercase :Optional[Any] = ['A long paragraph for summarization.', 'Another paragraph for summarization.'] lowercase :str = [1_0_3_7, 2_1_4_6, 2_0_4_2_3, 2_0_0_5, 7_6_8_0, 7_8_4_9, 3_9_8_9, 1_0_1_2, 1_0_2] lowercase :str = tokenizer(_A , padding=_A , return_tensors='''pt''' ) self.assertIsInstance(_A , _A ) lowercase :List[str] = list(batch.input_ids.numpy()[0] ) self.assertListEqual(_A , _A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) def __snake_case ( self : Any ): '''simple docstring''' self.assertTrue(_is_whitespace(''' ''' ) ) self.assertTrue(_is_whitespace('''\t''' ) ) self.assertTrue(_is_whitespace('''\r''' ) ) self.assertTrue(_is_whitespace('''\n''' ) ) self.assertTrue(_is_whitespace('''\u00A0''' ) ) self.assertFalse(_is_whitespace('''A''' ) ) self.assertFalse(_is_whitespace('''-''' ) ) def __snake_case ( self : List[Any] ): '''simple docstring''' self.assertTrue(_is_control('''\u0005''' ) ) self.assertFalse(_is_control('''A''' ) ) self.assertFalse(_is_control(''' ''' ) ) self.assertFalse(_is_control('''\t''' ) ) self.assertFalse(_is_control('''\r''' ) ) def __snake_case ( self : int ): '''simple docstring''' self.assertTrue(_is_punctuation('''-''' ) ) self.assertTrue(_is_punctuation('''$''' ) ) self.assertTrue(_is_punctuation('''`''' ) ) self.assertTrue(_is_punctuation('''.''' ) ) self.assertFalse(_is_punctuation('''A''' ) ) self.assertFalse(_is_punctuation(''' ''' ) ) @slow def __snake_case ( self : Dict ): '''simple docstring''' lowercase :Union[str, Any] = self.tokenizer_class.from_pretrained('''microsoft/prophetnet-large-uncased''' ) lowercase :Any = tokenizer.encode('''sequence builders''' , add_special_tokens=_A ) lowercase :List[Any] = tokenizer.encode('''multi-sequence build''' , add_special_tokens=_A ) lowercase :str = tokenizer.build_inputs_with_special_tokens(_A ) lowercase :Optional[Any] = tokenizer.build_inputs_with_special_tokens(_A , _A ) assert encoded_sentence == text + [1_0_2] assert encoded_pair == text + [1_0_2] + text_a + [1_0_2]
711
"""simple docstring""" from __future__ import annotations from itertools import permutations from random import randint from timeit import repeat def lowerCamelCase () -> tuple[list[int], int]: lowercase :Any = [randint(-1000 , 1000) for i in range(10)] lowercase :Any = randint(-5000 , 5000) return (arr, r) UpperCAmelCase = make_dataset() def lowerCamelCase (a_ :list[int] , a_ :int) -> tuple[int, ...]: for triplet in permutations(a_ , 3): if sum(a_) == target: return tuple(sorted(a_)) return (0, 0, 0) def lowerCamelCase (a_ :list[int] , a_ :int) -> tuple[int, int, int]: arr.sort() lowercase :Union[str, Any] = len(a_) for i in range(n - 1): lowercase , lowercase :Union[str, Any] = i + 1, n - 1 while left < right: if arr[i] + arr[left] + arr[right] == target: return (arr[i], arr[left], arr[right]) elif arr[i] + arr[left] + arr[right] < target: left += 1 elif arr[i] + arr[left] + arr[right] > target: right -= 1 return (0, 0, 0) def lowerCamelCase () -> tuple[float, float]: lowercase :int = ''' from __main__ import dataset, triplet_sum1, triplet_sum2 ''' lowercase :Optional[Any] = ''' triplet_sum1(*dataset) ''' lowercase :Union[str, Any] = ''' triplet_sum2(*dataset) ''' lowercase :Dict = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_0000) lowercase :Optional[int] = repeat(setup=a_ , stmt=a_ , repeat=5 , number=1_0000) return (min(a_), min(a_)) if __name__ == "__main__": from doctest import testmod testmod() UpperCAmelCase = solution_times() print(F"""The time for naive implementation is {times[0]}.""") print(F"""The time for optimized implementation is {times[1]}.""")
475
0
"""simple docstring""" import os import pytest from datasets import ( get_dataset_config_info, get_dataset_config_names, get_dataset_infos, get_dataset_split_names, inspect_dataset, inspect_metric, ) __magic_name__ = pytest.mark.integration @pytest.mark.parametrize('path',['paws', 'csv'] ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> str: '''simple docstring''' inspect_dataset(UpperCAmelCase__,UpperCAmelCase__ ) a__ = path + '.py' assert script_name in os.listdir(UpperCAmelCase__ ) assert "__pycache__" not in os.listdir(UpperCAmelCase__ ) @pytest.mark.filterwarnings('ignore:inspect_metric is deprecated:FutureWarning' ) @pytest.mark.filterwarnings('ignore:metric_module_factory is deprecated:FutureWarning' ) @pytest.mark.parametrize('path',['accuracy'] ) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[int]: '''simple docstring''' inspect_metric(UpperCAmelCase__,UpperCAmelCase__ ) a__ = path + '.py' assert script_name in os.listdir(UpperCAmelCase__ ) assert "__pycache__" not in os.listdir(UpperCAmelCase__ ) @pytest.mark.parametrize( 'path, config_name, expected_splits',[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ],) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> int: '''simple docstring''' a__ = get_dataset_config_info(UpperCAmelCase__,config_name=UpperCAmelCase__ ) assert info.config_name == config_name assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception',[ ('paws', None, ValueError), ],) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> int: '''simple docstring''' with pytest.raises(UpperCAmelCase__ ): get_dataset_config_info(UpperCAmelCase__,config_name=UpperCAmelCase__ ) @pytest.mark.parametrize( 'path, expected',[ ('squad', 'plain_text'), ('acronym_identification', 'default'), ('lhoestq/squad', 'plain_text'), ('lhoestq/test', 'default'), ('lhoestq/demo1', 'lhoestq--demo1'), ('dalle-mini/wit', 'dalle-mini--wit'), ],) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__ ) -> str: '''simple docstring''' a__ = get_dataset_config_names(UpperCAmelCase__ ) assert expected in config_names @pytest.mark.parametrize( 'path, expected_configs, expected_splits_in_first_config',[ ('squad', ['plain_text'], ['train', 'validation']), ('dalle-mini/wit', ['dalle-mini--wit'], ['train']), ('paws', ['labeled_final', 'labeled_swap', 'unlabeled_final'], ['train', 'test', 'validation']), ],) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Optional[Any]: '''simple docstring''' a__ = get_dataset_infos(UpperCAmelCase__ ) assert list(infos.keys() ) == expected_configs a__ = expected_configs[0] assert expected_config in infos a__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits_in_first_config @pytest.mark.parametrize( 'path, expected_config, expected_splits',[ ('squad', 'plain_text', ['train', 'validation']), ('dalle-mini/wit', 'dalle-mini--wit', ['train']), ('paws', 'labeled_final', ['train', 'test', 'validation']), ],) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Union[str, Any]: '''simple docstring''' a__ = get_dataset_infos(UpperCAmelCase__ ) assert expected_config in infos a__ = infos[expected_config] assert info.config_name == expected_config assert list(info.splits.keys() ) == expected_splits @pytest.mark.parametrize( 'path, config_name, expected_exception',[ ('paws', None, ValueError), ],) def _lowerCamelCase ( UpperCAmelCase__,UpperCAmelCase__,UpperCAmelCase__ ) -> Dict: '''simple docstring''' with pytest.raises(UpperCAmelCase__ ): get_dataset_split_names(UpperCAmelCase__,config_name=UpperCAmelCase__ )
232
"""simple docstring""" from __future__ import annotations import inspect import unittest from transformers import ViTConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFViTForImageClassification, TFViTModel if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE : """simple docstring""" def __init__( self : str , _snake_case : Optional[Any] , _snake_case : Tuple=13 , _snake_case : Any=30 , _snake_case : List[str]=2 , _snake_case : int=3 , _snake_case : List[Any]=True , _snake_case : str=True , _snake_case : Tuple=32 , _snake_case : Tuple=2 , _snake_case : Dict=4 , _snake_case : int=37 , _snake_case : List[str]="gelu" , _snake_case : Any=0.1 , _snake_case : int=0.1 , _snake_case : Optional[int]=10 , _snake_case : Union[str, Any]=0.02 , _snake_case : Optional[int]=3 , _snake_case : Tuple=None , ) -> Optional[int]: '''simple docstring''' a__ = parent a__ = batch_size a__ = image_size a__ = patch_size a__ = num_channels a__ = is_training a__ = use_labels a__ = hidden_size a__ = num_hidden_layers a__ = num_attention_heads a__ = intermediate_size a__ = hidden_act a__ = hidden_dropout_prob a__ = attention_probs_dropout_prob a__ = type_sequence_label_size a__ = initializer_range a__ = scope # in ViT, the seq length equals the number of patches + 1 (we add 1 for the [CLS] token) a__ = (image_size // patch_size) ** 2 a__ = num_patches + 1 def _lowerCAmelCase ( self : Tuple ) -> int: '''simple docstring''' a__ = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) a__ = None if self.use_labels: a__ = ids_tensor([self.batch_size] , self.type_sequence_label_size ) a__ = self.get_config() return config, pixel_values, labels def _lowerCAmelCase ( self : Optional[int] ) -> Tuple: '''simple docstring''' return ViTConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_snake_case , initializer_range=self.initializer_range , ) def _lowerCAmelCase ( self : Any , _snake_case : Union[str, Any] , _snake_case : str , _snake_case : str ) -> Optional[Any]: '''simple docstring''' a__ = TFViTModel(config=_snake_case ) a__ = model(_snake_case , training=_snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # Test with an image with different size than the one specified in config. a__ = self.image_size // 2 a__ = pixel_values[:, :, :image_size, :image_size] a__ = model(_snake_case , interpolate_pos_encoding=_snake_case , training=_snake_case ) a__ = (image_size // self.patch_size) ** 2 + 1 self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, seq_length, self.hidden_size) ) def _lowerCAmelCase ( self : List[Any] , _snake_case : Dict , _snake_case : Any , _snake_case : List[str] ) -> Dict: '''simple docstring''' a__ = self.type_sequence_label_size a__ = TFViTForImageClassification(_snake_case ) a__ = model(_snake_case , labels=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # Test with an image with different size than the one specified in config. a__ = self.image_size // 2 a__ = pixel_values[:, :, :image_size, :image_size] a__ = model(_snake_case , interpolate_pos_encoding=_snake_case , training=_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) # test greyscale images a__ = 1 a__ = TFViTForImageClassification(_snake_case ) a__ = floats_tensor([self.batch_size, 1, self.image_size, self.image_size] ) a__ = model(_snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.type_sequence_label_size) ) def _lowerCAmelCase ( self : List[str] ) -> str: '''simple docstring''' a__ = self.prepare_config_and_inputs() a__ , a__ , a__ = config_and_inputs a__ = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class SCREAMING_SNAKE_CASE ( a , a , unittest.TestCase ): """simple docstring""" a_ : List[str] =(TFViTModel, TFViTForImageClassification) if is_tf_available() else () a_ : List[str] =( {"feature-extraction": TFViTModel, "image-classification": TFViTForImageClassification} if is_tf_available() else {} ) a_ : Optional[int] =False a_ : Optional[Any] =False a_ : Optional[Any] =False def _lowerCAmelCase ( self : Dict ) -> Any: '''simple docstring''' a__ = TFViTModelTester(self ) a__ = ConfigTester(self , config_class=_snake_case , has_text_modality=_snake_case , hidden_size=37 ) def _lowerCAmelCase ( self : List[Any] ) -> Dict: '''simple docstring''' self.config_tester.run_common_tests() @unittest.skip(reason='ViT does not use inputs_embeds' ) def _lowerCAmelCase ( self : Optional[Any] ) -> List[str]: '''simple docstring''' pass @unittest.skip(reason='ViT does not use inputs_embeds' ) def _lowerCAmelCase ( self : Union[str, Any] ) -> int: '''simple docstring''' pass def _lowerCAmelCase ( self : Dict ) -> Dict: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_snake_case ) self.assertIsInstance(model.get_input_embeddings() , (tf.keras.layers.Layer) ) a__ = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_snake_case , tf.keras.layers.Layer ) ) def _lowerCAmelCase ( self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' a__ , a__ = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: a__ = model_class(_snake_case ) a__ = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic a__ = [*signature.parameters.keys()] a__ = ['pixel_values'] self.assertListEqual(arg_names[:1] , _snake_case ) def _lowerCAmelCase ( self : str ) -> Any: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_snake_case ) def _lowerCAmelCase ( self : Any ) -> Tuple: '''simple docstring''' a__ = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_snake_case ) @slow def _lowerCAmelCase ( self : Optional[int] ) -> Optional[int]: '''simple docstring''' a__ = TFViTModel.from_pretrained('google/vit-base-patch16-224' ) self.assertIsNotNone(_snake_case ) def _lowerCamelCase ( ) -> Any: '''simple docstring''' a__ = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @cached_property def _lowerCAmelCase ( self : int ) -> List[Any]: '''simple docstring''' return ViTImageProcessor.from_pretrained('google/vit-base-patch16-224' ) if is_vision_available() else None @slow def _lowerCAmelCase ( self : Optional[Any] ) -> Optional[int]: '''simple docstring''' a__ = TFViTForImageClassification.from_pretrained('google/vit-base-patch16-224' ) a__ = self.default_image_processor a__ = prepare_img() a__ = image_processor(images=_snake_case , return_tensors='tf' ) # forward pass a__ = model(**_snake_case ) # verify the logits a__ = tf.TensorShape((1, 1000) ) self.assertEqual(outputs.logits.shape , _snake_case ) a__ = tf.constant([-0.2744, 0.8215, -0.0836] ) tf.debugging.assert_near(outputs.logits[0, :3] , _snake_case , atol=1E-4 )
232
1
"""simple docstring""" import os def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_ = "input.txt" ): with open(os.path.join(os.path.dirname(SCREAMING_SNAKE_CASE_ ), SCREAMING_SNAKE_CASE_ ) ) as input_file: SCREAMING_SNAKE_CASE = [ [int(SCREAMING_SNAKE_CASE_ ) for element in line.split(',' )] for line in input_file.readlines() ] SCREAMING_SNAKE_CASE = len(SCREAMING_SNAKE_CASE_ ) SCREAMING_SNAKE_CASE = len(matrix[0] ) SCREAMING_SNAKE_CASE = [[-1 for _ in range(SCREAMING_SNAKE_CASE_ )] for _ in range(SCREAMING_SNAKE_CASE_ )] for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = matrix[i][0] for j in range(1, SCREAMING_SNAKE_CASE_ ): for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = minimal_path_sums[i][j - 1] + matrix[i][j] for i in range(1, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j], minimal_path_sums[i - 1][j] + matrix[i][j] ) for i in range(rows - 2, -1, -1 ): SCREAMING_SNAKE_CASE = min( minimal_path_sums[i][j], minimal_path_sums[i + 1][j] + matrix[i][j] ) return min(minimal_path_sums_row[-1] for minimal_path_sums_row in minimal_path_sums ) if __name__ == "__main__": print(f'{solution() = }')
406
"""simple docstring""" import argparse import os from io import BytesIO from pathlib import Path import requests from clip_retrieval.clip_client import ClipClient from PIL import Image from tqdm import tqdm def UpperCamelCase_ ( SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_, SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE = 1.5 SCREAMING_SNAKE_CASE = int(factor * num_class_images ) SCREAMING_SNAKE_CASE = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=SCREAMING_SNAKE_CASE_, aesthetic_weight=0.1 ) os.makedirs(f'''{class_data_dir}/images''', exist_ok=SCREAMING_SNAKE_CASE_ ) if len(list(Path(f'''{class_data_dir}/images''' ).iterdir() ) ) >= num_class_images: return while True: SCREAMING_SNAKE_CASE = client.query(text=SCREAMING_SNAKE_CASE_ ) if len(SCREAMING_SNAKE_CASE_ ) >= factor * num_class_images or num_images > 1E4: break else: SCREAMING_SNAKE_CASE = int(factor * num_images ) SCREAMING_SNAKE_CASE = ClipClient( url='https://knn.laion.ai/knn-service', indice_name='laion_400m', num_images=SCREAMING_SNAKE_CASE_, aesthetic_weight=0.1, ) SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = 0 SCREAMING_SNAKE_CASE = tqdm(desc='downloading real regularization images', total=SCREAMING_SNAKE_CASE_ ) with open(f'''{class_data_dir}/caption.txt''', 'w' ) as fa, open(f'''{class_data_dir}/urls.txt''', 'w' ) as fa, open( f'''{class_data_dir}/images.txt''', 'w' ) as fa: while total < num_class_images: SCREAMING_SNAKE_CASE = class_images[count] count += 1 try: SCREAMING_SNAKE_CASE = requests.get(images['url'] ) if img.status_code == 2_0_0: SCREAMING_SNAKE_CASE = Image.open(BytesIO(img.content ) ) with open(f'''{class_data_dir}/images/{total}.jpg''', 'wb' ) as f: f.write(img.content ) fa.write(images['caption'] + '\n' ) fa.write(images['url'] + '\n' ) fa.write(f'''{class_data_dir}/images/{total}.jpg''' + '\n' ) total += 1 pbar.update(1 ) else: continue except Exception: continue return def UpperCamelCase_ ( ): SCREAMING_SNAKE_CASE = argparse.ArgumentParser('', add_help=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--class_prompt', help='text prompt to retrieve images', required=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--class_data_dir', help='path to save images', required=SCREAMING_SNAKE_CASE_, type=SCREAMING_SNAKE_CASE_ ) parser.add_argument('--num_class_images', help='number of images to download', default=2_0_0, type=SCREAMING_SNAKE_CASE_ ) return parser.parse_args() if __name__ == "__main__": snake_case = parse_args() retrieve(args.class_prompt, args.class_data_dir, args.num_class_images)
406
1
'''simple docstring''' import cva import numpy as np class _A : def __init__( self : Any , __magic_name__ : float , __magic_name__ : int ) -> Optional[int]: """simple docstring""" if k in (0.04, 0.06): __snake_case : List[str] = k __snake_case : int = window_size else: raise ValueError("""invalid k value""" ) def __str__( self : Union[str, Any] ) -> str: """simple docstring""" return str(self.k ) def lowercase__ ( self : Dict , __magic_name__ : str ) -> tuple[cva.Mat, list[list[int]]]: """simple docstring""" __snake_case : Dict = cva.imread(__magic_name__ , 0 ) __snake_case , __snake_case : List[str] = img.shape __snake_case : list[list[int]] = [] __snake_case : str = img.copy() __snake_case : Tuple = cva.cvtColor(__magic_name__ , cva.COLOR_GRAY2RGB ) __snake_case , __snake_case : List[Any] = np.gradient(__magic_name__ ) __snake_case : Optional[Any] = dx**2 __snake_case : Tuple = dy**2 __snake_case : List[Any] = dx * dy __snake_case : List[Any] = 0.04 __snake_case : Tuple = self.window_size // 2 for y in range(__magic_name__ , h - offset ): for x in range(__magic_name__ , w - offset ): __snake_case : Dict = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : Optional[int] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : str = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() __snake_case : List[str] = (wxx * wyy) - (wxy**2) __snake_case : Dict = wxx + wyy __snake_case : List[str] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 2_55 ) return color_img, corner_list if __name__ == "__main__": __UpperCamelCase = HarrisCorner(0.04, 3) __UpperCamelCase , __UpperCamelCase = edge_detect.detect("path_to_image") cva.imwrite("detect.png", color_img)
26
def __a ( SCREAMING_SNAKE_CASE ) -> list: '''simple docstring''' if len(SCREAMING_SNAKE_CASE ) < 2: return collection def circle_sort_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) -> bool: __UpperCAmelCase = False if low == high: return swapped __UpperCAmelCase = low __UpperCAmelCase = high while left < right: if collection[left] > collection[right]: __UpperCAmelCase , __UpperCAmelCase = ( collection[right], collection[left], ) __UpperCAmelCase = True left += 1 right -= 1 if left == right and collection[left] > collection[right + 1]: __UpperCAmelCase , __UpperCAmelCase = ( collection[right + 1], collection[left], ) __UpperCAmelCase = True __UpperCAmelCase = low + int((high - low) / 2 ) __UpperCAmelCase = circle_sort_util(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) __UpperCAmelCase = circle_sort_util(SCREAMING_SNAKE_CASE , mid + 1 , SCREAMING_SNAKE_CASE ) return swapped or left_swap or right_swap __UpperCAmelCase = True while is_not_sorted is True: __UpperCAmelCase = circle_sort_util(SCREAMING_SNAKE_CASE , 0 , len(SCREAMING_SNAKE_CASE ) - 1 ) return collection if __name__ == "__main__": A_ : str = input('Enter numbers separated by a comma:\n').strip() A_ : List[str] = [int(item) for item in user_input.split(',')] print(circle_sort(unsorted))
303
0
'''simple docstring''' from collections import defaultdict from math import gcd def __UpperCAmelCase ( __magic_name__ = 150_0000 )-> int: """simple docstring""" snake_case_ : defaultdict = defaultdict(__magic_name__ ) snake_case_ : Tuple = 2 while 2 * euclid_m * (euclid_m + 1) <= limit: for euclid_n in range((euclid_m % 2) + 1 ,__magic_name__ ,2 ): if gcd(__magic_name__ ,__magic_name__ ) > 1: continue snake_case_ : Optional[int] = 2 * euclid_m * (euclid_m + euclid_n) for perimeter in range(__magic_name__ ,limit + 1 ,__magic_name__ ): frequencies[perimeter] += 1 euclid_m += 1 return sum(1 for frequency in frequencies.values() if frequency == 1 ) if __name__ == "__main__": print(f'''{solution() = }''')
711
'''simple docstring''' from scipy.stats import spearmanr import datasets __lowerCamelCase : str = ''' The Spearman rank-order correlation coefficient is a measure of the relationship between two datasets. Like other correlation coefficients, this one varies between -1 and +1 with 0 implying no correlation. Positive correlations imply that as data in dataset x increases, so does data in dataset y. Negative correlations imply that as x increases, y decreases. Correlations of -1 or +1 imply an exact monotonic relationship. Unlike the Pearson correlation, the Spearman correlation does not assume that both datasets are normally distributed. The p-value roughly indicates the probability of an uncorrelated system producing datasets that have a Spearman correlation at least as extreme as the one computed from these datasets. The p-values are not entirely reliable but are probably reasonable for datasets larger than 500 or so. ''' __lowerCamelCase : int = ''' Args: predictions (`List[float]`): Predicted labels, as returned by a model. references (`List[float]`): Ground truth labels. return_pvalue (`bool`): If `True`, returns the p-value. If `False`, returns only the spearmanr score. Defaults to `False`. Returns: spearmanr (`float`): Spearman correlation coefficient. p-value (`float`): p-value. **Note**: is only returned if `return_pvalue=True` is input. Examples: Example 1: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], predictions=[10, 9, 2.5, 6, 4]) >>> print(results) {\'spearmanr\': -0.7} Example 2: >>> spearmanr_metric = datasets.load_metric("spearmanr") >>> results = spearmanr_metric.compute(references=[1, 2, 3, 4, 5], ... predictions=[10, 9, 2.5, 6, 4], ... return_pvalue=True) >>> print(results[\'spearmanr\']) -0.7 >>> print(round(results[\'spearmanr_pvalue\'], 2)) 0.19 ''' __lowerCamelCase : List[str] = R'''\ @book{kokoska2000crc, title={CRC standard probability and statistics tables and formulae}, author={Kokoska, Stephen and Zwillinger, Daniel}, year={2000}, publisher={Crc Press} } @article{2020SciPy-NMeth, author = {Virtanen, Pauli and Gommers, Ralf and Oliphant, Travis E. and Haberland, Matt and Reddy, Tyler and Cournapeau, David and Burovski, Evgeni and Peterson, Pearu and Weckesser, Warren and Bright, Jonathan and {van der Walt}, St{\'e}fan J. and Brett, Matthew and Wilson, Joshua and Millman, K. Jarrod and Mayorov, Nikolay and Nelson, Andrew R. J. and Jones, Eric and Kern, Robert and Larson, Eric and Carey, C J and Polat, {\.I}lhan and Feng, Yu and Moore, Eric W. and {VanderPlas}, Jake and Laxalde, Denis and Perktold, Josef and Cimrman, Robert and Henriksen, Ian and Quintero, E. A. and Harris, Charles R. and Archibald, Anne M. and Ribeiro, Ant{\^o}nio H. and Pedregosa, Fabian and {van Mulbregt}, Paul and {SciPy 1.0 Contributors}}, title = {{{SciPy} 1.0: Fundamental Algorithms for Scientific Computing in Python}}, journal = {Nature Methods}, year = {2020}, volume = {17}, pages = {261--272}, adsurl = {https://rdcu.be/b08Wh}, doi = {10.1038/s41592-019-0686-2}, } ''' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class A_ (datasets.Metric ): """simple docstring""" def _A ( self :str ) -> Union[str, Any]: '''simple docstring''' return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { "predictions": datasets.Value("float" ), "references": datasets.Value("float" ), } ) , reference_urls=["https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.spearmanr.html"] , ) def _A ( self :Optional[int] , lowerCAmelCase__ :Optional[Any] , lowerCAmelCase__ :int , lowerCAmelCase__ :Optional[Any]=False ) -> List[Any]: '''simple docstring''' snake_case_ : Optional[Any] = spearmanr(lowerCAmelCase__ , lowerCAmelCase__ ) if return_pvalue: return {"spearmanr": results[0], "spearmanr_pvalue": results[1]} else: return {"spearmanr": results[0]}
656
0
import argparse import json from collections import OrderedDict import torch from huggingface_hub import cached_download, hf_hub_url from transformers import AutoImageProcessor, CvtConfig, CvtForImageClassification def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> Dict: '''simple docstring''' A__ = [] embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.weight', F'stage{idx}.patch_embed.proj.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.projection.bias', F'stage{idx}.patch_embed.proj.bias', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.weight', F'stage{idx}.patch_embed.norm.weight', ) ) embed.append( ( F'cvt.encoder.stages.{idx}.embedding.convolution_embeddings.normalization.bias', F'stage{idx}.patch_embed.norm.bias', ) ) return embed def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: str , SCREAMING_SNAKE_CASE_: str ) -> List[Any]: '''simple docstring''' A__ = [] attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_query.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_q.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_key.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_k.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.convolution.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.conv.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.weight', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.bias', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_mean', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_mean', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.running_var', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.running_var', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.convolution_projection_value.convolution_projection.normalization.num_batches_tracked', F'stage{idx}.blocks.{cnt}.attn.conv_proj_v.bn.num_batches_tracked', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.weight', F'stage{idx}.blocks.{cnt}.attn.proj_q.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_query.bias', F'stage{idx}.blocks.{cnt}.attn.proj_q.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.weight', F'stage{idx}.blocks.{cnt}.attn.proj_k.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_key.bias', F'stage{idx}.blocks.{cnt}.attn.proj_k.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.weight', F'stage{idx}.blocks.{cnt}.attn.proj_v.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.attention.projection_value.bias', F'stage{idx}.blocks.{cnt}.attn.proj_v.bias', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.weight', F'stage{idx}.blocks.{cnt}.attn.proj.weight', ) ) attention_weights.append( ( F'cvt.encoder.stages.{idx}.layers.{cnt}.attention.output.dense.bias', F'stage{idx}.blocks.{cnt}.attn.proj.bias', ) ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.intermediate.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.weight', F'stage{idx}.blocks.{cnt}.mlp.fc2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.output.dense.bias', F'stage{idx}.blocks.{cnt}.mlp.fc2.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.weight', F'stage{idx}.blocks.{cnt}.norm1.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_before.bias', F'stage{idx}.blocks.{cnt}.norm1.bias') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.weight', F'stage{idx}.blocks.{cnt}.norm2.weight') ) attention_weights.append( (F'cvt.encoder.stages.{idx}.layers.{cnt}.layernorm_after.bias', F'stage{idx}.blocks.{cnt}.norm2.bias') ) return attention_weights def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[Any] ) -> List[Any]: '''simple docstring''' A__ = [] token.append((F'cvt.encoder.stages.{idx}.cls_token', "stage2.cls_token") ) return token def lowerCAmelCase__ ( ) -> Optional[Any]: '''simple docstring''' A__ = [] head.append(("layernorm.weight", "norm.weight") ) head.append(("layernorm.bias", "norm.bias") ) head.append(("classifier.weight", "head.weight") ) head.append(("classifier.bias", "head.bias") ) return head def lowerCAmelCase__ ( SCREAMING_SNAKE_CASE_: List[str] , SCREAMING_SNAKE_CASE_: Dict , SCREAMING_SNAKE_CASE_: Optional[Any] , SCREAMING_SNAKE_CASE_: Tuple ) -> Union[str, Any]: '''simple docstring''' A__ = "imagenet-1k-id2label.json" A__ = 1_0_0_0 A__ = "huggingface/label-files" A__ = num_labels A__ = json.load(open(cached_download(hf_hub_url(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , repo_type="dataset" ) ) , "r" ) ) A__ = {int(SCREAMING_SNAKE_CASE_ ): v for k, v in idalabel.items()} A__ = idalabel A__ = {v: k for k, v in idalabel.items()} A__ = A__ = CvtConfig(num_labels=SCREAMING_SNAKE_CASE_ , idalabel=SCREAMING_SNAKE_CASE_ , labelaid=SCREAMING_SNAKE_CASE_ ) # For depth size 13 (13 = 1+2+10) if cvt_model.rsplit("/" , 1 )[-1][4:6] == "13": A__ = [1, 2, 1_0] # For depth size 21 (21 = 1+4+16) elif cvt_model.rsplit("/" , 1 )[-1][4:6] == "21": A__ = [1, 4, 1_6] # For wide cvt (similar to wide-resnet) depth size 24 (w24 = 2 + 2 20) else: A__ = [2, 2, 2_0] A__ = [3, 1_2, 1_6] A__ = [1_9_2, 7_6_8, 1_0_2_4] A__ = CvtForImageClassification(SCREAMING_SNAKE_CASE_ ) A__ = AutoImageProcessor.from_pretrained("facebook/convnext-base-224-22k-1k" ) A__ = image_size A__ = torch.load(SCREAMING_SNAKE_CASE_ , map_location=torch.device("cpu" ) ) A__ = OrderedDict() A__ = [] for idx in range(len(config.depth ) ): if config.cls_token[idx]: A__ = list_of_state_dict + cls_token(SCREAMING_SNAKE_CASE_ ) A__ = list_of_state_dict + embeddings(SCREAMING_SNAKE_CASE_ ) for cnt in range(config.depth[idx] ): A__ = list_of_state_dict + attention(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) A__ = list_of_state_dict + final() for gg in list_of_state_dict: print(SCREAMING_SNAKE_CASE_ ) for i in range(len(SCREAMING_SNAKE_CASE_ ) ): A__ = original_weights[list_of_state_dict[i][1]] model.load_state_dict(SCREAMING_SNAKE_CASE_ ) model.save_pretrained(SCREAMING_SNAKE_CASE_ ) image_processor.save_pretrained(SCREAMING_SNAKE_CASE_ ) # Download the weights from zoo: https://1drv.ms/u/s!AhIXJn_J-blW9RzF3rMW7SsLHa8h?e=blQ0Al if __name__ == "__main__": lowerCAmelCase__ = argparse.ArgumentParser() parser.add_argument( """--cvt_model""", default="""cvt-w24""", type=str, help="""Name of the cvt model you'd like to convert.""", ) parser.add_argument( """--image_size""", default=3_8_4, type=int, help="""Input Image Size""", ) parser.add_argument( """--cvt_file_name""", default=R"""cvtmodels\CvT-w24-384x384-IN-22k.pth""", type=str, help="""Input Image Size""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model directory.""" ) lowerCAmelCase__ = parser.parse_args() convert_cvt_checkpoint(args.cvt_model, args.image_size, args.cvt_file_name, args.pytorch_dump_folder_path)
514
import os import re import unicodedata from shutil import copyfile from typing import TYPE_CHECKING, Any, Dict, List, Optional, Tuple, Union import sentencepiece as spm from ...tokenization_utils import PreTrainedTokenizer from ...utils import is_torch_available, logging if is_torch_available(): import torch if TYPE_CHECKING: from transformers.pipelines.conversational import Conversation lowerCAmelCase__ = logging.get_logger(__name__) lowerCAmelCase__ = {"""vocab_file""": """spiece.model"""} lowerCAmelCase__ = { """vocab_file""": { """AI-Sweden/gpt-sw3-126m""": """https://huggingface.co/AI-Sweden/gpt-sw3-126m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-350m""": """https://huggingface.co/AI-Sweden/gpt-sw3-350m/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-1.6b""": """https://huggingface.co/AI-Sweden/gpt-sw3-1.6b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-6.7b""": """https://huggingface.co/AI-Sweden/gpt-sw3-6.7b/resolve/main/spiece.model""", """AI-Sweden/gpt-sw3-20b""": """https://huggingface.co/AI-Sweden/gpt-sw3-20b/resolve/main/spiece.model""", } } lowerCAmelCase__ = { """AI-Sweden/gpt-sw3-126m""": 2_0_4_8, """AI-Sweden/gpt-sw3-350m""": 2_0_4_8, """AI-Sweden/gpt-sw3-1.6b""": 2_0_4_8, """AI-Sweden/gpt-sw3-6.7b""": 2_0_4_8, """AI-Sweden/gpt-sw3-20b""": 2_0_4_8, } class a__ ( snake_case ): """simple docstring""" __lowerCamelCase = VOCAB_FILES_NAMES __lowerCamelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCamelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCamelCase = ['input_ids', 'attention_mask'] def __init__( self , lowercase , lowercase=False , lowercase=False , lowercase=False , lowercase=None , lowercase=None , lowercase=None , lowercase=None , lowercase = None , **lowercase , ) -> None: '''simple docstring''' A__ = {} if sp_model_kwargs is None else sp_model_kwargs A__ = kwargs.get("name_or_path" ) if name_or_path is None: logger.warning( "name_or_path not provided, will work for all GPTSw3 models except gpt-sw3-7b," " you are testing the model, this can safely be ignored" ) A__ = "None" # Default definitions for our 2 tokenizer versions, with None-checks to enable proper testing A__ = "<|endoftext|>" if eos_token is None else eos_token A__ = "<unk>" if unk_token is None else unk_token if "gpt-sw3-7b" in name_or_path: A__ = unk_token if pad_token is None else pad_token A__ = eos_token if bos_token is None else bos_token else: A__ = "<pad>" if pad_token is None else pad_token A__ = "<s>" if bos_token is None else bos_token super().__init__( do_lower_case=lowercase , remove_space=lowercase , keep_accents=lowercase , bos_token=lowercase , eos_token=lowercase , unk_token=lowercase , pad_token=lowercase , sp_model_kwargs=self.sp_model_kwargs , **lowercase , ) A__ = do_lower_case A__ = remove_space A__ = keep_accents A__ = vocab_file A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(lowercase ) # Used for whitespace normalization in input texts # fmt : off A__ = {" ", " ", " ", " ", " ", " ", " ", " ", " ", " ", "", "„"} # fmt : on # Regular expression to remove non-printing characters (e.g. some unicode control chars) in preprocessing A__ = re.compile( F'[{"".join(map(lowercase , list(range(0 , 9 ) ) + list(range(11 , 32 ) ) + list(range(127 , 160 ) ) + [160, 173, 8203] ) )}]' ) def __getstate__( self ) -> Union[str, Any]: '''simple docstring''' A__ = self.__dict__.copy() A__ = None return state def __setstate__( self , lowercase ) -> List[Any]: '''simple docstring''' A__ = d # for backward compatibility if not hasattr(self , "sp_model_kwargs" ): A__ = {} A__ = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) @property # Copied from transformers.models.albert.tokenization_albert.AlbertTokenizer.vocab_size def UpperCamelCase ( self ) -> int: '''simple docstring''' return len(self.sp_model ) def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' A__ = self.non_printing_characters_re.sub("" , lowercase ) # Normalize whitespaces A__ = "".join([char if char not in self.whitespaces else " " for char in text] ) # NFC Unicode normalization A__ = unicodedata.normalize("NFC" , lowercase ) return text def UpperCamelCase ( self , lowercase , **lowercase ) -> List[str]: '''simple docstring''' A__ = self.preprocess_text(lowercase ) return self.sp_model.encode(lowercase , out_type=lowercase ) def UpperCamelCase ( self , lowercase ) -> int: '''simple docstring''' return self.sp_model.PieceToId(lowercase ) def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' return self.sp_model.IdToPiece(lowercase ) @staticmethod def UpperCamelCase ( lowercase ) -> str: '''simple docstring''' return out_string def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' A__ = [] A__ = "" A__ = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: # TODO: Check if this is needed, as it ensures that decode(encode(doc)) != doc by adding extra whitespace in the decoded document if not prev_is_special: out_string += " " out_string += self.sp_model.decode(lowercase ) + token A__ = True A__ = [] else: current_sub_tokens.append(lowercase ) A__ = False out_string += self.sp_model.decode(lowercase ) return out_string def UpperCamelCase ( self ) -> Dict[str, int]: '''simple docstring''' A__ = {self.convert_ids_to_tokens(lowercase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def UpperCamelCase ( self , lowercase , lowercase = None ) -> Tuple[str]: '''simple docstring''' if not os.path.isdir(lowercase ): logger.error(F'Vocabulary path ({save_directory}) should be a directory' ) return A__ = os.path.join( lowercase , (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(lowercase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , lowercase ) elif not os.path.isfile(self.vocab_file ): with open(lowercase , "wb" ) as fi: A__ = self.sp_model.serialized_model_proto() fi.write(lowercase ) return (out_vocab_file,) def UpperCamelCase ( self , lowercase , lowercase = False ) -> Union[List[int], List[List[int]], "torch.Tensor"]: '''simple docstring''' if isinstance(lowercase , lowercase ): A__ = self.preprocess_text(lowercase ) A__ = self.sp_model.encode(lowercase ) else: A__ = [self.preprocess_text(lowercase ) for t in text] A__ = self.sp_model.encode(lowercase ) if return_tensors is True or return_tensors == "pt": A__ = torch.tensor(lowercase ) return token_ids def UpperCamelCase ( self , lowercase ) -> str: '''simple docstring''' return self.sp_model.decode(lowercase ) def UpperCamelCase ( self , lowercase ) -> List[int]: '''simple docstring''' A__ = [F'User: {text}' if is_user else F'Bot: {text}' for is_user, text in conversation.iter_texts()] A__ = ( F'{self.eos_token}{self.bos_token}' + F'{self.bos_token}'.join(lowercase ) + F'{self.bos_token}Bot:' ) return self.encode(text=lowercase )
514
1
from ..utils import is_flax_available, is_torch_available if is_torch_available(): from .autoencoder_kl import AutoencoderKL from .controlnet import ControlNetModel from .dual_transformer_ad import DualTransformeraDModel from .modeling_utils import ModelMixin from .prior_transformer import PriorTransformer from .ta_film_transformer import TaFilmDecoder from .transformer_ad import TransformeraDModel from .unet_ad import UNetaDModel from .unet_ad import UNetaDModel from .unet_ad_condition import UNetaDConditionModel from .unet_ad_condition import UNetaDConditionModel from .vq_model import VQModel if is_flax_available(): from .controlnet_flax import FlaxControlNetModel from .unet_ad_condition_flax import FlaxUNetaDConditionModel from .vae_flax import FlaxAutoencoderKL
152
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCamelCase = { """configuration_bigbird_pegasus""": [ """BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP""", """BigBirdPegasusConfig""", """BigBirdPegasusOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCamelCase = [ """BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST""", """BigBirdPegasusForCausalLM""", """BigBirdPegasusForConditionalGeneration""", """BigBirdPegasusForQuestionAnswering""", """BigBirdPegasusForSequenceClassification""", """BigBirdPegasusModel""", """BigBirdPegasusPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_CONFIG_ARCHIVE_MAP, BigBirdPegasusConfig, BigBirdPegasusOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_bigbird_pegasus import ( BIGBIRD_PEGASUS_PRETRAINED_MODEL_ARCHIVE_LIST, BigBirdPegasusForCausalLM, BigBirdPegasusForConditionalGeneration, BigBirdPegasusForQuestionAnswering, BigBirdPegasusForSequenceClassification, BigBirdPegasusModel, BigBirdPegasusPreTrainedModel, ) else: import sys UpperCamelCase = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
152
1
"""simple docstring""" def lowercase__ ( snake_case_ :dict ): __UpperCAmelCase = set() # To detect a back edge, keep track of vertices currently in the recursion stack __UpperCAmelCase = set() return any( node not in visited and depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ) for node in graph ) def lowercase__ ( snake_case_ :dict , snake_case_ :int , snake_case_ :set , snake_case_ :set ): visited.add(snake_case_ ) rec_stk.add(snake_case_ ) for node in graph[vertex]: if node not in visited: if depth_first_search(snake_case_ , snake_case_ , snake_case_ , snake_case_ ): return True elif node in rec_stk: return True # The node needs to be removed from recursion stack before function ends rec_stk.remove(snake_case_ ) return False if __name__ == "__main__": from doctest import testmod testmod()
49
'''simple docstring''' # Lint as: python3 import os import re import urllib.parse from pathlib import Path from typing import Callable, List, Optional, Union from zipfile import ZipFile from ..utils.file_utils import cached_path, hf_github_url from ..utils.logging import get_logger from ..utils.version import Version a_ : List[Any] = get_logger(__name__) class snake_case : """simple docstring""" _lowerCamelCase = "dummy_data" _lowerCamelCase = "datasets" _lowerCamelCase = False def __init__( self , UpperCamelCase , UpperCamelCase , UpperCamelCase , UpperCamelCase = None , UpperCamelCase = False , UpperCamelCase = True , UpperCamelCase = None , ): """simple docstring""" lowerCamelCase_ = 0 lowerCamelCase_ = dataset_name lowerCamelCase_ = cache_dir lowerCamelCase_ = use_local_dummy_data lowerCamelCase_ = config # download_callbacks take a single url as input lowerCamelCase_ = download_callbacks or [] # if False, it doesn't load existing files and it returns the paths of the dummy files relative # to the dummy_data zip file root lowerCamelCase_ = load_existing_dummy_data # TODO(PVP, QL) might need to make this more general lowerCamelCase_ = str(UpperCamelCase ) # to be downloaded lowerCamelCase_ = None lowerCamelCase_ = None @property def snake_case ( self ): """simple docstring""" if self._dummy_file is None: lowerCamelCase_ = self.download_dummy_data() return self._dummy_file @property def snake_case ( self ): """simple docstring""" if self.config is not None: # structure is dummy / config_name / version_name return os.path.join("dummy" , self.config.name , self.version_name ) # structure is dummy / version_name return os.path.join("dummy" , self.version_name ) @property def snake_case ( self ): """simple docstring""" return os.path.join(self.dummy_data_folder , "dummy_data.zip" ) def snake_case ( self ): """simple docstring""" lowerCamelCase_ = ( self.local_path_to_dummy_data if self.use_local_dummy_data is True else self.github_path_to_dummy_data ) lowerCamelCase_ = cached_path( UpperCamelCase , cache_dir=self.cache_dir , extract_compressed_file=UpperCamelCase , force_extract=UpperCamelCase ) return os.path.join(UpperCamelCase , self.dummy_file_name ) @property def snake_case ( self ): """simple docstring""" return os.path.join(self.datasets_scripts_dir , self.dataset_name , self.dummy_zip_file ) @property def snake_case ( self ): """simple docstring""" if self._bucket_url is None: lowerCamelCase_ = hf_github_url(self.dataset_name , self.dummy_zip_file.replace(os.sep , "/" ) ) return self._bucket_url @property def snake_case ( self ): """simple docstring""" # return full path if its a dir if os.path.isdir(self.dummy_file ): return self.dummy_file # else cut off path to file -> example `xsum`. return "/".join(self.dummy_file.replace(os.sep , "/" ).split("/" )[:-1] ) def snake_case ( self , UpperCamelCase , *UpperCamelCase ): """simple docstring""" if self.load_existing_dummy_data: # dummy data is downloaded and tested lowerCamelCase_ = self.dummy_file else: # dummy data cannot be downloaded and only the path to dummy file is returned lowerCamelCase_ = self.dummy_file_name # special case when data_url is a dict if isinstance(UpperCamelCase , UpperCamelCase ): return self.create_dummy_data_dict(UpperCamelCase , UpperCamelCase ) elif isinstance(UpperCamelCase , (list, tuple) ): return self.create_dummy_data_list(UpperCamelCase , UpperCamelCase ) else: return self.create_dummy_data_single(UpperCamelCase , UpperCamelCase ) def snake_case ( self , UpperCamelCase , *UpperCamelCase ): """simple docstring""" return self.download_and_extract(UpperCamelCase ) def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" return self.download_and_extract(UpperCamelCase ) def snake_case ( self , UpperCamelCase , *UpperCamelCase , **UpperCamelCase ): """simple docstring""" return path def snake_case ( self ): """simple docstring""" return {} def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = {} for key, single_urls in data_url.items(): for download_callback in self.download_callbacks: if isinstance(UpperCamelCase , UpperCamelCase ): for single_url in single_urls: download_callback(UpperCamelCase ) else: lowerCamelCase_ = single_urls download_callback(UpperCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus if isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = [os.path.join(UpperCamelCase , urllib.parse.quote_plus(Path(UpperCamelCase ).name ) ) for x in single_urls] else: lowerCamelCase_ = single_urls lowerCamelCase_ = os.path.join(UpperCamelCase , urllib.parse.quote_plus(Path(UpperCamelCase ).name ) ) lowerCamelCase_ = value # make sure that values are unique if all(isinstance(UpperCamelCase , UpperCamelCase ) for i in dummy_data_dict.values() ) and len(set(dummy_data_dict.values() ) ) < len( dummy_data_dict.values() ): # append key to value to make its name unique lowerCamelCase_ = {key: value + key for key, value in dummy_data_dict.items()} return dummy_data_dict def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" lowerCamelCase_ = [] # trick: if there are many shards named like `data.txt-000001-of-00300`, only use the first one lowerCamelCase_ = all(bool(re.findall("[0-9]{3,}-of-[0-9]{3,}" , UpperCamelCase ) ) for url in data_url ) lowerCamelCase_ = all( url.startswith("https://ftp.ncbi.nlm.nih.gov/pubmed/baseline/pubmed" ) for url in data_url ) if data_url and (is_tf_records or is_pubmed_records): lowerCamelCase_ = [data_url[0]] * len(UpperCamelCase ) for single_url in data_url: for download_callback in self.download_callbacks: download_callback(UpperCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCamelCase_ = os.path.join(UpperCamelCase , urllib.parse.quote_plus(single_url.split("/" )[-1] ) ) dummy_data_list.append(UpperCamelCase ) return dummy_data_list def snake_case ( self , UpperCamelCase , UpperCamelCase ): """simple docstring""" for download_callback in self.download_callbacks: download_callback(UpperCamelCase ) # we force the name of each key to be the last file / folder name of the url path # if the url has arguments, we need to encode them with urllib.parse.quote_plus lowerCamelCase_ = os.path.join(UpperCamelCase , urllib.parse.quote_plus(data_url.split("/" )[-1] ) ) if os.path.exists(UpperCamelCase ) or not self.load_existing_dummy_data: return value else: # Backward compatibility, maybe deprecate at one point. # For many datasets with single url calls to dl_manager.download_and_extract, # the dummy_data.zip file is actually the zipped downloaded file # while now we expected the dummy_data.zip file to be a directory containing # the downloaded file. return path_to_dummy_data def snake_case ( self ): """simple docstring""" pass def snake_case ( self ): """simple docstring""" pass def snake_case ( self , UpperCamelCase ): """simple docstring""" def _iter_archive_members(UpperCamelCase ): # this preserves the order of the members inside the ZIP archive lowerCamelCase_ = Path(self.dummy_file ).parent lowerCamelCase_ = path.relative_to(UpperCamelCase ) with ZipFile(self.local_path_to_dummy_data ) as zip_file: lowerCamelCase_ = zip_file.namelist() for member in members: if member.startswith(relative_path.as_posix() ): yield dummy_parent_path.joinpath(UpperCamelCase ) lowerCamelCase_ = Path(UpperCamelCase ) lowerCamelCase_ = _iter_archive_members(UpperCamelCase ) if self.use_local_dummy_data else path.rglob("*" ) for file_path in file_paths: if file_path.is_file() and not file_path.name.startswith((".", "__") ): yield file_path.relative_to(UpperCamelCase ).as_posix(), file_path.open("rb" ) def snake_case ( self , UpperCamelCase ): """simple docstring""" if not isinstance(UpperCamelCase , UpperCamelCase ): lowerCamelCase_ = [paths] for path in paths: if os.path.isfile(UpperCamelCase ): if os.path.basename(UpperCamelCase ).startswith((".", "__") ): return yield path else: for dirpath, dirnames, filenames in os.walk(UpperCamelCase ): if os.path.basename(UpperCamelCase ).startswith((".", "__") ): continue dirnames.sort() for filename in sorted(UpperCamelCase ): if filename.startswith((".", "__") ): continue yield os.path.join(UpperCamelCase , UpperCamelCase )
675
0
import copy import inspect import unittest from transformers import PretrainedConfig, SwiftFormerConfig from transformers.testing_utils import ( require_torch, require_vision, slow, torch_device, ) from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import SwiftFormerForImageClassification, SwiftFormerModel from transformers.models.swiftformer.modeling_swiftformer import SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import ViTImageProcessor class SCREAMING_SNAKE_CASE__ : def __init__( self : Union[str, Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : List[str]=13 , _lowerCAmelCase : Optional[Any]=3 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : int=True , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Union[str, Any]=2_24 , _lowerCAmelCase : List[str]=10_00 , _lowerCAmelCase : Union[str, Any]=[3, 3, 6, 4] , _lowerCAmelCase : Union[str, Any]=[48, 56, 1_12, 2_20] , ): __snake_case : Optional[int] = parent __snake_case : Dict = batch_size __snake_case : List[Any] = num_channels __snake_case : Dict = is_training __snake_case : List[str] = use_labels __snake_case : Any = hidden_dropout_prob __snake_case : List[str] = attention_probs_dropout_prob __snake_case : str = num_labels __snake_case : Optional[Any] = image_size __snake_case : Union[str, Any] = layer_depths __snake_case : str = embed_dims def snake_case__ ( self : Any ): __snake_case : int = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Dict = None if self.use_labels: __snake_case : str = ids_tensor([self.batch_size] , self.num_labels ) __snake_case : int = self.get_config() return config, pixel_values, labels def snake_case__ ( self : Optional[int] ): return SwiftFormerConfig( depths=self.layer_depths , embed_dims=self.embed_dims , mlp_ratio=4 , downsamples=[True, True, True, True] , hidden_act="""gelu""" , num_labels=self.num_labels , down_patch_size=3 , down_stride=2 , down_pad=1 , drop_rate=0.0 , drop_path_rate=0.0 , use_layer_scale=_lowerCAmelCase , layer_scale_init_value=1e-5 , ) def snake_case__ ( self : int , _lowerCAmelCase : List[str] , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Any ): __snake_case : Tuple = SwiftFormerModel(config=_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Any = model(_lowerCAmelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dims[-1], 7, 7) ) def snake_case__ ( self : str , _lowerCAmelCase : List[Any] , _lowerCAmelCase : Optional[int] , _lowerCAmelCase : Optional[int] ): __snake_case : str = self.num_labels __snake_case : Optional[Any] = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Union[str, Any] = model(_lowerCAmelCase , labels=_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) __snake_case : List[Any] = SwiftFormerForImageClassification(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() __snake_case : Union[str, Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case : Optional[Any] = model(_lowerCAmelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def snake_case__ ( self : List[str] ): ((__snake_case) , (__snake_case) , (__snake_case)) : Union[str, Any] = self.prepare_config_and_inputs() __snake_case : List[str] = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase , __UpperCamelCase , unittest.TestCase ): A : Optional[Any] = (SwiftFormerModel, SwiftFormerForImageClassification) if is_torch_available() else () A : Dict = ( {"feature-extraction": SwiftFormerModel, "image-classification": SwiftFormerForImageClassification} if is_torch_available() else {} ) A : Union[str, Any] = False A : List[Any] = False A : List[Any] = False A : Optional[Any] = False A : Dict = False def snake_case__ ( self : Union[str, Any] ): __snake_case : int = SwiftFormerModelTester(self ) __snake_case : Tuple = ConfigTester( self , config_class=_lowerCAmelCase , has_text_modality=_lowerCAmelCase , hidden_size=37 , num_attention_heads=12 , num_hidden_layers=12 , ) def snake_case__ ( self : int ): self.config_tester.run_common_tests() @unittest.skip(reason="""SwiftFormer does not use inputs_embeds""" ) def snake_case__ ( self : List[Any] ): pass def snake_case__ ( self : Tuple ): __snake_case , __snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : str = model_class(_lowerCAmelCase ) __snake_case : str = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_lowerCAmelCase , nn.Linear ) ) def snake_case__ ( self : Dict ): __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[str] = model_class(_lowerCAmelCase ) __snake_case : Any = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case : Optional[int] = [*signature.parameters.keys()] __snake_case : List[str] = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _lowerCAmelCase ) def snake_case__ ( self : int ): __snake_case : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_lowerCAmelCase ) def snake_case__ ( self : Any ): __snake_case : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*_lowerCAmelCase ) @slow def snake_case__ ( self : Optional[int] ): for model_name in SWIFTFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case : List[Any] = SwiftFormerModel.from_pretrained(_lowerCAmelCase ) self.assertIsNotNone(_lowerCAmelCase ) @unittest.skip(reason="""SwiftFormer does not output attentions""" ) def snake_case__ ( self : List[str] ): pass def snake_case__ ( self : List[str] ): def check_hidden_states_output(_lowerCAmelCase : Any , _lowerCAmelCase : Union[str, Any] , _lowerCAmelCase : Optional[int] ): __snake_case : List[str] = model_class(_lowerCAmelCase ) model.to(_lowerCAmelCase ) model.eval() with torch.no_grad(): __snake_case : int = model(**self._prepare_for_class(_lowerCAmelCase , _lowerCAmelCase ) ) __snake_case : int = outputs.hidden_states __snake_case : str = 8 self.assertEqual(len(_lowerCAmelCase ) , _lowerCAmelCase ) # TODO # SwiftFormer's feature maps are of shape (batch_size, embed_dims, height, width) # with the width and height being successively divided by 2, after every 2 blocks for i in range(len(_lowerCAmelCase ) ): self.assertEqual( hidden_states[i].shape , torch.Size( [ self.model_tester.batch_size, self.model_tester.embed_dims[i // 2], (self.model_tester.image_size // 4) // 2 ** (i // 2), (self.model_tester.image_size // 4) // 2 ** (i // 2), ] ) , ) __snake_case , __snake_case : str = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case : List[Any] = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case : int = True check_hidden_states_output(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) def snake_case__ ( self : Dict ): def _config_zero_init(_lowerCAmelCase : List[Any] ): __snake_case : Union[str, Any] = copy.deepcopy(_lowerCAmelCase ) for key in configs_no_init.__dict__.keys(): if "_range" in key or "_std" in key or "initializer_factor" in key or "layer_scale" in key: setattr(_lowerCAmelCase , _lowerCAmelCase , 1e-10 ) if isinstance(getattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) , _lowerCAmelCase ): __snake_case : Any = _config_zero_init(getattr(_lowerCAmelCase , _lowerCAmelCase ) ) setattr(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase ) return configs_no_init __snake_case , __snake_case : Any = self.model_tester.prepare_config_and_inputs_for_common() __snake_case : Optional[Any] = _config_zero_init(_lowerCAmelCase ) for model_class in self.all_model_classes: __snake_case : Optional[int] = model_class(config=_lowerCAmelCase ) for name, param in model.named_parameters(): if param.requires_grad: self.assertIn( ((param.data.mean() * 1e9) / 1e9).round().item() , [0.0, 1.0] , msg=f'''Parameter {name} of model {model_class} seems not properly initialized''' , ) @unittest.skip("""Will be fixed soon by reducing the size of the model used for common tests.""" ) def snake_case__ ( self : Union[str, Any] ): pass def __lowerCAmelCase ( ): '''simple docstring''' __snake_case : str = Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ) return image @require_torch @require_vision class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): @cached_property def snake_case__ ( self : List[Any] ): return ViTImageProcessor.from_pretrained("""MBZUAI/swiftformer-xs""" ) if is_vision_available() else None @slow def snake_case__ ( self : Union[str, Any] ): __snake_case : Union[str, Any] = SwiftFormerForImageClassification.from_pretrained("""MBZUAI/swiftformer-xs""" ).to(_lowerCAmelCase ) __snake_case : Union[str, Any] = self.default_image_processor __snake_case : str = prepare_img() __snake_case : Union[str, Any] = image_processor(images=_lowerCAmelCase , return_tensors="""pt""" ).to(_lowerCAmelCase ) # forward pass with torch.no_grad(): __snake_case : Union[str, Any] = model(**_lowerCAmelCase ) # verify the logits __snake_case : Tuple = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , _lowerCAmelCase ) __snake_case : Dict = torch.tensor([[-2.17_03e00, 2.11_07e00, -2.08_11e00]] ).to(_lowerCAmelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , _lowerCAmelCase , atol=1e-4 ) )
390
from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowercase_ = logging.get_logger(__name__) lowercase_ = { "camembert-base": "https://huggingface.co/camembert-base/resolve/main/config.json", "umberto-commoncrawl-cased-v1": ( "https://huggingface.co/Musixmatch/umberto-commoncrawl-cased-v1/resolve/main/config.json" ), "umberto-wikipedia-uncased-v1": ( "https://huggingface.co/Musixmatch/umberto-wikipedia-uncased-v1/resolve/main/config.json" ), } class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): A : List[Any] = "camembert" def __init__( self : List[Any] , _lowerCAmelCase : Any=3_05_22 , _lowerCAmelCase : str=7_68 , _lowerCAmelCase : Union[str, Any]=12 , _lowerCAmelCase : Any=12 , _lowerCAmelCase : Optional[Any]=30_72 , _lowerCAmelCase : Optional[int]="gelu" , _lowerCAmelCase : Dict=0.1 , _lowerCAmelCase : Union[str, Any]=0.1 , _lowerCAmelCase : Any=5_12 , _lowerCAmelCase : Union[str, Any]=2 , _lowerCAmelCase : Optional[Any]=0.02 , _lowerCAmelCase : Optional[Any]=1e-12 , _lowerCAmelCase : Tuple=1 , _lowerCAmelCase : Any=0 , _lowerCAmelCase : Optional[int]=2 , _lowerCAmelCase : List[str]="absolute" , _lowerCAmelCase : Tuple=True , _lowerCAmelCase : Tuple=None , **_lowerCAmelCase : Tuple , ): super().__init__(pad_token_id=_lowerCAmelCase , bos_token_id=_lowerCAmelCase , eos_token_id=_lowerCAmelCase , **_lowerCAmelCase ) __snake_case : Union[str, Any] = vocab_size __snake_case : List[str] = hidden_size __snake_case : Union[str, Any] = num_hidden_layers __snake_case : Any = num_attention_heads __snake_case : Optional[int] = hidden_act __snake_case : Optional[int] = intermediate_size __snake_case : Dict = hidden_dropout_prob __snake_case : Union[str, Any] = attention_probs_dropout_prob __snake_case : Optional[int] = max_position_embeddings __snake_case : Union[str, Any] = type_vocab_size __snake_case : List[str] = initializer_range __snake_case : Dict = layer_norm_eps __snake_case : Union[str, Any] = position_embedding_type __snake_case : Optional[Any] = use_cache __snake_case : str = classifier_dropout class SCREAMING_SNAKE_CASE__ ( __UpperCamelCase ): @property def snake_case__ ( self : Optional[Any] ): if self.task == "multiple-choice": __snake_case : Optional[int] = {0: """batch""", 1: """choice""", 2: """sequence"""} else: __snake_case : Any = {0: """batch""", 1: """sequence"""} return OrderedDict( [ ("""input_ids""", dynamic_axis), ("""attention_mask""", dynamic_axis), ] )
390
1
"""simple docstring""" from collections import deque def lowercase_ ( __UpperCAmelCase ) -> int: lowerCAmelCase__ : Optional[int] = len(__UpperCAmelCase ) lowerCAmelCase__ : int = deque() lowerCAmelCase__ : Optional[int] = [False for _ in range(__UpperCAmelCase )] lowerCAmelCase__ : Any = [-1 for _ in range(__UpperCAmelCase )] lowerCAmelCase__ : Any = index_of[:] def strong_connect(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = index # the number when this node is seen lowerCAmelCase__ : Tuple = index # lowest rank node reachable from here index += 1 stack.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = True for w in g[v]: if index_of[w] == -1: lowerCAmelCase__ : List[str] = strong_connect(__UpperCAmelCase , __UpperCAmelCase , __UpperCAmelCase ) lowerCAmelCase__ : List[str] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) elif on_stack[w]: lowerCAmelCase__ : List[Any] = ( lowlink_of[w] if lowlink_of[w] < lowlink_of[v] else lowlink_of[v] ) if lowlink_of[v] == index_of[v]: lowerCAmelCase__ : List[str] = [] lowerCAmelCase__ : Optional[int] = stack.pop() lowerCAmelCase__ : Tuple = False component.append(__UpperCAmelCase ) while w != v: lowerCAmelCase__ : Optional[int] = stack.pop() lowerCAmelCase__ : Optional[Any] = False component.append(__UpperCAmelCase ) components.append(__UpperCAmelCase ) return index lowerCAmelCase__ : Dict = [] for v in range(__UpperCAmelCase ): if index_of[v] == -1: strong_connect(__UpperCAmelCase , 0 , __UpperCAmelCase ) return components def lowercase_ ( __UpperCAmelCase , __UpperCAmelCase ) -> Optional[int]: lowerCAmelCase__ : List[Any] = [[] for _ in range(__UpperCAmelCase )] for u, v in edges: g[u].append(__UpperCAmelCase ) return g if __name__ == "__main__": # Test _A = 7 _A = [0, 0, 1, 2, 3, 3, 4, 4, 6] _A = [1, 3, 2, 0, 1, 4, 5, 6, 5] _A = [(u, v) for u, v in zip(source, target)] _A = create_graph(n_vertices, edges) assert [[5], [6], [4], [3, 2, 1, 0]] == tarjan(g)
299
"""simple docstring""" from __future__ import annotations import queue class _lowerCamelCase : def __init__( self : Optional[int] , UpperCamelCase : List[Any] ) -> List[str]: """simple docstring""" lowerCAmelCase__ : Union[str, Any] = data lowerCAmelCase__ : Union[str, Any] = None lowerCAmelCase__ : Optional[int] = None def lowercase_ ( ) -> TreeNode: print("""\n********Press N to stop entering at any point of time********\n""" ) lowerCAmelCase__ : Any = input("""Enter the value of the root node: """ ).strip().lower() lowerCAmelCase__ : queue.Queue = queue.Queue() lowerCAmelCase__ : Union[str, Any] = TreeNode(int(__UpperCAmelCase ) ) q.put(__UpperCAmelCase ) while not q.empty(): lowerCAmelCase__ : Dict = q.get() lowerCAmelCase__ : Optional[Any] = f"""Enter the left node of {node_found.data}: """ lowerCAmelCase__ : List[str] = input(__UpperCAmelCase ).strip().lower() or """n""" if check == "n": return tree_node lowerCAmelCase__ : Dict = TreeNode(int(__UpperCAmelCase ) ) lowerCAmelCase__ : Union[str, Any] = left_node q.put(__UpperCAmelCase ) lowerCAmelCase__ : str = f"""Enter the right node of {node_found.data}: """ lowerCAmelCase__ : str = input(__UpperCAmelCase ).strip().lower() or """n""" if check == "n": return tree_node lowerCAmelCase__ : List[Any] = TreeNode(int(__UpperCAmelCase ) ) lowerCAmelCase__ : List[str] = right_node q.put(__UpperCAmelCase ) raise def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return print(node.data , end=""",""" ) pre_order(node.left ) pre_order(node.right ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return in_order(node.left ) print(node.data , end=""",""" ) in_order(node.right ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return post_order(node.left ) post_order(node.right ) print(node.data , end=""",""" ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ : queue.Queue = queue.Queue() q.put(__UpperCAmelCase ) while not q.empty(): lowerCAmelCase__ : Union[str, Any] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: q.put(node_dequeued.left ) if node_dequeued.right: q.put(node_dequeued.right ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ : queue.Queue = queue.Queue() q.put(__UpperCAmelCase ) while not q.empty(): lowerCAmelCase__ : Tuple = [] while not q.empty(): lowerCAmelCase__ : Optional[int] = q.get() print(node_dequeued.data , end=""",""" ) if node_dequeued.left: list_.append(node_dequeued.left ) if node_dequeued.right: list_.append(node_dequeued.right ) print() for node in list_: q.put(__UpperCAmelCase ) def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ : list[TreeNode] = [] lowerCAmelCase__ : List[Any] = node while n or stack: while n: # start from root node, find its left child print(n.data , end=""",""" ) stack.append(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = n.left # end of while means current node doesn't have left child lowerCAmelCase__ : List[Any] = stack.pop() # start to traverse its right child lowerCAmelCase__ : Optional[Any] = n.right def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ : list[TreeNode] = [] lowerCAmelCase__ : List[str] = node while n or stack: while n: stack.append(__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = n.left lowerCAmelCase__ : Any = stack.pop() print(n.data , end=""",""" ) lowerCAmelCase__ : Optional[int] = n.right def lowercase_ ( __UpperCAmelCase ) -> None: if not isinstance(__UpperCAmelCase , __UpperCAmelCase ) or not node: return lowerCAmelCase__ , lowerCAmelCase__ : Dict = [], [] lowerCAmelCase__ : List[Any] = node stacka.append(__UpperCAmelCase ) while stacka: # to find the reversed order of post order, store it in stack2 lowerCAmelCase__ : Tuple = stacka.pop() if n.left: stacka.append(n.left ) if n.right: stacka.append(n.right ) stacka.append(__UpperCAmelCase ) while stacka: # pop up from stack2 will be the post order print(stacka.pop().data , end=""",""" ) def lowercase_ ( __UpperCAmelCase = "" , __UpperCAmelCase=50 , __UpperCAmelCase="*" ) -> str: if not s: return "\n" + width * char lowerCAmelCase__ , lowerCAmelCase__ : List[str] = divmod(width - len(__UpperCAmelCase ) - 2 , 2 ) return f"""{left * char} {s} {(left + extra) * char}""" if __name__ == "__main__": import doctest doctest.testmod() print(prompt("""Binary Tree Traversals""")) _A = build_tree() print(prompt("""Pre Order Traversal""")) pre_order(node) print(prompt() + """\n""") print(prompt("""In Order Traversal""")) in_order(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal""")) post_order(node) print(prompt() + """\n""") print(prompt("""Level Order Traversal""")) level_order(node) print(prompt() + """\n""") print(prompt("""Actual Level Order Traversal""")) level_order_actual(node) print("""*""" * 5_0 + """\n""") print(prompt("""Pre Order Traversal - Iteration Version""")) pre_order_iter(node) print(prompt() + """\n""") print(prompt("""In Order Traversal - Iteration Version""")) in_order_iter(node) print(prompt() + """\n""") print(prompt("""Post Order Traversal - Iteration Version""")) post_order_iter(node) print(prompt())
299
1
# This code is adapted from OpenAI's release # https://github.com/openai/human-eval/blob/master/human_eval/execution.py import contextlib import faulthandler import io import multiprocessing import os import platform import signal import tempfile def lowerCAmelCase ( snake_case__ : Optional[Any] , snake_case__ : Any , snake_case__ : Any , snake_case__ : List[Any] )-> Any: A_ = multiprocessing.Manager() A_ = manager.list() A_ = multiprocessing.Process(target=snake_case__ , args=(check_program, result, timeout) ) p.start() p.join(timeout=timeout + 1 ) if p.is_alive(): p.kill() if not result: result.append("timed out" ) return { "task_id": task_id, "passed": result[0] == "passed", "result": result[0], "completion_id": completion_id, } def lowerCAmelCase ( snake_case__ : List[str] , snake_case__ : Optional[int] , snake_case__ : List[str] )-> int: with create_tempdir(): # These system calls are needed when cleaning up tempdir. import os import shutil A_ = shutil.rmtree A_ = os.rmdir A_ = os.chdir # Disable functionalities that can make destructive changes to the test. reliability_guard() # Run program. try: A_ = {} with swallow_io(): with time_limit(snake_case__ ): exec(snake_case__ , snake_case__ ) result.append("passed" ) except TimeoutException: result.append("timed out" ) except BaseException as e: result.append(f'failed: {e}' ) # Needed for cleaning up. A_ = rmtree A_ = rmdir A_ = chdir @contextlib.contextmanager def lowerCAmelCase ( snake_case__ : Dict )-> Optional[Any]: def signal_handler(snake_case__ : Optional[int] , snake_case__ : Dict ): raise TimeoutException("Timed out!" ) signal.setitimer(signal.ITIMER_REAL , snake_case__ ) signal.signal(signal.SIGALRM , snake_case__ ) try: yield finally: signal.setitimer(signal.ITIMER_REAL , 0 ) @contextlib.contextmanager def lowerCAmelCase ( )-> Optional[int]: A_ = WriteOnlyStringIO() with contextlib.redirect_stdout(snake_case__ ): with contextlib.redirect_stderr(snake_case__ ): with redirect_stdin(snake_case__ ): yield @contextlib.contextmanager def lowerCAmelCase ( )-> int: with tempfile.TemporaryDirectory() as dirname: with chdir(snake_case__ ): yield dirname class lowerCamelCase ( __snake_case ): """simple docstring""" pass class lowerCamelCase ( io.StringIO ): """simple docstring""" def lowercase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): raise OSError def lowercase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): raise OSError def lowercase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): raise OSError def lowercase_ ( self , *__UpperCamelCase , **__UpperCamelCase ): return False class lowerCamelCase ( contextlib._RedirectStream ): # type: ignore """simple docstring""" lowerCAmelCase_ = """stdin""" @contextlib.contextmanager def lowerCAmelCase ( snake_case__ : Any )-> List[Any]: if root == ".": yield return A_ = os.getcwd() os.chdir(snake_case__ ) try: yield except BaseException as exc: raise exc finally: os.chdir(snake_case__ ) def lowerCAmelCase ( snake_case__ : List[Any]=None )-> Optional[Any]: if maximum_memory_bytes is not None: import resource resource.setrlimit(resource.RLIMIT_AS , (maximum_memory_bytes, maximum_memory_bytes) ) resource.setrlimit(resource.RLIMIT_DATA , (maximum_memory_bytes, maximum_memory_bytes) ) if not platform.uname().system == "Darwin": resource.setrlimit(resource.RLIMIT_STACK , (maximum_memory_bytes, maximum_memory_bytes) ) faulthandler.disable() import builtins A_ = None A_ = None import os A_ = "1" A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None A_ = None import shutil A_ = None A_ = None A_ = None import subprocess A_ = None # type: ignore A_ = None import sys A_ = None A_ = None A_ = None A_ = None A_ = None
608
import copy from dataclasses import dataclass, field from typing import ClassVar, Dict from ..features import ClassLabel, Features, Value from .base import TaskTemplate @dataclass(frozen=__snake_case ) class lowerCamelCase ( __snake_case ): """simple docstring""" lowerCAmelCase_ = field(default="""text-classification""" , metadata={"""include_in_asdict_even_if_is_default""": True} ) lowerCAmelCase_ = Features({"""text""": Value("""string""" )} ) lowerCAmelCase_ = Features({"""labels""": ClassLabel} ) lowerCAmelCase_ = "text" lowerCAmelCase_ = "labels" def lowercase_ ( self , __UpperCamelCase ): if self.label_column not in features: raise ValueError(f'Column {self.label_column} is not present in features.' ) if not isinstance(features[self.label_column] , __UpperCamelCase ): raise ValueError(f'Column {self.label_column} is not a ClassLabel.' ) A_ = copy.deepcopy(self ) A_ = self.label_schema.copy() A_ = features[self.label_column] A_ = label_schema return task_template @property def lowercase_ ( self ): return { self.text_column: "text", self.label_column: "labels", }
608
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class _lowercase ( _A ): _a : UNetaDModel _a : ScoreSdeVeScheduler def __init__( self , a , a ): super().__init__() self.register_modules(unet=a , scheduler=a ) @torch.no_grad() def __call__( self , a = 1 , a = 2_0_0_0 , a = None , a = "pil" , a = True , **a , ): snake_case__ : str =self.unet.config.sample_size snake_case__ : Any =(batch_size, 3, img_size, img_size) snake_case__ : Optional[Any] =self.unet snake_case__ : str =randn_tensor(a , generator=a ) * self.scheduler.init_noise_sigma snake_case__ : int =sample.to(self.device ) self.scheduler.set_timesteps(a ) self.scheduler.set_sigmas(a ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): snake_case__ : Optional[Any] =self.scheduler.sigmas[i] * torch.ones(shape[0] , device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): snake_case__ : Tuple =self.unet(a , a ).sample snake_case__ : Tuple =self.scheduler.step_correct(a , a , generator=a ).prev_sample # prediction step snake_case__ : List[Any] =model(a , a ).sample snake_case__ : Optional[Any] =self.scheduler.step_pred(a , a , a , generator=a ) snake_case__ , snake_case__ : Optional[Any] =output.prev_sample, output.prev_sample_mean snake_case__ : Optional[Any] =sample_mean.clamp(0 , 1 ) snake_case__ : Tuple =sample.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": snake_case__ : Union[str, Any] =self.numpy_to_pil(a ) if not return_dict: return (sample,) return ImagePipelineOutput(images=a )
385
from typing import Dict import numpy as np from ..utils import add_end_docstrings, is_tf_available, is_torch_available, logging from .base import PIPELINE_INIT_ARGS, GenericTensor, Pipeline, PipelineException if is_tf_available(): import tensorflow as tf from ..tf_utils import stable_softmax if is_torch_available(): import torch __lowerCamelCase : int = logging.get_logger(__name__) @add_end_docstrings( _A , R'\n top_k (`int`, defaults to 5):\n The number of predictions to return.\n targets (`str` or `List[str]`, *optional*):\n When passed, the model will limit the scores to the passed targets instead of looking up in the whole\n vocab. If the provided targets are not in the model vocab, they will be tokenized and the first resulting\n token will be used (with a warning, and that might be slower).\n\n ' , ) class _lowercase ( _A ): def lowercase__ ( self , a ): if self.framework == "tf": snake_case__ : int =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy() elif self.framework == "pt": snake_case__ : Optional[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=a ) else: raise ValueError("""Unsupported framework""" ) return masked_index def lowercase__ ( self , a ): snake_case__ : str =self.get_masked_index(a ) snake_case__ : Any =np.prod(masked_index.shape ) if numel < 1: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , F"No mask_token ({self.tokenizer.mask_token}) found on the input" , ) def lowercase__ ( self , a ): if isinstance(a , a ): for model_input in model_inputs: self._ensure_exactly_one_mask_token(model_input["""input_ids"""][0] ) else: for input_ids in model_inputs["input_ids"]: self._ensure_exactly_one_mask_token(a ) def lowercase__ ( self , a , a=None , **a ): if return_tensors is None: snake_case__ : Optional[Any] =self.framework snake_case__ : List[str] =self.tokenizer(a , return_tensors=a ) self.ensure_exactly_one_mask_token(a ) return model_inputs def lowercase__ ( self , a ): snake_case__ : Optional[Any] =self.model(**a ) snake_case__ : str =model_inputs["""input_ids"""] return model_outputs def lowercase__ ( self , a , a=5 , a=None ): # Cap top_k if there are targets if target_ids is not None and target_ids.shape[0] < top_k: snake_case__ : Union[str, Any] =target_ids.shape[0] snake_case__ : Union[str, Any] =model_outputs["""input_ids"""][0] snake_case__ : List[Any] =model_outputs["""logits"""] if self.framework == "tf": snake_case__ : str =tf.where(input_ids == self.tokenizer.mask_token_id ).numpy()[:, 0] snake_case__ : Any =outputs.numpy() snake_case__ : Optional[Any] =outputs[0, masked_index, :] snake_case__ : List[Any] =stable_softmax(a , axis=-1 ) if target_ids is not None: snake_case__ : str =tf.gather_nd(tf.squeeze(a , 0 ) , target_ids.reshape(-1 , 1 ) ) snake_case__ : List[str] =tf.expand_dims(a , 0 ) snake_case__ : Optional[Any] =tf.math.top_k(a , k=a ) snake_case__ , snake_case__ : int =topk.values.numpy(), topk.indices.numpy() else: snake_case__ : List[Any] =torch.nonzero(input_ids == self.tokenizer.mask_token_id , as_tuple=a ).squeeze(-1 ) # Fill mask pipeline supports only one ${mask_token} per sample snake_case__ : int =outputs[0, masked_index, :] snake_case__ : Optional[int] =logits.softmax(dim=-1 ) if target_ids is not None: snake_case__ : Dict =probs[..., target_ids] snake_case__ , snake_case__ : List[Any] =probs.topk(a ) snake_case__ : List[Any] =[] snake_case__ : int =values.shape[0] == 1 for i, (_values, _predictions) in enumerate(zip(values.tolist() , predictions.tolist() ) ): snake_case__ : Dict =[] for v, p in zip(_values , _predictions ): # Copy is important since we're going to modify this array in place snake_case__ : List[Any] =input_ids.numpy().copy() if target_ids is not None: snake_case__ : Tuple =target_ids[p].tolist() snake_case__ : Any =p # Filter padding out: snake_case__ : int =tokens[np.where(tokens != self.tokenizer.pad_token_id )] # Originally we skip special tokens to give readable output. # For multi masks though, the other [MASK] would be removed otherwise # making the output look odd, so we add them back snake_case__ : Union[str, Any] =self.tokenizer.decode(a , skip_special_tokens=a ) snake_case__ : int ={"""score""": v, """token""": p, """token_str""": self.tokenizer.decode([p] ), """sequence""": sequence} row.append(a ) result.append(a ) if single_mask: return result[0] return result def lowercase__ ( self , a , a=None ): if isinstance(a , a ): snake_case__ : Tuple =[targets] try: snake_case__ : Any =self.tokenizer.get_vocab() except Exception: snake_case__ : List[Any] ={} snake_case__ : Any =[] for target in targets: snake_case__ : Optional[int] =vocab.get(a , a ) if id_ is None: snake_case__ : str =self.tokenizer( a , add_special_tokens=a , return_attention_mask=a , return_token_type_ids=a , max_length=1 , truncation=a , )["""input_ids"""] if len(a ) == 0: logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " """We cannot replace it with anything meaningful, ignoring it""" ) continue snake_case__ : Any =input_ids[0] # XXX: If users encounter this pass # it becomes pretty slow, so let's make sure # The warning enables them to fix the input to # get faster performance. logger.warning( F"The specified target token `{target}` does not exist in the model vocabulary. " F"Replacing with `{self.tokenizer.convert_ids_to_tokens(id_ )}`." ) target_ids.append(id_ ) snake_case__ : Optional[Any] =list(set(a ) ) if len(a ) == 0: raise ValueError("""At least one target must be provided when passed.""" ) snake_case__ : Tuple =np.array(a ) return target_ids def lowercase__ ( self , a=None , a=None ): snake_case__ : int ={} if targets is not None: snake_case__ : str =self.get_target_ids(a , a ) snake_case__ : Union[str, Any] =target_ids if top_k is not None: snake_case__ : Dict =top_k if self.tokenizer.mask_token_id is None: raise PipelineException( """fill-mask""" , self.model.base_model_prefix , """The tokenizer does not define a `mask_token`.""" ) return {}, {}, postprocess_params def __call__( self , a , *a , **a ): snake_case__ : List[Any] =super().__call__(a , **a ) if isinstance(a , a ) and len(a ) == 1: return outputs[0] return outputs
385
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, ) A__ = { '''configuration_roberta''': ['''ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''RobertaConfig''', '''RobertaOnnxConfig'''], '''tokenization_roberta''': ['''RobertaTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = ['''RobertaTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''RobertaForCausalLM''', '''RobertaForMaskedLM''', '''RobertaForMultipleChoice''', '''RobertaForQuestionAnswering''', '''RobertaForSequenceClassification''', '''RobertaForTokenClassification''', '''RobertaModel''', '''RobertaPreTrainedModel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFRobertaForCausalLM''', '''TFRobertaForMaskedLM''', '''TFRobertaForMultipleChoice''', '''TFRobertaForQuestionAnswering''', '''TFRobertaForSequenceClassification''', '''TFRobertaForTokenClassification''', '''TFRobertaMainLayer''', '''TFRobertaModel''', '''TFRobertaPreTrainedModel''', ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: A__ = [ '''FlaxRobertaForCausalLM''', '''FlaxRobertaForMaskedLM''', '''FlaxRobertaForMultipleChoice''', '''FlaxRobertaForQuestionAnswering''', '''FlaxRobertaForSequenceClassification''', '''FlaxRobertaForTokenClassification''', '''FlaxRobertaModel''', '''FlaxRobertaPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_roberta import ROBERTA_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaConfig, RobertaOnnxConfig from .tokenization_roberta import RobertaTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_roberta_fast import RobertaTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta import ( ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaForCausalLM, RobertaForMaskedLM, RobertaForMultipleChoice, RobertaForQuestionAnswering, RobertaForSequenceClassification, RobertaForTokenClassification, RobertaModel, RobertaPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta import ( TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaForCausalLM, TFRobertaForMaskedLM, TFRobertaForMultipleChoice, TFRobertaForQuestionAnswering, TFRobertaForSequenceClassification, TFRobertaForTokenClassification, TFRobertaMainLayer, TFRobertaModel, TFRobertaPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta import ( FlaxRobertaForCausalLM, FlaxRobertaForMaskedLM, FlaxRobertaForMultipleChoice, FlaxRobertaForQuestionAnswering, FlaxRobertaForSequenceClassification, FlaxRobertaForTokenClassification, FlaxRobertaModel, FlaxRobertaPreTrainedModel, ) else: import sys A__ = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
717
from __future__ import annotations import unittest from transformers import is_tf_available from transformers.testing_utils import require_tf, slow from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import numpy import tensorflow as tf from transformers import ( TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST, TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST, BertConfig, DPRConfig, TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) class a : def __init__( self :List[Any] ,__lowercase :Tuple ,__lowercase :List[Any]=1_3 ,__lowercase :List[Any]=7 ,__lowercase :int=True ,__lowercase :int=True ,__lowercase :Tuple=True ,__lowercase :int=True ,__lowercase :Dict=9_9 ,__lowercase :Any=3_2 ,__lowercase :Tuple=2 ,__lowercase :Union[str, Any]=4 ,__lowercase :Tuple=3_7 ,__lowercase :int="gelu" ,__lowercase :int=0.1 ,__lowercase :Dict=0.1 ,__lowercase :Optional[Any]=5_1_2 ,__lowercase :Optional[Any]=1_6 ,__lowercase :Optional[int]=2 ,__lowercase :Optional[int]=0.02 ,__lowercase :str=3 ,__lowercase :int=4 ,__lowercase :List[str]=None ,__lowercase :Union[str, Any]=0 ,): snake_case__ : List[str] = parent snake_case__ : int = batch_size snake_case__ : Any = seq_length snake_case__ : List[Any] = is_training snake_case__ : str = use_input_mask snake_case__ : str = use_token_type_ids snake_case__ : Dict = use_labels snake_case__ : Tuple = vocab_size snake_case__ : Any = hidden_size snake_case__ : str = num_hidden_layers snake_case__ : int = num_attention_heads snake_case__ : Tuple = intermediate_size snake_case__ : int = hidden_act snake_case__ : Tuple = hidden_dropout_prob snake_case__ : Optional[Any] = attention_probs_dropout_prob snake_case__ : List[Any] = max_position_embeddings snake_case__ : str = type_vocab_size snake_case__ : Tuple = type_sequence_label_size snake_case__ : Any = initializer_range snake_case__ : List[str] = num_labels snake_case__ : str = num_choices snake_case__ : Optional[Any] = scope snake_case__ : str = projection_dim def __lowerCamelCase ( self :List[Any] ): snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.vocab_size ) snake_case__ : List[Any] = None if self.use_input_mask: # follow test_modeling_tf_ctrl.py snake_case__ : Optional[int] = random_attention_mask([self.batch_size, self.seq_length] ) snake_case__ : Any = None if self.use_token_type_ids: snake_case__ : Dict = ids_tensor([self.batch_size, self.seq_length] ,self.type_vocab_size ) snake_case__ : List[Any] = None snake_case__ : Optional[Any] = None snake_case__ : Union[str, Any] = None if self.use_labels: snake_case__ : Dict = ids_tensor([self.batch_size] ,self.type_sequence_label_size ) snake_case__ : Union[str, Any] = ids_tensor([self.batch_size, self.seq_length] ,self.num_labels ) snake_case__ : Optional[Any] = ids_tensor([self.batch_size] ,self.num_choices ) snake_case__ : Optional[int] = BertConfig( vocab_size=self.vocab_size ,hidden_size=self.hidden_size ,num_hidden_layers=self.num_hidden_layers ,num_attention_heads=self.num_attention_heads ,intermediate_size=self.intermediate_size ,hidden_act=self.hidden_act ,hidden_dropout_prob=self.hidden_dropout_prob ,attention_probs_dropout_prob=self.attention_probs_dropout_prob ,max_position_embeddings=self.max_position_embeddings ,type_vocab_size=self.type_vocab_size ,is_decoder=__lowercase ,initializer_range=self.initializer_range ,) snake_case__ : Optional[int] = DPRConfig(projection_dim=self.projection_dim ,**config.to_dict() ) return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def __lowerCamelCase ( self :Tuple ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Optional[int] ,__lowercase :Any ,__lowercase :Tuple ): snake_case__ : List[str] = TFDPRContextEncoder(config=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ,token_type_ids=__lowercase ) snake_case__ : Dict = model(__lowercase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self :Any ,__lowercase :List[str] ,__lowercase :List[str] ,__lowercase :Optional[Any] ,__lowercase :int ,__lowercase :List[Any] ,__lowercase :List[Any] ,__lowercase :Union[str, Any] ): snake_case__ : Dict = TFDPRQuestionEncoder(config=__lowercase ) snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ,token_type_ids=__lowercase ) snake_case__ : int = model(__lowercase ,token_type_ids=__lowercase ) snake_case__ : Optional[int] = model(__lowercase ) self.parent.assertEqual(result.pooler_output.shape ,(self.batch_size, self.projection_dim or self.hidden_size) ) def __lowerCamelCase ( self :Optional[int] ,__lowercase :List[Any] ,__lowercase :str ,__lowercase :Tuple ,__lowercase :Any ,__lowercase :Optional[Any] ,__lowercase :List[Any] ,__lowercase :Tuple ): snake_case__ : int = TFDPRReader(config=__lowercase ) snake_case__ : Any = model(__lowercase ,attention_mask=__lowercase ) self.parent.assertEqual(result.start_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape ,(self.batch_size, self.seq_length) ) self.parent.assertEqual(result.relevance_logits.shape ,(self.batch_size,) ) def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = self.prepare_config_and_inputs() ( ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ( snake_case__ ) , ) : Optional[int] = config_and_inputs snake_case__ : Optional[Any] = {'''input_ids''': input_ids} return config, inputs_dict @require_tf class a ( __lowerCamelCase , __lowerCamelCase , unittest.TestCase ): __lowerCAmelCase : Tuple = ( ( TFDPRContextEncoder, TFDPRQuestionEncoder, TFDPRReader, ) if is_tf_available() else () ) __lowerCAmelCase : List[str] = {"""feature-extraction""": TFDPRQuestionEncoder} if is_tf_available() else {} __lowerCAmelCase : Union[str, Any] = False __lowerCAmelCase : List[str] = False __lowerCAmelCase : List[Any] = False __lowerCAmelCase : int = False __lowerCAmelCase : Optional[int] = False def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : str = TFDPRModelTester(self ) snake_case__ : Union[str, Any] = ConfigTester(self ,config_class=__lowercase ,hidden_size=3_7 ) def __lowerCamelCase ( self :List[str] ): self.config_tester.run_common_tests() def __lowerCamelCase ( self :Optional[Any] ): snake_case__ : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_context_encoder(*__lowercase ) def __lowerCamelCase ( self :List[str] ): snake_case__ : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_question_encoder(*__lowercase ) def __lowerCamelCase ( self :str ): snake_case__ : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_dpr_reader(*__lowercase ) @slow def __lowerCamelCase ( self :Union[str, Any] ): for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Union[str, Any] = TFDPRContextEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_CONTEXT_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Tuple = TFDPRContextEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_QUESTION_ENCODER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Tuple = TFDPRQuestionEncoder.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) for model_name in TF_DPR_READER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case__ : Optional[int] = TFDPRReader.from_pretrained(__lowercase ) self.assertIsNotNone(__lowercase ) @require_tf class a ( unittest.TestCase ): @slow def __lowerCamelCase ( self :List[str] ): snake_case__ : str = TFDPRQuestionEncoder.from_pretrained('''facebook/dpr-question_encoder-single-nq-base''' ) snake_case__ : Optional[int] = tf.constant( [[1_0_1, 7_5_9_2, 1_0_1_0, 2_0_0_3, 2_0_2_6, 3_8_9_9, 1_0_1_4_0, 1_0_2_9, 1_0_2]] ) # [CLS] hello, is my dog cute? [SEP] snake_case__ : Union[str, Any] = model(__lowercase )[0] # embedding shape = (1, 768) # compare the actual values for a slice. snake_case__ : Optional[Any] = tf.constant( [ [ 0.0323_6253, 0.1275_3335, 0.1681_8509, 0.0027_9786, 0.389_6933, 0.2426_4945, 0.217_8971, -0.0233_5227, -0.0848_1959, -0.1432_4117, ] ] ) self.assertTrue(numpy.allclose(output[:, :1_0].numpy() ,expected_slice.numpy() ,atol=1e-4 ) )
219
0