code
stringlengths
82
53.2k
code_codestyle
int64
0
721
style_context
stringlengths
91
41.9k
style_context_codestyle
int64
0
699
label
int64
0
1
'''simple docstring''' import warnings from contextlib import contextmanager from ...processing_utils import ProcessorMixin from .feature_extraction_wavaveca import WavaVecaFeatureExtractor from .tokenization_wavaveca import WavaVecaCTCTokenizer class __snake_case ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' lowerCamelCase__ = '''Wav2Vec2FeatureExtractor''' lowerCamelCase__ = '''AutoTokenizer''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): super().__init__(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = self.feature_extractor snake_case__ : Optional[Any] = False @classmethod def __UpperCamelCase ( cls , __SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): try: return super().from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) except OSError: warnings.warn( f"Loading a tokenizer inside {cls.__name__} from a config that does not" """ include a `tokenizer_class` attribute is deprecated and will be """ """removed in v5. Please add `'tokenizer_class': 'Wav2Vec2CTCTokenizer'`""" """ attribute to either your `config.json` or `tokenizer_config.json` """ """file to suppress this warning: """ , __SCREAMING_SNAKE_CASE , ) snake_case__ : List[str] = WavaVecaFeatureExtractor.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[Any] = WavaVecaCTCTokenizer.from_pretrained(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) return cls(feature_extractor=__SCREAMING_SNAKE_CASE , tokenizer=__SCREAMING_SNAKE_CASE ) def __call__( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): # For backward compatibility if self._in_target_context_manager: return self.current_processor(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if "raw_speech" in kwargs: warnings.warn("""Using `raw_speech` as a keyword argument is deprecated. Use `audio` instead.""" ) snake_case__ : Optional[Any] = kwargs.pop("""raw_speech""" ) else: snake_case__ : Union[str, Any] = kwargs.pop("""audio""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Union[str, Any] = kwargs.pop("""sampling_rate""" , __SCREAMING_SNAKE_CASE ) snake_case__ : Dict = kwargs.pop("""text""" , __SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case__ : Optional[Any] = args[0] snake_case__ : Dict = args[1:] if audio is None and text is None: raise ValueError("""You need to specify either an `audio` or `text` input to process.""" ) if audio is not None: snake_case__ : Optional[int] = self.feature_extractor(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , sampling_rate=__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is not None: snake_case__ : Any = self.tokenizer(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if text is None: return inputs elif audio is None: return encodings else: snake_case__ : List[Any] = encodings["""input_ids"""] return inputs def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): # For backward compatibility if self._in_target_context_manager: return self.current_processor.pad(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) snake_case__ : Any = kwargs.pop("""input_features""" , __SCREAMING_SNAKE_CASE ) snake_case__ : str = kwargs.pop("""labels""" , __SCREAMING_SNAKE_CASE ) if len(__SCREAMING_SNAKE_CASE ) > 0: snake_case__ : Dict = args[0] snake_case__ : int = args[1:] if input_features is not None: snake_case__ : Any = self.feature_extractor.pad(__SCREAMING_SNAKE_CASE , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if labels is not None: snake_case__ : List[Any] = self.tokenizer.pad(__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) if labels is None: return input_features elif input_features is None: return labels else: snake_case__ : Tuple = labels["""input_ids"""] return input_features def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return self.tokenizer.batch_decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , *__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ): return self.tokenizer.decode(*__SCREAMING_SNAKE_CASE , **__SCREAMING_SNAKE_CASE ) @contextmanager def __UpperCamelCase ( self ): warnings.warn( """`as_target_processor` is deprecated and will be removed in v5 of Transformers. You can process your """ """labels by using the argument `text` of the regular `__call__` method (either in the same call as """ """your audio inputs, or in a separate call.""" ) snake_case__ : List[str] = True snake_case__ : Any = self.tokenizer yield snake_case__ : str = self.feature_extractor snake_case__ : str = False
38
'''simple docstring''' import unittest import numpy as np from transformers.file_utils import is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision from ...test_image_processing_common import ImageProcessingSavingTestMixin, prepare_image_inputs if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import DPTImageProcessor class __snake_case ( unittest.TestCase ): '''simple docstring''' def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=7 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=1_8 , __SCREAMING_SNAKE_CASE=3_0 , __SCREAMING_SNAKE_CASE=4_0_0 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=None , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , __SCREAMING_SNAKE_CASE=[0.5, 0.5, 0.5] , ): snake_case__ : Any = size if size is not None else {"""height""": 1_8, """width""": 1_8} snake_case__ : List[Any] = parent snake_case__ : int = batch_size snake_case__ : List[Any] = num_channels snake_case__ : str = image_size snake_case__ : Union[str, Any] = min_resolution snake_case__ : List[Any] = max_resolution snake_case__ : Tuple = do_resize snake_case__ : int = size snake_case__ : Tuple = do_normalize snake_case__ : Dict = image_mean snake_case__ : Union[str, Any] = image_std def __UpperCamelCase ( self ): return { "image_mean": self.image_mean, "image_std": self.image_std, "do_normalize": self.do_normalize, "do_resize": self.do_resize, "size": self.size, } @require_torch @require_vision class __snake_case ( __SCREAMING_SNAKE_CASE , unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = DPTImageProcessor if is_vision_available() else None def __UpperCamelCase ( self ): snake_case__ : str = DPTImageProcessingTester(self ) @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_mean""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """image_std""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_normalize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """do_resize""" ) ) self.assertTrue(hasattr(__SCREAMING_SNAKE_CASE , """size""" ) ) def __UpperCamelCase ( self ): snake_case__ : Any = self.image_processing_class.from_dict(self.image_processor_dict ) self.assertEqual(image_processor.size , {"""height""": 1_8, """width""": 1_8} ) snake_case__ : List[Any] = self.image_processing_class.from_dict(self.image_processor_dict , size=4_2 ) self.assertEqual(image_processor.size , {"""height""": 4_2, """width""": 4_2} ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[int] = self.image_processing_class(**self.image_processor_dict ) # create random PIL images snake_case__ : List[Any] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , Image.Image ) # Test not batched input snake_case__ : Optional[int] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : Optional[Any] = self.image_processing_class(**self.image_processor_dict ) # create random numpy tensors snake_case__ : Optional[int] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , numpify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , np.ndarray ) # Test not batched input snake_case__ : List[str] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : Any = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) def __UpperCamelCase ( self ): # Initialize image_processing snake_case__ : List[Any] = self.image_processing_class(**self.image_processor_dict ) # create random PyTorch tensors snake_case__ : List[str] = prepare_image_inputs(self.image_processor_tester , equal_resolution=__SCREAMING_SNAKE_CASE , torchify=__SCREAMING_SNAKE_CASE ) for image in image_inputs: self.assertIsInstance(__SCREAMING_SNAKE_CASE , torch.Tensor ) # Test not batched input snake_case__ : List[Any] = image_processing(image_inputs[0] , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( 1, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , ) # Test batched snake_case__ : List[str] = image_processing(__SCREAMING_SNAKE_CASE , return_tensors="""pt""" ).pixel_values self.assertEqual( encoded_images.shape , ( self.image_processor_tester.batch_size, self.image_processor_tester.num_channels, self.image_processor_tester.size["""height"""], self.image_processor_tester.size["""width"""], ) , )
38
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( SwiftFormerConfig, SwiftFormerForImageClassification, ViTImageProcessor, ) from transformers.utils import logging logging.set_verbosity_info() __UpperCAmelCase : Any = logging.get_logger(__name__) __UpperCAmelCase : Tuple = torch.device("cpu") def lowercase_ ( ) -> List[Any]: '''simple docstring''' snake_case__ :int = "http://images.cocodataset.org/val2017/000000039769.jpg" snake_case__ :int = Image.open(requests.get(__snake_case , stream=__snake_case ).raw ) return im def lowercase_ ( __snake_case : List[str] ) -> int: '''simple docstring''' if swiftformer_name == "swiftformer_xs": return torch.tensor([-2.1_703e00, 2.1_107e00, -2.0_811e00, 8.8_685e-01, 2.4_360e-01] ) elif swiftformer_name == "swiftformer_s": return torch.tensor([3.9_636e-01, 2.3_478e-01, -1.6_963e00, -1.7_381e00, -8.6_337e-01] ) elif swiftformer_name == "swiftformer_l1": return torch.tensor([-4.2_768e-01, -4.7_429e-01, -1.0_897e00, -1.0_248e00, 3.5_523e-02] ) elif swiftformer_name == "swiftformer_l3": return torch.tensor([-2.5_330e-01, 2.4_211e-01, -6.0_185e-01, -8.2_789e-01, -6.0_446e-02] ) def lowercase_ ( __snake_case : Optional[int] , __snake_case : Union[str, Any] , __snake_case : Dict ) -> Tuple: '''simple docstring''' snake_case__ :List[Any] = dct.pop(__snake_case ) snake_case__ :Optional[Any] = val def lowercase_ ( __snake_case : int ) -> int: '''simple docstring''' snake_case__ :Union[str, Any] = [] for k in state_dict.keys(): snake_case__ :int = k if ".pwconv" in k: snake_case__ :Tuple = k_new.replace(".pwconv" , ".point_wise_conv" ) if ".dwconv" in k: snake_case__ :Tuple = k_new.replace(".dwconv" , ".depth_wise_conv" ) if ".Proj." in k: snake_case__ :List[Any] = k_new.replace(".Proj." , ".proj." ) if "patch_embed" in k_new: snake_case__ :Tuple = k_new.replace("patch_embed" , "swiftformer.patch_embed.patch_embedding" ) if "network" in k_new: snake_case__ :Union[str, Any] = k_new.split("." ) if ls[2].isdigit(): snake_case__ :Optional[Any] = "swiftformer.encoder.network." + ls[1] + ".blocks." + ls[2] + "." + ".".join(ls[3:] ) else: snake_case__ :Union[str, Any] = k_new.replace("network" , "swiftformer.encoder.network" ) rename_keys.append((k, k_new) ) return rename_keys @torch.no_grad() def lowercase_ ( __snake_case : List[Any] , __snake_case : str , __snake_case : Tuple ) -> Optional[Any]: '''simple docstring''' snake_case__ :Dict = SwiftFormerConfig() # dataset (ImageNet-21k only or also fine-tuned on ImageNet 2012), patch_size and image_size snake_case__ :str = 10_00 snake_case__ :Tuple = "huggingface/label-files" snake_case__ :Union[str, Any] = "imagenet-1k-id2label.json" snake_case__ :int = json.load(open(hf_hub_download(__snake_case , __snake_case , repo_type="dataset" ) , "r" ) ) snake_case__ :Tuple = {int(__snake_case ): v for k, v in idalabel.items()} snake_case__ :List[str] = idalabel snake_case__ :List[str] = {v: k for k, v in idalabel.items()} # size of the architecture if swiftformer_name == "swiftformer_xs": snake_case__ :Dict = [3, 3, 6, 4] snake_case__ :Any = [48, 56, 1_12, 2_20] elif swiftformer_name == "swiftformer_s": snake_case__ :str = [3, 3, 9, 6] snake_case__ :Optional[int] = [48, 64, 1_68, 2_24] elif swiftformer_name == "swiftformer_l1": snake_case__ :List[str] = [4, 3, 10, 5] snake_case__ :List[Any] = [48, 96, 1_92, 3_84] elif swiftformer_name == "swiftformer_l3": snake_case__ :Tuple = [4, 4, 12, 6] snake_case__ :List[Any] = [64, 1_28, 3_20, 5_12] # load state_dict of original model, remove and rename some keys if original_ckpt: if original_ckpt.startswith("https" ): snake_case__ :Any = torch.hub.load_state_dict_from_url(__snake_case , map_location="cpu" , check_hash=__snake_case ) else: snake_case__ :Tuple = torch.load(__snake_case , map_location="cpu" ) snake_case__ :List[Any] = checkpoint snake_case__ :List[str] = create_rename_keys(__snake_case ) for rename_key_src, rename_key_dest in rename_keys: rename_key(__snake_case , __snake_case , __snake_case ) # load HuggingFace model snake_case__ :Optional[Any] = SwiftFormerForImageClassification(__snake_case ).eval() hf_model.load_state_dict(__snake_case ) # prepare test inputs snake_case__ :Optional[int] = prepare_img() snake_case__ :List[str] = ViTImageProcessor.from_pretrained("preprocessor_config" ) snake_case__ :Dict = processor(images=__snake_case , return_tensors="pt" ) # compare outputs from both models snake_case__ :int = get_expected_output(__snake_case ) snake_case__ :List[Any] = hf_model(inputs["pixel_values"] ).logits assert hf_logits.shape == torch.Size([1, 10_00] ) assert torch.allclose(hf_logits[0, 0:5] , __snake_case , atol=1e-3 ) Path(__snake_case ).mkdir(exist_ok=__snake_case ) print(F'Saving model {swiftformer_name} to {pytorch_dump_folder_path}' ) hf_model.save_pretrained(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Dict = argparse.ArgumentParser() # Required parameters parser.add_argument( "--swiftformer_name", default="swiftformer_xs", choices=["swiftformer_xs", "swiftformer_s", "swiftformer_l1", "swiftformer_l3"], type=str, help="Name of the SwiftFormer model you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default="./converted_outputs/", type=str, help="Path to the output PyTorch model directory.", ) parser.add_argument("--original_ckpt", default=None, type=str, help="Path to the original model checkpoint.") __UpperCAmelCase : Optional[int] = parser.parse_args() convert_swiftformer_checkpoint(args.swiftformer_name, args.pytorch_dump_folder_path, args.original_ckpt)
707
def lowercase_ ( __snake_case : str ) -> list: '''simple docstring''' return [ txt[:a] + txt[a].upper() + txt[a + 1 :] for a in range(len(__snake_case ) ) if txt[a].isalpha() ] if __name__ == "__main__": __import__("doctest").testmod()
57
0
"""simple docstring""" import argparse import torch from transformers import LxmertConfig, LxmertForPreTraining, load_tf_weights_in_lxmert from transformers.utils import logging logging.set_verbosity_info() def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> Any: # Initialise PyTorch model __SCREAMING_SNAKE_CASE = LxmertConfig.from_json_file(UpperCAmelCase__ ) print(f"""Building PyTorch model from configuration: {config}""" ) __SCREAMING_SNAKE_CASE = LxmertForPreTraining(UpperCAmelCase__ ) # Load weights from tf checkpoint load_tf_weights_in_lxmert(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) # Save pytorch-model print(f"""Save PyTorch model to {pytorch_dump_path}""" ) torch.save(model.state_dict() , UpperCAmelCase__ ) if __name__ == "__main__": lowerCAmelCase__ =argparse.ArgumentParser() # Required parameters parser.add_argument( "--tf_checkpoint_path", default=None, type=str, required=True, help="Path to the TensorFlow checkpoint path." ) parser.add_argument( "--config_file", default=None, type=str, required=True, help="The config json file corresponding to the pre-trained model. \nThis specifies the model architecture.", ) parser.add_argument( "--pytorch_dump_path", default=None, type=str, required=True, help="Path to the output PyTorch model." ) lowerCAmelCase__ =parser.parse_args() convert_tf_checkpoint_to_pytorch(args.tf_checkpoint_path, args.config_file, args.pytorch_dump_path)
482
"""simple docstring""" from __future__ import annotations from collections import Counter from random import random class A__: def __init__( self : str ) -> List[str]: """simple docstring""" __SCREAMING_SNAKE_CASE = {} def _a ( self : Union[str, Any] , __SCREAMING_SNAKE_CASE : str ) -> None: """simple docstring""" __SCREAMING_SNAKE_CASE = {} def _a ( self : Optional[Any] , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : str , __SCREAMING_SNAKE_CASE : float ) -> None: """simple docstring""" if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) if nodea not in self.connections: self.add_node(__SCREAMING_SNAKE_CASE ) __SCREAMING_SNAKE_CASE = probability def _a ( self : Optional[int] ) -> list[str]: """simple docstring""" return list(self.connections ) def _a ( self : Any , __SCREAMING_SNAKE_CASE : str ) -> str: """simple docstring""" __SCREAMING_SNAKE_CASE = 0 __SCREAMING_SNAKE_CASE = random() for dest in self.connections[node]: current_probability += self.connections[node][dest] if current_probability > random_value: return dest return "" def _a ( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) -> dict[str, int]: __SCREAMING_SNAKE_CASE = MarkovChainGraphUndirectedUnweighted() for nodea, nodea, probability in transitions: graph.add_transition_probability(UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ) __SCREAMING_SNAKE_CASE = Counter(graph.get_nodes() ) __SCREAMING_SNAKE_CASE = start for _ in range(UpperCAmelCase__ ): __SCREAMING_SNAKE_CASE = graph.transition(UpperCAmelCase__ ) visited[node] += 1 return visited if __name__ == "__main__": import doctest doctest.testmod()
482
1
import argparse import json from pathlib import Path import torch import torchaudio from datasets import load_dataset from huggingface_hub import hf_hub_download from transformers import ASTConfig, ASTFeatureExtractor, ASTForAudioClassification from transformers.utils import logging logging.set_verbosity_info() a_ : Optional[int] = logging.get_logger(__name__) def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict ): __magic_name__ = ASTConfig() if "10-10" in model_name: pass elif "speech-commands" in model_name: __magic_name__ = 128 elif "12-12" in model_name: __magic_name__ = 12 __magic_name__ = 12 elif "14-14" in model_name: __magic_name__ = 14 __magic_name__ = 14 elif "16-16" in model_name: __magic_name__ = 16 __magic_name__ = 16 else: raise ValueError('''Model not supported''' ) __magic_name__ = '''huggingface/label-files''' if "speech-commands" in model_name: __magic_name__ = 35 __magic_name__ = '''speech-commands-v2-id2label.json''' else: __magic_name__ = 527 __magic_name__ = '''audioset-id2label.json''' __magic_name__ = json.load(open(hf_hub_download(snake_case_ , snake_case_ , repo_type='''dataset''' ) , '''r''' ) ) __magic_name__ = {int(snake_case_ ): v for k, v in idalabel.items()} __magic_name__ = idalabel __magic_name__ = {v: k for k, v in idalabel.items()} return config def _SCREAMING_SNAKE_CASE ( snake_case_ : Any ): if "module.v" in name: __magic_name__ = name.replace('''module.v''' , '''audio_spectrogram_transformer''' ) if "cls_token" in name: __magic_name__ = name.replace('''cls_token''' , '''embeddings.cls_token''' ) if "dist_token" in name: __magic_name__ = name.replace('''dist_token''' , '''embeddings.distillation_token''' ) if "pos_embed" in name: __magic_name__ = name.replace('''pos_embed''' , '''embeddings.position_embeddings''' ) if "patch_embed.proj" in name: __magic_name__ = name.replace('''patch_embed.proj''' , '''embeddings.patch_embeddings.projection''' ) # transformer blocks if "blocks" in name: __magic_name__ = name.replace('''blocks''' , '''encoder.layer''' ) if "attn.proj" in name: __magic_name__ = name.replace('''attn.proj''' , '''attention.output.dense''' ) if "attn" in name: __magic_name__ = name.replace('''attn''' , '''attention.self''' ) if "norm1" in name: __magic_name__ = name.replace('''norm1''' , '''layernorm_before''' ) if "norm2" in name: __magic_name__ = name.replace('''norm2''' , '''layernorm_after''' ) if "mlp.fc1" in name: __magic_name__ = name.replace('''mlp.fc1''' , '''intermediate.dense''' ) if "mlp.fc2" in name: __magic_name__ = name.replace('''mlp.fc2''' , '''output.dense''' ) # final layernorm if "audio_spectrogram_transformer.norm" in name: __magic_name__ = name.replace('''audio_spectrogram_transformer.norm''' , '''audio_spectrogram_transformer.layernorm''' ) # classifier head if "module.mlp_head.0" in name: __magic_name__ = name.replace('''module.mlp_head.0''' , '''classifier.layernorm''' ) if "module.mlp_head.1" in name: __magic_name__ = name.replace('''module.mlp_head.1''' , '''classifier.dense''' ) return name def _SCREAMING_SNAKE_CASE ( snake_case_ : Any , snake_case_ : Optional[int] ): for key in orig_state_dict.copy().keys(): __magic_name__ = orig_state_dict.pop(snake_case_ ) if "qkv" in key: __magic_name__ = key.split('''.''' ) __magic_name__ = int(key_split[3] ) __magic_name__ = config.hidden_size if "weight" in key: __magic_name__ = val[:dim, :] __magic_name__ = val[dim : dim * 2, :] __magic_name__ = val[-dim:, :] else: __magic_name__ = val[:dim] __magic_name__ = val[dim : dim * 2] __magic_name__ = val[-dim:] else: __magic_name__ = val return orig_state_dict def _SCREAMING_SNAKE_CASE ( snake_case_ : Any ): __magic_name__ = [ '''module.v.head.weight''', '''module.v.head.bias''', '''module.v.head_dist.weight''', '''module.v.head_dist.bias''', ] for k in ignore_keys: state_dict.pop(snake_case_ , snake_case_ ) @torch.no_grad() def _SCREAMING_SNAKE_CASE ( snake_case_ : Dict , snake_case_ : List[Any] , snake_case_ : Dict=False ): __magic_name__ = get_audio_spectrogram_transformer_config(snake_case_ ) __magic_name__ = { '''ast-finetuned-audioset-10-10-0.4593''': ( '''https://www.dropbox.com/s/ca0b1v2nlxzyeb4/audioset_10_10_0.4593.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.450''': ( '''https://www.dropbox.com/s/1tv0hovue1bxupk/audioset_10_10_0.4495.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448''': ( '''https://www.dropbox.com/s/6u5sikl4b9wo4u5/audioset_10_10_0.4483.pth?dl=1''' ), '''ast-finetuned-audioset-10-10-0.448-v2''': ( '''https://www.dropbox.com/s/kt6i0v9fvfm1mbq/audioset_10_10_0.4475.pth?dl=1''' ), '''ast-finetuned-audioset-12-12-0.447''': ( '''https://www.dropbox.com/s/snfhx3tizr4nuc8/audioset_12_12_0.4467.pth?dl=1''' ), '''ast-finetuned-audioset-14-14-0.443''': ( '''https://www.dropbox.com/s/z18s6pemtnxm4k7/audioset_14_14_0.4431.pth?dl=1''' ), '''ast-finetuned-audioset-16-16-0.442''': ( '''https://www.dropbox.com/s/mdsa4t1xmcimia6/audioset_16_16_0.4422.pth?dl=1''' ), '''ast-finetuned-speech-commands-v2''': ( '''https://www.dropbox.com/s/q0tbqpwv44pquwy/speechcommands_10_10_0.9812.pth?dl=1''' ), } # load original state_dict __magic_name__ = model_name_to_url[model_name] __magic_name__ = torch.hub.load_state_dict_from_url(snake_case_ , map_location='''cpu''' ) # remove some keys remove_keys(snake_case_ ) # rename some keys __magic_name__ = convert_state_dict(snake_case_ , snake_case_ ) # load 🤗 model __magic_name__ = ASTForAudioClassification(snake_case_ ) model.eval() model.load_state_dict(snake_case_ ) # verify outputs on dummy input # source: https://github.com/YuanGongND/ast/blob/79e873b8a54d0a3b330dd522584ff2b9926cd581/src/run.py#L62 __magic_name__ = -4.267_7393 if '''speech-commands''' not in model_name else -6.84_5978 __magic_name__ = 4.568_9974 if '''speech-commands''' not in model_name else 5.565_4526 __magic_name__ = 1024 if '''speech-commands''' not in model_name else 128 __magic_name__ = ASTFeatureExtractor(mean=snake_case_ , std=snake_case_ , max_length=snake_case_ ) if "speech-commands" in model_name: __magic_name__ = load_dataset('''speech_commands''' , '''v0.02''' , split='''validation''' ) __magic_name__ = dataset[0]['''audio''']['''array'''] else: __magic_name__ = hf_hub_download( repo_id='''nielsr/audio-spectogram-transformer-checkpoint''' , filename='''sample_audio.flac''' , repo_type='''dataset''' , ) __magic_name__ , __magic_name__ = torchaudio.load(snake_case_ ) __magic_name__ = waveform.squeeze().numpy() __magic_name__ = feature_extractor(snake_case_ , sampling_rate=1_6000 , return_tensors='''pt''' ) # forward pass __magic_name__ = model(**snake_case_ ) __magic_name__ = outputs.logits if model_name == "ast-finetuned-audioset-10-10-0.4593": __magic_name__ = torch.tensor([-0.8760, -7.0042, -8.6602] ) elif model_name == "ast-finetuned-audioset-10-10-0.450": __magic_name__ = torch.tensor([-1.1986, -7.0903, -8.2718] ) elif model_name == "ast-finetuned-audioset-10-10-0.448": __magic_name__ = torch.tensor([-2.6128, -8.0080, -9.4344] ) elif model_name == "ast-finetuned-audioset-10-10-0.448-v2": __magic_name__ = torch.tensor([-1.5080, -7.4534, -8.8917] ) elif model_name == "ast-finetuned-audioset-12-12-0.447": __magic_name__ = torch.tensor([-0.5050, -6.5833, -8.0843] ) elif model_name == "ast-finetuned-audioset-14-14-0.443": __magic_name__ = torch.tensor([-0.3826, -7.0336, -8.2413] ) elif model_name == "ast-finetuned-audioset-16-16-0.442": __magic_name__ = torch.tensor([-1.2113, -6.9101, -8.3470] ) elif model_name == "ast-finetuned-speech-commands-v2": __magic_name__ = torch.tensor([6.1589, -8.0566, -8.7984] ) else: raise ValueError('''Unknown model name''' ) if not torch.allclose(logits[0, :3] , snake_case_ , atol=1E-4 ): raise ValueError('''Logits don\'t match''' ) print('''Looks ok!''' ) if pytorch_dump_folder_path is not None: Path(snake_case_ ).mkdir(exist_ok=snake_case_ ) print(f'Saving model {model_name} to {pytorch_dump_folder_path}' ) model.save_pretrained(snake_case_ ) print(f'Saving feature extractor to {pytorch_dump_folder_path}' ) feature_extractor.save_pretrained(snake_case_ ) if push_to_hub: print('''Pushing model and feature extractor to the hub...''' ) model.push_to_hub(f'MIT/{model_name}' ) feature_extractor.push_to_hub(f'MIT/{model_name}' ) if __name__ == "__main__": a_ : int = argparse.ArgumentParser() # Required parameters parser.add_argument( '--model_name', default='ast-finetuned-audioset-10-10-0.4593', type=str, help='Name of the Audio Spectrogram Transformer model you\'d like to convert.', ) parser.add_argument( '--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model directory.' ) parser.add_argument( '--push_to_hub', action='store_true', help='Whether or not to push the converted model to the 🤗 hub.' ) a_ : List[Any] = parser.parse_args() convert_audio_spectrogram_transformer_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
678
from __future__ import annotations from scipy.special import comb # type: ignore class SCREAMING_SNAKE_CASE_ : """simple docstring""" def __init__( self , A ) -> Tuple: '''simple docstring''' __magic_name__ = list_of_points # Degree determines the flexibility of the curve. # Degree = 1 will produce a straight line. __magic_name__ = len(A ) - 1 def __A ( self , A ) -> list[float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = [] for i in range(len(self.list_of_points ) ): # basis function for each i output_values.append( comb(self.degree , A ) * ((1 - t) ** (self.degree - i)) * (t**i) ) # the basis must sum up to 1 for it to produce a valid Bezier curve. assert round(sum(A ) , 5 ) == 1 return output_values def __A ( self , A ) -> tuple[float, float]: '''simple docstring''' assert 0 <= t <= 1, "Time t must be between 0 and 1." __magic_name__ = self.basis_function(A ) __magic_name__ = 0.0 __magic_name__ = 0.0 for i in range(len(self.list_of_points ) ): # For all points, sum up the product of i-th basis function and i-th point. x += basis_function[i] * self.list_of_points[i][0] y += basis_function[i] * self.list_of_points[i][1] return (x, y) def __A ( self , A = 0.01 ) -> Tuple: '''simple docstring''' from matplotlib import pyplot as plt # type: ignore __magic_name__ = [] # x coordinates of points to plot __magic_name__ = [] # y coordinates of points to plot __magic_name__ = 0.0 while t <= 1: __magic_name__ = self.bezier_curve_function(A ) to_plot_x.append(value[0] ) to_plot_y.append(value[1] ) t += step_size __magic_name__ = [i[0] for i in self.list_of_points] __magic_name__ = [i[1] for i in self.list_of_points] plt.plot( A , A , color='''blue''' , label='''Curve of Degree ''' + str(self.degree ) , ) plt.scatter(A , A , color='''red''' , label='''Control Points''' ) plt.legend() plt.show() if __name__ == "__main__": import doctest doctest.testmod() BezierCurve([(1, 2), (3, 5)]).plot_curve() # degree 1 BezierCurve([(0, 0), (5, 5), (5, 0)]).plot_curve() # degree 2 BezierCurve([(0, 0), (5, 5), (5, 0), (2.5, -2.5)]).plot_curve() # degree 3
678
1
from typing import List, Optional, Tuple, Union import torch from ...models import UNetaDModel from ...schedulers import ScoreSdeVeScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCAmelCase ( __SCREAMING_SNAKE_CASE ): '''simple docstring''' snake_case_ = 42 snake_case_ = 42 def __init__( self : List[Any] ,A : UNetaDModel ,A : ScoreSdeVeScheduler ): super().__init__() self.register_modules(unet=A ,scheduler=A ) @torch.no_grad() def __call__( self : int ,A : int = 1 ,A : int = 20_00 ,A : Optional[Union[torch.Generator, List[torch.Generator]]] = None ,A : Optional[str] = "pil" ,A : bool = True ,**A : Optional[int] ,): __A = self.unet.config.sample_size __A = (batch_size, 3, img_size, img_size) __A = self.unet __A = randn_tensor(A ,generator=A ) * self.scheduler.init_noise_sigma __A = sample.to(self.device ) self.scheduler.set_timesteps(A ) self.scheduler.set_sigmas(A ) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): __A = self.scheduler.sigmas[i] * torch.ones(shape[0] ,device=self.device ) # correction step for _ in range(self.scheduler.config.correct_steps ): __A = self.unet(A ,A ).sample __A = self.scheduler.step_correct(A ,A ,generator=A ).prev_sample # prediction step __A = model(A ,A ).sample __A = self.scheduler.step_pred(A ,A ,A ,generator=A ) __A , __A = output.prev_sample, output.prev_sample_mean __A = sample_mean.clamp(0 ,1 ) __A = sample.cpu().permute(0 ,2 ,3 ,1 ).numpy() if output_type == "pil": __A = self.numpy_to_pil(A ) if not return_dict: return (sample,) return ImagePipelineOutput(images=A )
55
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging __lowerCAmelCase : List[Any] = logging.get_logger(__name__) __lowerCAmelCase : int = "▁" __lowerCAmelCase : int = { "vocab_file": "vocab.json", "spm_file": "sentencepiece.bpe.model", } __lowerCAmelCase : Tuple = { "vocab_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/vocab.json" ), }, "spm_file": { "facebook/s2t-small-librispeech-asr": ( "https://huggingface.co/facebook/s2t-small-librispeech-asr/resolve/main/sentencepiece.bpe.model" ) }, } __lowerCAmelCase : List[str] = { "facebook/s2t-small-librispeech-asr": 1_024, } __lowerCAmelCase : int = ["pt", "fr", "ru", "nl", "ro", "it", "es", "de"] __lowerCAmelCase : str = {"mustc": MUSTC_LANGS} class __lowerCAmelCase ( lowerCAmelCase_ ): """simple docstring""" A__ : Any = VOCAB_FILES_NAMES A__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP A__ : Optional[int] = MAX_MODEL_INPUT_SIZES A__ : List[Any] = ['''input_ids''', '''attention_mask'''] A__ : List[int] = [] def __init__( self : List[str] , _snake_case : Optional[int] , _snake_case : Optional[Any] , _snake_case : Dict="<s>" , _snake_case : Optional[Any]="</s>" , _snake_case : str="<pad>" , _snake_case : Optional[int]="<unk>" , _snake_case : Optional[int]=False , _snake_case : Any=False , _snake_case : List[Any]=None , _snake_case : Any=None , _snake_case : Optional[Dict[str, Any]] = None , **_snake_case : Optional[Any] , ): __lowercase : Optional[int] = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( bos_token=_snake_case , eos_token=_snake_case , unk_token=_snake_case , pad_token=_snake_case , do_upper_case=_snake_case , do_lower_case=_snake_case , tgt_lang=_snake_case , lang_codes=_snake_case , sp_model_kwargs=self.sp_model_kwargs , **_snake_case , ) __lowercase : Optional[Any] = do_upper_case __lowercase : Optional[int] = do_lower_case __lowercase : Optional[Any] = load_json(_snake_case ) __lowercase : str = {v: k for k, v in self.encoder.items()} __lowercase : Any = spm_file __lowercase : List[str] = load_spm(_snake_case , self.sp_model_kwargs ) if lang_codes is not None: __lowercase : Any = lang_codes __lowercase : Dict = LANGUAGES[lang_codes] __lowercase : Any = [F'<lang:{lang}>' for lang in self.langs] __lowercase : Optional[Any] = {lang: self.sp_model.PieceToId(F'<lang:{lang}>' ) for lang in self.langs} __lowercase : Dict = self.lang_tokens __lowercase : Optional[Any] = tgt_lang if tgt_lang is not None else self.langs[0] self.set_tgt_lang_special_tokens(self._tgt_lang ) else: __lowercase : int = {} @property def snake_case_ ( self : Optional[int] ): return len(self.encoder ) @property def snake_case_ ( self : Any ): return self._tgt_lang @tgt_lang.setter def snake_case_ ( self : int , _snake_case : str ): __lowercase : int = new_tgt_lang self.set_tgt_lang_special_tokens(_snake_case ) def snake_case_ ( self : Union[str, Any] , _snake_case : str ): __lowercase : Tuple = self.lang_code_to_id[tgt_lang] __lowercase : Optional[int] = [lang_code_id] def snake_case_ ( self : str , _snake_case : str ): return self.sp_model.encode(_snake_case , out_type=_snake_case ) def snake_case_ ( self : Any , _snake_case : List[str] ): return self.encoder.get(_snake_case , self.encoder[self.unk_token] ) def snake_case_ ( self : List[Any] , _snake_case : int ): return self.decoder.get(_snake_case , self.unk_token ) def snake_case_ ( self : str , _snake_case : List[str] ): __lowercase : Optional[Any] = [] __lowercase : Optional[Any] = '''''' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: __lowercase : Union[str, Any] = self.sp_model.decode(_snake_case ) out_string += (decoded.upper() if self.do_upper_case else decoded) + token + " " __lowercase : Optional[Any] = [] else: current_sub_tokens.append(_snake_case ) __lowercase : Optional[int] = self.sp_model.decode(_snake_case ) out_string += decoded.upper() if self.do_upper_case else decoded return out_string.strip() def snake_case_ ( self : Optional[Any] , _snake_case : Union[str, Any] , _snake_case : Any=None ): if token_ids_a is None: return self.prefix_tokens + token_ids_a + [self.eos_token_id] # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + [self.eos_token_id] def snake_case_ ( self : int , _snake_case : List[int] , _snake_case : Optional[List[int]] = None , _snake_case : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_snake_case , token_ids_a=_snake_case , already_has_special_tokens=_snake_case ) __lowercase : Any = [1] * len(self.prefix_tokens ) __lowercase : Optional[Any] = [1] if token_ids_a is None: return prefix_ones + ([0] * len(_snake_case )) + suffix_ones return prefix_ones + ([0] * len(_snake_case )) + ([0] * len(_snake_case )) + suffix_ones def snake_case_ ( self : Any ): __lowercase : Optional[Any] = self.encoder.copy() vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): __lowercase : Optional[int] = self.__dict__.copy() __lowercase : Dict = None return state def __setstate__( self : Optional[Any] , _snake_case : Dict ): __lowercase : int = d # for backward compatibility if not hasattr(self , '''sp_model_kwargs''' ): __lowercase : int = {} __lowercase : List[str] = load_spm(self.spm_file , self.sp_model_kwargs ) def snake_case_ ( self : List[str] , _snake_case : str , _snake_case : Optional[str] = None ): __lowercase : Dict = Path(_snake_case ) assert save_dir.is_dir(), F'{save_directory} should be a directory' __lowercase : Tuple = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''vocab_file'''] ) __lowercase : List[Any] = save_dir / ( (filename_prefix + '''-''' if filename_prefix else '''''') + self.vocab_files_names['''spm_file'''] ) save_json(self.encoder , _snake_case ) if os.path.abspath(self.spm_file ) != os.path.abspath(_snake_case ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , _snake_case ) elif not os.path.isfile(self.spm_file ): with open(_snake_case , '''wb''' ) as fi: __lowercase : Dict = self.sp_model.serialized_model_proto() fi.write(_snake_case ) return (str(_snake_case ), str(_snake_case )) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> sentencepiece.SentencePieceProcessor: __lowercase : Union[str, Any] = sentencepiece.SentencePieceProcessor(**__lowerCAmelCase ) spm.Load(str(__lowerCAmelCase ) ) return spm def UpperCAmelCase_ ( __lowerCAmelCase ) -> Union[Dict, List]: with open(__lowerCAmelCase , '''r''' ) as f: return json.load(__lowerCAmelCase ) def UpperCAmelCase_ ( __lowerCAmelCase , __lowerCAmelCase ) -> None: with open(__lowerCAmelCase , '''w''' ) as f: json.dump(__lowerCAmelCase , __lowerCAmelCase , indent=2 )
509
0
from ...configuration_utils import PretrainedConfig from ...utils import logging __UpperCamelCase : Dict = logging.get_logger(__name__) __UpperCamelCase : int = { 'caidas/swin2sr-classicalsr-x2-64': ( 'https://huggingface.co/caidas/swin2sr-classicalsr-x2-64/resolve/main/config.json' ), } class __UpperCamelCase ( SCREAMING_SNAKE_CASE_ ): __snake_case :int = 'swin2sr' __snake_case :Dict = { 'hidden_size': 'embed_dim', 'num_attention_heads': 'num_heads', 'num_hidden_layers': 'num_layers', } def __init__( self : List[str] , _lowerCAmelCase : Optional[int]=64 , _lowerCAmelCase : int=1 , _lowerCAmelCase : Tuple=3 , _lowerCAmelCase : Tuple=180 , _lowerCAmelCase : Tuple=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase : Optional[int]=[6, 6, 6, 6, 6, 6] , _lowerCAmelCase : Tuple=8 , _lowerCAmelCase : List[Any]=2.0 , _lowerCAmelCase : List[Any]=True , _lowerCAmelCase : Dict=0.0 , _lowerCAmelCase : List[str]=0.0 , _lowerCAmelCase : str=0.1 , _lowerCAmelCase : int="gelu" , _lowerCAmelCase : List[Any]=False , _lowerCAmelCase : int=0.02 , _lowerCAmelCase : Dict=1e-5 , _lowerCAmelCase : int=2 , _lowerCAmelCase : List[str]=1.0 , _lowerCAmelCase : Tuple="1conv" , _lowerCAmelCase : List[Any]="pixelshuffle" , **_lowerCAmelCase : str , ) -> str: """simple docstring""" super().__init__(**UpperCamelCase__ ) __lowercase = image_size __lowercase = patch_size __lowercase = num_channels __lowercase = embed_dim __lowercase = depths __lowercase = len(UpperCamelCase__ ) __lowercase = num_heads __lowercase = window_size __lowercase = mlp_ratio __lowercase = qkv_bias __lowercase = hidden_dropout_prob __lowercase = attention_probs_dropout_prob __lowercase = drop_path_rate __lowercase = hidden_act __lowercase = use_absolute_embeddings __lowercase = layer_norm_eps __lowercase = initializer_range __lowercase = upscale __lowercase = img_range __lowercase = resi_connection __lowercase = upsampler
710
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class __UpperCamelCase ( _lowerCAmelCase ): __snake_case :str = (UnCLIPScheduler,) def _a ( self : Optional[int] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" __lowercase = { """num_train_timesteps""": 1000, """variance_type""": """fixed_small_log""", """clip_sample""": True, """clip_sample_range""": 1.0, """prediction_type""": """epsilon""", } config.update(**_lowerCAmelCase ) return config def _a ( self : Dict ) -> List[Any]: """simple docstring""" for timesteps in [1, 5, 100, 1000]: self.check_over_configs(num_train_timesteps=_lowerCAmelCase ) def _a ( self : List[str] ) -> Tuple: """simple docstring""" for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=_lowerCAmelCase ) def _a ( self : Any ) -> Any: """simple docstring""" for clip_sample in [True, False]: self.check_over_configs(clip_sample=_lowerCAmelCase ) def _a ( self : Any ) -> Optional[Any]: """simple docstring""" for clip_sample_range in [1, 5, 10, 20]: self.check_over_configs(clip_sample_range=_lowerCAmelCase ) def _a ( self : Optional[int] ) -> Tuple: """simple docstring""" for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=_lowerCAmelCase ) def _a ( self : str ) -> int: """simple docstring""" for time_step in [0, 500, 999]: for prev_timestep in [None, 5, 100, 250, 500, 750]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=_lowerCAmelCase , prev_timestep=_lowerCAmelCase ) def _a ( self : Union[str, Any] ) -> Tuple: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""fixed_small_log""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) assert torch.sum(torch.abs(scheduler._get_variance(0 ) - 1.0000e-10 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(487 ) - 0.0_549_625 ) ) < 1e-5 assert torch.sum(torch.abs(scheduler._get_variance(999 ) - 0.9_994_987 ) ) < 1e-5 def _a ( self : str ) -> Optional[int]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config(variance_type="""learned_range""" ) __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = 0.5 assert scheduler._get_variance(1 , predicted_variance=_lowerCAmelCase ) - -10.1_712_790 < 1e-5 assert scheduler._get_variance(487 , predicted_variance=_lowerCAmelCase ) - -5.7_998_052 < 1e-5 assert scheduler._get_variance(999 , predicted_variance=_lowerCAmelCase ) - -0.0_010_011 < 1e-5 def _a ( self : Optional[Any] ) -> List[Any]: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step(_lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 252.2_682_495 ) < 1e-2 assert abs(result_mean.item() - 0.3_284_743 ) < 1e-3 def _a ( self : List[str] ) -> str: """simple docstring""" __lowercase = self.scheduler_classes[0] __lowercase = self.get_scheduler_config() __lowercase = scheduler_class(**_lowerCAmelCase ) scheduler.set_timesteps(25 ) __lowercase = scheduler.timesteps __lowercase = self.dummy_model() __lowercase = self.dummy_sample_deter __lowercase = torch.manual_seed(0 ) for i, t in enumerate(_lowerCAmelCase ): # 1. predict noise residual __lowercase = model(_lowerCAmelCase , _lowerCAmelCase ) if i + 1 == timesteps.shape[0]: __lowercase = None else: __lowercase = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowercase = scheduler.step( _lowerCAmelCase , _lowerCAmelCase , _lowerCAmelCase , prev_timestep=_lowerCAmelCase , generator=_lowerCAmelCase ).prev_sample __lowercase = pred_prev_sample __lowercase = torch.sum(torch.abs(_lowerCAmelCase ) ) __lowercase = torch.mean(torch.abs(_lowerCAmelCase ) ) assert abs(result_sum.item() - 258.2_044_983 ) < 1e-2 assert abs(result_mean.item() - 0.3_362_038 ) < 1e-3 def _a ( self : str ) -> Union[str, Any]: """simple docstring""" pass def _a ( self : int ) -> List[str]: """simple docstring""" pass
53
0
from typing import List, Union from ..utils import ( add_end_docstrings, is_tf_available, is_torch_available, is_vision_available, logging, requires_backends, ) from .base import PIPELINE_INIT_ARGS, Pipeline if is_vision_available(): from PIL import Image from ..image_utils import load_image if is_tf_available(): from ..models.auto.modeling_tf_auto import TF_MODEL_FOR_VISION_2_SEQ_MAPPING if is_torch_available(): import torch from ..models.auto.modeling_auto import MODEL_FOR_VISION_2_SEQ_MAPPING __UpperCamelCase : int = logging.get_logger(__name__) @add_end_docstrings(_lowerCAmelCase ) class __UpperCamelCase ( _lowerCAmelCase ): def __init__( self : Any , *_lowerCAmelCase : Any , **_lowerCAmelCase : int ) -> Dict: """simple docstring""" super().__init__(*_lowerCAmelCase , **_lowerCAmelCase ) requires_backends(self , """vision""" ) self.check_model_type( TF_MODEL_FOR_VISION_2_SEQ_MAPPING if self.framework == """tf""" else MODEL_FOR_VISION_2_SEQ_MAPPING ) def _a ( self : Optional[Any] , _lowerCAmelCase : List[Any]=None , _lowerCAmelCase : Any=None , _lowerCAmelCase : Dict=None ) -> int: """simple docstring""" __lowercase = {} __lowercase = {} if prompt is not None: __lowercase = prompt if generate_kwargs is not None: __lowercase = generate_kwargs if max_new_tokens is not None: if "generate_kwargs" not in forward_kwargs: __lowercase = {} if "max_new_tokens" in forward_kwargs["generate_kwargs"]: raise ValueError( """'max_new_tokens' is defined twice, once in 'generate_kwargs' and once as a direct parameter,""" """ please use only one""" ) __lowercase = max_new_tokens return preprocess_params, forward_kwargs, {} def __call__( self : Union[str, Any] , _lowerCAmelCase : Union[str, List[str], "Image.Image", List["Image.Image"]] , **_lowerCAmelCase : Any ) -> Tuple: """simple docstring""" return super().__call__(_lowerCAmelCase , **_lowerCAmelCase ) def _a ( self : int , _lowerCAmelCase : Tuple , _lowerCAmelCase : Any=None ) -> Any: """simple docstring""" __lowercase = load_image(_lowerCAmelCase ) if prompt is not None: if not isinstance(_lowerCAmelCase , _lowerCAmelCase ): raise ValueError( F'Received an invalid text input, got - {type(_lowerCAmelCase )} - but expected a single string. ' """Note also that one single text can be provided for conditional image to text generation.""" ) __lowercase = self.model.config.model_type if model_type == "git": __lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __lowercase = self.tokenizer(text=_lowerCAmelCase , add_special_tokens=_lowerCAmelCase ).input_ids __lowercase = [self.tokenizer.cls_token_id] + input_ids __lowercase = torch.tensor(_lowerCAmelCase ).unsqueeze(0 ) model_inputs.update({"""input_ids""": input_ids} ) elif model_type == "pix2struct": __lowercase = self.image_processor(images=_lowerCAmelCase , header_text=_lowerCAmelCase , return_tensors=self.framework ) elif model_type != "vision-encoder-decoder": # vision-encoder-decoder does not support conditional generation __lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) __lowercase = self.tokenizer(_lowerCAmelCase , return_tensors=self.framework ) model_inputs.update(_lowerCAmelCase ) else: raise ValueError(F'Model type {model_type} does not support conditional text generation' ) else: __lowercase = self.image_processor(images=_lowerCAmelCase , return_tensors=self.framework ) if self.model.config.model_type == "git" and prompt is None: __lowercase = None return model_inputs def _a ( self : List[Any] , _lowerCAmelCase : Tuple , _lowerCAmelCase : List[str]=None ) -> Tuple: """simple docstring""" if ( "input_ids" in model_inputs and isinstance(model_inputs["""input_ids"""] , _lowerCAmelCase ) and all(x is None for x in model_inputs["""input_ids"""] ) ): __lowercase = None if generate_kwargs is None: __lowercase = {} # FIXME: We need to pop here due to a difference in how `generation.py` and `generation.tf_utils.py` # parse inputs. In the Tensorflow version, `generate` raises an error if we don't use `input_ids` whereas # the PyTorch version matches it with `self.model.main_input_name` or `self.model.encoder.main_input_name` # in the `_prepare_model_inputs` method. __lowercase = model_inputs.pop(self.model.main_input_name ) __lowercase = self.model.generate(_lowerCAmelCase , **_lowerCAmelCase , **_lowerCAmelCase ) return model_outputs def _a ( self : List[str] , _lowerCAmelCase : Union[str, Any] ) -> int: """simple docstring""" __lowercase = [] for output_ids in model_outputs: __lowercase = { """generated_text""": self.tokenizer.decode( _lowerCAmelCase , skip_special_tokens=_lowerCAmelCase , ) } records.append(_lowerCAmelCase ) return records
80
'''simple docstring''' import itertools from dataclasses import dataclass from typing import Any, Callable, Dict, List, Optional, Union import pandas as pd import pyarrow as pa import datasets import datasets.config from datasets.features.features import require_storage_cast from datasets.table import table_cast from datasets.utils.py_utils import Literal _snake_case = datasets.utils.logging.get_logger(__name__) _snake_case = ['names', 'prefix'] _snake_case = ['warn_bad_lines', 'error_bad_lines', 'mangle_dupe_cols'] _snake_case = ['encoding_errors', 'on_bad_lines'] _snake_case = ['date_format'] @dataclass class a__ ( datasets.BuilderConfig ): _SCREAMING_SNAKE_CASE : str = "," _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[Union[int, List[int], str]] = "infer" _SCREAMING_SNAKE_CASE : Optional[List[str]] = None _SCREAMING_SNAKE_CASE : Optional[List[str]] = None _SCREAMING_SNAKE_CASE : Optional[Union[int, str, List[int], List[str]]] = None _SCREAMING_SNAKE_CASE : Optional[Union[List[int], List[str]]] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[Literal["c", "python", "pyarrow"]] = None _SCREAMING_SNAKE_CASE : Dict[Union[int, str], Callable[[Any], Any]] = None _SCREAMING_SNAKE_CASE : Optional[list] = None _SCREAMING_SNAKE_CASE : Optional[list] = None _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : Optional[Union[int, List[int]]] = None _SCREAMING_SNAKE_CASE : Optional[int] = None _SCREAMING_SNAKE_CASE : Optional[Union[str, List[str]]] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : str = "." _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : str = '"' _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : int = 0 _SCREAMING_SNAKE_CASE : bool = True _SCREAMING_SNAKE_CASE : bool = False _SCREAMING_SNAKE_CASE : Optional[str] = None _SCREAMING_SNAKE_CASE : int = 1_0000 _SCREAMING_SNAKE_CASE : Optional[datasets.Features] = None _SCREAMING_SNAKE_CASE : Optional[str] = "strict" _SCREAMING_SNAKE_CASE : Literal["error", "warn", "skip"] = "error" _SCREAMING_SNAKE_CASE : Optional[str] = None def _lowerCamelCase ( self ): """simple docstring""" if self.delimiter is not None: _lowercase : Optional[Any] = self.delimiter if self.column_names is not None: _lowercase : str = self.column_names @property def _lowerCamelCase ( self ): """simple docstring""" _lowercase : Any = { "sep": self.sep, "header": self.header, "names": self.names, "index_col": self.index_col, "usecols": self.usecols, "prefix": self.prefix, "mangle_dupe_cols": self.mangle_dupe_cols, "engine": self.engine, "converters": self.converters, "true_values": self.true_values, "false_values": self.false_values, "skipinitialspace": self.skipinitialspace, "skiprows": self.skiprows, "nrows": self.nrows, "na_values": self.na_values, "keep_default_na": self.keep_default_na, "na_filter": self.na_filter, "verbose": self.verbose, "skip_blank_lines": self.skip_blank_lines, "thousands": self.thousands, "decimal": self.decimal, "lineterminator": self.lineterminator, "quotechar": self.quotechar, "quoting": self.quoting, "escapechar": self.escapechar, "comment": self.comment, "encoding": self.encoding, "dialect": self.dialect, "error_bad_lines": self.error_bad_lines, "warn_bad_lines": self.warn_bad_lines, "skipfooter": self.skipfooter, "doublequote": self.doublequote, "memory_map": self.memory_map, "float_precision": self.float_precision, "chunksize": self.chunksize, "encoding_errors": self.encoding_errors, "on_bad_lines": self.on_bad_lines, "date_format": self.date_format, } # some kwargs must not be passed if they don't have a default value # some others are deprecated and we can also not pass them if they are the default value for pd_read_csv_parameter in _PANDAS_READ_CSV_NO_DEFAULT_PARAMETERS + _PANDAS_READ_CSV_DEPRECATED_PARAMETERS: if pd_read_csv_kwargs[pd_read_csv_parameter] == getattr(CsvConfig() , _UpperCamelCase ): del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 2.0 new arguments if not (datasets.config.PANDAS_VERSION.major >= 2): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_2_0_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] # Remove 1.3 new arguments if not (datasets.config.PANDAS_VERSION.major >= 1 and datasets.config.PANDAS_VERSION.minor >= 3): for pd_read_csv_parameter in _PANDAS_READ_CSV_NEW_1_3_0_PARAMETERS: del pd_read_csv_kwargs[pd_read_csv_parameter] return pd_read_csv_kwargs class a__ ( datasets.ArrowBasedBuilder ): _SCREAMING_SNAKE_CASE : int = CsvConfig def _lowerCamelCase ( self ): """simple docstring""" return datasets.DatasetInfo(features=self.config.features ) def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if not self.config.data_files: raise ValueError(f'''At least one data file must be specified, but got data_files={self.config.data_files}''' ) _lowercase : List[str] = dl_manager.download_and_extract(self.config.data_files ) if isinstance(_UpperCamelCase , (str, list, tuple) ): _lowercase : List[Any] = data_files if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowercase : Union[str, Any] = [files] _lowercase : int = [dl_manager.iter_files(_UpperCamelCase ) for file in files] return [datasets.SplitGenerator(name=datasets.Split.TRAIN , gen_kwargs={"files": files} )] _lowercase : List[Any] = [] for split_name, files in data_files.items(): if isinstance(_UpperCamelCase , _UpperCamelCase ): _lowercase : Tuple = [files] _lowercase : Tuple = [dl_manager.iter_files(_UpperCamelCase ) for file in files] splits.append(datasets.SplitGenerator(name=_UpperCamelCase , gen_kwargs={"files": files} ) ) return splits def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" if self.config.features is not None: _lowercase : Optional[int] = self.config.features.arrow_schema if all(not require_storage_cast(_UpperCamelCase ) for feature in self.config.features.values() ): # cheaper cast _lowercase : int = pa.Table.from_arrays([pa_table[field.name] for field in schema] , schema=_UpperCamelCase ) else: # more expensive cast; allows str <-> int/float or str to Audio for example _lowercase : Optional[int] = table_cast(_UpperCamelCase , _UpperCamelCase ) return pa_table def _lowerCamelCase ( self , _UpperCamelCase ): """simple docstring""" _lowercase : Union[str, Any] = self.config.features.arrow_schema if self.config.features else None # dtype allows reading an int column as str _lowercase : Any = ( { name: dtype.to_pandas_dtype() if not require_storage_cast(_UpperCamelCase ) else object for name, dtype, feature in zip(schema.names , schema.types , self.config.features.values() ) } if schema is not None else None ) for file_idx, file in enumerate(itertools.chain.from_iterable(_UpperCamelCase ) ): _lowercase : List[str] = pd.read_csv(_UpperCamelCase , iterator=_UpperCamelCase , dtype=_UpperCamelCase , **self.config.pd_read_csv_kwargs ) try: for batch_idx, df in enumerate(_UpperCamelCase ): _lowercase : Optional[Any] = pa.Table.from_pandas(_UpperCamelCase ) # Uncomment for debugging (will print the Arrow table size and elements) # logger.warning(f"pa_table: {pa_table} num rows: {pa_table.num_rows}") # logger.warning('\n'.join(str(pa_table.slice(i, 1).to_pydict()) for i in range(pa_table.num_rows))) yield (file_idx, batch_idx), self._cast_table(_UpperCamelCase ) except ValueError as e: logger.error(f'''Failed to read file \'{file}\' with error {type(_UpperCamelCase )}: {e}''' ) raise
245
0
'''simple docstring''' import argparse import logging import sys from unittest.mock import patch import run_glue_deebert from transformers.testing_utils import TestCasePlus, get_gpu_count, require_torch_non_multi_gpu, slow logging.basicConfig(level=logging.DEBUG) UpperCamelCase__ : Tuple = logging.getLogger() def lowerCAmelCase_ ( ): __SCREAMING_SNAKE_CASE : List[Any] = argparse.ArgumentParser() parser.add_argument("""-f""" ) __SCREAMING_SNAKE_CASE : Optional[int] = parser.parse_args() return args.f class _UpperCamelCase ( lowerCamelCase__ ): '''simple docstring''' def UpperCamelCase__ ( self : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : Tuple = logging.StreamHandler(sys.stdout ) logger.addHandler(lowerCAmelCase__ ) def UpperCamelCase__ ( self : Union[str, Any] , lowerCAmelCase__ : str ): """simple docstring""" __SCREAMING_SNAKE_CASE : str = get_gpu_count() if n_gpu > 1: pass # XXX: doesn't quite work with n_gpu > 1 https://github.com/huggingface/transformers/issues/10560 # script = f"{self.examples_dir_str}/research_projects/deebert/run_glue_deebert.py" # distributed_args = f"-m torch.distributed.launch --nproc_per_node={n_gpu} {script}".split() # cmd = [sys.executable] + distributed_args + args # execute_subprocess_async(cmd, env=self.get_env()) # XXX: test the results - need to save them first into .json file else: args.insert(0 , """run_glue_deebert.py""" ) with patch.object(lowerCAmelCase__ , """argv""" , lowerCAmelCase__ ): __SCREAMING_SNAKE_CASE : Optional[Any] = run_glue_deebert.main() for value in result.values(): self.assertGreaterEqual(lowerCAmelCase__ , 0.6_66 ) @slow @require_torch_non_multi_gpu def UpperCamelCase__ ( self : Dict ): """simple docstring""" __SCREAMING_SNAKE_CASE : Optional[int] = """ --model_type roberta --model_name_or_path roberta-base --task_name MRPC --do_train --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --max_seq_length 128 --per_gpu_eval_batch_size=1 --per_gpu_train_batch_size=8 --learning_rate 2e-4 --num_train_epochs 3 --overwrite_output_dir --seed 42 --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --save_steps 0 --overwrite_cache --eval_after_first_stage """.split() self.run_and_check(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : str = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --eval_each_highway --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase__ ) __SCREAMING_SNAKE_CASE : List[str] = """ --model_type roberta --model_name_or_path ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --task_name MRPC --do_eval --do_lower_case --data_dir ./tests/fixtures/tests_samples/MRPC/ --output_dir ./examples/deebert/saved_models/roberta-base/MRPC/two_stage --plot_data_dir ./examples/deebert/results/ --max_seq_length 128 --early_exit_entropy 0.1 --eval_highway --overwrite_cache --per_gpu_eval_batch_size=1 """.split() self.run_and_check(lowerCAmelCase__ )
178
'''simple docstring''' UpperCamelCase__ : List[str] = '''0.21.0''' from .accelerator import Accelerator from .big_modeling import ( cpu_offload, cpu_offload_with_hook, disk_offload, dispatch_model, init_empty_weights, init_on_device, load_checkpoint_and_dispatch, ) from .data_loader import skip_first_batches from .launchers import debug_launcher, notebook_launcher from .state import PartialState from .utils import ( DeepSpeedPlugin, DistributedDataParallelKwargs, DistributedType, FullyShardedDataParallelPlugin, GradScalerKwargs, InitProcessGroupKwargs, find_executable_batch_size, infer_auto_device_map, is_rich_available, load_checkpoint_in_model, synchronize_rng_states, ) if is_rich_available(): from .utils import rich
178
1
'''simple docstring''' # tests directory-specific settings - this file is run automatically # by pytest before any tests are run import doctest import sys import warnings from os.path import abspath, dirname, join import _pytest from transformers.testing_utils import HfDoctestModule, HfDocTestParser # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowerCAmelCase : Any = abspath(join(dirname(__file__), """src""")) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action="""ignore""", category=FutureWarning) def _A ( A ) -> Optional[Any]: config.addinivalue_line( "markers" ,"is_pt_tf_cross_test: mark test to run only when PT and TF interactions are tested" ) config.addinivalue_line( "markers" ,"is_pt_flax_cross_test: mark test to run only when PT and FLAX interactions are tested" ) config.addinivalue_line("markers" ,"is_pipeline_test: mark test to run only when pipelines are tested" ) config.addinivalue_line("markers" ,"is_staging_test: mark test to run only in the staging environment" ) config.addinivalue_line("markers" ,"accelerate_tests: mark test that require accelerate" ) config.addinivalue_line("markers" ,"tool_tests: mark the tool tests that are run on their specific schedule" ) def _A ( A ) -> int: from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(A ) def _A ( A ) -> str: from transformers.testing_utils import pytest_terminal_summary_main lowercase : Optional[int] = terminalreporter.config.getoption("--make-reports" ) if make_reports: pytest_terminal_summary_main(A ,id=A ) def _A ( A ,A ) -> Optional[int]: # If no tests are collected, pytest exists with code 5, which makes the CI fail. if exitstatus == 5: lowercase : Any = 0 # Doctest custom flag to ignore output. lowerCAmelCase : Optional[Any] = doctest.register_optionflag("""IGNORE_RESULT""") lowerCAmelCase : Tuple = doctest.OutputChecker class _UpperCamelCase ( SCREAMING_SNAKE_CASE): '''simple docstring''' def a__ ( self , a_ , a_ , a_ ) -> Any: if IGNORE_RESULT & optionflags: return True return OutputChecker.check_output(self , a_ , a_ , a_ ) lowerCAmelCase : Union[str, Any] = CustomOutputChecker lowerCAmelCase : Optional[Any] = HfDoctestModule lowerCAmelCase : Tuple = HfDocTestParser
372
'''simple docstring''' import baseaa def _A ( A ) -> bytes: return baseaa.aaaencode(string.encode("utf-8" ) ) def _A ( A ) -> str: return baseaa.aaadecode(A ).decode("utf-8" ) if __name__ == "__main__": import doctest doctest.testmod()
372
1
"""simple docstring""" import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() _lowerCamelCase = logging.get_logger(__name__) _lowerCamelCase = { 'post_extract_proj': 'feature_projection', 'encoder.pos_conv.0': 'encoder.pos_conv_embed.conv', 'self_attn.k_proj': 'encoder.layers.*.attention.k_proj', 'self_attn.v_proj': 'encoder.layers.*.attention.v_proj', 'self_attn.q_proj': 'encoder.layers.*.attention.q_proj', 'self_attn.out_proj': 'encoder.layers.*.attention.out_proj', 'self_attn_layer_norm': 'encoder.layers.*.layer_norm', 'fc1': 'encoder.layers.*.feed_forward.intermediate_dense', 'fc2': 'encoder.layers.*.feed_forward.output_dense', 'final_layer_norm': 'encoder.layers.*.final_layer_norm', 'encoder.upsample.0': 'encoder.upsample.projection', 'encoder.layer_norm': 'encoder.layer_norm', 'w2v_model.layer_norm': 'layer_norm', 'w2v_encoder.proj': 'lm_head', 'mask_emb': 'masked_spec_embed', } def __lowercase ( lowerCamelCase_ : List[str] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int , lowerCamelCase_ : Any , lowerCamelCase_ : Dict ): for attribute in key.split("." ): SCREAMING_SNAKE_CASE__ = getattr(lowerCamelCase_ , lowerCamelCase_ ) if weight_type is not None: SCREAMING_SNAKE_CASE__ = getattr(lowerCamelCase_ , lowerCamelCase_ ).shape else: SCREAMING_SNAKE_CASE__ = hf_pointer.shape assert hf_shape == value.shape, ( F'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' F''' {value.shape} for {full_name}''' ) if weight_type == "weight": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_g": SCREAMING_SNAKE_CASE__ = value elif weight_type == "weight_v": SCREAMING_SNAKE_CASE__ = value elif weight_type == "bias": SCREAMING_SNAKE_CASE__ = value else: SCREAMING_SNAKE_CASE__ = value logger.info(F'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def __lowercase ( lowerCamelCase_ : Union[str, Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[str] ): SCREAMING_SNAKE_CASE__ = [] SCREAMING_SNAKE_CASE__ = fairseq_model.state_dict() SCREAMING_SNAKE_CASE__ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): SCREAMING_SNAKE_CASE__ = False if "conv_layers" in name: load_conv_layer( lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , hf_model.config.feat_extract_norm == "group" , ) SCREAMING_SNAKE_CASE__ = True else: for key, mapped_key in MAPPING.items(): SCREAMING_SNAKE_CASE__ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: SCREAMING_SNAKE_CASE__ = True if "*" in mapped_key: SCREAMING_SNAKE_CASE__ = name.split(lowerCamelCase_ )[0].split("." )[-2] SCREAMING_SNAKE_CASE__ = mapped_key.replace("*" , lowerCamelCase_ ) if "weight_g" in name: SCREAMING_SNAKE_CASE__ = "weight_g" elif "weight_v" in name: SCREAMING_SNAKE_CASE__ = "weight_v" elif "weight" in name: SCREAMING_SNAKE_CASE__ = "weight" elif "bias" in name: SCREAMING_SNAKE_CASE__ = "bias" else: SCREAMING_SNAKE_CASE__ = None set_recursively(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) continue if not is_used: unused_weights.append(lowerCamelCase_ ) logger.warning(F'''Unused weights: {unused_weights}''' ) def __lowercase ( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[str] , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Dict ): SCREAMING_SNAKE_CASE__ = full_name.split("conv_layers." )[-1] SCREAMING_SNAKE_CASE__ = name.split("." ) SCREAMING_SNAKE_CASE__ = int(items[0] ) SCREAMING_SNAKE_CASE__ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'''{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was''' " found." ) SCREAMING_SNAKE_CASE__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'''{full_name} has size {value.shape}, but''' F''' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.''' ) SCREAMING_SNAKE_CASE__ = value logger.info(F'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(lowerCamelCase_ ) def __lowercase ( lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): SCREAMING_SNAKE_CASE__ = SEWConfig() if is_finetuned: SCREAMING_SNAKE_CASE__ = model.wav_encoder.wav_model.cfg else: SCREAMING_SNAKE_CASE__ = model.cfg SCREAMING_SNAKE_CASE__ = fs_config.conv_bias SCREAMING_SNAKE_CASE__ = eval(fs_config.conv_feature_layers ) SCREAMING_SNAKE_CASE__ = [x[0] for x in conv_layers] SCREAMING_SNAKE_CASE__ = [x[1] for x in conv_layers] SCREAMING_SNAKE_CASE__ = [x[2] for x in conv_layers] SCREAMING_SNAKE_CASE__ = "gelu" SCREAMING_SNAKE_CASE__ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" SCREAMING_SNAKE_CASE__ = 0.0 SCREAMING_SNAKE_CASE__ = fs_config.activation_fn.name SCREAMING_SNAKE_CASE__ = fs_config.encoder_embed_dim SCREAMING_SNAKE_CASE__ = 0.02 SCREAMING_SNAKE_CASE__ = fs_config.encoder_ffn_embed_dim SCREAMING_SNAKE_CASE__ = 1e-5 SCREAMING_SNAKE_CASE__ = fs_config.encoder_layerdrop SCREAMING_SNAKE_CASE__ = fs_config.encoder_attention_heads SCREAMING_SNAKE_CASE__ = fs_config.conv_pos_groups SCREAMING_SNAKE_CASE__ = fs_config.conv_pos SCREAMING_SNAKE_CASE__ = len(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = fs_config.encoder_layers SCREAMING_SNAKE_CASE__ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: SCREAMING_SNAKE_CASE__ = model.cfg SCREAMING_SNAKE_CASE__ = fs_config.final_dropout SCREAMING_SNAKE_CASE__ = fs_config.layerdrop SCREAMING_SNAKE_CASE__ = fs_config.activation_dropout SCREAMING_SNAKE_CASE__ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 SCREAMING_SNAKE_CASE__ = fs_config.attention_dropout SCREAMING_SNAKE_CASE__ = fs_config.dropout_input SCREAMING_SNAKE_CASE__ = fs_config.dropout SCREAMING_SNAKE_CASE__ = fs_config.mask_channel_length SCREAMING_SNAKE_CASE__ = fs_config.mask_channel_prob SCREAMING_SNAKE_CASE__ = fs_config.mask_length SCREAMING_SNAKE_CASE__ = fs_config.mask_prob SCREAMING_SNAKE_CASE__ = "Wav2Vec2FeatureExtractor" SCREAMING_SNAKE_CASE__ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def __lowercase ( lowerCamelCase_ : List[Any] , lowerCamelCase_ : Any , lowerCamelCase_ : List[str]=None , lowerCamelCase_ : str=None , lowerCamelCase_ : Union[str, Any]=True ): if is_finetuned: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: SCREAMING_SNAKE_CASE__ = SEWConfig.from_pretrained(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = convert_config(model[0] , lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = model[0].eval() SCREAMING_SNAKE_CASE__ = True if config.feat_extract_norm == "layer" else False SCREAMING_SNAKE_CASE__ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=16000 , padding_value=0 , do_normalize=lowerCamelCase_ , return_attention_mask=lowerCamelCase_ , ) if is_finetuned: if dict_path: SCREAMING_SNAKE_CASE__ = Dictionary.load(lowerCamelCase_ ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq SCREAMING_SNAKE_CASE__ = target_dict.pad_index SCREAMING_SNAKE_CASE__ = target_dict.bos_index SCREAMING_SNAKE_CASE__ = target_dict.pad_index SCREAMING_SNAKE_CASE__ = target_dict.bos_index SCREAMING_SNAKE_CASE__ = target_dict.eos_index SCREAMING_SNAKE_CASE__ = len(target_dict.symbols ) SCREAMING_SNAKE_CASE__ = os.path.join(lowerCamelCase_ , "vocab.json" ) if not os.path.isdir(lowerCamelCase_ ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(lowerCamelCase_ ) ) return os.makedirs(lowerCamelCase_ , exist_ok=lowerCamelCase_ ) with open(lowerCamelCase_ , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = WavaVecaCTCTokenizer( lowerCamelCase_ , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=lowerCamelCase_ , ) SCREAMING_SNAKE_CASE__ = WavaVecaProcessor(feature_extractor=lowerCamelCase_ , tokenizer=lowerCamelCase_ ) processor.save_pretrained(lowerCamelCase_ ) SCREAMING_SNAKE_CASE__ = SEWForCTC(lowerCamelCase_ ) else: SCREAMING_SNAKE_CASE__ = SEWModel(lowerCamelCase_ ) feature_extractor.save_pretrained(lowerCamelCase_ ) recursively_load_weights(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) hf_model.save_pretrained(lowerCamelCase_ ) if __name__ == "__main__": _lowerCamelCase = argparse.ArgumentParser() parser.add_argument('--pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') parser.add_argument('--checkpoint_path', default=None, type=str, help='Path to fairseq checkpoint') parser.add_argument('--dict_path', default=None, type=str, help='Path to dict of fine-tuned model') parser.add_argument('--config_path', default=None, type=str, help='Path to hf config.json of model to convert') parser.add_argument( '--is_finetuned', action='store_true', help='Whether the model to convert is a fine-tuned model or not' ) _lowerCamelCase = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
112
"""simple docstring""" import numpy as np import torch from imwatermark import WatermarkEncoder # Copied from https://github.com/Stability-AI/generative-models/blob/613af104c6b85184091d42d374fef420eddb356d/scripts/demo/streamlit_helpers.py#L66 _lowerCamelCase = 0b1011_0011_1110_1100_1001_0000_0111_1011_1011_0001_1001_1110 # bin(x)[2:] gives bits of x as str, use int to convert them to 0/1 _lowerCamelCase = [int(bit) for bit in bin(WATERMARK_MESSAGE)[2:]] class lowerCamelCase_ : """simple docstring""" def __init__( self ): SCREAMING_SNAKE_CASE__ = WATERMARK_BITS SCREAMING_SNAKE_CASE__ = WatermarkEncoder() self.encoder.set_watermark("bits" , self.watermark ) def lowerCAmelCase__ ( self , UpperCAmelCase__ ): # can't encode images that are smaller than 256 if images.shape[-1] < 256: return images SCREAMING_SNAKE_CASE__ = (255 * (images / 2 + 0.5)).cpu().permute(0 , 2 , 3 , 1 ).float().numpy() SCREAMING_SNAKE_CASE__ = [self.encoder.encode(UpperCAmelCase__ , "dwtDct" ) for image in images] SCREAMING_SNAKE_CASE__ = torch.from_numpy(np.array(UpperCAmelCase__ ) ).permute(0 , 3 , 1 , 2 ) SCREAMING_SNAKE_CASE__ = torch.clamp(2 * (images / 255 - 0.5) , min=-1.0 , max=1.0 ) return images
112
1
"""simple docstring""" import argparse import json from pathlib import Path import requests import torch from huggingface_hub import cached_download, hf_hub_url from PIL import Image from transformers import DPTConfig, DPTForDepthEstimation, DPTForSemanticSegmentation, DPTImageProcessor from transformers.utils import logging logging.set_verbosity_info() _lowerCAmelCase = logging.get_logger(__name__) def __UpperCamelCase ( snake_case__ ): A_ : List[str] = DPTConfig(embedding_type="""hybrid""" ) if "large" in checkpoint_url: A_ : int = 1_024 A_ : Union[str, Any] = 4_096 A_ : Any = 24 A_ : Tuple = 16 A_ : Tuple = [5, 11, 17, 23] A_ : str = [256, 512, 1_024, 1_024] A_ : Dict = (1, 384, 384) if "nyu" or "midas" in checkpoint_url: A_ : List[str] = 768 A_ : Optional[Any] = [1, 1, 1, 0.5] A_ : str = [256, 512, 768, 768] A_ : str = 150 A_ : int = 16 A_ : List[Any] = (1, 384, 384) A_ : int = False A_ : Any = """project""" if "ade" in checkpoint_url: A_ : Optional[int] = True A_ : List[Any] = 768 A_ : Tuple = [1, 1, 1, 0.5] A_ : Optional[int] = 150 A_ : Optional[Any] = 16 A_ : List[Any] = """huggingface/label-files""" A_ : Optional[int] = """ade20k-id2label.json""" A_ : Optional[int] = json.load(open(cached_download(hf_hub_url(snake_case__ , snake_case__ , repo_type="""dataset""" ) ) , """r""" ) ) A_ : Optional[int] = {int(snake_case__ ): v for k, v in idalabel.items()} A_ : Any = idalabel A_ : Tuple = {v: k for k, v in idalabel.items()} A_ : Dict = [1, 150, 480, 480] return config, expected_shape def __UpperCamelCase ( snake_case__ ): A_ : Tuple = ["""pretrained.model.head.weight""", """pretrained.model.head.bias"""] for k in ignore_keys: state_dict.pop(snake_case__ , snake_case__ ) def __UpperCamelCase ( snake_case__ ): if ( "pretrained.model" in name and "cls_token" not in name and "pos_embed" not in name and "patch_embed" not in name ): A_ : List[Any] = name.replace("""pretrained.model""" , """dpt.encoder""" ) if "pretrained.model" in name: A_ : str = name.replace("""pretrained.model""" , """dpt.embeddings""" ) if "patch_embed" in name: A_ : Union[str, Any] = name.replace("""patch_embed""" , """""" ) if "pos_embed" in name: A_ : Optional[int] = name.replace("""pos_embed""" , """position_embeddings""" ) if "attn.proj" in name: A_ : Tuple = name.replace("""attn.proj""" , """attention.output.dense""" ) if "proj" in name and "project" not in name: A_ : List[Any] = name.replace("""proj""" , """projection""" ) if "blocks" in name: A_ : str = name.replace("""blocks""" , """layer""" ) if "mlp.fc1" in name: A_ : List[Any] = name.replace("""mlp.fc1""" , """intermediate.dense""" ) if "mlp.fc2" in name: A_ : List[str] = name.replace("""mlp.fc2""" , """output.dense""" ) if "norm1" in name and "backbone" not in name: A_ : List[Any] = name.replace("""norm1""" , """layernorm_before""" ) if "norm2" in name and "backbone" not in name: A_ : Union[str, Any] = name.replace("""norm2""" , """layernorm_after""" ) if "scratch.output_conv" in name: A_ : List[Any] = name.replace("""scratch.output_conv""" , """head""" ) if "scratch" in name: A_ : str = name.replace("""scratch""" , """neck""" ) if "layer1_rn" in name: A_ : Optional[int] = name.replace("""layer1_rn""" , """convs.0""" ) if "layer2_rn" in name: A_ : Optional[Any] = name.replace("""layer2_rn""" , """convs.1""" ) if "layer3_rn" in name: A_ : Any = name.replace("""layer3_rn""" , """convs.2""" ) if "layer4_rn" in name: A_ : List[Any] = name.replace("""layer4_rn""" , """convs.3""" ) if "refinenet" in name: A_ : Optional[Any] = int(name[len("""neck.refinenet""" ) : len("""neck.refinenet""" ) + 1] ) # tricky here: we need to map 4 to 0, 3 to 1, 2 to 2 and 1 to 3 A_ : Optional[Any] = name.replace(F"""refinenet{layer_idx}""" , F"""fusion_stage.layers.{abs(layer_idx-4 )}""" ) if "out_conv" in name: A_ : int = name.replace("""out_conv""" , """projection""" ) if "resConfUnit1" in name: A_ : Optional[Any] = name.replace("""resConfUnit1""" , """residual_layer1""" ) if "resConfUnit2" in name: A_ : str = name.replace("""resConfUnit2""" , """residual_layer2""" ) if "conv1" in name: A_ : Tuple = name.replace("""conv1""" , """convolution1""" ) if "conv2" in name: A_ : Any = name.replace("""conv2""" , """convolution2""" ) # readout blocks if "pretrained.act_postprocess1.0.project.0" in name: A_ : Tuple = name.replace("""pretrained.act_postprocess1.0.project.0""" , """neck.reassemble_stage.readout_projects.0.0""" ) if "pretrained.act_postprocess2.0.project.0" in name: A_ : Union[str, Any] = name.replace("""pretrained.act_postprocess2.0.project.0""" , """neck.reassemble_stage.readout_projects.1.0""" ) if "pretrained.act_postprocess3.0.project.0" in name: A_ : List[Any] = name.replace("""pretrained.act_postprocess3.0.project.0""" , """neck.reassemble_stage.readout_projects.2.0""" ) if "pretrained.act_postprocess4.0.project.0" in name: A_ : List[Any] = name.replace("""pretrained.act_postprocess4.0.project.0""" , """neck.reassemble_stage.readout_projects.3.0""" ) # resize blocks if "pretrained.act_postprocess1.3" in name: A_ : Any = name.replace("""pretrained.act_postprocess1.3""" , """neck.reassemble_stage.layers.0.projection""" ) if "pretrained.act_postprocess1.4" in name: A_ : List[str] = name.replace("""pretrained.act_postprocess1.4""" , """neck.reassemble_stage.layers.0.resize""" ) if "pretrained.act_postprocess2.3" in name: A_ : Optional[int] = name.replace("""pretrained.act_postprocess2.3""" , """neck.reassemble_stage.layers.1.projection""" ) if "pretrained.act_postprocess2.4" in name: A_ : Optional[Any] = name.replace("""pretrained.act_postprocess2.4""" , """neck.reassemble_stage.layers.1.resize""" ) if "pretrained.act_postprocess3.3" in name: A_ : str = name.replace("""pretrained.act_postprocess3.3""" , """neck.reassemble_stage.layers.2.projection""" ) if "pretrained.act_postprocess4.3" in name: A_ : Optional[int] = name.replace("""pretrained.act_postprocess4.3""" , """neck.reassemble_stage.layers.3.projection""" ) if "pretrained.act_postprocess4.4" in name: A_ : Optional[Any] = name.replace("""pretrained.act_postprocess4.4""" , """neck.reassemble_stage.layers.3.resize""" ) if "pretrained" in name: A_ : str = name.replace("""pretrained""" , """dpt""" ) if "bn" in name: A_ : str = name.replace("""bn""" , """batch_norm""" ) if "head" in name: A_ : List[str] = name.replace("""head""" , """head.head""" ) if "encoder.norm" in name: A_ : Dict = name.replace("""encoder.norm""" , """layernorm""" ) if "auxlayer" in name: A_ : Union[str, Any] = name.replace("""auxlayer""" , """auxiliary_head.head""" ) if "backbone" in name: A_ : Dict = name.replace("""backbone""" , """backbone.bit.encoder""" ) if ".." in name: A_ : Any = name.replace("""..""" , """.""" ) if "stem.conv" in name: A_ : str = name.replace("""stem.conv""" , """bit.embedder.convolution""" ) if "blocks" in name: A_ : str = name.replace("""blocks""" , """layers""" ) if "convolution" in name and "backbone" in name: A_ : Optional[int] = name.replace("""convolution""" , """conv""" ) if "layer" in name and "backbone" in name: A_ : List[str] = name.replace("""layer""" , """layers""" ) if "backbone.bit.encoder.bit" in name: A_ : Dict = name.replace("""backbone.bit.encoder.bit""" , """backbone.bit""" ) if "embedder.conv" in name: A_ : int = name.replace("""embedder.conv""" , """embedder.convolution""" ) if "backbone.bit.encoder.stem.norm" in name: A_ : List[str] = name.replace("""backbone.bit.encoder.stem.norm""" , """backbone.bit.embedder.norm""" ) return name def __UpperCamelCase ( snake_case__ , snake_case__ ): for i in range(config.num_hidden_layers ): # read in weights + bias of input projection layer (in timm, this is a single matrix + bias) A_ : Optional[Any] = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.weight""" ) A_ : Any = state_dict.pop(F"""dpt.encoder.layer.{i}.attn.qkv.bias""" ) # next, add query, keys and values (in that order) to the state dict A_ : Tuple = in_proj_weight[: config.hidden_size, :] A_ : Optional[int] = in_proj_bias[: config.hidden_size] A_ : List[Any] = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] A_ : Tuple = in_proj_bias[ config.hidden_size : config.hidden_size * 2 ] A_ : Union[str, Any] = in_proj_weight[ -config.hidden_size :, : ] A_ : Tuple = in_proj_bias[-config.hidden_size :] def __UpperCamelCase ( ): A_ : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" A_ : Optional[int] = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def __UpperCamelCase ( snake_case__ , snake_case__ , snake_case__ , snake_case__ , snake_case__ ): A_ , A_ : Optional[int] = get_dpt_config(snake_case__ ) # load original state_dict from URL # state_dict = torch.hub.load_state_dict_from_url(checkpoint_url, map_location="cpu") A_ : int = torch.load(snake_case__ , map_location="""cpu""" ) # remove certain keys remove_ignore_keys_(snake_case__ ) # rename keys for key in state_dict.copy().keys(): A_ : Union[str, Any] = state_dict.pop(snake_case__ ) A_ : int = val # read in qkv matrices read_in_q_k_v(snake_case__ , snake_case__ ) # load HuggingFace model A_ : Optional[Any] = DPTForSemanticSegmentation(snake_case__ ) if """ade""" in checkpoint_url else DPTForDepthEstimation(snake_case__ ) model.load_state_dict(snake_case__ ) model.eval() # Check outputs on an image A_ : List[str] = 480 if """ade""" in checkpoint_url else 384 A_ : str = DPTImageProcessor(size=snake_case__ ) A_ : int = prepare_img() A_ : int = image_processor(snake_case__ , return_tensors="""pt""" ) # forward pass A_ : int = model(**snake_case__ ).logits if """ade""" in checkpoint_url else model(**snake_case__ ).predicted_depth if show_prediction: A_ : str = ( torch.nn.functional.interpolate( outputs.unsqueeze(1 ) , size=(image.size[1], image.size[0]) , mode="""bicubic""" , align_corners=snake_case__ , ) .squeeze() .cpu() .numpy() ) Image.fromarray((prediction / prediction.max()) * 255 ).show() if pytorch_dump_folder_path is not None: Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"""Saving model to {pytorch_dump_folder_path}""" ) model.save_pretrained(snake_case__ ) print(F"""Saving image processor to {pytorch_dump_folder_path}""" ) image_processor.save_pretrained(snake_case__ ) if push_to_hub: model.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) image_processor.push_to_hub("""ybelkada/dpt-hybrid-midas""" ) if __name__ == "__main__": _lowerCAmelCase = argparse.ArgumentParser() # Required parameters parser.add_argument( "--checkpoint_url", default="https://github.com/intel-isl/DPT/releases/download/1_0/dpt_large-midas-2f21e586.pt", type=str, help="URL of the original DPT checkpoint you'd like to convert.", ) parser.add_argument( "--pytorch_dump_folder_path", default=None, type=str, required=False, help="Path to the output PyTorch model directory.", ) parser.add_argument( "--push_to_hub", action="store_true", ) parser.add_argument( "--model_name", default="dpt-large", type=str, help="Name of the model, in case you're pushing to the hub.", ) parser.add_argument( "--show_prediction", action="store_true", ) _lowerCAmelCase = parser.parse_args() convert_dpt_checkpoint( args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub, args.model_name, args.show_prediction )
180
"""simple docstring""" from __future__ import annotations def __UpperCamelCase ( snake_case__ , snake_case__ ): if len(snake_case__ ) == 0: return False A_ : Union[str, Any] = len(snake_case__ ) // 2 if a_list[midpoint] == item: return True if item < a_list[midpoint]: return binary_search(a_list[:midpoint] , snake_case__ ) else: return binary_search(a_list[midpoint + 1 :] , snake_case__ ) if __name__ == "__main__": _lowerCAmelCase = input("Enter numbers separated by comma:\n").strip() _lowerCAmelCase = [int(item.strip()) for item in user_input.split(",")] _lowerCAmelCase = int(input("Enter the number to be found in the list:\n").strip()) _lowerCAmelCase = "" if binary_search(sequence, target) else "not " print(F'{target} was {not_str}found in {sequence}')
180
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available UpperCAmelCase_ = { """configuration_upernet""": ["""UperNetConfig"""], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: UpperCAmelCase_ = [ """UperNetForSemanticSegmentation""", """UperNetPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_upernet import UperNetConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_upernet import UperNetForSemanticSegmentation, UperNetPreTrainedModel else: import sys UpperCAmelCase_ = _LazyModule(__name__, globals()["""__file__"""], _import_structure, module_spec=__spec__)
436
import math def __magic_name__ ( lowercase ) -> bool: """simple docstring""" lowercase_ : Optional[Any] = math.loga(math.sqrt(4 * positive_integer + 1 ) / 2 + 1 / 2 ) return exponent == int(lowercase ) def __magic_name__ ( lowercase = 1 / 12345 ) -> int: """simple docstring""" lowercase_ : Dict = 0 lowercase_ : List[Any] = 0 lowercase_ : List[str] = 3 while True: lowercase_ : int = (integer**2 - 1) / 4 # if candidate is an integer, then there is a partition for k if partition_candidate == int(lowercase ): lowercase_ : Optional[int] = int(lowercase ) total_partitions += 1 if check_partition_perfect(lowercase ): perfect_partitions += 1 if perfect_partitions > 0: if perfect_partitions / total_partitions < max_proportion: return int(lowercase ) integer += 1 if __name__ == "__main__": print(F'''{solution() = }''')
436
1
def _a ( lowercase__ : int , lowercase__ : int ): '''simple docstring''' return int((input_a, input_a).count(0 ) == 0 ) def _a ( ): '''simple docstring''' assert and_gate(0 , 0 ) == 0 assert and_gate(0 , 1 ) == 0 assert and_gate(1 , 0 ) == 0 assert and_gate(1 , 1 ) == 1 if __name__ == "__main__": test_and_gate() print(and_gate(1, 0)) print(and_gate(0, 0)) print(and_gate(0, 1)) print(and_gate(1, 1))
85
'''simple docstring''' import logging from transformers.configuration_utils import PretrainedConfig lowercase : int = logging.getLogger(__name__) class _a (a__ ): '''simple docstring''' lowerCAmelCase_ : Union[str, Any] = """masked_bert""" def __init__( self ,__a=30_522 ,__a=768 ,__a=12 ,__a=12 ,__a=3_072 ,__a="gelu" ,__a=0.1 ,__a=0.1 ,__a=512 ,__a=2 ,__a=0.02 ,__a=1E-12 ,__a=0 ,__a="topK" ,__a="constant" ,__a=0.0 ,**__a ,) -> List[str]: super().__init__(pad_token_id=__a ,**__a ) snake_case : Dict = vocab_size snake_case : Optional[Any] = hidden_size snake_case : Dict = num_hidden_layers snake_case : List[Any] = num_attention_heads snake_case : Dict = hidden_act snake_case : Any = intermediate_size snake_case : Optional[int] = hidden_dropout_prob snake_case : Optional[Any] = attention_probs_dropout_prob snake_case : List[Any] = max_position_embeddings snake_case : int = type_vocab_size snake_case : int = initializer_range snake_case : int = layer_norm_eps snake_case : Any = pruning_method snake_case : Union[str, Any] = mask_init snake_case : int = mask_scale
116
0
'''simple docstring''' import gc import random import unittest import numpy as np import torch from PIL import Image from diffusers import ( DDIMScheduler, KandinskyVaaControlnetImgaImgPipeline, KandinskyVaaPriorEmbaEmbPipeline, UNetaDConditionModel, VQModel, ) from diffusers.utils import floats_tensor, load_image, load_numpy, slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..test_pipelines_common import PipelineTesterMixin, assert_mean_pixel_difference enable_full_determinism() class __SCREAMING_SNAKE_CASE ( lowercase__ , unittest.TestCase ): lowerCamelCase_ = KandinskyVaaControlnetImgaImgPipeline lowerCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase_ = ['image_embeds', 'negative_image_embeds', 'image', 'hint'] lowerCamelCase_ = [ 'generator', 'height', 'width', 'strength', 'guidance_scale', 'num_inference_steps', 'return_dict', 'guidance_scale', 'num_images_per_prompt', 'output_type', 'return_dict', ] lowerCamelCase_ = False @property def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' return 32 @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' return 32 @property def lowerCamelCase_ ( self : Optional[Any] ): '''simple docstring''' return self.time_input_dim @property def lowerCamelCase_ ( self : str ): '''simple docstring''' return self.time_input_dim * 4 @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return 100 @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase : Union[str, Any] ={ '''in_channels''': 8, # Out channels is double in channels because predicts mean and variance '''out_channels''': 8, '''addition_embed_type''': '''image_hint''', '''down_block_types''': ('''ResnetDownsampleBlock2D''', '''SimpleCrossAttnDownBlock2D'''), '''up_block_types''': ('''SimpleCrossAttnUpBlock2D''', '''ResnetUpsampleBlock2D'''), '''mid_block_type''': '''UNetMidBlock2DSimpleCrossAttn''', '''block_out_channels''': (self.block_out_channels_a, self.block_out_channels_a * 2), '''layers_per_block''': 1, '''encoder_hid_dim''': self.text_embedder_hidden_size, '''encoder_hid_dim_type''': '''image_proj''', '''cross_attention_dim''': self.cross_attention_dim, '''attention_head_dim''': 4, '''resnet_time_scale_shift''': '''scale_shift''', '''class_embed_type''': None, } lowercase : Any =UNetaDConditionModel(**UpperCAmelCase__ ) return model @property def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' return { "block_out_channels": [32, 32, 64, 64], "down_block_types": [ "DownEncoderBlock2D", "DownEncoderBlock2D", "DownEncoderBlock2D", "AttnDownEncoderBlock2D", ], "in_channels": 3, "latent_channels": 4, "layers_per_block": 1, "norm_num_groups": 8, "norm_type": "spatial", "num_vq_embeddings": 12, "out_channels": 3, "up_block_types": ["AttnUpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D", "UpDecoderBlock2D"], "vq_embed_dim": 4, } @property def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' torch.manual_seed(0 ) lowercase : str =VQModel(**self.dummy_movq_kwargs ) return model def lowerCamelCase_ ( self : Any ): '''simple docstring''' lowercase : Dict =self.dummy_unet lowercase : List[str] =self.dummy_movq lowercase : str ={ '''num_train_timesteps''': 1000, '''beta_schedule''': '''linear''', '''beta_start''': 0.0_00_85, '''beta_end''': 0.0_12, '''clip_sample''': False, '''set_alpha_to_one''': False, '''steps_offset''': 0, '''prediction_type''': '''epsilon''', '''thresholding''': False, } lowercase : Union[str, Any] =DDIMScheduler(**UpperCAmelCase__ ) lowercase : Union[str, Any] ={ '''unet''': unet, '''scheduler''': scheduler, '''movq''': movq, } return components def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Optional[Any] , UpperCAmelCase__ : Any=0 ): '''simple docstring''' lowercase : str =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) lowercase : List[str] =floats_tensor((1, self.text_embedder_hidden_size) , rng=random.Random(seed + 1 ) ).to( UpperCAmelCase__ ) # create init_image lowercase : Union[str, Any] =floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) lowercase : str =image.cpu().permute(0 , 2 , 3 , 1 )[0] lowercase : Union[str, Any] =Image.fromarray(np.uinta(UpperCAmelCase__ ) ).convert('''RGB''' ).resize((256, 256) ) # create hint lowercase : Dict =floats_tensor((1, 3, 64, 64) , rng=random.Random(UpperCAmelCase__ ) ).to(UpperCAmelCase__ ) if str(UpperCAmelCase__ ).startswith('''mps''' ): lowercase : List[str] =torch.manual_seed(UpperCAmelCase__ ) else: lowercase : Optional[int] =torch.Generator(device=UpperCAmelCase__ ).manual_seed(UpperCAmelCase__ ) lowercase : int ={ '''image''': init_image, '''image_embeds''': image_embeds, '''negative_image_embeds''': negative_image_embeds, '''hint''': hint, '''generator''': generator, '''height''': 64, '''width''': 64, '''num_inference_steps''': 10, '''guidance_scale''': 7.0, '''strength''': 0.2, '''output_type''': '''np''', } return inputs def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : List[Any] ='''cpu''' lowercase : Any =self.get_dummy_components() lowercase : List[Any] =self.pipeline_class(**UpperCAmelCase__ ) lowercase : Union[str, Any] =pipe.to(UpperCAmelCase__ ) pipe.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : List[str] =pipe(**self.get_dummy_inputs(UpperCAmelCase__ ) ) lowercase : List[str] =output.images lowercase : Any =pipe( **self.get_dummy_inputs(UpperCAmelCase__ ) , return_dict=UpperCAmelCase__ , )[0] lowercase : Union[str, Any] =image[0, -3:, -3:, -1] lowercase : str =image_from_tuple[0, -3:, -3:, -1] assert image.shape == (1, 64, 64, 3) lowercase : Tuple =np.array( [0.54_98_50_34, 0.55_50_93_65, 0.52_56_15_04, 0.5_57_04_94, 0.5_59_38_18, 0.5_26_39_79, 0.50_28_56_43, 0.5_06_98_46, 0.51_19_67_36] ) assert ( np.abs(image_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_slice.flatten()}''' assert ( np.abs(image_from_tuple_slice.flatten() - expected_slice ).max() < 1E-2 ), F''' expected_slice {expected_slice}, but got {image_from_tuple_slice.flatten()}''' @slow @require_torch_gpu class __SCREAMING_SNAKE_CASE ( unittest.TestCase ): def lowerCamelCase_ ( self : List[str] ): '''simple docstring''' # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self : Tuple ): '''simple docstring''' lowercase : Any =load_numpy( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/kandinskyv22_controlnet_img2img_robotcat_fp16.npy''' ) lowercase : Union[str, Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinsky/cat.png''' ) lowercase : List[Any] =init_image.resize((512, 512) ) lowercase : List[Any] =load_image( '''https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main''' '''/kandinskyv22/hint_image_cat.png''' ) lowercase : List[str] =torch.from_numpy(np.array(UpperCAmelCase__ ) ).float() / 2_55.0 lowercase : Any =hint.permute(2 , 0 , 1 ).unsqueeze(0 ) lowercase : Tuple ='''A robot, 4k photo''' lowercase : Optional[int] =KandinskyVaaPriorEmbaEmbPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-prior''' , torch_dtype=torch.floataa ) pipe_prior.to(UpperCAmelCase__ ) lowercase : str =KandinskyVaaControlnetImgaImgPipeline.from_pretrained( '''kandinsky-community/kandinsky-2-2-controlnet-depth''' , torch_dtype=torch.floataa ) lowercase : Union[str, Any] =pipeline.to(UpperCAmelCase__ ) pipeline.set_progress_bar_config(disable=UpperCAmelCase__ ) lowercase : List[str] =torch.Generator(device='''cpu''' ).manual_seed(0 ) lowercase , lowercase : Tuple =pipe_prior( UpperCAmelCase__ , image=UpperCAmelCase__ , strength=0.85 , generator=UpperCAmelCase__ , negative_prompt='''''' , ).to_tuple() lowercase : Optional[int] =pipeline( image=UpperCAmelCase__ , image_embeds=UpperCAmelCase__ , negative_image_embeds=UpperCAmelCase__ , hint=UpperCAmelCase__ , generator=UpperCAmelCase__ , num_inference_steps=100 , height=512 , width=512 , strength=0.5 , output_type='''np''' , ) lowercase : Any =output.images[0] assert image.shape == (512, 512, 3) assert_mean_pixel_difference(UpperCAmelCase__ , UpperCAmelCase__ )
88
'''simple docstring''' import mpmath # for roots of unity import numpy as np class __SCREAMING_SNAKE_CASE : def __init__( self : Union[str, Any] , UpperCAmelCase__ : List[Any]=None , UpperCAmelCase__ : Optional[Any]=None ): '''simple docstring''' # Input as list lowercase : Optional[int] =list(poly_a or [0] )[:] lowercase : Optional[Any] =list(poly_b or [0] )[:] # Remove leading zero coefficients while self.polyA[-1] == 0: self.polyA.pop() lowercase : Any =len(self.polyA ) while self.polyB[-1] == 0: self.polyB.pop() lowercase : Dict =len(self.polyB ) # Add 0 to make lengths equal a power of 2 lowercase : int =int( 2 ** np.ceil(np.loga(len(self.polyA ) + len(self.polyB ) - 1 ) ) ) while len(self.polyA ) < self.c_max_length: self.polyA.append(0 ) while len(self.polyB ) < self.c_max_length: self.polyB.append(0 ) # A complex root used for the fourier transform lowercase : Union[str, Any] =complex(mpmath.root(x=1 , n=self.c_max_length , k=1 ) ) # The product lowercase : Tuple =self.__multiply() def lowerCamelCase_ ( self : Union[str, Any] , UpperCAmelCase__ : Tuple ): '''simple docstring''' lowercase : Union[str, Any] =[[x] for x in self.polyA] if which == '''A''' else [[x] for x in self.polyB] # Corner case if len(UpperCAmelCase__ ) <= 1: return dft[0] # lowercase : Any =self.c_max_length // 2 while next_ncol > 0: lowercase : Optional[int] =[[] for i in range(UpperCAmelCase__ )] lowercase : Tuple =self.root**next_ncol # First half of next step lowercase : str =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase__ ): new_dft[i].append(dft[i][j] + current_root * dft[i + next_ncol][j] ) current_root *= root # Second half of next step lowercase : int =1 for j in range(self.c_max_length // (next_ncol * 2) ): for i in range(UpperCAmelCase__ ): new_dft[i].append(dft[i][j] - current_root * dft[i + next_ncol][j] ) current_root *= root # Update lowercase : Dict =new_dft lowercase : Tuple =next_ncol // 2 return dft[0] def lowerCamelCase_ ( self : List[Any] ): '''simple docstring''' lowercase : Any =self.__dft('''A''' ) lowercase : Any =self.__dft('''B''' ) lowercase : Optional[int] =[[dft_a[i] * dft_b[i] for i in range(self.c_max_length )]] del dft_a del dft_b # Corner Case if len(inverce_c[0] ) <= 1: return inverce_c[0] # Inverse DFT lowercase : Optional[int] =2 while next_ncol <= self.c_max_length: lowercase : Optional[int] =[[] for i in range(UpperCAmelCase__ )] lowercase : List[str] =self.root ** (next_ncol // 2) lowercase : Optional[int] =1 # First half of next step for j in range(self.c_max_length // next_ncol ): for i in range(next_ncol // 2 ): # Even positions new_inverse_c[i].append( ( inverce_c[i][j] + inverce_c[i][j + self.c_max_length // next_ncol] ) / 2 ) # Odd positions new_inverse_c[i + next_ncol // 2].append( ( inverce_c[i][j] - inverce_c[i][j + self.c_max_length // next_ncol] ) / (2 * current_root) ) current_root *= root # Update lowercase : List[Any] =new_inverse_c next_ncol *= 2 # Unpack lowercase : Tuple =[round(x[0].real , 8 ) + round(x[0].imag , 8 ) * 1J for x in inverce_c] # Remove leading 0's while inverce_c[-1] == 0: inverce_c.pop() return inverce_c def __str__( self : Any ): '''simple docstring''' lowercase : Any ='''A = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyA[: self.len_A] ) ) lowercase : Tuple ='''B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.polyB[: self.len_B] ) ) lowercase : List[str] ='''A*B = ''' + ''' + '''.join( F'''{coef}*x^{i}''' for coef, i in enumerate(self.product ) ) return F'''{a}\n{b}\n{c}''' # Unit tests if __name__ == "__main__": import doctest doctest.testmod()
88
1
from decimal import Decimal, getcontext from math import ceil, factorial def A ( lowercase__ : int ) -> str: if not isinstance(lowercase__ , lowercase__ ): raise TypeError("""Undefined for non-integers""" ) elif precision < 1: raise ValueError("""Undefined for non-natural numbers""" ) UpperCamelCase__ :Union[str, Any] = precision UpperCamelCase__ :List[str] = ceil(precision / 14 ) UpperCamelCase__ :Optional[int] = 42_6880 * Decimal(1_0005 ).sqrt() UpperCamelCase__ :Any = 1 UpperCamelCase__ :str = 1359_1409 UpperCamelCase__ :int = Decimal(lowercase__ ) for k in range(1 , lowercase__ ): UpperCamelCase__ :Optional[Any] = factorial(6 * k ) // (factorial(3 * k ) * factorial(lowercase__ ) ** 3) linear_term += 5_4514_0134 exponential_term *= -26_2537_4126_4076_8000 partial_sum += Decimal(multinomial_term * linear_term ) / exponential_term return str(constant_term / partial_sum )[:-1] if __name__ == "__main__": UpperCamelCase = 50 print(f'''The first {n} digits of pi is: {pi(n)}''')
45
import gc import tempfile import unittest import numpy as np import torch from diffusers import VersatileDiffusionPipeline from diffusers.utils.testing_utils import load_image, nightly, require_torch_gpu, torch_device UpperCamelCase = False class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" pass @nightly @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Dict = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :Any = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images with tempfile.TemporaryDirectory() as tmpdirname: pipe.save_pretrained(lowerCamelCase__ ) UpperCamelCase__ :List[str] = VersatileDiffusionPipeline.from_pretrained(lowerCamelCase__ , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :str = generator.manual_seed(0 ) UpperCamelCase__ :str = pipe.dual_guided( prompt="""first prompt""" , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=2 , output_type="""numpy""" , ).images assert np.abs(image - new_image ).sum() < 1e-5, "Models don't have the same forward pass" def __a ( self :Dict ): UpperCamelCase__ :List[Any] = VersatileDiffusionPipeline.from_pretrained("""shi-labs/versatile-diffusion""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) UpperCamelCase__ :Optional[Any] = """cyberpunk 2077""" UpperCamelCase__ :str = load_image( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/versatile_diffusion/benz.jpg""" ) UpperCamelCase__ :str = torch.manual_seed(0 ) UpperCamelCase__ :Dict = pipe.dual_guided( prompt=lowerCamelCase__ , image=lowerCamelCase__ , text_to_image_strength=0.75 , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" , ).images UpperCamelCase__ :Tuple = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Any = np.array([0.1448, 0.1619, 0.1741, 0.1086, 0.1147, 0.1128, 0.1199, 0.1165, 0.1001] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :List[Any] = """A painting of a squirrel eating a burger """ UpperCamelCase__ :List[str] = torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = pipe.text_to_image( prompt=lowerCamelCase__ , generator=lowerCamelCase__ , guidance_scale=7.5 , num_inference_steps=50 , output_type="""numpy""" ).images UpperCamelCase__ :str = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :Union[str, Any] = np.array([0.3367, 0.3169, 0.2656, 0.3870, 0.4790, 0.3796, 0.4009, 0.4878, 0.4778] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1 UpperCamelCase__ :Optional[int] = pipe.image_variation(lowerCamelCase__ , generator=lowerCamelCase__ , output_type="""numpy""" ).images UpperCamelCase__ :int = image[0, 2_53:2_56, 2_53:2_56, -1] assert image.shape == (1, 5_12, 5_12, 3) UpperCamelCase__ :List[Any] = np.array([0.3076, 0.3123, 0.3284, 0.3782, 0.3770, 0.3894, 0.4297, 0.4331, 0.4456] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1e-1
45
1
def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' if index == r: for j in range(SCREAMING_SNAKE_CASE__ ): print(data[j] ,end=""" """ ) print(""" """ ) return # When no more elements are there to put in data[] if i >= n: return # current is included, put next at next location lowerCAmelCase : str = arr[i] combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,index + 1 ,SCREAMING_SNAKE_CASE__ ,i + 1 ) # current is excluded, replace it with # next (Note that i+1 is passed, but # index is not changed) combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,i + 1 ) # The main function that prints all combinations # of size r in arr[] of size n. This function # mainly uses combinationUtil() def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ): '''simple docstring''' lowerCAmelCase : Union[str, Any] = [0] * r # Print all combination using temporary array 'data[]' combination_util(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,0 ,SCREAMING_SNAKE_CASE__ ,0 ) if __name__ == "__main__": # Driver code to check the function above lowerCAmelCase : int =[10, 20, 30, 40, 50] print_combination(arr, len(arr), 3) # This code is contributed by Ambuj sahu
693
import pytest import requests from datasets.utils.file_utils import http_head from .utils import OfflineSimulationMode, RequestWouldHangIndefinitelyError, offline @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_TIMES_OUT ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): requests.request("""GET""" ,"""https://huggingface.co""" ) with pytest.raises(requests.exceptions.ConnectTimeout ): requests.request("""GET""" ,"""https://huggingface.co""" ,timeout=1.0 ) @pytest.mark.integration def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.CONNECTION_FAILS ): with pytest.raises(requests.exceptions.ConnectionError ): requests.request("""GET""" ,"""https://huggingface.co""" ) def _UpperCAmelCase ( ): '''simple docstring''' with offline(OfflineSimulationMode.HF_DATASETS_OFFLINE_SET_TO_1 ): with pytest.raises(SCREAMING_SNAKE_CASE__ ): http_head("""https://huggingface.co""" )
693
1
from math import sqrt def UpperCamelCase ( _a ) -> int: '''simple docstring''' lowercase_ :Any = 0 for i in range(1 , int(sqrt(_a ) + 1 ) ): if n % i == 0 and i != sqrt(_a ): total += i + n // i elif i == sqrt(_a ): total += i return total - n def UpperCamelCase ( _a = 1_0_0_0_0 ) -> int: '''simple docstring''' lowercase_ :Tuple = sum( i for i in range(1 , _a ) if sum_of_divisors(sum_of_divisors(_a ) ) == i and sum_of_divisors(_a ) != i ) return total if __name__ == "__main__": print(solution(int(str(input()).strip())))
257
import builtins import sys from ...utils.imports import _is_package_available from . import cursor, input from .helpers import Direction, clear_line, forceWrite, linebreak, move_cursor, reset_cursor, writeColor from .keymap import KEYMAP SCREAMING_SNAKE_CASE : Any = False try: SCREAMING_SNAKE_CASE : List[Any] = _is_package_available("google.colab") except ModuleNotFoundError: pass @input.register class UpperCamelCase : '''simple docstring''' def __init__( self , UpperCamelCase_ = None , UpperCamelCase_ = [] ): lowercase_ :str = 0 lowercase_ :str = choices lowercase_ :List[str] = prompt if sys.platform == "win32": lowercase_ :List[Any] = '''*''' else: lowercase_ :str = '''➔ ''' def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = "" ): if sys.platform != "win32": writeColor(self.choices[index] , 32 , UpperCamelCase_ ) else: forceWrite(self.choices[index] , UpperCamelCase_ ) def UpperCamelCase ( self , UpperCamelCase_ ): if index == self.position: forceWrite(f" {self.arrow_char} " ) self.write_choice(UpperCamelCase_ ) else: forceWrite(f" {self.choices[index]}" ) reset_cursor() def UpperCamelCase ( self , UpperCamelCase_ , UpperCamelCase_ = 1 ): lowercase_ :Optional[Any] = self.position if direction == Direction.DOWN: if self.position + 1 >= len(self.choices ): return self.position += num_spaces else: if self.position - 1 < 0: return self.position -= num_spaces clear_line() self.print_choice(UpperCamelCase_ ) move_cursor(UpperCamelCase_ , direction.name ) self.print_choice(self.position ) @input.mark(KEYMAP['''up'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.UP ) @input.mark(KEYMAP['''down'''] ) def UpperCamelCase ( self ): self.move_direction(Direction.DOWN ) @input.mark(KEYMAP['''newline'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) return self.position @input.mark(KEYMAP['''interrupt'''] ) def UpperCamelCase ( self ): move_cursor(len(self.choices ) - self.position , '''DOWN''' ) raise KeyboardInterrupt @input.mark_multiple(*[KEYMAP[str(UpperCamelCase_ )] for number in range(10 )] ) def UpperCamelCase ( self ): lowercase_ :int = int(chr(self.current_selection ) ) lowercase_ :Optional[Any] = index - self.position if index == self.position: return if index < len(self.choices ): if self.position > index: self.move_direction(Direction.UP , -movement ) elif self.position < index: self.move_direction(Direction.DOWN , UpperCamelCase_ ) else: return else: return def UpperCamelCase ( self , UpperCamelCase_ = 0 ): if self.prompt: linebreak() forceWrite(self.prompt , '''\n''' ) if in_colab: forceWrite('''Please input a choice index (starting from 0), and press enter''' , '''\n''' ) else: forceWrite('''Please select a choice using the arrow or number keys, and selecting with enter''' , '''\n''' ) lowercase_ :str = default_choice for i in range(len(self.choices ) ): self.print_choice(UpperCamelCase_ ) forceWrite('''\n''' ) move_cursor(len(self.choices ) - self.position , '''UP''' ) with cursor.hide(): while True: if in_colab: try: lowercase_ :Optional[Any] = int(builtins.input() ) except ValueError: lowercase_ :List[Any] = default_choice else: lowercase_ :List[str] = self.handle_input() if choice is not None: reset_cursor() for _ in range(len(self.choices ) + 1 ): move_cursor(1 , '''UP''' ) clear_line() self.write_choice(UpperCamelCase_ , '''\n''' ) return choice
257
1
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowercase = { '''configuration_luke''': ['''LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''LukeConfig'''], '''tokenization_luke''': ['''LukeTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowercase = [ '''LUKE_PRETRAINED_MODEL_ARCHIVE_LIST''', '''LukeForEntityClassification''', '''LukeForEntityPairClassification''', '''LukeForEntitySpanClassification''', '''LukeForMultipleChoice''', '''LukeForQuestionAnswering''', '''LukeForSequenceClassification''', '''LukeForTokenClassification''', '''LukeForMaskedLM''', '''LukeModel''', '''LukePreTrainedModel''', ] if TYPE_CHECKING: from .configuration_luke import LUKE_PRETRAINED_CONFIG_ARCHIVE_MAP, LukeConfig from .tokenization_luke import LukeTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_luke import ( LUKE_PRETRAINED_MODEL_ARCHIVE_LIST, LukeForEntityClassification, LukeForEntityPairClassification, LukeForEntitySpanClassification, LukeForMaskedLM, LukeForMultipleChoice, LukeForQuestionAnswering, LukeForSequenceClassification, LukeForTokenClassification, LukeModel, LukePreTrainedModel, ) else: import sys __lowercase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
704
import qiskit def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' __UpperCamelCase :Dict = qiskit.Aer.get_backend('''aer_simulator''' ) __UpperCamelCase :Tuple = qiskit.QuantumCircuit(4 , 2 ) # encode inputs in qubits 0 and 1 if bita == 1: qc_ha.x(0 ) if bita == 1: qc_ha.x(1 ) qc_ha.barrier() # use cnots to write XOR of the inputs on qubit2 qc_ha.cx(0 , 2 ) qc_ha.cx(1 , 2 ) # use ccx / toffoli gate to write AND of the inputs on qubit3 qc_ha.ccx(0 , 1 , 3 ) qc_ha.barrier() # extract outputs qc_ha.measure(2 , 0 ) # extract XOR value qc_ha.measure(3 , 1 ) # extract AND value # Execute the circuit on the qasm simulator __UpperCamelCase :Optional[Any] = qiskit.execute(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , shots=1_000 ) # Return the histogram data of the results of the experiment return job.result().get_counts(SCREAMING_SNAKE_CASE ) if __name__ == "__main__": __lowercase = half_adder(1, 1) print(F'Half Adder Output Qubit Counts: {counts}')
452
0
"""simple docstring""" import tempfile import unittest import numpy as np import transformers from transformers import GPTaTokenizer, GPTJConfig, is_flax_available, is_torch_available from transformers.testing_utils import is_pt_flax_cross_test, require_flax, tooslow from ...generation.test_flax_utils import FlaxGenerationTesterMixin from ...test_modeling_flax_common import FlaxModelTesterMixin, ids_tensor, random_attention_mask if is_flax_available(): import jax import jax.numpy as jnp from transformers.modeling_flax_pytorch_utils import ( convert_pytorch_state_dict_to_flax, load_flax_weights_in_pytorch_model, ) from transformers.models.gptj.modeling_flax_gptj import FlaxGPTJForCausalLM, FlaxGPTJModel if is_torch_available(): import torch class a : def __init__( self , _snake_case , _snake_case=14 , _snake_case=7 , _snake_case=True , _snake_case=True , _snake_case=False , _snake_case=True , _snake_case=99 , _snake_case=32 , _snake_case=4 , _snake_case=4 , _snake_case=4 , _snake_case=37 , _snake_case="gelu" , _snake_case=0.1 , _snake_case=0.1 , _snake_case=5_12 , _snake_case=0.02 , ): """simple docstring""" lowerCAmelCase = parent lowerCAmelCase = batch_size lowerCAmelCase = seq_length lowerCAmelCase = is_training lowerCAmelCase = use_input_mask lowerCAmelCase = use_token_type_ids lowerCAmelCase = use_labels lowerCAmelCase = vocab_size lowerCAmelCase = hidden_size lowerCAmelCase = rotary_dim lowerCAmelCase = num_hidden_layers lowerCAmelCase = num_attention_heads lowerCAmelCase = intermediate_size lowerCAmelCase = hidden_act lowerCAmelCase = hidden_dropout_prob lowerCAmelCase = attention_probs_dropout_prob lowerCAmelCase = max_position_embeddings lowerCAmelCase = initializer_range lowerCAmelCase = None lowerCAmelCase = vocab_size - 1 lowerCAmelCase = vocab_size - 1 lowerCAmelCase = vocab_size - 1 def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) lowerCAmelCase = None if self.use_input_mask: lowerCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) lowerCAmelCase = GPTJConfig( vocab_size=self.vocab_size , n_embd=self.hidden_size , n_layer=self.num_hidden_layers , n_head=self.num_attention_heads , n_positions=self.max_position_embeddings , use_cache=a_ , bos_token_id=self.bos_token_id , eos_token_id=self.eos_token_id , pad_token_id=self.pad_token_id , rotary_dim=self.rotary_dim , ) return (config, input_ids, input_mask) def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.prepare_config_and_inputs() lowerCAmelCase = config_and_inputs lowerCAmelCase = {"input_ids": input_ids, "attention_mask": attention_mask} return config, inputs_dict def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = 20 lowerCAmelCase = model_class_name(a_ ) lowerCAmelCase = model.init_cache(input_ids.shape[0] , a_ ) lowerCAmelCase = jnp.ones((input_ids.shape[0], max_decoder_length) , dtype='i4' ) lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=a_ , past_key_values=a_ , position_ids=a_ , ) lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase = model( input_ids[:, -1:] , attention_mask=a_ , past_key_values=outputs_cache.past_key_values , position_ids=a_ , ) lowerCAmelCase = model(a_ ) lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) def UpperCamelCase__ ( self , _snake_case , _snake_case , _snake_case , _snake_case ): """simple docstring""" lowerCAmelCase = 20 lowerCAmelCase = model_class_name(a_ ) lowerCAmelCase = jnp.concatenate( [attention_mask, jnp.zeros((attention_mask.shape[0], max_decoder_length - attention_mask.shape[1]) )] , axis=-1 , ) lowerCAmelCase = model.init_cache(input_ids.shape[0] , a_ ) lowerCAmelCase = jnp.broadcast_to( jnp.arange(input_ids.shape[-1] - 1 )[None, :] , (input_ids.shape[0], input_ids.shape[-1] - 1) ) lowerCAmelCase = model( input_ids[:, :-1] , attention_mask=a_ , past_key_values=a_ , position_ids=a_ , ) lowerCAmelCase = jnp.array(input_ids.shape[0] * [[input_ids.shape[-1] - 1]] , dtype='i4' ) lowerCAmelCase = model( input_ids[:, -1:] , past_key_values=outputs_cache.past_key_values , attention_mask=a_ , position_ids=a_ , ) lowerCAmelCase = model(a_ , attention_mask=a_ ) lowerCAmelCase = np.max(np.abs((outputs_cache_next[0][:, -1, :5] - outputs[0][:, -1, :5]) ) ) self.parent.assertTrue(diff < 1E-3 , msg=F'Max diff is {diff}' ) @require_flax class a ( a_ , a_ , unittest.TestCase ): snake_case__ = (FlaxGPTJModel, FlaxGPTJForCausalLM) if is_flax_available() else () snake_case__ = (FlaxGPTJForCausalLM,) if is_flax_available() else () def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = FlaxGPTJModelTester(self ) def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward(a_ , a_ , a_ , a_ ) def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.check_use_cache_forward_with_attn_mask( a_ , a_ , a_ , a_ ) @tooslow def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = GPTaTokenizer.from_pretrained('gpt2' , pad_token='<|endoftext|>' , padding_side='left' ) lowerCAmelCase = tokenizer(['Hello this is a long string', 'Hey'] , return_tensors='np' , padding=a_ , truncation=a_ ) lowerCAmelCase = FlaxGPTJForCausalLM.from_pretrained('EleutherAI/gpt-j-6B' ) lowerCAmelCase = False lowerCAmelCase = model.config.eos_token_id lowerCAmelCase = jax.jit(model.generate ) lowerCAmelCase = jit_generate( inputs['input_ids'] , attention_mask=inputs['attention_mask'] , pad_token_id=tokenizer.pad_token_id ).sequences lowerCAmelCase = tokenizer.batch_decode(a_ , skip_special_tokens=a_ ) lowerCAmelCase = [ "Hello this is a long string of text.\n\nI'm trying to get the text of the", "Hey, I'm a little late to the party. I'm going to", ] self.assertListEqual(a_ , a_ ) @is_pt_flax_cross_test def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase = self._prepare_for_class(a_ , a_ ) lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase = getattr(a_ , a_ ) lowerCAmelCase = pt_inputs["input_ids"].shape lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = pt_model_class(a_ ).eval() lowerCAmelCase = model_class(a_ , dtype=jnp.floataa ) lowerCAmelCase = convert_pytorch_state_dict_to_flax(pt_model.state_dict() , a_ ) lowerCAmelCase = fx_state with torch.no_grad(): lowerCAmelCase = pt_model(**a_ ).to_tuple() lowerCAmelCase = fx_model(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(a_ , a_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: pt_model.save_pretrained(a_ ) lowerCAmelCase = model_class.from_pretrained(a_ , from_pt=a_ ) lowerCAmelCase = fx_model_loaded(**a_ ).to_tuple() self.assertEqual( len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output_loaded, pt_output in zip(a_ , a_ ): self.assert_almost_equals(fx_output_loaded[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @is_pt_flax_cross_test def UpperCamelCase__ ( self ): """simple docstring""" lowerCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: with self.subTest(model_class.__name__ ): # prepare inputs lowerCAmelCase = self._prepare_for_class(a_ , a_ ) lowerCAmelCase = {k: torch.tensor(v.tolist() ) for k, v in prepared_inputs_dict.items()} # load corresponding PyTorch class lowerCAmelCase = model_class.__name__[4:] # Skip the "Flax" at the beginning lowerCAmelCase = getattr(a_ , a_ ) lowerCAmelCase = pt_model_class(a_ ).eval() lowerCAmelCase = model_class(a_ , dtype=jnp.floataa ) lowerCAmelCase = load_flax_weights_in_pytorch_model(a_ , fx_model.params ) lowerCAmelCase = pt_inputs["input_ids"].shape lowerCAmelCase = np.random.randint(0 , seq_length - 1 , size=(batch_size,) ) for batch_idx, start_index in enumerate(a_ ): lowerCAmelCase = 0 lowerCAmelCase = 1 lowerCAmelCase = 0 lowerCAmelCase = 1 # make sure weights are tied in PyTorch pt_model.tie_weights() with torch.no_grad(): lowerCAmelCase = pt_model(**a_ ).to_tuple() lowerCAmelCase = fx_model(**a_ ).to_tuple() self.assertEqual(len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(a_ , a_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) with tempfile.TemporaryDirectory() as tmpdirname: fx_model.save_pretrained(a_ ) lowerCAmelCase = pt_model_class.from_pretrained(a_ , from_flax=a_ ) with torch.no_grad(): lowerCAmelCase = pt_model_loaded(**a_ ).to_tuple() self.assertEqual( len(a_ ) , len(a_ ) , 'Output lengths differ between Flax and PyTorch' ) for fx_output, pt_output in zip(a_ , a_ ): self.assert_almost_equals(fx_output[:, -1] , pt_output[:, -1].numpy() , 4E-2 ) @tooslow def UpperCamelCase__ ( self ): """simple docstring""" for model_class_name in self.all_model_classes: lowerCAmelCase = model_class_name.from_pretrained('EleutherAI/gpt-j-6B' ) lowerCAmelCase = model(np.ones((1, 1) ) ) self.assertIsNotNone(a_ )
4
"""simple docstring""" import json from typing import List, Optional, Tuple from tokenizers import normalizers from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import logging from .tokenization_convbert import ConvBertTokenizer SCREAMING_SNAKE_CASE_ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE_ = {"""vocab_file""": """vocab.txt"""} SCREAMING_SNAKE_CASE_ = { """vocab_file""": { """YituTech/conv-bert-base""": """https://huggingface.co/YituTech/conv-bert-base/resolve/main/vocab.txt""", """YituTech/conv-bert-medium-small""": ( """https://huggingface.co/YituTech/conv-bert-medium-small/resolve/main/vocab.txt""" ), """YituTech/conv-bert-small""": """https://huggingface.co/YituTech/conv-bert-small/resolve/main/vocab.txt""", } } SCREAMING_SNAKE_CASE_ = { """YituTech/conv-bert-base""": 5_12, """YituTech/conv-bert-medium-small""": 5_12, """YituTech/conv-bert-small""": 5_12, } SCREAMING_SNAKE_CASE_ = { """YituTech/conv-bert-base""": {"""do_lower_case""": True}, """YituTech/conv-bert-medium-small""": {"""do_lower_case""": True}, """YituTech/conv-bert-small""": {"""do_lower_case""": True}, } class snake_case_ ( a_ ): __lowerCAmelCase = VOCAB_FILES_NAMES __lowerCAmelCase = PRETRAINED_VOCAB_FILES_MAP __lowerCAmelCase = PRETRAINED_INIT_CONFIGURATION __lowerCAmelCase = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __lowerCAmelCase = ConvBertTokenizer def __init__( self , a_=None , a_=None , a_=True , a_="[UNK]" , a_="[SEP]" , a_="[PAD]" , a_="[CLS]" , a_="[MASK]" , a_=True , a_=None , **a_ , ): super().__init__( a_ , tokenizer_file=a_ , do_lower_case=a_ , unk_token=a_ , sep_token=a_ , pad_token=a_ , cls_token=a_ , mask_token=a_ , tokenize_chinese_chars=a_ , strip_accents=a_ , **a_ , ) a_ : Union[str, Any] = json.loads(self.backend_tokenizer.normalizer.__getstate__() ) if ( normalizer_state.get("lowercase" , a_ ) != do_lower_case or normalizer_state.get("strip_accents" , a_ ) != strip_accents or normalizer_state.get("handle_chinese_chars" , a_ ) != tokenize_chinese_chars ): a_ : Optional[int] = getattr(a_ , normalizer_state.pop("type" ) ) a_ : Tuple = do_lower_case a_ : int = strip_accents a_ : List[str] = tokenize_chinese_chars a_ : List[Any] = normalizer_class(**a_ ) a_ : Optional[Any] = do_lower_case def snake_case_ ( self , a_ , a_=None ): a_ : Dict = [self.cls_token_id] + token_ids_a + [self.sep_token_id] if token_ids_a: output += token_ids_a + [self.sep_token_id] return output def snake_case_ ( self , a_ , a_ = None ): a_ : Optional[int] = [self.sep_token_id] a_ : Optional[Any] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def snake_case_ ( self , a_ , a_ = None ): a_ : Dict = self._tokenizer.model.save(a_ , name=a_ ) return tuple(a_ )
237
0
import inspect import unittest from transformers import YolosConfig from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from torch import nn from transformers import YolosForObjectDetection, YolosModel from transformers.models.yolos.modeling_yolos import YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase=1_3 , UpperCAmelCase=[3_0, 3_0] , UpperCAmelCase=2 , UpperCAmelCase=3 , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=3_2 , UpperCAmelCase=5 , UpperCAmelCase=4 , UpperCAmelCase=3_7 , UpperCAmelCase="gelu" , UpperCAmelCase=0.1 , UpperCAmelCase=0.1 , UpperCAmelCase=1_0 , UpperCAmelCase=0.02 , UpperCAmelCase=3 , UpperCAmelCase=None , UpperCAmelCase=8 , UpperCAmelCase=1_0 , ) -> str: __a = parent __a = batch_size __a = image_size __a = patch_size __a = num_channels __a = is_training __a = use_labels __a = hidden_size __a = num_hidden_layers __a = num_attention_heads __a = intermediate_size __a = hidden_act __a = hidden_dropout_prob __a = attention_probs_dropout_prob __a = type_sequence_label_size __a = initializer_range __a = num_labels __a = scope __a = n_targets __a = num_detection_tokens # we set the expected sequence length (which is used in several tests) # expected sequence length = num_patches + 1 (we add 1 for the [CLS] token) + num_detection_tokens __a = (image_size[1] // patch_size) * (image_size[0] // patch_size) __a = num_patches + 1 + self.num_detection_tokens def __SCREAMING_SNAKE_CASE ( self ) -> str: __a = floats_tensor([self.batch_size, self.num_channels, self.image_size[0], self.image_size[1]] ) __a = None if self.use_labels: # labels is a list of Dict (each Dict being the labels for a given example in the batch) __a = [] for i in range(self.batch_size ): __a = {} __a = torch.randint( high=self.num_labels , size=(self.n_targets,) , device=_UpperCamelCase ) __a = torch.rand(self.n_targets , 4 , device=_UpperCamelCase ) labels.append(_UpperCamelCase ) __a = self.get_config() return config, pixel_values, labels def __SCREAMING_SNAKE_CASE ( self ) -> str: return YolosConfig( image_size=self.image_size , patch_size=self.patch_size , num_channels=self.num_channels , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , is_decoder=_UpperCamelCase , initializer_range=self.initializer_range , num_detection_tokens=self.num_detection_tokens , num_labels=self.num_labels , ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: __a = YolosModel(config=_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __a = model(_UpperCamelCase ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.expected_seq_len, self.hidden_size) ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> Optional[Any]: __a = YolosForObjectDetection(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() __a = model(pixel_values=_UpperCamelCase ) __a = model(_UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) __a = model(pixel_values=_UpperCamelCase , labels=_UpperCamelCase ) self.parent.assertEqual(result.loss.shape , () ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_detection_tokens, self.num_labels + 1) ) self.parent.assertEqual(result.pred_boxes.shape , (self.batch_size, self.num_detection_tokens, 4) ) def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: __a = self.prepare_config_and_inputs() __a = config_and_inputs __a = {"""pixel_values""": pixel_values} return config, inputs_dict @require_torch class a__ ( __lowerCAmelCase , __lowerCAmelCase , unittest.TestCase ): A__ : Optional[int] = (YolosModel, YolosForObjectDetection) if is_torch_available() else () A__ : Optional[Any] = ( {'feature-extraction': YolosModel, 'object-detection': YolosForObjectDetection} if is_torch_available() else {} ) A__ : Optional[Any] = False A__ : List[str] = False A__ : Optional[int] = False A__ : str = False def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase=False ) -> Optional[int]: __a = super()._prepare_for_class(_UpperCamelCase , _UpperCamelCase , return_labels=_UpperCamelCase ) if return_labels: if model_class.__name__ == "YolosForObjectDetection": __a = [] for i in range(self.model_tester.batch_size ): __a = {} __a = torch.ones( size=(self.model_tester.n_targets,) , device=_UpperCamelCase , dtype=torch.long ) __a = torch.ones( self.model_tester.n_targets , 4 , device=_UpperCamelCase , dtype=torch.float ) labels.append(_UpperCamelCase ) __a = labels return inputs_dict def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = YolosModelTester(self ) __a = ConfigTester(self , config_class=_UpperCamelCase , has_text_modality=_UpperCamelCase , hidden_size=3_7 ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: self.config_tester.run_common_tests() def __SCREAMING_SNAKE_CASE ( self ) -> str: pass def __SCREAMING_SNAKE_CASE ( self ) -> Tuple: __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_UpperCamelCase ) self.assertIsInstance(model.get_input_embeddings() , (nn.Module) ) __a = model.get_output_embeddings() self.assertTrue(x is None or isinstance(_UpperCamelCase , nn.Linear ) ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = model_class(_UpperCamelCase ) __a = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __a = [*signature.parameters.keys()] __a = ["""pixel_values"""] self.assertListEqual(arg_names[:1] , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*_UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> Union[str, Any]: __a = self.model_tester.prepare_config_and_inputs_for_common() __a = True # in YOLOS, the seq_len is different __a = self.model_tester.expected_seq_len for model_class in self.all_model_classes: __a = True __a = False __a = True __a = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) __a = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) # check that output_attentions also work using config del inputs_dict["output_attentions"] __a = True __a = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) __a = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) __a = len(_UpperCamelCase ) # Check attention is always last and order is fine __a = True __a = True __a = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) __a = 1 self.assertEqual(out_len + added_hidden_states , len(_UpperCamelCase ) ) __a = outputs.attentions self.assertEqual(len(_UpperCamelCase ) , self.model_tester.num_hidden_layers ) self.assertListEqual( list(self_attentions[0].shape[-3:] ) , [self.model_tester.num_attention_heads, seq_len, seq_len] , ) def __SCREAMING_SNAKE_CASE ( self ) -> Any: def check_hidden_states_output(UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ): __a = model_class(_UpperCamelCase ) model.to(_UpperCamelCase ) model.eval() with torch.no_grad(): __a = model(**self._prepare_for_class(_UpperCamelCase , _UpperCamelCase ) ) __a = outputs.hidden_states __a = getattr( self.model_tester , 'expected_num_hidden_layers' , self.model_tester.num_hidden_layers + 1 ) self.assertEqual(len(_UpperCamelCase ) , _UpperCamelCase ) # YOLOS has a different seq_length __a = self.model_tester.expected_seq_len self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [seq_length, self.model_tester.hidden_size] , ) __a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __a = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __a = True check_hidden_states_output(_UpperCamelCase , _UpperCamelCase , _UpperCamelCase ) def __SCREAMING_SNAKE_CASE ( self ) -> List[Any]: __a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_object_detection(*_UpperCamelCase ) @slow def __SCREAMING_SNAKE_CASE ( self ) -> Optional[int]: for model_name in YOLOS_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __a = YolosModel.from_pretrained(_UpperCamelCase ) self.assertIsNotNone(_UpperCamelCase ) def lowerCAmelCase( ): __a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch @require_vision class a__ ( unittest.TestCase ): @cached_property def __SCREAMING_SNAKE_CASE ( self ) -> List[str]: return AutoImageProcessor.from_pretrained('hustvl/yolos-small' ) if is_vision_available() else None @slow def __SCREAMING_SNAKE_CASE ( self ) -> Dict: __a = YolosForObjectDetection.from_pretrained('hustvl/yolos-small' ).to(_UpperCamelCase ) __a = self.default_image_processor __a = prepare_img() __a = image_processor(images=_UpperCamelCase , return_tensors='pt' ).to(_UpperCamelCase ) # forward pass with torch.no_grad(): __a = model(inputs.pixel_values ) # verify outputs __a = torch.Size((1, 1_0_0, 9_2) ) self.assertEqual(outputs.logits.shape , _UpperCamelCase ) __a = torch.tensor( [[-2_4.0_2_4_8, -1_0.3_0_2_4, -1_4.8_2_9_0], [-4_2.0_3_9_2, -1_6.8_2_0_0, -2_7.4_3_3_4], [-2_7.2_7_4_3, -1_1.8_1_5_4, -1_8.7_1_4_8]] , device=_UpperCamelCase , ) __a = torch.tensor( [[0.2_559, 0.5_455, 0.4_706], [0.2_989, 0.7_279, 0.1_875], [0.7_732, 0.4_017, 0.4_462]] , device=_UpperCamelCase ) self.assertTrue(torch.allclose(outputs.logits[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) self.assertTrue(torch.allclose(outputs.pred_boxes[0, :3, :3] , _UpperCamelCase , atol=1e-4 ) ) # verify postprocessing __a = image_processor.post_process_object_detection( _UpperCamelCase , threshold=0.3 , target_sizes=[image.size[::-1]] )[0] __a = torch.tensor([0.9_994, 0.9_790, 0.9_964, 0.9_972, 0.9_861] ).to(_UpperCamelCase ) __a = [7_5, 7_5, 1_7, 6_3, 1_7] __a = torch.tensor([3_3_5.0_6_0_9, 7_9.3_8_4_8, 3_7_5.4_2_1_6, 1_8_7.2_4_9_5] ).to(_UpperCamelCase ) self.assertEqual(len(results['scores'] ) , 5 ) self.assertTrue(torch.allclose(results['scores'] , _UpperCamelCase , atol=1e-4 ) ) self.assertSequenceEqual(results['labels'].tolist() , _UpperCamelCase ) self.assertTrue(torch.allclose(results['boxes'][0, :] , _UpperCamelCase ) )
715
from __future__ import annotations lowerCamelCase_ : List[Any] = { """A""": ["""B""", """C""", """E"""], """B""": ["""A""", """D""", """E"""], """C""": ["""A""", """F""", """G"""], """D""": ["""B"""], """E""": ["""A""", """B""", """D"""], """F""": ["""C"""], """G""": ["""C"""], } class a__ : def __init__( self , UpperCAmelCase , UpperCAmelCase ) -> None: __a = graph # mapping node to its parent in resulting breadth first tree __a = {} __a = source_vertex def __SCREAMING_SNAKE_CASE ( self ) -> None: __a = {self.source_vertex} __a = None __a = [self.source_vertex] # first in first out queue while queue: __a = queue.pop(0 ) for adjacent_vertex in self.graph[vertex]: if adjacent_vertex not in visited: visited.add(UpperCAmelCase ) __a = vertex queue.append(UpperCAmelCase ) def __SCREAMING_SNAKE_CASE ( self , UpperCAmelCase ) -> str: if target_vertex == self.source_vertex: return self.source_vertex __a = self.parent.get(UpperCAmelCase ) if target_vertex_parent is None: __a = ( f'''No path from vertex: {self.source_vertex} to vertex: {target_vertex}''' ) raise ValueError(UpperCAmelCase ) return self.shortest_path(UpperCAmelCase ) + f'''->{target_vertex}''' if __name__ == "__main__": lowerCamelCase_ : Optional[int] = Graph(graph, """G""") g.breath_first_search() print(g.shortest_path("""D""")) print(g.shortest_path("""G""")) print(g.shortest_path("""Foo"""))
246
0
'''simple docstring''' import os import random import sys from . import cryptomath_module as cryptomath from . import rabin_miller _UpperCAmelCase : List[str] = 3 def snake_case__ ( UpperCamelCase ) -> int: print('''Generating primitive root of p''' ) while True: _UpperCamelCase : Optional[Any] = random.randrange(3 ,__lowercase ) if pow(__lowercase ,2 ,__lowercase ) == 1: continue if pow(__lowercase ,__lowercase ,__lowercase ) == 1: continue return g def snake_case__ ( UpperCamelCase ) -> tuple[tuple[int, int, int, int], tuple[int, int]]: print('''Generating prime p...''' ) _UpperCamelCase : List[str] = rabin_miller.generate_large_prime(__lowercase ) # select large prime number. _UpperCamelCase : List[str] = primitive_root(__lowercase ) # one primitive root on modulo p. _UpperCamelCase : Any = random.randrange(3 ,__lowercase ) # private_key -> have to be greater than 2 for safety. _UpperCamelCase : List[Any] = cryptomath.find_mod_inverse(pow(__lowercase ,__lowercase ,__lowercase ) ,__lowercase ) _UpperCamelCase : Tuple = (key_size, e_a, e_a, p) _UpperCamelCase : Union[str, Any] = (key_size, d) return public_key, private_key def snake_case__ ( UpperCamelCase ,UpperCamelCase ) -> None: if os.path.exists(f'''{name}_pubkey.txt''' ) or os.path.exists(f'''{name}_privkey.txt''' ): print('''\nWARNING:''' ) print( f'''\"{name}_pubkey.txt\" or \"{name}_privkey.txt\" already exists. \n''' '''Use a different name or delete these files and re-run this program.''' ) sys.exit() _UpperCamelCase : Union[str, Any] = generate_key(__lowercase ) print(f'''\nWriting public key to file {name}_pubkey.txt...''' ) with open(f'''{name}_pubkey.txt''' ,'''w''' ) as fo: fo.write(f'''{public_key[0]},{public_key[1]},{public_key[2]},{public_key[3]}''' ) print(f'''Writing private key to file {name}_privkey.txt...''' ) with open(f'''{name}_privkey.txt''' ,'''w''' ) as fo: fo.write(f'''{private_key[0]},{private_key[1]}''' ) def snake_case__ ( ) -> None: print('''Making key files...''' ) make_key_files('''elgamal''' ,20_48 ) print('''Key files generation successful''' ) if __name__ == "__main__": main()
683
# NOTE: This file is deprecated and will be removed in a future version. # It only exists so that temporarely `from diffusers.pipelines import DiffusionPipeline` works from ...utils import deprecate from ..controlnet.multicontrolnet import MultiControlNetModel # noqa: F401 from ..controlnet.pipeline_controlnet import StableDiffusionControlNetPipeline # noqa: F401 deprecate( 'stable diffusion controlnet', '0.22.0', 'Importing `StableDiffusionControlNetPipeline` or `MultiControlNetModel` from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_controlnet is deprecated. Please import `from diffusers import StableDiffusionControlNetPipeline` instead.', standard_warn=False, stacklevel=3, )
670
0
"""simple docstring""" import unittest from transformers import is_vision_available from transformers.pipelines import pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class _lowerCAmelCase : @staticmethod def _lowerCAmelCase ( *a : int , **a : Any ) -> Union[str, Any]: """simple docstring""" pass @is_pipeline_test @require_vision class _lowerCAmelCase ( unittest.TestCase ): @require_torch def _lowerCAmelCase ( self : Any ) -> Union[str, Any]: """simple docstring""" lowercase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , ) lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase = image_classifier(a , candidate_labels=['''a''', '''b''', '''c'''] ) # The floating scores are so close, we enter floating error approximation and the order is not guaranteed across # python and torch versions. self.assertIn( nested_simplify(a ) , [ [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}], [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''c'''}, {'''score''': 0.333, '''label''': '''b'''}], ] , ) lowercase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(a ) , [ [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], ] , ) @require_tf def _lowerCAmelCase ( self : Union[str, Any] ) -> Optional[Any]: """simple docstring""" lowercase = pipeline( model='''hf-internal-testing/tiny-random-clip-zero-shot-image-classification''' , framework='''tf''' ) lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase = image_classifier(a , candidate_labels=['''a''', '''b''', '''c'''] ) self.assertEqual( nested_simplify(a ) , [{'''score''': 0.333, '''label''': '''a'''}, {'''score''': 0.333, '''label''': '''b'''}, {'''score''': 0.333, '''label''': '''c'''}] , ) lowercase = image_classifier([image] * 5 , candidate_labels=['''A''', '''B''', '''C'''] , batch_size=2 ) self.assertEqual( nested_simplify(a ) , [ [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], [ {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, {'''score''': 0.333, '''label''': ANY(a )}, ], ] , ) @slow @require_torch def _lowerCAmelCase ( self : List[Any] ) -> List[Any]: """simple docstring""" lowercase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , ) # This is an image of 2 cats with remotes and no planes lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase = image_classifier(a , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(a ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowercase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(a ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , ) @slow @require_tf def _lowerCAmelCase ( self : Tuple ) -> Optional[int]: """simple docstring""" lowercase = pipeline( task='''zero-shot-image-classification''' , model='''openai/clip-vit-base-patch32''' , framework='''tf''' ) # This is an image of 2 cats with remotes and no planes lowercase = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) lowercase = image_classifier(a , candidate_labels=['''cat''', '''plane''', '''remote'''] ) self.assertEqual( nested_simplify(a ) , [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ] , ) lowercase = image_classifier([image] * 5 , candidate_labels=['''cat''', '''plane''', '''remote'''] , batch_size=2 ) self.assertEqual( nested_simplify(a ) , [ [ {'''score''': 0.511, '''label''': '''remote'''}, {'''score''': 0.485, '''label''': '''cat'''}, {'''score''': 0.004, '''label''': '''plane'''}, ], ] * 5 , )
396
"""simple docstring""" def A_ ( __UpperCamelCase : list ): for i in range(len(__UpperCamelCase ) - 1 , 0 , -1 ): lowercase = False for j in range(__UpperCamelCase , 0 , -1 ): if unsorted[j] < unsorted[j - 1]: lowercase , lowercase = unsorted[j - 1], unsorted[j] lowercase = True for j in range(__UpperCamelCase ): if unsorted[j] > unsorted[j + 1]: lowercase , lowercase = unsorted[j + 1], unsorted[j] lowercase = True if not swapped: break return unsorted if __name__ == "__main__": import doctest doctest.testmod() __lowerCAmelCase = input('''Enter numbers separated by a comma:\n''').strip() __lowerCAmelCase = [int(item) for item in user_input.split(''',''')] print(f'''{cocktail_shaker_sort(unsorted) = }''')
396
1
_lowerCAmelCase: dict[str, float] = { "km/h": 1.0, "m/s": 3.6, "mph": 1.609_344, "knot": 1.852, } _lowerCAmelCase: dict[str, float] = { "km/h": 1.0, "m/s": 0.277_777_778, "mph": 0.621_371_192, "knot": 0.539_956_803, } def _lowercase( __a : float , __a : str , __a : str ): if unit_to not in speed_chart or unit_from not in speed_chart_inverse: a__ =( f"""Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n""" f"""Valid values are: {', '.join(__a )}""" ) raise ValueError(__a ) return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to] , 3 ) if __name__ == "__main__": import doctest doctest.testmod()
20
from operator import delitem, getitem, setitem import pytest from data_structures.hashing.hash_map import HashMap def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[Any] ) -> Dict: return getitem, k def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Union[str, Any] , SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Optional[Any]: return setitem, k, v def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Optional[int] ) -> List[str]: return delitem, k def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Dict , SCREAMING_SNAKE_CASE :Dict , *SCREAMING_SNAKE_CASE :Union[str, Any] ) -> Dict: try: return fun(SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ), None except Exception as e: return None, e _UpperCAmelCase = ( _set('key_a', 'val_a'), _set('key_b', 'val_b'), ) _UpperCAmelCase = [ _set('key_a', 'val_a'), _set('key_a', 'val_b'), ] _UpperCAmelCase = [ _set('key_a', 'val_a'), _set('key_b', 'val_b'), _del('key_a'), _del('key_b'), _set('key_a', 'val_a'), _del('key_a'), ] _UpperCAmelCase = [ _get('key_a'), _del('key_a'), _set('key_a', 'val_a'), _del('key_a'), _del('key_a'), _get('key_a'), ] _UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize ] _UpperCAmelCase = [ *[_set(x, x) for x in range(5)], # guaranteed upsize *[_del(x) for x in range(5)], _set('key_a', 'val_b'), ] @pytest.mark.parametrize( """operations""" , ( pytest.param(_add_items , id="""add items""" ), pytest.param(_overwrite_items , id="""overwrite items""" ), pytest.param(_delete_items , id="""delete items""" ), pytest.param(_access_absent_items , id="""access absent items""" ), pytest.param(_add_with_resize_up , id="""add with resize up""" ), pytest.param(_add_with_resize_down , id="""add with resize down""" ), ) , ) def _SCREAMING_SNAKE_CASE ( SCREAMING_SNAKE_CASE :Tuple ) -> List[Any]: __lowerCAmelCase : Optional[Any] = HashMap(initial_block_size=4 ) __lowerCAmelCase : Union[str, Any] = {} for _, (fun, *args) in enumerate(SCREAMING_SNAKE_CASE ): __lowerCAmelCase , __lowerCAmelCase : Union[str, Any] = _run_operation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) __lowerCAmelCase , __lowerCAmelCase : Tuple = _run_operation(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , *SCREAMING_SNAKE_CASE ) assert my_res == py_res assert str(SCREAMING_SNAKE_CASE ) == str(SCREAMING_SNAKE_CASE ) assert set(SCREAMING_SNAKE_CASE ) == set(SCREAMING_SNAKE_CASE ) assert len(SCREAMING_SNAKE_CASE ) == len(SCREAMING_SNAKE_CASE ) assert set(my.items() ) == set(py.items() ) def _SCREAMING_SNAKE_CASE ( ) -> Tuple: def is_public(SCREAMING_SNAKE_CASE :str ) -> bool: return not name.startswith("""_""" ) __lowerCAmelCase : int = {name for name in dir({} ) if is_public(SCREAMING_SNAKE_CASE )} __lowerCAmelCase : List[str] = {name for name in dir(HashMap() ) if is_public(SCREAMING_SNAKE_CASE )} assert dict_public_names > hash_public_names
504
0
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available __lowerCamelCase : str = { '''configuration_xlm_roberta_xl''': [ '''XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''XLMRobertaXLConfig''', '''XLMRobertaXLOnnxConfig''', ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : List[Any] = [ '''XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''XLMRobertaXLForCausalLM''', '''XLMRobertaXLForMaskedLM''', '''XLMRobertaXLForMultipleChoice''', '''XLMRobertaXLForQuestionAnswering''', '''XLMRobertaXLForSequenceClassification''', '''XLMRobertaXLForTokenClassification''', '''XLMRobertaXLModel''', '''XLMRobertaXLPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_CONFIG_ARCHIVE_MAP, XLMRobertaXLConfig, XLMRobertaXLOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_xlm_roberta_xl import ( XLM_ROBERTA_XL_PRETRAINED_MODEL_ARCHIVE_LIST, XLMRobertaXLForCausalLM, XLMRobertaXLForMaskedLM, XLMRobertaXLForMultipleChoice, XLMRobertaXLForQuestionAnswering, XLMRobertaXLForSequenceClassification, XLMRobertaXLForTokenClassification, XLMRobertaXLModel, XLMRobertaXLPreTrainedModel, ) else: import sys __lowerCamelCase : Optional[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure)
316
from __future__ import annotations def _snake_case ( lowerCAmelCase : list[int] ): # This function is recursive """simple docstring""" SCREAMING_SNAKE_CASE_ : int = len(lowerCAmelCase ) # If the array contains only one element, we return it (it's the stop condition of # recursion) if array_length <= 1: return array # Else SCREAMING_SNAKE_CASE_ : str = array[0] SCREAMING_SNAKE_CASE_ : Optional[int] = False SCREAMING_SNAKE_CASE_ : Optional[Any] = 1 SCREAMING_SNAKE_CASE_ : list[int] = [] while not is_found and i < array_length: if array[i] < pivot: SCREAMING_SNAKE_CASE_ : Any = True SCREAMING_SNAKE_CASE_ : Any = [element for element in array[i:] if element >= array[i]] SCREAMING_SNAKE_CASE_ : str = longest_subsequence(lowerCAmelCase ) if len(lowerCAmelCase ) > len(lowerCAmelCase ): SCREAMING_SNAKE_CASE_ : Optional[int] = temp_array else: i += 1 SCREAMING_SNAKE_CASE_ : Optional[Any] = [element for element in array[1:] if element >= pivot] SCREAMING_SNAKE_CASE_ : Optional[int] = [pivot, *longest_subsequence(lowerCAmelCase )] if len(lowerCAmelCase ) > len(lowerCAmelCase ): return temp_array else: return longest_subseq if __name__ == "__main__": import doctest doctest.testmod()
316
1
def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int , lowerCAmelCase_: int , lowerCAmelCase_: list[list[int]] ): def update_area_of_max_square(lowerCAmelCase_: int , lowerCAmelCase_: int ) -> int: # BASE CASE if row >= rows or col >= cols: return 0 snake_case_ : Optional[int] = update_area_of_max_square(lowerCAmelCase_ , col + 1 ) snake_case_ : int = update_area_of_max_square(row + 1 , col + 1 ) snake_case_ : str = update_area_of_max_square(row + 1 , lowerCAmelCase_ ) if mat[row][col]: snake_case_ : str = 1 + min([right, diagonal, down] ) snake_case_ : Optional[Any] = max(largest_square_area[0] , lowerCAmelCase_ ) return sub_problem_sol else: return 0 snake_case_ : Tuple = [0] update_area_of_max_square(0 , 0 ) return largest_square_area[0] def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int , lowerCAmelCase_: int , lowerCAmelCase_: list[list[int]] ): def update_area_of_max_square_using_dp_array( lowerCAmelCase_: int , lowerCAmelCase_: int , lowerCAmelCase_: list[list[int]] ) -> int: if row >= rows or col >= cols: return 0 if dp_array[row][col] != -1: return dp_array[row][col] snake_case_ : Optional[Any] = update_area_of_max_square_using_dp_array(lowerCAmelCase_ , col + 1 , lowerCAmelCase_ ) snake_case_ : List[Any] = update_area_of_max_square_using_dp_array(row + 1 , col + 1 , lowerCAmelCase_ ) snake_case_ : Optional[Any] = update_area_of_max_square_using_dp_array(row + 1 , lowerCAmelCase_ , lowerCAmelCase_ ) if mat[row][col]: snake_case_ : Optional[int] = 1 + min([right, diagonal, down] ) snake_case_ : List[Any] = max(largest_square_area[0] , lowerCAmelCase_ ) snake_case_ : Optional[int] = sub_problem_sol return sub_problem_sol else: return 0 snake_case_ : Tuple = [0] snake_case_ : Tuple = [[-1] * cols for _ in range(lowerCAmelCase_ )] update_area_of_max_square_using_dp_array(0 , 0 , lowerCAmelCase_ ) return largest_square_area[0] def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int , lowerCAmelCase_: int , lowerCAmelCase_: list[list[int]] ): snake_case_ : Optional[Any] = [[0] * (cols + 1) for _ in range(rows + 1 )] snake_case_ : List[Any] = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case_ : str = dp_array[row][col + 1] snake_case_ : Optional[Any] = dp_array[row + 1][col + 1] snake_case_ : str = dp_array[row + 1][col] if mat[row][col] == 1: snake_case_ : Any = 1 + min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Optional[Any] = max(dp_array[row][col] , lowerCAmelCase_ ) else: snake_case_ : Optional[int] = 0 return largest_square_area def SCREAMING_SNAKE_CASE_ ( lowerCAmelCase_: int , lowerCAmelCase_: int , lowerCAmelCase_: list[list[int]] ): snake_case_ : List[str] = [0] * (cols + 1) snake_case_ : List[Any] = [0] * (cols + 1) snake_case_ : int = 0 for row in range(rows - 1 , -1 , -1 ): for col in range(cols - 1 , -1 , -1 ): snake_case_ : str = current_row[col + 1] snake_case_ : str = next_row[col + 1] snake_case_ : List[Any] = next_row[col] if mat[row][col] == 1: snake_case_ : Tuple = 1 + min(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) snake_case_ : Dict = max(current_row[col] , lowerCAmelCase_ ) else: snake_case_ : Optional[int] = 0 snake_case_ : Dict = current_row return largest_square_area if __name__ == "__main__": import doctest doctest.testmod() print(largest_square_area_in_matrix_bottom_up(2, 2, [[1, 1], [1, 1]]))
666
'''simple docstring''' import os import shutil import tempfile import unittest import numpy as np from transformers import AutoTokenizer, BarkProcessor from transformers.testing_utils import require_torch, slow @require_torch class lowercase_ ( unittest.TestCase ): '''simple docstring''' def snake_case_ ( self ) -> Union[str, Any]: """simple docstring""" UpperCAmelCase = 'ylacombe/bark-small' UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = 'en_speaker_1' UpperCAmelCase = 'This is a test string' UpperCAmelCase = 'speaker_embeddings_path.json' UpperCAmelCase = 'speaker_embeddings' def snake_case_ ( self , **a_ ) -> List[str]: """simple docstring""" return AutoTokenizer.from_pretrained(self.checkpoint , **a_ ) def snake_case_ ( self ) -> str: """simple docstring""" shutil.rmtree(self.tmpdirname ) def snake_case_ ( self ) -> Optional[int]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BarkProcessor(tokenizer=a_ ) processor.save_pretrained(self.tmpdirname ) UpperCAmelCase = BarkProcessor.from_pretrained(self.tmpdirname ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) @slow def snake_case_ ( self ) -> int: """simple docstring""" UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) processor.save_pretrained( self.tmpdirname , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , speaker_embeddings_directory=self.speaker_embeddings_directory , ) UpperCAmelCase = self.get_tokenizer(bos_token='(BOS)' , eos_token='(EOS)' ) UpperCAmelCase = BarkProcessor.from_pretrained( self.tmpdirname , self.speaker_embeddings_dict_path , bos_token='(BOS)' , eos_token='(EOS)' , ) self.assertEqual(processor.tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) def snake_case_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = BarkProcessor.from_pretrained( pretrained_processor_name_or_path=self.checkpoint , speaker_embeddings_dict_path=self.speaker_embeddings_dict_path , ) UpperCAmelCase = 3_5 UpperCAmelCase = 2 UpperCAmelCase = 8 UpperCAmelCase = { 'semantic_prompt': np.ones(a_ ), 'coarse_prompt': np.ones((nb_codebooks_coarse, seq_len) ), 'fine_prompt': np.ones((nb_codebooks_total, seq_len) ), } # test providing already loaded voice_preset UpperCAmelCase = processor(text=self.input_string , voice_preset=a_ ) UpperCAmelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a_ , np.array([] ) ).tolist() ) # test loading voice preset from npz file UpperCAmelCase = os.path.join(self.tmpdirname , 'file.npz' ) np.savez(a_ , **a_ ) UpperCAmelCase = processor(text=self.input_string , voice_preset=a_ ) UpperCAmelCase = inputs['history_prompt'] for key in voice_preset: self.assertListEqual(voice_preset[key].tolist() , processed_voice_preset.get(a_ , np.array([] ) ).tolist() ) # test loading voice preset from the hub UpperCAmelCase = processor(text=self.input_string , voice_preset=self.voice_preset ) def snake_case_ ( self ) -> List[Any]: """simple docstring""" UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = BarkProcessor(tokenizer=a_ ) UpperCAmelCase = processor(text=self.input_string ) UpperCAmelCase = tokenizer( self.input_string , padding='max_length' , max_length=2_5_6 , add_special_tokens=a_ , return_attention_mask=a_ , return_token_type_ids=a_ , ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key].squeeze().tolist() )
447
0
from typing import List, Union import numpy as np from ..tokenization_utils import TruncationStrategy from ..utils import add_end_docstrings, logging from .base import PIPELINE_INIT_ARGS, ArgumentHandler, ChunkPipeline SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) class __lowerCamelCase ( a__ ): """simple docstring""" def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowercase_ = [label.strip() for label in labels.split("," ) if label.strip()] return labels def __call__( self , UpperCAmelCase , UpperCAmelCase , UpperCAmelCase ) -> List[str]: '''simple docstring''' if len(lowerCamelCase_ ) == 0 or len(lowerCamelCase_ ) == 0: raise ValueError("You must include at least one label and at least one sequence." ) if hypothesis_template.format(labels[0] ) == hypothesis_template: raise ValueError( ( "The provided hypothesis_template \"{}\" was not able to be formatted with the target labels. " "Make sure the passed template includes formatting syntax such as {{}} where the label should go." ).format(lowerCamelCase_ ) ) if isinstance(lowerCamelCase_ , lowerCamelCase_ ): lowercase_ = [sequences] lowercase_ = [] for sequence in sequences: sequence_pairs.extend([[sequence, hypothesis_template.format(lowerCamelCase_ )] for label in labels] ) return sequence_pairs, sequences @add_end_docstrings(a__ ) class __lowerCamelCase ( a__ ): """simple docstring""" def __init__( self , UpperCAmelCase=ZeroShotClassificationArgumentHandler() , *UpperCAmelCase , **UpperCAmelCase ) -> int: '''simple docstring''' lowercase_ = args_parser super().__init__(*lowerCamelCase_ , **lowerCamelCase_ ) if self.entailment_id == -1: logger.warning( "Failed to determine \'entailment\' label id from the label2id mapping in the model config. Setting to " "-1. Define a descriptive label2id mapping in the model config to ensure correct outputs." ) @property def A__ ( self ) -> Union[str, Any]: '''simple docstring''' for label, ind in self.model.config.labelaid.items(): if label.lower().startswith("entail" ): return ind return -1 def A__ ( self , UpperCAmelCase , UpperCAmelCase=True , UpperCAmelCase=True , UpperCAmelCase=TruncationStrategy.ONLY_FIRST , **UpperCAmelCase ) -> Union[str, Any]: '''simple docstring''' lowercase_ = self.framework if self.tokenizer.pad_token is None: # Override for tokenizers not supporting padding logger.error( "Tokenizer was not supporting padding necessary for zero-shot, attempting to use " " `pad_token=eos_token`" ) lowercase_ = self.tokenizer.eos_token try: lowercase_ = self.tokenizer( lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=lowerCamelCase_ , ) except Exception as e: if "too short" in str(lowerCamelCase_ ): # tokenizers might yell that we want to truncate # to a value that is not even reached by the input. # In that case we don't want to truncate. # It seems there's not a really better way to catch that # exception. lowercase_ = self.tokenizer( lowerCamelCase_ , add_special_tokens=lowerCamelCase_ , return_tensors=lowerCamelCase_ , padding=lowerCamelCase_ , truncation=TruncationStrategy.DO_NOT_TRUNCATE , ) else: raise e return inputs def A__ ( self , **UpperCAmelCase ) -> int: '''simple docstring''' if kwargs.get("multi_class" , lowerCamelCase_ ) is not None: lowercase_ = kwargs["multi_class"] logger.warning( "The `multi_class` argument has been deprecated and renamed to `multi_label`. " "`multi_class` will be removed in a future version of Transformers." ) lowercase_ = {} if "candidate_labels" in kwargs: lowercase_ = self._args_parser._parse_labels(kwargs["candidate_labels"] ) if "hypothesis_template" in kwargs: lowercase_ = kwargs["hypothesis_template"] lowercase_ = {} if "multi_label" in kwargs: lowercase_ = kwargs["multi_label"] return preprocess_params, {}, postprocess_params def __call__( self , UpperCAmelCase , *UpperCAmelCase , **UpperCAmelCase , ) -> Optional[Any]: '''simple docstring''' if len(lowerCamelCase_ ) == 0: pass elif len(lowerCamelCase_ ) == 1 and "candidate_labels" not in kwargs: lowercase_ = args[0] else: raise ValueError(F'Unable to understand extra arguments {args}' ) return super().__call__(lowerCamelCase_ , **lowerCamelCase_ ) def A__ ( self , UpperCAmelCase , UpperCAmelCase=None , UpperCAmelCase="This example is {}." ) -> Any: '''simple docstring''' lowercase_ , lowercase_ = self._args_parser(lowerCamelCase_ , lowerCamelCase_ , lowerCamelCase_ ) for i, (candidate_label, sequence_pair) in enumerate(zip(lowerCamelCase_ , lowerCamelCase_ ) ): lowercase_ = self._parse_and_tokenize([sequence_pair] ) yield { "candidate_label": candidate_label, "sequence": sequences[0], "is_last": i == len(lowerCamelCase_ ) - 1, **model_input, } def A__ ( self , UpperCAmelCase ) -> Tuple: '''simple docstring''' lowercase_ = inputs["candidate_label"] lowercase_ = inputs["sequence"] lowercase_ = {k: inputs[k] for k in self.tokenizer.model_input_names} lowercase_ = self.model(**lowerCamelCase_ ) lowercase_ = { "candidate_label": candidate_label, "sequence": sequence, "is_last": inputs["is_last"], **outputs, } return model_outputs def A__ ( self , UpperCAmelCase , UpperCAmelCase=False ) -> Any: '''simple docstring''' lowercase_ = [outputs["candidate_label"] for outputs in model_outputs] lowercase_ = [outputs["sequence"] for outputs in model_outputs] lowercase_ = np.concatenate([output["logits"].numpy() for output in model_outputs] ) lowercase_ = logits.shape[0] lowercase_ = len(lowerCamelCase_ ) lowercase_ = N // n lowercase_ = logits.reshape((num_sequences, n, -1) ) if multi_label or len(lowerCamelCase_ ) == 1: # softmax over the entailment vs. contradiction dim for each label independently lowercase_ = self.entailment_id lowercase_ = -1 if entailment_id == 0 else 0 lowercase_ = reshaped_outputs[..., [contradiction_id, entailment_id]] lowercase_ = np.exp(lowerCamelCase_ ) / np.exp(lowerCamelCase_ ).sum(-1 , keepdims=lowerCamelCase_ ) lowercase_ = scores[..., 1] else: # softmax the "entailment" logits over all candidate labels lowercase_ = reshaped_outputs[..., self.entailment_id] lowercase_ = np.exp(lowerCamelCase_ ) / np.exp(lowerCamelCase_ ).sum(-1 , keepdims=lowerCamelCase_ ) lowercase_ = list(reversed(scores[0].argsort() ) ) return { "sequence": sequences[0], "labels": [candidate_labels[i] for i in top_inds], "scores": scores[0, top_inds].tolist(), }
710
import argparse import json import os import fairseq import torch from fairseq.data import Dictionary # Register SEW's fairseq modules from sew_asapp import tasks # noqa: F401 from transformers import ( SEWConfig, SEWForCTC, SEWModel, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() SCREAMING_SNAKE_CASE__ = logging.get_logger(__name__) SCREAMING_SNAKE_CASE__ = { """post_extract_proj""": """feature_projection""", """encoder.pos_conv.0""": """encoder.pos_conv_embed.conv""", """self_attn.k_proj""": """encoder.layers.*.attention.k_proj""", """self_attn.v_proj""": """encoder.layers.*.attention.v_proj""", """self_attn.q_proj""": """encoder.layers.*.attention.q_proj""", """self_attn.out_proj""": """encoder.layers.*.attention.out_proj""", """self_attn_layer_norm""": """encoder.layers.*.layer_norm""", """fc1""": """encoder.layers.*.feed_forward.intermediate_dense""", """fc2""": """encoder.layers.*.feed_forward.output_dense""", """final_layer_norm""": """encoder.layers.*.final_layer_norm""", """encoder.upsample.0""": """encoder.upsample.projection""", """encoder.layer_norm""": """encoder.layer_norm""", """w2v_model.layer_norm""": """layer_norm""", """w2v_encoder.proj""": """lm_head""", """mask_emb""": """masked_spec_embed""", } def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Tuple , __lowerCamelCase: List[str] , __lowerCamelCase: int , __lowerCamelCase: Optional[Any] , __lowerCamelCase: Union[str, Any] ): '''simple docstring''' for attribute in key.split("." ): lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ) if weight_type is not None: lowercase_ = getattr(__lowerCamelCase , __lowerCamelCase ).shape else: lowercase_ = hf_pointer.shape assert hf_shape == value.shape, ( F'Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be' F' {value.shape} for {full_name}' ) if weight_type == "weight": lowercase_ = value elif weight_type == "weight_g": lowercase_ = value elif weight_type == "weight_v": lowercase_ = value elif weight_type == "bias": lowercase_ = value else: lowercase_ = value logger.info(F'{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[Any] , __lowerCamelCase: Optional[int] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = [] lowercase_ = fairseq_model.state_dict() lowercase_ = hf_model.sew.feature_extractor if is_finetuned else hf_model.feature_extractor for name, value in fairseq_dict.items(): lowercase_ = False if "conv_layers" in name: load_conv_layer( __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , hf_model.config.feat_extract_norm == "group" , ) lowercase_ = True else: for key, mapped_key in MAPPING.items(): lowercase_ = "sew." + mapped_key if (is_finetuned and mapped_key != "lm_head") else mapped_key if key in name or key.split("w2v_model." )[-1] == name.split("." )[0]: lowercase_ = True if "*" in mapped_key: lowercase_ = name.split(__lowerCamelCase )[0].split("." )[-2] lowercase_ = mapped_key.replace("*" , __lowerCamelCase ) if "weight_g" in name: lowercase_ = "weight_g" elif "weight_v" in name: lowercase_ = "weight_v" elif "weight" in name: lowercase_ = "weight" elif "bias" in name: lowercase_ = "bias" else: lowercase_ = None set_recursively(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) continue if not is_used: unused_weights.append(__lowerCamelCase ) logger.warning(F'Unused weights: {unused_weights}' ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: List[str] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: List[Any] , __lowerCamelCase: Dict ): '''simple docstring''' lowercase_ = full_name.split("conv_layers." )[-1] lowercase_ = name.split("." ) lowercase_ = int(items[0] ) lowercase_ = int(items[1] ) if type_id == 0: if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.bias.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].conv.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract conv layer {layer_id} was initialized from {full_name}.' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape, ( F'{full_name} has size {value.shape}, but {feature_extractor[layer_id].layer_norm.bias.data.shape} was' " found." ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) elif "weight" in name: assert value.shape == feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape, ( F'{full_name} has size {value.shape}, but' F' {feature_extractor[layer_id].layer_norm.weight.data.shape} was found.' ) lowercase_ = value logger.info(F'Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.' ) else: unused_weights.append(__lowerCamelCase ) def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Optional[Any] , __lowerCamelCase: Any ): '''simple docstring''' lowercase_ = SEWConfig() if is_finetuned: lowercase_ = model.wav_encoder.wav_model.cfg else: lowercase_ = model.cfg lowercase_ = fs_config.conv_bias lowercase_ = eval(fs_config.conv_feature_layers ) lowercase_ = [x[0] for x in conv_layers] lowercase_ = [x[1] for x in conv_layers] lowercase_ = [x[2] for x in conv_layers] lowercase_ = "gelu" lowercase_ = "layer" if fs_config.extractor_mode == "layer_norm" else "group" lowercase_ = 0.0 lowercase_ = fs_config.activation_fn.name lowercase_ = fs_config.encoder_embed_dim lowercase_ = 0.02 lowercase_ = fs_config.encoder_ffn_embed_dim lowercase_ = 1E-5 lowercase_ = fs_config.encoder_layerdrop lowercase_ = fs_config.encoder_attention_heads lowercase_ = fs_config.conv_pos_groups lowercase_ = fs_config.conv_pos lowercase_ = len(__lowerCamelCase ) lowercase_ = fs_config.encoder_layers lowercase_ = fs_config.squeeze_factor # take care of any params that are overridden by the Wav2VecCtc model if is_finetuned: lowercase_ = model.cfg lowercase_ = fs_config.final_dropout lowercase_ = fs_config.layerdrop lowercase_ = fs_config.activation_dropout lowercase_ = fs_config.mask_prob > 0 or fs_config.mask_channel_prob > 0 lowercase_ = fs_config.attention_dropout lowercase_ = fs_config.dropout_input lowercase_ = fs_config.dropout lowercase_ = fs_config.mask_channel_length lowercase_ = fs_config.mask_channel_prob lowercase_ = fs_config.mask_length lowercase_ = fs_config.mask_prob lowercase_ = "Wav2Vec2FeatureExtractor" lowercase_ = "Wav2Vec2CTCTokenizer" return config @torch.no_grad() def SCREAMING_SNAKE_CASE_ ( __lowerCamelCase: Union[str, Any] , __lowerCamelCase: Tuple , __lowerCamelCase: Tuple=None , __lowerCamelCase: List[Any]=None , __lowerCamelCase: str=True ): '''simple docstring''' if is_finetuned: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={"data": "/".join(dict_path.split("/" )[:-1] )} ) else: lowercase_ , lowercase_ , lowercase_ = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] ) if config_path is not None: lowercase_ = SEWConfig.from_pretrained(__lowerCamelCase ) else: lowercase_ = convert_config(model[0] , __lowerCamelCase ) lowercase_ = model[0].eval() lowercase_ = True if config.feat_extract_norm == "layer" else False lowercase_ = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_6000 , padding_value=0 , do_normalize=__lowerCamelCase , return_attention_mask=__lowerCamelCase , ) if is_finetuned: if dict_path: lowercase_ = Dictionary.load(__lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.pad_index lowercase_ = target_dict.bos_index lowercase_ = target_dict.eos_index lowercase_ = len(target_dict.symbols ) lowercase_ = os.path.join(__lowerCamelCase , "vocab.json" ) if not os.path.isdir(__lowerCamelCase ): logger.error("--pytorch_dump_folder_path ({}) should be a directory".format(__lowerCamelCase ) ) return os.makedirs(__lowerCamelCase , exist_ok=__lowerCamelCase ) with open(__lowerCamelCase , "w" , encoding="utf-8" ) as vocab_handle: json.dump(target_dict.indices , __lowerCamelCase ) lowercase_ = WavaVecaCTCTokenizer( __lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token="|" , do_lower_case=__lowerCamelCase , ) lowercase_ = WavaVecaProcessor(feature_extractor=__lowerCamelCase , tokenizer=__lowerCamelCase ) processor.save_pretrained(__lowerCamelCase ) lowercase_ = SEWForCTC(__lowerCamelCase ) else: lowercase_ = SEWModel(__lowerCamelCase ) feature_extractor.save_pretrained(__lowerCamelCase ) recursively_load_weights(__lowerCamelCase , __lowerCamelCase , __lowerCamelCase ) hf_model.save_pretrained(__lowerCamelCase ) if __name__ == "__main__": SCREAMING_SNAKE_CASE__ = argparse.ArgumentParser() parser.add_argument("""--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the output PyTorch model.""") parser.add_argument("""--checkpoint_path""", default=None, type=str, help="""Path to fairseq checkpoint""") parser.add_argument("""--dict_path""", default=None, type=str, help="""Path to dict of fine-tuned model""") parser.add_argument("""--config_path""", default=None, type=str, help="""Path to hf config.json of model to convert""") parser.add_argument( """--is_finetuned""", action="""store_true""", help="""Whether the model to convert is a fine-tuned model or not""" ) SCREAMING_SNAKE_CASE__ = parser.parse_args() convert_sew_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, args.is_finetuned )
601
0
'''simple docstring''' import argparse import logging import pickle from collections import Counter logging.basicConfig( format='''%(asctime)s - %(levelname)s - %(name)s - %(message)s''', datefmt='''%m/%d/%Y %H:%M:%S''', level=logging.INFO ) _UpperCAmelCase : Optional[int] = logging.getLogger(__name__) if __name__ == "__main__": _UpperCAmelCase : Tuple = argparse.ArgumentParser( description='''Token Counts for smoothing the masking probabilities in MLM (cf XLM/word2vec)''' ) parser.add_argument( '''--data_file''', type=str, default='''data/dump.bert-base-uncased.pickle''', help='''The binarized dataset.''' ) parser.add_argument( '''--token_counts_dump''', type=str, default='''data/token_counts.bert-base-uncased.pickle''', help='''The dump file.''' ) parser.add_argument('''--vocab_size''', default=3_05_22, type=int) _UpperCAmelCase : int = parser.parse_args() logger.info(F'''Loading data from {args.data_file}''') with open(args.data_file, '''rb''') as fp: _UpperCAmelCase : str = pickle.load(fp) logger.info('''Counting occurrences for MLM.''') _UpperCAmelCase : Optional[int] = Counter() for tk_ids in data: counter.update(tk_ids) _UpperCAmelCase : Union[str, Any] = [0] * args.vocab_size for k, v in counter.items(): _UpperCAmelCase : Union[str, Any] = v logger.info(F'''Dump to {args.token_counts_dump}''') with open(args.token_counts_dump, '''wb''') as handle: pickle.dump(counts, handle, protocol=pickle.HIGHEST_PROTOCOL)
107
'''simple docstring''' from collections import OrderedDict from typing import TYPE_CHECKING, Any, Mapping, Optional from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging if TYPE_CHECKING: from ... import FeatureExtractionMixin, TensorType A__ : Tuple =logging.get_logger(__name__) A__ : Any ={ '''openai/imagegpt-small''': '''''', '''openai/imagegpt-medium''': '''''', '''openai/imagegpt-large''': '''''', } class UpperCAmelCase ( snake_case_ ): _lowercase: Tuple = '''imagegpt''' _lowercase: Optional[int] = ['''past_key_values'''] _lowercase: str = { '''hidden_size''': '''n_embd''', '''max_position_embeddings''': '''n_positions''', '''num_attention_heads''': '''n_head''', '''num_hidden_layers''': '''n_layer''', } def __init__( self : Optional[int] , __snake_case : Optional[Any]=5_12 + 1 , __snake_case : Union[str, Any]=32 * 32 , __snake_case : List[Any]=5_12 , __snake_case : Any=24 , __snake_case : Optional[Any]=8 , __snake_case : List[Any]=None , __snake_case : str="quick_gelu" , __snake_case : List[Any]=0.1 , __snake_case : str=0.1 , __snake_case : Optional[int]=0.1 , __snake_case : Tuple=1E-5 , __snake_case : Optional[int]=0.02 , __snake_case : str=True , __snake_case : Dict=True , __snake_case : Union[str, Any]=False , __snake_case : Dict=False , __snake_case : Union[str, Any]=False , **__snake_case : Union[str, Any] , ) -> List[Any]: _lowerCAmelCase = vocab_size _lowerCAmelCase = n_positions _lowerCAmelCase = n_embd _lowerCAmelCase = n_layer _lowerCAmelCase = n_head _lowerCAmelCase = n_inner _lowerCAmelCase = activation_function _lowerCAmelCase = resid_pdrop _lowerCAmelCase = embd_pdrop _lowerCAmelCase = attn_pdrop _lowerCAmelCase = layer_norm_epsilon _lowerCAmelCase = initializer_range _lowerCAmelCase = scale_attn_weights _lowerCAmelCase = use_cache _lowerCAmelCase = scale_attn_by_inverse_layer_idx _lowerCAmelCase = reorder_and_upcast_attn _lowerCAmelCase = tie_word_embeddings super().__init__(tie_word_embeddings=__snake_case , **__snake_case ) class UpperCAmelCase ( snake_case_ ): @property def lowercase__ ( self : Optional[Any] ) -> Mapping[str, Mapping[int, str]]: return OrderedDict( [ ("""input_ids""", {0: """batch""", 1: """sequence"""}), ] ) def lowercase__ ( self : Union[str, Any] , __snake_case : "FeatureExtractionMixin" , __snake_case : int = 1 , __snake_case : int = -1 , __snake_case : bool = False , __snake_case : Optional["TensorType"] = None , __snake_case : int = 3 , __snake_case : int = 32 , __snake_case : int = 32 , ) -> Mapping[str, Any]: _lowerCAmelCase = self._generate_dummy_images(__snake_case , __snake_case , __snake_case , __snake_case ) _lowerCAmelCase = dict(preprocessor(images=__snake_case , return_tensors=__snake_case ) ) return inputs
207
0
from __future__ import annotations import bisect def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 0, lowerCAmelCase_ = -1 ): """simple docstring""" if hi < 0: SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ ) while lo < hi: SCREAMING_SNAKE_CASE =lo + (hi - lo) // 2 if sorted_collection[mid] < item: SCREAMING_SNAKE_CASE =mid + 1 else: SCREAMING_SNAKE_CASE =mid return lo def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 0, lowerCAmelCase_ = -1 ): """simple docstring""" if hi < 0: SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ ) while lo < hi: SCREAMING_SNAKE_CASE =lo + (hi - lo) // 2 if sorted_collection[mid] <= item: SCREAMING_SNAKE_CASE =mid + 1 else: SCREAMING_SNAKE_CASE =mid return lo def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 0, lowerCAmelCase_ = -1 ): """simple docstring""" sorted_collection.insert(bisect_left(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ = 0, lowerCAmelCase_ = -1 ): """simple docstring""" sorted_collection.insert(bisect_right(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ), lowerCAmelCase_ ) def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =0 SCREAMING_SNAKE_CASE =len(lowerCAmelCase_ ) - 1 while left <= right: SCREAMING_SNAKE_CASE =left + (right - left) // 2 SCREAMING_SNAKE_CASE =sorted_collection[midpoint] if current_item == item: return midpoint elif item < current_item: SCREAMING_SNAKE_CASE =midpoint - 1 else: SCREAMING_SNAKE_CASE =midpoint + 1 return None def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" SCREAMING_SNAKE_CASE =bisect.bisect_left(lowerCAmelCase_, lowerCAmelCase_ ) if index != len(lowerCAmelCase_ ) and sorted_collection[index] == item: return index return None def snake_case__ ( lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_ ): """simple docstring""" if right < left: return None SCREAMING_SNAKE_CASE =left + (right - left) // 2 if sorted_collection[midpoint] == item: return midpoint elif sorted_collection[midpoint] > item: return binary_search_by_recursion(lowerCAmelCase_, lowerCAmelCase_, lowerCAmelCase_, midpoint - 1 ) else: return binary_search_by_recursion(lowerCAmelCase_, lowerCAmelCase_, midpoint + 1, lowerCAmelCase_ ) if __name__ == "__main__": _lowerCamelCase =input("Enter numbers separated by comma:\n").strip() _lowerCamelCase =sorted(int(item) for item in user_input.split(",")) _lowerCamelCase =int(input("Enter a single number to be found in the list:\n")) _lowerCamelCase =binary_search(collection, target) if result is None: print(f'{target} was not found in {collection}.') else: print(f'{target} was found at position {result} in {collection}.')
704
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available, is_vision_available, ) _lowerCamelCase ={ "configuration_perceiver": ["PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP", "PerceiverConfig", "PerceiverOnnxConfig"], "tokenization_perceiver": ["PerceiverTokenizer"], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =["PerceiverFeatureExtractor"] _lowerCamelCase =["PerceiverImageProcessor"] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: _lowerCamelCase =[ "PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST", "PerceiverForImageClassificationConvProcessing", "PerceiverForImageClassificationFourier", "PerceiverForImageClassificationLearned", "PerceiverForMaskedLM", "PerceiverForMultimodalAutoencoding", "PerceiverForOpticalFlow", "PerceiverForSequenceClassification", "PerceiverLayer", "PerceiverModel", "PerceiverPreTrainedModel", ] if TYPE_CHECKING: from .configuration_perceiver import PERCEIVER_PRETRAINED_CONFIG_ARCHIVE_MAP, PerceiverConfig, PerceiverOnnxConfig from .tokenization_perceiver import PerceiverTokenizer try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_perceiver import PerceiverFeatureExtractor from .image_processing_perceiver import PerceiverImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_perceiver import ( PERCEIVER_PRETRAINED_MODEL_ARCHIVE_LIST, PerceiverForImageClassificationConvProcessing, PerceiverForImageClassificationFourier, PerceiverForImageClassificationLearned, PerceiverForMaskedLM, PerceiverForMultimodalAutoencoding, PerceiverForOpticalFlow, PerceiverForSequenceClassification, PerceiverLayer, PerceiverModel, PerceiverPreTrainedModel, ) else: import sys _lowerCamelCase =_LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
252
0
'''simple docstring''' from __future__ import annotations import math from collections.abc import Callable def _UpperCamelCase ( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = 100 , ): """simple docstring""" __magic_name__ : Union[str, Any] = x_start __magic_name__ : Optional[int] = fnc(__lowerCamelCase ) __magic_name__ : Dict = 0.0 for _ in range(__lowerCamelCase ): # Approximates curve as a sequence of linear lines and sums their length __magic_name__ : Optional[int] = (x_end - x_start) / steps + xa __magic_name__ : Optional[int] = fnc(__lowerCamelCase ) length += math.hypot(xa - xa , fxa - fxa ) # Increment step __magic_name__ : Optional[Any] = xa __magic_name__ : Optional[int] = fxa return length if __name__ == "__main__": def _UpperCamelCase ( UpperCamelCase__ ): """simple docstring""" return math.sin(10 * x ) print("f(x) = sin(10 * x)") print("The length of the curve from x = -10 to x = 10 is:") _SCREAMING_SNAKE_CASE : Any = 10 while i <= 10_00_00: print(f"With {i} steps: {line_length(f, -10, 10, i)}") i *= 10
436
import inspect import unittest from transformers import ConvNextVaConfig from transformers.models.auto import get_values from transformers.models.auto.modeling_auto import MODEL_FOR_BACKBONE_MAPPING_NAMES, MODEL_MAPPING_NAMES from transformers.testing_utils import require_torch, require_vision, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ConvNextVaBackbone, ConvNextVaForImageClassification, ConvNextVaModel from transformers.models.convnextva.modeling_convnextva import CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class UpperCAmelCase : def __init__(self : int , snake_case__ : Optional[int] , snake_case__ : Optional[int]=13 , snake_case__ : Tuple=32 , snake_case__ : Optional[Any]=3 , snake_case__ : Tuple=4 , snake_case__ : List[Any]=[10, 20, 30, 40] , snake_case__ : Dict=[2, 2, 3, 2] , snake_case__ : Union[str, Any]=True , snake_case__ : Union[str, Any]=True , snake_case__ : List[str]=37 , snake_case__ : List[Any]="gelu" , snake_case__ : Union[str, Any]=10 , snake_case__ : int=0.02 , snake_case__ : str=["stage2", "stage3", "stage4"] , snake_case__ : int=[2, 3, 4] , snake_case__ : List[Any]=None , ) -> Optional[int]: '''simple docstring''' snake_case : Union[str, Any] = parent snake_case : Optional[int] = batch_size snake_case : Optional[Any] = image_size snake_case : Union[str, Any] = num_channels snake_case : Tuple = num_stages snake_case : Union[str, Any] = hidden_sizes snake_case : List[Any] = depths snake_case : Dict = is_training snake_case : List[Any] = use_labels snake_case : str = intermediate_size snake_case : Dict = hidden_act snake_case : Optional[int] = num_labels snake_case : Dict = initializer_range snake_case : List[Any] = out_features snake_case : int = out_indices snake_case : List[Any] = scope def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[str]: '''simple docstring''' snake_case : List[Any] = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) snake_case : List[Any] = None if self.use_labels: snake_case : List[Any] = ids_tensor([self.batch_size] , self.num_labels ) snake_case : str = self.get_config() return config, pixel_values, labels def _SCREAMING_SNAKE_CASE (self : Any ) -> Dict: '''simple docstring''' return ConvNextVaConfig( num_channels=self.num_channels , hidden_sizes=self.hidden_sizes , depths=self.depths , num_stages=self.num_stages , hidden_act=self.hidden_act , is_decoder=snake_case__ , initializer_range=self.initializer_range , out_features=self.out_features , out_indices=self.out_indices , num_labels=self.num_labels , ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : str , snake_case__ : int , snake_case__ : List[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : List[str] = ConvNextVaModel(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Any = model(snake_case__ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 32, self.image_size // 32) , ) def _SCREAMING_SNAKE_CASE (self : Union[str, Any] , snake_case__ : Optional[Any] , snake_case__ : str , snake_case__ : List[Any] ) -> Tuple: '''simple docstring''' snake_case : str = ConvNextVaForImageClassification(snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Tuple = model(snake_case__ , labels=snake_case__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] , snake_case__ : Dict , snake_case__ : int , snake_case__ : Optional[int] ) -> int: '''simple docstring''' snake_case : int = ConvNextVaBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : Union[str, Any] = model(snake_case__ ) # verify hidden states self.parent.assertEqual(len(result.feature_maps ) , len(config.out_features ) ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[1], 4, 4] ) # verify channels self.parent.assertEqual(len(model.channels ) , len(config.out_features ) ) self.parent.assertListEqual(model.channels , config.hidden_sizes[1:] ) # verify backbone works with out_features=None snake_case : Dict = None snake_case : Tuple = ConvNextVaBackbone(config=snake_case__ ) model.to(snake_case__ ) model.eval() snake_case : int = model(snake_case__ ) # verify feature maps self.parent.assertEqual(len(result.feature_maps ) , 1 ) self.parent.assertListEqual(list(result.feature_maps[0].shape ) , [self.batch_size, self.hidden_sizes[-1], 1, 1] ) # verify channels self.parent.assertEqual(len(model.channels ) , 1 ) self.parent.assertListEqual(model.channels , [config.hidden_sizes[-1]] ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Union[str, Any]: '''simple docstring''' snake_case : str = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : Union[str, Any] = config_and_inputs snake_case : int = {"pixel_values": pixel_values} return config, inputs_dict def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> Tuple: '''simple docstring''' snake_case : Optional[int] = self.prepare_config_and_inputs() snake_case , snake_case , snake_case : str = config_and_inputs snake_case : Optional[int] = {"pixel_values": pixel_values, "labels": labels} return config, inputs_dict @require_torch class UpperCAmelCase ( A_ ,A_ ,unittest.TestCase ): A__ : Tuple = ( ( ConvNextVaModel, ConvNextVaForImageClassification, ConvNextVaBackbone, ) if is_torch_available() else () ) A__ : int = ( {"feature-extraction": ConvNextVaModel, "image-classification": ConvNextVaForImageClassification} if is_torch_available() else {} ) A__ : str = False A__ : Dict = False A__ : Optional[int] = False A__ : List[Any] = False A__ : str = False def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = ConvNextVaModelTester(self ) snake_case : int = ConfigTester(self , config_class=snake_case__ , has_text_modality=snake_case__ , hidden_size=37 ) def _SCREAMING_SNAKE_CASE (self : str ) -> Tuple: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _SCREAMING_SNAKE_CASE (self : int ) -> Dict: '''simple docstring''' return @unittest.skip(reason="ConvNextV2 does not use inputs_embeds" ) def _SCREAMING_SNAKE_CASE (self : List[Any] ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not support input and output embeddings" ) def _SCREAMING_SNAKE_CASE (self : int ) -> Optional[Any]: '''simple docstring''' pass @unittest.skip(reason="ConvNextV2 does not use feedforward chunking" ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> List[str]: '''simple docstring''' pass def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Optional[int]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case , snake_case : str = self.model_tester.prepare_config_and_inputs_with_labels() snake_case : Tuple = True if model_class.__name__ in [ *get_values(snake_case__ ), *get_values(snake_case__ ), ]: continue snake_case : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.train() snake_case : str = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : List[str] = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' if not self.model_tester.is_training: return for model_class in self.all_model_classes: snake_case , snake_case : List[str] = self.model_tester.prepare_config_and_inputs_with_labels() snake_case : List[Any] = False snake_case : Any = True if ( model_class.__name__ in [*get_values(snake_case__ ), *get_values(snake_case__ )] or not model_class.supports_gradient_checkpointing ): continue snake_case : Union[str, Any] = model_class(snake_case__ ) model.to(snake_case__ ) model.gradient_checkpointing_enable() model.train() snake_case : List[str] = self._prepare_for_class(snake_case__ , snake_case__ , return_labels=snake_case__ ) snake_case : Any = model(**snake_case__ ).loss loss.backward() def _SCREAMING_SNAKE_CASE (self : Union[str, Any] ) -> List[str]: '''simple docstring''' snake_case , snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : int = model_class(snake_case__ ) snake_case : List[str] = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic snake_case : str = [*signature.parameters.keys()] snake_case : Any = ["pixel_values"] self.assertListEqual(arg_names[:1] , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> Optional[int]: '''simple docstring''' snake_case : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[int] ) -> str: '''simple docstring''' def check_hidden_states_output(snake_case__ : Dict , snake_case__ : List[Any] , snake_case__ : Dict ): snake_case : List[str] = model_class(snake_case__ ) model.to(snake_case__ ) model.eval() with torch.no_grad(): snake_case : Any = model(**self._prepare_for_class(snake_case__ , snake_case__ ) ) snake_case : List[Any] = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states snake_case : Dict = self.model_tester.num_stages self.assertEqual(len(snake_case__ ) , expected_num_stages + 1 ) # ConvNextV2's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) snake_case , snake_case : int = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: snake_case : Dict = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] snake_case : int = True check_hidden_states_output(snake_case__ , snake_case__ , snake_case__ ) def _SCREAMING_SNAKE_CASE (self : Optional[Any] ) -> Union[str, Any]: '''simple docstring''' snake_case : Union[str, Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*snake_case__ ) @slow def _SCREAMING_SNAKE_CASE (self : Dict ) -> List[Any]: '''simple docstring''' for model_name in CONVNEXTV2_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: snake_case : Optional[int] = ConvNextVaModel.from_pretrained(snake_case__ ) self.assertIsNotNone(snake_case__ ) def UpperCamelCase ( ): snake_case : Dict = Image.open("./tests/fixtures/tests_samples/COCO/000000039769.png" ) return image @require_torch @require_vision class UpperCAmelCase ( unittest.TestCase ): @cached_property def _SCREAMING_SNAKE_CASE (self : Tuple ) -> Any: '''simple docstring''' return AutoImageProcessor.from_pretrained("facebook/convnextv2-tiny-1k-224" ) if is_vision_available() else None @slow def _SCREAMING_SNAKE_CASE (self : Tuple ) -> List[Any]: '''simple docstring''' snake_case : Union[str, Any] = ConvNextVaForImageClassification.from_pretrained("facebook/convnextv2-tiny-1k-224" ).to(snake_case__ ) snake_case : List[str] = self.default_image_processor snake_case : str = prepare_img() snake_case : List[str] = preprocessor(images=snake_case__ , return_tensors="pt" ).to(snake_case__ ) # forward pass with torch.no_grad(): snake_case : str = model(**snake_case__ ) # verify the logits snake_case : Any = torch.Size((1, 10_00) ) self.assertEqual(outputs.logits.shape , snake_case__ ) snake_case : str = torch.tensor([0.9996, 0.1966, -0.4386] ).to(snake_case__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , snake_case__ , atol=1e-4 ) )
204
0
from string import ascii_uppercase lowerCAmelCase = {char: i for i, char in enumerate(ascii_uppercase)} lowerCAmelCase = dict(enumerate(ascii_uppercase)) def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : List[Any] = len(lowercase_ ) __UpperCAmelCase : int = 0 while True: if x == i: __UpperCAmelCase : List[str] = 0 if len(lowercase_ ) == len(lowercase_ ): break key += key[i] i += 1 return key def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : str = '''''' __UpperCAmelCase : List[str] = 0 for letter in message: if letter == " ": cipher_text += " " else: __UpperCAmelCase : Optional[int] = (dicta[letter] - dicta[key_new[i]]) % 26 i += 1 cipher_text += dicta[x] return cipher_text def __SCREAMING_SNAKE_CASE ( lowercase_ , lowercase_ ) -> str: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''''' __UpperCAmelCase : List[str] = 0 for letter in cipher_text: if letter == " ": or_txt += " " else: __UpperCAmelCase : int = (dicta[letter] + dicta[key_new[i]] + 26) % 26 i += 1 or_txt += dicta[x] return or_txt def __SCREAMING_SNAKE_CASE ( ) -> None: '''simple docstring''' __UpperCAmelCase : Optional[int] = '''THE GERMAN ATTACK''' __UpperCAmelCase : List[Any] = '''SECRET''' __UpperCAmelCase : Optional[int] = generate_key(lowercase_ , lowercase_ ) __UpperCAmelCase : List[str] = cipher_text(lowercase_ , lowercase_ ) print(f"Encrypted Text = {s}" ) print(f"Original Text = {original_text(lowercase_ , lowercase_ )}" ) if __name__ == "__main__": import doctest doctest.testmod() main()
675
import math import unittest from transformers import BioGptConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptTokenizer, ) from transformers.models.biogpt.modeling_biogpt import BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST class lowerCamelCase : def __init__( self , lowercase__ , lowercase__=1_3 , lowercase__=7 , lowercase__=True , lowercase__=True , lowercase__=False , lowercase__=True , lowercase__=9_9 , lowercase__=3_2 , lowercase__=5 , lowercase__=4 , lowercase__=3_7 , lowercase__="gelu" , lowercase__=0.1 , lowercase__=0.1 , lowercase__=5_1_2 , lowercase__=1_6 , lowercase__=2 , lowercase__=0.0_2 , lowercase__=3 , lowercase__=4 , lowercase__=None , ): __UpperCAmelCase : Tuple = parent __UpperCAmelCase : List[Any] = batch_size __UpperCAmelCase : Optional[Any] = seq_length __UpperCAmelCase : Tuple = is_training __UpperCAmelCase : List[Any] = use_input_mask __UpperCAmelCase : List[str] = use_token_type_ids __UpperCAmelCase : Union[str, Any] = use_labels __UpperCAmelCase : Union[str, Any] = vocab_size __UpperCAmelCase : Optional[int] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[Any] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Dict = hidden_act __UpperCAmelCase : str = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Tuple = type_vocab_size __UpperCAmelCase : int = type_sequence_label_size __UpperCAmelCase : List[Any] = initializer_range __UpperCAmelCase : List[str] = num_labels __UpperCAmelCase : Dict = num_choices __UpperCAmelCase : Union[str, Any] = scope def A( self): __UpperCAmelCase : Tuple = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size) __UpperCAmelCase : Dict = None if self.use_input_mask: __UpperCAmelCase : List[Any] = random_attention_mask([self.batch_size, self.seq_length]) __UpperCAmelCase : Union[str, Any] = None if self.use_token_type_ids: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : Tuple = None __UpperCAmelCase : Optional[int] = None if self.use_labels: __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.type_sequence_label_size) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size, self.seq_length] , self.num_labels) __UpperCAmelCase : List[str] = ids_tensor([self.batch_size] , self.num_choices) __UpperCAmelCase : Optional[Any] = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def A( self): return BioGptConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=lowercase__ , initializer_range=self.initializer_range , ) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__): __UpperCAmelCase : Union[str, Any] = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__) __UpperCAmelCase : List[Any] = model(lowercase__) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , ): __UpperCAmelCase : Optional[Any] = BioGptForCausalLM(config=lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__ , labels=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : str = BioGptModel(config=lowercase__) model.to(lowercase__) model.eval() # create attention mask __UpperCAmelCase : str = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) __UpperCAmelCase : int = self.seq_length // 2 __UpperCAmelCase : Any = 0 # first forward pass __UpperCAmelCase , __UpperCAmelCase : Tuple = model(lowercase__ , attention_mask=lowercase__).to_tuple() # create hypothetical next token and extent to next_input_ids __UpperCAmelCase : Union[str, Any] = ids_tensor((self.batch_size, 1) , config.vocab_size) # change a random masked slice from input_ids __UpperCAmelCase : Tuple = ids_tensor((1,) , lowercase__).item() + 1 __UpperCAmelCase : Optional[Any] = ids_tensor((self.batch_size, 1) , config.vocab_size).squeeze(-1) __UpperCAmelCase : int = random_other_next_tokens # append to next input_ids and attn_mask __UpperCAmelCase : Optional[Any] = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : int = torch.cat( [attn_mask, torch.ones((attn_mask.shape[0], 1) , dtype=torch.long , device=lowercase__)] , dim=1 , ) # get two different outputs __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : List[Any] = model(lowercase__ , past_key_values=lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] # select random slice __UpperCAmelCase : Tuple = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -1, random_slice_idx].detach() __UpperCAmelCase : int = output_from_past[:, 0, random_slice_idx].detach() # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : int = BioGptModel(config=lowercase__).to(lowercase__).eval() __UpperCAmelCase : List[str] = torch.ones(input_ids.shape , dtype=torch.long , device=lowercase__) # first forward pass __UpperCAmelCase : Union[str, Any] = model(lowercase__ , attention_mask=lowercase__ , use_cache=lowercase__) __UpperCAmelCase , __UpperCAmelCase : Tuple = outputs.to_tuple() # create hypothetical multiple next token and extent to next_input_ids __UpperCAmelCase : Any = ids_tensor((self.batch_size, 3) , config.vocab_size) __UpperCAmelCase : Optional[int] = ids_tensor((self.batch_size, 3) , 2) # append to next input_ids and __UpperCAmelCase : Any = torch.cat([input_ids, next_tokens] , dim=-1) __UpperCAmelCase : Any = torch.cat([attention_mask, next_attn_mask] , dim=-1) __UpperCAmelCase : List[Any] = model(lowercase__ , attention_mask=lowercase__)['''last_hidden_state'''] __UpperCAmelCase : int = model(lowercase__ , attention_mask=lowercase__ , past_key_values=lowercase__)[ '''last_hidden_state''' ] # select random slice __UpperCAmelCase : List[str] = ids_tensor((1,) , output_from_past.shape[-1]).item() __UpperCAmelCase : List[str] = output_from_no_past[:, -3:, random_slice_idx].detach() __UpperCAmelCase : Dict = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1]) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(lowercase__ , lowercase__ , atol=1e-3)) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__ , lowercase__=False): __UpperCAmelCase : int = BioGptForCausalLM(lowercase__) model.to(lowercase__) if gradient_checkpointing: model.gradient_checkpointing_enable() __UpperCAmelCase : Tuple = model(lowercase__ , labels=lowercase__) self.parent.assertEqual(result.loss.shape , ()) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size)) result.loss.backward() def A( self , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[int] = BioGptModel(lowercase__) __UpperCAmelCase : int = model.config.initializer_range / math.sqrt(2 * model.config.num_hidden_layers) for key in model.state_dict().keys(): if "c_proj" in key and "weight" in key: self.parent.assertLessEqual(abs(torch.std(model.state_dict()[key]) - model_std) , 0.0_0_1) self.parent.assertLessEqual(abs(torch.mean(model.state_dict()[key]) - 0.0) , 0.0_1) def A( self , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , *lowercase__): __UpperCAmelCase : Optional[Any] = self.num_labels __UpperCAmelCase : List[str] = BioGptForTokenClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : List[str] = model(lowercase__ , attention_mask=lowercase__ , token_type_ids=lowercase__) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels)) def A( self): __UpperCAmelCase : Tuple = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : List[Any] = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class lowerCamelCase ( _UpperCamelCase , _UpperCamelCase , _UpperCamelCase , unittest.TestCase ): _lowerCAmelCase : str = ( (BioGptModel, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification) if is_torch_available() else () ) _lowerCAmelCase : int = (BioGptForCausalLM,) if is_torch_available() else () _lowerCAmelCase : Union[str, Any] = ( { '''feature-extraction''': BioGptModel, '''text-classification''': BioGptForSequenceClassification, '''text-generation''': BioGptForCausalLM, '''token-classification''': BioGptForTokenClassification, '''zero-shot''': BioGptForSequenceClassification, } if is_torch_available() else {} ) _lowerCAmelCase : List[Any] = False def A( self): __UpperCAmelCase : int = BioGptModelTester(self) __UpperCAmelCase : int = ConfigTester(self , config_class=lowercase__ , hidden_size=3_7) def A( self): self.config_tester.run_common_tests() def A( self): __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : Dict = type self.model_tester.create_and_check_model(*lowercase__) def A( self): __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_attention_mask_past(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_forward_and_backwards(*lowercase__ , gradient_checkpointing=lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_model_past_large_inputs(*lowercase__) def A( self): __UpperCAmelCase : Optional[int] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_weight_initialization(*lowercase__) def A( self): __UpperCAmelCase : Tuple = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_biogpt_for_token_classification(*lowercase__) @slow def A( self): __UpperCAmelCase : Any = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) __UpperCAmelCase : Dict = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : List[str] = '''left''' # Define PAD Token = EOS Token = 50256 __UpperCAmelCase : List[Any] = tokenizer.eos_token __UpperCAmelCase : Tuple = model.config.eos_token_id # use different length sentences to test batching __UpperCAmelCase : Optional[Any] = [ '''Hello, my dog is a little''', '''Today, I''', ] __UpperCAmelCase : int = tokenizer(lowercase__ , return_tensors='''pt''' , padding=lowercase__) __UpperCAmelCase : Union[str, Any] = inputs['''input_ids'''].to(lowercase__) __UpperCAmelCase : int = model.generate( input_ids=lowercase__ , attention_mask=inputs['''attention_mask'''].to(lowercase__) , ) __UpperCAmelCase : Any = tokenizer(sentences[0] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Optional[int] = model.generate(input_ids=lowercase__) __UpperCAmelCase : Optional[int] = inputs_non_padded.shape[-1] - inputs['''attention_mask'''][-1].long().sum().cpu().item() __UpperCAmelCase : str = tokenizer(sentences[1] , return_tensors='''pt''').input_ids.to(lowercase__) __UpperCAmelCase : Any = model.generate(input_ids=lowercase__ , max_length=model.config.max_length - num_paddings) __UpperCAmelCase : Optional[int] = tokenizer.batch_decode(lowercase__ , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_non_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : Any = tokenizer.decode(output_padded[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : str = [ '''Hello, my dog is a little bit bigger than a little bit.''', '''Today, I have a good idea of how to use the information''', ] self.assertListEqual(lowercase__ , lowercase__) self.assertListEqual(lowercase__ , [non_padded_sentence, padded_sentence]) @slow def A( self): for model_name in BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : Union[str, Any] = BioGptModel.from_pretrained(lowercase__) self.assertIsNotNone(lowercase__) def A( self): __UpperCAmelCase , __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : Dict = 3 __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : int = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : Optional[Any] = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size) __UpperCAmelCase : Any = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[int] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) def A( self): __UpperCAmelCase , __UpperCAmelCase : Union[str, Any] = self.model_tester.prepare_config_and_inputs_for_common() __UpperCAmelCase : List[Any] = 3 __UpperCAmelCase : Union[str, Any] = '''multi_label_classification''' __UpperCAmelCase : List[Any] = input_dict['''input_ids'''] __UpperCAmelCase : Tuple = input_ids.ne(1).to(lowercase__) __UpperCAmelCase : List[str] = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size).to(torch.float) __UpperCAmelCase : List[Any] = BioGptForSequenceClassification(lowercase__) model.to(lowercase__) model.eval() __UpperCAmelCase : Optional[Any] = model(lowercase__ , attention_mask=lowercase__ , labels=lowercase__) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels)) @require_torch class lowerCamelCase ( unittest.TestCase ): @slow def A( self): __UpperCAmelCase : Optional[int] = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : Optional[Any] = torch.tensor([[2, 4_8_0_5, 9, 6_5_6, 2_1]]) __UpperCAmelCase : int = model(lowercase__)[0] __UpperCAmelCase : Any = 4_2_3_8_4 __UpperCAmelCase : Tuple = torch.Size((1, 5, vocab_size)) self.assertEqual(output.shape , lowercase__) __UpperCAmelCase : Dict = torch.tensor( [[[-9.5_2_3_6, -9.8_9_1_8, 1_0.4_5_5_7], [-1_1.0_4_6_9, -9.6_4_2_3, 8.1_0_2_2], [-8.8_6_6_4, -7.8_8_2_6, 5.5_3_2_5]]]) self.assertTrue(torch.allclose(output[:, :3, :3] , lowercase__ , atol=1e-4)) @slow def A( self): __UpperCAmelCase : Union[str, Any] = BioGptTokenizer.from_pretrained('''microsoft/biogpt''') __UpperCAmelCase : int = BioGptForCausalLM.from_pretrained('''microsoft/biogpt''') model.to(lowercase__) torch.manual_seed(0) __UpperCAmelCase : int = tokenizer('''COVID-19 is''' , return_tensors='''pt''').to(lowercase__) __UpperCAmelCase : List[str] = model.generate( **lowercase__ , min_length=1_0_0 , max_length=1_0_2_4 , num_beams=5 , early_stopping=lowercase__ , ) __UpperCAmelCase : List[Any] = tokenizer.decode(output_ids[0] , skip_special_tokens=lowercase__) __UpperCAmelCase : int = ( '''COVID-19 is a global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the''' ''' causative agent of coronavirus disease 2019 (COVID-19), which has spread to more than 200 countries and''' ''' territories, including the United States (US), Canada, Australia, New Zealand, the United Kingdom (UK),''' ''' and the United States of America (USA), as of March 11, 2020, with more than 800,000 confirmed cases and''' ''' more than 800,000 deaths.''' ) self.assertEqual(lowercase__ , lowercase__)
675
1
"""simple docstring""" from __future__ import annotations from fractions import Fraction def lowerCamelCase_ ( _lowerCamelCase : int , _lowerCamelCase : int ): return ( num != den and num % 1_0 == den // 1_0 and (num // 1_0) / (den % 1_0) == num / den ) def lowerCamelCase_ ( _lowerCamelCase : int ): lowerCamelCase_ = [] lowerCamelCase_ = 1_1 lowerCamelCase_ = int('''1''' + '''0''' * digit_len ) for num in range(_lowerCamelCase , _lowerCamelCase ): while den <= 9_9: if (num != den) and (num % 1_0 == den // 1_0) and (den % 1_0 != 0): if is_digit_cancelling(_lowerCamelCase , _lowerCamelCase ): solutions.append(F"""{num}/{den}""" ) den += 1 num += 1 lowerCamelCase_ = 1_0 return solutions def lowerCamelCase_ ( _lowerCamelCase : int = 2 ): lowerCamelCase_ = 1.0 for fraction in fraction_list(_lowerCamelCase ): lowerCamelCase_ = Fraction(_lowerCamelCase ) result *= frac.denominator / frac.numerator return int(_lowerCamelCase ) if __name__ == "__main__": print(solution())
142
"""simple docstring""" import warnings from ...processing_utils import ProcessorMixin from ...tokenization_utils_base import BatchEncoding class lowerCAmelCase ( a ): """simple docstring""" __lowercase :Optional[int] = ["image_processor", "tokenizer"] __lowercase :int = "ChineseCLIPImageProcessor" __lowercase :Union[str, Any] = ("BertTokenizer", "BertTokenizerFast") def __init__( self , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> Dict: '''simple docstring''' lowerCamelCase_ = None if "feature_extractor" in kwargs: warnings.warn( '''The `feature_extractor` argument is deprecated and will be removed in v5, use `image_processor`''' ''' instead.''' , UpperCamelCase__ , ) lowerCamelCase_ = kwargs.pop('''feature_extractor''' ) lowerCamelCase_ = image_processor if image_processor is not None else feature_extractor if image_processor is None: raise ValueError('''You need to specify an `image_processor`.''' ) if tokenizer is None: raise ValueError('''You need to specify a `tokenizer`.''' ) super().__init__(UpperCamelCase__ , UpperCamelCase__ ) lowerCamelCase_ = self.image_processor def __call__( self , UpperCamelCase__=None , UpperCamelCase__=None , UpperCamelCase__=None , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' if text is None and images is None: raise ValueError('''You have to specify either text or images. Both cannot be none.''' ) if text is not None: lowerCamelCase_ = self.tokenizer(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if images is not None: lowerCamelCase_ = self.image_processor(UpperCamelCase__ , return_tensors=UpperCamelCase__ , **UpperCamelCase__ ) if text is not None and images is not None: lowerCamelCase_ = image_features.pixel_values return encoding elif text is not None: return encoding else: return BatchEncoding(data=dict(**UpperCamelCase__ ) , tensor_type=UpperCamelCase__ ) def _lowerCAmelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[Any]: '''simple docstring''' return self.tokenizer.batch_decode(*UpperCamelCase__ , **UpperCamelCase__ ) def _lowerCAmelCase ( self , *UpperCamelCase__ , **UpperCamelCase__ ) -> List[str]: '''simple docstring''' return self.tokenizer.decode(*UpperCamelCase__ , **UpperCamelCase__ ) @property def _lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' lowerCamelCase_ = self.tokenizer.model_input_names lowerCamelCase_ = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names ) ) @property def _lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' warnings.warn( '''`feature_extractor_class` is deprecated and will be removed in v5. Use `image_processor_class` instead.''' , UpperCamelCase__ , ) return self.image_processor_class
142
1
from scipy.stats import pearsonr, spearmanr from sklearn.metrics import fa_score, matthews_corrcoef import datasets UpperCAmelCase_ = '''\\n@inproceedings{wang2019glue,\n title={{GLUE}: A Multi-Task Benchmark and Analysis Platform for Natural Language Understanding},\n author={Wang, Alex and Singh, Amanpreet and Michael, Julian and Hill, Felix and Levy, Omer and Bowman, Samuel R.},\n note={In the Proceedings of ICLR.},\n year={2019}\n}\n''' UpperCAmelCase_ = '''\\nGLUE, the General Language Understanding Evaluation benchmark\n(https://gluebenchmark.com/) is a collection of resources for training,\nevaluating, and analyzing natural language understanding systems.\n''' UpperCAmelCase_ = '''\nCompute GLUE evaluation metric associated to each GLUE dataset.\nArgs:\n predictions: list of predictions to score.\n Each translation should be tokenized into a list of tokens.\n references: list of lists of references for each translation.\n Each reference should be tokenized into a list of tokens.\nReturns: depending on the GLUE subset, one or several of:\n "accuracy": Accuracy\n "f1": F1 score\n "pearson": Pearson Correlation\n "spearmanr": Spearman Correlation\n "matthews_correlation": Matthew Correlation\nExamples:\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'sst2\') # \'sst2\' or any of ["mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'mrpc\') # \'mrpc\' or \'qqp\'\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'accuracy\': 1.0, \'f1\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'stsb\')\n >>> references = [0., 1., 2., 3., 4., 5.]\n >>> predictions = [0., 1., 2., 3., 4., 5.]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print({"pearson": round(results["pearson"], 2), "spearmanr": round(results["spearmanr"], 2)})\n {\'pearson\': 1.0, \'spearmanr\': 1.0}\n\n >>> glue_metric = datasets.load_metric(\'glue\', \'cola\')\n >>> references = [0, 1]\n >>> predictions = [0, 1]\n >>> results = glue_metric.compute(predictions=predictions, references=references)\n >>> print(results)\n {\'matthews_correlation\': 1.0}\n''' def UpperCAmelCase ( A__ , A__ ) -> Dict: return float((preds == labels).mean() ) def UpperCAmelCase ( A__ , A__ ) -> int: _snake_case : Dict = simple_accuracy(__lowerCAmelCase , __lowerCAmelCase ) _snake_case : Union[str, Any] = float(fa_score(y_true=__lowerCAmelCase , y_pred=__lowerCAmelCase ) ) return { "accuracy": acc, "f1": fa, } def UpperCAmelCase ( A__ , A__ ) -> Optional[Any]: _snake_case : Tuple = float(pearsonr(__lowerCAmelCase , __lowerCAmelCase )[0] ) _snake_case : Union[str, Any] = float(spearmanr(__lowerCAmelCase , __lowerCAmelCase )[0] ) return { "pearson": pearson_corr, "spearmanr": spearman_corr, } @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class __SCREAMING_SNAKE_CASE ( datasets.Metric ): """simple docstring""" def __lowerCamelCase( self ): """simple docstring""" if self.config_name not in [ "sst2", "mnli", "mnli_mismatched", "mnli_matched", "cola", "stsb", "mrpc", "qqp", "qnli", "rte", "wnli", "hans", ]: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { """predictions""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), """references""": datasets.Value("""int64""" if self.config_name != """stsb""" else """float32""" ), } ) , codebase_urls=[] , reference_urls=[] , format="""numpy""" , ) def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): """simple docstring""" if self.config_name == "cola": return {"matthews_correlation": matthews_corrcoef(lowerCamelCase__ , lowerCamelCase__ )} elif self.config_name == "stsb": return pearson_and_spearman(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["mrpc", "qqp"]: return acc_and_fa(lowerCamelCase__ , lowerCamelCase__ ) elif self.config_name in ["sst2", "mnli", "mnli_mismatched", "mnli_matched", "qnli", "rte", "wnli", "hans"]: return {"accuracy": simple_accuracy(lowerCamelCase__ , lowerCamelCase__ )} else: raise KeyError( """You should supply a configuration name selected in """ """[\"sst2\", \"mnli\", \"mnli_mismatched\", \"mnli_matched\", """ """\"cola\", \"stsb\", \"mrpc\", \"qqp\", \"qnli\", \"rte\", \"wnli\", \"hans\"]""" )
718
from collections.abc import Iterable from typing import Generic, TypeVar UpperCAmelCase_ = TypeVar('''_T''') class __SCREAMING_SNAKE_CASE ( Generic[_T] ): """simple docstring""" def __init__( self , SCREAMING_SNAKE_CASE__ = None ): """simple docstring""" _snake_case : list[_T] = list(iterable or [] ) _snake_case : list[_T] = [] def __len__( self ): """simple docstring""" return len(self._stacka ) + len(self._stacka ) def __repr__( self ): """simple docstring""" return f'''Queue({tuple(self._stacka[::-1] + self._stacka )})''' def __lowerCamelCase( self , SCREAMING_SNAKE_CASE__ ): """simple docstring""" self._stacka.append(SCREAMING_SNAKE_CASE__ ) def __lowerCamelCase( self ): """simple docstring""" _snake_case : Optional[int] = self._stacka.pop _snake_case : Optional[int] = self._stacka.append if not self._stacka: while self._stacka: stacka_append(stacka_pop() ) if not self._stacka: raise IndexError("""Queue is empty""" ) return self._stacka.pop() if __name__ == "__main__": from doctest import testmod testmod()
519
0
'''simple docstring''' from queue import Queue from typing import TYPE_CHECKING, Optional if TYPE_CHECKING: from ..models.auto import AutoTokenizer class __A : '''simple docstring''' def a__ (self , A ) -> Optional[int]: """simple docstring""" raise NotImplementedError() def a__ (self ) -> Any: """simple docstring""" raise NotImplementedError() class __A ( A ): '''simple docstring''' def __init__(self , A , A = False , **A ) -> Dict: """simple docstring""" _a = tokenizer _a = skip_prompt _a = decode_kwargs # variables used in the streaming process _a = [] _a = 0 _a = True def a__ (self , A ) -> List[Any]: """simple docstring""" if len(value.shape ) > 1 and value.shape[0] > 1: raise ValueError('''TextStreamer only supports batch size 1''' ) elif len(value.shape ) > 1: _a = value[0] if self.skip_prompt and self.next_tokens_are_prompt: _a = False return # Add the new token to the cache and decodes the entire thing. self.token_cache.extend(value.tolist() ) _a = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) # After the symbol for a new line, we flush the cache. if text.endswith('''\n''' ): _a = text[self.print_len :] _a = [] _a = 0 # If the last token is a CJK character, we print the characters. elif len(A ) > 0 and self._is_chinese_char(ord(text[-1] ) ): _a = text[self.print_len :] self.print_len += len(A ) # Otherwise, prints until the last space char (simple heuristic to avoid printing incomplete words, # which may change with the subsequent token -- there are probably smarter ways to do this!) else: _a = text[self.print_len : text.rfind(''' ''' ) + 1] self.print_len += len(A ) self.on_finalized_text(A ) def a__ (self ) -> Optional[Any]: """simple docstring""" if len(self.token_cache ) > 0: _a = self.tokenizer.decode(self.token_cache , **self.decode_kwargs ) _a = text[self.print_len :] _a = [] _a = 0 else: _a = '''''' _a = True self.on_finalized_text(A , stream_end=A ) def a__ (self , A , A = False ) -> Any: """simple docstring""" print(A , flush=A , end='''''' if not stream_end else None ) def a__ (self , A ) -> int: """simple docstring""" if ( (cp >= 0x4_E00 and cp <= 0x9_FFF) or (cp >= 0x3_400 and cp <= 0x4_DBF) # or (cp >= 0x20_000 and cp <= 0x2A_6DF) # or (cp >= 0x2A_700 and cp <= 0x2B_73F) # or (cp >= 0x2B_740 and cp <= 0x2B_81F) # or (cp >= 0x2B_820 and cp <= 0x2C_EAF) # or (cp >= 0xF_900 and cp <= 0xF_AFF) or (cp >= 0x2F_800 and cp <= 0x2F_A1F) # ): # return True return False class __A ( A ): '''simple docstring''' def __init__(self , A , A = False , A = None , **A ) -> Tuple: """simple docstring""" super().__init__(A , A , **A ) _a = Queue() _a = None _a = timeout def a__ (self , A , A = False ) -> Optional[int]: """simple docstring""" self.text_queue.put(A , timeout=self.timeout ) if stream_end: self.text_queue.put(self.stop_signal , timeout=self.timeout ) def __iter__(self ) -> Union[str, Any]: """simple docstring""" return self def a__ (self ) -> List[str]: """simple docstring""" _a = self.text_queue.get(timeout=self.timeout ) if value == self.stop_signal: raise StopIteration() else: return value
11
import os import sys import unittest __a: Optional[int] = os.path.abspath(os.path.dirname(os.path.dirname(os.path.dirname(__file__)))) sys.path.append(os.path.join(git_repo_path, '''utils''')) import get_test_info # noqa: E402 from get_test_info import ( # noqa: E402 get_model_to_test_mapping, get_model_to_tester_mapping, get_test_to_tester_mapping, ) __a: Dict = os.path.join('''tests''', '''models''', '''bert''', '''test_modeling_bert.py''') __a: Union[str, Any] = os.path.join('''tests''', '''models''', '''blip''', '''test_modeling_blip.py''') class SCREAMING_SNAKE_CASE__ ( unittest.TestCase ): '''simple docstring''' def lowerCamelCase ( self : str ) -> Dict: """simple docstring""" _UpperCAmelCase = get_test_to_tester_mapping(lowerCamelCase ) _UpperCAmelCase = get_test_to_tester_mapping(lowerCamelCase ) _UpperCAmelCase = {"""BertModelTest""": """BertModelTester"""} _UpperCAmelCase = { """BlipModelTest""": """BlipModelTester""", """BlipTextImageModelTest""": """BlipTextImageModelsModelTester""", """BlipTextModelTest""": """BlipTextModelTester""", """BlipTextRetrievalModelTest""": """BlipTextRetrievalModelTester""", """BlipVQAModelTest""": """BlipVQAModelTester""", """BlipVisionModelTest""": """BlipVisionModelTester""", } self.assertEqual(get_test_info.to_json(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(get_test_info.to_json(lowerCamelCase ) , lowerCamelCase ) def lowerCamelCase ( self : Optional[int] ) -> str: """simple docstring""" _UpperCAmelCase = get_model_to_test_mapping(lowerCamelCase ) _UpperCAmelCase = get_model_to_test_mapping(lowerCamelCase ) _UpperCAmelCase = { """BertForMaskedLM""": ["""BertModelTest"""], """BertForMultipleChoice""": ["""BertModelTest"""], """BertForNextSentencePrediction""": ["""BertModelTest"""], """BertForPreTraining""": ["""BertModelTest"""], """BertForQuestionAnswering""": ["""BertModelTest"""], """BertForSequenceClassification""": ["""BertModelTest"""], """BertForTokenClassification""": ["""BertModelTest"""], """BertLMHeadModel""": ["""BertModelTest"""], """BertModel""": ["""BertModelTest"""], } _UpperCAmelCase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelTest"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTest"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTest"""], """BlipModel""": ["""BlipModelTest"""], """BlipTextModel""": ["""BlipTextModelTest"""], """BlipVisionModel""": ["""BlipVisionModelTest"""], } self.assertEqual(get_test_info.to_json(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(get_test_info.to_json(lowerCamelCase ) , lowerCamelCase ) def lowerCamelCase ( self : int ) -> Any: """simple docstring""" _UpperCAmelCase = get_model_to_tester_mapping(lowerCamelCase ) _UpperCAmelCase = get_model_to_tester_mapping(lowerCamelCase ) _UpperCAmelCase = { """BertForMaskedLM""": ["""BertModelTester"""], """BertForMultipleChoice""": ["""BertModelTester"""], """BertForNextSentencePrediction""": ["""BertModelTester"""], """BertForPreTraining""": ["""BertModelTester"""], """BertForQuestionAnswering""": ["""BertModelTester"""], """BertForSequenceClassification""": ["""BertModelTester"""], """BertForTokenClassification""": ["""BertModelTester"""], """BertLMHeadModel""": ["""BertModelTester"""], """BertModel""": ["""BertModelTester"""], } _UpperCAmelCase = { """BlipForConditionalGeneration""": ["""BlipTextImageModelsModelTester"""], """BlipForImageTextRetrieval""": ["""BlipTextRetrievalModelTester"""], """BlipForQuestionAnswering""": ["""BlipVQAModelTester"""], """BlipModel""": ["""BlipModelTester"""], """BlipTextModel""": ["""BlipTextModelTester"""], """BlipVisionModel""": ["""BlipVisionModelTester"""], } self.assertEqual(get_test_info.to_json(lowerCamelCase ) , lowerCamelCase ) self.assertEqual(get_test_info.to_json(lowerCamelCase ) , lowerCamelCase )
108
0
# tests directory-specific settings - this file is run automatically # by pytest before any tests are run import sys import warnings from os.path import abspath, dirname, join # allow having multiple repository checkouts and not needing to remember to rerun # 'pip install -e .[dev]' when switching between checkouts and running tests. lowercase_ = abspath(join(dirname(dirname(dirname(__file__))), '''src''')) sys.path.insert(1, git_repo_path) # silence FutureWarning warnings in tests since often we can't act on them until # they become normal warnings - i.e. the tests still need to test the current functionality warnings.simplefilter(action='''ignore''', category=FutureWarning) def lowerCAmelCase ( UpperCAmelCase ) ->Tuple: """simple docstring""" from transformers.testing_utils import pytest_addoption_shared pytest_addoption_shared(UpperCAmelCase ) def lowerCAmelCase ( UpperCAmelCase ) ->Dict: """simple docstring""" from transformers.testing_utils import pytest_terminal_summary_main __magic_name__ : Union[str, Any] = terminalreporter.config.getoption('''--make-reports''' ) if make_reports: pytest_terminal_summary_main(UpperCAmelCase, id=UpperCAmelCase )
705
from io import BytesIO from typing import List, Union import requests from ..utils import add_end_docstrings, is_decord_available, is_torch_available, logging, requires_backends from .base import PIPELINE_INIT_ARGS, Pipeline if is_decord_available(): import numpy as np from decord import VideoReader if is_torch_available(): from ..models.auto.modeling_auto import MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING lowercase_ = logging.get_logger(__name__) @add_end_docstrings(__SCREAMING_SNAKE_CASE ) class A__ ( __SCREAMING_SNAKE_CASE ): def __init__( self , *lowerCamelCase , **lowerCamelCase ) -> Dict: """simple docstring""" super().__init__(*lowerCamelCase , **lowerCamelCase ) requires_backends(self , '''decord''' ) self.check_model_type(lowerCamelCase ) def lowercase ( self , lowerCamelCase=None , lowerCamelCase=None , lowerCamelCase=None ) -> List[Any]: """simple docstring""" __magic_name__ : List[str] = {} if frame_sampling_rate is not None: __magic_name__ : Optional[int] = frame_sampling_rate if num_frames is not None: __magic_name__ : Optional[Any] = num_frames __magic_name__ : Union[str, Any] = {} if top_k is not None: __magic_name__ : Union[str, Any] = top_k return preprocess_params, {}, postprocess_params def __call__( self , lowerCamelCase , **lowerCamelCase ) -> List[Any]: """simple docstring""" return super().__call__(lowerCamelCase , **lowerCamelCase ) def lowercase ( self , lowerCamelCase , lowerCamelCase=None , lowerCamelCase=1 ) -> int: """simple docstring""" if num_frames is None: __magic_name__ : Any = self.model.config.num_frames if video.startswith('''http://''' ) or video.startswith('''https://''' ): __magic_name__ : str = BytesIO(requests.get(lowerCamelCase ).content ) __magic_name__ : Optional[int] = VideoReader(lowerCamelCase ) videoreader.seek(0 ) __magic_name__ : Union[str, Any] = 0 __magic_name__ : Tuple = num_frames * frame_sampling_rate - 1 __magic_name__ : Tuple = np.linspace(lowerCamelCase , lowerCamelCase , num=lowerCamelCase , dtype=np.intaa ) __magic_name__ : Union[str, Any] = videoreader.get_batch(lowerCamelCase ).asnumpy() __magic_name__ : List[str] = list(lowerCamelCase ) __magic_name__ : Tuple = self.image_processor(lowerCamelCase , return_tensors=self.framework ) return model_inputs def lowercase ( self , lowerCamelCase ) -> str: """simple docstring""" __magic_name__ : Union[str, Any] = self.model(**lowerCamelCase ) return model_outputs def lowercase ( self , lowerCamelCase , lowerCamelCase=5 ) -> Optional[Any]: """simple docstring""" if top_k > self.model.config.num_labels: __magic_name__ : Dict = self.model.config.num_labels if self.framework == "pt": __magic_name__ : Tuple = model_outputs.logits.softmax(-1 )[0] __magic_name__ , __magic_name__ : str = probs.topk(lowerCamelCase ) else: raise ValueError(F'''Unsupported framework: {self.framework}''' ) __magic_name__ : List[str] = scores.tolist() __magic_name__ : Tuple = ids.tolist() return [{"score": score, "label": self.model.config.idalabel[_id]} for score, _id in zip(lowerCamelCase , lowerCamelCase )]
336
0
'''simple docstring''' from __future__ import annotations def A_ ( snake_case , snake_case , snake_case ): SCREAMING_SNAKE_CASE:str = list(range(len(snake_case ) ) ) SCREAMING_SNAKE_CASE:Any = [v / w for v, w in zip(snake_case , snake_case )] index.sort(key=lambda snake_case : ratio[i] , reverse=snake_case ) SCREAMING_SNAKE_CASE:float = 0 SCREAMING_SNAKE_CASE:list[float] = [0] * len(snake_case ) for i in index: if weight[i] <= capacity: SCREAMING_SNAKE_CASE:List[Any] = 1 max_value += value[i] capacity -= weight[i] else: SCREAMING_SNAKE_CASE:str = capacity / weight[i] max_value += value[i] * capacity / weight[i] break return max_value, fractions if __name__ == "__main__": import doctest doctest.testmod()
143
"""simple docstring""" from __future__ import annotations def _A( lowerCAmelCase ): if len(lowerCAmelCase ) == 0: return [] A__ , A__ : Dict = min(lowerCAmelCase ), max(lowerCAmelCase ) A__ : List[Any] = int(max_value - min_value ) + 1 A__ : list[list] = [[] for _ in range(lowerCAmelCase )] for i in my_list: buckets[int(i - min_value )].append(lowerCAmelCase ) return [v for bucket in buckets for v in sorted(lowerCAmelCase )] if __name__ == "__main__": from doctest import testmod testmod() assert bucket_sort([4, 5, 3, 2, 1]) == [1, 2, 3, 4, 5] assert bucket_sort([0, 1, -10, 15, 2, -2]) == [-10, -2, 0, 1, 2, 15]
363
0
'''simple docstring''' import glob import os import random from string import ascii_lowercase, digits import cva _snake_case : List[Any] = """""" _snake_case : Union[str, Any] = """""" _snake_case : int = """""" _snake_case : Optional[Any] = 1 # (0 is vertical, 1 is horizontal) def _a ( ): _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = get_dataset(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) print("Processing..." ) _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE, _SCREAMING_SNAKE_CASE = update_image_and_anno(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for index, image in enumerate(_SCREAMING_SNAKE_CASE ): # Get random string code: '7b7ad245cdff75241935e4dd860f3bad' _SCREAMING_SNAKE_CASE = random_chars(32 ) _SCREAMING_SNAKE_CASE = paths[index].split(os.sep )[-1].rsplit("." , 1 )[0] _SCREAMING_SNAKE_CASE = F'{OUTPUT_DIR}/{file_name}_FLIP_{letter_code}' cva.imwrite(F'/{file_root}.jpg' , _SCREAMING_SNAKE_CASE , [cva.IMWRITE_JPEG_QUALITY, 85] ) print(F'Success {index+1}/{len(_SCREAMING_SNAKE_CASE )} with {file_name}' ) _SCREAMING_SNAKE_CASE = [] for anno in new_annos[index]: _SCREAMING_SNAKE_CASE = F'{anno[0]} {anno[1]} {anno[2]} {anno[3]} {anno[4]}' annos_list.append(_SCREAMING_SNAKE_CASE ) with open(F'/{file_root}.txt' , "w" ) as outfile: outfile.write("\n".join(line for line in annos_list ) ) def _a ( _SCREAMING_SNAKE_CASE : str , _SCREAMING_SNAKE_CASE : str ): _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for label_file in glob.glob(os.path.join(_SCREAMING_SNAKE_CASE , "*.txt" ) ): _SCREAMING_SNAKE_CASE = label_file.split(os.sep )[-1].rsplit("." , 1 )[0] with open(_SCREAMING_SNAKE_CASE ) as in_file: _SCREAMING_SNAKE_CASE = in_file.readlines() _SCREAMING_SNAKE_CASE = os.path.join(_SCREAMING_SNAKE_CASE , F'{label_name}.jpg' ) _SCREAMING_SNAKE_CASE = [] for obj_list in obj_lists: _SCREAMING_SNAKE_CASE = obj_list.rstrip("\n" ).split(" " ) boxes.append( [ int(obj[0] ), float(obj[1] ), float(obj[2] ), float(obj[3] ), float(obj[4] ), ] ) if not boxes: continue img_paths.append(_SCREAMING_SNAKE_CASE ) labels.append(_SCREAMING_SNAKE_CASE ) return img_paths, labels def _a ( _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : list , _SCREAMING_SNAKE_CASE : int = 1 ): _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = [] for idx in range(len(_SCREAMING_SNAKE_CASE ) ): _SCREAMING_SNAKE_CASE = [] _SCREAMING_SNAKE_CASE = img_list[idx] path_list.append(_SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = anno_list[idx] _SCREAMING_SNAKE_CASE = cva.imread(_SCREAMING_SNAKE_CASE ) if flip_type == 1: _SCREAMING_SNAKE_CASE = cva.flip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for bbox in img_annos: _SCREAMING_SNAKE_CASE = 1 - bbox[1] new_annos.append([bbox[0], x_center_new, bbox[2], bbox[3], bbox[4]] ) elif flip_type == 0: _SCREAMING_SNAKE_CASE = cva.flip(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for bbox in img_annos: _SCREAMING_SNAKE_CASE = 1 - bbox[2] new_annos.append([bbox[0], bbox[1], y_center_new, bbox[3], bbox[4]] ) new_annos_lists.append(_SCREAMING_SNAKE_CASE ) new_imgs_list.append(_SCREAMING_SNAKE_CASE ) return new_imgs_list, new_annos_lists, path_list def _a ( _SCREAMING_SNAKE_CASE : int = 32 ): assert number_char > 1, "The number of character should greater than 1" _SCREAMING_SNAKE_CASE = ascii_lowercase + digits return "".join(random.choice(_SCREAMING_SNAKE_CASE ) for _ in range(_SCREAMING_SNAKE_CASE ) ) if __name__ == "__main__": main() print("""DONE ✅""")
493
'''simple docstring''' from collections.abc import Callable from math import pi, sqrt from random import uniform from statistics import mean def _a ( _SCREAMING_SNAKE_CASE : int ): # A local function to see if a dot lands in the circle. def is_in_circle(_SCREAMING_SNAKE_CASE : float , _SCREAMING_SNAKE_CASE : float ) -> bool: _SCREAMING_SNAKE_CASE = sqrt((x**2) + (y**2) ) # Our circle has a radius of 1, so a distance # greater than 1 would land outside the circle. return distance_from_centre <= 1 # The proportion of guesses that landed in the circle _SCREAMING_SNAKE_CASE = mean( int(is_in_circle(uniform(-1.0 , 1.0 ) , uniform(-1.0 , 1.0 ) ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) # The ratio of the area for circle to square is pi/4. _SCREAMING_SNAKE_CASE = proportion * 4 print(F'The estimated value of pi is {pi_estimate}' ) print(F'The numpy value of pi is {pi}' ) print(F'The total error is {abs(pi - pi_estimate )}' ) def _a ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : Callable[[float], float] , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 , ): return mean( function_to_integrate(uniform(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) ) for _ in range(_SCREAMING_SNAKE_CASE ) ) * (max_value - min_value) def _a ( _SCREAMING_SNAKE_CASE : int , _SCREAMING_SNAKE_CASE : float = 0.0 , _SCREAMING_SNAKE_CASE : float = 1.0 ): def identity_function(_SCREAMING_SNAKE_CASE : float ) -> float: return x _SCREAMING_SNAKE_CASE = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) _SCREAMING_SNAKE_CASE = (max_value * max_value - min_value * min_value) / 2 print("******************" ) print(F'Estimating area under y=x where x varies from {min_value} to {max_value}' ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {expected_value}' ) print(F'Total error is {abs(estimated_value - expected_value )}' ) print("******************" ) def _a ( _SCREAMING_SNAKE_CASE : int ): def function_to_integrate(_SCREAMING_SNAKE_CASE : float ) -> float: return sqrt(4.0 - x * x ) _SCREAMING_SNAKE_CASE = area_under_curve_estimator( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0.0 , 2.0 ) print("******************" ) print("Estimating pi using area_under_curve_estimator" ) print(F'Estimated value is {estimated_value}' ) print(F'Expected value is {pi}' ) print(F'Total error is {abs(estimated_value - pi )}' ) print("******************" ) if __name__ == "__main__": import doctest doctest.testmod()
493
1
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os from ...utils.constants import SAGEMAKER_PARALLEL_EC2_INSTANCES, TORCH_DYNAMO_MODES from ...utils.dataclasses import ComputeEnvironment, SageMakerDistributedType from ...utils.imports import is_botoa_available from .config_args import SageMakerConfig from .config_utils import ( DYNAMO_BACKENDS, _ask_field, _ask_options, _convert_dynamo_backend, _convert_mixed_precision, _convert_sagemaker_distributed_mode, _convert_yes_no_to_bool, ) if is_botoa_available(): import botoa # noqa: F401 def UpperCamelCase ( _A ) -> int: lowercase : Tuple = botoa.client("""iam""" ) lowercase : Any = { """Version""": """2012-10-17""", """Statement""": [ {"""Effect""": """Allow""", """Principal""": {"""Service""": """sagemaker.amazonaws.com"""}, """Action""": """sts:AssumeRole"""} ], } try: # create the role, associated with the chosen trust policy iam_client.create_role( RoleName=_A , AssumeRolePolicyDocument=json.dumps(_A , indent=2 ) ) lowercase : List[str] = { """Version""": """2012-10-17""", """Statement""": [ { """Effect""": """Allow""", """Action""": [ """sagemaker:*""", """ecr:GetDownloadUrlForLayer""", """ecr:BatchGetImage""", """ecr:BatchCheckLayerAvailability""", """ecr:GetAuthorizationToken""", """cloudwatch:PutMetricData""", """cloudwatch:GetMetricData""", """cloudwatch:GetMetricStatistics""", """cloudwatch:ListMetrics""", """logs:CreateLogGroup""", """logs:CreateLogStream""", """logs:DescribeLogStreams""", """logs:PutLogEvents""", """logs:GetLogEvents""", """s3:CreateBucket""", """s3:ListBucket""", """s3:GetBucketLocation""", """s3:GetObject""", """s3:PutObject""", ], """Resource""": """*""", } ], } # attach policy to role iam_client.put_role_policy( RoleName=_A , PolicyName=F"""{role_name}_policy_permission""" , PolicyDocument=json.dumps(_A , indent=2 ) , ) except iam_client.exceptions.EntityAlreadyExistsException: print(F"""role {role_name} already exists. Using existing one""" ) def UpperCamelCase ( _A ) -> int: lowercase : int = botoa.client("""iam""" ) return iam_client.get_role(RoleName=_A )["Role"]["Arn"] def UpperCamelCase ( ) -> Any: lowercase : Tuple = _ask_options( """How do you want to authorize?""" , ["""AWS Profile""", """Credentials (AWS_ACCESS_KEY_ID, AWS_SECRET_ACCESS_KEY) """] , _A , ) lowercase : str = None if credentials_configuration == 0: lowercase : str = _ask_field("""Enter your AWS Profile name: [default] """ , default="""default""" ) lowercase : List[str] = aws_profile else: print( """Note you will need to provide AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY when you launch you training script with,""" """`accelerate launch --aws_access_key_id XXX --aws_secret_access_key YYY`""" ) lowercase : Dict = _ask_field("""AWS Access Key ID: """ ) lowercase : Any = aws_access_key_id lowercase : List[str] = _ask_field("""AWS Secret Access Key: """ ) lowercase : List[Any] = aws_secret_access_key lowercase : Any = _ask_field("""Enter your AWS Region: [us-east-1]""" , default="""us-east-1""" ) lowercase : List[Any] = aws_region lowercase : Optional[int] = _ask_options( """Do you already have an IAM Role for executing Amazon SageMaker Training Jobs?""" , ["""Provide IAM Role name""", """Create new IAM role using credentials"""] , _A , ) if role_management == 0: lowercase : int = _ask_field("""Enter your IAM role name: """ ) else: lowercase : List[str] = """accelerate_sagemaker_execution_role""" print(F"""Accelerate will create an iam role \"{iam_role_name}\" using the provided credentials""" ) _create_iam_role_for_sagemaker(_A ) lowercase : str = _ask_field( """Do you want to use custom Docker image? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) lowercase : int = None if is_custom_docker_image: lowercase : Tuple = _ask_field("""Enter your Docker image: """ , lambda _A : str(_A ).lower() ) lowercase : str = _ask_field( """Do you want to provide SageMaker input channels with data locations? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) lowercase : Union[str, Any] = None if is_sagemaker_inputs_enabled: lowercase : Any = _ask_field( """Enter the path to the SageMaker inputs TSV file with columns (channel_name, data_location): """ , lambda _A : str(_A ).lower() , ) lowercase : Optional[int] = _ask_field( """Do you want to enable SageMaker metrics? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) lowercase : Optional[Any] = None if is_sagemaker_metrics_enabled: lowercase : Tuple = _ask_field( """Enter the path to the SageMaker metrics TSV file with columns (metric_name, metric_regex): """ , lambda _A : str(_A ).lower() , ) lowercase : Dict = _ask_options( """What is the distributed mode?""" , ["""No distributed training""", """Data parallelism"""] , _convert_sagemaker_distributed_mode , ) lowercase : List[Any] = {} lowercase : str = _ask_field( """Do you wish to optimize your script with torch dynamo?[yes/NO]:""" , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) if use_dynamo: lowercase : List[str] = """dynamo_""" lowercase : int = _ask_options( """Which dynamo backend would you like to use?""" , [x.lower() for x in DYNAMO_BACKENDS] , _convert_dynamo_backend , default=2 , ) lowercase : Tuple = _ask_field( """Do you want to customize the defaults sent to torch.compile? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) if use_custom_options: lowercase : Optional[int] = _ask_options( """Which mode do you want to use?""" , _A , lambda _A : TORCH_DYNAMO_MODES[int(_A )] , default="""default""" , ) lowercase : Union[str, Any] = _ask_field( """Do you want the fullgraph mode or it is ok to break model into several subgraphs? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) lowercase : List[str] = _ask_field( """Do you want to enable dynamic shape tracing? [yes/NO]: """ , _convert_yes_no_to_bool , default=_A , error_message="""Please enter yes or no.""" , ) lowercase : Union[str, Any] = """Which EC2 instance type you want to use for your training?""" if distributed_type != SageMakerDistributedType.NO: lowercase : Optional[int] = _ask_options( _A , _A , lambda _A : SAGEMAKER_PARALLEL_EC2_INSTANCES[int(_A )] ) else: eca_instance_query += "? [ml.p3.2xlarge]:" lowercase : Any = _ask_field(_A , lambda _A : str(_A ).lower() , default="""ml.p3.2xlarge""" ) lowercase : int = 1 if distributed_type in (SageMakerDistributedType.DATA_PARALLEL, SageMakerDistributedType.MODEL_PARALLEL): lowercase : Union[str, Any] = _ask_field( """How many machines do you want use? [1]: """ , _A , default=1 , ) lowercase : List[str] = _ask_options( """Do you wish to use FP16 or BF16 (mixed precision)?""" , ["""no""", """fp16""", """bf16""", """fp8"""] , _convert_mixed_precision , ) if use_dynamo and mixed_precision == "no": print( """Torch dynamo used without mixed precision requires TF32 to be efficient. Accelerate will enable it by default when launching your scripts.""" ) return SageMakerConfig( image_uri=_A , compute_environment=ComputeEnvironment.AMAZON_SAGEMAKER , distributed_type=_A , use_cpu=_A , dynamo_config=_A , eca_instance_type=_A , profile=_A , region=_A , iam_role_name=_A , mixed_precision=_A , num_machines=_A , sagemaker_inputs_file=_A , sagemaker_metrics_file=_A , )
264
"""simple docstring""" from typing import List, Optional, Tuple, Union import torch from ...schedulers import DDIMScheduler from ...utils import randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput class UpperCamelCase (__snake_case ): def __init__( self :Any , __magic_name__ :Union[str, Any] , __magic_name__ :Optional[Any] ) ->Dict: super().__init__() # make sure scheduler can always be converted to DDIM lowercase : Optional[Any] = DDIMScheduler.from_config(scheduler.config ) self.register_modules(unet=__magic_name__ , scheduler=__magic_name__ ) @torch.no_grad() def __call__( self :Optional[int] , __magic_name__ :int = 1 , __magic_name__ :Optional[Union[torch.Generator, List[torch.Generator]]] = None , __magic_name__ :float = 0.0 , __magic_name__ :int = 50 , __magic_name__ :Optional[bool] = None , __magic_name__ :Optional[str] = "pil" , __magic_name__ :bool = True , ) ->Union[ImagePipelineOutput, Tuple]: # Sample gaussian noise to begin loop if isinstance(self.unet.config.sample_size , __magic_name__ ): lowercase : int = ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size, self.unet.config.sample_size, ) else: lowercase : Tuple = (batch_size, self.unet.config.in_channels, *self.unet.config.sample_size) if isinstance(__magic_name__ , __magic_name__ ) and len(__magic_name__ ) != batch_size: raise ValueError( f"""You have passed a list of generators of length {len(__magic_name__ )}, but requested an effective batch""" f""" size of {batch_size}. Make sure the batch size matches the length of the generators.""" ) lowercase : Dict = randn_tensor(__magic_name__ , generator=__magic_name__ , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__magic_name__ ) for t in self.progress_bar(self.scheduler.timesteps ): # 1. predict noise model_output lowercase : Union[str, Any] = self.unet(__magic_name__ , __magic_name__ ).sample # 2. predict previous mean of image x_t-1 and add variance depending on eta # eta corresponds to η in paper and should be between [0, 1] # do x_t -> x_t-1 lowercase : int = self.scheduler.step( __magic_name__ , __magic_name__ , __magic_name__ , eta=__magic_name__ , use_clipped_model_output=__magic_name__ , generator=__magic_name__ ).prev_sample lowercase : Optional[Any] = (image / 2 + 0.5).clamp(0 , 1 ) lowercase : Tuple = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": lowercase : Any = self.numpy_to_pil(__magic_name__ ) if not return_dict: return (image,) return ImagePipelineOutput(images=__magic_name__ )
264
1
"""simple docstring""" import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_fnet import FNetTokenizer else: a = None a = logging.get_logger(__name__) a = {'''vocab_file''': '''spiece.model''', '''tokenizer_file''': '''tokenizer.json'''} a = { '''vocab_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/spiece.model''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/spiece.model''', }, '''tokenizer_file''': { '''google/fnet-base''': '''https://huggingface.co/google/fnet-base/resolve/main/tokenizer.json''', '''google/fnet-large''': '''https://huggingface.co/google/fnet-large/resolve/main/tokenizer.json''', }, } a = { '''google/fnet-base''': 512, '''google/fnet-large''': 512, } a = '''▁''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : Tuple = VOCAB_FILES_NAMES UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : int = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase : Dict = ['''input_ids''', '''token_type_ids'''] UpperCAmelCase : Tuple = FNetTokenizer def __init__( self : Dict , _UpperCAmelCase : Tuple=None , _UpperCAmelCase : List[Any]=None , _UpperCAmelCase : Any=False , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : List[str]=True , _UpperCAmelCase : int="<unk>" , _UpperCAmelCase : List[str]="[SEP]" , _UpperCAmelCase : Tuple="<pad>" , _UpperCAmelCase : Union[str, Any]="[CLS]" , _UpperCAmelCase : Dict="[MASK]" , **_UpperCAmelCase : List[Any] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) super().__init__( _UpperCAmelCase , tokenizer_file=_UpperCAmelCase , do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , **_UpperCAmelCase , ) _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = False if not self.vocab_file else True def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : Dict , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : str , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ): copyfile(self.vocab_file , _UpperCAmelCase ) return (out_vocab_file,)
505
"""simple docstring""" import os import unicodedata from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple import sentencepiece as spm from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging a = logging.get_logger(__name__) a = {'''vocab_file''': '''spiece.model'''} a = { '''vocab_file''': { '''albert-base-v1''': '''https://huggingface.co/albert-base-v1/resolve/main/spiece.model''', '''albert-large-v1''': '''https://huggingface.co/albert-large-v1/resolve/main/spiece.model''', '''albert-xlarge-v1''': '''https://huggingface.co/albert-xlarge-v1/resolve/main/spiece.model''', '''albert-xxlarge-v1''': '''https://huggingface.co/albert-xxlarge-v1/resolve/main/spiece.model''', '''albert-base-v2''': '''https://huggingface.co/albert-base-v2/resolve/main/spiece.model''', '''albert-large-v2''': '''https://huggingface.co/albert-large-v2/resolve/main/spiece.model''', '''albert-xlarge-v2''': '''https://huggingface.co/albert-xlarge-v2/resolve/main/spiece.model''', '''albert-xxlarge-v2''': '''https://huggingface.co/albert-xxlarge-v2/resolve/main/spiece.model''', } } a = { '''albert-base-v1''': 512, '''albert-large-v1''': 512, '''albert-xlarge-v1''': 512, '''albert-xxlarge-v1''': 512, '''albert-base-v2''': 512, '''albert-large-v2''': 512, '''albert-xlarge-v2''': 512, '''albert-xxlarge-v2''': 512, } a = '''▁''' class lowercase_ ( __lowerCAmelCase ): '''simple docstring''' UpperCAmelCase : int = VOCAB_FILES_NAMES UpperCAmelCase : str = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase : Tuple = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[int] , _UpperCAmelCase : int , _UpperCAmelCase : Dict=True , _UpperCAmelCase : List[Any]=True , _UpperCAmelCase : Union[str, Any]=False , _UpperCAmelCase : int="[CLS]" , _UpperCAmelCase : Dict="[SEP]" , _UpperCAmelCase : Dict="<unk>" , _UpperCAmelCase : int="[SEP]" , _UpperCAmelCase : List[Any]="<pad>" , _UpperCAmelCase : int="[CLS]" , _UpperCAmelCase : Dict="[MASK]" , _UpperCAmelCase : Optional[Dict[str, Any]] = None , **_UpperCAmelCase : List[str] , ): # Mask token behave like a normal word, i.e. include the space before it and # is included in the raw text, there should be a match in a non-normalized sentence. _A = ( AddedToken(_UpperCAmelCase , lstrip=_UpperCAmelCase , rstrip=_UpperCAmelCase , normalized=_UpperCAmelCase ) if isinstance(_UpperCAmelCase , _UpperCAmelCase ) else mask_token ) _A = {} if sp_model_kwargs is None else sp_model_kwargs super().__init__( do_lower_case=_UpperCAmelCase , remove_space=_UpperCAmelCase , keep_accents=_UpperCAmelCase , bos_token=_UpperCAmelCase , eos_token=_UpperCAmelCase , unk_token=_UpperCAmelCase , sep_token=_UpperCAmelCase , pad_token=_UpperCAmelCase , cls_token=_UpperCAmelCase , mask_token=_UpperCAmelCase , sp_model_kwargs=self.sp_model_kwargs , **_UpperCAmelCase , ) _A = do_lower_case _A = remove_space _A = keep_accents _A = vocab_file _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(_UpperCAmelCase ) @property def lowerCAmelCase_ ( self : List[Any] ): return len(self.sp_model ) def lowerCAmelCase_ ( self : Optional[int] ): _A = {self.convert_ids_to_tokens(_UpperCAmelCase ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self : Union[str, Any] ): _A = self.__dict__.copy() _A = None return state def __setstate__( self : str , _UpperCAmelCase : Optional[Any] ): _A = d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): _A = {} _A = spm.SentencePieceProcessor(**self.sp_model_kwargs ) self.sp_model.Load(self.vocab_file ) def lowerCAmelCase_ ( self : List[Any] , _UpperCAmelCase : List[str] ): if self.remove_space: _A = ' '.join(inputs.strip().split() ) else: _A = inputs _A = outputs.replace('``' , '"' ).replace('\'\'' , '"' ) if not self.keep_accents: _A = unicodedata.normalize('NFKD' , _UpperCAmelCase ) _A = ''.join([c for c in outputs if not unicodedata.combining(_UpperCAmelCase )] ) if self.do_lower_case: _A = outputs.lower() return outputs def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : str ): _A = self.preprocess_text(_UpperCAmelCase ) _A = self.sp_model.encode(_UpperCAmelCase , out_type=_UpperCAmelCase ) _A = [] for piece in pieces: if len(_UpperCAmelCase ) > 1 and piece[-1] == str(',' ) and piece[-2].isdigit(): _A = self.sp_model.EncodeAsPieces(piece[:-1].replace(_UpperCAmelCase , '' ) ) if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE: if len(cur_pieces[0] ) == 1: _A = cur_pieces[1:] else: _A = cur_pieces[0][1:] cur_pieces.append(piece[-1] ) new_pieces.extend(_UpperCAmelCase ) else: new_pieces.append(_UpperCAmelCase ) return new_pieces def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : Optional[int] ): return self.sp_model.PieceToId(_UpperCAmelCase ) def lowerCAmelCase_ ( self : Tuple , _UpperCAmelCase : List[Any] ): return self.sp_model.IdToPiece(_UpperCAmelCase ) def lowerCAmelCase_ ( self : int , _UpperCAmelCase : Union[str, Any] ): _A = [] _A = '' _A = False for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: if not prev_is_special: out_string += " " out_string += self.sp_model.decode(_UpperCAmelCase ) + token _A = True _A = [] else: current_sub_tokens.append(_UpperCAmelCase ) _A = False out_string += self.sp_model.decode(_UpperCAmelCase ) return out_string.strip() def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return cls + token_ids_a + sep return cls + token_ids_a + sep + token_ids_a + sep def lowerCAmelCase_ ( self : List[str] , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None , _UpperCAmelCase : bool = False ): if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=_UpperCAmelCase , token_ids_a=_UpperCAmelCase , already_has_special_tokens=_UpperCAmelCase ) if token_ids_a is not None: return [1] + ([0] * len(_UpperCAmelCase )) + [1] + ([0] * len(_UpperCAmelCase )) + [1] return [1] + ([0] * len(_UpperCAmelCase )) + [1] def lowerCAmelCase_ ( self : Any , _UpperCAmelCase : List[int] , _UpperCAmelCase : Optional[List[int]] = None ): _A = [self.sep_token_id] _A = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep ) * [0] + len(token_ids_a + sep ) * [1] def lowerCAmelCase_ ( self : Optional[Any] , _UpperCAmelCase : str , _UpperCAmelCase : Optional[str] = None ): if not os.path.isdir(_UpperCAmelCase ): logger.error(F'''Vocabulary path ({save_directory}) should be a directory''' ) return _A = os.path.join( _UpperCAmelCase , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(_UpperCAmelCase ) and os.path.isfile(self.vocab_file ): copyfile(self.vocab_file , _UpperCAmelCase ) elif not os.path.isfile(self.vocab_file ): with open(_UpperCAmelCase , 'wb' ) as fi: _A = self.sp_model.serialized_model_proto() fi.write(_UpperCAmelCase ) return (out_vocab_file,)
505
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_torch_available, ) a_ : List[str] = { """configuration_roberta_prelayernorm""": [ """ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP""", """RobertaPreLayerNormConfig""", """RobertaPreLayerNormOnnxConfig""", ], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Optional[int] = [ """ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """RobertaPreLayerNormForCausalLM""", """RobertaPreLayerNormForMaskedLM""", """RobertaPreLayerNormForMultipleChoice""", """RobertaPreLayerNormForQuestionAnswering""", """RobertaPreLayerNormForSequenceClassification""", """RobertaPreLayerNormForTokenClassification""", """RobertaPreLayerNormModel""", """RobertaPreLayerNormPreTrainedModel""", ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[str] = [ """TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST""", """TFRobertaPreLayerNormForCausalLM""", """TFRobertaPreLayerNormForMaskedLM""", """TFRobertaPreLayerNormForMultipleChoice""", """TFRobertaPreLayerNormForQuestionAnswering""", """TFRobertaPreLayerNormForSequenceClassification""", """TFRobertaPreLayerNormForTokenClassification""", """TFRobertaPreLayerNormMainLayer""", """TFRobertaPreLayerNormModel""", """TFRobertaPreLayerNormPreTrainedModel""", ] try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ """FlaxRobertaPreLayerNormForCausalLM""", """FlaxRobertaPreLayerNormForMaskedLM""", """FlaxRobertaPreLayerNormForMultipleChoice""", """FlaxRobertaPreLayerNormForQuestionAnswering""", """FlaxRobertaPreLayerNormForSequenceClassification""", """FlaxRobertaPreLayerNormForTokenClassification""", """FlaxRobertaPreLayerNormModel""", """FlaxRobertaPreLayerNormPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_CONFIG_ARCHIVE_MAP, RobertaPreLayerNormConfig, RobertaPreLayerNormOnnxConfig, ) try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_roberta_prelayernorm import ( ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, RobertaPreLayerNormForCausalLM, RobertaPreLayerNormForMaskedLM, RobertaPreLayerNormForMultipleChoice, RobertaPreLayerNormForQuestionAnswering, RobertaPreLayerNormForSequenceClassification, RobertaPreLayerNormForTokenClassification, RobertaPreLayerNormModel, RobertaPreLayerNormPreTrainedModel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_roberta_prelayernorm import ( TF_ROBERTA_PRELAYERNORM_PRETRAINED_MODEL_ARCHIVE_LIST, TFRobertaPreLayerNormForCausalLM, TFRobertaPreLayerNormForMaskedLM, TFRobertaPreLayerNormForMultipleChoice, TFRobertaPreLayerNormForQuestionAnswering, TFRobertaPreLayerNormForSequenceClassification, TFRobertaPreLayerNormForTokenClassification, TFRobertaPreLayerNormMainLayer, TFRobertaPreLayerNormModel, TFRobertaPreLayerNormPreTrainedModel, ) try: if not is_flax_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_flax_roberta_prelayernorm import ( FlaxRobertaPreLayerNormForCausalLM, FlaxRobertaPreLayerNormForMaskedLM, FlaxRobertaPreLayerNormForMultipleChoice, FlaxRobertaPreLayerNormForQuestionAnswering, FlaxRobertaPreLayerNormForSequenceClassification, FlaxRobertaPreLayerNormForTokenClassification, FlaxRobertaPreLayerNormModel, FlaxRobertaPreLayerNormPreTrainedModel, ) else: import sys a_ : Union[str, Any] = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
439
import json import os import unittest from transformers.models.roc_bert.tokenization_roc_bert import ( VOCAB_FILES_NAMES, RoCBertBasicTokenizer, RoCBertTokenizer, RoCBertWordpieceTokenizer, _is_control, _is_punctuation, _is_whitespace, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin, filter_non_english @require_tokenizers class _snake_case ( UpperCAmelCase_ , unittest.TestCase ): __lowerCAmelCase : Union[str, Any] = RoCBertTokenizer __lowerCAmelCase : Union[str, Any] = None __lowerCAmelCase : str = False __lowerCAmelCase : List[Any] = True __lowerCAmelCase : Optional[int] = filter_non_english def lowercase__ ( self): '''simple docstring''' super().setUp() lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """[PAD]""", """[MASK]""", """你""", """好""", """是""", """谁""", """a""", """b""", """c""", """d"""] lowercase__ : Dict = {} lowercase__ : Tuple = {} for i, value in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Tuple = i lowercase__ : Any = i lowercase__ : str = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""]) lowercase__ : Union[str, Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_shape_file"""]) lowercase__ : Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""word_pronunciation_file"""]) with open(self.vocab_file , """w""" , encoding="""utf-8""") as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens])) with open(self.word_shape_file , """w""" , encoding="""utf-8""") as word_shape_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) with open(self.word_pronunciation_file , """w""" , encoding="""utf-8""") as word_pronunciation_writer: json.dump(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ensure_ascii=SCREAMING_SNAKE_CASE_) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[int] = tokenizer.tokenize("""你好[SEP]你是谁""") self.assertListEqual(SCREAMING_SNAKE_CASE_ , ["""你""", """好""", """[SEP]""", """你""", """是""", """谁"""]) self.assertListEqual(tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) self.assertListEqual(tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) , [5, 6, 2, 5, 7, 8]) def lowercase__ ( self): '''simple docstring''' lowercase__ : int = RoCBertBasicTokenizer() self.assertListEqual(tokenizer.tokenize("""ah\u535A\u63A8zz""") , ["""ah""", """\u535A""", """\u63A8""", """zz"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""hello""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hällo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""h\u00E9llo"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""hallo""", """!""", """how""", """are""", """you""", """?"""]) self.assertListEqual(tokenizer.tokenize("""H\u00E9llo""") , ["""hello"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? """) , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : str = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HäLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Tuple = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , strip_accents=SCREAMING_SNAKE_CASE_) self.assertListEqual( tokenizer.tokenize(""" \tHäLLo!how \n Are yoU? """) , ["""HaLLo""", """!""", """how""", """Are""", """yoU""", """?"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = RoCBertBasicTokenizer(do_lower_case=SCREAMING_SNAKE_CASE_ , never_split=["""[UNK]"""]) self.assertListEqual( tokenizer.tokenize(""" \tHeLLo!how \n Are yoU? [UNK]""") , ["""HeLLo""", """!""", """how""", """Are""", """yoU""", """?""", """[UNK]"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = ["""[UNK]""", """[CLS]""", """[SEP]""", """want""", """##want""", """##ed""", """wa""", """un""", """runn""", """##ing"""] lowercase__ : Optional[int] = {} for i, token in enumerate(SCREAMING_SNAKE_CASE_): lowercase__ : Optional[Any] = i lowercase__ : Union[str, Any] = RoCBertWordpieceTokenizer(vocab=SCREAMING_SNAKE_CASE_ , unk_token="""[UNK]""") self.assertListEqual(tokenizer.tokenize("""""") , []) self.assertListEqual(tokenizer.tokenize("""unwanted running""") , ["""un""", """##want""", """##ed""", """runn""", """##ing"""]) self.assertListEqual(tokenizer.tokenize("""unwantedX running""") , ["""[UNK]""", """runn""", """##ing"""]) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_whitespace(""" """)) self.assertTrue(_is_whitespace("""\t""")) self.assertTrue(_is_whitespace("""\r""")) self.assertTrue(_is_whitespace("""\n""")) self.assertTrue(_is_whitespace("""\u00A0""")) self.assertFalse(_is_whitespace("""A""")) self.assertFalse(_is_whitespace("""-""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_control("""\u0005""")) self.assertFalse(_is_control("""A""")) self.assertFalse(_is_control(""" """)) self.assertFalse(_is_control("""\t""")) self.assertFalse(_is_control("""\r""")) def lowercase__ ( self): '''simple docstring''' self.assertTrue(_is_punctuation("""-""")) self.assertTrue(_is_punctuation("""$""")) self.assertTrue(_is_punctuation("""`""")) self.assertTrue(_is_punctuation(""".""")) self.assertFalse(_is_punctuation("""A""")) self.assertFalse(_is_punctuation(""" """)) def lowercase__ ( self): '''simple docstring''' lowercase__ : Union[str, Any] = self.get_tokenizer() # Example taken from the issue https://github.com/huggingface/tokenizers/issues/340 self.assertListEqual([tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) if self.test_rust_tokenizer: lowercase__ : int = self.get_rust_tokenizer() self.assertListEqual( [rust_tokenizer.tokenize(SCREAMING_SNAKE_CASE_) for t in ["""Test""", """\xad""", """test"""]] , [["""[UNK]"""], [], ["""[UNK]"""]]) def lowercase__ ( self): '''simple docstring''' for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : str = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = f'A, naïve {tokenizer_r.mask_token} AllenNLP sentence.' lowercase__ : List[str] = tokenizer_r.encode_plus( SCREAMING_SNAKE_CASE_ , return_attention_mask=SCREAMING_SNAKE_CASE_ , return_token_type_ids=SCREAMING_SNAKE_CASE_ , return_offsets_mapping=SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_ , ) lowercase__ : str = tokenizer_r.do_lower_case if hasattr(SCREAMING_SNAKE_CASE_ , """do_lower_case""") else False lowercase__ : Optional[Any] = ( [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """A"""), ((1, 2), ""","""), ((3, 5), """na"""), ((5, 6), """##ï"""), ((6, 8), """##ve"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """Allen"""), ((21, 23), """##NL"""), ((23, 24), """##P"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] if not do_lower_case else [ ((0, 0), tokenizer_r.cls_token), ((0, 1), """a"""), ((1, 2), ""","""), ((3, 8), """naive"""), ((9, 15), tokenizer_r.mask_token), ((16, 21), """allen"""), ((21, 23), """##nl"""), ((23, 24), """##p"""), ((25, 33), """sentence"""), ((33, 34), """."""), ((0, 0), tokenizer_r.sep_token), ] ) self.assertEqual( [e[1] for e in expected_results] , tokenizer_r.convert_ids_to_tokens(tokens["""input_ids"""])) self.assertEqual([e[0] for e in expected_results] , tokens["""offset_mapping"""]) def lowercase__ ( self): '''simple docstring''' lowercase__ : Any = ["""的""", """人""", """有"""] lowercase__ : List[str] = """""".join(SCREAMING_SNAKE_CASE_) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})'): lowercase__ : Union[str, Any] = True lowercase__ : Tuple = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : List[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : str = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that each Chinese character is not preceded by "##" self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowercase__ : Any = False lowercase__ : Optional[Any] = self.rust_tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = self.tokenizer_class.from_pretrained(SCREAMING_SNAKE_CASE_ , **SCREAMING_SNAKE_CASE_) lowercase__ : Optional[int] = tokenizer_r.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_p.encode(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer_r.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer_p.convert_ids_to_tokens(SCREAMING_SNAKE_CASE_) # it is expected that only the first Chinese character is not preceded by "##". lowercase__ : Any = [ f'##{token}' if idx != 0 else token for idx, token in enumerate(SCREAMING_SNAKE_CASE_) ] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) @slow def lowercase__ ( self): '''simple docstring''' lowercase__ : Dict = self.tokenizer_class(self.vocab_file , self.word_shape_file , self.word_pronunciation_file) lowercase__ : Optional[Any] = tokenizer.encode("""你好""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.encode("""你是谁""" , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Optional[Any] = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.build_inputs_with_special_tokens(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) assert encoded_sentence == [1] + text + [2] assert encoded_pair == [1] + text + [2] + text_a + [2] def lowercase__ ( self): '''simple docstring''' lowercase__ : Optional[int] = self.get_tokenizers(do_lower_case=SCREAMING_SNAKE_CASE_) for tokenizer in tokenizers: with self.subTest(f'{tokenizer.__class__.__name__}'): lowercase__ : Optional[int] = """你好,你是谁""" lowercase__ : List[Any] = tokenizer.tokenize(SCREAMING_SNAKE_CASE_) lowercase__ : Union[str, Any] = tokenizer.convert_tokens_to_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Tuple = tokenizer.convert_tokens_to_shape_ids(SCREAMING_SNAKE_CASE_) lowercase__ : List[str] = tokenizer.convert_tokens_to_pronunciation_ids(SCREAMING_SNAKE_CASE_) lowercase__ : Any = tokenizer.prepare_for_model( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) lowercase__ : Dict = tokenizer.encode_plus(SCREAMING_SNAKE_CASE_ , add_special_tokens=SCREAMING_SNAKE_CASE_) self.assertEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)
12
0
'''simple docstring''' import argparse import json import logging import os import sys from unittest.mock import patch from transformers.testing_utils import TestCasePlus, get_gpu_count, slow snake_case_ : Union[str, Any] = [ os.path.join(os.path.dirname(__file__), dirname) for dirname in [ 'text-classification', 'language-modeling', 'summarization', 'token-classification', 'question-answering', ] ] sys.path.extend(SRC_DIRS) if SRC_DIRS is not None: import run_clm_flax import run_flax_glue import run_flax_ner import run_mlm_flax import run_qa import run_summarization_flax import run_ta_mlm_flax logging.basicConfig(level=logging.DEBUG) snake_case_ : Optional[Any] = logging.getLogger() def __snake_case ( ): UpperCamelCase = argparse.ArgumentParser() parser.add_argument('''-f''') UpperCamelCase = parser.parse_args() return args.f def __snake_case ( _UpperCAmelCase : Union[str, Any], _UpperCAmelCase : Dict="eval"): UpperCamelCase = os.path.join(_UpperCAmelCase, f'{split}_results.json') if os.path.exists(_UpperCAmelCase): with open(_UpperCAmelCase, '''r''') as f: return json.load(_UpperCAmelCase) raise ValueError(f'can\'t find {path}') snake_case_ : List[str] = logging.StreamHandler(sys.stdout) logger.addHandler(stream_handler) class lowercase__ ( snake_case_ ): '''simple docstring''' def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'\n run_glue.py\n --model_name_or_path distilbert-base-uncased\n --output_dir {tmp_dir}\n --train_file ./tests/fixtures/tests_samples/MRPC/train.csv\n --validation_file ./tests/fixtures/tests_samples/MRPC/dev.csv\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --learning_rate=1e-4\n --eval_steps=2\n --warmup_steps=2\n --seed=42\n --max_seq_length=128\n '.split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_flax_glue.main() UpperCamelCase = get_results(lowerCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'\n run_clm_flax.py\n --model_name_or_path distilgpt2\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --block_size 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_clm_flax.main() UpperCamelCase = get_results(lowerCamelCase__ ) self.assertLess(result['''eval_perplexity'''] , 1_0_0 ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'\n run_summarization.py\n --model_name_or_path t5-small\n --train_file tests/fixtures/tests_samples/xsum/sample.json\n --validation_file tests/fixtures/tests_samples/xsum/sample.json\n --test_file tests/fixtures/tests_samples/xsum/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=8\n --do_train\n --do_eval\n --do_predict\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n --predict_with_generate\n '.split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_summarization_flax.main() UpperCamelCase = get_results(lowerCamelCase__ , split='''test''' ) self.assertGreaterEqual(result['''test_rouge1'''] , 1_0 ) self.assertGreaterEqual(result['''test_rouge2'''] , 2 ) self.assertGreaterEqual(result['''test_rougeL'''] , 7 ) self.assertGreaterEqual(result['''test_rougeLsum'''] , 7 ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'\n run_mlm.py\n --model_name_or_path distilroberta-base\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --logging_steps 2 --eval_steps 2\n --do_train\n --do_eval\n --num_train_epochs=1\n '.split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_mlm_flax.main() UpperCamelCase = get_results(lowerCamelCase__ ) self.assertLess(result['''eval_perplexity'''] , 4_2 ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'\n run_t5_mlm_flax.py\n --model_name_or_path t5-small\n --train_file ./tests/fixtures/sample_text.txt\n --validation_file ./tests/fixtures/sample_text.txt\n --do_train\n --do_eval\n --max_seq_length 128\n --per_device_train_batch_size 4\n --per_device_eval_batch_size 4\n --num_train_epochs 2\n --logging_steps 2 --eval_steps 2\n --output_dir {tmp_dir}\n --overwrite_output_dir\n '.split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_ta_mlm_flax.main() UpperCamelCase = get_results(lowerCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.42 ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = 7 if get_gpu_count() > 1 else 2 UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'\n run_flax_ner.py\n --model_name_or_path bert-base-uncased\n --train_file tests/fixtures/tests_samples/conll/sample.json\n --validation_file tests/fixtures/tests_samples/conll/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --do_train\n --do_eval\n --warmup_steps=2\n --learning_rate=2e-4\n --logging_steps 2 --eval_steps 2\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=2\n --num_train_epochs={epochs}\n --seed 7\n '.split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_flax_ner.main() UpperCamelCase = get_results(lowerCamelCase__ ) self.assertGreaterEqual(result['''eval_accuracy'''] , 0.75 ) self.assertGreaterEqual(result['''eval_f1'''] , 0.3 ) @slow def UpperCAmelCase ( self ): '''simple docstring''' UpperCamelCase = self.get_auto_remove_tmp_dir() UpperCamelCase = f'\n run_qa.py\n --model_name_or_path bert-base-uncased\n --version_2_with_negative\n --train_file tests/fixtures/tests_samples/SQUAD/sample.json\n --validation_file tests/fixtures/tests_samples/SQUAD/sample.json\n --output_dir {tmp_dir}\n --overwrite_output_dir\n --num_train_epochs=3\n --warmup_steps=2\n --do_train\n --do_eval\n --logging_steps 2 --eval_steps 2\n --learning_rate=2e-4\n --per_device_train_batch_size=2\n --per_device_eval_batch_size=1\n '.split() with patch.object(lowerCamelCase__ , '''argv''' , lowerCamelCase__ ): run_qa.main() UpperCamelCase = get_results(lowerCamelCase__ ) self.assertGreaterEqual(result['''eval_f1'''] , 3_0 ) self.assertGreaterEqual(result['''eval_exact'''] , 3_0 )
709
'''simple docstring''' def __snake_case ( _UpperCAmelCase : Optional[int]): UpperCamelCase = [] UpperCamelCase = [] UpperCamelCase = { '''^''': 3, '''*''': 2, '''/''': 2, '''%''': 2, '''+''': 1, '''-''': 1, } # Priority of each operator UpperCamelCase = len(_UpperCAmelCase) if (len(_UpperCAmelCase) > 7) else 7 # Print table header for output print( '''Symbol'''.center(8), '''Stack'''.center(_UpperCAmelCase), '''Postfix'''.center(_UpperCAmelCase), sep=''' | ''', ) print('''-''' * (print_width * 3 + 7)) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(_UpperCAmelCase) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(_UpperCAmelCase) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop()) # Pop stack & add the content to Postfix stack.pop() else: if len(_UpperCAmelCase) == 0: stack.append(_UpperCAmelCase) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(_UpperCAmelCase) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop()) # pop stack & add to Postfix stack.append(_UpperCAmelCase) # push x to stack print( x.center(8), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), sep=''' | ''', ) # Output in tabular format while len(_UpperCAmelCase) > 0: # while stack is not empty post_fix.append(stack.pop()) # pop stack & add to Postfix print( ''' '''.center(8), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), (''''''.join(_UpperCAmelCase)).ljust(_UpperCAmelCase), sep=''' | ''', ) # Output in tabular format return "".join(_UpperCAmelCase) # return Postfix as str def __snake_case ( _UpperCAmelCase : str): UpperCamelCase = list(infix[::-1]) # reverse the infix equation for i in range(len(_UpperCAmelCase)): if infix[i] == "(": UpperCamelCase = ''')''' # change "(" to ")" elif infix[i] == ")": UpperCamelCase = '''(''' # change ")" to "(" return (infix_2_postfix(''''''.join(_UpperCAmelCase)))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": snake_case_ : str = input('\nEnter an Infix Equation = ') # Input an Infix equation snake_case_ : Union[str, Any] = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
350
0
'''simple docstring''' import numpy as np class _UpperCamelCase : '''simple docstring''' def __init__( self ): """simple docstring""" a__ = (0, 0) a__ = None a__ = 0 a__ = 0 a__ = 0 def __eq__( self , _a ): """simple docstring""" return self.position == cell.position def lowercase__ ( self ): """simple docstring""" print(self.position ) class _UpperCamelCase : '''simple docstring''' def __init__( self , _a=(5, 5) ): """simple docstring""" a__ = np.zeros(_a ) a__ = world_size[0] a__ = world_size[1] def lowercase__ ( self ): """simple docstring""" print(self.w ) def lowercase__ ( self , _a ): """simple docstring""" a__ = [ (-1, -1), (-1, 0), (-1, 1), (0, -1), (0, 1), (1, -1), (1, 0), (1, 1), ] a__ = cell.position[0] a__ = cell.position[1] a__ = [] for n in neughbour_cord: a__ = current_x + n[0] a__ = current_y + n[1] if 0 <= x < self.world_x_limit and 0 <= y < self.world_y_limit: a__ = Cell() a__ = (x, y) a__ = cell neighbours.append(_a ) return neighbours def lowerCAmelCase_ ( a : Optional[Any] , a : Union[str, Any] , a : List[Any] ): a__ = [] a__ = [] _open.append(a ) while _open: a__ = np.argmin([n.f for n in _open] ) a__ = _open[min_f] _closed.append(_open.pop(a ) ) if current == goal: break for n in world.get_neigbours(a ): for c in _closed: if c == n: continue a__ = current.g + 1 a__ , a__ = n.position a__ , a__ = goal.position a__ = (ya - ya) ** 2 + (xa - xa) ** 2 a__ = n.h + n.g for c in _open: if c == n and c.f < n.f: continue _open.append(a ) a__ = [] while current.parent is not None: path.append(current.position ) a__ = current.parent path.append(current.position ) return path[::-1] if __name__ == "__main__": __A : str = Gridworld() # Start position and goal __A : List[str] = Cell() __A : List[Any] = (0, 0) __A : Any = Cell() __A : int = (4, 4) print(F"""path from {start.position} to {goal.position}""") __A : List[Any] = astar(world, start, goal) # Just for visual reasons. for i in s: __A : Tuple = 1 print(world.w)
394
'''simple docstring''' import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging __A : str = logging.get_logger(__name__) __A : Optional[Any] = { 'Salesforce/blip-vqa-base': 'https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json', 'Salesforce/blip-vqa-capfit-large': ( 'https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-base': ( 'https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json' ), 'Salesforce/blip-image-captioning-large': ( 'https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json' ), 'Salesforce/blip-itm-base-coco': 'https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json', 'Salesforce/blip-itm-large-coco': 'https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json', 'Salesforce/blip-itm-base-flikr': 'https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json', 'Salesforce/blip-itm-large-flikr': ( 'https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json' ), } class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Optional[Any] = 'blip_text_model' def __init__( self , _a=3_0524 , _a=768 , _a=768 , _a=3072 , _a=768 , _a=12 , _a=8 , _a=512 , _a="gelu" , _a=1e-12 , _a=0.0 , _a=0.0 , _a=0.02 , _a=3_0522 , _a=2 , _a=0 , _a=102 , _a=True , _a=True , **_a , ): """simple docstring""" super().__init__( pad_token_id=_a , bos_token_id=_a , eos_token_id=_a , sep_token_id=_a , **_a , ) a__ = vocab_size a__ = hidden_size a__ = encoder_hidden_size a__ = intermediate_size a__ = projection_dim a__ = hidden_dropout_prob a__ = num_hidden_layers a__ = num_attention_heads a__ = max_position_embeddings a__ = layer_norm_eps a__ = hidden_act a__ = initializer_range a__ = attention_probs_dropout_prob a__ = is_decoder a__ = use_cache @classmethod def lowercase__ ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) a__ , a__ = cls.get_config_dict(_a , **_a ) # get the text config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": a__ = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:str = 'blip_vision_model' def __init__( self , _a=768 , _a=3072 , _a=512 , _a=12 , _a=12 , _a=384 , _a=16 , _a="gelu" , _a=1e-5 , _a=0.0 , _a=1e-10 , **_a , ): """simple docstring""" super().__init__(**_a ) a__ = hidden_size a__ = intermediate_size a__ = projection_dim a__ = num_hidden_layers a__ = num_attention_heads a__ = patch_size a__ = image_size a__ = initializer_range a__ = attention_dropout a__ = layer_norm_eps a__ = hidden_act @classmethod def lowercase__ ( cls , _a , **_a ): """simple docstring""" cls._set_token_in_kwargs(_a ) a__ , a__ = cls.get_config_dict(_a , **_a ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('model_type' ) == "blip": a__ = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , 'model_type' ) and config_dict["model_type"] != cls.model_type: logger.warning( F'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' F'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_a , **_a ) class _UpperCamelCase ( _A ): '''simple docstring''' SCREAMING_SNAKE_CASE:Any = 'blip' SCREAMING_SNAKE_CASE:List[str] = True def __init__( self , _a=None , _a=None , _a=512 , _a=2.6592 , _a=256 , **_a , ): """simple docstring""" super().__init__(**_a ) if text_config is None: a__ = {} logger.info('`text_config` is `None`. Initializing the `BlipTextConfig` with default values.' ) if vision_config is None: a__ = {} logger.info('`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.' ) a__ = BlipTextConfig(**_a ) a__ = BlipVisionConfig(**_a ) a__ = self.vision_config.hidden_size a__ = projection_dim a__ = logit_scale_init_value a__ = 1.0 a__ = 0.02 a__ = image_text_hidden_size @classmethod def lowercase__ ( cls , _a , _a , **_a ): """simple docstring""" return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_a ) def lowercase__ ( self ): """simple docstring""" a__ = copy.deepcopy(self.__dict__ ) a__ = self.text_config.to_dict() a__ = self.vision_config.to_dict() a__ = self.__class__.model_type return output
394
1
import itertools import string from collections.abc import Generator, Iterable def _A( UpperCamelCase__ : Iterable[str] , UpperCamelCase__ : int ) -> Generator[tuple[str, ...], None, None]: '''simple docstring''' __lowercase = iter(UpperCamelCase__ ) while True: __lowercase = tuple(itertools.islice(UpperCamelCase__ , UpperCamelCase__ ) ) if not chunk: return yield chunk def _A( UpperCamelCase__ : str ) -> str: '''simple docstring''' __lowercase = ''''''.join([c.upper() for c in dirty if c in string.ascii_letters] ) __lowercase = '''''' if len(UpperCamelCase__ ) < 2: return dirty for i in range(len(UpperCamelCase__ ) - 1 ): clean += dirty[i] if dirty[i] == dirty[i + 1]: clean += "X" clean += dirty[-1] if len(UpperCamelCase__ ) & 1: clean += "X" return clean def _A( UpperCamelCase__ : str ) -> list[str]: '''simple docstring''' __lowercase = '''ABCDEFGHIKLMNOPQRSTUVWXYZ''' # we're using a list instead of a '2d' array because it makes the math # for setting up the table and doing the actual encoding/decoding simpler __lowercase = [] # copy key chars into the table if they are in `alphabet` ignoring duplicates for char in key.upper(): if char not in table and char in alphabet: table.append(UpperCamelCase__ ) # fill the rest of the table in with the remaining alphabet chars for char in alphabet: if char not in table: table.append(UpperCamelCase__ ) return table def _A( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: '''simple docstring''' __lowercase = generate_table(UpperCamelCase__ ) __lowercase = prepare_input(UpperCamelCase__ ) __lowercase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): __lowercase , __lowercase = divmod(table.index(UpperCamelCase__ ) , 5 ) __lowercase , __lowercase = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: ciphertext += table[rowa * 5 + (cola + 1) % 5] ciphertext += table[rowa * 5 + (cola + 1) % 5] elif cola == cola: ciphertext += table[((rowa + 1) % 5) * 5 + cola] ciphertext += table[((rowa + 1) % 5) * 5 + cola] else: # rectangle ciphertext += table[rowa * 5 + cola] ciphertext += table[rowa * 5 + cola] return ciphertext def _A( UpperCamelCase__ : str , UpperCamelCase__ : str ) -> str: '''simple docstring''' __lowercase = generate_table(UpperCamelCase__ ) __lowercase = '''''' # https://en.wikipedia.org/wiki/Playfair_cipher#Description for chara, chara in chunker(UpperCamelCase__ , 2 ): __lowercase , __lowercase = divmod(table.index(UpperCamelCase__ ) , 5 ) __lowercase , __lowercase = divmod(table.index(UpperCamelCase__ ) , 5 ) if rowa == rowa: plaintext += table[rowa * 5 + (cola - 1) % 5] plaintext += table[rowa * 5 + (cola - 1) % 5] elif cola == cola: plaintext += table[((rowa - 1) % 5) * 5 + cola] plaintext += table[((rowa - 1) % 5) * 5 + cola] else: # rectangle plaintext += table[rowa * 5 + cola] plaintext += table[rowa * 5 + cola] return plaintext
362
import argparse import copy def _A( UpperCamelCase__ : Union[str, Any] ) -> Tuple: '''simple docstring''' __lowercase = {} with open(UpperCamelCase__ ) as f: for line in f: if line.split()[0] not in dict_of_neighbours: __lowercase = [] _list.append([line.split()[1], line.split()[2]] ) __lowercase = _list else: dict_of_neighbours[line.split()[0]].append( [line.split()[1], line.split()[2]] ) if line.split()[1] not in dict_of_neighbours: __lowercase = [] _list.append([line.split()[0], line.split()[2]] ) __lowercase = _list else: dict_of_neighbours[line.split()[1]].append( [line.split()[0], line.split()[2]] ) return dict_of_neighbours def _A( UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[Any] ) -> Dict: '''simple docstring''' with open(UpperCamelCase__ ) as f: __lowercase = f.read(1 ) __lowercase = start_node __lowercase = [] __lowercase = start_node __lowercase = 0 while visiting not in first_solution: __lowercase = 1_0000 for k in dict_of_neighbours[visiting]: if int(k[1] ) < int(UpperCamelCase__ ) and k[0] not in first_solution: __lowercase = k[1] __lowercase = k[0] first_solution.append(UpperCamelCase__ ) __lowercase = distance_of_first_solution + int(UpperCamelCase__ ) __lowercase = best_node first_solution.append(UpperCamelCase__ ) __lowercase = 0 for k in dict_of_neighbours[first_solution[-2]]: if k[0] == start_node: break position += 1 __lowercase = ( distance_of_first_solution + int(dict_of_neighbours[first_solution[-2]][position][1] ) - 1_0000 ) return first_solution, distance_of_first_solution def _A( UpperCamelCase__ : int , UpperCamelCase__ : Optional[Any] ) -> Optional[int]: '''simple docstring''' __lowercase = [] for n in solution[1:-1]: __lowercase = solution.index(UpperCamelCase__ ) for kn in solution[1:-1]: __lowercase = solution.index(UpperCamelCase__ ) if n == kn: continue __lowercase = copy.deepcopy(UpperCamelCase__ ) __lowercase = kn __lowercase = n __lowercase = 0 for k in _tmp[:-1]: __lowercase = _tmp[_tmp.index(UpperCamelCase__ ) + 1] for i in dict_of_neighbours[k]: if i[0] == next_node: __lowercase = distance + int(i[1] ) _tmp.append(UpperCamelCase__ ) if _tmp not in neighborhood_of_solution: neighborhood_of_solution.append(_tmp ) __lowercase = len(neighborhood_of_solution[0] ) - 1 neighborhood_of_solution.sort(key=lambda UpperCamelCase__ : x[index_of_last_item_in_the_list] ) return neighborhood_of_solution def _A( UpperCamelCase__ : List[Any] , UpperCamelCase__ : List[str] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] , UpperCamelCase__ : Optional[int] ) -> List[str]: '''simple docstring''' __lowercase = 1 __lowercase = first_solution __lowercase = [] __lowercase = distance_of_first_solution __lowercase = solution while count <= iters: __lowercase = find_neighborhood(UpperCamelCase__ , UpperCamelCase__ ) __lowercase = 0 __lowercase = neighborhood[index_of_best_solution] __lowercase = len(UpperCamelCase__ ) - 1 __lowercase = False while not found: __lowercase = 0 while i < len(UpperCamelCase__ ): if best_solution[i] != solution[i]: __lowercase = best_solution[i] __lowercase = solution[i] break __lowercase = i + 1 if [first_exchange_node, second_exchange_node] not in tabu_list and [ second_exchange_node, first_exchange_node, ] not in tabu_list: tabu_list.append([first_exchange_node, second_exchange_node] ) __lowercase = True __lowercase = best_solution[:-1] __lowercase = neighborhood[index_of_best_solution][best_cost_index] if cost < best_cost: __lowercase = cost __lowercase = solution else: __lowercase = index_of_best_solution + 1 __lowercase = neighborhood[index_of_best_solution] if len(UpperCamelCase__ ) >= size: tabu_list.pop(0 ) __lowercase = count + 1 return best_solution_ever, best_cost def _A( UpperCamelCase__ : List[Any]=None ) -> int: '''simple docstring''' __lowercase = generate_neighbours(args.File ) __lowercase , __lowercase = generate_first_solution( args.File , UpperCamelCase__ ) __lowercase , __lowercase = tabu_search( UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ , args.Iterations , args.Size , ) print(F'Best solution: {best_sol}, with total distance: {best_cost}.' ) if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser(description="Tabu Search") parser.add_argument( "-f", "--File", type=str, help="Path to the file containing the data", required=True, ) parser.add_argument( "-i", "--Iterations", type=int, help="How many iterations the algorithm should perform", required=True, ) parser.add_argument( "-s", "--Size", type=int, help="Size of the tabu list", required=True ) # Pass the arguments to main method main(parser.parse_args())
362
1
"""simple docstring""" import functools import operator from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCAmelCase_ : int = logging.get_logger(__name__) lowerCAmelCase_ : Any = { '''facebook/wav2vec2-base-960h''': '''https://huggingface.co/facebook/wav2vec2-base-960h/resolve/main/config.json''', # See all Wav2Vec2 models at https://huggingface.co/models?filter=wav2vec2 } class UpperCamelCase_ ( a_ ): _A : int = 'wav2vec2' def __init__( self , snake_case__=32 , snake_case__=7_68 , snake_case__=12 , snake_case__=12 , snake_case__=30_72 , snake_case__="gelu" , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.0 , snake_case__=0.0 , snake_case__=0.1 , snake_case__=0.1 , snake_case__=0.02 , snake_case__=1e-5 , snake_case__="group" , snake_case__="gelu" , snake_case__=(5_12, 5_12, 5_12, 5_12, 5_12, 5_12, 5_12) , snake_case__=(5, 2, 2, 2, 2, 2, 2) , snake_case__=(10, 3, 3, 3, 3, 2, 2) , snake_case__=False , snake_case__=1_28 , snake_case__=16 , snake_case__=False , snake_case__=True , snake_case__=0.05 , snake_case__=10 , snake_case__=2 , snake_case__=0.0 , snake_case__=10 , snake_case__=0 , snake_case__=3_20 , snake_case__=2 , snake_case__=0.1 , snake_case__=1_00 , snake_case__=2_56 , snake_case__=2_56 , snake_case__=0.1 , snake_case__="sum" , snake_case__=False , snake_case__=False , snake_case__=2_56 , snake_case__=(5_12, 5_12, 5_12, 5_12, 15_00) , snake_case__=(5, 3, 3, 1, 1) , snake_case__=(1, 2, 3, 1, 1) , snake_case__=5_12 , snake_case__=0 , snake_case__=1 , snake_case__=2 , snake_case__=False , snake_case__=3 , snake_case__=2 , snake_case__=3 , snake_case__=None , snake_case__=None , **snake_case__ , ) -> Optional[Any]: """simple docstring""" super().__init__(**snake_case__ , pad_token_id=snake_case__ , bos_token_id=snake_case__ , eos_token_id=snake_case__ ) UpperCAmelCase = hidden_size UpperCAmelCase = feat_extract_norm UpperCAmelCase = feat_extract_activation UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = conv_bias UpperCAmelCase = num_conv_pos_embeddings UpperCAmelCase = num_conv_pos_embedding_groups UpperCAmelCase = len(self.conv_dim ) UpperCAmelCase = num_hidden_layers UpperCAmelCase = intermediate_size UpperCAmelCase = hidden_act UpperCAmelCase = num_attention_heads UpperCAmelCase = hidden_dropout UpperCAmelCase = attention_dropout UpperCAmelCase = activation_dropout UpperCAmelCase = feat_proj_dropout UpperCAmelCase = final_dropout UpperCAmelCase = layerdrop UpperCAmelCase = layer_norm_eps UpperCAmelCase = initializer_range UpperCAmelCase = vocab_size UpperCAmelCase = do_stable_layer_norm UpperCAmelCase = use_weighted_layer_sum if ( (len(self.conv_stride ) != self.num_feat_extract_layers) or (len(self.conv_kernel ) != self.num_feat_extract_layers) or (len(self.conv_dim ) != self.num_feat_extract_layers) ): raise ValueError( """Configuration for convolutional layers is incorrect. It is required that `len(config.conv_dim)` ==""" """ `len(config.conv_stride)` == `len(config.conv_kernel)`, but is `len(config.conv_dim) =""" f''' {len(self.conv_dim )}`, `len(config.conv_stride) = {len(self.conv_stride )}`,''' f''' `len(config.conv_kernel) = {len(self.conv_kernel )}`.''' ) # fine-tuning config parameters for SpecAugment: https://arxiv.org/abs/1904.08779 UpperCAmelCase = apply_spec_augment UpperCAmelCase = mask_time_prob UpperCAmelCase = mask_time_length UpperCAmelCase = mask_time_min_masks UpperCAmelCase = mask_feature_prob UpperCAmelCase = mask_feature_length UpperCAmelCase = mask_feature_min_masks # parameters for pretraining with codevector quantized representations UpperCAmelCase = num_codevectors_per_group UpperCAmelCase = num_codevector_groups UpperCAmelCase = contrastive_logits_temperature UpperCAmelCase = feat_quantizer_dropout UpperCAmelCase = num_negatives UpperCAmelCase = codevector_dim UpperCAmelCase = proj_codevector_dim UpperCAmelCase = diversity_loss_weight # ctc loss UpperCAmelCase = ctc_loss_reduction UpperCAmelCase = ctc_zero_infinity # adapter UpperCAmelCase = add_adapter UpperCAmelCase = adapter_kernel_size UpperCAmelCase = adapter_stride UpperCAmelCase = num_adapter_layers UpperCAmelCase = output_hidden_size or hidden_size UpperCAmelCase = adapter_attn_dim # SequenceClassification-specific parameter. Feel free to ignore for other classes. UpperCAmelCase = classifier_proj_size # XVector-specific parameters. Feel free to ignore for other classes. UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = list(snake_case__ ) UpperCAmelCase = xvector_output_dim @property def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" return functools.reduce(operator.mul , self.conv_stride , 1 )
673
"""simple docstring""" import pickle import shutil import tempfile import unittest from transformers import SPIECE_UNDERLINE, XLMRobertaTokenizer, XLMRobertaTokenizerFast from transformers.testing_utils import get_tests_dir, require_sentencepiece, require_tokenizers, slow from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin lowerCAmelCase_ : Any = get_tests_dir('''fixtures/test_sentencepiece.model''') @require_sentencepiece @require_tokenizers class UpperCamelCase_ ( a_ , unittest.TestCase ): _A : List[str] = XLMRobertaTokenizer _A : List[str] = XLMRobertaTokenizerFast _A : Optional[Any] = True _A : List[str] = True def UpperCamelCase_ ( self ) -> Optional[int]: """simple docstring""" super().setUp() # We have a SentencePiece fixture for testing UpperCAmelCase = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) tokenizer.save_pretrained(self.tmpdirname ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" UpperCAmelCase = """<pad>""" UpperCAmelCase = 1 self.assertEqual(self.get_tokenizer()._convert_token_to_id(snake_case__ ) , snake_case__ ) self.assertEqual(self.get_tokenizer()._convert_id_to_token(snake_case__ ) , snake_case__ ) def UpperCamelCase_ ( self ) -> Any: """simple docstring""" UpperCAmelCase = list(self.get_tokenizer().get_vocab().keys() ) self.assertEqual(vocab_keys[0] , """<s>""" ) self.assertEqual(vocab_keys[1] , """<pad>""" ) self.assertEqual(vocab_keys[-1] , """<mask>""" ) self.assertEqual(len(snake_case__ ) , 10_02 ) def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" self.assertEqual(self.get_tokenizer().vocab_size , 10_02 ) def UpperCamelCase_ ( self ) -> str: """simple docstring""" UpperCAmelCase = XLMRobertaTokenizer(snake_case__ , keep_accents=snake_case__ ) UpperCAmelCase = tokenizer.tokenize("""This is a test""" ) self.assertListEqual(snake_case__ , ["""▁This""", """▁is""", """▁a""", """▁t""", """est"""] ) self.assertListEqual( tokenizer.convert_tokens_to_ids(snake_case__ ) , [value + tokenizer.fairseq_offset for value in [2_85, 46, 10, 1_70, 3_82]] , ) UpperCAmelCase = tokenizer.tokenize("""I was born in 92000, and this is falsé.""" ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """9""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """é""", """.""", ] , ) UpperCAmelCase = tokenizer.convert_tokens_to_ids(snake_case__ ) self.assertListEqual( snake_case__ , [ value + tokenizer.fairseq_offset for value in [8, 21, 84, 55, 24, 19, 7, 2, 6_02, 3_47, 3_47, 3_47, 3, 12, 66, 46, 72, 80, 6, 2, 4] # ^ unk: 2 + 1 = 3 unk: 2 + 1 = 3 ^ ] , ) UpperCAmelCase = tokenizer.convert_ids_to_tokens(snake_case__ ) self.assertListEqual( snake_case__ , [ SPIECE_UNDERLINE + """I""", SPIECE_UNDERLINE + """was""", SPIECE_UNDERLINE + """b""", """or""", """n""", SPIECE_UNDERLINE + """in""", SPIECE_UNDERLINE + """""", """<unk>""", """2""", """0""", """0""", """0""", """,""", SPIECE_UNDERLINE + """and""", SPIECE_UNDERLINE + """this""", SPIECE_UNDERLINE + """is""", SPIECE_UNDERLINE + """f""", """al""", """s""", """<unk>""", """.""", ] , ) def UpperCamelCase_ ( self ) -> int: """simple docstring""" if not self.test_slow_tokenizer: # as we don't have a slow version, we can't compare the outputs between slow and fast versions return UpperCAmelCase = (self.rust_tokenizer_class, """hf-internal-testing/tiny-xlm-roberta""", {}) for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'''{tokenizer.__class__.__name__} ({pretrained_name})''' ): UpperCAmelCase = self.rust_tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCAmelCase = self.tokenizer_class.from_pretrained(snake_case__ , **snake_case__ ) UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files + the tokenizer.json file for the fast one self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) UpperCAmelCase = tuple(f for f in tokenizer_r_files if """tokenizer.json""" not in f ) self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key)) # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id")) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=True UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it save with the same files self.assertSequenceEqual(snake_case__ , snake_case__ ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) # Save tokenizer rust, legacy_format=False UpperCAmelCase = tempfile.mkdtemp() UpperCAmelCase = tokenizer_r.save_pretrained(snake_case__ , legacy_format=snake_case__ ) UpperCAmelCase = tokenizer_p.save_pretrained(snake_case__ ) # Checks it saved the tokenizer.json file self.assertTrue(any("""tokenizer.json""" in f for f in tokenizer_r_files ) ) # Checks everything loads correctly in the same way UpperCAmelCase = tokenizer_r.from_pretrained(snake_case__ ) UpperCAmelCase = tokenizer_p.from_pretrained(snake_case__ ) # Check special tokens are set accordingly on Rust and Python for key in tokenizer_pp.special_tokens_map: self.assertTrue(hasattr(snake_case__ , snake_case__ ) ) shutil.rmtree(snake_case__ ) @cached_property def UpperCamelCase_ ( self ) -> int: """simple docstring""" return XLMRobertaTokenizer.from_pretrained("""xlm-roberta-base""" ) def UpperCamelCase_ ( self ) -> List[Any]: """simple docstring""" with tempfile.NamedTemporaryFile() as f: shutil.copyfile(snake_case__ , f.name ) UpperCAmelCase = XLMRobertaTokenizer(f.name , keep_accents=snake_case__ ) UpperCAmelCase = pickle.dumps(snake_case__ ) pickle.loads(snake_case__ ) def UpperCamelCase_ ( self ) -> List[str]: """simple docstring""" if not self.test_rust_tokenizer: return UpperCAmelCase = self.get_tokenizer() UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = """I was born in 92000, and this is falsé.""" UpperCAmelCase = tokenizer.tokenize(snake_case__ ) UpperCAmelCase = rust_tokenizer.tokenize(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase = tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) UpperCAmelCase = rust_tokenizer.encode(snake_case__ , add_special_tokens=snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) UpperCAmelCase = self.get_rust_tokenizer() UpperCAmelCase = tokenizer.encode(snake_case__ ) UpperCAmelCase = rust_tokenizer.encode(snake_case__ ) self.assertListEqual(snake_case__ , snake_case__ ) @slow def UpperCamelCase_ ( self ) -> Dict: """simple docstring""" UpperCAmelCase = """Hello World!""" UpperCAmelCase = [0, 3_53_78, 66_61, 38, 2] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase_ ( self ) -> Optional[Any]: """simple docstring""" UpperCAmelCase = ( """This is a very long text with a lot of weird characters, such as: . , ~ ? ( ) \" [ ] ! : - . Also we will""" """ add words that should not exsist and be tokenized to <unk>, such as saoneuhaoesuth""" ) UpperCAmelCase = [ 0, 32_93, 83, 10, 45_52, 49_89, 79_86, 6_78, 10, 59_15, 1_11, 17_94_59, 12_48_50, 4, 60_44, 2_37, 12, 6, 5, 6, 4, 67_80, 7_05, 15, 13_88, 44, 3_78, 1_01_14, 7_11, 1_52, 20, 6, 5, 2_23_76, 6_42, 12_21, 1_51_90, 3_41_53, 4_50, 56_08, 9_59, 11_19, 5_77_02, 1_36, 1_86, 47, 10_98, 2_93_67, 47, # 4426, # What fairseq tokenizes from "<unk>": "_<" # 3678, # What fairseq tokenizes from "<unk>": "unk" # 2740, # What fairseq tokenizes from "<unk>": ">" 3, # What we tokenize from "<unk>": "<unk>" 6, # Residue from the tokenization: an extra sentencepiece underline 4, 60_44, 2_37, 62_84, 5_09_01, 5_28, 31, 90, 34, 9_27, 2, ] # xlmr = torch.hub.load('pytorch/fairseq', 'xlmr.base') # xlmr.large has same tokenizer # xlmr.eval() # xlmr.encode(symbols) self.assertListEqual(snake_case__ , self.big_tokenizer.encode(snake_case__ ) ) @slow def UpperCamelCase_ ( self ) -> Tuple: """simple docstring""" UpperCAmelCase = {"""input_ids""": [[0, 1_10_62, 8_27_72, 7, 15, 8_27_72, 5_38, 5_15_29, 2_37, 1_71_98, 12_90, 2_06, 9, 21_51_75, 13_14, 1_36, 1_71_98, 12_90, 2_06, 9, 5_63_59, 42, 12_20_09, 9, 1_64_66, 16, 8_73_44, 45_37, 9, 47_17, 7_83_81, 6, 15_99_58, 7, 15, 2_44_80, 6_18, 4, 5_27, 2_26_93, 54_28, 4, 27_77, 2_44_80, 98_74, 4, 4_35_23, 5_94, 4, 8_03, 1_83_92, 3_31_89, 18, 4, 4_35_23, 2_44_47, 1_23_99, 1_00, 2_49_55, 8_36_58, 96_26, 14_40_57, 15, 8_39, 2_23_35, 16, 1_36, 2_49_55, 8_36_58, 8_34_79, 15, 3_91_02, 7_24, 16, 6_78, 6_45, 27_89, 13_28, 45_89, 42, 12_20_09, 11_57_74, 23, 8_05, 13_28, 4_68_76, 7, 1_36, 5_38_94, 19_40, 4_22_27, 4_11_59, 1_77_21, 8_23, 4_25, 4, 2_75_12, 9_87_22, 2_06, 1_36, 55_31, 49_70, 9_19, 1_73_36, 5, 2], [0, 2_00_80, 6_18, 83, 8_27_75, 47, 4_79, 9, 15_17, 73, 5_38_94, 3_33, 8_05_81, 11_01_17, 1_88_11, 52_56, 12_95, 51, 15_25_26, 2_97, 79_86, 3_90, 12_44_16, 5_38, 3_54_31, 2_14, 98, 1_50_44, 2_57_37, 1_36, 71_08, 4_37_01, 23, 7_56, 13_53_55, 7, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [0, 5_81, 6_37_73, 11_94_55, 6, 14_77_97, 8_82_03, 7, 6_45, 70, 21, 32_85, 1_02_69, 5, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]], """attention_mask""": [[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0]]} # noqa: E501 # fmt: on self.tokenizer_integration_test_util( expected_encoding=snake_case__ , model_name="""xlm-roberta-base""" , revision="""d9d8a8ea5eb94b1c6654ae9249df7793cd2933d3""" , )
673
1
"""simple docstring""" def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" return " ".join(input_str.split()[::-1] ) if __name__ == "__main__": import doctest doctest.testmod()
28
"""simple docstring""" import argparse import collections import json from pathlib import Path import requests import torch import yaml from huggingface_hub import hf_hub_download from PIL import Image from transformers import ( MobileViTImageProcessor, MobileViTVaConfig, MobileViTVaForImageClassification, MobileViTVaForSemanticSegmentation, ) from transformers.utils import logging logging.set_verbosity_info() A_ = logging.get_logger(__name__) def UpperCAmelCase__ (snake_case__ : Optional[int] ): """simple docstring""" print("""Loading config file...""" ) def flatten_yaml_as_dict(snake_case__ : List[Any] , snake_case__ : Optional[Any]="" , snake_case__ : Tuple="." ): _snake_case : Union[str, Any] = [] for k, v in d.items(): _snake_case : List[str] = parent_key + sep + k if parent_key else k if isinstance(snake_case__ , collections.abc.MutableMapping ): items.extend(flatten_yaml_as_dict(snake_case__ , snake_case__ , sep=snake_case__ ).items() ) else: items.append((new_key, v) ) return dict(snake_case__ ) _snake_case : Dict = argparse.Namespace() with open(snake_case__ , """r""" ) as yaml_file: try: _snake_case : List[Any] = yaml.load(snake_case__ , Loader=yaml.FullLoader ) _snake_case : Any = flatten_yaml_as_dict(snake_case__ ) for k, v in flat_cfg.items(): setattr(snake_case__ , snake_case__ , snake_case__ ) except yaml.YAMLError as exc: logger.error("""Error while loading config file: {}. Error message: {}""".format(snake_case__ , str(snake_case__ ) ) ) return config def UpperCAmelCase__ (snake_case__ : int , snake_case__ : int ): """simple docstring""" _snake_case : Dict = MobileViTVaConfig() _snake_case : Optional[int] = False # dataset if task_name.startswith("""imagenet1k_""" ): _snake_case : Dict = 10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Union[str, Any] = 3_84 else: _snake_case : Optional[Any] = 2_56 _snake_case : str = """imagenet-1k-id2label.json""" elif task_name.startswith("""imagenet21k_to_1k_""" ): _snake_case : str = 2_10_00 if int(task_name.strip().split("""_""" )[-1] ) == 3_84: _snake_case : Dict = 3_84 else: _snake_case : Union[str, Any] = 2_56 _snake_case : Tuple = """imagenet-22k-id2label.json""" elif task_name.startswith("""ade20k_""" ): _snake_case : Tuple = 1_51 _snake_case : str = 5_12 _snake_case : List[Any] = """ade20k-id2label.json""" _snake_case : Union[str, Any] = True elif task_name.startswith("""voc_""" ): _snake_case : List[Any] = 21 _snake_case : List[str] = 5_12 _snake_case : int = """pascal-voc-id2label.json""" _snake_case : int = True # orig_config _snake_case : int = load_orig_config_file(snake_case__ ) assert getattr(snake_case__ , """model.classification.name""" , -1 ) == "mobilevit_v2", "Invalid model" _snake_case : str = getattr(snake_case__ , """model.classification.mitv2.width_multiplier""" , 1.0 ) assert ( getattr(snake_case__ , """model.classification.mitv2.attn_norm_layer""" , -1 ) == "layer_norm_2d" ), "Norm layers other than layer_norm_2d is not supported" _snake_case : int = getattr(snake_case__ , """model.classification.activation.name""" , """swish""" ) # config.image_size == getattr(orig_config, 'sampler.bs.crop_size_width', 256) if is_segmentation_model: _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.output_stride""" , 16 ) if "_deeplabv3" in task_name: _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_rates""" , [12, 24, 36] ) _snake_case : Tuple = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_out_channels""" , 5_12 ) _snake_case : Any = getattr(snake_case__ , """model.segmentation.deeplabv3.aspp_dropout""" , 0.1 ) # id2label _snake_case : Union[str, Any] = """huggingface/label-files""" _snake_case : Any = json.load(open(hf_hub_download(snake_case__ , snake_case__ , repo_type="""dataset""" ) , """r""" ) ) _snake_case : List[Any] = {int(snake_case__ ): v for k, v in idalabel.items()} _snake_case : Tuple = idalabel _snake_case : Any = {v: k for k, v in idalabel.items()} return config def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : Tuple , snake_case__ : List[Any] ): """simple docstring""" _snake_case : List[str] = dct.pop(snake_case__ ) _snake_case : List[Any] = val def UpperCAmelCase__ (snake_case__ : Optional[Any] , snake_case__ : int=False ): """simple docstring""" if base_model: _snake_case : Any = """""" else: _snake_case : Union[str, Any] = """mobilevitv2.""" _snake_case : Dict = [] for k in state_dict.keys(): if k[:8] == "encoder.": _snake_case : List[str] = k[8:] else: _snake_case : str = k if ".block." in k: _snake_case : Optional[int] = k_new.replace(""".block.""" , """.""" ) if ".conv." in k: _snake_case : Union[str, Any] = k_new.replace(""".conv.""" , """.convolution.""" ) if ".norm." in k: _snake_case : str = k_new.replace(""".norm.""" , """.normalization.""" ) if "conv_1." in k: _snake_case : int = k_new.replace("""conv_1.""" , F"{model_prefix}conv_stem." ) for i in [1, 2]: if F"layer_{i}." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}." , F"{model_prefix}encoder.layer.{i-1}.layer." ) if ".exp_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".exp_1x1.""" , """.expand_1x1.""" ) if ".red_1x1." in k: _snake_case : Optional[Any] = k_new.replace(""".red_1x1.""" , """.reduce_1x1.""" ) for i in [3, 4, 5]: if F"layer_{i}.0." in k: _snake_case : Tuple = k_new.replace(F"layer_{i}.0." , F"{model_prefix}encoder.layer.{i-1}.downsampling_layer." ) if F"layer_{i}.1.local_rep.0." in k: _snake_case : Any = k_new.replace(F"layer_{i}.1.local_rep.0." , F"{model_prefix}encoder.layer.{i-1}.conv_kxk." ) if F"layer_{i}.1.local_rep.1." in k: _snake_case : str = k_new.replace(F"layer_{i}.1.local_rep.1." , F"{model_prefix}encoder.layer.{i-1}.conv_1x1." ) for i in [3, 4, 5]: if i == 3: _snake_case : Optional[Any] = [0, 1] elif i == 4: _snake_case : Any = [0, 1, 2, 3] elif i == 5: _snake_case : List[Any] = [0, 1, 2] for j in j_in: if F"layer_{i}.1.global_rep.{j}." in k: _snake_case : Any = k_new.replace( F"layer_{i}.1.global_rep.{j}." , F"{model_prefix}encoder.layer.{i-1}.transformer.layer.{j}." ) if F"layer_{i}.1.global_rep.{j+1}." in k: _snake_case : List[Any] = k_new.replace( F"layer_{i}.1.global_rep.{j+1}." , F"{model_prefix}encoder.layer.{i-1}.layernorm." ) if F"layer_{i}.1.conv_proj." in k: _snake_case : Union[str, Any] = k_new.replace(F"layer_{i}.1.conv_proj." , F"{model_prefix}encoder.layer.{i-1}.conv_projection." ) if "pre_norm_attn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_attn.0.""" , """layernorm_before.""" ) if "pre_norm_attn.1." in k: _snake_case : Optional[int] = k_new.replace("""pre_norm_attn.1.""" , """attention.""" ) if "pre_norm_ffn.0." in k: _snake_case : List[Any] = k_new.replace("""pre_norm_ffn.0.""" , """layernorm_after.""" ) if "pre_norm_ffn.1." in k: _snake_case : Tuple = k_new.replace("""pre_norm_ffn.1.""" , """ffn.conv1.""" ) if "pre_norm_ffn.3." in k: _snake_case : Any = k_new.replace("""pre_norm_ffn.3.""" , """ffn.conv2.""" ) if "classifier.1." in k: _snake_case : List[str] = k_new.replace("""classifier.1.""" , """classifier.""" ) if "seg_head." in k: _snake_case : str = k_new.replace("""seg_head.""" , """segmentation_head.""" ) if ".aspp_layer." in k: _snake_case : Optional[int] = k_new.replace(""".aspp_layer.""" , """.""" ) if ".aspp_pool." in k: _snake_case : int = k_new.replace(""".aspp_pool.""" , """.""" ) rename_keys.append((k, k_new) ) return rename_keys def UpperCAmelCase__ (snake_case__ : str ): """simple docstring""" _snake_case : List[str] = [] for k in state_dict.keys(): if k.startswith("""seg_head.aux_head.""" ): keys_to_ignore.append(snake_case__ ) for k in keys_to_ignore: state_dict.pop(snake_case__ , snake_case__ ) def UpperCAmelCase__ (): """simple docstring""" _snake_case : str = """http://images.cocodataset.org/val2017/000000039769.jpg""" # url = "https://cdn.britannica.com/86/141086-050-9D7C75EE/Gulfstream-G450-business-jet-passengers.jpg" _snake_case : Any = Image.open(requests.get(snake_case__ , stream=snake_case__ ).raw ) return im @torch.no_grad() def UpperCAmelCase__ (snake_case__ : List[Any] , snake_case__ : Optional[int] , snake_case__ : List[str] , snake_case__ : Tuple ): """simple docstring""" _snake_case : int = get_mobilevitva_config(snake_case__ , snake_case__ ) # load original state_dict _snake_case : Optional[int] = torch.load(snake_case__ , map_location="""cpu""" ) # load huggingface model if task_name.startswith("""ade20k_""" ) or task_name.startswith("""voc_""" ): _snake_case : Any = MobileViTVaForSemanticSegmentation(snake_case__ ).eval() _snake_case : List[Any] = False else: _snake_case : List[Any] = MobileViTVaForImageClassification(snake_case__ ).eval() _snake_case : Optional[Any] = False # remove and rename some keys of load the original model _snake_case : Union[str, Any] = checkpoint remove_unused_keys(snake_case__ ) _snake_case : List[str] = create_rename_keys(snake_case__ , base_model=snake_case__ ) for rename_key_src, rename_key_dest in rename_keys: rename_key(snake_case__ , snake_case__ , snake_case__ ) # load modified state_dict model.load_state_dict(snake_case__ ) # Check outputs on an image, prepared by MobileViTImageProcessor _snake_case : Optional[int] = MobileViTImageProcessor(crop_size=config.image_size , size=config.image_size + 32 ) _snake_case : List[str] = image_processor(images=prepare_img() , return_tensors="""pt""" ) _snake_case : Optional[Any] = model(**snake_case__ ) # verify classification model if task_name.startswith("""imagenet""" ): _snake_case : List[str] = outputs.logits _snake_case : Any = logits.argmax(-1 ).item() print("""Predicted class:""" , model.config.idalabel[predicted_class_idx] ) if task_name.startswith("""imagenet1k_256""" ) and config.width_multiplier == 1.0: # expected_logits for base variant _snake_case : List[str] = torch.tensor([-1.6_3_3_6e0_0, -7.3_2_0_4e-0_2, -5.1_8_8_3e-0_1] ) assert torch.allclose(logits[0, :3] , snake_case__ , atol=1e-4 ) Path(snake_case__ ).mkdir(exist_ok=snake_case__ ) print(F"Saving model {task_name} to {pytorch_dump_folder_path}" ) model.save_pretrained(snake_case__ ) print(F"Saving image processor to {pytorch_dump_folder_path}" ) image_processor.save_pretrained(snake_case__ ) if __name__ == "__main__": A_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--task''', default='''imagenet1k_256''', type=str, help=( '''Name of the task for which the MobileViTV2 model you\'d like to convert is trained on . ''' ''' Classification (ImageNet-1k) - MobileViTV2 (256x256) : imagenet1k_256 - MobileViTV2 (Trained on 256x256 and Finetuned on 384x384) : imagenet1k_384 - MobileViTV2 (Trained on ImageNet-21k and Finetuned on ImageNet-1k 256x256) : imagenet21k_to_1k_256 - MobileViTV2 (Trained on ImageNet-21k, Finetuned on ImageNet-1k 256x256, and Finetuned on ImageNet-1k 384x384) : imagenet21k_to_1k_384 Segmentation - ADE20K Dataset : ade20k_deeplabv3 - Pascal VOC 2012 Dataset: voc_deeplabv3 ''' ), choices=[ '''imagenet1k_256''', '''imagenet1k_384''', '''imagenet21k_to_1k_256''', '''imagenet21k_to_1k_384''', '''ade20k_deeplabv3''', '''voc_deeplabv3''', ], ) parser.add_argument( '''--orig_checkpoint_path''', required=True, type=str, help='''Path to the original state dict (.pt file).''' ) parser.add_argument('''--orig_config_path''', required=True, type=str, help='''Path to the original config file.''') parser.add_argument( '''--pytorch_dump_folder_path''', required=True, type=str, help='''Path to the output PyTorch model directory.''' ) A_ = parser.parse_args() convert_mobilevitva_checkpoint( args.task, args.orig_checkpoint_path, args.orig_config_path, args.pytorch_dump_folder_path )
28
1
import math from typing import List, Optional, Tuple, Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin, SchedulerOutput class a ( lowercase__ , lowercase__ ): """simple docstring""" a : Dict = 1 @register_to_config def __init__( self : int , __lowercase : int = 1000 , __lowercase : Optional[Union[np.ndarray, List[float]]] = None ) -> Union[str, Any]: # set `betas`, `alphas`, `timesteps` self.set_timesteps(__lowercase ) # standard deviation of the initial noise distribution __UpperCAmelCase : List[Any] = 1.0 # For now we only support F-PNDM, i.e. the runge-kutta method # For more information on the algorithm please take a look at the paper: https://arxiv.org/pdf/2202.09778.pdf # mainly at formula (9), (12), (13) and the Algorithm 2. __UpperCAmelCase : List[Any] = 4 # running values __UpperCAmelCase : str = [] def UpperCAmelCase ( self : Union[str, Any] , __lowercase : int , __lowercase : Union[str, torch.device] = None ) -> int: __UpperCAmelCase : int = num_inference_steps __UpperCAmelCase : Union[str, Any] = torch.linspace(1 , 0 , num_inference_steps + 1 )[:-1] __UpperCAmelCase : Union[str, Any] = torch.cat([steps, torch.tensor([0.0] )] ) if self.config.trained_betas is not None: __UpperCAmelCase : Dict = torch.tensor(self.config.trained_betas , dtype=torch.floataa ) else: __UpperCAmelCase : Dict = torch.sin(steps * math.pi / 2 ) ** 2 __UpperCAmelCase : List[Any] = (1.0 - self.betas**2) ** 0.5 __UpperCAmelCase : Tuple = (torch.atana(self.betas , self.alphas ) / math.pi * 2)[:-1] __UpperCAmelCase : Dict = timesteps.to(__lowercase ) __UpperCAmelCase : Optional[Any] = [] def UpperCAmelCase ( self : Optional[int] , __lowercase : torch.FloatTensor , __lowercase : int , __lowercase : torch.FloatTensor , __lowercase : bool = True , ) -> Union[SchedulerOutput, Tuple]: if self.num_inference_steps is None: raise ValueError( """Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler""" ) __UpperCAmelCase : List[str] = (self.timesteps == timestep).nonzero().item() __UpperCAmelCase : Optional[Any] = timestep_index + 1 __UpperCAmelCase : List[str] = sample * self.betas[timestep_index] + model_output * self.alphas[timestep_index] self.ets.append(__lowercase ) if len(self.ets ) == 1: __UpperCAmelCase : Tuple = self.ets[-1] elif len(self.ets ) == 2: __UpperCAmelCase : Union[str, Any] = (3 * self.ets[-1] - self.ets[-2]) / 2 elif len(self.ets ) == 3: __UpperCAmelCase : Union[str, Any] = (23 * self.ets[-1] - 16 * self.ets[-2] + 5 * self.ets[-3]) / 12 else: __UpperCAmelCase : List[Any] = (1 / 24) * (55 * self.ets[-1] - 59 * self.ets[-2] + 37 * self.ets[-3] - 9 * self.ets[-4]) __UpperCAmelCase : Union[str, Any] = self._get_prev_sample(__lowercase , __lowercase , __lowercase , __lowercase ) if not return_dict: return (prev_sample,) return SchedulerOutput(prev_sample=__lowercase ) def UpperCAmelCase ( self : Optional[Any] , __lowercase : torch.FloatTensor , *__lowercase : Optional[Any] , **__lowercase : Any ) -> torch.FloatTensor: return sample def UpperCAmelCase ( self : Tuple , __lowercase : Tuple , __lowercase : List[str] , __lowercase : Optional[int] , __lowercase : Dict ) -> str: __UpperCAmelCase : int = self.alphas[timestep_index] __UpperCAmelCase : Tuple = self.betas[timestep_index] __UpperCAmelCase : Any = self.alphas[prev_timestep_index] __UpperCAmelCase : List[str] = self.betas[prev_timestep_index] __UpperCAmelCase : List[str] = (sample - sigma * ets) / max(__lowercase , 1e-8 ) __UpperCAmelCase : List[Any] = next_alpha * pred + ets * next_sigma return prev_sample def __len__( self : Tuple ) -> str: return self.config.num_train_timesteps
63
from typing import TYPE_CHECKING from ....utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available snake_case__ : List[Any] = {"""configuration_van""": ["""VAN_PRETRAINED_CONFIG_ARCHIVE_MAP""", """VanConfig"""]} try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: snake_case__ : Union[str, Any] = [ """VAN_PRETRAINED_MODEL_ARCHIVE_LIST""", """VanForImageClassification""", """VanModel""", """VanPreTrainedModel""", ] if TYPE_CHECKING: from .configuration_van import VAN_PRETRAINED_CONFIG_ARCHIVE_MAP, VanConfig try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_van import ( VAN_PRETRAINED_MODEL_ARCHIVE_LIST, VanForImageClassification, VanModel, VanPreTrainedModel, ) else: import sys snake_case__ : Dict = _LazyModule(__name__, globals()["""__file__"""], _import_structure)
402
0
def UpperCAmelCase_ ( __UpperCamelCase, __UpperCamelCase, __UpperCamelCase ): '''simple docstring''' SCREAMING_SNAKE_CASE__ =(num_of_terms / 2) * (2 * first_term + (num_of_terms - 1) * common_diff) # formula for sum of series return total def UpperCAmelCase_ ( ): '''simple docstring''' print(sum_of_series(1, 1, 10 ) ) if __name__ == "__main__": import doctest doctest.testmod()
720
from ...configuration_utils import PretrainedConfig from ...utils import logging lowerCamelCase_ = logging.get_logger(__name__) lowerCamelCase_ = { "microsoft/trocr-base-handwritten": ( "https://huggingface.co/microsoft/trocr-base-handwritten/resolve/main/config.json" ), # See all TrOCR models at https://huggingface.co/models?filter=trocr } class __a ( __lowerCamelCase ): """simple docstring""" _A : List[Any] = "trocr" _A : Optional[int] = ["past_key_values"] _A : Dict = { "num_attention_heads": "decoder_attention_heads", "hidden_size": "d_model", "num_hidden_layers": "decoder_layers", } def __init__( self : str ,_UpperCamelCase : Dict=5_0_2_6_5 ,_UpperCamelCase : int=1_0_2_4 ,_UpperCamelCase : Union[str, Any]=1_2 ,_UpperCamelCase : Union[str, Any]=1_6 ,_UpperCamelCase : List[Any]=4_0_9_6 ,_UpperCamelCase : str="gelu" ,_UpperCamelCase : Dict=5_1_2 ,_UpperCamelCase : List[Any]=0.1 ,_UpperCamelCase : Dict=0.0 ,_UpperCamelCase : Optional[int]=0.0 ,_UpperCamelCase : Union[str, Any]=2 ,_UpperCamelCase : str=0.02 ,_UpperCamelCase : Any=0.0 ,_UpperCamelCase : Optional[int]=True ,_UpperCamelCase : str=False ,_UpperCamelCase : int=True ,_UpperCamelCase : Tuple=True ,_UpperCamelCase : str=1 ,_UpperCamelCase : Optional[Any]=0 ,_UpperCamelCase : str=2 ,**_UpperCamelCase : Any ,) -> Any: '''simple docstring''' SCREAMING_SNAKE_CASE__ =vocab_size SCREAMING_SNAKE_CASE__ =d_model SCREAMING_SNAKE_CASE__ =decoder_layers SCREAMING_SNAKE_CASE__ =decoder_attention_heads SCREAMING_SNAKE_CASE__ =decoder_ffn_dim SCREAMING_SNAKE_CASE__ =activation_function SCREAMING_SNAKE_CASE__ =max_position_embeddings SCREAMING_SNAKE_CASE__ =dropout SCREAMING_SNAKE_CASE__ =attention_dropout SCREAMING_SNAKE_CASE__ =activation_dropout SCREAMING_SNAKE_CASE__ =init_std SCREAMING_SNAKE_CASE__ =decoder_layerdrop SCREAMING_SNAKE_CASE__ =use_cache SCREAMING_SNAKE_CASE__ =scale_embedding SCREAMING_SNAKE_CASE__ =use_learned_position_embeddings SCREAMING_SNAKE_CASE__ =layernorm_embedding super().__init__( pad_token_id=_UpperCamelCase ,bos_token_id=_UpperCamelCase ,eos_token_id=_UpperCamelCase ,decoder_start_token_id=_UpperCamelCase ,**_UpperCamelCase ,)
588
0
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 UpperCAmelCase_ : List[Any] = { # 1536-bit 5: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 2048-bit 14: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AACAA68FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 3072-bit 15: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 4096-bit 16: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199''' + '''FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 6144-bit 17: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08''' + '''8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B''' + '''302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9''' + '''A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6''' + '''49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8''' + '''FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C''' + '''180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718''' + '''3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D''' + '''04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D''' + '''B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226''' + '''1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC''' + '''E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26''' + '''99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB''' + '''04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2''' + '''233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127''' + '''D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406''' + '''AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918''' + '''DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151''' + '''2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03''' + '''F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F''' + '''BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B''' + '''B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632''' + '''387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E''' + '''6DCC4024FFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, # 8192-bit 18: { '''prime''': int( '''FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1''' + '''29024E088A67CC74020BBEA63B139B22514A08798E3404DD''' + '''EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245''' + '''E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED''' + '''EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D''' + '''C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F''' + '''83655D23DCA3AD961C62F356208552BB9ED529077096966D''' + '''670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B''' + '''E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9''' + '''DE2BCBF6955817183995497CEA956AE515D2261898FA0510''' + '''15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64''' + '''ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7''' + '''ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B''' + '''F12FFA06D98A0864D87602733EC86A64521F2B18177B200C''' + '''BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31''' + '''43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7''' + '''88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA''' + '''2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6''' + '''287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED''' + '''1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9''' + '''93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492''' + '''36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD''' + '''F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831''' + '''179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B''' + '''DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF''' + '''5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6''' + '''D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3''' + '''23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA''' + '''CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328''' + '''06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C''' + '''DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE''' + '''12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4''' + '''38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300''' + '''741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568''' + '''3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9''' + '''22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B''' + '''4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A''' + '''062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36''' + '''4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1''' + '''B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92''' + '''4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47''' + '''9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71''' + '''60C980DD98EDD3DFFFFFFFFFFFFFFFFF''', base=16, ), '''generator''': 2, }, } class lowerCamelCase_ : def __init__( self : Optional[Any] , __A : int = 14 ): if group not in primes: raise ValueError("""Unsupported Group""" ) __A : Union[str, Any] = primes[group]["""prime"""] __A : List[str] = primes[group]["""generator"""] __A : int = int(hexlify(urandom(32 ) ) , base=16 ) def lowerCAmelCase_ ( self : List[str] ): return hex(self.__private_key )[2:] def lowerCAmelCase_ ( self : Optional[Any] ): __A : Any = pow(self.generator , self.__private_key , self.prime ) return hex(__A )[2:] def lowerCAmelCase_ ( self : str , __A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__A , (self.prime - 1) // 2 , self.prime ) == 1 ) def lowerCAmelCase_ ( self : Optional[int] , __A : str ): __A : List[str] = int(__A , base=16 ) if not self.is_valid_public_key(__A ): raise ValueError("""Invalid public key""" ) __A : Union[str, Any] = pow(__A , self.__private_key , self.prime ) return shaaaa(str(__A ).encode() ).hexdigest() @staticmethod def lowerCAmelCase_ ( __A : int , __A : int ): # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__A , (prime - 1) // 2 , __A ) == 1 ) @staticmethod def lowerCAmelCase_ ( __A : str , __A : str , __A : int = 14 ): __A : int = int(__A , base=16 ) __A : List[str] = int(__A , base=16 ) __A : Union[str, Any] = primes[group]["""prime"""] if not DiffieHellman.is_valid_public_key_static(__A , __A ): raise ValueError("""Invalid public key""" ) __A : int = pow(__A , __A , __A ) return shaaaa(str(__A ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
17
'''simple docstring''' import math import tensorflow as tf from packaging import version def __A ( a_ : List[Any] ): lowerCAmelCase : Any = tf.convert_to_tensor(a_ ) lowerCAmelCase : List[Any] = 0.5 * (1.0 + tf.math.erf(x / tf.cast(tf.sqrt(2.0 ) ,x.dtype ) )) return x * cdf def __A ( a_ : int ): lowerCAmelCase : Dict = tf.convert_to_tensor(a_ ) lowerCAmelCase : int = tf.cast(math.pi ,x.dtype ) lowerCAmelCase : Dict = tf.cast(0.0_4_4_7_1_5 ,x.dtype ) lowerCAmelCase : Dict = 0.5 * (1.0 + tf.tanh(tf.sqrt(2.0 / pi ) * (x + coeff * tf.pow(a_ ,3 )) )) return x * cdf def __A ( a_ : Union[str, Any] ): lowerCAmelCase : Any = tf.convert_to_tensor(a_ ) return x * tf.tanh(tf.math.softplus(a_ ) ) def __A ( a_ : List[str] ): lowerCAmelCase : Dict = tf.convert_to_tensor(a_ ) lowerCAmelCase : Any = tf.cast(0.0_4_4_7_1_5 ,x.dtype ) lowerCAmelCase : Optional[int] = tf.cast(0.7_9_7_8_8_4_5_6_0_8 ,x.dtype ) return 0.5 * x * (1.0 + tf.tanh(x * coeffa * (1.0 + coeffa * x * x) )) def __A ( a_ : Union[str, Any] ): lowerCAmelCase : Optional[int] = tf.convert_to_tensor(a_ ) lowerCAmelCase : List[Any] = tf.cast(1.7_0_2 ,x.dtype ) return x * tf.math.sigmoid(coeff * x ) def __A ( a_ : List[Any] ): return tf.clip_by_value(_gelu(a_ ) ,-1_0 ,1_0 ) def __A ( a_ : List[Any] ,a_ : List[Any]=-1 ): lowerCAmelCase , lowerCAmelCase : Optional[int] = tf.split(a_ ,2 ,axis=a_ ) return a * tf.math.sigmoid(a_ ) if version.parse(tf.version.VERSION) >= version.parse("""2.4"""): def __A ( a_ : Optional[Any] ): return tf.keras.activations.gelu(a_ ,approximate=a_ ) lowerCAmelCase = tf.keras.activations.gelu lowerCAmelCase = approximate_gelu_wrap else: lowerCAmelCase = _gelu lowerCAmelCase = _gelu_new lowerCAmelCase = { """gelu""": gelu, """gelu_10""": gelu_aa, """gelu_fast""": gelu_fast, """gelu_new""": gelu_new, """glu""": glu, """mish""": mish, """quick_gelu""": quick_gelu, """relu""": tf.keras.activations.relu, """sigmoid""": tf.keras.activations.sigmoid, """silu""": tf.keras.activations.swish, """swish""": tf.keras.activations.swish, """tanh""": tf.keras.activations.tanh, } def __A ( a_ : int ): if activation_string in ACTaFN: return ACTaFN[activation_string] else: raise KeyError(f'''function {activation_string} not found in ACT2FN mapping {list(ACTaFN.keys() )}''' )
525
0
'''simple docstring''' from string import ascii_lowercase, ascii_uppercase def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE ): """simple docstring""" if not sentence: return "" snake_case_ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) ) return lower_to_upper.get(sentence[0], sentence[0] ) + sentence[1:] if __name__ == "__main__": from doctest import testmod testmod()
92
'''simple docstring''' from typing import Dict, Optional import numpy as np import datasets a_ = "\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n" a_ = "\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric(\"mean_iou\")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {'mean_iou': 0.47750000000000004, 'mean_accuracy': 0.5916666666666666, 'overall_accuracy': 0.5263157894736842, 'per_category_iou': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), 'per_category_accuracy': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n" a_ = "\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}" def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" if label_map is not None: for old_id, new_id in label_map.items(): snake_case_ : int = new_id # turn into Numpy arrays snake_case_ : int = np.array(__SCREAMING_SNAKE_CASE ) snake_case_ : Any = np.array(__SCREAMING_SNAKE_CASE ) if reduce_labels: snake_case_ : str = 2_5_5 snake_case_ : str = label - 1 snake_case_ : List[Any] = 2_5_5 snake_case_ : Union[str, Any] = label != ignore_index snake_case_ : Dict = np.not_equal(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) snake_case_ : Tuple = pred_label[mask] snake_case_ : Any = np.array(__SCREAMING_SNAKE_CASE )[mask] snake_case_ : List[str] = pred_label[pred_label == label] snake_case_ : int = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : Tuple = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : List[Any] = np.histogram(__SCREAMING_SNAKE_CASE, bins=__SCREAMING_SNAKE_CASE, range=(0, num_labels - 1) )[0] snake_case_ : List[Any] = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" snake_case_ : List[Any] = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : List[str] = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : int = np.zeros((num_labels,), dtype=np.floataa ) snake_case_ : int = np.zeros((num_labels,), dtype=np.floataa ) for result, gt_seg_map in zip(__SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ): snake_case_ , snake_case_ , snake_case_ , snake_case_ : int = intersect_and_union( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def UpperCamelCase_ ( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = None, __SCREAMING_SNAKE_CASE = False, ): """simple docstring""" snake_case_ , snake_case_ , snake_case_ , snake_case_ : Tuple = total_intersect_and_union( __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE, __SCREAMING_SNAKE_CASE ) # compute metrics snake_case_ : Union[str, Any] = {} snake_case_ : int = total_area_intersect.sum() / total_area_label.sum() snake_case_ : str = total_area_intersect / total_area_union snake_case_ : Union[str, Any] = total_area_intersect / total_area_label snake_case_ : List[str] = np.nanmean(__SCREAMING_SNAKE_CASE ) snake_case_ : str = np.nanmean(__SCREAMING_SNAKE_CASE ) snake_case_ : Any = all_acc snake_case_ : Union[str, Any] = iou snake_case_ : Tuple = acc if nan_to_num is not None: snake_case_ : str = {metric: np.nan_to_num(__SCREAMING_SNAKE_CASE, nan=__SCREAMING_SNAKE_CASE ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION , _KWARGS_DESCRIPTION ) class UpperCAmelCase_ ( datasets.Metric ): def snake_case__ ( self): return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { "predictions": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), "references": datasets.Sequence(datasets.Sequence(datasets.Value("uint16"))), }) , reference_urls=[ "https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py" ] , ) def snake_case__ ( self , lowercase_ , lowercase_ , lowercase_ , lowercase_ , lowercase_ = None , lowercase_ = None , lowercase_ = False , ): snake_case_ : Optional[Any] = mean_iou( results=lowercase_ , gt_seg_maps=lowercase_ , num_labels=lowercase_ , ignore_index=lowercase_ , nan_to_num=lowercase_ , label_map=lowercase_ , reduce_labels=lowercase_ , ) return iou_result
92
1
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class snake_case_ ( lowerCamelCase_ ): """simple docstring""" @staticmethod @abstractmethod def UpperCAmelCase__ ( lowerCamelCase_) -> Union[str, Any]: raise NotImplementedError() @abstractmethod def UpperCAmelCase__ ( self) -> Any: raise NotImplementedError()
34
def UpperCamelCase_( _A :list[list] )-> list[list]: UpperCamelCase__ = current_set.copy() for row_index, row in enumerate(_A ): UpperCamelCase__ = row[0] for column_index, column in enumerate(_A ): if magnitude == 0: UpperCamelCase__ = column continue UpperCamelCase__ = column / magnitude # Subtract to cancel term UpperCamelCase__ = current_set[0] UpperCamelCase__ = [first_row] UpperCamelCase__ = current_set[1::] for row in current_set: UpperCamelCase__ = [] # If first term is 0, it is already in form we want, so we preserve it if row[0] == 0: final_set.append(_A ) continue for column_index in range(len(_A ) ): temp_row.append(first_row[column_index] - row[column_index] ) final_set.append(_A ) # Create next recursion iteration set if len(final_set[0] ) != 3: UpperCamelCase__ = final_set[0] UpperCamelCase__ = [] UpperCamelCase__ = [] for row in final_set[1::]: current_first_column.append(row[0] ) next_iteration.append(row[1::] ) UpperCamelCase__ = simplify(_A ) for i in range(len(_A ) ): resultant[i].insert(0 , current_first_column[i] ) resultant.insert(0 , _A ) UpperCamelCase__ = resultant return final_set def UpperCamelCase_( _A :list[list] )-> list: if len(_A ) == 0: raise IndexError("solve_simultaneous() requires n lists of length n+1" ) UpperCamelCase__ = len(_A ) + 1 if any(len(_A ) != _length for item in equations ): raise IndexError("solve_simultaneous() requires n lists of length n+1" ) for row in equations: if any(not isinstance(_A , (int, float) ) for column in row ): raise ValueError("solve_simultaneous() requires lists of integers" ) if len(_A ) == 1: return [equations[0][-1] / equations[0][0]] UpperCamelCase__ = equations.copy() if any(0 in row for row in data_set ): UpperCamelCase__ = data_set.copy() UpperCamelCase__ = [] for row_index, row in enumerate(_A ): if 0 not in row: UpperCamelCase__ = data_set.pop(_A ) break if not full_row: raise ValueError("solve_simultaneous() requires at least 1 full equation" ) data_set.insert(0 , _A ) UpperCamelCase__ = data_set.copy() UpperCamelCase__ = simplify(_A ) UpperCamelCase__ = simplified[::-1] UpperCamelCase__ = [] for row in simplified: UpperCamelCase__ = row[-1] if not solutions: if row[-2] == 0: solutions.append(0 ) continue solutions.append(current_solution / row[-2] ) continue UpperCamelCase__ = row.copy()[: len(_A ) - 1 :] while temp_row[0] == 0: temp_row.pop(0 ) if len(_A ) == 0: solutions.append(0 ) continue UpperCamelCase__ = temp_row[1::] UpperCamelCase__ = temp_row[::-1] for column_index, column in enumerate(_A ): current_solution -= column * solutions[column_index] solutions.append(_A ) UpperCamelCase__ = [] for item in solutions: final.append(float(round(_A , 5 ) ) ) return final[::-1] if __name__ == "__main__": import doctest doctest.testmod() __UpperCamelCase = [ [2, 1, 1, 1, 1, 4], [1, 2, 1, 1, 1, 5], [1, 1, 2, 1, 1, 6], [1, 1, 1, 2, 1, 7], [1, 1, 1, 1, 2, 8], ] print(solve_simultaneous(eq)) print(solve_simultaneous([[4, 2]]))
551
0
import csv import tweepy # Twitter API credentials _SCREAMING_SNAKE_CASE : Tuple = '' _SCREAMING_SNAKE_CASE : Any = '' _SCREAMING_SNAKE_CASE : Tuple = '' _SCREAMING_SNAKE_CASE : Dict = '' def SCREAMING_SNAKE_CASE ( __UpperCamelCase : str ) -> None: """simple docstring""" A__ : Union[str, Any] = tweepy.OAuthHandler(__UpperCamelCase , __UpperCamelCase ) auth.set_access_token(__UpperCamelCase , __UpperCamelCase ) A__ : Tuple = tweepy.API(__UpperCamelCase ) # initialize a list to hold all the tweepy Tweets A__ : List[Any] = [] # make initial request for most recent tweets (200 is the maximum allowed count) A__ : List[str] = api.user_timeline(screen_name=__UpperCamelCase , count=2_00 ) # save most recent tweets alltweets.extend(__UpperCamelCase ) # save the id of the oldest tweet less one A__ : Tuple = alltweets[-1].id - 1 # keep grabbing tweets until there are no tweets left to grab while len(__UpperCamelCase ) > 0: print(F"getting tweets before {oldest}" ) # all subsequent requests use the max_id param to prevent duplicates A__ : Union[str, Any] = api.user_timeline( screen_name=__UpperCamelCase , count=2_00 , max_id=__UpperCamelCase ) # save most recent tweets alltweets.extend(__UpperCamelCase ) # update the id of the oldest tweet less one A__ : Optional[int] = alltweets[-1].id - 1 print(F"...{len(__UpperCamelCase )} tweets downloaded so far" ) # transform the tweepy tweets into a 2D array that will populate the csv A__ : Any = [[tweet.id_str, tweet.created_at, tweet.text] for tweet in alltweets] # write the csv with open(F"new_{screen_name}_tweets.csv" , '''w''' ) as f: A__ : Optional[Any] = csv.writer(__UpperCamelCase ) writer.writerow(['''id''', '''created_at''', '''text'''] ) writer.writerows(__UpperCamelCase ) if __name__ == "__main__": # pass in the username of the account you want to download get_all_tweets('FirePing32')
55
import sacrebleu as scb from packaging import version from sacrebleu import TER import datasets _SCREAMING_SNAKE_CASE : Union[str, Any] = '\\n@inproceedings{snover-etal-2006-study,\n title = "A Study of Translation Edit Rate with Targeted Human Annotation",\n author = "Snover, Matthew and\n Dorr, Bonnie and\n Schwartz, Rich and\n Micciulla, Linnea and\n Makhoul, John",\n booktitle = "Proceedings of the 7th Conference of the Association for Machine Translation in the Americas: Technical Papers",\n month = aug # " 8-12",\n year = "2006",\n address = "Cambridge, Massachusetts, USA",\n publisher = "Association for Machine Translation in the Americas",\n url = "https://aclanthology.org/2006.amta-papers.25",\n pages = "223--231",\n}\n@inproceedings{post-2018-call,\n title = "A Call for Clarity in Reporting {BLEU} Scores",\n author = "Post, Matt",\n booktitle = "Proceedings of the Third Conference on Machine Translation: Research Papers",\n month = oct,\n year = "2018",\n address = "Belgium, Brussels",\n publisher = "Association for Computational Linguistics",\n url = "https://www.aclweb.org/anthology/W18-6319",\n pages = "186--191",\n}\n' _SCREAMING_SNAKE_CASE : Tuple = '\\nTER (Translation Edit Rate, also called Translation Error Rate) is a metric to quantify the edit operations that a\nhypothesis requires to match a reference translation. We use the implementation that is already present in sacrebleu\n(https://github.com/mjpost/sacreBLEU#ter), which in turn is inspired by the TERCOM implementation, which can be found\nhere: https://github.com/jhclark/tercom.\n\nThe implementation here is slightly different from sacrebleu in terms of the required input format. The length of\nthe references and hypotheses lists need to be the same, so you may need to transpose your references compared to\nsacrebleu\'s required input format. See https://github.com/huggingface/datasets/issues/3154#issuecomment-950746534\n\nSee the README.md file at https://github.com/mjpost/sacreBLEU#ter for more information.\n' _SCREAMING_SNAKE_CASE : Optional[Any] = '\nProduces TER scores alongside the number of edits and reference length.\n\nArgs:\n predictions (list of str): The system stream (a sequence of segments).\n references (list of list of str): A list of one or more reference streams (each a sequence of segments).\n normalized (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n ignore_punct (boolean): If `True`, applies basic tokenization and normalization to sentences. Defaults to `False`.\n support_zh_ja_chars (boolean): If `True`, tokenization/normalization supports processing of Chinese characters,\n as well as Japanese Kanji, Hiragana, Katakana, and Phonetic Extensions of Katakana.\n Only applies if `normalized = True`. Defaults to `False`.\n case_sensitive (boolean): If `False`, makes all predictions and references lowercase to ignore differences in case. Defaults to `False`.\n\nReturns:\n \'score\' (float): TER score (num_edits / sum_ref_lengths * 100)\n \'num_edits\' (int): The cumulative number of edits\n \'ref_length\' (float): The cumulative average reference length\n\nExamples:\n Example 1:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 150.0, \'num_edits\': 15, \'ref_length\': 10.0}\n\n Example 2:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 62.5, \'num_edits\': 5, \'ref_length\': 8.0}\n\n Example 3:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... normalized=True,\n ... case_sensitive=True)\n >>> print(results)\n {\'score\': 57.14285714285714, \'num_edits\': 6, \'ref_length\': 10.5}\n\n Example 4:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 0.0, \'num_edits\': 0, \'ref_length\': 8.0}\n\n Example 5:\n >>> predictions = ["does this sentence match??",\n ... "what about this sentence?",\n ... "What did the TER metric user say to the developer?"]\n >>> references = [["does this sentence match", "does this sentence match!?!"],\n ... ["wHaT aBoUt ThIs SeNtEnCe?", "wHaT aBoUt ThIs SeNtEnCe?"],\n ... ["Your jokes are...", "...TERrible"]]\n >>> ter = datasets.load_metric("ter")\n >>> results = ter.compute(predictions=predictions,\n ... references=references,\n ... ignore_punct=True,\n ... case_sensitive=False)\n >>> print(results)\n {\'score\': 100.0, \'num_edits\': 10, \'ref_length\': 10.0}\n' @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class UpperCamelCase__ ( datasets.Metric ): '''simple docstring''' def __snake_case ( self ): if version.parse(scb.__version__ ) < version.parse('''1.4.12''' ): raise ImportWarning( '''To use `sacrebleu`, the module `sacrebleu>=1.4.12` is required, and the current version of `sacrebleu` doesn\'t match this condition.\n''' '''You can install it with `pip install "sacrebleu>=1.4.12"`.''' ) return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , homepage='''http://www.cs.umd.edu/~snover/tercom/''' , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( { '''predictions''': datasets.Value('''string''' , id='''sequence''' ), '''references''': datasets.Sequence(datasets.Value('''string''' , id='''sequence''' ) , id='''references''' ), } ) , codebase_urls=['''https://github.com/mjpost/sacreBLEU#ter'''] , reference_urls=[ '''https://github.com/jhclark/tercom''', ] , ) def __snake_case ( self , UpperCamelCase__ , UpperCamelCase__ , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , UpperCamelCase__ = False , ): A__ : List[Any] = len(references[0] ) if any(len(UpperCamelCase__ ) != references_per_prediction for refs in references ): raise ValueError('''Sacrebleu requires the same number of references for each prediction''' ) A__ : Dict = [[refs[i] for refs in references] for i in range(UpperCamelCase__ )] A__ : Optional[Any] = TER( normalized=UpperCamelCase__ , no_punct=UpperCamelCase__ , asian_support=UpperCamelCase__ , case_sensitive=UpperCamelCase__ , ) A__ : str = sb_ter.corpus_score(UpperCamelCase__ , UpperCamelCase__ ) return {"score": output.score, "num_edits": output.num_edits, "ref_length": output.ref_length}
55
1
"""simple docstring""" import json import os import unittest from transformers.models.gptsan_japanese.tokenization_gptsan_japanese import ( VOCAB_FILES_NAMES, GPTSanJapaneseTokenizer, ) from transformers.testing_utils import require_tokenizers, slow from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class __lowercase ( _A , unittest.TestCase ): snake_case_ = GPTSanJapaneseTokenizer snake_case_ = False snake_case_ = {"""do_clean_text""": False, """add_prefix_space""": False} def __lowercase ( self : Optional[int] ): '''simple docstring''' super().setUp() # fmt: off UpperCAmelCase__ : Tuple = ["こん", "こんに", "にちは", "ばんは", "世界,㔺界", "、", "。", "<BR>", "<SP>", "<TAB>", "<URL>", "<EMAIL>", "<TEL>", "<DATE>", "<PRICE>", "<BLOCK>", "<KIGOU>", "<U2000U2BFF>", "<|emoji1|>", "<unk>", "<|bagoftoken|>", "<|endoftext|>"] # fmt: on UpperCAmelCase__ : Any = {"emoji": {"\ud83d\ude00": "<|emoji1|>"}, "emoji_inv": {"<|emoji1|>": "\ud83d\ude00"}} # 😀 UpperCAmelCase__ : Optional[int] = {"unk_token": "<unk>"} UpperCAmelCase__ : Any = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""vocab_file"""] ) UpperCAmelCase__ : Optional[int] = os.path.join(self.tmpdirname ,VOCAB_FILES_NAMES["""emoji_file"""] ) with open(self.vocab_file ,"""w""" ,encoding="""utf-8""" ) as vocab_writer: vocab_writer.write("""""".join([x + """\n""" for x in vocab_tokens] ) ) with open(self.emoji_file ,"""w""" ) as emoji_writer: emoji_writer.write(json.dumps(A ) ) def __lowercase ( self : str ,**A : List[str] ): '''simple docstring''' kwargs.update(self.special_tokens_map ) return GPTSanJapaneseTokenizer.from_pretrained(self.tmpdirname ,**A ) def __lowercase ( self : Tuple ,A : int ): '''simple docstring''' UpperCAmelCase__ : str = "こんにちは、世界。 \nこんばんは、㔺界。😀" UpperCAmelCase__ : Dict = "こんにちは、世界。 \nこんばんは、世界。😀" return input_text, output_text def __lowercase ( self : Union[str, Any] ,A : Tuple ): '''simple docstring''' UpperCAmelCase__ : int = self.get_input_output_texts(A ) UpperCAmelCase__ : Any = tokenizer.encode(A ,add_special_tokens=A ) UpperCAmelCase__ : Dict = tokenizer.decode(A ,clean_up_tokenization_spaces=A ) return text, ids def __lowercase ( self : Optional[Any] ): '''simple docstring''' pass # TODO add if relevant def __lowercase ( self : str ): '''simple docstring''' pass # TODO add if relevant def __lowercase ( self : Optional[int] ): '''simple docstring''' pass # TODO add if relevant def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ : Any = "こんにちは、世界。 こんばんは、㔺界。" UpperCAmelCase__ : str = ["こん", "にちは", "、", "世界", "。", "<SP>", "こん", "ばんは", "、", "㔺界", "。"] UpperCAmelCase__ : Tuple = tokenizer.tokenize(A ) self.assertListEqual(A ,A ) # Testing conversion to ids without special tokens UpperCAmelCase__ : Tuple = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6] UpperCAmelCase__ : Optional[Any] = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A ,A ) # Testing conversion to ids with special tokens UpperCAmelCase__ : Dict = tokens + [tokenizer.unk_token] UpperCAmelCase__ : Any = [0, 2, 5, 4, 6, 8, 0, 3, 5, 4, 6, 19] UpperCAmelCase__ : Tuple = tokenizer.convert_tokens_to_ids(A ) self.assertListEqual(A ,A ) def __lowercase ( self : Any ): '''simple docstring''' UpperCAmelCase__ : Any = self.get_tokenizer() # Testing tokenization UpperCAmelCase__ : Any = "こんにちは、<|bagoftoken|>世界。こんばんは、<|bagoftoken|>㔺界。" UpperCAmelCase__ : Tuple = "こんにちは、、、、世界。こんばんは、、、、世界。" UpperCAmelCase__ : Optional[int] = tokenizer.encode(A ) UpperCAmelCase__ : Tuple = tokenizer.decode(A ) self.assertEqual(A ,A ) @slow def __lowercase ( self : Dict ): '''simple docstring''' UpperCAmelCase__ : int = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ : List[Any] = "こんにちは、世界。" UpperCAmelCase__ : Optional[Any] = "こんばんは、㔺界。😀" UpperCAmelCase__ : Any = "こんにちは、世界。こんばんは、世界。😀" UpperCAmelCase__ : List[str] = tokenizer.encode(prefix_text + input_text ) UpperCAmelCase__ : Optional[int] = tokenizer.encode("""""" ,prefix_text=prefix_text + input_text ) UpperCAmelCase__ : Union[str, Any] = tokenizer.encode(A ,prefix_text=A ) UpperCAmelCase__ : Union[str, Any] = tokenizer.decode(A ) UpperCAmelCase__ : List[Any] = tokenizer.decode(A ) UpperCAmelCase__ : List[Any] = tokenizer.decode(A ) self.assertEqual(A ,A ) self.assertEqual(A ,A ) self.assertEqual(A ,A ) @slow def __lowercase ( self : str ): '''simple docstring''' UpperCAmelCase__ : List[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) # Testing tokenization UpperCAmelCase__ : Any = "こんにちは、世界。" UpperCAmelCase__ : Dict = "こんばんは、㔺界。😀" UpperCAmelCase__ : List[str] = len(tokenizer.encode(A ) ) - 2 UpperCAmelCase__ : Union[str, Any] = len(tokenizer.encode(A ) ) - 2 UpperCAmelCase__ : Optional[Any] = [1] + [0] * (len_prefix + len_text + 1) UpperCAmelCase__ : Optional[int] = [1] * (len_prefix + len_text + 1) + [0] UpperCAmelCase__ : Dict = [1] + [1] * (len_prefix) + [0] * (len_text + 1) UpperCAmelCase__ : Optional[Any] = tokenizer(prefix_text + input_text ).token_type_ids UpperCAmelCase__ : int = tokenizer("""""" ,prefix_text=prefix_text + input_text ).token_type_ids UpperCAmelCase__ : List[str] = tokenizer(A ,prefix_text=A ).token_type_ids self.assertListEqual(A ,A ) self.assertListEqual(A ,A ) self.assertListEqual(A ,A ) @slow def __lowercase ( self : Union[str, Any] ): '''simple docstring''' UpperCAmelCase__ : Optional[Any] = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ : Union[str, Any] = tokenizer.encode("""あンいワ""" ) UpperCAmelCase__ : Union[str, Any] = tokenizer.encode("""""" ,prefix_text="""あンいワ""" ) UpperCAmelCase__ : Dict = tokenizer.encode("""いワ""" ,prefix_text="""あン""" ) self.assertEqual(tokenizer.decode(A ) ,tokenizer.decode(A ) ) self.assertEqual(tokenizer.decode(A ) ,tokenizer.decode(A ) ) self.assertNotEqual(A ,A ) self.assertNotEqual(A ,A ) self.assertEqual(x_token_a[1] ,x_token_a[-1] ) # SEG token self.assertEqual(x_token_a[1] ,x_token_a[3] ) # SEG token @slow def __lowercase ( self : int ): '''simple docstring''' UpperCAmelCase__ : str = self.tokenizer_class.from_pretrained("""Tanrei/GPTSAN-japanese""" ) UpperCAmelCase__ : Optional[int] = [["武田信玄", "は、"], ["織田信長", "の配下の、"]] UpperCAmelCase__ : Tuple = tokenizer(A ,padding=A ) UpperCAmelCase__ : Optional[Any] = tokenizer.batch_encode_plus(A ,padding=A ) # fmt: off UpperCAmelCase__ : Optional[Any] = [[35_993, 8_640, 25_948, 35_998, 30_647, 35_675, 35_999, 35_999], [35_993, 10_382, 9_868, 35_998, 30_646, 9_459, 30_646, 35_675]] UpperCAmelCase__ : Optional[Any] = [[1, 1, 1, 0, 0, 0, 0, 0], [1, 1, 1, 0, 0, 0, 0, 0]] UpperCAmelCase__ : Optional[Any] = [[1, 1, 1, 1, 1, 1, 0, 0], [1, 1, 1, 1, 1, 1, 1, 1]] # fmt: on self.assertListEqual(x_token.input_ids ,A ) self.assertListEqual(x_token.token_type_ids ,A ) self.assertListEqual(x_token.attention_mask ,A ) self.assertListEqual(x_token_a.input_ids ,A ) self.assertListEqual(x_token_a.token_type_ids ,A ) self.assertListEqual(x_token_a.attention_mask ,A ) def __lowercase ( self : Optional[int] ): '''simple docstring''' # Intentionally convert some words to accommodate character fluctuations unique to Japanese pass def __lowercase ( self : Optional[int] ): '''simple docstring''' # tokenizer has no padding token pass
65
import argparse import json from typing import List from ltp import LTP from transformers.models.bert.tokenization_bert import BertTokenizer def lowercase_ ( __snake_case : Optional[Any] ) -> List[Any]: '''simple docstring''' if ( (cp >= 0X4_e00 and cp <= 0X9_fff) or (cp >= 0X3_400 and cp <= 0X4_dbf) # or (cp >= 0X20_000 and cp <= 0X2a_6df) # or (cp >= 0X2a_700 and cp <= 0X2b_73f) # or (cp >= 0X2b_740 and cp <= 0X2b_81f) # or (cp >= 0X2b_820 and cp <= 0X2c_eaf) # or (cp >= 0Xf_900 and cp <= 0Xf_aff) or (cp >= 0X2f_800 and cp <= 0X2f_a1f) # ): # return True return False def lowercase_ ( __snake_case : str ) -> Tuple: '''simple docstring''' for char in word: snake_case__ :Dict = ord(__snake_case ) if not _is_chinese_char(__snake_case ): return 0 return 1 def lowercase_ ( __snake_case : List[str] ) -> Any: '''simple docstring''' snake_case__ :Optional[int] = set() for token in tokens: snake_case__ :Dict = len(__snake_case ) > 1 and is_chinese(__snake_case ) if chinese_word: word_set.add(__snake_case ) snake_case__ :Tuple = list(__snake_case ) return word_list def lowercase_ ( __snake_case : List[str] , __snake_case : set() ) -> int: '''simple docstring''' if not chinese_word_set: return bert_tokens snake_case__ :List[str] = max([len(__snake_case ) for w in chinese_word_set] ) snake_case__ :str = bert_tokens snake_case__ , snake_case__ :Dict = 0, len(__snake_case ) while start < end: snake_case__ :Any = True if is_chinese(bert_word[start] ): snake_case__ :Union[str, Any] = min(end - start , __snake_case ) for i in range(__snake_case , 1 , -1 ): snake_case__ :str = "".join(bert_word[start : start + i] ) if whole_word in chinese_word_set: for j in range(start + 1 , start + i ): snake_case__ :int = "##" + bert_word[j] snake_case__ :str = start + i snake_case__ :Union[str, Any] = False break if single_word: start += 1 return bert_word def lowercase_ ( __snake_case : List[str] , __snake_case : LTP , __snake_case : BertTokenizer ) -> List[Any]: '''simple docstring''' snake_case__ :Union[str, Any] = [] for i in range(0 , len(__snake_case ) , 1_00 ): snake_case__ :Any = ltp_tokenizer.pipeline(lines[i : i + 1_00] , tasks=["cws"] ).cws snake_case__ :Optional[Any] = [get_chinese_word(__snake_case ) for r in res] ltp_res.extend(__snake_case ) assert len(__snake_case ) == len(__snake_case ) snake_case__ :int = [] for i in range(0 , len(__snake_case ) , 1_00 ): snake_case__ :str = bert_tokenizer(lines[i : i + 1_00] , add_special_tokens=__snake_case , truncation=__snake_case , max_length=5_12 ) bert_res.extend(res["input_ids"] ) assert len(__snake_case ) == len(__snake_case ) snake_case__ :Union[str, Any] = [] for input_ids, chinese_word in zip(__snake_case , __snake_case ): snake_case__ :Dict = [] for id in input_ids: snake_case__ :Tuple = bert_tokenizer._convert_id_to_token(__snake_case ) input_tokens.append(__snake_case ) snake_case__ :Tuple = add_sub_symbol(__snake_case , __snake_case ) snake_case__ :Dict = [] # We only save pos of chinese subwords start with ##, which mean is part of a whole word. for i, token in enumerate(__snake_case ): if token[:2] == "##": snake_case__ :Optional[Any] = token[2:] # save chinese tokens' pos if len(__snake_case ) == 1 and _is_chinese_char(ord(__snake_case ) ): ref_id.append(__snake_case ) ref_ids.append(__snake_case ) assert len(__snake_case ) == len(__snake_case ) return ref_ids def lowercase_ ( __snake_case : List[str] ) -> Optional[Any]: '''simple docstring''' with open(args.file_name , "r" , encoding="utf-8" ) as f: snake_case__ :Optional[int] = f.readlines() snake_case__ :Union[str, Any] = [line.strip() for line in data if len(__snake_case ) > 0 and not line.isspace()] # avoid delimiter like '\u2029' snake_case__ :Optional[int] = LTP(args.ltp ) # faster in GPU device snake_case__ :Optional[int] = BertTokenizer.from_pretrained(args.bert ) snake_case__ :str = prepare_ref(__snake_case , __snake_case , __snake_case ) with open(args.save_path , "w" , encoding="utf-8" ) as f: snake_case__ :List[str] = [json.dumps(__snake_case ) + "\n" for ref in ref_ids] f.writelines(__snake_case ) if __name__ == "__main__": __UpperCAmelCase : Optional[int] = argparse.ArgumentParser(description="prepare_chinese_ref") parser.add_argument( "--file_name", required=False, type=str, default="./resources/chinese-demo.txt", help="file need process, same as training data in lm", ) parser.add_argument( "--ltp", required=False, type=str, default="./resources/ltp", help="resources for LTP tokenizer, usually a path", ) parser.add_argument( "--bert", required=False, type=str, default="./resources/robert", help="resources for Bert tokenizer", ) parser.add_argument( "--save_path", required=False, type=str, default="./resources/ref.txt", help="path to save res", ) __UpperCAmelCase : str = parser.parse_args() main(args)
241
0
from ..utils import DummyObject, requires_backends class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[int] = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Tuple = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : int = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[int]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Any = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Dict: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Optional[Any] = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : Union[str, Any] = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Any: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[Any] = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Union[str, Any]: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[str]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : str = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Optional[Any]: requires_backends(cls ,["""flax"""] ) class lowerCAmelCase_( metaclass=SCREAMING_SNAKE_CASE_ ): '''simple docstring''' __lowercase : List[str] = ['''flax'''] def __init__( self ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> Tuple: requires_backends(self ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> List[Any]: requires_backends(cls ,["""flax"""] ) @classmethod def UpperCAmelCase_ ( cls ,*__UpperCAmelCase ,**__UpperCAmelCase ) -> int: requires_backends(cls ,["""flax"""] )
720
'''simple docstring''' from typing import List, Optional, Union import torch from transformers import ( XLMRobertaTokenizer, ) from ...models import UNetaDConditionModel, VQModel from ...pipelines import DiffusionPipeline from ...pipelines.pipeline_utils import ImagePipelineOutput from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import ( is_accelerate_available, is_accelerate_version, logging, randn_tensor, replace_example_docstring, ) from .text_encoder import MultilingualCLIP _lowerCAmelCase = logging.get_logger(__name__) # pylint: disable=invalid-name _lowerCAmelCase = ''' Examples: ```py >>> from diffusers import KandinskyPipeline, KandinskyPriorPipeline >>> import torch >>> pipe_prior = KandinskyPriorPipeline.from_pretrained("kandinsky-community/Kandinsky-2-1-prior") >>> pipe_prior.to("cuda") >>> prompt = "red cat, 4k photo" >>> out = pipe_prior(prompt) >>> image_emb = out.image_embeds >>> negative_image_emb = out.negative_image_embeds >>> pipe = KandinskyPipeline.from_pretrained("kandinsky-community/kandinsky-2-1") >>> pipe.to("cuda") >>> image = pipe( ... prompt, ... image_embeds=image_emb, ... negative_image_embeds=negative_image_emb, ... height=768, ... width=768, ... num_inference_steps=100, ... ).images >>> image[0].save("cat.png") ``` ''' def _SCREAMING_SNAKE_CASE ( UpperCamelCase , UpperCamelCase , UpperCamelCase=8 ): """simple docstring""" lowerCAmelCase__ : Any = h // scale_factor**2 if h % scale_factor**2 != 0: new_h += 1 lowerCAmelCase__ : List[str] = w // scale_factor**2 if w % scale_factor**2 != 0: new_w += 1 return new_h * scale_factor, new_w * scale_factor class lowerCAmelCase_( SCREAMING_SNAKE_CASE_ ): '''simple docstring''' def __init__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,) -> int: super().__init__() self.register_modules( text_encoder=__UpperCAmelCase ,tokenizer=__UpperCAmelCase ,unet=__UpperCAmelCase ,scheduler=__UpperCAmelCase ,movq=__UpperCAmelCase ,) lowerCAmelCase__ : int = 2 ** (len(self.movq.config.block_out_channels ) - 1) def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) -> Optional[int]: if latents is None: lowerCAmelCase__ : Optional[int] = randn_tensor(__UpperCAmelCase ,generator=__UpperCAmelCase ,device=__UpperCAmelCase ,dtype=__UpperCAmelCase ) else: if latents.shape != shape: raise ValueError(F"""Unexpected latents shape, got {latents.shape}, expected {shape}""" ) lowerCAmelCase__ : int = latents.to(__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = latents * scheduler.init_noise_sigma return latents def UpperCAmelCase_ ( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase=None ,) -> Any: lowerCAmelCase__ : List[str] = len(__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ) else 1 # get prompt text embeddings lowerCAmelCase__ : Any = self.tokenizer( __UpperCAmelCase ,padding="""max_length""" ,truncation=__UpperCAmelCase ,max_length=77 ,return_attention_mask=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors="""pt""" ,) lowerCAmelCase__ : Tuple = text_inputs.input_ids lowerCAmelCase__ : Optional[int] = self.tokenizer(__UpperCAmelCase ,padding="""longest""" ,return_tensors="""pt""" ).input_ids if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Optional[int] = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1] ) logger.warning( """The following part of your input was truncated because CLIP can only handle sequences up to""" F""" {self.tokenizer.model_max_length} tokens: {removed_text}""" ) lowerCAmelCase__ : List[Any] = text_input_ids.to(__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = text_inputs.attention_mask.to(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : Any = self.text_encoder( input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = prompt_embeds.repeat_interleave(__UpperCAmelCase ,dim=0 ) lowerCAmelCase__ : Optional[int] = text_encoder_hidden_states.repeat_interleave(__UpperCAmelCase ,dim=0 ) lowerCAmelCase__ : Union[str, Any] = text_mask.repeat_interleave(__UpperCAmelCase ,dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ : List[str] if negative_prompt is None: lowerCAmelCase__ : Tuple = [""""""] * batch_size elif type(__UpperCAmelCase ) is not type(__UpperCAmelCase ): raise TypeError( F"""`negative_prompt` should be the same type to `prompt`, but got {type(__UpperCAmelCase )} !=""" F""" {type(__UpperCAmelCase )}.""" ) elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Union[str, Any] = [negative_prompt] elif batch_size != len(__UpperCAmelCase ): raise ValueError( F"""`negative_prompt`: {negative_prompt} has batch size {len(__UpperCAmelCase )}, but `prompt`:""" F""" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches""" """ the batch size of `prompt`.""" ) else: lowerCAmelCase__ : int = negative_prompt lowerCAmelCase__ : List[str] = self.tokenizer( __UpperCAmelCase ,padding="""max_length""" ,max_length=77 ,truncation=__UpperCAmelCase ,return_attention_mask=__UpperCAmelCase ,add_special_tokens=__UpperCAmelCase ,return_tensors="""pt""" ,) lowerCAmelCase__ : Dict = uncond_input.input_ids.to(__UpperCAmelCase ) lowerCAmelCase__ : Union[str, Any] = uncond_input.attention_mask.to(__UpperCAmelCase ) lowerCAmelCase__ , lowerCAmelCase__ : int = self.text_encoder( input_ids=__UpperCAmelCase ,attention_mask=__UpperCAmelCase ) # duplicate unconditional embeddings for each generation per prompt, using mps friendly method lowerCAmelCase__ : Optional[int] = negative_prompt_embeds.shape[1] lowerCAmelCase__ : Optional[Any] = negative_prompt_embeds.repeat(1 ,__UpperCAmelCase ) lowerCAmelCase__ : List[Any] = negative_prompt_embeds.view(batch_size * num_images_per_prompt ,__UpperCAmelCase ) lowerCAmelCase__ : Optional[int] = uncond_text_encoder_hidden_states.shape[1] lowerCAmelCase__ : Tuple = uncond_text_encoder_hidden_states.repeat(1 ,__UpperCAmelCase ,1 ) lowerCAmelCase__ : Optional[int] = uncond_text_encoder_hidden_states.view( batch_size * num_images_per_prompt ,__UpperCAmelCase ,-1 ) lowerCAmelCase__ : List[str] = uncond_text_mask.repeat_interleave(__UpperCAmelCase ,dim=0 ) # done duplicates # For classifier free guidance, we need to do two forward passes. # Here we concatenate the unconditional and text embeddings into a single batch # to avoid doing two forward passes lowerCAmelCase__ : Union[str, Any] = torch.cat([negative_prompt_embeds, prompt_embeds] ) lowerCAmelCase__ : Tuple = torch.cat([uncond_text_encoder_hidden_states, text_encoder_hidden_states] ) lowerCAmelCase__ : Tuple = torch.cat([uncond_text_mask, text_mask] ) return prompt_embeds, text_encoder_hidden_states, text_mask def UpperCAmelCase_ ( self ,__UpperCAmelCase=0 ) -> Optional[Any]: if is_accelerate_available(): from accelerate import cpu_offload else: raise ImportError("""Please install accelerate via `pip install accelerate`""" ) lowerCAmelCase__ : Any = torch.device(F"""cuda:{gpu_id}""" ) lowerCAmelCase__ : Union[str, Any] = [ self.unet, self.text_encoder, self.movq, ] for cpu_offloaded_model in models: if cpu_offloaded_model is not None: cpu_offload(__UpperCAmelCase ,__UpperCAmelCase ) def UpperCAmelCase_ ( self ,__UpperCAmelCase=0 ) -> Optional[int]: if is_accelerate_available() and is_accelerate_version(""">=""" ,"""0.17.0.dev0""" ): from accelerate import cpu_offload_with_hook else: raise ImportError("""`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.""" ) lowerCAmelCase__ : List[str] = torch.device(F"""cuda:{gpu_id}""" ) if self.device.type != "cpu": self.to("""cpu""" ,silence_dtype_warnings=__UpperCAmelCase ) torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist) lowerCAmelCase__ : Optional[int] = None for cpu_offloaded_model in [self.text_encoder, self.unet, self.movq]: lowerCAmelCase__ , lowerCAmelCase__ : Union[str, Any] = cpu_offload_with_hook(__UpperCAmelCase ,__UpperCAmelCase ,prev_module_hook=__UpperCAmelCase ) if self.safety_checker is not None: lowerCAmelCase__ , lowerCAmelCase__ : Dict = cpu_offload_with_hook(self.safety_checker ,__UpperCAmelCase ,prev_module_hook=__UpperCAmelCase ) # We'll offload the last model manually. lowerCAmelCase__ : Union[str, Any] = hook @property # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device def UpperCAmelCase_ ( self ) -> Optional[int]: if not hasattr(self.unet ,"""_hf_hook""" ): return self.device for module in self.unet.modules(): if ( hasattr(__UpperCAmelCase ,"""_hf_hook""" ) and hasattr(module._hf_hook ,"""execution_device""" ) and module._hf_hook.execution_device is not None ): return torch.device(module._hf_hook.execution_device ) return self.device @torch.no_grad() @replace_example_docstring(__UpperCAmelCase ) def __call__( self ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase = None ,__UpperCAmelCase = 512 ,__UpperCAmelCase = 512 ,__UpperCAmelCase = 100 ,__UpperCAmelCase = 4.0 ,__UpperCAmelCase = 1 ,__UpperCAmelCase = None ,__UpperCAmelCase = None ,__UpperCAmelCase = "pil" ,__UpperCAmelCase = True ,) -> Tuple: if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Dict = 1 elif isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Dict = len(__UpperCAmelCase ) else: raise ValueError(F"""`prompt` has to be of type `str` or `list` but is {type(__UpperCAmelCase )}""" ) lowerCAmelCase__ : str = self._execution_device lowerCAmelCase__ : List[Any] = batch_size * num_images_per_prompt lowerCAmelCase__ : int = guidance_scale > 1.0 lowerCAmelCase__ , lowerCAmelCase__ , lowerCAmelCase__ : Any = self._encode_prompt( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : List[str] = torch.cat(__UpperCAmelCase ,dim=0 ) if isinstance(__UpperCAmelCase ,__UpperCAmelCase ): lowerCAmelCase__ : Optional[Any] = torch.cat(__UpperCAmelCase ,dim=0 ) if do_classifier_free_guidance: lowerCAmelCase__ : Union[str, Any] = image_embeds.repeat_interleave(__UpperCAmelCase ,dim=0 ) lowerCAmelCase__ : Optional[Any] = negative_image_embeds.repeat_interleave(__UpperCAmelCase ,dim=0 ) lowerCAmelCase__ : Any = torch.cat([negative_image_embeds, image_embeds] ,dim=0 ).to( dtype=prompt_embeds.dtype ,device=__UpperCAmelCase ) self.scheduler.set_timesteps(__UpperCAmelCase ,device=__UpperCAmelCase ) lowerCAmelCase__ : Optional[Any] = self.scheduler.timesteps lowerCAmelCase__ : Dict = self.unet.config.in_channels lowerCAmelCase__ , lowerCAmelCase__ : Any = get_new_h_w(__UpperCAmelCase ,__UpperCAmelCase ,self.movq_scale_factor ) # create initial latent lowerCAmelCase__ : Dict = self.prepare_latents( (batch_size, num_channels_latents, height, width) ,text_encoder_hidden_states.dtype ,__UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,self.scheduler ,) for i, t in enumerate(self.progress_bar(__UpperCAmelCase ) ): # expand the latents if we are doing classifier free guidance lowerCAmelCase__ : Optional[int] = torch.cat([latents] * 2 ) if do_classifier_free_guidance else latents lowerCAmelCase__ : Optional[Any] = {"""text_embeds""": prompt_embeds, """image_embeds""": image_embeds} lowerCAmelCase__ : Any = self.unet( sample=__UpperCAmelCase ,timestep=__UpperCAmelCase ,encoder_hidden_states=__UpperCAmelCase ,added_cond_kwargs=__UpperCAmelCase ,return_dict=__UpperCAmelCase ,)[0] if do_classifier_free_guidance: lowerCAmelCase__ , lowerCAmelCase__ : Any = noise_pred.split(latents.shape[1] ,dim=1 ) lowerCAmelCase__ , lowerCAmelCase__ : List[Any] = noise_pred.chunk(2 ) lowerCAmelCase__ , lowerCAmelCase__ : int = variance_pred.chunk(2 ) lowerCAmelCase__ : List[str] = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) lowerCAmelCase__ : str = torch.cat([noise_pred, variance_pred_text] ,dim=1 ) if not ( hasattr(self.scheduler.config ,"""variance_type""" ) and self.scheduler.config.variance_type in ["learned", "learned_range"] ): lowerCAmelCase__ , lowerCAmelCase__ : Any = noise_pred.split(latents.shape[1] ,dim=1 ) # compute the previous noisy sample x_t -> x_t-1 lowerCAmelCase__ : Optional[int] = self.scheduler.step( __UpperCAmelCase ,__UpperCAmelCase ,__UpperCAmelCase ,generator=__UpperCAmelCase ,).prev_sample # post-processing lowerCAmelCase__ : int = self.movq.decode(__UpperCAmelCase ,force_not_quantize=__UpperCAmelCase )["""sample"""] if output_type not in ["pt", "np", "pil"]: raise ValueError(F"""Only the output types `pt`, `pil` and `np` are supported not output_type={output_type}""" ) if output_type in ["np", "pil"]: lowerCAmelCase__ : Tuple = image * 0.5 + 0.5 lowerCAmelCase__ : str = image.clamp(0 ,1 ) lowerCAmelCase__ : List[Any] = image.cpu().permute(0 ,2 ,3 ,1 ).float().numpy() if output_type == "pil": lowerCAmelCase__ : int = self.numpy_to_pil(__UpperCAmelCase ) if not return_dict: return (image,) return ImagePipelineOutput(images=__UpperCAmelCase )
160
0
from math import acos, sin from typing import List, Tuple, Union import numpy as np import torch from PIL import Image from ...models import AutoencoderKL, UNetaDConditionModel from ...schedulers import DDIMScheduler, DDPMScheduler from ...utils import randn_tensor from ..pipeline_utils import AudioPipelineOutput, BaseOutput, DiffusionPipeline, ImagePipelineOutput from .mel import Mel class __snake_case ( __lowercase ): _a = ["vqvae"] def __init__( self : List[str] , A_ : AutoencoderKL , A_ : UNetaDConditionModel , A_ : Mel , A_ : Union[DDIMScheduler, DDPMScheduler] , ): super().__init__() self.register_modules(unet=SCREAMING_SNAKE_CASE_ , scheduler=SCREAMING_SNAKE_CASE_ , mel=SCREAMING_SNAKE_CASE_ , vqvae=SCREAMING_SNAKE_CASE_) def UpperCAmelCase__ ( self : Optional[Any]): return 5_0 if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_) else 1_0_0_0 @torch.no_grad() def __call__( self : Optional[int] , A_ : int = 1 , A_ : str = None , A_ : np.ndarray = None , A_ : int = 0 , A_ : int = 0 , A_ : int = None , A_ : torch.Generator = None , A_ : float = 0 , A_ : float = 0 , A_ : torch.Generator = None , A_ : float = 0 , A_ : torch.Tensor = None , A_ : torch.Tensor = None , A_ : Optional[Any]=True , ): lowerCAmelCase_ : int = steps or self.get_default_steps() self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : Dict = step_generator or generator # For backwards compatibility if type(self.unet.config.sample_size) == int: lowerCAmelCase_ : List[str] = (self.unet.config.sample_size, self.unet.config.sample_size) if noise is None: lowerCAmelCase_ : Dict = randn_tensor( ( batch_size, self.unet.config.in_channels, self.unet.config.sample_size[0], self.unet.config.sample_size[1], ) , generator=SCREAMING_SNAKE_CASE_ , device=self.device , ) lowerCAmelCase_ : Any = noise lowerCAmelCase_ : Optional[Any] = None if audio_file is not None or raw_audio is not None: self.mel.load_audio(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : Any = self.mel.audio_slice_to_image(SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : List[Any] = np.frombuffer(input_image.tobytes() , dtype='''uint8''').reshape( (input_image.height, input_image.width)) lowerCAmelCase_ : Optional[Any] = (input_image / 2_5_5) * 2 - 1 lowerCAmelCase_ : Dict = torch.tensor(input_image[np.newaxis, :, :] , dtype=torch.float).to(self.device) if self.vqvae is not None: lowerCAmelCase_ : List[Any] = self.vqvae.encode(torch.unsqueeze(SCREAMING_SNAKE_CASE_ , 0)).latent_dist.sample( generator=SCREAMING_SNAKE_CASE_)[0] lowerCAmelCase_ : int = self.vqvae.config.scaling_factor * input_images if start_step > 0: lowerCAmelCase_ : Any = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , self.scheduler.timesteps[start_step - 1]) lowerCAmelCase_ : str = ( self.unet.config.sample_size[1] * self.mel.get_sample_rate() / self.mel.x_res / self.mel.hop_length ) lowerCAmelCase_ : List[Any] = int(mask_start_secs * pixels_per_second) lowerCAmelCase_ : str = int(mask_end_secs * pixels_per_second) lowerCAmelCase_ : List[Any] = self.scheduler.add_noise(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , torch.tensor(self.scheduler.timesteps[start_step:])) for step, t in enumerate(self.progress_bar(self.scheduler.timesteps[start_step:])): if isinstance(self.unet , SCREAMING_SNAKE_CASE_): lowerCAmelCase_ : Dict = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)['''sample'''] else: lowerCAmelCase_ : Union[str, Any] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)['''sample'''] if isinstance(self.scheduler , SCREAMING_SNAKE_CASE_): lowerCAmelCase_ : str = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , sample=SCREAMING_SNAKE_CASE_ , eta=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )['''prev_sample'''] else: lowerCAmelCase_ : Dict = self.scheduler.step( model_output=SCREAMING_SNAKE_CASE_ , timestep=SCREAMING_SNAKE_CASE_ , sample=SCREAMING_SNAKE_CASE_ , generator=SCREAMING_SNAKE_CASE_ , )['''prev_sample'''] if mask is not None: if mask_start > 0: lowerCAmelCase_ : Optional[Any] = mask[:, step, :, :mask_start] if mask_end > 0: lowerCAmelCase_ : Dict = mask[:, step, :, -mask_end:] if self.vqvae is not None: # 0.18215 was scaling factor used in training to ensure unit variance lowerCAmelCase_ : Optional[int] = 1 / self.vqvae.config.scaling_factor * images lowerCAmelCase_ : Optional[int] = self.vqvae.decode(SCREAMING_SNAKE_CASE_)['''sample'''] lowerCAmelCase_ : Optional[int] = (images / 2 + 0.5).clamp(0 , 1) lowerCAmelCase_ : Optional[Any] = images.cpu().permute(0 , 2 , 3 , 1).numpy() lowerCAmelCase_ : Optional[int] = (images * 2_5_5).round().astype('''uint8''') lowerCAmelCase_ : int = list( (Image.fromarray(_[:, :, 0]) for _ in images) if images.shape[3] == 1 else (Image.fromarray(SCREAMING_SNAKE_CASE_ , mode='''RGB''').convert('''L''') for _ in images)) lowerCAmelCase_ : List[Any] = [self.mel.image_to_audio(SCREAMING_SNAKE_CASE_) for _ in images] if not return_dict: return images, (self.mel.get_sample_rate(), audios) return BaseOutput(**AudioPipelineOutput(np.array(SCREAMING_SNAKE_CASE_)[:, np.newaxis, :]) , **ImagePipelineOutput(SCREAMING_SNAKE_CASE_)) @torch.no_grad() def UpperCAmelCase__ ( self : List[str] , A_ : List[Image.Image] , A_ : int = 5_0): assert isinstance(self.scheduler , SCREAMING_SNAKE_CASE_) self.scheduler.set_timesteps(SCREAMING_SNAKE_CASE_) lowerCAmelCase_ : Optional[Any] = np.array( [np.frombuffer(image.tobytes() , dtype='''uint8''').reshape((1, image.height, image.width)) for image in images]) lowerCAmelCase_ : Any = (sample / 2_5_5) * 2 - 1 lowerCAmelCase_ : Optional[Any] = torch.Tensor(SCREAMING_SNAKE_CASE_).to(self.device) for t in self.progress_bar(torch.flip(self.scheduler.timesteps , (0,))): lowerCAmelCase_ : str = t - self.scheduler.config.num_train_timesteps // self.scheduler.num_inference_steps lowerCAmelCase_ : int = self.scheduler.alphas_cumprod[t] lowerCAmelCase_ : int = ( self.scheduler.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.scheduler.final_alpha_cumprod ) lowerCAmelCase_ : List[str] = 1 - alpha_prod_t lowerCAmelCase_ : Optional[int] = self.unet(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_)['''sample'''] lowerCAmelCase_ : Optional[Any] = (1 - alpha_prod_t_prev) ** 0.5 * model_output lowerCAmelCase_ : Optional[int] = (sample - pred_sample_direction) * alpha_prod_t_prev ** (-0.5) lowerCAmelCase_ : Any = sample * alpha_prod_t ** 0.5 + beta_prod_t ** 0.5 * model_output return sample @staticmethod def UpperCAmelCase__ ( A_ : torch.Tensor , A_ : torch.Tensor , A_ : float): lowerCAmelCase_ : int = acos(torch.dot(torch.flatten(SCREAMING_SNAKE_CASE_) , torch.flatten(SCREAMING_SNAKE_CASE_)) / torch.norm(SCREAMING_SNAKE_CASE_) / torch.norm(SCREAMING_SNAKE_CASE_)) return sin((1 - alpha) * theta) * xa / sin(SCREAMING_SNAKE_CASE_) + sin(alpha * theta) * xa / sin(SCREAMING_SNAKE_CASE_)
171
'''simple docstring''' import json import os import shutil import tempfile import unittest from multiprocessing import get_context from pathlib import Path import datasets import numpy as np from datasets import load_dataset from parameterized import parameterized from transformers import AutoProcessor from transformers.models.wavaveca import WavaVecaCTCTokenizer, WavaVecaFeatureExtractor from transformers.models.wavaveca.tokenization_wavaveca import VOCAB_FILES_NAMES from transformers.testing_utils import require_pyctcdecode, require_torch, require_torchaudio, slow from transformers.utils import FEATURE_EXTRACTOR_NAME, is_pyctcdecode_available, is_torch_available from ..wavaveca.test_feature_extraction_wavaveca import floats_list if is_pyctcdecode_available(): from huggingface_hub import snapshot_download from pyctcdecode import BeamSearchDecoderCTC from transformers.models.wavaveca_with_lm import WavaVecaProcessorWithLM from transformers.models.wavaveca_with_lm.processing_wavaveca_with_lm import WavaVecaDecoderWithLMOutput if is_torch_available(): from transformers import WavaVecaForCTC @require_pyctcdecode class _lowercase ( unittest.TestCase ): def a ( self : int ) -> List[str]: __snake_case = '| <pad> <unk> <s> </s> a b c d e f g h i j k'.split() __snake_case = dict(zip(SCREAMING_SNAKE_CASE_ , range(len(SCREAMING_SNAKE_CASE_ ) ) ) ) __snake_case = { 'unk_token': '<unk>', 'bos_token': '<s>', 'eos_token': '</s>', } __snake_case = { 'feature_size': 1, 'padding_value': 0.0, 'sampling_rate': 1_6000, 'return_attention_mask': False, 'do_normalize': True, } __snake_case = tempfile.mkdtemp() __snake_case = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES['vocab_file'] ) __snake_case = os.path.join(self.tmpdirname , SCREAMING_SNAKE_CASE_ ) with open(self.vocab_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) with open(self.feature_extraction_file , 'w' , encoding='utf-8' ) as fp: fp.write(json.dumps(SCREAMING_SNAKE_CASE_ ) + '\n' ) # load decoder from hub __snake_case = 'hf-internal-testing/ngram-beam-search-decoder' def a ( self : Optional[int] , **SCREAMING_SNAKE_CASE_ : Tuple ) -> Dict: __snake_case = self.add_kwargs_tokens_map.copy() kwargs.update(SCREAMING_SNAKE_CASE_ ) return WavaVecaCTCTokenizer.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] , **SCREAMING_SNAKE_CASE_ : Any ) -> Optional[Any]: return WavaVecaFeatureExtractor.from_pretrained(self.tmpdirname , **SCREAMING_SNAKE_CASE_ ) def a ( self : Union[str, Any] , **SCREAMING_SNAKE_CASE_ : List[Any] ) -> Tuple: return BeamSearchDecoderCTC.load_from_hf_hub(self.decoder_name , **SCREAMING_SNAKE_CASE_ ) def a ( self : int ) -> Dict: shutil.rmtree(self.tmpdirname ) def a ( self : int ) -> Tuple: __snake_case = self.get_tokenizer() __snake_case = self.get_feature_extractor() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) processor.save_pretrained(self.tmpdirname ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(self.tmpdirname ) # tokenizer self.assertEqual(processor.tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.tokenizer , SCREAMING_SNAKE_CASE_ ) # feature extractor self.assertEqual(processor.feature_extractor.to_json_string() , feature_extractor.to_json_string() ) self.assertIsInstance(processor.feature_extractor , SCREAMING_SNAKE_CASE_ ) # decoder self.assertEqual(processor.decoder._alphabet.labels , decoder._alphabet.labels ) self.assertEqual( processor.decoder.model_container[decoder._model_key]._unigram_set , decoder.model_container[decoder._model_key]._unigram_set , ) self.assertIsInstance(processor.decoder , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Union[str, Any]: __snake_case = WavaVecaProcessorWithLM( tokenizer=self.get_tokenizer() , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) processor.save_pretrained(self.tmpdirname ) # make sure that error is thrown when decoder alphabet doesn't match __snake_case = WavaVecaProcessorWithLM.from_pretrained( self.tmpdirname , alpha=5.0 , beta=3.0 , score_boundary=-7.0 , unk_score_offset=3 ) # decoder self.assertEqual(processor.language_model.alpha , 5.0 ) self.assertEqual(processor.language_model.beta , 3.0 ) self.assertEqual(processor.language_model.score_boundary , -7.0 ) self.assertEqual(processor.language_model.unk_score_offset , 3 ) def a ( self : str ) -> Tuple: __snake_case = self.get_tokenizer() # add token to trigger raise tokenizer.add_tokens(['xx'] ) with self.assertRaisesRegex(SCREAMING_SNAKE_CASE_ , 'include' ): WavaVecaProcessorWithLM( tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=self.get_feature_extractor() , decoder=self.get_decoder() ) def a ( self : List[str] ) -> List[str]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = floats_list((3, 1000) ) __snake_case = feature_extractor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_feat_extract.keys(): self.assertAlmostEqual(input_feat_extract[key].sum() , input_processor[key].sum() , delta=1e-2 ) def a ( self : Tuple ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = 'This is a test string' __snake_case = processor(text=SCREAMING_SNAKE_CASE_ ) __snake_case = tokenizer(SCREAMING_SNAKE_CASE_ ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def a ( self : Any , SCREAMING_SNAKE_CASE_ : Union[str, Any]=(2, 10, 16) , SCREAMING_SNAKE_CASE_ : Dict=77 ) -> Dict: np.random.seed(SCREAMING_SNAKE_CASE_ ) return np.random.rand(*SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits(shape=(10, 16) , seed=13 ) __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ ) __snake_case = decoder.decode_beams(SCREAMING_SNAKE_CASE_ )[0] self.assertEqual(decoded_decoder[0] , decoded_processor.text ) self.assertEqual('</s> <s> </s>' , decoded_processor.text ) self.assertEqual(decoded_decoder[-2] , decoded_processor.logit_score ) self.assertEqual(decoded_decoder[-1] , decoded_processor.lm_score ) @parameterized.expand([[None], ['fork'], ['spawn']] ) def a ( self : Optional[Any] , SCREAMING_SNAKE_CASE_ : List[str] ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() # note: pool should be instantiated *after* Wav2Vec2ProcessorWithLM. # otherwise, the LM won't be available to the pool's sub-processes. # manual logic used to allow parameterized test for both pool=None and pool=Pool(...) if pool_context is None: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ ) else: with get_context(SCREAMING_SNAKE_CASE_ ).Pool() as pool: __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as p: __snake_case = decoder.decode_beams_batch(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) __snake_case , __snake_case , __snake_case = [], [], [] for beams in decoded_beams: texts_decoder.append(beams[0][0] ) logit_scores_decoder.append(beams[0][-2] ) lm_scores_decoder.append(beams[0][-1] ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.text ) self.assertListEqual(['<s> <s> </s>', '<s> <s> <s>'] , decoded_processor.text ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.logit_score ) self.assertListEqual(SCREAMING_SNAKE_CASE_ , decoded_processor.lm_score ) def a ( self : Any ) -> Dict: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 15 __snake_case = -2_0.0 __snake_case = -4.0 __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , beam_width=SCREAMING_SNAKE_CASE_ , beam_prune_logp=SCREAMING_SNAKE_CASE_ , token_min_logp=SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] __snake_case = [d[0][2] for d in decoded_decoder_out] __snake_case = [d[0][3] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['</s> <s> <s>', '<s> <s> <s>'] , SCREAMING_SNAKE_CASE_ ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.logit_score ) ) self.assertTrue(np.allclose([-2_0.0_5_4, -1_8.4_4_7] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) self.assertTrue(np.array_equal(SCREAMING_SNAKE_CASE_ , decoded_processor_out.lm_score ) ) self.assertTrue(np.allclose([-1_5.5_5_4, -1_3.9_4_7_4] , SCREAMING_SNAKE_CASE_ , atol=1e-3 ) ) def a ( self : Optional[Any] ) -> Tuple: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) __snake_case = self._get_dummy_logits() __snake_case = 2.0 __snake_case = 5.0 __snake_case = -2_0.0 __snake_case = True __snake_case = processor.batch_decode( SCREAMING_SNAKE_CASE_ , alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) __snake_case = decoded_processor_out.text __snake_case = list(SCREAMING_SNAKE_CASE_ ) decoder.reset_params( alpha=SCREAMING_SNAKE_CASE_ , beta=SCREAMING_SNAKE_CASE_ , unk_score_offset=SCREAMING_SNAKE_CASE_ , lm_score_boundary=SCREAMING_SNAKE_CASE_ , ) with get_context('fork' ).Pool() as pool: __snake_case = decoder.decode_beams_batch( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __snake_case = [d[0][0] for d in decoded_decoder_out] self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) self.assertListEqual(['<s> </s> <s> </s> </s>', '</s> </s> <s> </s> </s>'] , SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] self.assertEqual(lm_model.alpha , 2.0 ) self.assertEqual(lm_model.beta , 5.0 ) self.assertEqual(lm_model.unk_score_offset , -2_0.0 ) self.assertEqual(lm_model.score_boundary , SCREAMING_SNAKE_CASE_ ) def a ( self : Optional[Any] ) -> List[str]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = ['alphabet.json', 'language_model'] downloaded_decoder_files.sort() expected_decoder_files.sort() # test that only decoder relevant files from # https://huggingface.co/hf-internal-testing/processor_with_lm/tree/main # are downloaded and none of the rest (e.g. README.md, ...) self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Dict ) -> Dict: __snake_case = snapshot_download('hf-internal-testing/processor_with_lm' ) __snake_case = WavaVecaProcessorWithLM.from_pretrained(SCREAMING_SNAKE_CASE_ ) __snake_case = processor.decoder.model_container[processor.decoder._model_key] __snake_case = Path(language_model._kenlm_model.path.decode('utf-8' ) ).parent.parent.absolute() __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) __snake_case = os.listdir(SCREAMING_SNAKE_CASE_ ) local_decoder_files.sort() expected_decoder_files.sort() # test that both decoder form hub and local files in cache are the same self.assertListEqual(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def a ( self : Any ) -> List[Any]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = AutoProcessor.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = floats_list((3, 1000) ) __snake_case = processor_wavaveca(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) __snake_case = processor_auto(SCREAMING_SNAKE_CASE_ , return_tensors='np' ) for key in input_wavaveca.keys(): self.assertAlmostEqual(input_wavaveca[key].sum() , input_auto[key].sum() , delta=1e-2 ) __snake_case = self._get_dummy_logits() __snake_case = processor_wavaveca.batch_decode(SCREAMING_SNAKE_CASE_ ) __snake_case = processor_auto.batch_decode(SCREAMING_SNAKE_CASE_ ) self.assertListEqual(decoded_wavaveca.text , decoded_auto.text ) def a ( self : Dict ) -> Optional[int]: __snake_case = self.get_feature_extractor() __snake_case = self.get_tokenizer() __snake_case = self.get_decoder() __snake_case = WavaVecaProcessorWithLM(tokenizer=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ , decoder=SCREAMING_SNAKE_CASE_ ) self.assertListEqual( processor.model_input_names , feature_extractor.model_input_names , msg='`processor` and `feature_extractor` model input names do not match' , ) @staticmethod def a ( SCREAMING_SNAKE_CASE_ : Optional[int] , SCREAMING_SNAKE_CASE_ : Optional[int] ) -> int: __snake_case = [d[key] for d in offsets] return retrieved_list def a ( self : Optional[int] ) -> str: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits()[0] __snake_case = processor.decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertEqual(' '.join(self.get_from_offsets(outputs['word_offsets'] , 'word' ) ) , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'] , 'end_offset' ) , [1, 3, 5] ) def a ( self : Optional[Any] ) -> Optional[int]: __snake_case = WavaVecaProcessorWithLM.from_pretrained('hf-internal-testing/processor_with_lm' ) __snake_case = self._get_dummy_logits() __snake_case = processor.batch_decode(SCREAMING_SNAKE_CASE_ , output_word_offsets=SCREAMING_SNAKE_CASE_ ) # check Wav2Vec2CTCTokenizerOutput keys for word self.assertEqual(len(outputs.keys() ) , 4 ) self.assertTrue('text' in outputs ) self.assertTrue('word_offsets' in outputs ) self.assertTrue(isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) self.assertListEqual( [' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) for o in outputs['word_offsets']] , outputs.text ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'word' ) , ['<s>', '<s>', '</s>'] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'start_offset' ) , [0, 2, 4] ) self.assertListEqual(self.get_from_offsets(outputs['word_offsets'][0] , 'end_offset' ) , [1, 3, 5] ) @slow @require_torch @require_torchaudio def a ( self : Optional[Any] ) -> Optional[Any]: import torch __snake_case = load_dataset('common_voice' , 'en' , split='train' , streaming=SCREAMING_SNAKE_CASE_ ) __snake_case = ds.cast_column('audio' , datasets.Audio(sampling_rate=1_6000 ) ) __snake_case = iter(SCREAMING_SNAKE_CASE_ ) __snake_case = next(SCREAMING_SNAKE_CASE_ ) __snake_case = AutoProcessor.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) __snake_case = WavaVecaForCTC.from_pretrained('patrickvonplaten/wav2vec2-base-100h-with-lm' ) # compare to filename `common_voice_en_100038.mp3` of dataset viewer on https://huggingface.co/datasets/common_voice/viewer/en/train __snake_case = processor(sample['audio']['array'] , return_tensors='pt' ).input_values with torch.no_grad(): __snake_case = model(SCREAMING_SNAKE_CASE_ ).logits.cpu().numpy() __snake_case = processor.decode(logits[0] , output_word_offsets=SCREAMING_SNAKE_CASE_ ) __snake_case = model.config.inputs_to_logits_ratio / processor.feature_extractor.sampling_rate __snake_case = [ { 'start_time': d['start_offset'] * time_offset, 'end_time': d['end_offset'] * time_offset, 'word': d['word'], } for d in output['word_offsets'] ] __snake_case = 'WHY DOES MILISANDRA LOOK LIKE SHE WANTS TO CONSUME JOHN SNOW ON THE RIVER AT THE WALL' # output words self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , SCREAMING_SNAKE_CASE_ ) self.assertEqual(' '.join(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'word' ) ) , output.text ) # output times __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'start_time' ) ) __snake_case = torch.tensor(self.get_from_offsets(SCREAMING_SNAKE_CASE_ , 'end_time' ) ) # fmt: off __snake_case = torch.tensor([1.4_1_9_9, 1.6_5_9_9, 2.2_5_9_9, 3.0, 3.2_4, 3.5_9_9_9, 3.7_9_9_9, 4.0_9_9_9, 4.2_6, 4.9_4, 5.2_8, 5.6_5_9_9, 5.7_8, 5.9_4, 6.3_2, 6.5_3_9_9, 6.6_5_9_9] ) __snake_case = torch.tensor([1.5_3_9_9, 1.8_9_9_9, 2.9, 3.1_6, 3.5_3_9_9, 3.7_2, 4.0_1_9_9, 4.1_7_9_9, 4.7_6, 5.1_5_9_9, 5.5_5_9_9, 5.6_9_9_9, 5.8_6, 6.1_9_9_9, 6.3_8, 6.6_1_9_9, 6.9_4] ) # fmt: on self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) ) self.assertTrue(torch.allclose(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , atol=0.0_1 ) )
56
0
from __future__ import annotations class lowerCamelCase__ : def __init__(self : Union[str, Any] , _snake_case : str , _snake_case : str ) -> Tuple: """simple docstring""" lowerCamelCase_ , lowerCamelCase_ : Tuple = text, pattern lowerCamelCase_ , lowerCamelCase_ : List[str] = len(_snake_case ), len(_snake_case ) def UpperCAmelCase_ (self : List[Any] , _snake_case : str ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if char == self.pattern[i]: return i return -1 def UpperCAmelCase_ (self : str , _snake_case : int ) -> int: """simple docstring""" for i in range(self.patLen - 1 , -1 , -1 ): if self.pattern[i] != self.text[current_pos + i]: return current_pos + i return -1 def UpperCAmelCase_ (self : Optional[int] ) -> list[int]: """simple docstring""" lowerCamelCase_ : Tuple = [] for i in range(self.textLen - self.patLen + 1 ): lowerCamelCase_ : Dict = self.mismatch_in_text(_snake_case ) if mismatch_index == -1: positions.append(_snake_case ) else: lowerCamelCase_ : Tuple = self.match_in_pattern(self.text[mismatch_index] ) lowerCamelCase_ : Optional[Any] = ( mismatch_index - match_index ) # shifting index lgtm [py/multiple-definition] return positions UpperCamelCase = '''ABAABA''' UpperCamelCase = '''AB''' UpperCamelCase = BoyerMooreSearch(text, pattern) UpperCamelCase = bms.bad_character_heuristic() if len(positions) == 0: print('''No match found''') else: print('''Pattern found in following positions: ''') print(positions)
144
from PIL import Image def _a ( lowerCamelCase__ , lowerCamelCase__ ) -> Image: def brightness(lowerCamelCase__ ) -> float: return 1_28 + level + (c - 1_28) if not -255.0 <= level <= 255.0: raise ValueError('level must be between -255.0 (black) and 255.0 (white)' ) return img.point(lowerCamelCase__ ) if __name__ == "__main__": # Load image with Image.open('''image_data/lena.jpg''') as img: # Change brightness to 100 UpperCamelCase = change_brightness(img, 1_0_0) brigt_img.save('''image_data/lena_brightness.png''', format='''png''')
144
1
"""simple docstring""" from __future__ import annotations def lowerCamelCase_( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) -> list: '''simple docstring''' _lowerCamelCase : Tuple = [] _lowerCamelCase, _lowerCamelCase : List[Any] = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) _lowerCamelCase : int = result + left + right return input_list def lowerCamelCase_( _lowerCamelCase ) -> list: '''simple docstring''' if len(_lowerCamelCase ) <= 1: return input_list _lowerCamelCase : Dict = list(_lowerCamelCase ) # iteration for two-way merging _lowerCamelCase : Dict = 2 while p <= len(_lowerCamelCase ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(_lowerCamelCase ) , _lowerCamelCase ): _lowerCamelCase : int = i _lowerCamelCase : Union[str, Any] = i + p - 1 _lowerCamelCase : Optional[Any] = (low + high + 1) // 2 _lowerCamelCase : Union[str, Any] = merge(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) # final merge of last two parts if p * 2 >= len(_lowerCamelCase ): _lowerCamelCase : Optional[int] = i _lowerCamelCase : Any = merge(_lowerCamelCase , 0 , _lowerCamelCase , len(_lowerCamelCase ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": _lowerCAmelCase : List[str] = input('''Enter numbers separated by a comma:\n''').strip() if user_input == "": _lowerCAmelCase : List[Any] = [] else: _lowerCAmelCase : str = [int(item.strip()) for item in user_input.split(''',''')] print(iter_merge_sort(unsorted))
46
from math import factorial UpperCAmelCase : Tuple = {str(d): factorial(d) for d in range(10)} def _A ( SCREAMING_SNAKE_CASE : int ): """simple docstring""" return sum(DIGIT_FACTORIAL[d] for d in str(SCREAMING_SNAKE_CASE ) ) def _A ( ): """simple docstring""" a__ : Any =7 * factorial(9 ) + 1 return sum(i for i in range(3 , SCREAMING_SNAKE_CASE ) if sum_of_digit_factorial(SCREAMING_SNAKE_CASE ) == i ) if __name__ == "__main__": print(F"""{solution() = }""")
563
0
"""simple docstring""" import argparse import gdown import numpy as np import torch from huggingface_hub import hf_hub_download from transformers import ( CLIPTokenizer, CLIPTokenizerFast, VideoMAEImageProcessor, XCLIPConfig, XCLIPModel, XCLIPProcessor, XCLIPTextConfig, XCLIPVisionConfig, ) def snake_case ( A__ ,A__ ): UpperCAmelCase_ : int = XCLIPTextConfig() # derive patch size from model name UpperCAmelCase_ : Optional[Any] = model_name.find("patch" ) UpperCAmelCase_ : Union[str, Any] = int(model_name[start_idx + len("patch" ) : start_idx + len("patch" ) + 2] ) UpperCAmelCase_ : Any = XCLIPVisionConfig(patch_size=A__ ,num_frames=A__ ) if "large" in model_name: UpperCAmelCase_ : List[str] = 7_68 UpperCAmelCase_ : Dict = 30_72 UpperCAmelCase_ : List[Any] = 12 UpperCAmelCase_ : str = 10_24 UpperCAmelCase_ : Dict = 40_96 UpperCAmelCase_ : List[str] = 16 UpperCAmelCase_ : List[Any] = 24 UpperCAmelCase_ : str = 7_68 UpperCAmelCase_ : Union[str, Any] = 30_72 if model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ : Dict = 3_36 UpperCAmelCase_ : Union[str, Any] = XCLIPConfig.from_text_vision_configs(A__ ,A__ ) if "large" in model_name: UpperCAmelCase_ : List[Any] = 7_68 return config def snake_case ( A__ ): # text encoder if name == "token_embedding.weight": UpperCAmelCase_ : str = name.replace("token_embedding.weight" ,"text_model.embeddings.token_embedding.weight" ) if name == "positional_embedding": UpperCAmelCase_ : str = name.replace("positional_embedding" ,"text_model.embeddings.position_embedding.weight" ) if "ln_1" in name: UpperCAmelCase_ : Dict = name.replace("ln_1" ,"layer_norm1" ) if "ln_2" in name: UpperCAmelCase_ : Optional[Any] = name.replace("ln_2" ,"layer_norm2" ) if "c_fc" in name: UpperCAmelCase_ : Optional[int] = name.replace("c_fc" ,"fc1" ) if "c_proj" in name: UpperCAmelCase_ : Optional[int] = name.replace("c_proj" ,"fc2" ) if name.startswith("transformer.resblocks" ): UpperCAmelCase_ : Union[str, Any] = name.replace("transformer.resblocks" ,"text_model.encoder.layers" ) if "attn.out_proj" in name and "message" not in name: UpperCAmelCase_ : str = name.replace("attn.out_proj" ,"self_attn.out_proj" ) if "ln_final" in name: UpperCAmelCase_ : str = name.replace("ln_final" ,"text_model.final_layer_norm" ) # visual encoder if name == "visual.class_embedding": UpperCAmelCase_ : Any = name.replace("visual.class_embedding" ,"vision_model.embeddings.class_embedding" ) if name == "visual.positional_embedding": UpperCAmelCase_ : Optional[int] = name.replace("visual.positional_embedding" ,"vision_model.embeddings.position_embedding.weight" ) if name.startswith("visual.transformer.resblocks" ): UpperCAmelCase_ : Tuple = name.replace("visual.transformer.resblocks" ,"vision_model.encoder.layers" ) if "visual.conv1" in name: UpperCAmelCase_ : List[str] = name.replace("visual.conv1" ,"vision_model.embeddings.patch_embedding" ) if "visual.ln_pre" in name: UpperCAmelCase_ : Tuple = name.replace("visual.ln_pre" ,"vision_model.pre_layernorm" ) if "visual.ln_post" in name: UpperCAmelCase_ : Dict = name.replace("visual.ln_post" ,"vision_model.post_layernorm" ) if "visual.proj" in name: UpperCAmelCase_ : Optional[int] = name.replace("visual.proj" ,"visual_projection.weight" ) if "text_projection" in name: UpperCAmelCase_ : Tuple = name.replace("text_projection" ,"text_projection.weight" ) # things on top if "prompts_visual_proj" in name: UpperCAmelCase_ : Optional[int] = name.replace("prompts_visual_proj" ,"prompts_visual_projection" ) if "prompts_visual_ln" in name: UpperCAmelCase_ : Union[str, Any] = name.replace("prompts_visual_ln" ,"prompts_visual_layernorm" ) # mit if name == "mit.positional_embedding": UpperCAmelCase_ : Dict = name.replace("positional" ,"position" ) if name.startswith("mit.resblocks" ): UpperCAmelCase_ : Dict = name.replace("mit.resblocks" ,"mit.encoder.layers" ) # prompts generator if name.startswith("prompts_generator.norm" ): UpperCAmelCase_ : List[Any] = name.replace("prompts_generator.norm" ,"prompts_generator.layernorm" ) return name def snake_case ( A__ ,A__ ): for key in orig_state_dict.copy().keys(): UpperCAmelCase_ : str = orig_state_dict.pop(A__ ) if "attn.in_proj" in key: UpperCAmelCase_ : str = key.split("." ) if key.startswith("visual" ): UpperCAmelCase_ : List[str] = key_split[3] UpperCAmelCase_ : Any = config.vision_config.hidden_size if "message_attn" in key: if "weight" in key: UpperCAmelCase_ : Optional[int] = val[ :dim, : ] UpperCAmelCase_ : Union[str, Any] = val[ dim : dim * 2, : ] UpperCAmelCase_ : Dict = val[ -dim:, : ] else: UpperCAmelCase_ : Optional[Any] = val[ :dim ] UpperCAmelCase_ : str = val[ dim : dim * 2 ] UpperCAmelCase_ : str = val[ -dim: ] else: if "weight" in key: UpperCAmelCase_ : str = val[ :dim, : ] UpperCAmelCase_ : Any = val[ dim : dim * 2, : ] UpperCAmelCase_ : str = val[ -dim:, : ] else: UpperCAmelCase_ : Any = val[:dim] UpperCAmelCase_ : Tuple = val[ dim : dim * 2 ] UpperCAmelCase_ : int = val[-dim:] elif key.startswith("mit" ): UpperCAmelCase_ : Union[str, Any] = key_split[2] UpperCAmelCase_ : Optional[int] = config.vision_config.mit_hidden_size if "weight" in key: UpperCAmelCase_ : Optional[Any] = val[:dim, :] UpperCAmelCase_ : List[str] = val[dim : dim * 2, :] UpperCAmelCase_ : List[Any] = val[-dim:, :] else: UpperCAmelCase_ : List[Any] = val[:dim] UpperCAmelCase_ : Optional[int] = val[dim : dim * 2] UpperCAmelCase_ : Tuple = val[-dim:] else: UpperCAmelCase_ : Tuple = key_split[2] UpperCAmelCase_ : Optional[int] = config.text_config.hidden_size if "weight" in key: UpperCAmelCase_ : str = val[:dim, :] UpperCAmelCase_ : Any = val[ dim : dim * 2, : ] UpperCAmelCase_ : int = val[-dim:, :] else: UpperCAmelCase_ : Dict = val[:dim] UpperCAmelCase_ : List[Any] = val[ dim : dim * 2 ] UpperCAmelCase_ : Any = val[-dim:] else: UpperCAmelCase_ : Optional[int] = rename_key(A__ ) if new_key_name in ["visual_projection.weight", "text_projection.weight"]: UpperCAmelCase_ : int = val.T UpperCAmelCase_ : int = val return orig_state_dict def snake_case ( A__ ): if num_frames == 8: UpperCAmelCase_ : Union[str, Any] = "eating_spaghetti_8_frames.npy" elif num_frames == 16: UpperCAmelCase_ : Optional[int] = "eating_spaghetti.npy" elif num_frames == 32: UpperCAmelCase_ : Optional[int] = "eating_spaghetti_32_frames.npy" UpperCAmelCase_ : str = hf_hub_download( repo_id="hf-internal-testing/spaghetti-video" ,filename=A__ ,repo_type="dataset" ,) UpperCAmelCase_ : Union[str, Any] = np.load(A__ ) return list(A__ ) def snake_case ( A__ ,A__=None ,A__=False ): UpperCAmelCase_ : Optional[int] = { # fully supervised kinetics-400 checkpoints "xclip-base-patch32": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_8.pth", "xclip-base-patch32-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_32_16.pth" ), "xclip-base-patch16": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_8.pth", "xclip-base-patch16-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k400_16_16.pth" ), "xclip-large-patch14": "https://drive.google.com/u/0/uc?id=1NUOImq0o5DlQTST17iIP3vG7DgmHQuCx&amp;export=download&amp;confirm=t&amp;uuid=b26caedc-88e2-473e-830a-9d158b653cdb", "xclip-large-patch14-16-frames": "https://drive.google.com/u/0/uc?id=1FOYgnJc097OJ4lGwtRCCydQyVPJEOH7d&amp;export=download&amp;confirm=t&amp;uuid=538fa810-e671-4050-b385-9a623f89804f", # fully supervised kinetics-600 checkpoints "xclip-base-patch16-kinetics-600": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_8.pth" ), "xclip-base-patch16-kinetics-600-16-frames": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/k600_16_16.pth" ), "xclip-large-patch14-kinetics-600": "https://drive.google.com/u/0/uc?id=1FV8C1INuM91sLAN4ImjzePLIlpMSihwV&amp;export=download&amp;confirm=t&amp;uuid=141d4977-4a65-44ae-864f-4b0c19f838be", # few shot "xclip-base-patch16-hmdb-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_2.pth" ), "xclip-base-patch16-hmdb-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_4.pth" ), "xclip-base-patch16-hmdb-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_8.pth" ), "xclip-base-patch16-hmdb-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_hmdb_16.pth" ), "xclip-base-patch16-ucf-2-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_2.pth" ), "xclip-base-patch16-ucf-4-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_4.pth" ), "xclip-base-patch16-ucf-8-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_8.pth" ), "xclip-base-patch16-ucf-16-shot": ( "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/few_ucf_16.pth" ), # zero shot "xclip-base-patch16-zero-shot": "https://github.com/nbl97/X-CLIP_Model_Zoo/releases/download/v1.0/zero.pth", } UpperCAmelCase_ : str = model_to_url[model_name] UpperCAmelCase_ : int = 8 if "16-frames" in model_name: UpperCAmelCase_ : Optional[int] = 16 elif "shot" in model_name: UpperCAmelCase_ : Any = 32 UpperCAmelCase_ : Any = get_xclip_config(A__ ,A__ ) UpperCAmelCase_ : Optional[int] = XCLIPModel(A__ ) model.eval() if "drive" in checkpoint_url: UpperCAmelCase_ : Dict = "pytorch_model.bin" gdown.cached_download(A__ ,A__ ,quiet=A__ ) UpperCAmelCase_ : List[str] = torch.load(A__ ,map_location="cpu" )["model"] else: UpperCAmelCase_ : int = torch.hub.load_state_dict_from_url(A__ )["model"] UpperCAmelCase_ : Optional[int] = convert_state_dict(A__ ,A__ ) UpperCAmelCase_ : int = XCLIPModel(A__ ) UpperCAmelCase_ , UpperCAmelCase_ : List[Any] = model.load_state_dict(A__ ,strict=A__ ) assert missing_keys == ["text_model.embeddings.position_ids", "vision_model.embeddings.position_ids"] model.eval() UpperCAmelCase_ : List[str] = 3_36 if model_name == "xclip-large-patch14-16-frames" else 2_24 UpperCAmelCase_ : int = VideoMAEImageProcessor(size=A__ ) UpperCAmelCase_ : List[str] = CLIPTokenizer.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ : Dict = CLIPTokenizerFast.from_pretrained("openai/clip-vit-base-patch32" ) UpperCAmelCase_ : Optional[Any] = XCLIPProcessor(image_processor=A__ ,tokenizer=A__ ) UpperCAmelCase_ : Tuple = prepare_video(A__ ) UpperCAmelCase_ : Optional[int] = processor( text=["playing sports", "eating spaghetti", "go shopping"] ,videos=A__ ,return_tensors="pt" ,padding=A__ ) print("Shape of pixel values:" ,inputs.pixel_values.shape ) with torch.no_grad(): UpperCAmelCase_ : Any = model(**A__ ) # Verify outputs UpperCAmelCase_ : Optional[Any] = outputs.logits_per_video UpperCAmelCase_ : int = logits_per_video.softmax(dim=1 ) print("Probs:" ,A__ ) # kinetics-400 if model_name == "xclip-base-patch32": UpperCAmelCase_ : Any = torch.tensor([[0.0019, 0.9951, 0.0030]] ) elif model_name == "xclip-base-patch32-16-frames": UpperCAmelCase_ : Optional[int] = torch.tensor([[7.0999e-04, 9.9883e-01, 4.5580e-04]] ) elif model_name == "xclip-base-patch16": UpperCAmelCase_ : Optional[Any] = torch.tensor([[0.0083, 0.9681, 0.0236]] ) elif model_name == "xclip-base-patch16-16-frames": UpperCAmelCase_ : int = torch.tensor([[7.6937e-04, 9.9728e-01, 1.9473e-03]] ) elif model_name == "xclip-large-patch14": UpperCAmelCase_ : Any = torch.tensor([[0.0062, 0.9864, 0.0075]] ) elif model_name == "xclip-large-patch14-16-frames": UpperCAmelCase_ : Union[str, Any] = torch.tensor([[3.3877e-04, 9.9937e-01, 2.8888e-04]] ) # kinetics-600 elif model_name == "xclip-base-patch16-kinetics-600": UpperCAmelCase_ : List[str] = torch.tensor([[0.0555, 0.8914, 0.0531]] ) elif model_name == "xclip-base-patch16-kinetics-600-16-frames": UpperCAmelCase_ : Dict = torch.tensor([[3.8554e-04, 9.9929e-01, 3.2754e-04]] ) elif model_name == "xclip-large-patch14-kinetics-600": UpperCAmelCase_ : Union[str, Any] = torch.tensor([[0.0036, 0.9920, 0.0045]] ) # few shot elif model_name == "xclip-base-patch16-hmdb-2-shot": UpperCAmelCase_ : Optional[Any] = torch.tensor([[7.1890e-06, 9.9994e-01, 5.6559e-05]] ) elif model_name == "xclip-base-patch16-hmdb-4-shot": UpperCAmelCase_ : List[Any] = torch.tensor([[1.0320e-05, 9.9993e-01, 6.2435e-05]] ) elif model_name == "xclip-base-patch16-hmdb-8-shot": UpperCAmelCase_ : Optional[int] = torch.tensor([[4.1377e-06, 9.9990e-01, 9.8386e-05]] ) elif model_name == "xclip-base-patch16-hmdb-16-shot": UpperCAmelCase_ : Union[str, Any] = torch.tensor([[4.1347e-05, 9.9962e-01, 3.3411e-04]] ) elif model_name == "xclip-base-patch16-ucf-2-shot": UpperCAmelCase_ : Optional[int] = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-4-shot": UpperCAmelCase_ : Any = torch.tensor([[8.5857e-05, 9.9928e-01, 6.3291e-04]] ) elif model_name == "xclip-base-patch16-ucf-8-shot": UpperCAmelCase_ : Dict = torch.tensor([[0.0027, 0.9904, 0.0070]] ) elif model_name == "xclip-base-patch16-ucf-16-shot": UpperCAmelCase_ : Tuple = torch.tensor([[9.8219e-04, 9.9593e-01, 3.0863e-03]] ) # zero shot elif model_name == "xclip-base-patch16-zero-shot": UpperCAmelCase_ : List[str] = torch.tensor([[3.5082e-04, 9.9785e-01, 1.7966e-03]] ) else: raise ValueError(F"""Model name {model_name} not supported""" ) assert torch.allclose(A__ ,A__ ,atol=1e-3 ) print("Looks ok!" ) if pytorch_dump_folder_path is not None: print(F"""Saving model {model_name} to {pytorch_dump_folder_path}""" ) model.save_pretrained(A__ ) if push_to_hub: print("Pushing model, processor and slow tokenizer files to the hub..." ) model.push_to_hub(A__ ,organization="nielsr" ) processor.push_to_hub(A__ ,organization="nielsr" ) slow_tokenizer.push_to_hub(A__ ,organization="nielsr" ) if __name__ == "__main__": lowerCamelCase_ = argparse.ArgumentParser() # Required parameters parser.add_argument( '''--model_name''', default='''xclip-base-patch32''', type=str, help='''Name of the model.''', ) parser.add_argument( '''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model directory.''' ) parser.add_argument( '''--push_to_hub''', action='''store_true''', help='''Whether or not to push the converted model to the 🤗 hub.''' ) lowerCamelCase_ = parser.parse_args() convert_xclip_checkpoint(args.model_name, args.pytorch_dump_folder_path, args.push_to_hub)
463
"""simple docstring""" import numpy as np from cva import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filteraD, imread, imshow, waitKey def snake_case ( A__ ,A__ ,A__ ,A__ ,A__ ,A__ ): # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: UpperCAmelCase_ : List[Any] = ksize + 1 UpperCAmelCase_ : Optional[Any] = np.zeros((ksize, ksize) ,dtype=np.floataa ) # each value for y in range(A__ ): for x in range(A__ ): # distance from center UpperCAmelCase_ : Tuple = x - ksize // 2 UpperCAmelCase_ : Any = y - ksize // 2 # degree to radiant UpperCAmelCase_ : int = theta / 1_80 * np.pi UpperCAmelCase_ : Optional[int] = np.cos(_theta ) UpperCAmelCase_ : Union[str, Any] = np.sin(_theta ) # get kernel x UpperCAmelCase_ : Tuple = cos_theta * px + sin_theta * py # get kernel y UpperCAmelCase_ : List[str] = -sin_theta * px + cos_theta * py # fill kernel UpperCAmelCase_ : Dict = np.exp( -(_x**2 + gamma**2 * _y**2) / (2 * sigma**2) ) * np.cos(2 * np.pi * _x / lambd + psi ) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image lowerCamelCase_ = imread('''../image_data/lena.jpg''') # turn image in gray scale value lowerCamelCase_ = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges lowerCamelCase_ = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: lowerCamelCase_ = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filteraD(gray, CV_8UC3, kernel_aa) lowerCamelCase_ = out / out.max() * 255 lowerCamelCase_ = out.astype(np.uinta) imshow('''Original''', gray) imshow('''Gabor filter with 20x20 mask and 6 directions''', out) waitKey(0)
463
1
import gc import unittest import numpy as np import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, StableDiffusionSAGPipeline, UNetaDConditionModel, ) from diffusers.utils import slow, torch_device from diffusers.utils.testing_utils import enable_full_determinism, require_torch_gpu from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import PipelineLatentTesterMixin, PipelineTesterMixin enable_full_determinism() class _a ( UpperCamelCase__ , UpperCamelCase__ , unittest.TestCase ): _lowercase : str = StableDiffusionSAGPipeline _lowercase : Optional[Any] = TEXT_TO_IMAGE_PARAMS _lowercase : Union[str, Any] = TEXT_TO_IMAGE_BATCH_PARAMS _lowercase : Union[str, Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase : Optional[Any] = TEXT_TO_IMAGE_IMAGE_PARAMS _lowercase : List[str] = False def lowerCamelCase_ ( self: Union[str, Any] ) -> Tuple: """simple docstring""" torch.manual_seed(0 ) lowercase__ = UNetaDConditionModel( block_out_channels=(32, 64) , layers_per_block=2 , sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=('''DownBlock2D''', '''CrossAttnDownBlock2D''') , up_block_types=('''CrossAttnUpBlock2D''', '''UpBlock2D''') , cross_attention_dim=32 , ) lowercase__ = DDIMScheduler( beta_start=0.00085 , beta_end=0.012 , beta_schedule='''scaled_linear''' , clip_sample=UpperCamelCase_ , set_alpha_to_one=UpperCamelCase_ , ) torch.manual_seed(0 ) lowercase__ = AutoencoderKL( block_out_channels=[32, 64] , in_channels=3 , out_channels=3 , down_block_types=['''DownEncoderBlock2D''', '''DownEncoderBlock2D'''] , up_block_types=['''UpDecoderBlock2D''', '''UpDecoderBlock2D'''] , latent_channels=4 , ) torch.manual_seed(0 ) lowercase__ = CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=32 , intermediate_size=37 , layer_norm_eps=1E-0_5 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=1_000 , ) lowercase__ = CLIPTextModel(UpperCamelCase_ ) lowercase__ = CLIPTokenizer.from_pretrained('''hf-internal-testing/tiny-random-clip''' ) lowercase__ = { '''unet''': unet, '''scheduler''': scheduler, '''vae''': vae, '''text_encoder''': text_encoder, '''tokenizer''': tokenizer, '''safety_checker''': None, '''feature_extractor''': None, } return components def lowerCamelCase_ ( self: Any , UpperCamelCase_: Dict , UpperCamelCase_: Union[str, Any]=0 ) -> Any: """simple docstring""" if str(UpperCamelCase_ ).startswith('''mps''' ): lowercase__ = torch.manual_seed(UpperCamelCase_ ) else: lowercase__ = torch.Generator(device=UpperCamelCase_ ).manual_seed(UpperCamelCase_ ) lowercase__ = { '''prompt''': '''.''', '''generator''': generator, '''num_inference_steps''': 2, '''guidance_scale''': 1.0, '''sag_scale''': 1.0, '''output_type''': '''numpy''', } return inputs def lowerCamelCase_ ( self: Union[str, Any] ) -> Dict: """simple docstring""" super().test_inference_batch_single_identical(expected_max_diff=3E-3 ) @slow @require_torch_gpu class _a ( unittest.TestCase ): def lowerCamelCase_ ( self: Optional[Any] ) -> str: """simple docstring""" super().tearDown() gc.collect() torch.cuda.empty_cache() def lowerCamelCase_ ( self: int ) -> List[str]: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('''CompVis/stable-diffusion-v1-4''' ) lowercase__ = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.1568, 0.1738, 0.1695, 0.1693, 0.1507, 0.1705, 0.1547, 0.1751, 0.1949] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCamelCase_ ( self: List[Any] ) -> Any: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase__ = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' ) lowercase__ = output.images lowercase__ = image[0, -3:, -3:, -1] assert image.shape == (1, 512, 512, 3) lowercase__ = np.array([0.3459, 0.2876, 0.2537, 0.3002, 0.2671, 0.2160, 0.3026, 0.2262, 0.2371] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 5E-2 def lowerCamelCase_ ( self: Dict ) -> Dict: """simple docstring""" lowercase__ = StableDiffusionSAGPipeline.from_pretrained('''stabilityai/stable-diffusion-2-1-base''' ) lowercase__ = sag_pipe.to(UpperCamelCase_ ) sag_pipe.set_progress_bar_config(disable=UpperCamelCase_ ) lowercase__ = '''.''' lowercase__ = torch.manual_seed(0 ) lowercase__ = sag_pipe( [prompt] , width=768 , height=512 , generator=UpperCamelCase_ , guidance_scale=7.5 , sag_scale=1.0 , num_inference_steps=20 , output_type='''np''' , ) lowercase__ = output.images assert image.shape == (1, 512, 768, 3)
43
import cva import numpy as np class _A : def __init__( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): """simple docstring""" if k in (0.04, 0.06): SCREAMING_SNAKE_CASE_ : Any = k SCREAMING_SNAKE_CASE_ : List[Any] = window_size else: raise ValueError('invalid k value' ) def __str__( self ): """simple docstring""" return str(self.k ) def UpperCAmelCase ( self , _SCREAMING_SNAKE_CASE ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = cva.imread(_SCREAMING_SNAKE_CASE , 0 ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : Optional[Any] = img.shape SCREAMING_SNAKE_CASE_ : list[list[int]] = [] SCREAMING_SNAKE_CASE_ : Tuple = img.copy() SCREAMING_SNAKE_CASE_ : int = cva.cvtColor(_SCREAMING_SNAKE_CASE , cva.COLOR_GRAY2RGB ) SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ : int = np.gradient(_SCREAMING_SNAKE_CASE ) SCREAMING_SNAKE_CASE_ : str = dx**2 SCREAMING_SNAKE_CASE_ : Union[str, Any] = dy**2 SCREAMING_SNAKE_CASE_ : Optional[int] = dx * dy SCREAMING_SNAKE_CASE_ : Optional[Any] = 0.04 SCREAMING_SNAKE_CASE_ : int = self.window_size // 2 for y in range(_SCREAMING_SNAKE_CASE , h - offset ): for x in range(_SCREAMING_SNAKE_CASE , w - offset ): SCREAMING_SNAKE_CASE_ : str = ixx[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : List[Any] = iyy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : Optional[Any] = ixy[ y - offset : y + offset + 1, x - offset : x + offset + 1 ].sum() SCREAMING_SNAKE_CASE_ : List[Any] = (wxx * wyy) - (wxy**2) SCREAMING_SNAKE_CASE_ : List[str] = wxx + wyy SCREAMING_SNAKE_CASE_ : Union[str, Any] = det - k * (trace**2) # Can change the value if r > 0.5: corner_list.append([x, y, r] ) color_img.itemset((y, x, 0) , 0 ) color_img.itemset((y, x, 1) , 0 ) color_img.itemset((y, x, 2) , 255 ) return color_img, corner_list if __name__ == "__main__": lowerCAmelCase : List[Any] = HarrisCorner(0.04, 3) lowerCAmelCase , lowerCAmelCase : Union[str, Any] = edge_detect.detect('path_to_image') cva.imwrite('detect.png', color_img)
511
0
import unittest from transformers import MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING, is_vision_available, pipeline from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_tf, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class lowerCamelCase_ : '''simple docstring''' @staticmethod def UpperCamelCase__ ( *__lowercase , **__lowercase) -> Dict: pass @is_pipeline_test @require_vision @require_torch class lowerCamelCase_ ( unittest.TestCase ): '''simple docstring''' a__ : str = MODEL_FOR_ZERO_SHOT_OBJECT_DETECTION_MAPPING def UpperCamelCase__ ( self , __lowercase , __lowercase , __lowercase) -> str: __UpperCamelCase :Union[str, Any] = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''') __UpperCamelCase :Dict = [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] return object_detector, examples def UpperCamelCase__ ( self , __lowercase , __lowercase) -> Optional[Any]: __UpperCamelCase :Optional[Any] = object_detector(examples[0] , threshold=0.0) __UpperCamelCase :Dict = len(__lowercase) self.assertGreater(__lowercase , 0) self.assertEqual( __lowercase , [ { '''score''': ANY(__lowercase), '''label''': ANY(__lowercase), '''box''': {'''xmin''': ANY(__lowercase), '''ymin''': ANY(__lowercase), '''xmax''': ANY(__lowercase), '''ymax''': ANY(__lowercase)}, } for i in range(__lowercase) ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''') def UpperCamelCase__ ( self) -> int: pass @require_torch def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Tuple = pipeline( '''zero-shot-object-detection''' , model='''hf-internal-testing/tiny-random-owlvit-object-detection''') __UpperCamelCase :str = object_detector( '''./tests/fixtures/tests_samples/COCO/000000039769.png''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4) , [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] , ) __UpperCamelCase :str = object_detector( [ { '''image''': '''./tests/fixtures/tests_samples/COCO/000000039769.png''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], } ] , threshold=0.64 , ) self.assertEqual( nested_simplify(__lowercase , decimals=4) , [ [ {'''score''': 0.72_35, '''label''': '''cat''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.72_18, '''label''': '''remote''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.71_84, '''label''': '''couch''', '''box''': {'''xmin''': 204, '''ymin''': 167, '''xmax''': 232, '''ymax''': 190}}, {'''score''': 0.67_48, '''label''': '''remote''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_56, '''label''': '''cat''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.66_14, '''label''': '''couch''', '''box''': {'''xmin''': 571, '''ymin''': 83, '''xmax''': 598, '''ymax''': 103}}, {'''score''': 0.64_56, '''label''': '''remote''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, {'''score''': 0.6_42, '''label''': '''remote''', '''box''': {'''xmin''': 67, '''ymin''': 274, '''xmax''': 93, '''ymax''': 297}}, {'''score''': 0.64_19, '''label''': '''cat''', '''box''': {'''xmin''': 494, '''ymin''': 105, '''xmax''': 521, '''ymax''': 127}}, ] ] , ) @require_torch @slow def UpperCamelCase__ ( self) -> Optional[int]: __UpperCamelCase :List[str] = pipeline('''zero-shot-object-detection''') __UpperCamelCase :List[str] = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , ) self.assertEqual( nested_simplify(__lowercase , decimals=4) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ] , ) __UpperCamelCase :Dict = object_detector( [ { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, { '''image''': '''http://images.cocodataset.org/val2017/000000039769.jpg''', '''candidate_labels''': ['''cat''', '''remote''', '''couch'''], }, ] , ) self.assertEqual( nested_simplify(__lowercase , decimals=4) , [ [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, {'''score''': 0.14_74, '''label''': '''remote''', '''box''': {'''xmin''': 335, '''ymin''': 74, '''xmax''': 371, '''ymax''': 187}}, {'''score''': 0.12_08, '''label''': '''couch''', '''box''': {'''xmin''': 4, '''ymin''': 0, '''xmax''': 642, '''ymax''': 476}}, ], ] , ) @require_tf @unittest.skip('''Zero Shot Object Detection not implemented in TF''') def UpperCamelCase__ ( self) -> Dict: pass @require_torch @slow def UpperCamelCase__ ( self) -> str: __UpperCamelCase :Tuple = 0.2 __UpperCamelCase :str = pipeline('''zero-shot-object-detection''') __UpperCamelCase :Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , threshold=__lowercase , ) self.assertEqual( nested_simplify(__lowercase , decimals=4) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, {'''score''': 0.25_37, '''label''': '''cat''', '''box''': {'''xmin''': 1, '''ymin''': 55, '''xmax''': 315, '''ymax''': 472}}, ] , ) @require_torch @slow def UpperCamelCase__ ( self) -> Any: __UpperCamelCase :Optional[int] = 2 __UpperCamelCase :Union[str, Any] = pipeline('''zero-shot-object-detection''') __UpperCamelCase :Any = object_detector( '''http://images.cocodataset.org/val2017/000000039769.jpg''' , candidate_labels=['''cat''', '''remote''', '''couch'''] , top_k=__lowercase , ) self.assertEqual( nested_simplify(__lowercase , decimals=4) , [ {'''score''': 0.28_68, '''label''': '''cat''', '''box''': {'''xmin''': 324, '''ymin''': 20, '''xmax''': 640, '''ymax''': 373}}, {'''score''': 0.2_77, '''label''': '''remote''', '''box''': {'''xmin''': 40, '''ymin''': 72, '''xmax''': 177, '''ymax''': 115}}, ] , )
720
from collections import Counter import numpy as np from sklearn import datasets from sklearn.model_selection import train_test_split __lowercase = datasets.load_iris() __lowercase = np.array(data['''data''']) __lowercase = np.array(data['''target''']) __lowercase = data['''target_names'''] __lowercase , __lowercase , __lowercase , __lowercase = train_test_split(X, y) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ): '''simple docstring''' return np.linalg.norm(np.array(SCREAMING_SNAKE_CASE ) - np.array(SCREAMING_SNAKE_CASE ) ) def lowerCamelCase ( SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE=5 ): '''simple docstring''' __UpperCamelCase :Optional[int] = zip(SCREAMING_SNAKE_CASE , SCREAMING_SNAKE_CASE ) # List of distances of all points from the point to be classified __UpperCamelCase :List[str] = [] for data_point in data: __UpperCamelCase :Optional[int] = euclidean_distance(data_point[0] , SCREAMING_SNAKE_CASE ) distances.append((distance, data_point[1]) ) # Choosing 'k' points with the least distances. __UpperCamelCase :Any = [i[1] for i in sorted(SCREAMING_SNAKE_CASE )[:k]] # Most commonly occurring class among them # is the class into which the point is classified __UpperCamelCase :Union[str, Any] = Counter(SCREAMING_SNAKE_CASE ).most_common(1 )[0][0] return classes[result] if __name__ == "__main__": print(classifier(X_train, y_train, classes, [4.4, 3.1, 1.3, 1.4]))
452
0
'''simple docstring''' import math def a_ ( _lowerCAmelCase ,_lowerCAmelCase = 0 ,_lowerCAmelCase = 0 ) -> list: __lowerCamelCase : List[Any] = end or len(_lowerCAmelCase ) for i in range(_lowerCAmelCase ,_lowerCAmelCase ): __lowerCamelCase : Optional[int] = i __lowerCamelCase : Tuple = array[i] while temp_index != start and temp_index_value < array[temp_index - 1]: __lowerCamelCase : Dict = array[temp_index - 1] temp_index -= 1 __lowerCamelCase : int = temp_index_value return array def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> None: # Max Heap __lowerCamelCase : str = index __lowerCamelCase : Optional[Any] = 2 * index + 1 # Left Node __lowerCamelCase : Optional[int] = 2 * index + 2 # Right Node if left_index < heap_size and array[largest] < array[left_index]: __lowerCamelCase : Optional[Any] = left_index if right_index < heap_size and array[largest] < array[right_index]: __lowerCamelCase : Any = right_index if largest != index: __lowerCamelCase ,__lowerCamelCase : Union[str, Any] = array[largest], array[index] heapify(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) def a_ ( _lowerCAmelCase ) -> list: __lowerCamelCase : Union[str, Any] = len(_lowerCAmelCase ) for i in range(n // 2 ,-1 ,-1 ): heapify(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) for i in range(n - 1 ,0 ,-1 ): __lowerCamelCase ,__lowerCamelCase : Any = array[0], array[i] heapify(_lowerCAmelCase ,0 ,_lowerCAmelCase ) return array def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> int: if (array[first_index] > array[middle_index]) != ( array[first_index] > array[last_index] ): return array[first_index] elif (array[middle_index] > array[first_index]) != ( array[middle_index] > array[last_index] ): return array[middle_index] else: return array[last_index] def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> int: __lowerCamelCase : List[Any] = low __lowerCamelCase : List[str] = high while True: while array[i] < pivot: i += 1 j -= 1 while pivot < array[j]: j -= 1 if i >= j: return i __lowerCamelCase ,__lowerCamelCase : List[Any] = array[j], array[i] i += 1 def a_ ( _lowerCAmelCase ) -> list: if len(_lowerCAmelCase ) == 0: return array __lowerCamelCase : Optional[int] = 2 * math.ceil(math.loga(len(_lowerCAmelCase ) ) ) __lowerCamelCase : Optional[Any] = 16 return intro_sort(_lowerCAmelCase ,0 ,len(_lowerCAmelCase ) ,_lowerCAmelCase ,_lowerCAmelCase ) def a_ ( _lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) -> list: while end - start > size_threshold: if max_depth == 0: return heap_sort(_lowerCAmelCase ) max_depth -= 1 __lowerCamelCase : List[str] = median_of_a(_lowerCAmelCase ,_lowerCAmelCase ,start + ((end - start) // 2) + 1 ,end - 1 ) __lowerCamelCase : Any = partition(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) intro_sort(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) __lowerCamelCase : int = p return insertion_sort(_lowerCAmelCase ,_lowerCAmelCase ,_lowerCAmelCase ) if __name__ == "__main__": import doctest doctest.testmod() _UpperCamelCase = input('Enter numbers separated by a comma : ').strip() _UpperCamelCase = [float(item) for item in user_input.split(',')] print(sort(unsorted))
459
'''simple docstring''' import json import os from typing import Optional, Tuple from ...tokenization_utils import PreTrainedTokenizer from ...utils import logging _UpperCamelCase = logging.get_logger(__name__) _UpperCamelCase = {'vocab_file': 'vocab.json'} _UpperCamelCase = { 'vocab_file': { 'mgp-str': 'https://huggingface.co/alibaba-damo/mgp-str-base/blob/main/vocab.json', } } _UpperCamelCase = {'mgp-str': 27} class lowerCamelCase_ ( SCREAMING_SNAKE_CASE_ ): """simple docstring""" a_ =VOCAB_FILES_NAMES a_ =PRETRAINED_VOCAB_FILES_MAP a_ =PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES def __init__( self : Optional[Any] , _a : Optional[Any] , _a : Any="[GO]" , _a : Optional[Any]="[GO]" , _a : Optional[int]="[s]" , _a : Optional[int]="[GO]" , **_a : Union[str, Any] ) -> Optional[int]: super().__init__( unk_token=_a , bos_token=_a , eos_token=_a , pad_token=_a , **_a , ) with open(_a , encoding='utf-8' ) as vocab_handle: __lowerCamelCase : List[str] = json.load(_a ) __lowerCamelCase : Tuple = {v: k for k, v in self.vocab.items()} @property def _lowercase ( self : Union[str, Any] ) -> List[str]: return len(self.vocab ) def _lowercase ( self : Union[str, Any] ) -> Tuple: return dict(self.vocab , **self.added_tokens_encoder ) def _lowercase ( self : Dict , _a : Tuple ) -> int: __lowerCamelCase : Optional[Any] = [] for s in text: char_tokens.extend(_a ) return char_tokens def _lowercase ( self : Optional[Any] , _a : Any ) -> Dict: return self.vocab.get(_a , self.vocab.get(self.unk_token ) ) def _lowercase ( self : List[Any] , _a : Dict ) -> Optional[int]: return self.decoder.get(_a ) def _lowercase ( self : Union[str, Any] , _a : str , _a : Optional[str] = None ) -> Tuple[str]: if not os.path.isdir(_a ): logger.error('Vocabulary path ({}) should be a directory'.format(_a ) ) return __lowerCamelCase : List[Any] = os.path.join( _a , (filename_prefix + '-' if filename_prefix else '') + VOCAB_FILES_NAMES['vocab_file'] ) with open(_a , 'w' , encoding='utf-8' ) as f: f.write(json.dumps(self.vocab , indent=2 , sort_keys=_a , ensure_ascii=_a ) + '\n' ) return (vocab_file,)
459
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_tf_available, is_tokenizers_available, is_torch_available, ) __lowerCamelCase = { '''configuration_funnel''': ['''FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''FunnelConfig'''], '''convert_funnel_original_tf_checkpoint_to_pytorch''': [], '''tokenization_funnel''': ['''FunnelTokenizer'''], } try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = ['''FunnelTokenizerFast'''] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''FunnelBaseModel''', '''FunnelForMaskedLM''', '''FunnelForMultipleChoice''', '''FunnelForPreTraining''', '''FunnelForQuestionAnswering''', '''FunnelForSequenceClassification''', '''FunnelForTokenClassification''', '''FunnelModel''', '''FunnelPreTrainedModel''', '''load_tf_weights_in_funnel''', ] try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase = [ '''TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST''', '''TFFunnelBaseModel''', '''TFFunnelForMaskedLM''', '''TFFunnelForMultipleChoice''', '''TFFunnelForPreTraining''', '''TFFunnelForQuestionAnswering''', '''TFFunnelForSequenceClassification''', '''TFFunnelForTokenClassification''', '''TFFunnelModel''', '''TFFunnelPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_funnel import FUNNEL_PRETRAINED_CONFIG_ARCHIVE_MAP, FunnelConfig from .tokenization_funnel import FunnelTokenizer try: if not is_tokenizers_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .tokenization_funnel_fast import FunnelTokenizerFast try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_funnel import ( FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, FunnelBaseModel, FunnelForMaskedLM, FunnelForMultipleChoice, FunnelForPreTraining, FunnelForQuestionAnswering, FunnelForSequenceClassification, FunnelForTokenClassification, FunnelModel, FunnelPreTrainedModel, load_tf_weights_in_funnel, ) try: if not is_tf_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_tf_funnel import ( TF_FUNNEL_PRETRAINED_MODEL_ARCHIVE_LIST, TFFunnelBaseModel, TFFunnelForMaskedLM, TFFunnelForMultipleChoice, TFFunnelForPreTraining, TFFunnelForQuestionAnswering, TFFunnelForSequenceClassification, TFFunnelForTokenClassification, TFFunnelModel, TFFunnelPreTrainedModel, ) else: import sys __lowerCamelCase = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
478
import argparse import glob import logging import os import sys import time from collections import defaultdict from pathlib import Path from typing import Dict, List, Tuple import numpy as np import pytorch_lightning as pl import torch from callbacks import SeqaSeqLoggingCallback, get_checkpoint_callback, get_early_stopping_callback from torch import nn from torch.utils.data import DataLoader from transformers import MBartTokenizer, TaForConditionalGeneration from transformers.models.bart.modeling_bart import shift_tokens_right from utils import ( ROUGE_KEYS, LegacySeqaSeqDataset, SeqaSeqDataset, assert_all_frozen, calculate_bleu, calculate_rouge, check_output_dir, flatten_list, freeze_embeds, freeze_params, get_git_info, label_smoothed_nll_loss, lmap, pickle_save, save_git_info, save_json, use_task_specific_params, ) # need the parent dir module sys.path.insert(2, str(Path(__file__).resolve().parents[1])) from lightning_base import BaseTransformer, add_generic_args, generic_train # noqa __lowerCamelCase = logging.getLogger(__name__) class a__ ( lowerCAmelCase_ ): lowerCamelCase__: str = """summarization""" lowerCamelCase__: List[str] = ["""loss"""] lowerCamelCase__: List[str] = ROUGE_KEYS lowerCamelCase__: Union[str, Any] = """rouge2""" def __init__( self : Union[str, Any] , lowerCamelCase_ : Tuple , **lowerCamelCase_ : List[str] ): if hparams.sortish_sampler and hparams.gpus > 1: a_ : Any = False elif hparams.max_tokens_per_batch is not None: if hparams.gpus > 1: raise NotImplementedError("""Dynamic Batch size does not work for multi-gpu training""" ) if hparams.sortish_sampler: raise ValueError("""--sortish_sampler and --max_tokens_per_batch may not be used simultaneously""" ) super().__init__(lowerCamelCase_ , num_labels=lowerCamelCase_ , mode=self.mode , **lowerCamelCase_ ) use_task_specific_params(self.model , """summarization""" ) save_git_info(self.hparams.output_dir ) a_ : Any = Path(self.output_dir ) / """metrics.json""" a_ : Tuple = Path(self.output_dir ) / """hparams.pkl""" pickle_save(self.hparams , self.hparams_save_path ) a_ : Dict = 0 a_ : Optional[Any] = defaultdict(lowerCamelCase_ ) a_ : str = self.config.model_type a_ : Union[str, Any] = self.config.tgt_vocab_size if self.model_type == """fsmt""" else self.config.vocab_size a_ : dict = { "data_dir": self.hparams.data_dir, "max_source_length": self.hparams.max_source_length, "prefix": self.model.config.prefix or "", } a_ : int = { """train""": self.hparams.n_train, """val""": self.hparams.n_val, """test""": self.hparams.n_test, } a_ : List[str] = {k: v if v >= 0 else None for k, v in n_observations_per_split.items()} a_ : Optional[Any] = { """train""": self.hparams.max_target_length, """val""": self.hparams.val_max_target_length, """test""": self.hparams.test_max_target_length, } assert self.target_lens["train"] <= self.target_lens["val"], F'''target_lens: {self.target_lens}''' assert self.target_lens["train"] <= self.target_lens["test"], F'''target_lens: {self.target_lens}''' if self.hparams.freeze_embeds: freeze_embeds(self.model ) if self.hparams.freeze_encoder: freeze_params(self.model.get_encoder() ) assert_all_frozen(self.model.get_encoder() ) a_ : int = get_git_info()["""repo_sha"""] a_ : Union[str, Any] = hparams.num_workers a_ : Tuple = None # default to config if self.model.config.decoder_start_token_id is None and isinstance(self.tokenizer , lowerCamelCase_ ): a_ : Dict = self.tokenizer.lang_code_to_id[hparams.tgt_lang] a_ : List[str] = self.decoder_start_token_id a_ : Union[str, Any] = ( SeqaSeqDataset if hasattr(self.tokenizer , """prepare_seq2seq_batch""" ) else LegacySeqaSeqDataset ) a_ : Union[str, Any] = False a_ : Any = self.model.config.num_beams if self.hparams.eval_beams is None else self.hparams.eval_beams if self.hparams.eval_max_gen_length is not None: a_ : Union[str, Any] = self.hparams.eval_max_gen_length else: a_ : Optional[Any] = self.model.config.max_length a_ : Optional[int] = self.default_val_metric if self.hparams.val_metric is None else self.hparams.val_metric def UpperCAmelCase( self : List[Any] , lowerCamelCase_ : Dict[str, torch.Tensor] ): a_ : Optional[Any] = { k: self.tokenizer.batch_decode(v.tolist() ) if """mask""" not in k else v.shape for k, v in batch.items() } save_json(lowerCamelCase_ , Path(self.output_dir ) / """text_batch.json""" ) save_json({k: v.tolist() for k, v in batch.items()} , Path(self.output_dir ) / """tok_batch.json""" ) a_ : List[Any] = True return readable_batch def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str , **lowerCamelCase_ : Tuple ): return self.model(lowerCamelCase_ , **lowerCamelCase_ ) def UpperCAmelCase( self : Tuple , lowerCamelCase_ : List[int] ): a_ : str = self.tokenizer.batch_decode( lowerCamelCase_ , skip_special_tokens=lowerCamelCase_ , clean_up_tokenization_spaces=lowerCamelCase_ ) return lmap(str.strip , lowerCamelCase_ ) def UpperCAmelCase( self : Optional[int] , lowerCamelCase_ : dict ): a_ : int = self.tokenizer.pad_token_id a_ , a_ : Optional[int] = batch["""input_ids"""], batch["""attention_mask"""] a_ : Optional[Any] = batch["""labels"""] if isinstance(self.model , lowerCamelCase_ ): a_ : List[Any] = self.model._shift_right(lowerCamelCase_ ) else: a_ : Dict = shift_tokens_right(lowerCamelCase_ , lowerCamelCase_ ) if not self.already_saved_batch: # This would be slightly better if it only happened on rank zero a_ : int = decoder_input_ids self.save_readable_batch(lowerCamelCase_ ) a_ : str = self(lowerCamelCase_ , attention_mask=lowerCamelCase_ , decoder_input_ids=lowerCamelCase_ , use_cache=lowerCamelCase_ ) a_ : int = outputs["""logits"""] if self.hparams.label_smoothing == 0: # Same behavior as modeling_bart.py, besides ignoring pad_token_id a_ : Any = nn.CrossEntropyLoss(ignore_index=lowerCamelCase_ ) assert lm_logits.shape[-1] == self.vocab_size a_ : Union[str, Any] = ce_loss_fct(lm_logits.view(-1 , lm_logits.shape[-1] ) , tgt_ids.view(-1 ) ) else: a_ : int = nn.functional.log_softmax(lowerCamelCase_ , dim=-1 ) a_ , a_ : str = label_smoothed_nll_loss( lowerCamelCase_ , lowerCamelCase_ , self.hparams.label_smoothing , ignore_index=lowerCamelCase_ ) return (loss,) @property def UpperCAmelCase( self : Union[str, Any] ): return self.tokenizer.pad_token_id def UpperCAmelCase( self : str , lowerCamelCase_ : Optional[Any] , lowerCamelCase_ : List[Any] ): a_ : Dict = self._step(lowerCamelCase_ ) a_ : Optional[int] = dict(zip(self.loss_names , lowerCamelCase_ ) ) # tokens per batch a_ : str = batch["""input_ids"""].ne(self.pad ).sum() + batch["""labels"""].ne(self.pad ).sum() a_ : Optional[int] = batch["""input_ids"""].shape[0] a_ : int = batch["""input_ids"""].eq(self.pad ).sum() a_ : str = batch["""input_ids"""].eq(self.pad ).float().mean() # TODO(SS): make a wandb summary metric for this return {"loss": loss_tensors[0], "log": logs} def UpperCAmelCase( self : int , lowerCamelCase_ : List[Any] , lowerCamelCase_ : Tuple ): return self._generative_step(lowerCamelCase_ ) def UpperCAmelCase( self : Any , lowerCamelCase_ : List[str] , lowerCamelCase_ : Optional[int]="val" ): self.step_count += 1 a_ : Optional[Any] = {k: torch.stack([x[k] for x in outputs] ).mean() for k in self.loss_names} a_ : Tuple = losses["""loss"""] a_ : Optional[int] = { k: np.array([x[k] for x in outputs] ).mean() for k in self.metric_names + ["""gen_time""", """gen_len"""] } a_ : List[Any] = ( generative_metrics[self.val_metric] if self.val_metric in generative_metrics else losses[self.val_metric] ) a_ : torch.FloatTensor = torch.tensor(lowerCamelCase_ ).type_as(lowerCamelCase_ ) generative_metrics.update({k: v.item() for k, v in losses.items()} ) losses.update(lowerCamelCase_ ) a_ : str = {F'''{prefix}_avg_{k}''': x for k, x in losses.items()} a_ : Union[str, Any] = self.step_count self.metrics[prefix].append(lowerCamelCase_ ) # callback writes this to self.metrics_save_path a_ : List[str] = flatten_list([x["""preds"""] for x in outputs] ) return { "log": all_metrics, "preds": preds, F'''{prefix}_loss''': loss, F'''{prefix}_{self.val_metric}''': metric_tensor, } def UpperCAmelCase( self : Any , lowerCamelCase_ : Optional[int] , lowerCamelCase_ : Optional[Any] ): return calculate_rouge(lowerCamelCase_ , lowerCamelCase_ ) def UpperCAmelCase( self : int , lowerCamelCase_ : dict ): a_ : Dict = time.time() # parser.add_argument('--eval_max_gen_length', type=int, default=None, help='never generate more than n tokens') a_ : Any = self.model.generate( batch["""input_ids"""] , attention_mask=batch["""attention_mask"""] , use_cache=lowerCamelCase_ , decoder_start_token_id=self.decoder_start_token_id , num_beams=self.eval_beams , max_length=self.eval_max_length , ) a_ : Optional[int] = (time.time() - ta) / batch["""input_ids"""].shape[0] a_ : List[str] = self.ids_to_clean_text(lowerCamelCase_ ) a_ : List[str] = self.ids_to_clean_text(batch["""labels"""] ) a_ : Tuple = self._step(lowerCamelCase_ ) a_ : List[str] = dict(zip(self.loss_names , lowerCamelCase_ ) ) a_ : Dict = self.calc_generative_metrics(lowerCamelCase_ , lowerCamelCase_ ) a_ : Optional[int] = np.mean(lmap(lowerCamelCase_ , lowerCamelCase_ ) ) base_metrics.update(gen_time=lowerCamelCase_ , gen_len=lowerCamelCase_ , preds=lowerCamelCase_ , target=lowerCamelCase_ , **lowerCamelCase_ ) return base_metrics def UpperCAmelCase( self : int , lowerCamelCase_ : str , lowerCamelCase_ : Optional[int] ): return self._generative_step(lowerCamelCase_ ) def UpperCAmelCase( self : str , lowerCamelCase_ : Any ): return self.validation_epoch_end(lowerCamelCase_ , prefix="""test""" ) def UpperCAmelCase( self : Any , lowerCamelCase_ : Any ): a_ : List[str] = self.n_obs[type_path] a_ : Dict = self.target_lens[type_path] a_ : Optional[Any] = self.dataset_class( self.tokenizer , type_path=lowerCamelCase_ , n_obs=lowerCamelCase_ , max_target_length=lowerCamelCase_ , **self.dataset_kwargs , ) return dataset def UpperCAmelCase( self : Union[str, Any] , lowerCamelCase_ : str , lowerCamelCase_ : int , lowerCamelCase_ : bool = False ): a_ : List[str] = self.get_dataset(lowerCamelCase_ ) if self.hparams.sortish_sampler and type_path != "test" and type_path != "val": a_ : List[str] = dataset.make_sortish_sampler(lowerCamelCase_ , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) elif self.hparams.max_tokens_per_batch is not None and type_path != "test" and type_path != "val": a_ : int = dataset.make_dynamic_sampler( self.hparams.max_tokens_per_batch , distributed=self.hparams.gpus > 1 ) return DataLoader( lowerCamelCase_ , batch_sampler=lowerCamelCase_ , collate_fn=dataset.collate_fn , num_workers=self.num_workers , ) else: return DataLoader( lowerCamelCase_ , batch_size=lowerCamelCase_ , collate_fn=dataset.collate_fn , shuffle=lowerCamelCase_ , num_workers=self.num_workers , sampler=lowerCamelCase_ , ) def UpperCAmelCase( self : Any ): a_ : int = self.get_dataloader("""train""" , batch_size=self.hparams.train_batch_size , shuffle=lowerCamelCase_ ) return dataloader def UpperCAmelCase( self : Dict ): return self.get_dataloader("""val""" , batch_size=self.hparams.eval_batch_size ) def UpperCAmelCase( self : List[Any] ): return self.get_dataloader("""test""" , batch_size=self.hparams.eval_batch_size ) @staticmethod def UpperCAmelCase( lowerCamelCase_ : Dict , lowerCamelCase_ : Optional[Any] ): BaseTransformer.add_model_specific_args(lowerCamelCase_ , lowerCamelCase_ ) add_generic_args(lowerCamelCase_ , lowerCamelCase_ ) parser.add_argument( """--max_source_length""" , default=1_0_2_4 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--max_target_length""" , default=5_6 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--val_max_target_length""" , default=1_4_2 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument( """--test_max_target_length""" , default=1_4_2 , type=lowerCamelCase_ , help=( """The maximum total input sequence length after tokenization. Sequences longer """ """than this will be truncated, sequences shorter will be padded.""" ) , ) parser.add_argument("""--freeze_encoder""" , action="""store_true""" ) parser.add_argument("""--freeze_embeds""" , action="""store_true""" ) parser.add_argument("""--sortish_sampler""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--overwrite_output_dir""" , action="""store_true""" , default=lowerCamelCase_ ) parser.add_argument("""--max_tokens_per_batch""" , type=lowerCamelCase_ , default=lowerCamelCase_ ) parser.add_argument("""--logger_name""" , type=lowerCamelCase_ , choices=["""default""", """wandb""", """wandb_shared"""] , default="""default""" ) parser.add_argument("""--n_train""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_val""" , type=lowerCamelCase_ , default=5_0_0 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--n_test""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument( """--task""" , type=lowerCamelCase_ , default="""summarization""" , required=lowerCamelCase_ , help="""# examples. -1 means use all.""" ) parser.add_argument("""--label_smoothing""" , type=lowerCamelCase_ , default=0.0 , required=lowerCamelCase_ ) parser.add_argument("""--src_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--tgt_lang""" , type=lowerCamelCase_ , default="""""" , required=lowerCamelCase_ ) parser.add_argument("""--eval_beams""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ ) parser.add_argument( """--val_metric""" , type=lowerCamelCase_ , default=lowerCamelCase_ , required=lowerCamelCase_ , choices=["""bleu""", """rouge2""", """loss""", None] ) parser.add_argument("""--eval_max_gen_length""" , type=lowerCamelCase_ , default=lowerCamelCase_ , help="""never generate more than n tokens""" ) parser.add_argument("""--save_top_k""" , type=lowerCamelCase_ , default=1 , required=lowerCamelCase_ , help="""How many checkpoints to save""" ) parser.add_argument( """--early_stopping_patience""" , type=lowerCamelCase_ , default=-1 , required=lowerCamelCase_ , help=( """-1 means never early stop. early_stopping_patience is measured in validation checks, not epochs. So""" """ val_check_interval will effect it.""" ) , ) return parser class a__ ( lowerCAmelCase_ ): lowerCamelCase__: List[Any] = """translation""" lowerCamelCase__: int = ["""loss"""] lowerCamelCase__: List[str] = ["""bleu"""] lowerCamelCase__: Optional[Any] = """bleu""" def __init__( self : Optional[Any] , lowerCamelCase_ : Optional[Any] , **lowerCamelCase_ : Tuple ): super().__init__(lowerCamelCase_ , **lowerCamelCase_ ) a_ : Union[str, Any] = hparams.src_lang a_ : Optional[int] = hparams.tgt_lang def UpperCAmelCase( self : Optional[Any] , lowerCamelCase_ : Tuple , lowerCamelCase_ : int ): return calculate_bleu(lowerCamelCase_ , lowerCamelCase_ ) def _a ( __UpperCamelCase , __UpperCamelCase=None ): Path(args.output_dir ).mkdir(exist_ok=__UpperCamelCase ) check_output_dir(__UpperCamelCase , expected_items=3 ) if model is None: if "summarization" in args.task: a_ : SummarizationModule = SummarizationModule(__UpperCamelCase ) else: a_ : SummarizationModule = TranslationModule(__UpperCamelCase ) a_ : Dict = Path(args.data_dir ).name if ( args.logger_name == "default" or args.fast_dev_run or str(args.output_dir ).startswith("""/tmp""" ) or str(args.output_dir ).startswith("""/var""" ) ): a_ : Union[str, Any] = True # don't pollute wandb logs unnecessarily elif args.logger_name == "wandb": from pytorch_lightning.loggers import WandbLogger a_ : Optional[int] = os.environ.get("""WANDB_PROJECT""" , __UpperCamelCase ) a_ : str = WandbLogger(name=model.output_dir.name , project=__UpperCamelCase ) elif args.logger_name == "wandb_shared": from pytorch_lightning.loggers import WandbLogger a_ : Optional[int] = WandbLogger(name=model.output_dir.name , project=F'''hf_{dataset}''' ) if args.early_stopping_patience >= 0: a_ : Any = get_early_stopping_callback(model.val_metric , args.early_stopping_patience ) else: a_ : str = False a_ : Tuple = args.val_metric == """loss""" a_ : pl.Trainer = generic_train( __UpperCamelCase , __UpperCamelCase , logging_callback=SeqaSeqLoggingCallback() , checkpoint_callback=get_checkpoint_callback( args.output_dir , model.val_metric , args.save_top_k , __UpperCamelCase ) , early_stopping_callback=__UpperCamelCase , logger=__UpperCamelCase , ) pickle_save(model.hparams , model.output_dir / """hparams.pkl""" ) if not args.do_predict: return model a_ : Union[str, Any] = """""" a_ : int = sorted(glob.glob(os.path.join(args.output_dir , """*.ckpt""" ) , recursive=__UpperCamelCase ) ) if checkpoints: a_ : Tuple = checkpoints[-1] a_ : Tuple = checkpoints[-1] trainer.logger.log_hyperparams(model.hparams ) # test() without a model tests using the best checkpoint automatically trainer.test() return model if __name__ == "__main__": __lowerCamelCase = argparse.ArgumentParser() __lowerCamelCase = pl.Trainer.add_argparse_args(parser) __lowerCamelCase = SummarizationModule.add_model_specific_args(parser, os.getcwd()) __lowerCamelCase = parser.parse_args() main(args)
478
1
import copy import os from typing import Union from ...configuration_utils import PretrainedConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "Salesforce/blip-vqa-base": "https://huggingface.co/Salesforce/blip-vqa-base/resolve/main/config.json", "Salesforce/blip-vqa-capfit-large": ( "https://huggingface.co/Salesforce/blip-vqa-base-capfit/resolve/main/config.json" ), "Salesforce/blip-image-captioning-base": ( "https://huggingface.co/Salesforce/blip-image-captioning-base/resolve/main/config.json" ), "Salesforce/blip-image-captioning-large": ( "https://huggingface.co/Salesforce/blip-image-captioning-large/resolve/main/config.json" ), "Salesforce/blip-itm-base-coco": "https://huggingface.co/Salesforce/blip-itm-base-coco/resolve/main/config.json", "Salesforce/blip-itm-large-coco": "https://huggingface.co/Salesforce/blip-itm-large-coco/resolve/main/config.json", "Salesforce/blip-itm-base-flikr": "https://huggingface.co/Salesforce/blip-itm-base-flikr/resolve/main/config.json", "Salesforce/blip-itm-large-flikr": ( "https://huggingface.co/Salesforce/blip-itm-large-flikr/resolve/main/config.json" ), } class __UpperCamelCase ( _UpperCamelCase ): __A : Optional[int] = 'blip_text_model' def __init__( self , _UpperCamelCase=30524 , _UpperCamelCase=768 , _UpperCamelCase=768 , _UpperCamelCase=3072 , _UpperCamelCase=768 , _UpperCamelCase=12 , _UpperCamelCase=8 , _UpperCamelCase=512 , _UpperCamelCase="gelu" , _UpperCamelCase=1e-12 , _UpperCamelCase=0.0 , _UpperCamelCase=0.0 , _UpperCamelCase=0.02 , _UpperCamelCase=30522 , _UpperCamelCase=2 , _UpperCamelCase=0 , _UpperCamelCase=102 , _UpperCamelCase=True , _UpperCamelCase=True , **_UpperCamelCase , ): super().__init__( pad_token_id=_UpperCAmelCase , bos_token_id=_UpperCAmelCase , eos_token_id=_UpperCAmelCase , sep_token_id=_UpperCAmelCase , **_UpperCAmelCase , ) _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = encoder_hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = projection_dim _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = hidden_act _UpperCAmelCase = initializer_range _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = is_decoder _UpperCAmelCase = use_cache @classmethod def UpperCamelCase( cls , _UpperCamelCase , **_UpperCamelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) _UpperCAmelCase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the text config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": _UpperCAmelCase = config_dict['text_config'] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __UpperCamelCase ( _UpperCamelCase ): __A : List[Any] = 'blip_vision_model' def __init__( self , _UpperCamelCase=768 , _UpperCamelCase=3072 , _UpperCamelCase=512 , _UpperCamelCase=12 , _UpperCamelCase=12 , _UpperCamelCase=384 , _UpperCamelCase=16 , _UpperCamelCase="gelu" , _UpperCamelCase=1e-5 , _UpperCamelCase=0.0 , _UpperCamelCase=1e-10 , **_UpperCamelCase , ): super().__init__(**_UpperCAmelCase ) _UpperCAmelCase = hidden_size _UpperCAmelCase = intermediate_size _UpperCAmelCase = projection_dim _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = patch_size _UpperCAmelCase = image_size _UpperCAmelCase = initializer_range _UpperCAmelCase = attention_dropout _UpperCAmelCase = layer_norm_eps _UpperCAmelCase = hidden_act @classmethod def UpperCamelCase( cls , _UpperCamelCase , **_UpperCamelCase ): cls._set_token_in_kwargs(_UpperCAmelCase ) _UpperCAmelCase = cls.get_config_dict(_UpperCAmelCase , **_UpperCAmelCase ) # get the vision config dict if we are loading from BlipConfig if config_dict.get('''model_type''' ) == "blip": _UpperCAmelCase = config_dict['vision_config'] if "model_type" in config_dict and hasattr(cls , '''model_type''' ) and config_dict["model_type"] != cls.model_type: logger.warning( f'''You are using a model of type {config_dict['model_type']} to instantiate a model of type ''' f'''{cls.model_type}. This is not supported for all configurations of models and can yield errors.''' ) return cls.from_dict(_UpperCAmelCase , **_UpperCAmelCase ) class __UpperCamelCase ( _UpperCamelCase ): __A : List[str] = 'blip' __A : List[Any] = True def __init__( self , _UpperCamelCase=None , _UpperCamelCase=None , _UpperCamelCase=512 , _UpperCamelCase=2.6592 , _UpperCamelCase=256 , **_UpperCamelCase , ): super().__init__(**_UpperCAmelCase ) if text_config is None: _UpperCAmelCase = {} logger.info('''`text_config` is `None`. Initializing the `BlipTextConfig` with default values.''' ) if vision_config is None: _UpperCAmelCase = {} logger.info('''`vision_config` is `None`. Initializing the `BlipVisionConfig` with default values.''' ) _UpperCAmelCase = BlipTextConfig(**_UpperCAmelCase ) _UpperCAmelCase = BlipVisionConfig(**_UpperCAmelCase ) _UpperCAmelCase = self.vision_config.hidden_size _UpperCAmelCase = projection_dim _UpperCAmelCase = logit_scale_init_value _UpperCAmelCase = 1.0 _UpperCAmelCase = 0.02 _UpperCAmelCase = image_text_hidden_size @classmethod def UpperCamelCase( cls , _UpperCamelCase , _UpperCamelCase , **_UpperCamelCase ): return cls(text_config=text_config.to_dict() , vision_config=vision_config.to_dict() , **_UpperCAmelCase ) def UpperCamelCase( self ): _UpperCAmelCase = copy.deepcopy(self.__dict__ ) _UpperCAmelCase = self.text_config.to_dict() _UpperCAmelCase = self.vision_config.to_dict() _UpperCAmelCase = self.__class__.model_type return output
32
'''simple docstring''' from ...configuration_utils import PretrainedConfig from ...utils import logging __lowerCAmelCase = logging.get_logger(__name__) __lowerCAmelCase = { '''s-JoL/Open-Llama-V1''': '''https://huggingface.co/s-JoL/Open-Llama-V1/blob/main/config.json''', } class __magic_name__ ( _UpperCamelCase ): lowerCAmelCase : str = 'open-llama' def __init__( self : str ,_UpperCAmelCase : int=100000 ,_UpperCAmelCase : List[str]=4096 ,_UpperCAmelCase : Dict=11008 ,_UpperCAmelCase : int=32 ,_UpperCAmelCase : Union[str, Any]=32 ,_UpperCAmelCase : List[str]="silu" ,_UpperCAmelCase : List[Any]=2048 ,_UpperCAmelCase : Any=0.02 ,_UpperCAmelCase : int=1E-6 ,_UpperCAmelCase : Optional[int]=True ,_UpperCAmelCase : Dict=0 ,_UpperCAmelCase : Optional[Any]=1 ,_UpperCAmelCase : Dict=2 ,_UpperCAmelCase : Tuple=False ,_UpperCAmelCase : Dict=True ,_UpperCAmelCase : Dict=0.1 ,_UpperCAmelCase : Optional[int]=0.1 ,_UpperCAmelCase : List[str]=True ,_UpperCAmelCase : int=True ,_UpperCAmelCase : Union[str, Any]=None ,**_UpperCAmelCase : Optional[int] ,): _a : str = vocab_size _a : str = max_position_embeddings _a : List[str] = hidden_size _a : Any = intermediate_size _a : Union[str, Any] = num_hidden_layers _a : Tuple = num_attention_heads _a : int = hidden_act _a : str = initializer_range _a : Any = rms_norm_eps _a : Dict = use_cache _a : Optional[int] = kwargs.pop( 'use_memorry_efficient_attention' ,_UpperCAmelCase ) _a : int = hidden_dropout_prob _a : int = attention_dropout_prob _a : Union[str, Any] = use_stable_embedding _a : str = shared_input_output_embedding _a : Any = rope_scaling self._rope_scaling_validation() super().__init__( pad_token_id=_UpperCAmelCase ,bos_token_id=_UpperCAmelCase ,eos_token_id=_UpperCAmelCase ,tie_word_embeddings=_UpperCAmelCase ,**_UpperCAmelCase ,) def __lowercase ( self : Optional[Any] ): if self.rope_scaling is None: return if not isinstance(self.rope_scaling ,_UpperCAmelCase ) or len(self.rope_scaling ) != 2: raise ValueError( '`rope_scaling` must be a dictionary with with two fields, `name` and `factor`, ' F"""got {self.rope_scaling}""" ) _a : Optional[Any] = self.rope_scaling.get('type' ,_UpperCAmelCase ) _a : Optional[Any] = self.rope_scaling.get('factor' ,_UpperCAmelCase ) if rope_scaling_type is None or rope_scaling_type not in ["linear", "dynamic"]: raise ValueError( F"""`rope_scaling`'s name field must be one of ['linear', 'dynamic'], got {rope_scaling_type}""" ) if rope_scaling_factor is None or not isinstance(_UpperCAmelCase ,_UpperCAmelCase ) or rope_scaling_factor <= 1.0: raise ValueError(F"""`rope_scaling`'s factor field must be an float > 1, got {rope_scaling_factor}""" )
358
0
import gc import unittest import torch from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer from diffusers import ( AutoencoderKL, DDIMScheduler, DDPMScheduler, PriorTransformer, StableUnCLIPPipeline, UNetaDConditionModel, ) from diffusers.pipelines.stable_diffusion.stable_unclip_image_normalizer import StableUnCLIPImageNormalizer from diffusers.utils.testing_utils import enable_full_determinism, load_numpy, require_torch_gpu, slow, torch_device from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_IMAGE_PARAMS, TEXT_TO_IMAGE_PARAMS from ..test_pipelines_common import ( PipelineKarrasSchedulerTesterMixin, PipelineLatentTesterMixin, PipelineTesterMixin, assert_mean_pixel_difference, ) enable_full_determinism() class lowerCAmelCase_ ( lowercase , lowercase , lowercase , unittest.TestCase ): """simple docstring""" _snake_case : List[Any] = StableUnCLIPPipeline _snake_case : Optional[Any] = TEXT_TO_IMAGE_PARAMS _snake_case : int = TEXT_TO_IMAGE_BATCH_PARAMS _snake_case : str = TEXT_TO_IMAGE_IMAGE_PARAMS _snake_case : Tuple = TEXT_TO_IMAGE_IMAGE_PARAMS # TODO(will) Expected attn_bias.stride(1) == 0 to be true, but got false _snake_case : int = False def __a ( self :Optional[Any] ): UpperCamelCase__ :Union[str, Any] = 32 UpperCamelCase__ :Tuple = embedder_hidden_size # prior components torch.manual_seed(0 ) UpperCamelCase__ :Tuple = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) UpperCamelCase__ :Tuple = CLIPTextModelWithProjection( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase__ , projection_dim=lowerCamelCase__ , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCamelCase__ :Dict = PriorTransformer( num_attention_heads=2 , attention_head_dim=12 , embedding_dim=lowerCamelCase__ , num_layers=1 , ) torch.manual_seed(0 ) UpperCamelCase__ :str = DDPMScheduler( variance_type="""fixed_small_log""" , prediction_type="""sample""" , num_train_timesteps=10_00 , clip_sample=lowerCamelCase__ , clip_sample_range=5.0 , beta_schedule="""squaredcos_cap_v2""" , ) # regular denoising components torch.manual_seed(0 ) UpperCamelCase__ :Optional[Any] = StableUnCLIPImageNormalizer(embedding_dim=lowerCamelCase__ ) UpperCamelCase__ :int = DDPMScheduler(beta_schedule="""squaredcos_cap_v2""" ) torch.manual_seed(0 ) UpperCamelCase__ :Dict = CLIPTokenizer.from_pretrained("""hf-internal-testing/tiny-random-clip""" ) torch.manual_seed(0 ) UpperCamelCase__ :List[Any] = CLIPTextModel( CLIPTextConfig( bos_token_id=0 , eos_token_id=2 , hidden_size=lowerCamelCase__ , projection_dim=32 , intermediate_size=37 , layer_norm_eps=1e-05 , num_attention_heads=4 , num_hidden_layers=5 , pad_token_id=1 , vocab_size=10_00 , ) ) torch.manual_seed(0 ) UpperCamelCase__ :str = UNetaDConditionModel( sample_size=32 , in_channels=4 , out_channels=4 , down_block_types=("""CrossAttnDownBlock2D""", """DownBlock2D""") , up_block_types=("""UpBlock2D""", """CrossAttnUpBlock2D""") , block_out_channels=(32, 64) , attention_head_dim=(2, 4) , class_embed_type="""projection""" , projection_class_embeddings_input_dim=embedder_projection_dim * 2 , cross_attention_dim=lowerCamelCase__ , layers_per_block=1 , upcast_attention=lowerCamelCase__ , use_linear_projection=lowerCamelCase__ , ) torch.manual_seed(0 ) UpperCamelCase__ :List[Any] = DDIMScheduler( beta_schedule="""scaled_linear""" , beta_start=0.0_0085 , beta_end=0.012 , prediction_type="""v_prediction""" , set_alpha_to_one=lowerCamelCase__ , steps_offset=1 , ) torch.manual_seed(0 ) UpperCamelCase__ :Optional[int] = AutoencoderKL() UpperCamelCase__ :Optional[Any] = { # prior components """prior_tokenizer""": prior_tokenizer, """prior_text_encoder""": prior_text_encoder, """prior""": prior, """prior_scheduler""": prior_scheduler, # image noising components """image_normalizer""": image_normalizer, """image_noising_scheduler""": image_noising_scheduler, # regular denoising components """tokenizer""": tokenizer, """text_encoder""": text_encoder, """unet""": unet, """scheduler""": scheduler, """vae""": vae, } return components def __a ( self :Union[str, Any] , lowerCamelCase__ :Union[str, Any] , lowerCamelCase__ :List[str]=0 ): if str(lowerCamelCase__ ).startswith("""mps""" ): UpperCamelCase__ :Any = torch.manual_seed(lowerCamelCase__ ) else: UpperCamelCase__ :List[str] = torch.Generator(device=lowerCamelCase__ ).manual_seed(lowerCamelCase__ ) UpperCamelCase__ :Optional[int] = { """prompt""": """A painting of a squirrel eating a burger""", """generator""": generator, """num_inference_steps""": 2, """prior_num_inference_steps""": 2, """output_type""": """numpy""", } return inputs def __a ( self :Optional[Any] ): UpperCamelCase__ :Optional[Any] = torch_device == """cpu""" self._test_attention_slicing_forward_pass(test_max_difference=lowerCamelCase__ ) def __a ( self :Any ): UpperCamelCase__ :List[Any] = torch_device in ["""cpu""", """mps"""] self._test_inference_batch_single_identical(test_max_difference=lowerCamelCase__ ) @slow @require_torch_gpu class lowerCAmelCase_ ( unittest.TestCase ): """simple docstring""" def __a ( self :Union[str, Any] ): # clean up the VRAM after each test super().tearDown() gc.collect() torch.cuda.empty_cache() def __a ( self :List[Any] ): UpperCamelCase__ :Union[str, Any] = load_numpy( """https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/stable_unclip/stable_unclip_2_1_l_anime_turtle_fp16.npy""" ) UpperCamelCase__ :List[str] = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) # stable unclip will oom when integration tests are run on a V100, # so turn on memory savings pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase__ :Union[str, Any] = torch.Generator(device="""cpu""" ).manual_seed(0 ) UpperCamelCase__ :Union[str, Any] = pipe("""anime turle""" , generator=lowerCamelCase__ , output_type="""np""" ) UpperCamelCase__ :int = output.images[0] assert image.shape == (7_68, 7_68, 3) assert_mean_pixel_difference(lowerCamelCase__ , lowerCamelCase__ ) def __a ( self :List[Any] ): torch.cuda.empty_cache() torch.cuda.reset_max_memory_allocated() torch.cuda.reset_peak_memory_stats() UpperCamelCase__ :int = StableUnCLIPPipeline.from_pretrained("""fusing/stable-unclip-2-1-l""" , torch_dtype=torch.floataa ) UpperCamelCase__ :str = pipe.to(lowerCamelCase__ ) pipe.set_progress_bar_config(disable=lowerCamelCase__ ) pipe.enable_attention_slicing() pipe.enable_sequential_cpu_offload() UpperCamelCase__ :Optional[int] = pipe( """anime turtle""" , prior_num_inference_steps=2 , num_inference_steps=2 , output_type="""np""" , ) UpperCamelCase__ :Union[str, Any] = torch.cuda.max_memory_allocated() # make sure that less than 7 GB is allocated assert mem_bytes < 7 * 10**9
715
from collections.abc import Generator def A ( ) -> Generator[int, None, None]: UpperCamelCase__ , UpperCamelCase__ :str = 0, 1 while True: UpperCamelCase__ , UpperCamelCase__ :Tuple = b, a + b yield b def A ( lowercase__ : int = 1000 ) -> int: UpperCamelCase__ :Any = 1 UpperCamelCase__ :Any = fibonacci_generator() while len(str(next(lowercase__ ) ) ) < n: answer += 1 return answer + 1 if __name__ == "__main__": print(solution(int(str(input()).strip())))
383
0
'''simple docstring''' import warnings from ...utils import logging from .image_processing_owlvit import OwlViTImageProcessor __snake_case = logging.get_logger(__name__) class _a ( _lowerCAmelCase ): """simple docstring""" def __init__( self : List[Any] , *lowercase_ : int , **lowercase_ : Any ): '''simple docstring''' warnings.warn( """The class OwlViTFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please""" """ use OwlViTImageProcessor instead.""" , lowercase_ , ) super().__init__(*lowercase_ , **lowercase_ )
451
'''simple docstring''' from collections import OrderedDict from typing import Mapping from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging lowerCAmelCase : Dict =logging.get_logger(__name__) lowerCAmelCase : List[Any] ={ '''distilbert-base-uncased''': '''https://huggingface.co/distilbert-base-uncased/resolve/main/config.json''', '''distilbert-base-uncased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-uncased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-cased''': '''https://huggingface.co/distilbert-base-cased/resolve/main/config.json''', '''distilbert-base-cased-distilled-squad''': ( '''https://huggingface.co/distilbert-base-cased-distilled-squad/resolve/main/config.json''' ), '''distilbert-base-german-cased''': '''https://huggingface.co/distilbert-base-german-cased/resolve/main/config.json''', '''distilbert-base-multilingual-cased''': ( '''https://huggingface.co/distilbert-base-multilingual-cased/resolve/main/config.json''' ), '''distilbert-base-uncased-finetuned-sst-2-english''': ( '''https://huggingface.co/distilbert-base-uncased-finetuned-sst-2-english/resolve/main/config.json''' ), } class a_ ( _lowerCAmelCase ): __A = "distilbert" __A = { "hidden_size": "dim", "num_attention_heads": "n_heads", "num_hidden_layers": "n_layers", } def __init__( self : int , lowercase : Union[str, Any]=30_522 , lowercase : List[Any]=512 , lowercase : Tuple=False , lowercase : Dict=6 , lowercase : List[str]=12 , lowercase : Union[str, Any]=768 , lowercase : int=4 * 768 , lowercase : Union[str, Any]=0.1 , lowercase : List[str]=0.1 , lowercase : List[str]="gelu" , lowercase : Tuple=0.02 , lowercase : int=0.1 , lowercase : Any=0.2 , lowercase : List[Any]=0 , **lowercase : Optional[Any] , ): """simple docstring""" lowercase_ :Optional[int] = vocab_size lowercase_ :Optional[int] = max_position_embeddings lowercase_ :List[Any] = sinusoidal_pos_embds lowercase_ :Dict = n_layers lowercase_ :List[str] = n_heads lowercase_ :int = dim lowercase_ :str = hidden_dim lowercase_ :Tuple = dropout lowercase_ :Any = attention_dropout lowercase_ :Optional[int] = activation lowercase_ :Dict = initializer_range lowercase_ :int = qa_dropout lowercase_ :Tuple = seq_classif_dropout super().__init__(**lowercase , pad_token_id=lowercase ) class a_ ( _lowerCAmelCase ): @property def lowercase__ ( self : Union[str, Any] ): """simple docstring""" if self.task == "multiple-choice": lowercase_ :int = {0: "batch", 1: "choice", 2: "sequence"} else: lowercase_ :Tuple = {0: "batch", 1: "sequence"} return OrderedDict( [ ("input_ids", dynamic_axis), ("attention_mask", dynamic_axis), ] )
172
0
"""simple docstring""" # Copyright 2021 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from argparse import ArgumentParser from accelerate.commands.config import get_config_parser from accelerate.commands.env import env_command_parser from accelerate.commands.launch import launch_command_parser from accelerate.commands.test import test_command_parser from accelerate.commands.tpu import tpu_command_parser def _UpperCAmelCase ( ) -> Optional[Any]: _snake_case = ArgumentParser('''Accelerate CLI tool''' , usage='''accelerate <command> [<args>]''' , allow_abbrev=__lowerCamelCase ) _snake_case = parser.add_subparsers(help='''accelerate command helpers''' ) # Register commands get_config_parser(subparsers=__lowerCamelCase ) env_command_parser(subparsers=__lowerCamelCase ) launch_command_parser(subparsers=__lowerCamelCase ) tpu_command_parser(subparsers=__lowerCamelCase ) test_command_parser(subparsers=__lowerCamelCase ) # Let's go _snake_case = parser.parse_args() if not hasattr(__lowerCamelCase , '''func''' ): parser.print_help() exit(1 ) # Run args.func(__lowerCamelCase ) if __name__ == "__main__": main()
430
"""simple docstring""" import argparse from argparse import Namespace import torch from torch import nn from transformers import XGLMConfig, XGLMForCausalLM def _UpperCAmelCase ( __lowerCamelCase : Optional[int] ) -> Dict: _snake_case = [ '''decoder.version''', '''decoder.output_projection.weight''', '''_float_tensor''', '''decoder.embed_positions._float_tensor''', ] for k in ignore_keys: state_dict.pop(__lowerCamelCase , __lowerCamelCase ) def _UpperCAmelCase ( __lowerCamelCase : List[Any] ) -> List[str]: _snake_case , _snake_case = emb.weight.shape _snake_case = nn.Linear(__lowerCamelCase , __lowerCamelCase , bias=__lowerCamelCase ) _snake_case = emb.weight.data return lin_layer def _UpperCAmelCase ( __lowerCamelCase : str ) -> Any: _snake_case = torch.load(__lowerCamelCase , map_location='''cpu''' ) _snake_case = Namespace(**checkpoint['''cfg''']['''model'''] ) _snake_case = checkpoint['''model'''] remove_ignore_keys_(__lowerCamelCase ) _snake_case = state_dict['''decoder.embed_tokens.weight'''].shape[0] _snake_case = {key.replace('''decoder''' , '''model''' ): val for key, val in state_dict.items()} _snake_case = XGLMConfig( vocab_size=__lowerCamelCase , max_position_embeddings=args.max_target_positions , num_layers=args.decoder_layers , attention_heads=args.decoder_attention_heads , ffn_dim=args.decoder_ffn_embed_dim , d_model=args.decoder_embed_dim , layerdrop=args.decoder_layerdrop , dropout=args.dropout , attention_dropout=args.attention_dropout , activation_dropout=args.activation_dropout , activation_function='''gelu''' , scale_embedding=not args.no_scale_embedding , tie_word_embeddings=args.share_decoder_input_output_embed , ) _snake_case = XGLMForCausalLM(__lowerCamelCase ) _snake_case = model.load_state_dict(__lowerCamelCase , strict=__lowerCamelCase ) print(__lowerCamelCase ) _snake_case = make_linear_from_emb(model.model.embed_tokens ) return model if __name__ == "__main__": UpperCAmelCase__ = argparse.ArgumentParser() # Required parameters parser.add_argument('fairseq_path', type=str, help='path to a model.pt on local filesystem.') parser.add_argument('pytorch_dump_folder_path', default=None, type=str, help='Path to the output PyTorch model.') UpperCAmelCase__ = parser.parse_args() UpperCAmelCase__ = convert_fairseq_xglm_checkpoint_from_disk(args.fairseq_path) model.save_pretrained(args.pytorch_dump_folder_path)
430
1
"""simple docstring""" from dataclasses import dataclass, field from typing import Optional from transformers import AutoConfig, AutoImageProcessor, AutoTokenizer, FlaxVisionEncoderDecoderModel, HfArgumentParser @dataclass class snake_case : UpperCAmelCase__ = field( metadata={'''help''': '''The output directory where the model will be written.'''} , ) UpperCAmelCase__ = field( metadata={ '''help''': ( '''The encoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train an encoder model from scratch.''' ) } , ) UpperCAmelCase__ = field( metadata={ '''help''': ( '''The decoder model checkpoint for weights initialization.''' '''Don\'t set if you want to train a decoder model from scratch.''' ) } , ) UpperCAmelCase__ = field( default=__lowercase , metadata={'''help''': '''Pretrained encoder config name or path if not the same as encoder_model_name'''} ) UpperCAmelCase__ = field( default=__lowercase , metadata={'''help''': '''Pretrained decoder config name or path if not the same as decoder_model_name'''} ) def _lowerCamelCase ( ): SCREAMING_SNAKE_CASE_ = HfArgumentParser((ModelArguments,) ) ((SCREAMING_SNAKE_CASE_) ,) = parser.parse_args_into_dataclasses() # Load pretrained model and tokenizer # Use explicit specified encoder config if model_args.encoder_config_name: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.encoder_config_name ) # Use pretrained encoder model's config else: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.encoder_model_name_or_path ) # Use explicit specified decoder config if model_args.decoder_config_name: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.decoder_config_name ) # Use pretrained decoder model's config else: SCREAMING_SNAKE_CASE_ = AutoConfig.from_pretrained(model_args.decoder_model_name_or_path ) # necessary for `from_encoder_decoder_pretrained` when `decoder_config` is passed SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = True SCREAMING_SNAKE_CASE_ = FlaxVisionEncoderDecoderModel.from_encoder_decoder_pretrained( encoder_pretrained_model_name_or_path=model_args.encoder_model_name_or_path, decoder_pretrained_model_name_or_path=model_args.decoder_model_name_or_path, encoder_config=__a, decoder_config=__a, ) # GPT2 only has bos/eos tokens but not decoder_start/pad tokens SCREAMING_SNAKE_CASE_ = decoder_config.decoder_start_token_id SCREAMING_SNAKE_CASE_ = decoder_config.pad_token_id if decoder_start_token_id is None: SCREAMING_SNAKE_CASE_ = decoder_config.bos_token_id if pad_token_id is None: SCREAMING_SNAKE_CASE_ = decoder_config.eos_token_id # This is necessary to make Flax's generate() work SCREAMING_SNAKE_CASE_ = decoder_config.eos_token_id SCREAMING_SNAKE_CASE_ = decoder_start_token_id SCREAMING_SNAKE_CASE_ = pad_token_id SCREAMING_SNAKE_CASE_ = AutoImageProcessor.from_pretrained(model_args.encoder_model_name_or_path ) SCREAMING_SNAKE_CASE_ = AutoTokenizer.from_pretrained(model_args.decoder_model_name_or_path ) SCREAMING_SNAKE_CASE_ = tokenizer.convert_ids_to_tokens(model.config.pad_token_id ) model.save_pretrained(model_args.output_dir ) image_processor.save_pretrained(model_args.output_dir ) tokenizer.save_pretrained(model_args.output_dir ) if __name__ == "__main__": main()
626
"""simple docstring""" import doctest from collections import deque import numpy as np class snake_case : def __init__(self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = [2, 1, 2, -1] SCREAMING_SNAKE_CASE_ = [1, 2, 3, 4] def _lowercase (self ): """simple docstring""" SCREAMING_SNAKE_CASE_ = len(self.first_signal ) SCREAMING_SNAKE_CASE_ = len(self.second_signal ) SCREAMING_SNAKE_CASE_ = max(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # create a zero matrix of max_length x max_length SCREAMING_SNAKE_CASE_ = [[0] * max_length for i in range(SCREAMING_SNAKE_CASE_ )] # fills the smaller signal with zeros to make both signals of same length if length_first_signal < length_second_signal: self.first_signal += [0] * (max_length - length_first_signal) elif length_first_signal > length_second_signal: self.second_signal += [0] * (max_length - length_second_signal) for i in range(SCREAMING_SNAKE_CASE_ ): SCREAMING_SNAKE_CASE_ = deque(self.second_signal ) rotated_signal.rotate(SCREAMING_SNAKE_CASE_ ) for j, item in enumerate(SCREAMING_SNAKE_CASE_ ): matrix[i][j] += item # multiply the matrix with the first signal SCREAMING_SNAKE_CASE_ = np.matmul(np.transpose(SCREAMING_SNAKE_CASE_ ) , np.transpose(self.first_signal ) ) # rounding-off to two decimal places return [round(SCREAMING_SNAKE_CASE_ , 2 ) for i in final_signal] if __name__ == "__main__": doctest.testmod()
626
1
import os from shutil import copyfile from typing import List, Optional, Tuple from ...tokenization_utils import AddedToken from ...tokenization_utils_fast import PreTrainedTokenizerFast from ...utils import is_sentencepiece_available, logging if is_sentencepiece_available(): from .tokenization_camembert import CamembertTokenizer else: _UpperCamelCase : str =None _UpperCamelCase : int =logging.get_logger(__name__) _UpperCamelCase : Dict ={'vocab_file': 'sentencepiece.bpe.model', 'tokenizer_file': 'tokenizer.json'} _UpperCamelCase : Any ={ 'vocab_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_file': { 'camembert-base': 'https://huggingface.co/camembert-base/resolve/main/tokenizer.json', }, } _UpperCamelCase : List[str] ={ 'camembert-base': 512, } _UpperCamelCase : str ='▁' class UpperCAmelCase__ ( __snake_case ): __snake_case : Optional[int] = VOCAB_FILES_NAMES __snake_case : List[str] = PRETRAINED_VOCAB_FILES_MAP __snake_case : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES __snake_case : List[str] = ["input_ids", "attention_mask"] __snake_case : str = CamembertTokenizer def __init__( self ,A__=None ,A__=None ,A__="<s>" ,A__="</s>" ,A__="</s>" ,A__="<s>" ,A__="<unk>" ,A__="<pad>" ,A__="<mask>" ,A__=["<s>NOTUSED", "</s>NOTUSED"] ,**A__ ,): # Mask token behave like a normal word, i.e. include the space before it _A : List[Any] = AddedToken(A__ ,lstrip=A__ ,rstrip=A__ ) if isinstance(A__ ,A__ ) else mask_token super().__init__( A__ ,tokenizer_file=A__ ,bos_token=A__ ,eos_token=A__ ,sep_token=A__ ,cls_token=A__ ,unk_token=A__ ,pad_token=A__ ,mask_token=A__ ,additional_special_tokens=A__ ,**A__ ,) _A : int = vocab_file _A : Any = False if not self.vocab_file else True def A__ ( self ,A__ ,A__ = None ): if token_ids_a is None: return [self.cls_token_id] + token_ids_a + [self.sep_token_id] _A : Dict = [self.cls_token_id] _A : List[Any] = [self.sep_token_id] return cls + token_ids_a + sep + sep + token_ids_a + sep def A__ ( self ,A__ ,A__ = None ): _A : Any = [self.sep_token_id] _A : Optional[int] = [self.cls_token_id] if token_ids_a is None: return len(cls + token_ids_a + sep ) * [0] return len(cls + token_ids_a + sep + sep + token_ids_a + sep ) * [0] def A__ ( self ,A__ ,A__ = None ): if not self.can_save_slow_tokenizer: raise ValueError( '''Your fast tokenizer does not have the necessary information to save the vocabulary for a slow ''' '''tokenizer.''' ) if not os.path.isdir(A__ ): logger.error(f"""Vocabulary path ({save_directory}) should be a directory""" ) return _A : Union[str, Any] = os.path.join( A__ ,(filename_prefix + '''-''' if filename_prefix else '''''') + VOCAB_FILES_NAMES['''vocab_file'''] ) if os.path.abspath(self.vocab_file ) != os.path.abspath(A__ ): copyfile(self.vocab_file ,A__ ) return (out_vocab_file,)
332
from math import pow, sqrt def a__ (*__lowercase :float ) -> bool: _A : List[str] = len(__lowercase ) > 0 and all(value > 0.0 for value in values ) return result def a__ (__lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase ) else ValueError('''Input Error: Molar mass values must greater than 0.''' ) ) def a__ (__lowercase :float , __lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(effusion_rate * sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ (__lowercase :float , __lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(effusion_rate / sqrt(molar_mass_a / molar_mass_a ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ (__lowercase :float , __lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(molar_mass / pow(effusion_rate_a / effusion_rate_a , 2 ) , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) ) def a__ (__lowercase :float , __lowercase :float , __lowercase :float ) -> float | ValueError: return ( round(pow(effusion_rate_a / effusion_rate_a , 2 ) / molar_mass , 6 ) if validate(__lowercase , __lowercase , __lowercase ) else ValueError( '''Input Error: Molar mass and effusion rate values must greater than 0.''' ) )
332
1
import argparse import json from pathlib import Path import requests import torch from huggingface_hub import hf_hub_download from PIL import Image from transformers import BeitConfig, BeitForImageClassification, BeitForMaskedImageModeling, BeitImageProcessor from transformers.image_utils import PILImageResampling from transformers.utils import logging logging.set_verbosity_info() lowercase : Any = logging.get_logger(__name__) def A_ ( A__ , A__=False , A__=False ) -> int: a__ : int = 'backbone.' if is_semantic else '' a__ : List[str] = [] for i in range(config.num_hidden_layers ): # encoder layers: output projection, 2 feedforward neural networks and 2 layernorms rename_keys.append((F'{prefix}blocks.{i}.norm1.weight', F'beit.encoder.layer.{i}.layernorm_before.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm1.bias', F'beit.encoder.layer.{i}.layernorm_before.bias') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.weight', F'beit.encoder.layer.{i}.attention.output.dense.weight') ) rename_keys.append( (F'{prefix}blocks.{i}.attn.proj.bias', F'beit.encoder.layer.{i}.attention.output.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.weight', F'beit.encoder.layer.{i}.layernorm_after.weight') ) rename_keys.append((F'{prefix}blocks.{i}.norm2.bias', F'beit.encoder.layer.{i}.layernorm_after.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.weight', F'beit.encoder.layer.{i}.intermediate.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc1.bias', F'beit.encoder.layer.{i}.intermediate.dense.bias') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.weight', F'beit.encoder.layer.{i}.output.dense.weight') ) rename_keys.append((F'{prefix}blocks.{i}.mlp.fc2.bias', F'beit.encoder.layer.{i}.output.dense.bias') ) # projection layer + position embeddings rename_keys.extend( [ (F'{prefix}cls_token', 'beit.embeddings.cls_token'), (F'{prefix}patch_embed.proj.weight', 'beit.embeddings.patch_embeddings.projection.weight'), (F'{prefix}patch_embed.proj.bias', 'beit.embeddings.patch_embeddings.projection.bias'), (F'{prefix}pos_embed', 'beit.embeddings.position_embeddings'), ] ) if has_lm_head: # mask token + layernorm rename_keys.extend( [ ('mask_token', 'beit.embeddings.mask_token'), ('norm.weight', 'layernorm.weight'), ('norm.bias', 'layernorm.bias'), ] ) else: # layernorm + classification head rename_keys.extend( [ ('fc_norm.weight', 'beit.pooler.layernorm.weight'), ('fc_norm.bias', 'beit.pooler.layernorm.bias'), ('head.weight', 'classifier.weight'), ('head.bias', 'classifier.bias'), ] ) return rename_keys def A_ ( A__ , A__ , A__=False , A__=False ) -> Tuple: for i in range(config.num_hidden_layers ): a__ : Optional[int] = 'backbone.' if is_semantic else '' # queries, keys and values a__ : Any = state_dict.pop(F'{prefix}blocks.{i}.attn.qkv.weight' ) a__ : Any = state_dict.pop(F'{prefix}blocks.{i}.attn.q_bias' ) a__ : Optional[int] = state_dict.pop(F'{prefix}blocks.{i}.attn.v_bias' ) a__ : Any = in_proj_weight[ : config.hidden_size, : ] a__ : str = q_bias a__ : Dict = in_proj_weight[ config.hidden_size : config.hidden_size * 2, : ] a__ : List[Any] = in_proj_weight[ -config.hidden_size :, : ] a__ : Union[str, Any] = v_bias # gamma_1 and gamma_2 # we call them lambda because otherwise they are renamed when using .from_pretrained a__ : List[str] = state_dict.pop(F'{prefix}blocks.{i}.gamma_1' ) a__ : Dict = state_dict.pop(F'{prefix}blocks.{i}.gamma_2' ) a__ : Optional[Any] = gamma_a a__ : str = gamma_a def A_ ( A__ , A__ , A__ ) -> Any: a__ : Union[str, Any] = dct.pop(A__ ) a__ : Tuple = val def A_ ( ) -> int: a__ : Any = 'http://images.cocodataset.org/val2017/000000039769.jpg' a__ : List[str] = Image.open(requests.get(A__ , stream=A__ ).raw ) return im @torch.no_grad() def A_ ( A__ , A__ , A__=False ) -> Tuple: a__ : str = False if 'rvlcdip' in checkpoint_url else True a__ : int = BeitConfig(use_absolute_position_embeddings=A__ , use_mask_token=A__ ) # size of the architecture if "large" in checkpoint_url or "dit-l" in checkpoint_url: a__ : Tuple = 1024 a__ : Optional[Any] = 4096 a__ : Optional[int] = 24 a__ : Optional[Any] = 16 # labels if "rvlcdip" in checkpoint_url: a__ : Tuple = 16 a__ : List[str] = 'huggingface/label-files' a__ : Any = 'rvlcdip-id2label.json' a__ : Optional[Any] = json.load(open(hf_hub_download(A__ , A__ , repo_type='dataset' ) , 'r' ) ) a__ : Any = {int(A__ ): v for k, v in idalabel.items()} a__ : str = idalabel a__ : Any = {v: k for k, v in idalabel.items()} # load state_dict of original model, remove and rename some keys a__ : Tuple = torch.hub.load_state_dict_from_url(A__ , map_location='cpu' )['model'] a__ : Union[str, Any] = create_rename_keys(A__ , has_lm_head=A__ ) for src, dest in rename_keys: rename_key(A__ , A__ , A__ ) read_in_q_k_v(A__ , A__ , has_lm_head=A__ ) # load HuggingFace model a__ : Any = BeitForMaskedImageModeling(A__ ) if has_lm_head else BeitForImageClassification(A__ ) model.eval() model.load_state_dict(A__ ) # Check outputs on an image a__ : List[Any] = BeitImageProcessor( size=config.image_size , resample=PILImageResampling.BILINEAR , do_center_crop=A__ ) a__ : str = prepare_img() a__ : List[str] = image_processor(images=A__ , return_tensors='pt' ) a__ : Any = encoding['pixel_values'] a__ : int = model(A__ ) a__ : Optional[int] = outputs.logits # verify logits a__ : List[str] = [1, 16] if 'rvlcdip' in checkpoint_url else [1, 196, 8192] assert logits.shape == torch.Size(A__ ), "Shape of logits not as expected" Path(A__ ).mkdir(exist_ok=A__ ) print(F'Saving model to {pytorch_dump_folder_path}' ) model.save_pretrained(A__ ) print(F'Saving image processor to {pytorch_dump_folder_path}' ) image_processor.save_pretrained(A__ ) if push_to_hub: if has_lm_head: a__ : Dict = 'dit-base' if 'base' in checkpoint_url else 'dit-large' else: a__ : List[str] = 'dit-base-finetuned-rvlcdip' if 'dit-b' in checkpoint_url else 'dit-large-finetuned-rvlcdip' image_processor.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add image processor' , use_temp_dir=A__ , ) model.push_to_hub( repo_path_or_name=Path(A__ , A__ ) , organization='nielsr' , commit_message='Add model' , use_temp_dir=A__ , ) if __name__ == "__main__": lowercase : int = argparse.ArgumentParser() parser.add_argument( """--checkpoint_url""", default="""https://layoutlm.blob.core.windows.net/dit/dit-pts/dit-base-224-p16-500k-62d53a.pth""", type=str, help="""URL to the original PyTorch checkpoint (.pth file).""", ) parser.add_argument( """--pytorch_dump_folder_path""", default=None, type=str, help="""Path to the folder to output PyTorch model.""" ) parser.add_argument( """--push_to_hub""", action="""store_true""", ) lowercase : str = parser.parse_args() convert_dit_checkpoint(args.checkpoint_url, args.pytorch_dump_folder_path, args.push_to_hub)
302
from cva import destroyAllWindows, imread, imshow, waitKey def A_ ( A__ ) -> Tuple: # getting number of pixels in the image a__ , a__ : Any = img.shape[0], img.shape[1] # converting each pixel's color to its negative for i in range(A__ ): for j in range(A__ ): a__ : str = [255, 255, 255] - img[i][j] return img if __name__ == "__main__": # read original image lowercase : Dict = imread("""image_data/lena.jpg""", 1) # convert to its negative lowercase : Tuple = convert_to_negative(img) # show result image imshow("""negative of original image""", img) waitKey(0) destroyAllWindows()
302
1
"""simple docstring""" import numpy as np def A__ ( UpperCamelCase__ ): '''simple docstring''' return 1 / (1 + np.exp(-vector )) if __name__ == "__main__": import doctest doctest.testmod()
709
"""simple docstring""" # This script creates a super tiny model that is useful inside tests, when we just want to test that # the machinery works, without needing to the check the quality of the outcomes. # # This version creates a tiny model through reduction of a normal pre-trained model, but keeping the # full vocab, merges file, and thus also resulting in a larger model due to a large vocab size. # This gives ~3MB in total for all files. # # If you want a 50 times smaller than this see `fsmt-make-super-tiny-model.py`, which is slightly more complicated # # # It will be used then as "stas/tiny-wmt19-en-de" # Build from transformers import FSMTTokenizer, FSMTConfig, FSMTForConditionalGeneration lowerCamelCase : Any = """facebook/wmt19-en-de""" lowerCamelCase : int = FSMTTokenizer.from_pretrained(mname) # get the correct vocab sizes, etc. from the master model lowerCamelCase : Dict = FSMTConfig.from_pretrained(mname) config.update( dict( d_model=4, encoder_layers=1, decoder_layers=1, encoder_ffn_dim=4, decoder_ffn_dim=4, encoder_attention_heads=1, decoder_attention_heads=1, ) ) lowerCamelCase : Dict = FSMTForConditionalGeneration(config) print(F'''num of params {tiny_model.num_parameters()}''') # Test lowerCamelCase : Dict = tokenizer(["""Making tiny model"""], return_tensors="""pt""") lowerCamelCase : Tuple = tiny_model(**batch) print("""test output:""", len(outputs.logits[0])) # Save lowerCamelCase : Optional[int] = """tiny-wmt19-en-de""" tiny_model.half() # makes it smaller tiny_model.save_pretrained(mname_tiny) tokenizer.save_pretrained(mname_tiny) print(F'''Generated {mname_tiny}''') # Upload # transformers-cli upload tiny-wmt19-en-de
168
0
'''simple docstring''' import json import os import shutil import tempfile import unittest import numpy as np import pytest from transformers import MgpstrTokenizer from transformers.models.mgp_str.tokenization_mgp_str import VOCAB_FILES_NAMES from transformers.testing_utils import require_torch, require_vision from transformers.utils import IMAGE_PROCESSOR_NAME, is_torch_available, is_vision_available if is_torch_available(): import torch if is_vision_available(): from PIL import Image from transformers import MgpstrProcessor, ViTImageProcessor @require_torch @require_vision class __snake_case ( unittest.TestCase ): '''simple docstring''' lowerCamelCase__ = ViTImageProcessor if is_vision_available() else None @property def __UpperCamelCase ( self ): return self.image_processor_tester.prepare_image_processor_dict() def __UpperCamelCase ( self ): snake_case__ : Optional[Any] = (3, 3_2, 1_2_8) snake_case__ : List[Any] = tempfile.mkdtemp() # fmt: off snake_case__ : str = ["""[GO]""", """[s]""", """0""", """1""", """2""", """3""", """4""", """5""", """6""", """7""", """8""", """9""", """a""", """b""", """c""", """d""", """e""", """f""", """g""", """h""", """i""", """j""", """k""", """l""", """m""", """n""", """o""", """p""", """q""", """r""", """s""", """t""", """u""", """v""", """w""", """x""", """y""", """z"""] # fmt: on snake_case__ : List[str] = dict(zip(__SCREAMING_SNAKE_CASE , range(len(__SCREAMING_SNAKE_CASE ) ) ) ) snake_case__ : Optional[Any] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(__SCREAMING_SNAKE_CASE ) + """\n""" ) snake_case__ : Optional[int] = { """do_normalize""": False, """do_resize""": True, """image_processor_type""": """ViTImageProcessor""", """resample""": 3, """size""": {"""height""": 3_2, """width""": 1_2_8}, } snake_case__ : str = os.path.join(self.tmpdirname , __SCREAMING_SNAKE_CASE ) with open(self.image_processor_file , """w""" , encoding="""utf-8""" ) as fp: json.dump(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): return MgpstrTokenizer.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self , **__SCREAMING_SNAKE_CASE ): return ViTImageProcessor.from_pretrained(self.tmpdirname , **__SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): shutil.rmtree(self.tmpdirname ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = np.random.randint(2_5_5 , size=(3, 3_0, 4_0_0) , dtype=np.uinta ) snake_case__ : List[str] = Image.fromarray(np.moveaxis(__SCREAMING_SNAKE_CASE , 0 , -1 ) ) return image_input def __UpperCamelCase ( self ): snake_case__ : List[str] = self.get_tokenizer() snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : Optional[int] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) snake_case__ : Tuple = MgpstrProcessor.from_pretrained(self.tmpdirname , use_fast=__SCREAMING_SNAKE_CASE ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : int = self.get_tokenizer() snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : Optional[int] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) processor.save_pretrained(self.tmpdirname ) snake_case__ : str = self.get_tokenizer(bos_token="""(BOS)""" , eos_token="""(EOS)""" ) snake_case__ : List[Any] = self.get_image_processor(do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) snake_case__ : Optional[int] = MgpstrProcessor.from_pretrained( self.tmpdirname , bos_token="""(BOS)""" , eos_token="""(EOS)""" , do_normalize=__SCREAMING_SNAKE_CASE , padding_value=1.0 ) self.assertEqual(processor.char_tokenizer.get_vocab() , tokenizer_add_kwargs.get_vocab() ) self.assertIsInstance(processor.char_tokenizer , __SCREAMING_SNAKE_CASE ) self.assertEqual(processor.image_processor.to_json_string() , image_processor_add_kwargs.to_json_string() ) self.assertIsInstance(processor.image_processor , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : Optional[int] = self.get_image_processor() snake_case__ : Tuple = self.get_tokenizer() snake_case__ : Optional[Any] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Dict = self.prepare_image_inputs() snake_case__ : Tuple = image_processor(__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) snake_case__ : Optional[int] = processor(images=__SCREAMING_SNAKE_CASE , return_tensors="""np""" ) for key in input_image_proc.keys(): self.assertAlmostEqual(input_image_proc[key].sum() , input_processor[key].sum() , delta=1e-2 ) def __UpperCamelCase ( self ): snake_case__ : Dict = self.get_image_processor() snake_case__ : Union[str, Any] = self.get_tokenizer() snake_case__ : int = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = """test""" snake_case__ : Optional[Any] = processor(text=__SCREAMING_SNAKE_CASE ) snake_case__ : Any = tokenizer(__SCREAMING_SNAKE_CASE ) for key in encoded_tok.keys(): self.assertListEqual(encoded_tok[key] , encoded_processor[key] ) def __UpperCamelCase ( self ): snake_case__ : Union[str, Any] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Any = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : int = """test""" snake_case__ : Any = self.prepare_image_inputs() snake_case__ : Union[str, Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , ["""pixel_values""", """labels"""] ) # test if it raises when no input is passed with pytest.raises(__SCREAMING_SNAKE_CASE ): processor() def __UpperCamelCase ( self ): snake_case__ : List[str] = self.get_image_processor() snake_case__ : Optional[Any] = self.get_tokenizer() snake_case__ : List[str] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : int = [[1, 4, 5, 8, 1, 0, 8], [3, 4, 3, 1, 1, 8, 9], [3, 4, 3, 1, 1, 8, 9]] snake_case__ : Any = processor.char_decode(__SCREAMING_SNAKE_CASE ) snake_case__ : Tuple = tokenizer.batch_decode(__SCREAMING_SNAKE_CASE ) snake_case__ : Optional[int] = [seq.replace(""" """ , """""" ) for seq in decoded_tok] self.assertListEqual(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) def __UpperCamelCase ( self ): snake_case__ : List[str] = self.get_image_processor() snake_case__ : str = self.get_tokenizer() snake_case__ : Optional[int] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : int = None snake_case__ : Optional[int] = self.prepare_image_inputs() snake_case__ : List[Any] = processor(text=__SCREAMING_SNAKE_CASE , images=__SCREAMING_SNAKE_CASE ) self.assertListEqual(list(inputs.keys() ) , processor.model_input_names ) def __UpperCamelCase ( self ): snake_case__ : List[Any] = self.get_image_processor() snake_case__ : List[Any] = self.get_tokenizer() snake_case__ : Optional[Any] = MgpstrProcessor(tokenizer=__SCREAMING_SNAKE_CASE , image_processor=__SCREAMING_SNAKE_CASE ) snake_case__ : str = torch.randn(1 , 2_7 , 3_8 ) snake_case__ : Dict = torch.randn(1 , 2_7 , 5_0_2_5_7 ) snake_case__ : Union[str, Any] = torch.randn(1 , 2_7 , 3_0_5_2_2 ) snake_case__ : List[str] = processor.batch_decode([char_input, bpe_input, wp_input] ) self.assertListEqual(list(results.keys() ) , ["""generated_text""", """scores""", """char_preds""", """bpe_preds""", """wp_preds"""] )
38
from __future__ import annotations import inspect import unittest import numpy as np from transformers import ResNetConfig from transformers.testing_utils import require_tf, require_vision, slow from transformers.utils import cached_property, is_tf_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_tf_common import TFModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_tf_available(): import tensorflow as tf from transformers import TFResNetForImageClassification, TFResNetModel from transformers.models.resnet.modeling_tf_resnet import TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class _UpperCamelCase : '''simple docstring''' def __init__( self : Any , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : str=3_2 , SCREAMING_SNAKE_CASE_ : Any=3 , SCREAMING_SNAKE_CASE_ : Any=1_0 , SCREAMING_SNAKE_CASE_ : List[Any]=[1_0, 2_0, 3_0, 4_0] , SCREAMING_SNAKE_CASE_ : Tuple=[1, 1, 2, 1] , SCREAMING_SNAKE_CASE_ : str=True , SCREAMING_SNAKE_CASE_ : Optional[int]=True , SCREAMING_SNAKE_CASE_ : List[Any]="relu" , SCREAMING_SNAKE_CASE_ : Optional[Any]=3 , SCREAMING_SNAKE_CASE_ : Union[str, Any]=None , ): _a = parent _a = batch_size _a = image_size _a = num_channels _a = embeddings_size _a = hidden_sizes _a = depths _a = is_training _a = use_labels _a = hidden_act _a = num_labels _a = scope _a = len(SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : int ): _a = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) _a = None if self.use_labels: _a = ids_tensor([self.batch_size] , self.num_labels ) _a = self.get_config() return config, pixel_values, labels def _UpperCAmelCase ( self : Optional[Any] ): return ResNetConfig( num_channels=self.num_channels , embeddings_size=self.embeddings_size , hidden_sizes=self.hidden_sizes , depths=self.depths , hidden_act=self.hidden_act , num_labels=self.num_labels , image_size=self.image_size , ) def _UpperCAmelCase ( self : int , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : Tuple ): _a = TFResNetModel(config=SCREAMING_SNAKE_CASE_ ) _a = model(SCREAMING_SNAKE_CASE_ ) # expected last hidden states: B, C, H // 32, W // 32 self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.hidden_sizes[-1], self.image_size // 3_2, self.image_size // 3_2) , ) def _UpperCAmelCase ( self : Tuple , SCREAMING_SNAKE_CASE_ : Tuple , SCREAMING_SNAKE_CASE_ : List[Any] , SCREAMING_SNAKE_CASE_ : int ): _a = self.num_labels _a = TFResNetForImageClassification(SCREAMING_SNAKE_CASE_ ) _a = model(SCREAMING_SNAKE_CASE_ , labels=SCREAMING_SNAKE_CASE_ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _UpperCAmelCase ( self : List[str] ): _a = self.prepare_config_and_inputs() _a , _a , _a = config_and_inputs _a = {'pixel_values': pixel_values} return config, inputs_dict @require_tf class _UpperCamelCase ( lowerCamelCase__ , lowerCamelCase__ , unittest.TestCase ): '''simple docstring''' _A = (TFResNetModel, TFResNetForImageClassification) if is_tf_available() else () _A = ( {"feature-extraction": TFResNetModel, "image-classification": TFResNetForImageClassification} if is_tf_available() else {} ) _A = False _A = False _A = False _A = False _A = False def _UpperCAmelCase ( self : List[str] ): _a = TFResNetModelTester(self ) _a = ConfigTester(self , config_class=SCREAMING_SNAKE_CASE_ , has_text_modality=SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Union[str, Any] ): self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def _UpperCAmelCase ( self : Any ): return @unittest.skip(reason='ResNet does not use inputs_embeds' ) def _UpperCAmelCase ( self : Optional[int] ): pass @unittest.skip(reason='ResNet does not support input and output embeddings' ) def _UpperCAmelCase ( self : int ): pass def _UpperCAmelCase ( self : int ): _a , _a = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: _a = model_class(SCREAMING_SNAKE_CASE_ ) _a = inspect.signature(model.call ) # signature.parameters is an OrderedDict => so arg_names order is deterministic _a = [*signature.parameters.keys()] _a = ['pixel_values'] self.assertListEqual(arg_names[:1] , SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Optional[int] ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : Optional[int] ): def check_hidden_states_output(SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Any , SCREAMING_SNAKE_CASE_ : List[str] ): _a = model_class(SCREAMING_SNAKE_CASE_ ) _a = model(**self._prepare_for_class(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) ) _a = outputs.encoder_hidden_states if config.is_encoder_decoder else outputs.hidden_states _a = self.model_tester.num_stages self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , expected_num_stages + 1 ) # ResNet's feature maps are of shape (batch_size, num_channels, height, width) self.assertListEqual( list(hidden_states[0].shape[-2:] ) , [self.model_tester.image_size // 4, self.model_tester.image_size // 4] , ) _a , _a = self.model_tester.prepare_config_and_inputs_for_common() _a = ['basic', 'bottleneck'] for model_class in self.all_model_classes: for layer_type in layers_type: _a = layer_type _a = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] _a = True check_hidden_states_output(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) def _UpperCAmelCase ( self : str ): _a = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*SCREAMING_SNAKE_CASE_ ) @slow def _UpperCAmelCase ( self : str ): for model_name in TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: _a = TFResNetModel.from_pretrained(SCREAMING_SNAKE_CASE_ ) self.assertIsNotNone(SCREAMING_SNAKE_CASE_ ) def SCREAMING_SNAKE_CASE ( ) -> Tuple: _a = Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_tf @require_vision class _UpperCamelCase ( unittest.TestCase ): '''simple docstring''' @cached_property def _UpperCAmelCase ( self : Optional[int] ): return ( AutoImageProcessor.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) if is_vision_available() else None ) @slow def _UpperCAmelCase ( self : Union[str, Any] ): _a = TFResNetForImageClassification.from_pretrained(TF_RESNET_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) _a = self.default_image_processor _a = prepare_img() _a = image_processor(images=SCREAMING_SNAKE_CASE_ , return_tensors='tf' ) # forward pass _a = model(**SCREAMING_SNAKE_CASE_ ) # verify the logits _a = tf.TensorShape((1, 1_0_0_0) ) self.assertEqual(outputs.logits.shape , SCREAMING_SNAKE_CASE_ ) _a = tf.constant([-11.1069, -9.7877, -8.3777] ) self.assertTrue(np.allclose(outputs.logits[0, :3].numpy() , SCREAMING_SNAKE_CASE_ , atol=1e-4 ) )
562
0
"""simple docstring""" from __future__ import annotations import sys from collections import deque from typing import Generic, TypeVar __SCREAMING_SNAKE_CASE : Tuple = TypeVar('''T''') class lowerCamelCase_( Generic[T] ): '''simple docstring''' lowercase__ : Union[str, Any] = 42 # Cache store of keys lowercase__ : Any = 42 # References of the keys in cache lowercase__ : Optional[int] = 10 # Maximum capacity of cache def __init__( self , lowerCamelCase__ ): _lowerCamelCase = deque() _lowerCamelCase = set() if not n: _lowerCamelCase = sys.maxsize elif n < 0: raise ValueError('''n should be an integer greater than 0.''' ) else: _lowerCamelCase = n def snake_case__ ( self , lowerCamelCase__ ): if x not in self.key_reference: if len(self.dq_store ) == LRUCache._MAX_CAPACITY: _lowerCamelCase = self.dq_store.pop() self.key_reference.remove(_UpperCAmelCase ) else: self.dq_store.remove(_UpperCAmelCase ) self.dq_store.appendleft(_UpperCAmelCase ) self.key_reference.add(_UpperCAmelCase ) def snake_case__ ( self ): for k in self.dq_store: print(_UpperCAmelCase ) def __repr__( self ): return F"""LRUCache({self._MAX_CAPACITY}) => {list(self.dq_store )}""" if __name__ == "__main__": import doctest doctest.testmod() __SCREAMING_SNAKE_CASE : int = LRUCache(4) lru_cache.refer('''A''') lru_cache.refer(2) lru_cache.refer(3) lru_cache.refer('''A''') lru_cache.refer(4) lru_cache.refer(5) lru_cache.display() print(lru_cache) assert str(lru_cache) == "LRUCache(4) => [5, 4, 'A', 3]"
713
"""simple docstring""" from __future__ import annotations from math import pow, sqrt def lowerCAmelCase_( lowercase_ : float , lowercase_ : float , lowercase_ : float ) -> dict[str, float]: if (resistance, reactance, impedance).count(0 ) != 1: raise ValueError('''One and only one argument must be 0''' ) if resistance == 0: return {"resistance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif reactance == 0: return {"reactance": sqrt(pow(lowercase_ , 2 ) - pow(lowercase_ , 2 ) )} elif impedance == 0: return {"impedance": sqrt(pow(lowercase_ , 2 ) + pow(lowercase_ , 2 ) )} else: raise ValueError('''Exactly one argument must be 0''' ) if __name__ == "__main__": import doctest doctest.testmod()
623
0
'''simple docstring''' import argparse import json import os import fairseq import torch from fairseq.data import Dictionary from transformers import ( WavaVecaConformerConfig, WavaVecaConformerForCTC, WavaVecaConformerForPreTraining, WavaVecaCTCTokenizer, WavaVecaFeatureExtractor, WavaVecaProcessor, logging, ) logging.set_verbosity_info() UpperCAmelCase_ : Optional[int] = logging.get_logger(__name__) UpperCAmelCase_ : Any = { '''post_extract_proj''': '''feature_projection.projection''', '''encoder.pos_conv.0''': '''encoder.pos_conv_embed.conv''', '''self_attn.linear_k''': '''encoder.layers.*.self_attn.linear_k''', '''self_attn.linear_v''': '''encoder.layers.*.self_attn.linear_v''', '''self_attn.linear_q''': '''encoder.layers.*.self_attn.linear_q''', '''self_attn.pos_bias_u''': '''encoder.layers.*.self_attn.pos_bias_u''', '''self_attn.pos_bias_v''': '''encoder.layers.*.self_attn.pos_bias_v''', '''self_attn.linear_out''': '''encoder.layers.*.self_attn.linear_out''', '''self_attn.linear_pos''': '''encoder.layers.*.self_attn.linear_pos''', '''self_attn.rotary_emb''': '''encoder.embed_positions''', '''self_attn_layer_norm''': '''encoder.layers.*.self_attn_layer_norm''', '''conv_module.pointwise_conv1''': '''encoder.layers.*.conv_module.pointwise_conv1''', '''conv_module.pointwise_conv2''': '''encoder.layers.*.conv_module.pointwise_conv2''', '''conv_module.depthwise_conv''': '''encoder.layers.*.conv_module.depthwise_conv''', '''conv_module.batch_norm''': '''encoder.layers.*.conv_module.batch_norm''', '''conv_module.layer_norm''': '''encoder.layers.*.conv_module.layer_norm''', '''ffn1.w_1''': '''encoder.layers.*.ffn1.intermediate_dense''', '''ffn1.w_2''': '''encoder.layers.*.ffn1.output_dense''', '''ffn1.layer_norm''': '''encoder.layers.*.ffn1_layer_norm''', '''ffn2.w_1''': '''encoder.layers.*.ffn2.intermediate_dense''', '''ffn2.w_2''': '''encoder.layers.*.ffn2.output_dense''', '''ffn2.layer_norm''': '''encoder.layers.*.ffn2_layer_norm''', '''final_layer_norm''': '''encoder.layers.*.final_layer_norm''', '''encoder.layer_norm''': '''encoder.layer_norm''', '''w2v_model.layer_norm''': '''feature_projection.layer_norm''', '''quantizer.weight_proj''': '''quantizer.weight_proj''', '''quantizer.vars''': '''quantizer.codevectors''', '''project_q''': '''project_q''', '''final_proj''': '''project_hid''', '''w2v_encoder.proj''': '''lm_head''', '''mask_emb''': '''masked_spec_embed''', } UpperCAmelCase_ : Tuple = [ '''lm_head''', '''quantizer.weight_proj''', '''quantizer.codevectors''', '''project_q''', '''project_hid''', ] def _UpperCamelCase (_lowerCamelCase : Union[str, Any] , _lowerCamelCase : str , _lowerCamelCase : Optional[Any] , _lowerCamelCase : List[Any] , _lowerCamelCase : List[str] )-> Optional[int]: '''simple docstring''' for attribute in key.split('''.''' ): __snake_case = getattr(_lowerCamelCase , _lowerCamelCase ) if weight_type is not None: __snake_case = getattr(_lowerCamelCase , _lowerCamelCase ).shape else: __snake_case = hf_pointer.shape if hf_shape != value.shape: raise ValueError( f'''Shape of hf {key + "." + weight_type if weight_type is not None else ""} is {hf_shape}, but should be''' f''' {value.shape} for {full_name}''' ) if weight_type == "weight": __snake_case = value elif weight_type == "weight_g": __snake_case = value elif weight_type == "weight_v": __snake_case = value elif weight_type == "bias": __snake_case = value elif weight_type == "running_mean": __snake_case = value elif weight_type == "running_var": __snake_case = value elif weight_type == "num_batches_tracked": __snake_case = value elif weight_type == "inv_freq": __snake_case = value else: __snake_case = value logger.info(f'''{key + "." + weight_type if weight_type is not None else ""} was initialized from {full_name}.''' ) def _UpperCamelCase (_lowerCamelCase : Any , _lowerCamelCase : Tuple , _lowerCamelCase : str )-> int: '''simple docstring''' __snake_case = [] __snake_case = fairseq_model.state_dict() __snake_case = hf_model.wavaveca_conformer.feature_extractor for name, value in fairseq_dict.items(): __snake_case = False if "conv_layers" in name: load_conv_layer( _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , hf_model.config.feat_extract_norm == '''group''' , ) __snake_case = True else: for key, mapped_key in MAPPING.items(): __snake_case = '''wav2vec2_conformer.''' + mapped_key if mapped_key not in TOP_LEVEL_KEYS else mapped_key if key in name or key.split('''w2v_model.''' )[-1] == name.split('''.''' )[0]: __snake_case = True if "*" in mapped_key: __snake_case = name.split(_lowerCamelCase )[0].split('''.''' )[-2] __snake_case = mapped_key.replace('''*''' , _lowerCamelCase ) if "pos_bias_u" in name: __snake_case = None elif "pos_bias_v" in name: __snake_case = None elif "weight_g" in name: __snake_case = '''weight_g''' elif "weight_v" in name: __snake_case = '''weight_v''' elif "bias" in name: __snake_case = '''bias''' elif "weight" in name: # TODO: don't match quantizer.weight_proj __snake_case = '''weight''' elif "running_mean" in name: __snake_case = '''running_mean''' elif "inv_freq" in name: __snake_case = '''inv_freq''' elif "running_var" in name: __snake_case = '''running_var''' elif "num_batches_tracked" in name: __snake_case = '''num_batches_tracked''' else: __snake_case = None set_recursively(_lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase , _lowerCamelCase ) continue if not is_used: unused_weights.append(_lowerCamelCase ) logger.warning(f'''Unused weights: {unused_weights}''' ) def _UpperCamelCase (_lowerCamelCase : Optional[Any] , _lowerCamelCase : Optional[Any] , _lowerCamelCase : Any , _lowerCamelCase : List[str] , _lowerCamelCase : List[str] )-> Optional[Any]: '''simple docstring''' __snake_case = full_name.split('''conv_layers.''' )[-1] __snake_case = name.split('''.''' ) __snake_case = int(items[0] ) __snake_case = int(items[1] ) if type_id == 0: if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.bias.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].conv.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].conv.weight.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract conv layer {layer_id} was initialized from {full_name}.''' ) elif (type_id == 2 and not use_group_norm) or (type_id == 2 and layer_id == 0 and use_group_norm): if "bias" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.bias.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) elif "weight" in name: if value.shape != feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape: raise ValueError( f'''{full_name} has size {value.shape}, but''' f''' {feature_extractor.conv_layers[layer_id].layer_norm.weight.data.shape} was found.''' ) __snake_case = value logger.info(f'''Feat extract layer norm weight of layer {layer_id} was initialized from {full_name}.''' ) else: unused_weights.append(_lowerCamelCase ) @torch.no_grad() def _UpperCamelCase (_lowerCamelCase : List[Any] , _lowerCamelCase : int , _lowerCamelCase : int=None , _lowerCamelCase : Union[str, Any]=None , _lowerCamelCase : str=True )-> Optional[Any]: '''simple docstring''' if config_path is not None: __snake_case = WavaVecaConformerConfig.from_pretrained(_lowerCamelCase , hidden_act='''swish''' ) else: __snake_case = WavaVecaConformerConfig() if "rope" in checkpoint_path: __snake_case = '''rotary''' if is_finetuned: if dict_path: __snake_case = Dictionary.load(_lowerCamelCase ) # important change bos & pad token id since CTC symbol is <pad> and # not <s> as in fairseq __snake_case = target_dict.pad_index __snake_case = target_dict.bos_index __snake_case = target_dict.eos_index __snake_case = len(target_dict.symbols ) __snake_case = os.path.join(_lowerCamelCase , '''vocab.json''' ) if not os.path.isdir(_lowerCamelCase ): logger.error('''--pytorch_dump_folder_path ({}) should be a directory'''.format(_lowerCamelCase ) ) return os.makedirs(_lowerCamelCase , exist_ok=_lowerCamelCase ) __snake_case = target_dict.indices # fairseq has the <pad> and <s> switched __snake_case = 0 __snake_case = 1 with open(_lowerCamelCase , '''w''' , encoding='''utf-8''' ) as vocab_handle: json.dump(_lowerCamelCase , _lowerCamelCase ) __snake_case = WavaVecaCTCTokenizer( _lowerCamelCase , unk_token=target_dict.unk_word , pad_token=target_dict.pad_word , bos_token=target_dict.bos_word , eos_token=target_dict.eos_word , word_delimiter_token='''|''' , do_lower_case=_lowerCamelCase , ) __snake_case = True if config.feat_extract_norm == '''layer''' else False __snake_case = WavaVecaFeatureExtractor( feature_size=1 , sampling_rate=1_60_00 , padding_value=0 , do_normalize=_lowerCamelCase , return_attention_mask=_lowerCamelCase , ) __snake_case = WavaVecaProcessor(feature_extractor=_lowerCamelCase , tokenizer=_lowerCamelCase ) processor.save_pretrained(_lowerCamelCase ) __snake_case = WavaVecaConformerForCTC(_lowerCamelCase ) else: __snake_case = WavaVecaConformerForPreTraining(_lowerCamelCase ) if is_finetuned: __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task( [checkpoint_path] , arg_overrides={'''data''': '''/'''.join(dict_path.split('''/''' )[:-1] )} ) else: __snake_case = argparse.Namespace(task='''audio_pretraining''' ) __snake_case = fairseq.tasks.setup_task(_lowerCamelCase ) __snake_case , __snake_case , __snake_case = fairseq.checkpoint_utils.load_model_ensemble_and_task([checkpoint_path] , task=_lowerCamelCase ) __snake_case = model[0].eval() recursively_load_weights(_lowerCamelCase , _lowerCamelCase , not is_finetuned ) hf_wavavec.save_pretrained(_lowerCamelCase ) if __name__ == "__main__": UpperCAmelCase_ : int = argparse.ArgumentParser() parser.add_argument('''--pytorch_dump_folder_path''', default=None, type=str, help='''Path to the output PyTorch model.''') parser.add_argument('''--checkpoint_path''', default=None, type=str, help='''Path to fairseq checkpoint''') parser.add_argument('''--dict_path''', default=None, type=str, help='''Path to dict of fine-tuned model''') parser.add_argument('''--config_path''', default=None, type=str, help='''Path to hf config.json of model to convert''') parser.add_argument( '''--not_finetuned''', action='''store_true''', help='''Whether the model to convert is a fine-tuned model or not''' ) UpperCAmelCase_ : int = parser.parse_args() convert_wavaveca_conformer_checkpoint( args.checkpoint_path, args.pytorch_dump_folder_path, args.config_path, args.dict_path, not args.not_finetuned )
24
'''simple docstring''' import warnings from typing import List, Optional, Tuple, Union import numpy as np import PIL import torch from ...models import UNetaDModel from ...schedulers import RePaintScheduler from ...utils import PIL_INTERPOLATION, logging, randn_tensor from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput UpperCAmelCase_ : Tuple = logging.get_logger(__name__) # pylint: disable=invalid-name def _UpperCamelCase (_lowerCamelCase : Union[List, PIL.Image.Image, torch.Tensor] )-> Optional[Any]: '''simple docstring''' warnings.warn( '''The preprocess method is deprecated and will be removed in a future version. Please''' ''' use VaeImageProcessor.preprocess instead''' , _lowerCamelCase , ) if isinstance(_lowerCamelCase , torch.Tensor ): return image elif isinstance(_lowerCamelCase , PIL.Image.Image ): __snake_case = [image] if isinstance(image[0] , PIL.Image.Image ): __snake_case , __snake_case = image[0].size __snake_case , __snake_case = (x - x % 8 for x in (w, h)) # resize to integer multiple of 8 __snake_case = [np.array(i.resize((w, h) , resample=PIL_INTERPOLATION['''lanczos'''] ) )[None, :] for i in image] __snake_case = np.concatenate(_lowerCamelCase , axis=0 ) __snake_case = np.array(_lowerCamelCase ).astype(np.floataa ) / 255.0 __snake_case = image.transpose(0 , 3 , 1 , 2 ) __snake_case = 2.0 * image - 1.0 __snake_case = torch.from_numpy(_lowerCamelCase ) elif isinstance(image[0] , torch.Tensor ): __snake_case = torch.cat(_lowerCamelCase , dim=0 ) return image def _UpperCamelCase (_lowerCamelCase : Union[List, PIL.Image.Image, torch.Tensor] )-> Optional[Any]: '''simple docstring''' if isinstance(_lowerCamelCase , torch.Tensor ): return mask elif isinstance(_lowerCamelCase , PIL.Image.Image ): __snake_case = [mask] if isinstance(mask[0] , PIL.Image.Image ): __snake_case , __snake_case = mask[0].size __snake_case , __snake_case = (x - x % 32 for x in (w, h)) # resize to integer multiple of 32 __snake_case = [np.array(m.convert('''L''' ).resize((w, h) , resample=PIL_INTERPOLATION['''nearest'''] ) )[None, :] for m in mask] __snake_case = np.concatenate(_lowerCamelCase , axis=0 ) __snake_case = mask.astype(np.floataa ) / 255.0 __snake_case = 0 __snake_case = 1 __snake_case = torch.from_numpy(_lowerCamelCase ) elif isinstance(mask[0] , torch.Tensor ): __snake_case = torch.cat(_lowerCamelCase , dim=0 ) return mask class lowerCAmelCase ( __lowerCAmelCase): __lowercase : UNetaDModel __lowercase : RePaintScheduler def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> str: '''simple docstring''' super().__init__() self.register_modules(unet=__SCREAMING_SNAKE_CASE , scheduler=__SCREAMING_SNAKE_CASE ) @torch.no_grad() def __call__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE = 250 , __SCREAMING_SNAKE_CASE = 0.0 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = 10 , __SCREAMING_SNAKE_CASE = None , __SCREAMING_SNAKE_CASE = "pil" , __SCREAMING_SNAKE_CASE = True , ) -> Union[ImagePipelineOutput, Tuple]: '''simple docstring''' __snake_case = image __snake_case = _preprocess_image(__SCREAMING_SNAKE_CASE ) __snake_case = original_image.to(device=self.device , dtype=self.unet.dtype ) __snake_case = _preprocess_mask(__SCREAMING_SNAKE_CASE ) __snake_case = mask_image.to(device=self.device , dtype=self.unet.dtype ) __snake_case = original_image.shape[0] # sample gaussian noise to begin the loop if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) and len(__SCREAMING_SNAKE_CASE ) != batch_size: raise ValueError( F'''You have passed a list of generators of length {len(__SCREAMING_SNAKE_CASE )}, but requested an effective batch''' F''' size of {batch_size}. Make sure the batch size matches the length of the generators.''' ) __snake_case = original_image.shape __snake_case = randn_tensor(__SCREAMING_SNAKE_CASE , generator=__SCREAMING_SNAKE_CASE , device=self.device , dtype=self.unet.dtype ) # set step values self.scheduler.set_timesteps(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , self.device ) __snake_case = eta __snake_case = self.scheduler.timesteps[0] + 1 __snake_case = generator[0] if isinstance(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) else generator for i, t in enumerate(self.progress_bar(self.scheduler.timesteps ) ): if t < t_last: # predict the noise residual __snake_case = self.unet(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).sample # compute previous image: x_t -> x_t-1 __snake_case = self.scheduler.step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ).prev_sample else: # compute the reverse: x_t-1 -> x_t __snake_case = self.scheduler.undo_step(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) __snake_case = t __snake_case = (image / 2 + 0.5).clamp(0 , 1 ) __snake_case = image.cpu().permute(0 , 2 , 3 , 1 ).numpy() if output_type == "pil": __snake_case = self.numpy_to_pil(__SCREAMING_SNAKE_CASE ) if not return_dict: return (image,) return ImagePipelineOutput(images=__SCREAMING_SNAKE_CASE )
24
1
from datetime import datetime as dt import os from github import Github _a = [ """good first issue""", """good second issue""", """good difficult issue""", """feature request""", """new model""", """wip""", ] def snake_case__ ( ): lowerCAmelCase__ :Dict = Github(os.environ["GITHUB_TOKEN"] ) lowerCAmelCase__ :Dict = g.get_repo("huggingface/transformers" ) lowerCAmelCase__ :List[Any] = repo.get_issues(state="open" ) for issue in open_issues: lowerCAmelCase__ :Any = sorted([comment for comment in issue.get_comments()] , key=lambda UpperCAmelCase : i.created_at , reverse=UpperCAmelCase ) lowerCAmelCase__ :Optional[int] = comments[0] if len(UpperCAmelCase ) > 0 else None if ( last_comment is not None and last_comment.user.login == "github-actions[bot]" and (dt.utcnow() - issue.updated_at).days > 7 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would close issue {issue.number} since it has been 7 days of inactivity since bot mention.") issue.edit(state="closed" ) elif ( (dt.utcnow() - issue.updated_at).days > 2_3 and (dt.utcnow() - issue.created_at).days >= 3_0 and not any(label.name.lower() in LABELS_TO_EXEMPT for label in issue.get_labels() ) ): # print(f"Would add stale comment to {issue.number}") issue.create_comment( "This issue has been automatically marked as stale because it has not had " "recent activity. If you think this still needs to be addressed " "please comment on this thread.\n\nPlease note that issues that do not follow the " "[contributing guidelines](https://github.com/huggingface/transformers/blob/main/CONTRIBUTING.md) " "are likely to be ignored." ) if __name__ == "__main__": main()
719
from __future__ import annotations import numpy as np def snake_case__ ( UpperCAmelCase : np.ndarray ): lowerCAmelCase__ ,lowerCAmelCase__ :List[str] = np.shape(UpperCAmelCase ) if rows != columns: lowerCAmelCase__ :Tuple = ( "'table' has to be of square shaped array but got a " F'''{rows}x{columns} array:\n{table}''' ) raise ValueError(UpperCAmelCase ) lowerCAmelCase__ :Optional[Any] = np.zeros((rows, columns) ) lowerCAmelCase__ :Tuple = np.zeros((rows, columns) ) for i in range(UpperCAmelCase ): for j in range(UpperCAmelCase ): lowerCAmelCase__ :Any = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase ) ) if upper[j][j] == 0: raise ArithmeticError("No LU decomposition exists" ) lowerCAmelCase__ :Any = (table[i][j] - total) / upper[j][j] lowerCAmelCase__ :Tuple = 1 for j in range(UpperCAmelCase , UpperCAmelCase ): lowerCAmelCase__ :Optional[Any] = sum(lower[i][k] * upper[k][j] for k in range(UpperCAmelCase ) ) lowerCAmelCase__ :Dict = table[i][j] - total return lower, upper if __name__ == "__main__": import doctest doctest.testmod()
111
0
'''simple docstring''' from __future__ import annotations def lowercase_ ( _lowercase , _lowercase = None , _lowercase = None , _lowercase = False , ) -> tuple[int, float, str]: '''simple docstring''' lowerCamelCase_ : Optional[Any] = cipher_alphabet or [chr(_lowercase ) for i in range(97 , 123 )] # If the argument is None or the user provided an empty dictionary if not frequencies_dict: # Frequencies of letters in the english language (how much they show up) lowerCamelCase_ : Union[str, Any] = { '''a''': 0.0_84_97, '''b''': 0.0_14_92, '''c''': 0.0_22_02, '''d''': 0.0_42_53, '''e''': 0.1_11_62, '''f''': 0.0_22_28, '''g''': 0.0_20_15, '''h''': 0.0_60_94, '''i''': 0.0_75_46, '''j''': 0.0_01_53, '''k''': 0.0_12_92, '''l''': 0.0_40_25, '''m''': 0.0_24_06, '''n''': 0.0_67_49, '''o''': 0.0_75_07, '''p''': 0.0_19_29, '''q''': 0.0_00_95, '''r''': 0.0_75_87, '''s''': 0.0_63_27, '''t''': 0.0_93_56, '''u''': 0.0_27_58, '''v''': 0.0_09_78, '''w''': 0.0_25_60, '''x''': 0.0_01_50, '''y''': 0.0_19_94, '''z''': 0.0_00_77, } else: # Custom frequencies dictionary lowerCamelCase_ : Dict = frequencies_dict if not case_sensitive: lowerCamelCase_ : List[Any] = ciphertext.lower() # Chi squared statistic values lowerCamelCase_ : dict[int, tuple[float, str]] = {} # cycle through all of the shifts for shift in range(len(_lowercase ) ): lowerCamelCase_ : Any = '''''' # decrypt the message with the shift for letter in ciphertext: try: # Try to index the letter in the alphabet lowerCamelCase_ : Union[str, Any] = (alphabet_letters.index(letter.lower() ) - shift) % len( _lowercase ) decrypted_with_shift += ( alphabet_letters[new_key].upper() if case_sensitive and letter.isupper() else alphabet_letters[new_key] ) except ValueError: # Append the character if it isn't in the alphabet decrypted_with_shift += letter lowerCamelCase_ : Optional[Any] = 0.0 # Loop through each letter in the decoded message with the shift for letter in decrypted_with_shift: if case_sensitive: lowerCamelCase_ : Optional[int] = letter.lower() if letter in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ : str = decrypted_with_shift.lower().count(_lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ : str = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ : Union[str, Any] = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value else: if letter.lower() in frequencies: # Get the amount of times the letter occurs in the message lowerCamelCase_ : int = decrypted_with_shift.count(_lowercase ) # Get the excepcted amount of times the letter should appear based # on letter frequencies lowerCamelCase_ : Optional[int] = frequencies[letter] * occurrences # Complete the chi squared statistic formula lowerCamelCase_ : int = ((occurrences - expected) ** 2) / expected # Add the margin of error to the total chi squared statistic chi_squared_statistic += chi_letter_value # Add the data to the chi_squared_statistic_values dictionary lowerCamelCase_ : List[str] = ( chi_squared_statistic, decrypted_with_shift, ) # Get the most likely cipher by finding the cipher with the smallest chi squared # statistic def chi_squared_statistic_values_sorting_key(_lowercase ) -> tuple[float, str]: return chi_squared_statistic_values[key] lowerCamelCase_ : int = min( _lowercase , key=_lowercase , ) # Get all the data from the most likely cipher (key, decoded message) ( ( lowerCamelCase_ ), ( lowerCamelCase_ ), ) : Optional[int] = chi_squared_statistic_values[most_likely_cipher] # Return the data on the most likely shift return ( most_likely_cipher, most_likely_cipher_chi_squared_value, decoded_most_likely_cipher, )
422
'''simple docstring''' def lowercase_ ( _lowercase ) -> set: '''simple docstring''' lowerCamelCase_ : str = set() # edges = list of graph's edges lowerCamelCase_ : Optional[Any] = get_edges(_lowercase ) # While there are still elements in edges list, take an arbitrary edge # (from_node, to_node) and add his extremity to chosen_vertices and then # remove all arcs adjacent to the from_node and to_node while edges: lowerCamelCase_, lowerCamelCase_ : Union[str, Any] = edges.pop() chosen_vertices.add(_lowercase ) chosen_vertices.add(_lowercase ) for edge in edges.copy(): if from_node in edge or to_node in edge: edges.discard(_lowercase ) return chosen_vertices def lowercase_ ( _lowercase ) -> set: '''simple docstring''' lowerCamelCase_ : Any = set() for from_node, to_nodes in graph.items(): for to_node in to_nodes: edges.add((from_node, to_node) ) return edges if __name__ == "__main__": import doctest doctest.testmod() # graph = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} # print(f"Matching vertex cover:\n{matching_min_vertex_cover(graph)}")
422
1
"""simple docstring""" import sys UpperCAmelCase = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowercase ( a__ : str ) -> int: _UpperCamelCase = 1 for digit in s: product *= int(a__ ) return product def lowercase ( a__ : str = N ) -> int: _UpperCamelCase = -sys.maxsize - 1 _UpperCamelCase = n[:13] _UpperCamelCase = 13 while cur_index < len(a__ ) - 13: if int(n[cur_index] ) >= int(substr[0] ): _UpperCamelCase = substr[1:] + n[cur_index] cur_index += 1 else: _UpperCamelCase = max(a__ , str_eval(a__ ) ) _UpperCamelCase = n[cur_index : cur_index + 13] cur_index += 13 return largest_product if __name__ == "__main__": print(F'''{solution() = }''')
711
"""simple docstring""" import importlib.metadata import operator import re import sys from typing import Optional from packaging import version UpperCAmelCase = { """<""": operator.lt, """<=""": operator.le, """==""": operator.eq, """!=""": operator.ne, """>=""": operator.ge, """>""": operator.gt, } def lowercase ( a__ : Optional[int] , a__ : List[str] , a__ : List[str] , a__ : Union[str, Any] , a__ : Tuple , a__ : Dict ) -> Optional[Any]: if got_ver is None or want_ver is None: raise ValueError( F'''Unable to compare versions for {requirement}: need={want_ver} found={got_ver}. This is unusual. Consider''' F''' reinstalling {pkg}.''' ) if not ops[op](version.parse(a__ ) , version.parse(a__ ) ): raise ImportError( F'''{requirement} is required for a normal functioning of this module, but found {pkg}=={got_ver}.{hint}''' ) def lowercase ( a__ : str , a__ : Optional[str] = None ) -> None: _UpperCamelCase = F'''\n{hint}''' if hint is not None else '''''' # non-versioned check if re.match(R'''^[\w_\-\d]+$''' , a__ ): _UpperCamelCase , _UpperCamelCase , _UpperCamelCase = requirement, None, None else: _UpperCamelCase = re.findall(R'''^([^!=<>\s]+)([\s!=<>]{1,2}.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23, but''' F''' got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_full.split(''',''' ) # there could be multiple requirements _UpperCamelCase = {} for w in want_range: _UpperCamelCase = re.findall(R'''^([\s!=<>]{1,2})(.+)''' , a__ ) if not match: raise ValueError( '''requirement needs to be in the pip package format, .e.g., package_a==1.23, or package_b>=1.23,''' F''' but got {requirement}''' ) _UpperCamelCase , _UpperCamelCase = match[0] _UpperCamelCase = want_ver if op not in ops: raise ValueError(F'''{requirement}: need one of {list(ops.keys() )}, but got {op}''' ) # special case if pkg == "python": _UpperCamelCase = '''.'''.join([str(a__ ) for x in sys.version_info[:3]] ) for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) return # check if any version is installed try: _UpperCamelCase = importlib.metadata.version(a__ ) except importlib.metadata.PackageNotFoundError: raise importlib.metadata.PackageNotFoundError( F'''The \'{requirement}\' distribution was not found and is required by this application. {hint}''' ) # check that the right version is installed if version number or a range was provided if want_ver is not None: for op, want_ver in wanted.items(): _compare_versions(a__ , a__ , a__ , a__ , a__ , a__ ) def lowercase ( a__ : Optional[int] ) -> Dict: _UpperCamelCase = '''Try: pip install transformers -U or pip install -e \'.[dev]\' if you\'re working with git main''' return require_version(a__ , a__ )
342
0
'''simple docstring''' import os def __A ( ) -> List[Any]: '''simple docstring''' with open(os.path.dirname(UpperCAmelCase ) + "/grid.txt" ) as f: _UpperCamelCase : Dict = [] # noqa: E741 for _ in range(2_0 ): l.append([int(UpperCAmelCase ) for x in f.readline().split()] ) _UpperCamelCase : int = 0 # right for i in range(2_0 ): for j in range(1_7 ): _UpperCamelCase : Any = l[i][j] * l[i][j + 1] * l[i][j + 2] * l[i][j + 3] if temp > maximum: _UpperCamelCase : str = temp # down for i in range(1_7 ): for j in range(2_0 ): _UpperCamelCase : str = l[i][j] * l[i + 1][j] * l[i + 2][j] * l[i + 3][j] if temp > maximum: _UpperCamelCase : Optional[int] = temp # diagonal 1 for i in range(1_7 ): for j in range(1_7 ): _UpperCamelCase : Optional[Any] = l[i][j] * l[i + 1][j + 1] * l[i + 2][j + 2] * l[i + 3][j + 3] if temp > maximum: _UpperCamelCase : str = temp # diagonal 2 for i in range(1_7 ): for j in range(3 ,2_0 ): _UpperCamelCase : str = l[i][j] * l[i + 1][j - 1] * l[i + 2][j - 2] * l[i + 3][j - 3] if temp > maximum: _UpperCamelCase : List[str] = temp return maximum if __name__ == "__main__": print(solution())
435
'''simple docstring''' import unittest from transformers import load_tool from .test_tools_common import ToolTesterMixin lowerCAmelCase_ : List[str] = """ Hugging Face was founded in 2016 by French entrepreneurs Clément Delangue, Julien Chaumond, and Thomas Wolf originally as a company that developed a chatbot app targeted at teenagers.[2] After open-sourcing the model behind the chatbot, the company pivoted to focus on being a platform for machine learning. In March 2021, Hugging Face raised $40 million in a Series B funding round.[3] On April 28, 2021, the company launched the BigScience Research Workshop in collaboration with several other research groups to release an open large language model.[4] In 2022, the workshop concluded with the announcement of BLOOM, a multilingual large language model with 176 billion parameters.[5] """ class SCREAMING_SNAKE_CASE ( unittest.TestCase , SCREAMING_SNAKE_CASE ): '''simple docstring''' def snake_case__ ( self : Tuple ) ->Union[str, Any]: '''simple docstring''' _UpperCamelCase : str = load_tool("text-question-answering" ) self.tool.setup() _UpperCamelCase : str = load_tool("text-question-answering" , remote=lowercase__ ) def snake_case__ ( self : List[Any] ) ->Tuple: '''simple docstring''' _UpperCamelCase : int = self.tool(lowercase__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowercase__ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : List[str] ) ->Dict: '''simple docstring''' _UpperCamelCase : Optional[Any] = self.remote_tool(lowercase__ , "What did Hugging Face do in April 2021?" ) self.assertEqual(lowercase__ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : Union[str, Any] ) ->Optional[Any]: '''simple docstring''' _UpperCamelCase : List[Any] = self.tool(text=lowercase__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowercase__ , "launched the BigScience Research Workshop" ) def snake_case__ ( self : Any ) ->str: '''simple docstring''' _UpperCamelCase : List[str] = self.remote_tool(text=lowercase__ , question="What did Hugging Face do in April 2021?" ) self.assertEqual(lowercase__ , "launched the BigScience Research Workshop" )
435
1
import copy import unittest from transformers.models.auto import get_values from transformers.testing_utils import require_torch, slow, torch_device from transformers.utils import cached_property, is_torch_available, is_vision_available from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( MODEL_FOR_MULTIPLE_CHOICE_MAPPING, MODEL_FOR_QUESTION_ANSWERING_MAPPING, MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING, MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING, LayoutLMvaConfig, LayoutLMvaForQuestionAnswering, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaModel, ) from transformers.models.layoutlmva.modeling_layoutlmva import LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import LayoutLMvaImageProcessor class UpperCAmelCase__ : """simple docstring""" def __init__( self , A_ , A_=2 , A_=3 , A_=4 , A_=2 , A_=7 , A_=True , A_=True , A_=True , A_=True , A_=99 , A_=36 , A_=3 , A_=4 , A_=37 , A_="gelu" , A_=0.1 , A_=0.1 , A_=512 , A_=16 , A_=2 , A_=0.02 , A_=6 , A_=6 , A_=3 , A_=4 , A_=None , A_=1000 , ) -> Optional[int]: __UpperCamelCase =parent __UpperCamelCase =batch_size __UpperCamelCase =num_channels __UpperCamelCase =image_size __UpperCamelCase =patch_size __UpperCamelCase =text_seq_length __UpperCamelCase =is_training __UpperCamelCase =use_input_mask __UpperCamelCase =use_token_type_ids __UpperCamelCase =use_labels __UpperCamelCase =vocab_size __UpperCamelCase =hidden_size __UpperCamelCase =num_hidden_layers __UpperCamelCase =num_attention_heads __UpperCamelCase =intermediate_size __UpperCamelCase =hidden_act __UpperCamelCase =hidden_dropout_prob __UpperCamelCase =attention_probs_dropout_prob __UpperCamelCase =max_position_embeddings __UpperCamelCase =type_vocab_size __UpperCamelCase =type_sequence_label_size __UpperCamelCase =initializer_range __UpperCamelCase =coordinate_size __UpperCamelCase =shape_size __UpperCamelCase =num_labels __UpperCamelCase =num_choices __UpperCamelCase =scope __UpperCamelCase =range_bbox # LayoutLMv3's sequence length equals the number of text tokens + number of patches + 1 (we add 1 for the CLS token) __UpperCamelCase =text_seq_length __UpperCamelCase =(image_size // patch_size) ** 2 + 1 __UpperCamelCase =self.text_seq_length + self.image_seq_length def _a ( self ) -> Dict: __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.vocab_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length, 4] , self.range_bbox ) # Ensure that bbox is legal for i in range(bbox.shape[0] ): for j in range(bbox.shape[1] ): if bbox[i, j, 3] < bbox[i, j, 1]: __UpperCamelCase =bbox[i, j, 3] __UpperCamelCase =bbox[i, j, 1] __UpperCamelCase =t if bbox[i, j, 2] < bbox[i, j, 0]: __UpperCamelCase =bbox[i, j, 2] __UpperCamelCase =bbox[i, j, 0] __UpperCamelCase =t __UpperCamelCase =floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __UpperCamelCase =None if self.use_input_mask: __UpperCamelCase =random_attention_mask([self.batch_size, self.text_seq_length] ) __UpperCamelCase =None if self.use_token_type_ids: __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.type_vocab_size ) __UpperCamelCase =None __UpperCamelCase =None if self.use_labels: __UpperCamelCase =ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCamelCase =ids_tensor([self.batch_size, self.text_seq_length] , self.num_labels ) __UpperCamelCase =LayoutLMvaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , initializer_range=self.initializer_range , coordinate_size=self.coordinate_size , shape_size=self.shape_size , input_size=self.image_size , patch_size=self.patch_size , ) return config, input_ids, bbox, pixel_values, token_type_ids, input_mask, sequence_labels, token_labels def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> int: __UpperCamelCase =LayoutLMvaModel(config=A_ ) model.to(A_ ) model.eval() # text + image __UpperCamelCase =model(A_ , pixel_values=A_ ) __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ , bbox=A_ , pixel_values=A_ , token_type_ids=A_ ) __UpperCamelCase =model(A_ , bbox=A_ , pixel_values=A_ ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) # text only __UpperCamelCase =model(A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.text_seq_length, self.hidden_size) ) # image only __UpperCamelCase =model(pixel_values=A_ ) self.parent.assertEqual( result.last_hidden_state.shape , (self.batch_size, self.image_seq_length, self.hidden_size) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: __UpperCamelCase =self.num_labels __UpperCamelCase =LayoutLMvaForSequenceClassification(A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> Optional[int]: __UpperCamelCase =self.num_labels __UpperCamelCase =LayoutLMvaForTokenClassification(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , labels=A_ , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.text_seq_length, self.num_labels) ) def _a ( self , A_ , A_ , A_ , A_ , A_ , A_ , A_ , A_ ) -> List[Any]: __UpperCamelCase =LayoutLMvaForQuestionAnswering(config=A_ ) model.to(A_ ) model.eval() __UpperCamelCase =model( A_ , bbox=A_ , pixel_values=A_ , attention_mask=A_ , token_type_ids=A_ , start_positions=A_ , end_positions=A_ , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def _a ( self ) -> int: __UpperCamelCase =self.prepare_config_and_inputs() ( ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ( __UpperCamelCase ) , ) =config_and_inputs __UpperCamelCase ={ 'input_ids': input_ids, 'bbox': bbox, 'pixel_values': pixel_values, 'token_type_ids': token_type_ids, 'attention_mask': input_mask, } return config, inputs_dict @require_torch class UpperCAmelCase__ ( A_ , A_ , unittest.TestCase ): """simple docstring""" UpperCAmelCase__ : int = False UpperCAmelCase__ : List[str] = False UpperCAmelCase__ : Optional[int] = False UpperCAmelCase__ : str = ( ( LayoutLMvaModel, LayoutLMvaForSequenceClassification, LayoutLMvaForTokenClassification, LayoutLMvaForQuestionAnswering, ) if is_torch_available() else () ) UpperCAmelCase__ : List[Any] = ( {"document-question-answering": LayoutLMvaForQuestionAnswering, "feature-extraction": LayoutLMvaModel} if is_torch_available() else {} ) def _a ( self , A_ , A_ , A_ , A_ , A_ ) -> Union[str, Any]: # `DocumentQuestionAnsweringPipeline` is expected to work with this model, but it combines the text and visual # embedding along the sequence dimension (dim 1), which causes an error during post-processing as `p_mask` has # the sequence dimension of the text embedding only. # (see the line `embedding_output = torch.cat([embedding_output, visual_embeddings], dim=1)`) return True def _a ( self ) -> List[Any]: __UpperCamelCase =LayoutLMvaModelTester(self ) __UpperCamelCase =ConfigTester(self , config_class=A_ , hidden_size=37 ) def _a ( self , A_ , A_ , A_=False ) -> Optional[int]: __UpperCamelCase =copy.deepcopy(A_ ) if model_class in get_values(A_ ): __UpperCamelCase ={ k: v.unsqueeze(1 ).expand(-1 , self.model_tester.num_choices , -1 ).contiguous() if isinstance(A_ , torch.Tensor ) and v.ndim > 1 else v for k, v in inputs_dict.items() } if return_labels: if model_class in get_values(A_ ): __UpperCamelCase =torch.ones(self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in get_values(A_ ): __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: __UpperCamelCase =torch.zeros( self.model_tester.batch_size , dtype=torch.long , device=A_ ) elif model_class in [ *get_values(A_ ), ]: __UpperCamelCase =torch.zeros( (self.model_tester.batch_size, self.model_tester.text_seq_length) , dtype=torch.long , device=A_ , ) return inputs_dict def _a ( self ) -> List[Any]: self.config_tester.run_common_tests() def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCamelCase =type self.model_tester.create_and_check_model(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*A_ ) def _a ( self ) -> str: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*A_ ) def _a ( self ) -> Any: __UpperCamelCase =self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*A_ ) @slow def _a ( self ) -> Optional[Any]: for model_name in LAYOUTLMV3_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCamelCase =LayoutLMvaModel.from_pretrained(A_ ) self.assertIsNotNone(A_ ) def _UpperCAmelCase ( ): __UpperCamelCase =Image.open('./tests/fixtures/tests_samples/COCO/000000039769.png' ) return image @require_torch class UpperCAmelCase__ ( unittest.TestCase ): """simple docstring""" @cached_property def _a ( self ) -> Union[str, Any]: return LayoutLMvaImageProcessor(apply_ocr=A_ ) if is_vision_available() else None @slow def _a ( self ) -> Dict: __UpperCamelCase =LayoutLMvaModel.from_pretrained('microsoft/layoutlmv3-base' ).to(A_ ) __UpperCamelCase =self.default_image_processor __UpperCamelCase =prepare_img() __UpperCamelCase =image_processor(images=A_ , return_tensors='pt' ).pixel_values.to(A_ ) __UpperCamelCase =torch.tensor([[1, 2]] ) __UpperCamelCase =torch.tensor([[1, 2, 3, 4], [5, 6, 7, 8]] ).unsqueeze(0 ) # forward pass __UpperCamelCase =model( input_ids=input_ids.to(A_ ) , bbox=bbox.to(A_ ) , pixel_values=pixel_values.to(A_ ) , ) # verify the logits __UpperCamelCase =torch.Size((1, 199, 768) ) self.assertEqual(outputs.last_hidden_state.shape , A_ ) __UpperCamelCase =torch.tensor( [[-0.0529, 0.3618, 0.1632], [-0.1587, -0.1667, -0.0400], [-0.1557, -0.1671, -0.0505]] ).to(A_ ) self.assertTrue(torch.allclose(outputs.last_hidden_state[0, :3, :3] , A_ , atol=1E-4 ) )
682
import json import os from pathlib import Path from shutil import copyfile from typing import Any, Dict, List, Optional, Tuple, Union import sentencepiece from ...tokenization_utils import BatchEncoding, PreTrainedTokenizer from ...utils import logging _A = logging.get_logger(__name__) _A = '▁' _A = { 'vocab_file': 'vocab.json', 'spm_file': 'sentencepiece.bpe.model', 'tokenizer_config_file': 'tokenizer_config.json', } _A = { 'vocab_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/vocab.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/vocab.json', }, 'spm_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/sentencepiece.bpe.model', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/sentencepiece.bpe.model', }, 'tokenizer_config_file': { 'facebook/m2m100_418M': 'https://huggingface.co/facebook/m2m100_418M/resolve/main/tokenizer_config.json', 'facebook/m2m100_1.2B': 'https://huggingface.co/facebook/m2m100_1.2B/resolve/main/tokenizer_config.json', }, } _A = { 'facebook/m2m100_418M': 1024, } # fmt: off _A = { 'm2m100': ['af', 'am', 'ar', 'ast', 'az', 'ba', 'be', 'bg', 'bn', 'br', 'bs', 'ca', 'ceb', 'cs', 'cy', 'da', 'de', 'el', 'en', 'es', 'et', 'fa', 'ff', 'fi', 'fr', 'fy', 'ga', 'gd', 'gl', 'gu', 'ha', 'he', 'hi', 'hr', 'ht', 'hu', 'hy', 'id', 'ig', 'ilo', 'is', 'it', 'ja', 'jv', 'ka', 'kk', 'km', 'kn', 'ko', 'lb', 'lg', 'ln', 'lo', 'lt', 'lv', 'mg', 'mk', 'ml', 'mn', 'mr', 'ms', 'my', 'ne', 'nl', 'no', 'ns', 'oc', 'or', 'pa', 'pl', 'ps', 'pt', 'ro', 'ru', 'sd', 'si', 'sk', 'sl', 'so', 'sq', 'sr', 'ss', 'su', 'sv', 'sw', 'ta', 'th', 'tl', 'tn', 'tr', 'uk', 'ur', 'uz', 'vi', 'wo', 'xh', 'yi', 'yo', 'zh', 'zu'], 'wmt21': ['en', 'ha', 'is', 'ja', 'cs', 'ru', 'zh', 'de'] } class UpperCAmelCase__ ( A_ ): """simple docstring""" UpperCAmelCase__ : Optional[int] = VOCAB_FILES_NAMES UpperCAmelCase__ : str = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES UpperCAmelCase__ : List[Any] = PRETRAINED_VOCAB_FILES_MAP UpperCAmelCase__ : Any = ["input_ids", "attention_mask"] UpperCAmelCase__ : List[int] = [] UpperCAmelCase__ : List[int] = [] def __init__( self , A_ , A_ , A_=None , A_=None , A_="<s>" , A_="</s>" , A_="</s>" , A_="<pad>" , A_="<unk>" , A_="m2m100" , A_ = None , A_=8 , **A_ , ) -> None: __UpperCamelCase ={} if sp_model_kwargs is None else sp_model_kwargs __UpperCamelCase =language_codes __UpperCamelCase =FAIRSEQ_LANGUAGE_CODES[language_codes] __UpperCamelCase ={lang_code: f'__{lang_code}__' for lang_code in fairseq_language_code} __UpperCamelCase =kwargs.get('additional_special_tokens' , [] ) kwargs["additional_special_tokens"] += [ self.get_lang_token(A_ ) for lang_code in fairseq_language_code if self.get_lang_token(A_ ) not in kwargs["additional_special_tokens"] ] super().__init__( src_lang=A_ , tgt_lang=A_ , bos_token=A_ , eos_token=A_ , sep_token=A_ , unk_token=A_ , pad_token=A_ , language_codes=A_ , sp_model_kwargs=self.sp_model_kwargs , num_madeup_words=A_ , **A_ , ) __UpperCamelCase =vocab_file __UpperCamelCase =load_json(A_ ) __UpperCamelCase ={v: k for k, v in self.encoder.items()} __UpperCamelCase =spm_file __UpperCamelCase =load_spm(A_ , self.sp_model_kwargs ) __UpperCamelCase =len(self.encoder ) __UpperCamelCase ={ self.get_lang_token(A_ ): self.encoder_size + i for i, lang_code in enumerate(A_ ) } __UpperCamelCase ={lang_code: self.encoder_size + i for i, lang_code in enumerate(A_ )} __UpperCamelCase ={v: k for k, v in self.lang_token_to_id.items()} __UpperCamelCase =src_lang if src_lang is not None else 'en' __UpperCamelCase =tgt_lang __UpperCamelCase =self.get_lang_id(self._src_lang ) self.set_src_lang_special_tokens(self._src_lang ) __UpperCamelCase =num_madeup_words @property def _a ( self ) -> int: return len(self.encoder ) + len(self.lang_token_to_id ) @property def _a ( self ) -> str: return self._src_lang @src_lang.setter def _a ( self , A_ ) -> None: __UpperCamelCase =new_src_lang self.set_src_lang_special_tokens(self._src_lang ) def _a ( self , A_ ) -> List[str]: return self.sp_model.encode(A_ , out_type=A_ ) def _a ( self , A_ ) -> Optional[Any]: if token in self.lang_token_to_id: return self.lang_token_to_id[token] return self.encoder.get(A_ , self.encoder[self.unk_token] ) def _a ( self , A_ ) -> str: if index in self.id_to_lang_token: return self.id_to_lang_token[index] return self.decoder.get(A_ , self.unk_token ) def _a ( self , A_ ) -> List[Any]: __UpperCamelCase =[] __UpperCamelCase ='' for token in tokens: # make sure that special tokens are not decoded using sentencepiece model if token in self.all_special_tokens: out_string += self.sp_model.decode(A_ ) + token __UpperCamelCase =[] else: current_sub_tokens.append(A_ ) out_string += self.sp_model.decode(A_ ) return out_string.strip() def _a ( self , A_ , A_ = None , A_ = False ) -> List[int]: if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_a=A_ , token_ids_a=A_ , already_has_special_tokens=A_ ) __UpperCamelCase =[1] * len(self.prefix_tokens ) __UpperCamelCase =[1] * len(self.suffix_tokens ) if token_ids_a is None: return prefix_ones + ([0] * len(A_ )) + suffix_ones return prefix_ones + ([0] * len(A_ )) + ([0] * len(A_ )) + suffix_ones def _a ( self , A_ , A_ = None ) -> List[int]: if token_ids_a is None: return self.prefix_tokens + token_ids_a + self.suffix_tokens # We don't expect to process pairs, but leave the pair logic for API consistency return self.prefix_tokens + token_ids_a + token_ids_a + self.suffix_tokens def _a ( self ) -> Dict: __UpperCamelCase ={self.convert_ids_to_tokens(A_ ): i for i in range(self.vocab_size )} vocab.update(self.added_tokens_encoder ) return vocab def __getstate__( self ) -> Dict: __UpperCamelCase =self.__dict__.copy() __UpperCamelCase =None return state def __setstate__( self , A_ ) -> None: __UpperCamelCase =d # for backward compatibility if not hasattr(self , 'sp_model_kwargs' ): __UpperCamelCase ={} __UpperCamelCase =load_spm(self.spm_file , self.sp_model_kwargs ) def _a ( self , A_ , A_ = None ) -> Tuple[str]: __UpperCamelCase =Path(A_ ) if not save_dir.is_dir(): raise OSError(f'{save_directory} should be a directory' ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['vocab_file'] ) __UpperCamelCase =save_dir / ( (filename_prefix + '-' if filename_prefix else '') + self.vocab_files_names['spm_file'] ) save_json(self.encoder , A_ ) if os.path.abspath(self.spm_file ) != os.path.abspath(A_ ) and os.path.isfile(self.spm_file ): copyfile(self.spm_file , A_ ) elif not os.path.isfile(self.spm_file ): with open(A_ , 'wb' ) as fi: __UpperCamelCase =self.sp_model.serialized_model_proto() fi.write(A_ ) return (str(A_ ), str(A_ )) def _a ( self , A_ , A_ = "en" , A_ = None , A_ = "ro" , **A_ , ) -> BatchEncoding: __UpperCamelCase =src_lang __UpperCamelCase =tgt_lang self.set_src_lang_special_tokens(self.src_lang ) return super().prepare_seqaseq_batch(A_ , A_ , **A_ ) def _a ( self , A_ , A_ , A_ , **A_ ) -> List[str]: if src_lang is None or tgt_lang is None: raise ValueError('Translation requires a `src_lang` and a `tgt_lang` for this model' ) __UpperCamelCase =src_lang __UpperCamelCase =self(A_ , add_special_tokens=A_ , **A_ ) __UpperCamelCase =self.get_lang_id(A_ ) __UpperCamelCase =tgt_lang_id return inputs def _a ( self ) -> List[Any]: self.set_src_lang_special_tokens(self.src_lang ) def _a ( self ) -> Dict: self.set_tgt_lang_special_tokens(self.tgt_lang ) def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> None: __UpperCamelCase =self.get_lang_token(A_ ) __UpperCamelCase =self.lang_token_to_id[lang_token] __UpperCamelCase =[self.cur_lang_id] __UpperCamelCase =[self.eos_token_id] def _a ( self , A_ ) -> str: return self.lang_code_to_token[lang] def _a ( self , A_ ) -> int: __UpperCamelCase =self.get_lang_token(A_ ) return self.lang_token_to_id[lang_token] def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str , SCREAMING_SNAKE_CASE__ : Dict[str, Any] ): __UpperCamelCase =sentencepiece.SentencePieceProcessor(**SCREAMING_SNAKE_CASE__ ) spm.Load(str(SCREAMING_SNAKE_CASE__ ) ) return spm def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'r' ) as f: return json.load(SCREAMING_SNAKE_CASE__ ) def _UpperCAmelCase ( SCREAMING_SNAKE_CASE__ : List[str] , SCREAMING_SNAKE_CASE__ : str ): with open(SCREAMING_SNAKE_CASE__ , 'w' ) as f: json.dump(SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , indent=2 )
682
1
from typing import TYPE_CHECKING from ...utils import ( OptionalDependencyNotAvailable, _LazyModule, is_flax_available, is_tf_available, is_tokenizers_available, is_torch_available, is_vision_available, ) __UpperCAmelCase : Any = { 'configuration_owlvit': [ 'OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP', 'OwlViTConfig', 'OwlViTOnnxConfig', 'OwlViTTextConfig', 'OwlViTVisionConfig', ], 'processing_owlvit': ['OwlViTProcessor'], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Union[str, Any] = ['OwlViTFeatureExtractor'] __UpperCAmelCase : List[str] = ['OwlViTImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __UpperCAmelCase : Any = [ 'OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST', 'OwlViTModel', 'OwlViTPreTrainedModel', 'OwlViTTextModel', 'OwlViTVisionModel', 'OwlViTForObjectDetection', ] if TYPE_CHECKING: from .configuration_owlvit import ( OWLVIT_PRETRAINED_CONFIG_ARCHIVE_MAP, OwlViTConfig, OwlViTOnnxConfig, OwlViTTextConfig, OwlViTVisionConfig, ) from .processing_owlvit import OwlViTProcessor try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .feature_extraction_owlvit import OwlViTFeatureExtractor from .image_processing_owlvit import OwlViTImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_owlvit import ( OWLVIT_PRETRAINED_MODEL_ARCHIVE_LIST, OwlViTForObjectDetection, OwlViTModel, OwlViTPreTrainedModel, OwlViTTextModel, OwlViTVisionModel, ) else: import sys __UpperCAmelCase : int = _LazyModule(__name__, globals()["__file__"], _import_structure, module_spec=__spec__)
241
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_torch_available, is_vision_available a_ : Optional[Any] = { 'configuration_mask2former': [ 'MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP', 'Mask2FormerConfig', ], } try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : Union[str, Any] = ['Mask2FormerImageProcessor'] try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: a_ : List[Any] = [ 'MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST', 'Mask2FormerForUniversalSegmentation', 'Mask2FormerModel', 'Mask2FormerPreTrainedModel', ] if TYPE_CHECKING: from .configuration_maskaformer import MASK2FORMER_PRETRAINED_CONFIG_ARCHIVE_MAP, MaskaFormerConfig try: if not is_vision_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .image_processing_maskaformer import MaskaFormerImageProcessor try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_maskaformer import ( MASK2FORMER_PRETRAINED_MODEL_ARCHIVE_LIST, MaskaFormerForUniversalSegmentation, MaskaFormerModel, MaskaFormerPreTrainedModel, ) else: import sys a_ : str = _LazyModule(__name__, globals()['__file__'], _import_structure)
73
0
'''simple docstring''' import shutil import tempfile import unittest from unittest.mock import patch from transformers import ( DefaultFlowCallback, IntervalStrategy, PrinterCallback, ProgressCallback, Trainer, TrainerCallback, TrainingArguments, is_torch_available, ) from transformers.testing_utils import require_torch if is_torch_available(): from transformers.trainer import DEFAULT_CALLBACKS from .test_trainer import RegressionDataset, RegressionModelConfig, RegressionPreTrainedModel class a ( _a ): """simple docstring""" def __init__( self : Any ) -> Union[str, Any]: __UpperCAmelCase : Tuple = [] def lowerCamelCase__ ( self : Optional[Any] , snake_case : List[Any] , snake_case : List[Any] , snake_case : Optional[Any] , **snake_case : str ) -> Any: self.events.append('''on_init_end''' ) def lowerCamelCase__ ( self : str , snake_case : Optional[Any] , snake_case : Optional[int] , snake_case : Any , **snake_case : Tuple ) -> Optional[int]: self.events.append('''on_train_begin''' ) def lowerCamelCase__ ( self : str , snake_case : Optional[int] , snake_case : str , snake_case : Optional[int] , **snake_case : Optional[Any] ) -> int: self.events.append('''on_train_end''' ) def lowerCamelCase__ ( self : int , snake_case : Optional[Any] , snake_case : Dict , snake_case : List[Any] , **snake_case : List[str] ) -> str: self.events.append('''on_epoch_begin''' ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : Tuple , snake_case : Dict , snake_case : int , **snake_case : List[Any] ) -> Dict: self.events.append('''on_epoch_end''' ) def lowerCamelCase__ ( self : Tuple , snake_case : Optional[Any] , snake_case : str , snake_case : Dict , **snake_case : Dict ) -> str: self.events.append('''on_step_begin''' ) def lowerCamelCase__ ( self : str , snake_case : Tuple , snake_case : List[Any] , snake_case : List[str] , **snake_case : Optional[int] ) -> Optional[int]: self.events.append('''on_step_end''' ) def lowerCamelCase__ ( self : Any , snake_case : str , snake_case : List[Any] , snake_case : Optional[Any] , **snake_case : Any ) -> List[str]: self.events.append('''on_evaluate''' ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : Optional[Any] , snake_case : str , snake_case : Tuple , **snake_case : Tuple ) -> Dict: self.events.append('''on_predict''' ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : Any , snake_case : List[str] , snake_case : int , **snake_case : int ) -> List[Any]: self.events.append('''on_save''' ) def lowerCamelCase__ ( self : Optional[Any] , snake_case : Tuple , snake_case : List[Any] , snake_case : List[str] , **snake_case : str ) -> List[str]: self.events.append('''on_log''' ) def lowerCamelCase__ ( self : str , snake_case : Dict , snake_case : Tuple , snake_case : Tuple , **snake_case : List[str] ) -> Optional[Any]: self.events.append('''on_prediction_step''' ) @require_torch class a ( unittest.TestCase ): """simple docstring""" def lowerCamelCase__ ( self : Dict ) -> List[Any]: __UpperCAmelCase : int = tempfile.mkdtemp() def lowerCamelCase__ ( self : Any ) -> Optional[Any]: shutil.rmtree(self.output_dir ) def lowerCamelCase__ ( self : Dict , snake_case : str=0 , snake_case : Union[str, Any]=0 , snake_case : Optional[Any]=64 , snake_case : Tuple=64 , snake_case : List[str]=None , snake_case : List[str]=False , **snake_case : Any ) -> int: # disable_tqdm in TrainingArguments has a flaky default since it depends on the level of logging. We make sure # its set to False since the tests later on depend on its value. __UpperCAmelCase : Any = RegressionDataset(length=snake_case ) __UpperCAmelCase : Any = RegressionDataset(length=snake_case ) __UpperCAmelCase : Optional[int] = RegressionModelConfig(a=snake_case , b=snake_case ) __UpperCAmelCase : List[str] = RegressionPreTrainedModel(snake_case ) __UpperCAmelCase : Optional[Any] = TrainingArguments(self.output_dir , disable_tqdm=snake_case , report_to=[] , **snake_case ) return Trainer( snake_case , snake_case , train_dataset=snake_case , eval_dataset=snake_case , callbacks=snake_case , ) def lowerCamelCase__ ( self : List[Any] , snake_case : Optional[int] , snake_case : Optional[int] ) -> Optional[int]: self.assertEqual(len(snake_case ) , len(snake_case ) ) # Order doesn't matter __UpperCAmelCase : int = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) __UpperCAmelCase : Dict = sorted(snake_case , key=lambda snake_case : cb.__name__ if isinstance(snake_case , snake_case ) else cb.__class__.__name__ ) for cba, cba in zip(snake_case , snake_case ): if isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(snake_case , snake_case ) elif isinstance(snake_case , snake_case ) and not isinstance(snake_case , snake_case ): self.assertEqual(snake_case , cba.__class__ ) elif not isinstance(snake_case , snake_case ) and isinstance(snake_case , snake_case ): self.assertEqual(cba.__class__ , snake_case ) else: self.assertEqual(snake_case , snake_case ) def lowerCamelCase__ ( self : List[Any] , snake_case : Dict ) -> Tuple: __UpperCAmelCase : Optional[Any] = ['''on_init_end''', '''on_train_begin'''] __UpperCAmelCase : int = 0 __UpperCAmelCase : Union[str, Any] = len(trainer.get_eval_dataloader() ) __UpperCAmelCase : Any = ['''on_prediction_step'''] * len(trainer.get_eval_dataloader() ) + ['''on_log''', '''on_evaluate'''] for _ in range(trainer.state.num_train_epochs ): expected_events.append('''on_epoch_begin''' ) for _ in range(snake_case ): step += 1 expected_events += ["on_step_begin", "on_step_end"] if step % trainer.args.logging_steps == 0: expected_events.append('''on_log''' ) if trainer.args.evaluation_strategy == IntervalStrategy.STEPS and step % trainer.args.eval_steps == 0: expected_events += evaluation_events.copy() if step % trainer.args.save_steps == 0: expected_events.append('''on_save''' ) expected_events.append('''on_epoch_end''' ) if trainer.args.evaluation_strategy == IntervalStrategy.EPOCH: expected_events += evaluation_events.copy() expected_events += ["on_log", "on_train_end"] return expected_events def lowerCamelCase__ ( self : Any ) -> Tuple: __UpperCAmelCase : Union[str, Any] = self.get_trainer() __UpperCAmelCase : List[str] = DEFAULT_CALLBACKS.copy() + [ProgressCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # Callbacks passed at init are added to the default callbacks __UpperCAmelCase : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) expected_callbacks.append(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # TrainingArguments.disable_tqdm controls if use ProgressCallback or PrinterCallback __UpperCAmelCase : List[str] = self.get_trainer(disable_tqdm=snake_case ) __UpperCAmelCase : Optional[Any] = DEFAULT_CALLBACKS.copy() + [PrinterCallback] self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : str = DEFAULT_CALLBACKS.copy() + [ProgressCallback] __UpperCAmelCase : Any = self.get_trainer() # We can add, pop, or remove by class name trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) __UpperCAmelCase : Dict = self.get_trainer() __UpperCAmelCase : List[str] = trainer.pop_callback(snake_case ) self.assertEqual(cb.__class__ , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) # We can also add, pop, or remove by instance __UpperCAmelCase : Tuple = self.get_trainer() __UpperCAmelCase : int = trainer.callback_handler.callbacks[0] trainer.remove_callback(snake_case ) expected_callbacks.remove(snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) __UpperCAmelCase : Dict = self.get_trainer() __UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[0] __UpperCAmelCase : int = trainer.pop_callback(snake_case ) self.assertEqual(snake_case , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) trainer.add_callback(snake_case ) expected_callbacks.insert(0 , snake_case ) self.check_callbacks_equality(trainer.callback_handler.callbacks , snake_case ) def lowerCamelCase__ ( self : Union[str, Any] ) -> Union[str, Any]: import warnings # XXX: for now ignore scatter_gather warnings in this test since it's not relevant to what's being tested warnings.simplefilter(action='''ignore''' , category=snake_case ) __UpperCAmelCase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] ) trainer.train() __UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # Independent log/save/eval __UpperCAmelCase : Union[str, Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , logging_steps=5 ) trainer.train() __UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) __UpperCAmelCase : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , save_steps=5 ) trainer.train() __UpperCAmelCase : Tuple = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) __UpperCAmelCase : int = self.get_trainer(callbacks=[MyTestTrainerCallback] , eval_steps=5 , evaluation_strategy='''steps''' ) trainer.train() __UpperCAmelCase : Optional[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) __UpperCAmelCase : Optional[Any] = self.get_trainer(callbacks=[MyTestTrainerCallback] , evaluation_strategy='''epoch''' ) trainer.train() __UpperCAmelCase : Optional[int] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # A bit of everything __UpperCAmelCase : List[Any] = self.get_trainer( callbacks=[MyTestTrainerCallback] , logging_steps=3 , save_steps=10 , eval_steps=5 , evaluation_strategy='''steps''' , ) trainer.train() __UpperCAmelCase : List[Any] = trainer.callback_handler.callbacks[-2].events self.assertEqual(snake_case , self.get_expected_events(snake_case ) ) # warning should be emitted for duplicated callbacks with patch('''transformers.trainer_callback.logger.warning''' ) as warn_mock: __UpperCAmelCase : Optional[int] = self.get_trainer( callbacks=[MyTestTrainerCallback, MyTestTrainerCallback] , ) assert str(snake_case ) in warn_mock.call_args[0][0]
266
'''simple docstring''' import unittest from transformers import AutoTokenizer, NystromformerConfig, is_torch_available from transformers.testing_utils import require_torch, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import ( NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, NystromformerModel, ) from transformers.models.nystromformer.modeling_nystromformer import NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST class a : """simple docstring""" def __init__( self : Union[str, Any] , snake_case : str , snake_case : Union[str, Any]=13 , snake_case : int=7 , snake_case : Union[str, Any]=True , snake_case : Tuple=True , snake_case : Tuple=True , snake_case : Union[str, Any]=True , snake_case : Tuple=99 , snake_case : str=32 , snake_case : Tuple=5 , snake_case : int=4 , snake_case : Union[str, Any]=37 , snake_case : Union[str, Any]="gelu" , snake_case : List[Any]=0.1 , snake_case : List[Any]=0.1 , snake_case : Any=512 , snake_case : Dict=16 , snake_case : Dict=2 , snake_case : int=0.02 , snake_case : Dict=3 , snake_case : Tuple=4 , snake_case : Any=None , ) -> Tuple: __UpperCAmelCase : Optional[Any] = parent __UpperCAmelCase : int = batch_size __UpperCAmelCase : List[Any] = seq_length __UpperCAmelCase : Dict = is_training __UpperCAmelCase : Union[str, Any] = use_input_mask __UpperCAmelCase : Union[str, Any] = use_token_type_ids __UpperCAmelCase : Optional[Any] = use_labels __UpperCAmelCase : str = vocab_size __UpperCAmelCase : List[str] = hidden_size __UpperCAmelCase : Any = num_hidden_layers __UpperCAmelCase : Optional[int] = num_attention_heads __UpperCAmelCase : str = intermediate_size __UpperCAmelCase : Tuple = hidden_act __UpperCAmelCase : Tuple = hidden_dropout_prob __UpperCAmelCase : Optional[Any] = attention_probs_dropout_prob __UpperCAmelCase : List[str] = max_position_embeddings __UpperCAmelCase : Optional[Any] = type_vocab_size __UpperCAmelCase : Dict = type_sequence_label_size __UpperCAmelCase : Tuple = initializer_range __UpperCAmelCase : Union[str, Any] = num_labels __UpperCAmelCase : List[str] = num_choices __UpperCAmelCase : List[str] = scope def lowerCamelCase__ ( self : Optional[int] ) -> Any: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) __UpperCAmelCase : Optional[int] = None if self.use_input_mask: __UpperCAmelCase : Tuple = random_attention_mask([self.batch_size, self.seq_length] ) __UpperCAmelCase : Optional[int] = None if self.use_token_type_ids: __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) __UpperCAmelCase : Union[str, Any] = None __UpperCAmelCase : int = None __UpperCAmelCase : Union[str, Any] = None if self.use_labels: __UpperCAmelCase : List[Any] = ids_tensor([self.batch_size] , self.type_sequence_label_size ) __UpperCAmelCase : int = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) __UpperCAmelCase : int = ids_tensor([self.batch_size] , self.num_choices ) __UpperCAmelCase : int = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowerCamelCase__ ( self : Union[str, Any] ) -> int: return NystromformerConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=snake_case , initializer_range=self.initializer_range , ) def lowerCamelCase__ ( self : int , snake_case : Optional[int] , snake_case : str , snake_case : Optional[Any] , snake_case : List[str] , snake_case : str , snake_case : Union[str, Any] , snake_case : Tuple ) -> Dict: __UpperCAmelCase : Any = NystromformerModel(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case ) __UpperCAmelCase : List[str] = model(snake_case , token_type_ids=snake_case ) __UpperCAmelCase : Dict = model(snake_case ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowerCamelCase__ ( self : Dict , snake_case : int , snake_case : Optional[int] , snake_case : int , snake_case : int , snake_case : List[str] , snake_case : Any , snake_case : Tuple ) -> List[Any]: __UpperCAmelCase : List[Any] = NystromformerForMaskedLM(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : List[str] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowerCamelCase__ ( self : str , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : Optional[Any] , snake_case : Union[str, Any] , snake_case : List[Any] , snake_case : Tuple ) -> Union[str, Any]: __UpperCAmelCase : List[str] = NystromformerForQuestionAnswering(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : List[str] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , start_positions=snake_case , end_positions=snake_case , ) self.parent.assertEqual(result.start_logits.shape , (self.batch_size, self.seq_length) ) self.parent.assertEqual(result.end_logits.shape , (self.batch_size, self.seq_length) ) def lowerCamelCase__ ( self : Dict , snake_case : Any , snake_case : int , snake_case : Dict , snake_case : Any , snake_case : Optional[int] , snake_case : Tuple , snake_case : Any ) -> List[str]: __UpperCAmelCase : int = self.num_labels __UpperCAmelCase : str = NystromformerForSequenceClassification(snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : List[str] = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCamelCase__ ( self : Tuple , snake_case : List[Any] , snake_case : Optional[int] , snake_case : int , snake_case : List[str] , snake_case : Union[str, Any] , snake_case : List[str] , snake_case : List[str] ) -> Optional[Any]: __UpperCAmelCase : str = self.num_labels __UpperCAmelCase : int = NystromformerForTokenClassification(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : str = model(snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.num_labels) ) def lowerCamelCase__ ( self : int , snake_case : Tuple , snake_case : Optional[int] , snake_case : Union[str, Any] , snake_case : Dict , snake_case : List[Any] , snake_case : Optional[int] , snake_case : Union[str, Any] ) -> Any: __UpperCAmelCase : List[str] = self.num_choices __UpperCAmelCase : List[str] = NystromformerForMultipleChoice(config=snake_case ) model.to(snake_case ) model.eval() __UpperCAmelCase : Optional[int] = input_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Dict = token_type_ids.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Optional[Any] = input_mask.unsqueeze(1 ).expand(-1 , self.num_choices , -1 ).contiguous() __UpperCAmelCase : Union[str, Any] = model( snake_case , attention_mask=snake_case , token_type_ids=snake_case , labels=snake_case , ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_choices) ) def lowerCamelCase__ ( self : List[Any] ) -> Optional[int]: __UpperCAmelCase : Union[str, Any] = self.prepare_config_and_inputs() ( ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ( __UpperCAmelCase ) , ) : int = config_and_inputs __UpperCAmelCase : Tuple = {'''input_ids''': input_ids, '''token_type_ids''': token_type_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class a ( _a , _a , unittest.TestCase ): """simple docstring""" SCREAMING_SNAKE_CASE : List[str] = ( ( NystromformerModel, NystromformerForMaskedLM, NystromformerForMultipleChoice, NystromformerForQuestionAnswering, NystromformerForSequenceClassification, NystromformerForTokenClassification, ) if is_torch_available() else () ) SCREAMING_SNAKE_CASE : Union[str, Any] = ( { "feature-extraction": NystromformerModel, "fill-mask": NystromformerForMaskedLM, "question-answering": NystromformerForQuestionAnswering, "text-classification": NystromformerForSequenceClassification, "token-classification": NystromformerForTokenClassification, "zero-shot": NystromformerForSequenceClassification, } if is_torch_available() else {} ) SCREAMING_SNAKE_CASE : Tuple = False SCREAMING_SNAKE_CASE : Union[str, Any] = False def lowerCamelCase__ ( self : Dict ) -> List[str]: __UpperCAmelCase : str = NystromformerModelTester(self ) __UpperCAmelCase : List[str] = ConfigTester(self , config_class=snake_case , hidden_size=37 ) def lowerCamelCase__ ( self : int ) -> Any: self.config_tester.run_common_tests() def lowerCamelCase__ ( self : Union[str, Any] ) -> Optional[int]: __UpperCAmelCase : List[str] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Dict ) -> Tuple: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: __UpperCAmelCase : List[str] = type self.model_tester.create_and_check_model(*snake_case ) def lowerCamelCase__ ( self : Any ) -> List[Any]: __UpperCAmelCase : List[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_masked_lm(*snake_case ) def lowerCamelCase__ ( self : Optional[Any] ) -> Optional[Any]: __UpperCAmelCase : Optional[Any] = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_multiple_choice(*snake_case ) def lowerCamelCase__ ( self : str ) -> Optional[Any]: __UpperCAmelCase : int = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_question_answering(*snake_case ) def lowerCamelCase__ ( self : str ) -> Union[str, Any]: __UpperCAmelCase : Any = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_sequence_classification(*snake_case ) def lowerCamelCase__ ( self : str ) -> int: __UpperCAmelCase : Dict = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_token_classification(*snake_case ) @slow def lowerCamelCase__ ( self : Any ) -> Union[str, Any]: for model_name in NYSTROMFORMER_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __UpperCAmelCase : List[Any] = NystromformerModel.from_pretrained(snake_case ) self.assertIsNotNone(snake_case ) @require_torch class a ( unittest.TestCase ): """simple docstring""" @slow def lowerCamelCase__ ( self : List[str] ) -> List[str]: __UpperCAmelCase : Union[str, Any] = NystromformerModel.from_pretrained('''uw-madison/nystromformer-512''' ) __UpperCAmelCase : Any = torch.tensor([[0, 1, 2, 3, 4, 5]] ) with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(snake_case )[0] __UpperCAmelCase : Tuple = torch.Size((1, 6, 768) ) self.assertEqual(output.shape , snake_case ) __UpperCAmelCase : Tuple = torch.tensor( [[[-0.4_532, -0.0_936, 0.5_137], [-0.2_676, 0.0_628, 0.6_186], [-0.3_629, -0.1_726, 0.4_716]]] ) self.assertTrue(torch.allclose(output[:, :3, :3] , snake_case , atol=1E-4 ) ) @slow def lowerCamelCase__ ( self : Optional[int] ) -> str: __UpperCAmelCase : str = '''the [MASK] of Belgium is Brussels''' __UpperCAmelCase : Dict = AutoTokenizer.from_pretrained('''uw-madison/nystromformer-512''' ) __UpperCAmelCase : Tuple = NystromformerForMaskedLM.from_pretrained('''uw-madison/nystromformer-512''' ) __UpperCAmelCase : Optional[Any] = tokenizer(snake_case , return_tensors='''pt''' ) with torch.no_grad(): __UpperCAmelCase : Union[str, Any] = model(encoding.input_ids ).logits __UpperCAmelCase : str = token_logits[:, 2, :].argmax(-1 )[0] self.assertEqual(tokenizer.decode(snake_case ) , '''capital''' )
266
1
from binascii import hexlify from hashlib import shaaaa from os import urandom # RFC 3526 - More Modular Exponential (MODP) Diffie-Hellman groups for # Internet Key Exchange (IKE) https://tools.ietf.org/html/rfc3526 __snake_case :Any ={ # 1536-bit 5: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 2048-bit 14: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AACAA68FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 3072-bit 15: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 4096-bit 16: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199' + 'FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 6144-bit 17: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08' + '8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B' + '302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9' + 'A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6' + '49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8' + 'FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C' + '180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718' + '3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D' + '04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D' + 'B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226' + '1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC' + 'E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26' + '99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB' + '04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2' + '233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127' + 'D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406' + 'AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918' + 'DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151' + '2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03' + 'F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F' + 'BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B' + 'B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632' + '387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E' + '6DCC4024FFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, # 8192-bit 18: { 'prime': int( 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1' + '29024E088A67CC74020BBEA63B139B22514A08798E3404DD' + 'EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245' + 'E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D' + 'C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F' + '83655D23DCA3AD961C62F356208552BB9ED529077096966D' + '670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B' + 'E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9' + 'DE2BCBF6955817183995497CEA956AE515D2261898FA0510' + '15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64' + 'ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7' + 'ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B' + 'F12FFA06D98A0864D87602733EC86A64521F2B18177B200C' + 'BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31' + '43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7' + '88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA' + '2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6' + '287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED' + '1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9' + '93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492' + '36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD' + 'F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831' + '179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B' + 'DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF' + '5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6' + 'D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3' + '23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA' + 'CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328' + '06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C' + 'DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE' + '12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4' + '38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300' + '741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568' + '3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9' + '22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B' + '4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A' + '062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36' + '4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1' + 'B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92' + '4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47' + '9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71' + '60C980DD98EDD3DFFFFFFFFFFFFFFFFF', base=16, ), 'generator': 2, }, } class lowerCAmelCase__ : def __init__( self : Dict , __UpperCamelCase : int = 14 ) -> None: if group not in primes: raise ValueError('Unsupported Group' ) A = primes[group]['prime'] A = primes[group]['generator'] A = int(hexlify(urandom(32 ) ) , base=16 ) def __UpperCamelCase ( self : Dict ) -> str: return hex(self.__private_key )[2:] def __UpperCamelCase ( self : List[Any] ) -> str: A = pow(self.generator , self.__private_key , self.prime ) return hex(__UpperCamelCase )[2:] def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= key <= self.prime - 2 and pow(__UpperCamelCase , (self.prime - 1) // 2 , self.prime ) == 1 ) def __UpperCamelCase ( self : Optional[Any] , __UpperCamelCase : str ) -> str: A = int(__UpperCamelCase , base=16 ) if not self.is_valid_public_key(__UpperCamelCase ): raise ValueError('Invalid public key' ) A = pow(__UpperCamelCase , self.__private_key , self.prime ) return shaaaa(str(__UpperCamelCase ).encode() ).hexdigest() @staticmethod def __UpperCamelCase ( __UpperCamelCase : int , __UpperCamelCase : int ) -> bool: # check if the other public key is valid based on NIST SP800-56 return ( 2 <= remote_public_key_str <= prime - 2 and pow(__UpperCamelCase , (prime - 1) // 2 , __UpperCamelCase ) == 1 ) @staticmethod def __UpperCamelCase ( __UpperCamelCase : str , __UpperCamelCase : str , __UpperCamelCase : int = 14 ) -> str: A = int(__UpperCamelCase , base=16 ) A = int(__UpperCamelCase , base=16 ) A = primes[group]['prime'] if not DiffieHellman.is_valid_public_key_static(__UpperCamelCase , __UpperCamelCase ): raise ValueError('Invalid public key' ) A = pow(__UpperCamelCase , __UpperCamelCase , __UpperCamelCase ) return shaaaa(str(__UpperCamelCase ).encode() ).hexdigest() if __name__ == "__main__": import doctest doctest.testmod()
106
'''simple docstring''' import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def lowerCAmelCase_ ( snake_case_ : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: '''simple docstring''' UpperCAmelCase_ = [] if isinstance(snake_case_ , snake_case_ ): for v in tree.values(): shapes.extend(_fetch_dims(snake_case_ ) ) elif isinstance(snake_case_ , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(snake_case_ ) ) elif isinstance(snake_case_ , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("Not supported" ) return shapes @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : int , snake_case_ : Tuple[int, ...] ) -> Tuple[int, ...]: '''simple docstring''' UpperCAmelCase_ = [] for d in reversed(snake_case_ ): idx.append(flat_idx % d ) UpperCAmelCase_ = flat_idx // d return tuple(reversed(snake_case_ ) ) @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : Sequence[int] , snake_case_ : Sequence[int] , snake_case_ : Sequence[int] , snake_case_ : Optional[Sequence[bool]] = None , snake_case_ : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: '''simple docstring''' def reduce_edge_list(snake_case_ : List[bool] ) -> None: UpperCAmelCase_ = True for i in range(len(snake_case_ ) ): UpperCAmelCase_ = -1 * (i + 1) l[reversed_idx] &= tally UpperCAmelCase_ = l[reversed_idx] if start_edges is None: UpperCAmelCase_ = [s == 0 for s in start] reduce_edge_list(snake_case_ ) if end_edges is None: UpperCAmelCase_ = [e == (d - 1) for e, d in zip(snake_case_ , snake_case_ )] reduce_edge_list(snake_case_ ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(snake_case_ ) == 0: return [()] elif len(snake_case_ ) == 1: return [(slice(start[0] , end[0] + 1 ),)] UpperCAmelCase_ = [] UpperCAmelCase_ = [] # Dimensions common to start and end can be selected directly for s, e in zip(snake_case_ , snake_case_ ): if s == e: path_list.append(slice(snake_case_ , s + 1 ) ) else: break UpperCAmelCase_ = tuple(snake_case_ ) UpperCAmelCase_ = len(snake_case_ ) # start == end, and we're done if divergence_idx == len(snake_case_ ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = start[divergence_idx] return tuple( path + (slice(snake_case_ , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None UpperCAmelCase_ = end[divergence_idx] return tuple( path + (slice(snake_case_ , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) UpperCAmelCase_ = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def lowerCAmelCase_ ( snake_case_ : torch.Tensor , snake_case_ : int , snake_case_ : int , snake_case_ : int ) -> torch.Tensor: '''simple docstring''' UpperCAmelCase_ = t.shape[:no_batch_dims] UpperCAmelCase_ = list(_flat_idx_to_idx(snake_case_ , snake_case_ ) ) # _get_minimal_slice_set is inclusive UpperCAmelCase_ = list(_flat_idx_to_idx(flat_end - 1 , snake_case_ ) ) # Get an ordered list of slices to perform UpperCAmelCase_ = _get_minimal_slice_set( snake_case_ , snake_case_ , snake_case_ , ) UpperCAmelCase_ = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def lowerCAmelCase_ ( snake_case_ : Callable , snake_case_ : Dict[str, Any] , snake_case_ : int , snake_case_ : int , snake_case_ : bool = False , snake_case_ : Any = None , snake_case_ : bool = False , ) -> Any: '''simple docstring''' if not (len(snake_case_ ) > 0): raise ValueError("Must provide at least one input" ) UpperCAmelCase_ = [shape[:no_batch_dims] for shape in _fetch_dims(snake_case_ )] UpperCAmelCase_ = tuple([max(snake_case_ ) for s in zip(*snake_case_ )] ) def _prep_inputs(snake_case_ : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) UpperCAmelCase_ = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: UpperCAmelCase_ = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t UpperCAmelCase_ = tensor_tree_map(_prep_inputs , snake_case_ ) UpperCAmelCase_ = None if _out is not None: UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) UpperCAmelCase_ = 1 for d in orig_batch_dims: flat_batch_dim *= d UpperCAmelCase_ = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(snake_case_ : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t UpperCAmelCase_ = 0 UpperCAmelCase_ = prepped_outputs for _ in range(snake_case_ ): # Chunk the input if not low_mem: UpperCAmelCase_ = _select_chunk else: UpperCAmelCase_ = partial( _chunk_slice , flat_start=snake_case_ , flat_end=min(snake_case_ , i + chunk_size ) , no_batch_dims=len(snake_case_ ) , ) UpperCAmelCase_ = tensor_tree_map(snake_case_ , snake_case_ ) # Run the layer on the chunk UpperCAmelCase_ = layer(**snake_case_ ) # Allocate space for the output if out is None: UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , snake_case_ ) # Put the chunk in its pre-allocated space if isinstance(snake_case_ , snake_case_ ): def assign(snake_case_ : dict , snake_case_ : dict ) -> None: for k, v in da.items(): if isinstance(snake_case_ , snake_case_ ): assign(snake_case_ , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: UpperCAmelCase_ = da[k] assign(snake_case_ , snake_case_ ) elif isinstance(snake_case_ , snake_case_ ): for xa, xa in zip(snake_case_ , snake_case_ ): if _add_into_out: xa[i : i + chunk_size] += xa else: UpperCAmelCase_ = xa elif isinstance(snake_case_ , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: UpperCAmelCase_ = output_chunk else: raise ValueError("Not supported" ) i += chunk_size UpperCAmelCase_ = tensor_tree_map(lambda snake_case_ : t.view(orig_batch_dims + t.shape[1:] ) , snake_case_ ) return out class __A : def __init__(self : Dict , __a : int = 512 , ): UpperCAmelCase_ = max_chunk_size UpperCAmelCase_ = None UpperCAmelCase_ = None def _lowercase (self : List[Any] , __a : Callable , __a : tuple , __a : int ): logging.info("Tuning chunk size..." ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size UpperCAmelCase_ = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] UpperCAmelCase_ = [c for c in candidates if c > min_chunk_size] UpperCAmelCase_ = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(__a : int ) -> bool: try: with torch.no_grad(): fn(*__a , chunk_size=__a ) return True except RuntimeError: return False UpperCAmelCase_ = 0 UpperCAmelCase_ = len(__a ) - 1 while i > min_viable_chunk_size_index: UpperCAmelCase_ = test_chunk_size(candidates[i] ) if not viable: UpperCAmelCase_ = (min_viable_chunk_size_index + i) // 2 else: UpperCAmelCase_ = i UpperCAmelCase_ = (i + len(__a ) - 1) // 2 return candidates[min_viable_chunk_size_index] def _lowercase (self : int , __a : Iterable , __a : Iterable ): UpperCAmelCase_ = True for aa, aa in zip(__a , __a ): assert type(__a ) == type(__a ) if isinstance(__a , (list, tuple) ): consistent &= self._compare_arg_caches(__a , __a ) elif isinstance(__a , __a ): UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] UpperCAmelCase_ = [v for _, v in sorted(aa.items() , key=lambda __a : x[0] )] consistent &= self._compare_arg_caches(__a , __a ) else: consistent &= aa == aa return consistent def _lowercase (self : List[str] , __a : Callable , __a : tuple , __a : int , ): UpperCAmelCase_ = True UpperCAmelCase_ = tree_map(lambda __a : a.shape if isinstance(__a , torch.Tensor ) else a , __a , __a ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(__a ) UpperCAmelCase_ = self._compare_arg_caches(self.cached_arg_data , __a ) else: # Otherwise, we can reuse the precomputed value UpperCAmelCase_ = False if not consistent: UpperCAmelCase_ = self._determine_favorable_chunk_size( __a , __a , __a , ) UpperCAmelCase_ = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
78
0
from __future__ import annotations def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ , ): """simple docstring""" if (electron_conc, hole_conc, intrinsic_conc).count(0 ) != 1: raise ValueError("You cannot supply more or less than 2 values" ) elif electron_conc < 0: raise ValueError("Electron concentration cannot be negative in a semiconductor" ) elif hole_conc < 0: raise ValueError("Hole concentration cannot be negative in a semiconductor" ) elif intrinsic_conc < 0: raise ValueError( "Intrinsic concentration cannot be negative in a semiconductor" ) elif electron_conc == 0: return ( "electron_conc", intrinsic_conc**2 / hole_conc, ) elif hole_conc == 0: return ( "hole_conc", intrinsic_conc**2 / electron_conc, ) elif intrinsic_conc == 0: return ( "intrinsic_conc", (electron_conc * hole_conc) ** 0.5, ) else: return (-1, -1) if __name__ == "__main__": import doctest doctest.testmod()
484
import argparse import os from transformers.utils import direct_transformers_import # All paths are set with the intent you should run this script from the root of the repo with the command # python utils/check_task_guides.py a_ : Tuple = 'src/transformers' a_ : Any = 'docs/source/en/tasks' def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" with open(UpperCAmelCase__ , "r" , encoding="utf-8" , newline="\n" ) as f: lowerCamelCase = f.readlines() # Find the start prompt. lowerCamelCase = 0 while not lines[start_index].startswith(UpperCAmelCase__ ): start_index += 1 start_index += 1 lowerCamelCase = start_index while not lines[end_index].startswith(UpperCAmelCase__ ): end_index += 1 end_index -= 1 while len(lines[start_index] ) <= 1: start_index += 1 while len(lines[end_index] ) <= 1: end_index -= 1 end_index += 1 return "".join(lines[start_index:end_index] ), start_index, end_index, lines # This is to make sure the transformers module imported is the one in the repo. a_ : Union[str, Any] = direct_transformers_import(TRANSFORMERS_PATH) a_ : List[Any] = { 'asr.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CTC_MAPPING_NAMES, 'audio_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_AUDIO_CLASSIFICATION_MAPPING_NAMES, 'language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_CAUSAL_LM_MAPPING_NAMES, 'image_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_IMAGE_CLASSIFICATION_MAPPING_NAMES, 'masked_language_modeling.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MASKED_LM_MAPPING_NAMES, 'multiple_choice.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_MULTIPLE_CHOICE_MAPPING_NAMES, 'object_detection.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_OBJECT_DETECTION_MAPPING_NAMES, 'question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_QUESTION_ANSWERING_MAPPING_NAMES, 'semantic_segmentation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING_NAMES, 'sequence_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQUENCE_CLASSIFICATION_MAPPING_NAMES, 'summarization.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'token_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_TOKEN_CLASSIFICATION_MAPPING_NAMES, 'translation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_SEQ_TO_SEQ_CAUSAL_LM_MAPPING_NAMES, 'video_classification.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_VIDEO_CLASSIFICATION_MAPPING_NAMES, 'document_question_answering.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DOCUMENT_QUESTION_ANSWERING_MAPPING_NAMES, 'monocular_depth_estimation.md': transformers_module.models.auto.modeling_auto.MODEL_FOR_DEPTH_ESTIMATION_MAPPING_NAMES, } # This list contains model types used in some task guides that are not in `CONFIG_MAPPING_NAMES` (therefore not in any # `MODEL_MAPPING_NAMES` or any `MODEL_FOR_XXX_MAPPING_NAMES`). a_ : Union[str, Any] = { 'summarization.md': ('nllb',), 'translation.md': ('nllb',), } def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = TASK_GUIDE_TO_MODELS[task_guide] lowerCamelCase = SPECIAL_TASK_GUIDE_TO_MODEL_TYPES.get(UpperCAmelCase__ , set() ) lowerCamelCase = { code: name for code, name in transformers_module.MODEL_NAMES_MAPPING.items() if (code in model_maping_names or code in special_model_types) } return ", ".join([F"""[{name}](../model_doc/{code})""" for code, name in model_names.items()] ) + "\n" def __lowercase( UpperCAmelCase__ , UpperCAmelCase__=False ): """simple docstring""" lowerCamelCase , lowerCamelCase , lowerCamelCase , lowerCamelCase = _find_text_in_file( filename=os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , start_prompt="<!--This tip is automatically generated by `make fix-copies`, do not fill manually!-->" , end_prompt="<!--End of the generated tip-->" , ) lowerCamelCase = get_model_list_for_task(UpperCAmelCase__ ) if current_list != new_list: if overwrite: with open(os.path.join(UpperCAmelCase__ , UpperCAmelCase__ ) , "w" , encoding="utf-8" , newline="\n" ) as f: f.writelines(lines[:start_index] + [new_list] + lines[end_index:] ) else: raise ValueError( F"""The list of models that can be used in the {task_guide} guide needs an update. Run `make fix-copies`""" " to fix this." ) if __name__ == "__main__": a_ : str = argparse.ArgumentParser() parser.add_argument('--fix_and_overwrite', action='store_true', help='Whether to fix inconsistencies.') a_ : str = parser.parse_args() for task_guide in TASK_GUIDE_TO_MODELS.keys(): check_model_list_for_task(task_guide, args.fix_and_overwrite)
484
1
import json import os import tempfile from unittest.mock import patch import torch from torch.utils.data import DataLoader, TensorDataset from accelerate import DistributedType, infer_auto_device_map, init_empty_weights from accelerate.accelerator import Accelerator from accelerate.state import GradientState, PartialState from accelerate.test_utils import require_bnb, require_multi_gpu, slow from accelerate.test_utils.testing import AccelerateTestCase, require_cuda from accelerate.utils import patch_environment def __lowerCAmelCase ( ): lowercase__ = torch.nn.Linear(2 , 4 ) lowercase__ = torch.optim.AdamW(model.parameters() , lr=1.0 ) lowercase__ = torch.optim.lr_scheduler.OneCycleLR(SCREAMING_SNAKE_CASE_ , max_lr=0.01 , steps_per_epoch=2 , epochs=1 ) lowercase__ = DataLoader(TensorDataset(torch.tensor([1, 2, 3] ) ) ) lowercase__ = DataLoader(TensorDataset(torch.tensor([4, 5, 6] ) ) ) return model, optimizer, scheduler, train_dl, valid_dl def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): return (model.weight.abs().sum() + model.bias.abs().sum()).item() def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): lowercase__ = torch.nn.Linear(*tuple(model.weight.T.shape ) ).state_dict() model.load_state_dict(SCREAMING_SNAKE_CASE_ ) class _snake_case ( lowercase__): @require_cuda def A__ ( self : Optional[int] ): lowercase__ = Accelerator() assert PartialState._shared_state["_cpu"] is False assert PartialState._shared_state["device"].type == "cuda" with self.assertRaises(__lowercase ): lowercase__ = Accelerator(cpu=__lowercase ) def A__ ( self : Optional[int] ): lowercase__ = Accelerator() lowercase__ = GradientState() assert state.num_steps == 1 lowercase__ = 4 assert state.num_steps == 4 assert state.sync_gradients is True lowercase__ = False assert state.sync_gradients is False GradientState._reset_state() def A__ ( self : List[Any] ): lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() ( ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ( lowercase__ ) , ) = accelerator.prepare(__lowercase, __lowercase, __lowercase, __lowercase, __lowercase ) self.assertTrue(prepared_model in accelerator._models ) self.assertTrue(prepared_optimizer in accelerator._optimizers ) self.assertTrue(prepared_scheduler in accelerator._schedulers ) self.assertTrue(prepared_train_dl in accelerator._dataloaders ) self.assertTrue(prepared_valid_dl in accelerator._dataloaders ) def A__ ( self : Union[str, Any] ): lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() accelerator.prepare(__lowercase, __lowercase, __lowercase, __lowercase, __lowercase ) accelerator.free_memory() self.assertTrue(len(accelerator._models ) == 0 ) self.assertTrue(len(accelerator._optimizers ) == 0 ) self.assertTrue(len(accelerator._schedulers ) == 0 ) self.assertTrue(len(accelerator._dataloaders ) == 0 ) def A__ ( self : int ): PartialState._reset_state() # Mock torch.cuda.set_device to avoid an exception as the device doesn't exist def noop(*__lowercase : Union[str, Any], **__lowercase : Union[str, Any] ): pass with patch("torch.cuda.set_device", __lowercase ), patch_environment(ACCELERATE_TORCH_DEVICE="cuda:64" ): lowercase__ = Accelerator() self.assertEqual(str(accelerator.state.device ), "cuda:64" ) def A__ ( self : Dict ): lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() accelerator.prepare(__lowercase, __lowercase, __lowercase, __lowercase, __lowercase ) lowercase__ = get_signature(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # make sure loaded weights match accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) def A__ ( self : Tuple ): lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() accelerator.prepare(__lowercase, __lowercase, __lowercase, __lowercase, __lowercase ) lowercase__ = get_signature(__lowercase ) # saving hook def save_config(__lowercase : Tuple, __lowercase : List[str], __lowercase : List[Any] ): lowercase__ = {"class_name": models[0].__class__.__name__} with open(os.path.join(__lowercase, "data.json" ), "w" ) as f: json.dump(__lowercase, __lowercase ) # loading hook def load_config(__lowercase : List[str], __lowercase : Union[str, Any] ): with open(os.path.join(__lowercase, "data.json" ), "r" ) as f: lowercase__ = json.load(__lowercase ) lowercase__ = config["class_name"] lowercase__ = accelerator.register_save_state_pre_hook(__lowercase ) lowercase__ = accelerator.register_load_state_pre_hook(__lowercase ) with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match with hooks load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # random class name to verify correct one is loaded lowercase__ = "random" # make sure loaded weights match with hooks accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) # mode.class_name is loaded from config self.assertTrue(model.class_name == model.__class__.__name__ ) # remove hooks save_hook.remove() load_hook.remove() with tempfile.TemporaryDirectory() as tmpdirname: accelerator.save_state(__lowercase ) # make sure random weights don't match with hooks removed load_random_weights(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) > 1e-3 ) # random class name to verify correct one is loaded lowercase__ = "random" # make sure loaded weights match with hooks removed accelerator.load_state(__lowercase ) self.assertTrue(abs(model_signature - get_signature(__lowercase ) ) < 1e-3 ) # mode.class_name is NOT loaded from config self.assertTrue(model.class_name != model.__class__.__name__ ) def A__ ( self : Optional[Any] ): lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() lowercase__ = None # This should work lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __lowercase, __lowercase, __lowercase, __lowercase, __lowercase, __lowercase ) self.assertTrue(dummy_obj is None ) def A__ ( self : int ): lowercase__ = Accelerator() lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = create_components() lowercase__ = [1, 2, 3] # This should work lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ , lowercase__ = accelerator.prepare( __lowercase, __lowercase, __lowercase, __lowercase, __lowercase, __lowercase ) self.assertEqual( getattr(__lowercase, "_is_accelerate_prepared", __lowercase ), __lowercase, "Dummy object should have `_is_accelerate_prepared` set to `True`", ) self.assertEqual( getattr(__lowercase, "_is_accelerate_prepared", __lowercase ), __lowercase, "Model is missing `_is_accelerator_prepared` or is set to `False`", ) self.assertEqual( getattr(__lowercase, "_is_accelerate_prepared", __lowercase ), __lowercase, "Optimizer is missing `_is_accelerator_prepared` or is set to `False`", ) self.assertEqual( getattr(__lowercase, "_is_accelerate_prepared", __lowercase ), __lowercase, "Scheduler is missing `_is_accelerator_prepared` or is set to `False`", ) self.assertEqual( getattr(__lowercase, "_is_accelerate_prepared", __lowercase ), __lowercase, "Train Dataloader is missing `_is_accelerator_prepared` or is set to `False`", ) self.assertEqual( getattr(__lowercase, "_is_accelerate_prepared", __lowercase ), __lowercase, "Valid Dataloader is missing `_is_accelerator_prepared` or is set to `False`", ) @slow @require_bnb def A__ ( self : List[str] ): from transformers import AutoModelForCausalLM lowercase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_abit=__lowercase, device_map={"": 0}, ) lowercase__ = Accelerator() # This should work lowercase__ = accelerator.prepare(__lowercase ) @slow @require_bnb def A__ ( self : Tuple ): from transformers import AutoModelForCausalLM lowercase__ = Accelerator() with init_empty_weights(): lowercase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", ) model.tie_weights() lowercase__ = infer_auto_device_map(__lowercase ) lowercase__ = "cpu" lowercase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", device_map=__lowercase, load_in_abit=__lowercase, llm_inta_enable_fpaa_cpu_offload=__lowercase ) # This should not work and get value error with self.assertRaises(__lowercase ): lowercase__ = accelerator.prepare(__lowercase ) @slow @require_bnb @require_multi_gpu def A__ ( self : List[Any] ): from transformers import AutoModelForCausalLM lowercase__ = {"distributed_type": DistributedType.MULTI_GPU} with init_empty_weights(): lowercase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", ) model.tie_weights() lowercase__ = infer_auto_device_map(__lowercase ) lowercase__ = 1 lowercase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_abit=__lowercase, device_map=__lowercase, ) lowercase__ = Accelerator() # This should not work and get value error with self.assertRaises(__lowercase ): lowercase__ = accelerator.prepare(__lowercase ) PartialState._reset_state() @slow @require_bnb @require_multi_gpu def A__ ( self : Dict ): from transformers import AutoModelForCausalLM with init_empty_weights(): lowercase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", ) lowercase__ = infer_auto_device_map(__lowercase ) lowercase__ = 1 lowercase__ = AutoModelForCausalLM.from_pretrained( "EleutherAI/gpt-neo-125m", load_in_abit=__lowercase, device_map=__lowercase, ) lowercase__ = Accelerator() # This should work lowercase__ = accelerator.prepare(__lowercase ) @require_cuda def A__ ( self : Optional[int] ): lowercase__ = torch.nn.Linear(10, 10 ) lowercase__ = torch.optim.SGD(model.parameters(), lr=0.01 ) lowercase__ = Accelerator(cpu=__lowercase ) lowercase__ = accelerator.prepare(__lowercase )
413
def __lowerCAmelCase ( SCREAMING_SNAKE_CASE_ ): if not isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): raise TypeError("only integers accepted as input" ) else: lowercase__ = str(abs(SCREAMING_SNAKE_CASE_ ) ) lowercase__ = [list(SCREAMING_SNAKE_CASE_ ) for char in range(len(SCREAMING_SNAKE_CASE_ ) )] for index in range(len(SCREAMING_SNAKE_CASE_ ) ): num_transpositions[index].pop(SCREAMING_SNAKE_CASE_ ) return max( int("".join(list(SCREAMING_SNAKE_CASE_ ) ) ) for transposition in num_transpositions ) if __name__ == "__main__": __import__("""doctest""").testmod()
413
1
import heapq def A__ ( snake_case_ : dict ): SCREAMING_SNAKE_CASE__: list[list]= [] # for each node and his adjacency list add them and the rank of the node to queue # using heapq module the queue will be filled like a Priority Queue # heapq works with a min priority queue, so I used -1*len(v) to build it for key, value in graph.items(): # O(log(n)) heapq.heappush(snake_case_ , [-1 * len(snake_case_ ), (key, value)] ) # chosen_vertices = set of chosen vertices SCREAMING_SNAKE_CASE__: List[str]= set() # while queue isn't empty and there are still edges # (queue[0][0] is the rank of the node with max rank) while queue and queue[0][0] != 0: # extract vertex with max rank from queue and add it to chosen_vertices SCREAMING_SNAKE_CASE__: int= heapq.heappop(snake_case_ )[1][0] chosen_vertices.add(snake_case_ ) # Remove all arcs adjacent to argmax for elem in queue: # if v haven't adjacent node, skip if elem[0] == 0: continue # if argmax is reachable from elem # remove argmax from elem's adjacent list and update his rank if argmax in elem[1][1]: SCREAMING_SNAKE_CASE__: Optional[int]= elem[1][1].index(snake_case_ ) del elem[1][1][index] elem[0] += 1 # re-order the queue heapq.heapify(snake_case_ ) return chosen_vertices if __name__ == "__main__": import doctest doctest.testmod() lowercase_ : Dict = {0: [1, 3], 1: [0, 3], 2: [0, 3, 4], 3: [0, 1, 2], 4: [2, 3]} print(f'''Minimum vertex cover:\n{greedy_min_vertex_cover(graph)}''')
107
from typing import Optional, Tuple, Union import flax import flax.linen as nn import jax import jax.numpy as jnp from flax.core.frozen_dict import FrozenDict from ..configuration_utils import ConfigMixin, flax_register_to_config from ..utils import BaseOutput from .embeddings_flax import FlaxTimestepEmbedding, FlaxTimesteps from .modeling_flax_utils import FlaxModelMixin from .unet_ad_blocks_flax import ( FlaxCrossAttnDownBlockaD, FlaxDownBlockaD, FlaxUNetMidBlockaDCrossAttn, ) @flax.struct.dataclass class _lowerCamelCase ( UpperCamelCase_ ): __a = 42 __a = 42 class _lowerCamelCase ( nn.Module ): __a = 42 __a = (16, 32, 96, 256) __a = jnp.floataa def UpperCamelCase_ ( self ) -> Optional[int]: SCREAMING_SNAKE_CASE__: List[str]= nn.Conv( self.block_out_channels[0] , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) SCREAMING_SNAKE_CASE__: Optional[int]= [] for i in range(len(self.block_out_channels ) - 1 ): SCREAMING_SNAKE_CASE__: str= self.block_out_channels[i] SCREAMING_SNAKE_CASE__: List[str]= self.block_out_channels[i + 1] SCREAMING_SNAKE_CASE__: List[Any]= nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= nn.Conv( lowerCAmelCase , kernel_size=(3, 3) , strides=(2, 2) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) blocks.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: str= blocks SCREAMING_SNAKE_CASE__: Optional[Any]= nn.Conv( self.conditioning_embedding_channels , kernel_size=(3, 3) , padding=((1, 1), (1, 1)) , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowerCAmelCase ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Dict= self.conv_in(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= nn.silu(lowerCAmelCase ) for block in self.blocks: SCREAMING_SNAKE_CASE__: Optional[int]= block(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= nn.silu(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Any= self.conv_out(lowerCAmelCase ) return embedding @flax_register_to_config class _lowerCamelCase ( nn.Module , UpperCamelCase_ , UpperCamelCase_ ): __a = 32 __a = 4 __a = ( "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D", "DownBlock2D", ) __a = False __a = (320, 640, 1280, 1280) __a = 2 __a = 8 __a = None __a = 1280 __a = 0.0 __a = False __a = jnp.floataa __a = True __a = 0 __a = "rgb" __a = (16, 32, 96, 256) def UpperCamelCase_ ( self , lowerCAmelCase ) -> FrozenDict: # init input tensors SCREAMING_SNAKE_CASE__: Any= (1, self.in_channels, self.sample_size, self.sample_size) SCREAMING_SNAKE_CASE__: Union[str, Any]= jnp.zeros(lowerCAmelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__: Union[str, Any]= jnp.ones((1,) , dtype=jnp.intaa ) SCREAMING_SNAKE_CASE__: Optional[Any]= jnp.zeros((1, 1, self.cross_attention_dim) , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__: int= (1, 3, self.sample_size * 8, self.sample_size * 8) SCREAMING_SNAKE_CASE__: Optional[int]= jnp.zeros(lowerCAmelCase , dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Any= jax.random.split(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[int]= {'''params''': params_rng, '''dropout''': dropout_rng} return self.init(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase )["params"] def UpperCamelCase_ ( self ) -> Optional[Any]: SCREAMING_SNAKE_CASE__: Dict= self.block_out_channels SCREAMING_SNAKE_CASE__: str= block_out_channels[0] * 4 # If `num_attention_heads` is not defined (which is the case for most models) # it will default to `attention_head_dim`. This looks weird upon first reading it and it is. # The reason for this behavior is to correct for incorrectly named variables that were introduced # when this library was created. The incorrect naming was only discovered much later in https://github.com/huggingface/diffusers/issues/2011#issuecomment-1547958131 # Changing `attention_head_dim` to `num_attention_heads` for 40,000+ configurations is too backwards breaking # which is why we correct for the naming here. SCREAMING_SNAKE_CASE__: int= self.num_attention_heads or self.attention_head_dim # input SCREAMING_SNAKE_CASE__: Any= nn.Conv( block_out_channels[0] , kernel_size=(3, 3) , strides=(1, 1) , padding=((1, 1), (1, 1)) , dtype=self.dtype , ) # time SCREAMING_SNAKE_CASE__: str= FlaxTimesteps( block_out_channels[0] , flip_sin_to_cos=self.flip_sin_to_cos , freq_shift=self.config.freq_shift ) SCREAMING_SNAKE_CASE__: Optional[Any]= FlaxTimestepEmbedding(lowerCAmelCase , dtype=self.dtype ) SCREAMING_SNAKE_CASE__: str= FlaxControlNetConditioningEmbedding( conditioning_embedding_channels=block_out_channels[0] , block_out_channels=self.conditioning_embedding_out_channels , ) SCREAMING_SNAKE_CASE__: List[str]= self.only_cross_attention if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: str= (only_cross_attention,) * len(self.down_block_types ) if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE__: Dict= (num_attention_heads,) * len(self.down_block_types ) # down SCREAMING_SNAKE_CASE__: Optional[int]= [] SCREAMING_SNAKE_CASE__: List[str]= [] SCREAMING_SNAKE_CASE__: Union[str, Any]= block_out_channels[0] SCREAMING_SNAKE_CASE__: Dict= nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) for i, down_block_type in enumerate(self.down_block_types ): SCREAMING_SNAKE_CASE__: Tuple= output_channel SCREAMING_SNAKE_CASE__: Any= block_out_channels[i] SCREAMING_SNAKE_CASE__: Optional[Any]= i == len(lowerCAmelCase ) - 1 if down_block_type == "CrossAttnDownBlock2D": SCREAMING_SNAKE_CASE__: Any= FlaxCrossAttnDownBlockaD( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , num_attention_heads=num_attention_heads[i] , add_downsample=not is_final_block , use_linear_projection=self.use_linear_projection , only_cross_attention=only_cross_attention[i] , dtype=self.dtype , ) else: SCREAMING_SNAKE_CASE__: Union[str, Any]= FlaxDownBlockaD( in_channels=lowerCAmelCase , out_channels=lowerCAmelCase , dropout=self.dropout , num_layers=self.layers_per_block , add_downsample=not is_final_block , dtype=self.dtype , ) down_blocks.append(lowerCAmelCase ) for _ in range(self.layers_per_block ): SCREAMING_SNAKE_CASE__: str= nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) if not is_final_block: SCREAMING_SNAKE_CASE__: str= nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) controlnet_down_blocks.append(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: int= down_blocks SCREAMING_SNAKE_CASE__: int= controlnet_down_blocks # mid SCREAMING_SNAKE_CASE__: Optional[int]= block_out_channels[-1] SCREAMING_SNAKE_CASE__: int= FlaxUNetMidBlockaDCrossAttn( in_channels=lowerCAmelCase , dropout=self.dropout , num_attention_heads=num_attention_heads[-1] , use_linear_projection=self.use_linear_projection , dtype=self.dtype , ) SCREAMING_SNAKE_CASE__: str= nn.Conv( lowerCAmelCase , kernel_size=(1, 1) , padding='''VALID''' , kernel_init=nn.initializers.zeros_init() , bias_init=nn.initializers.zeros_init() , dtype=self.dtype , ) def __call__( self , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , lowerCAmelCase = 1.0 , lowerCAmelCase = True , lowerCAmelCase = False , ) -> Union[FlaxControlNetOutput, Tuple]: SCREAMING_SNAKE_CASE__: Dict= self.controlnet_conditioning_channel_order if channel_order == "bgr": SCREAMING_SNAKE_CASE__: Optional[Any]= jnp.flip(lowerCAmelCase , axis=1 ) # 1. time if not isinstance(lowerCAmelCase , jnp.ndarray ): SCREAMING_SNAKE_CASE__: Optional[Any]= jnp.array([timesteps] , dtype=jnp.intaa ) elif isinstance(lowerCAmelCase , jnp.ndarray ) and len(timesteps.shape ) == 0: SCREAMING_SNAKE_CASE__: int= timesteps.astype(dtype=jnp.floataa ) SCREAMING_SNAKE_CASE__: Any= jnp.expand_dims(lowerCAmelCase , 0 ) SCREAMING_SNAKE_CASE__: Dict= self.time_proj(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Dict= self.time_embedding(lowerCAmelCase ) # 2. pre-process SCREAMING_SNAKE_CASE__: int= jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE__: str= self.conv_in(lowerCAmelCase ) SCREAMING_SNAKE_CASE__: Optional[Any]= jnp.transpose(lowerCAmelCase , (0, 2, 3, 1) ) SCREAMING_SNAKE_CASE__: str= self.controlnet_cond_embedding(lowerCAmelCase ) sample += controlnet_cond # 3. down SCREAMING_SNAKE_CASE__: Tuple= (sample,) for down_block in self.down_blocks: if isinstance(lowerCAmelCase , lowerCAmelCase ): SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: Tuple= down_block(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , deterministic=not train ) else: SCREAMING_SNAKE_CASE__, SCREAMING_SNAKE_CASE__: int= down_block(lowerCAmelCase , lowerCAmelCase , deterministic=not train ) down_block_res_samples += res_samples # 4. mid SCREAMING_SNAKE_CASE__: Optional[Any]= self.mid_block(lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , deterministic=not train ) # 5. contronet blocks SCREAMING_SNAKE_CASE__: Optional[int]= () for down_block_res_sample, controlnet_block in zip(lowerCAmelCase , self.controlnet_down_blocks ): SCREAMING_SNAKE_CASE__: List[str]= controlnet_block(lowerCAmelCase ) controlnet_down_block_res_samples += (down_block_res_sample,) SCREAMING_SNAKE_CASE__: Optional[Any]= controlnet_down_block_res_samples SCREAMING_SNAKE_CASE__: Optional[int]= self.controlnet_mid_block(lowerCAmelCase ) # 6. scaling SCREAMING_SNAKE_CASE__: Tuple= [sample * conditioning_scale for sample in down_block_res_samples] mid_block_res_sample *= conditioning_scale if not return_dict: return (down_block_res_samples, mid_block_res_sample) return FlaxControlNetOutput( down_block_res_samples=lowerCAmelCase , mid_block_res_sample=lowerCAmelCase )
107
1
def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return round(float(moles / volume ) * nfactor ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return round(float((moles * 0.0_821 * temperature) / (volume) ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return round(float((moles * 0.0_821 * temperature) / (pressure) ) ) def UpperCamelCase__ ( SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ , SCREAMING_SNAKE_CASE__ ): return round(float((pressure * volume) / (0.0_821 * moles) ) ) if __name__ == "__main__": import doctest doctest.testmod()
669
import math def UpperCamelCase__( UpperCamelCase__ : int )->list: A__ = [True] * n A__ = False A__ = False A__ = True for i in range(3 , int(n**0.5 + 1 ) , 2 ): A__ = i * 2 while index < n: A__ = False A__ = index + i A__ = [2] for i in range(3 , UpperCamelCase__ , 2 ): if is_prime[i]: primes.append(UpperCamelCase__ ) return primes def UpperCamelCase__( UpperCamelCase__ : int = 99_99_66_66_33_33 )->int: A__ = math.floor(math.sqrt(UpperCamelCase__ ) ) + 1_00 A__ = prime_sieve(UpperCamelCase__ ) A__ = 0 A__ = 0 A__ = primes[prime_index] while (last_prime**2) <= limit: A__ = primes[prime_index + 1] A__ = last_prime**2 A__ = next_prime**2 # Get numbers divisible by lps(current) A__ = lower_bound + last_prime while upper_bound > current <= limit: matches_sum += current current += last_prime # Reset the upper_bound while (upper_bound - next_prime) > limit: upper_bound -= next_prime # Add the numbers divisible by ups(current) A__ = upper_bound - next_prime while current > lower_bound: matches_sum += current current -= next_prime # Remove the numbers divisible by both ups and lps A__ = 0 while upper_bound > current <= limit: if current <= lower_bound: # Increment the current number current += last_prime * next_prime continue if current > limit: break # Remove twice since it was added by both ups and lps matches_sum -= current * 2 # Increment the current number current += last_prime * next_prime # Setup for next pair A__ = next_prime prime_index += 1 return matches_sum if __name__ == "__main__": print(solution())
190
0
'''simple docstring''' from dataclasses import dataclass from typing import Dict, Optional, Union import torch import torch.nn.functional as F from torch import nn from ..configuration_utils import ConfigMixin, register_to_config from ..utils import BaseOutput from .attention import BasicTransformerBlock from .attention_processor import AttentionProcessor, AttnProcessor from .embeddings import TimestepEmbedding, Timesteps from .modeling_utils import ModelMixin @dataclass class __UpperCAmelCase ( _UpperCamelCase ): '''simple docstring''' __lowercase : torch.FloatTensor class __UpperCAmelCase ( _UpperCamelCase , _UpperCamelCase ): '''simple docstring''' @register_to_config def __init__( self , _SCREAMING_SNAKE_CASE = 32 , _SCREAMING_SNAKE_CASE = 64 , _SCREAMING_SNAKE_CASE = 20 , _SCREAMING_SNAKE_CASE = 768 , _SCREAMING_SNAKE_CASE=77 , _SCREAMING_SNAKE_CASE=4 , _SCREAMING_SNAKE_CASE = 0.0 , _SCREAMING_SNAKE_CASE = "silu" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = "linear" , _SCREAMING_SNAKE_CASE = "prd" , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , ) -> Dict: super().__init__() A_ = num_attention_heads A_ = attention_head_dim A_ = num_attention_heads * attention_head_dim A_ = additional_embeddings A_ = time_embed_dim or inner_dim A_ = embedding_proj_dim or embedding_dim A_ = clip_embed_dim or embedding_dim A_ = Timesteps(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , 0 ) A_ = TimestepEmbedding(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , out_dim=_SCREAMING_SNAKE_CASE , act_fn=_SCREAMING_SNAKE_CASE ) A_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if embedding_proj_norm_type is None: A_ = None elif embedding_proj_norm_type == "layer": A_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''unsupported embedding_proj_norm_type: {embedding_proj_norm_type}''' ) A_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) if encoder_hid_proj_type is None: A_ = None elif encoder_hid_proj_type == "linear": A_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) else: raise ValueError(F'''unsupported encoder_hid_proj_type: {encoder_hid_proj_type}''' ) A_ = nn.Parameter(torch.zeros(1 , num_embeddings + additional_embeddings , _SCREAMING_SNAKE_CASE ) ) if added_emb_type == "prd": A_ = nn.Parameter(torch.zeros(1 , 1 , _SCREAMING_SNAKE_CASE ) ) elif added_emb_type is None: A_ = None else: raise ValueError( F'''`added_emb_type`: {added_emb_type} is not supported. Make sure to choose one of `\'prd\'` or `None`.''' ) A_ = nn.ModuleList( [ BasicTransformerBlock( _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , dropout=_SCREAMING_SNAKE_CASE , activation_fn='''gelu''' , attention_bias=_SCREAMING_SNAKE_CASE , ) for d in range(_SCREAMING_SNAKE_CASE ) ] ) if norm_in_type == "layer": A_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) elif norm_in_type is None: A_ = None else: raise ValueError(F'''Unsupported norm_in_type: {norm_in_type}.''' ) A_ = nn.LayerNorm(_SCREAMING_SNAKE_CASE ) A_ = nn.Linear(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) A_ = torch.full( [num_embeddings + additional_embeddings, num_embeddings + additional_embeddings] , -10_000.0 ) causal_attention_mask.triu_(1 ) A_ = causal_attention_mask[None, ...] self.register_buffer('''causal_attention_mask''' , _SCREAMING_SNAKE_CASE , persistent=_SCREAMING_SNAKE_CASE ) A_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) A_ = nn.Parameter(torch.zeros(1 , _SCREAMING_SNAKE_CASE ) ) @property # Copied from diffusers.models.unet_2d_condition.UNet2DConditionModel.attn_processors def __A ( self ) -> Dict[str, AttentionProcessor]: A_ = {} def fn_recursive_add_processors(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE , '''set_processor''' ): A_ = module.processor for sub_name, child in module.named_children(): fn_recursive_add_processors(F'''{name}.{sub_name}''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return processors for name, module in self.named_children(): fn_recursive_add_processors(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) return processors def __A ( self , _SCREAMING_SNAKE_CASE ) -> Union[str, Any]: A_ = len(self.attn_processors.keys() ) if isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) and len(_SCREAMING_SNAKE_CASE ) != count: raise ValueError( F'''A dict of processors was passed, but the number of processors {len(_SCREAMING_SNAKE_CASE )} does not match the''' F''' number of attention layers: {count}. Please make sure to pass {count} processor classes.''' ) def fn_recursive_attn_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): if hasattr(_SCREAMING_SNAKE_CASE , '''set_processor''' ): if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ): module.set_processor(_SCREAMING_SNAKE_CASE ) else: module.set_processor(processor.pop(F'''{name}.processor''' ) ) for sub_name, child in module.named_children(): fn_recursive_attn_processor(F'''{name}.{sub_name}''' , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for name, module in self.named_children(): fn_recursive_attn_processor(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) def __A ( self ) -> Optional[int]: self.set_attn_processor(AttnProcessor() ) def __A ( self , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = None , _SCREAMING_SNAKE_CASE = True , ) -> List[str]: A_ = hidden_states.shape[0] A_ = timestep if not torch.is_tensor(_SCREAMING_SNAKE_CASE ): A_ = torch.tensor([timesteps] , dtype=torch.long , device=hidden_states.device ) elif torch.is_tensor(_SCREAMING_SNAKE_CASE ) and len(timesteps.shape ) == 0: A_ = timesteps[None].to(hidden_states.device ) # broadcast to batch dimension in a way that's compatible with ONNX/Core ML A_ = timesteps * torch.ones(_SCREAMING_SNAKE_CASE , dtype=timesteps.dtype , device=timesteps.device ) A_ = self.time_proj(_SCREAMING_SNAKE_CASE ) # timesteps does not contain any weights and will always return f32 tensors # but time_embedding might be fp16, so we need to cast here. A_ = timesteps_projected.to(dtype=self.dtype ) A_ = self.time_embedding(_SCREAMING_SNAKE_CASE ) if self.embedding_proj_norm is not None: A_ = self.embedding_proj_norm(_SCREAMING_SNAKE_CASE ) A_ = self.embedding_proj(_SCREAMING_SNAKE_CASE ) if self.encoder_hidden_states_proj is not None and encoder_hidden_states is not None: A_ = self.encoder_hidden_states_proj(_SCREAMING_SNAKE_CASE ) elif self.encoder_hidden_states_proj is not None and encoder_hidden_states is None: raise ValueError('''`encoder_hidden_states_proj` requires `encoder_hidden_states` to be set''' ) A_ = self.proj_in(_SCREAMING_SNAKE_CASE ) A_ = self.positional_embedding.to(hidden_states.dtype ) A_ = [] A_ = 0 if encoder_hidden_states is not None: additional_embeds.append(_SCREAMING_SNAKE_CASE ) additional_embeddings_len += encoder_hidden_states.shape[1] if len(proj_embeddings.shape ) == 2: A_ = proj_embeddings[:, None, :] if len(hidden_states.shape ) == 2: A_ = hidden_states[:, None, :] A_ = additional_embeds + [ proj_embeddings, time_embeddings[:, None, :], hidden_states, ] if self.prd_embedding is not None: A_ = self.prd_embedding.to(hidden_states.dtype ).expand(_SCREAMING_SNAKE_CASE , -1 , -1 ) additional_embeds.append(_SCREAMING_SNAKE_CASE ) A_ = torch.cat( _SCREAMING_SNAKE_CASE , dim=1 , ) # Allow positional_embedding to not include the `addtional_embeddings` and instead pad it with zeros for these additional tokens A_ = additional_embeddings_len + proj_embeddings.shape[1] + 1 if positional_embeddings.shape[1] < hidden_states.shape[1]: A_ = F.pad( _SCREAMING_SNAKE_CASE , ( 0, 0, additional_embeddings_len, self.prd_embedding.shape[1] if self.prd_embedding is not None else 0, ) , value=0.0 , ) A_ = hidden_states + positional_embeddings if attention_mask is not None: A_ = (1 - attention_mask.to(hidden_states.dtype )) * -10_000.0 A_ = F.pad(_SCREAMING_SNAKE_CASE , (0, self.additional_embeddings) , value=0.0 ) A_ = (attention_mask[:, None, :] + self.causal_attention_mask).to(hidden_states.dtype ) A_ = attention_mask.repeat_interleave(self.config.num_attention_heads , dim=0 ) if self.norm_in is not None: A_ = self.norm_in(_SCREAMING_SNAKE_CASE ) for block in self.transformer_blocks: A_ = block(_SCREAMING_SNAKE_CASE , attention_mask=_SCREAMING_SNAKE_CASE ) A_ = self.norm_out(_SCREAMING_SNAKE_CASE ) if self.prd_embedding is not None: A_ = hidden_states[:, -1] else: A_ = hidden_states[:, additional_embeddings_len:] A_ = self.proj_to_clip_embeddings(_SCREAMING_SNAKE_CASE ) if not return_dict: return (predicted_image_embedding,) return PriorTransformerOutput(predicted_image_embedding=_SCREAMING_SNAKE_CASE ) def __A ( self , _SCREAMING_SNAKE_CASE ) -> int: A_ = (prior_latents * self.clip_std) + self.clip_mean return prior_latents
174
'''simple docstring''' import requests __snake_case : int = 'YOUR API KEY' def _UpperCAmelCase ( _UpperCamelCase : str, _UpperCamelCase : str = giphy_api_key ) -> list: A_ = '''+'''.join(query.split() ) A_ = F'''https://api.giphy.com/v1/gifs/search?q={formatted_query}&api_key={api_key}''' A_ = requests.get(_UpperCamelCase ).json()['''data'''] return [gif["url"] for gif in gifs] if __name__ == "__main__": print('\n'.join(get_gifs('space ship')))
174
1
"""simple docstring""" import warnings from ...utils import logging from .image_processing_donut import DonutImageProcessor lowerCamelCase_ = logging.get_logger(__name__) class _SCREAMING_SNAKE_CASE( A ): def __init__( self ,*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ ) -> None: """simple docstring""" warnings.warn( '''The class DonutFeatureExtractor is deprecated and will be removed in version 5 of Transformers. Please''' ''' use DonutImageProcessor instead.''' ,SCREAMING_SNAKE_CASE__ ,) super().__init__(*SCREAMING_SNAKE_CASE__ ,**SCREAMING_SNAKE_CASE__ )
498
"""simple docstring""" from abc import ABC, abstractmethod from argparse import ArgumentParser class _SCREAMING_SNAKE_CASE( A ): @staticmethod @abstractmethod def _UpperCamelCase ( SCREAMING_SNAKE_CASE__ ) -> str: """simple docstring""" raise NotImplementedError() @abstractmethod def _UpperCamelCase ( self ) -> Optional[Any]: """simple docstring""" raise NotImplementedError()
498
1
"""simple docstring""" import sys __lowercase : Tuple = ( """73167176531330624919225119674426574742355349194934""" """96983520312774506326239578318016984801869478851843""" """85861560789112949495459501737958331952853208805511""" """12540698747158523863050715693290963295227443043557""" """66896648950445244523161731856403098711121722383113""" """62229893423380308135336276614282806444486645238749""" """30358907296290491560440772390713810515859307960866""" """70172427121883998797908792274921901699720888093776""" """65727333001053367881220235421809751254540594752243""" """52584907711670556013604839586446706324415722155397""" """53697817977846174064955149290862569321978468622482""" """83972241375657056057490261407972968652414535100474""" """82166370484403199890008895243450658541227588666881""" """16427171479924442928230863465674813919123162824586""" """17866458359124566529476545682848912883142607690042""" """24219022671055626321111109370544217506941658960408""" """07198403850962455444362981230987879927244284909188""" """84580156166097919133875499200524063689912560717606""" """05886116467109405077541002256983155200055935729725""" """71636269561882670428252483600823257530420752963450""" ) def lowerCamelCase_ ( _lowerCamelCase : str ): lowerCamelCase_ = 1 for digit in s: product *= int(_lowerCamelCase ) return product def lowerCamelCase_ ( _lowerCamelCase : str = N ): lowerCamelCase_ = -sys.maxsize - 1 lowerCamelCase_ = n[:1_3] lowerCamelCase_ = 1_3 while cur_index < len(_lowerCamelCase ) - 1_3: if int(n[cur_index] ) >= int(substr[0] ): lowerCamelCase_ = substr[1:] + n[cur_index] cur_index += 1 else: lowerCamelCase_ = max(_lowerCamelCase , str_eval(_lowerCamelCase ) ) lowerCamelCase_ = n[cur_index : cur_index + 1_3] cur_index += 1_3 return largest_product if __name__ == "__main__": print(f'''{solution() = }''')
66
"""simple docstring""" import secrets from random import shuffle from string import ascii_letters, ascii_lowercase, ascii_uppercase, digits, punctuation def lowerCamelCase_ ( _lowerCamelCase : int = 8 ): lowerCamelCase_ = ascii_letters + digits + punctuation return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def lowerCamelCase_ ( _lowerCamelCase : str , _lowerCamelCase : int ): # Password Generator = full boot with random_number, random_letters, and # random_character FUNCTIONS # Put your code here... i -= len(_lowerCamelCase ) lowerCamelCase_ = i // 3 lowerCamelCase_ = i % 3 # chars = chars_incl + random_letters(ascii_letters, i / 3 + remainder) + # random_number(digits, i / 3) + random_characters(punctuation, i / 3) lowerCamelCase_ = ( chars_incl + random(_lowerCamelCase , quotient + remainder ) + random(_lowerCamelCase , _lowerCamelCase ) + random(_lowerCamelCase , _lowerCamelCase ) ) lowerCamelCase_ = list(_lowerCamelCase ) shuffle(_lowerCamelCase ) return "".join(_lowerCamelCase ) # random is a generalised function for letters, characters and numbers def lowerCamelCase_ ( _lowerCamelCase : str , _lowerCamelCase : int ): return "".join(secrets.choice(_lowerCamelCase ) for _ in range(_lowerCamelCase ) ) def lowerCamelCase_ ( _lowerCamelCase : Dict , _lowerCamelCase : str ): pass # Put your code here... def lowerCamelCase_ ( _lowerCamelCase : Union[str, Any] , _lowerCamelCase : Optional[Any] ): pass # Put your code here... def lowerCamelCase_ ( _lowerCamelCase : int , _lowerCamelCase : str ): pass # Put your code here... def lowerCamelCase_ ( _lowerCamelCase : str , _lowerCamelCase : int = 8 ): if len(_lowerCamelCase ) < min_length: # Your Password must be at least 8 characters long return False lowerCamelCase_ = any(char in ascii_uppercase for char in password ) lowerCamelCase_ = any(char in ascii_lowercase for char in password ) lowerCamelCase_ = any(char in digits for char in password ) lowerCamelCase_ = any(char in punctuation for char in password ) return upper and lower and num and spec_char # Passwords should contain UPPERCASE, lowerase # numbers, and special characters def lowerCamelCase_ ( ): lowerCamelCase_ = int(input('''Please indicate the max length of your password: ''' ).strip() ) lowerCamelCase_ = input( '''Please indicate the characters that must be in your password: ''' ).strip() print('''Password generated:''' , password_generator(_lowerCamelCase ) ) print( '''Alternative Password generated:''' , alternative_password_generator(_lowerCamelCase , _lowerCamelCase ) , ) print('''[If you are thinking of using this passsword, You better save it.]''' ) if __name__ == "__main__": main()
66
1
from collections import OrderedDict from typing import Mapping from packaging import version from ...configuration_utils import PretrainedConfig from ...onnx import OnnxConfig from ...utils import logging UpperCAmelCase_ = logging.get_logger(__name__) UpperCAmelCase_ = { "facebook/levit-128S": "https://huggingface.co/facebook/levit-128S/resolve/main/config.json", # See all LeViT models at https://huggingface.co/models?filter=levit } class __UpperCamelCase ( A__ ): __A : Tuple = """levit""" def __init__( self , _UpperCamelCase=224 , _UpperCamelCase=3 , _UpperCamelCase=3 , _UpperCamelCase=2 , _UpperCamelCase=1 , _UpperCamelCase=16 , _UpperCamelCase=[128, 256, 384] , _UpperCamelCase=[4, 8, 12] , _UpperCamelCase=[4, 4, 4] , _UpperCamelCase=[16, 16, 16] , _UpperCamelCase=0 , _UpperCamelCase=[2, 2, 2] , _UpperCamelCase=[2, 2, 2] , _UpperCamelCase=0.02 , **_UpperCamelCase , ): super().__init__(**_UpperCamelCase ) _UpperCAmelCase = image_size _UpperCAmelCase = num_channels _UpperCAmelCase = kernel_size _UpperCAmelCase = stride _UpperCAmelCase = padding _UpperCAmelCase = hidden_sizes _UpperCAmelCase = num_attention_heads _UpperCAmelCase = depths _UpperCAmelCase = key_dim _UpperCAmelCase = drop_path_rate _UpperCAmelCase = patch_size _UpperCAmelCase = attention_ratio _UpperCAmelCase = mlp_ratio _UpperCAmelCase = initializer_range _UpperCAmelCase = [ ['''Subsample''', key_dim[0], hidden_sizes[0] // key_dim[0], 4, 2, 2], ['''Subsample''', key_dim[0], hidden_sizes[1] // key_dim[0], 4, 2, 2], ] class __UpperCamelCase ( A__ ): __A : Tuple = version.parse("""1.11""" ) @property def UpperCamelCase( self ): return OrderedDict( [ ('''pixel_values''', {0: '''batch''', 1: '''num_channels''', 2: '''height''', 3: '''width'''}), ] ) @property def UpperCamelCase( self ): return 1e-4
32
import torch def lowerCAmelCase__ ( ) -> int: '''simple docstring''' if torch.cuda.is_available(): A__ = torch.cuda.device_count() else: A__ = 0 print(F'Successfully ran on {num_gpus} GPUs' ) if __name__ == "__main__": main()
514
0
'''simple docstring''' # HF Trainer benchmarking tool # # This tool can be used to run and compare multiple dimensions of the HF Trainers args. # # It then prints a report once in github format with all the information that needs to be shared # with others and second time in a console-friendly format, so it's easier to use for tuning things up. # # The main idea is: # # ./trainer-benchmark.py --base-cmd '<cmd args that don't change>' \ # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' \ # --target-metric-key train_samples_per_second # # The variations can be any command line argument that you want to compare and not just dtype as in # the example. # # --variations allows you to compare variations in multiple dimensions. # # as the first dimention has 2 options and the second 3 in our example, this will run the trainer 6 # times adding one of: # # 1. --tf32 0 --fp16 0 # 2. --tf32 0 --fp16 1 # 3. --tf32 0 --bf16 1 # 4. --tf32 1 --fp16 0 # 5. --tf32 1 --fp16 1 # 6. --tf32 1 --bf16 1 # # and print the results. This is just a cartesian product - and more than 2 dimensions can be used. # # If you want to rely on defaults, this: # --variations '--tf32 0|--tf32 1' '--fp16 0|--fp16 1|--bf16 1' # is identical to this: # --variations '--tf32 0|--tf32 1' '|--fp16|--bf16' # # the leading empty variation in the 2nd dimension is a valid variation. # # So here we get the following 6 variations: # # 1. --tf32 0 # 2. --tf32 0 --fp16 # 3. --tf32 0 --bf16 # 4. --tf32 1 # 5. --tf32 1 --fp16 # 6. --tf32 1 --bf16 # # In this particular case we don't know what the default tf32 setting is as it's normally # pytorch-version dependent). That's why it's best to do an explicit setting of each variation: # `--tf32 0|--tf32 1` # # Here is a full example of a train: # # CUDA_VISIBLE_DEVICES=0 python ./scripts/benchmark/trainer-benchmark.py \ # --base-cmd \ # ' examples/pytorch/translation/run_translation.py --model_name_or_path t5-small \ # --output_dir output_dir --do_train --label_smoothing 0.1 --logging_strategy no \ # --save_strategy no --per_device_train_batch_size 32 --max_source_length 512 \ # --max_target_length 512 --num_train_epochs 1 --overwrite_output_dir \ # --source_lang en --target_lang ro --dataset_name wmt16 --dataset_config "ro-en" \ # --source_prefix "translate English to Romanian: " --warmup_steps 50 \ # --max_train_samples 20000 --dataloader_num_workers 2 ' \ # --target-metric-key train_samples_per_second --repeat-times 1 --variations \ # '|--fp16|--bf16' '--tf32 0|--tf32 1' --report-metric-keys train_loss \ # --repeat-times 1 --base-variation '--tf32 0' # # and here is a possible output: # # # | Variation | Train | Diff | Train | # | | samples | % | loss | # | | per | | | # | | second | | | # |:----------------|----------:|-------:|--------:| # | --tf32 0 | 285.11 | 0 | 2.51 | # | --tf32 1 | 342.09 | 20 | 2.51 | # | --fp16 --tf32 0 | 423.49 | 49 | 2.51 | # | --fp16 --tf32 1 | 423.13 | 48 | 2.51 | # | --bf16 --tf32 0 | 416.80 | 46 | 2.52 | # | --bf16 --tf32 1 | 415.87 | 46 | 2.52 | # # # So you can quickly compare the different outcomes. # # Typically running each experiment once is enough, but if the environment is unstable you can # re-run each multiple times, e.g., 3 using --repeat-times 3 and it will report the averaged results. # # By default it'll use the lowest result as the base line to use as 100% and then compare the rest to # it as can be seen from the table above, but you can also specify which combination is the one to use as # the baseline, e.g., to change to another entry use: --base-variation '--tf32 1 --fp16 0' # # --target-metric-key is there to tell the program which metrics to compare - the different metric keys are # inside output_dir/all_results.json. e.g., to measure eval performance instead of train use: # --target-metric-key eval_samples_per_second # but of course you will need to adjust the --base-cmd value in the example to perform evaluation as # well (as currently it doesn't) # import argparse import datetime import io import itertools import json import math import os import platform import re import shlex import subprocess import sys from pathlib import Path from statistics import fmean import pandas as pd import torch from tqdm import tqdm import transformers lowercase_ = float("nan") class __A : '''simple docstring''' def __init__(self , A ) -> Union[str, Any]: """simple docstring""" _a = sys.stdout _a = open(A , '''a''' ) def __getattr__(self , A ) -> List[str]: """simple docstring""" return getattr(self.stdout , A ) def a__ (self , A ) -> int: """simple docstring""" self.stdout.write(A ) # strip tqdm codes self.file.write(re.sub(R'''^.*\r''' , '''''' , A , 0 , re.M ) ) def lowerCAmelCase (__A=80 , __A=False): """simple docstring""" _a = [] # deal with critical env vars _a = ['''CUDA_VISIBLE_DEVICES'''] for key in env_keys: _a = os.environ.get(__A , __A) if val is not None: cmd.append(F'''{key}={val}''') # python executable (not always needed if the script is executable) _a = sys.executable if full_python_path else sys.executable.split('''/''')[-1] cmd.append(__A) # now the normal args cmd += list(map(shlex.quote , sys.argv)) # split up into up to MAX_WIDTH lines with shell multi-line escapes _a = [] _a = '''''' while len(__A) > 0: current_line += F'''{cmd.pop(0)} ''' if len(__A) == 0 or len(__A) + len(cmd[0]) + 1 > max_width - 1: lines.append(__A) _a = '''''' return "\\\n".join(__A) def lowerCAmelCase (__A , __A): """simple docstring""" _a = re.sub(r'''[\\\n]+''' , ''' ''' , args.base_cmd) # remove --output_dir if any and set our own _a = re.sub('''--output_dir\s+[^\s]+''' , '''''' , args.base_cmd) args.base_cmd += F''' --output_dir {output_dir}''' # ensure we have --overwrite_output_dir _a = re.sub('''--overwrite_output_dir\s+''' , '''''' , args.base_cmd) args.base_cmd += " --overwrite_output_dir" return [sys.executable] + shlex.split(args.base_cmd) def lowerCAmelCase (__A , __A , __A , __A , __A , __A , __A): """simple docstring""" if 0: import random from time import sleep sleep(0) return dict( {k: random.uniform(0 , 100) for k in metric_keys} , **{target_metric_key: random.choice([nan, 10.31, 1_00.2, 55.66_66, 2_22.22_22_22_22])} , ) _a = subprocess.run(__A , capture_output=__A , text=__A) if verbose: print('''STDOUT''' , result.stdout) print('''STDERR''' , result.stderr) # save the streams _a = variation.replace(''' ''' , '''-''') with open(Path(__A) / F'''log.{prefix}.stdout.txt''' , '''w''') as f: f.write(result.stdout) with open(Path(__A) / F'''log.{prefix}.stderr.txt''' , '''w''') as f: f.write(result.stderr) if result.returncode != 0: if verbose: print('''failed''') return {target_metric_key: nan} with io.open(F'''{output_dir}/all_results.json''' , '''r''' , encoding='''utf-8''') as f: _a = json.load(__A) # filter out just the keys we want return {k: v for k, v in metrics.items() if k in metric_keys} def lowerCAmelCase (__A , __A , __A , __A , __A , __A , __A , __A , __A , __A , ): """simple docstring""" _a = [] _a = [] _a = F'''{id}: {variation:<{longest_variation_len}}''' _a = F'''{preamble}: ''' _a = set(report_metric_keys + [target_metric_key]) for i in tqdm(range(__A) , desc=__A , leave=__A): _a = process_run_single( __A , __A , __A , __A , __A , __A , __A) _a = single_run_metrics[target_metric_key] if not math.isnan(__A): metrics.append(__A) results.append(__A) outcome += "✓" else: outcome += "✘" _a = F'''\33[2K\r{outcome}''' if len(__A) > 0: _a = {k: fmean([x[k] for x in metrics]) for k in metrics[0].keys()} _a = round(mean_metrics[target_metric_key] , 2) _a = F'''{outcome} {mean_target}''' if len(__A) > 1: results_str += F''' {tuple(round(__A , 2) for x in results)}''' print(__A) _a = variation return mean_metrics else: print(__A) return {variation_key: variation, target_metric_key: nan} def lowerCAmelCase (): """simple docstring""" _a = torch.cuda.get_device_properties(torch.device('''cuda''')) return F''' Datetime : {datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')} Software: transformers: {transformers.__version__} torch : {torch.__version__} cuda : {torch.version.cuda} python : {platform.python_version()} Hardware: {torch.cuda.device_count()} GPUs : {properties.name}, {properties.total_memory/2**30:0.2f}GB ''' def lowerCAmelCase (__A , __A , __A , __A , __A): """simple docstring""" _a = pd.DataFrame(__A) _a = '''variation''' _a = '''diff_%''' _a = nan if base_variation is not None and len(df[df[variation_key] == base_variation]): # this may still return nan _a = df.loc[df[variation_key] == base_variation][target_metric_key].item() if math.isnan(__A): # as a fallback, use the minimal value as the sentinel _a = df.loc[df[target_metric_key] != nan][target_metric_key].min() # create diff column if possible if not math.isnan(__A): _a = df.apply( lambda __A: round(100 * (r[target_metric_key] - sentinel_value) / sentinel_value) if not math.isnan(r[target_metric_key]) else 0 , axis='''columns''' , ) # re-order columns _a = [variation_key, target_metric_key, diff_key, *report_metric_keys] _a = df.reindex(__A , axis='''columns''') # reorder cols # capitalize _a = df.rename(str.capitalize , axis='''columns''') # make the cols as narrow as possible _a = df.rename(lambda __A: c.replace('''_''' , '''<br>''') , axis='''columns''') _a = df.rename(lambda __A: c.replace('''_''' , '''\n''') , axis='''columns''') _a = ['''''', '''Copy between the cut-here-lines and paste as is to github or a forum'''] report += ["----------8<-----------------8<--------"] report += ["*** Results:", df_github.to_markdown(index=__A , floatfmt='''.2f''')] report += ["```"] report += ["*** Setup:", get_versions()] report += ["*** The benchmark command line was:", get_original_command()] report += ["```"] report += ["----------8<-----------------8<--------"] report += ["*** Results (console):", df_console.to_markdown(index=__A , floatfmt='''.2f''')] print('''\n\n'''.join(__A)) def lowerCAmelCase (): """simple docstring""" _a = argparse.ArgumentParser() parser.add_argument( '''--base-cmd''' , default=__A , type=__A , required=__A , help='''Base cmd''' , ) parser.add_argument( '''--variations''' , default=__A , type=__A , nargs='''+''' , required=__A , help='''Multi-dimensional variations, example: \'|--fp16|--bf16\' \'|--tf32\'''' , ) parser.add_argument( '''--base-variation''' , default=__A , type=__A , help='''Baseline variation to compare to. if None the minimal target value will be used to compare against''' , ) parser.add_argument( '''--target-metric-key''' , default=__A , type=__A , required=__A , help='''Target metric key in output_dir/all_results.json, e.g., train_samples_per_second''' , ) parser.add_argument( '''--report-metric-keys''' , default='''''' , type=__A , help='''Report metric keys - other metric keys from output_dir/all_results.json to report, e.g., train_loss. Use a single argument e.g., \'train_loss train_samples''' , ) parser.add_argument( '''--repeat-times''' , default=1 , type=__A , help='''How many times to re-run each variation - an average will be reported''' , ) parser.add_argument( '''--output_dir''' , default='''output_benchmark''' , type=__A , help='''The output directory where all the benchmark reports will go to and additionally this directory will be used to override --output_dir in the script that is being benchmarked''' , ) parser.add_argument( '''--verbose''' , default=__A , action='''store_true''' , help='''Whether to show the outputs of each run or just the benchmark progress''' , ) _a = parser.parse_args() _a = args.output_dir Path(__A).mkdir(exist_ok=__A) _a = get_base_command(__A , __A) # split each dimension into its --foo variations _a = [list(map(str.strip , re.split(r'''\|''' , __A))) for x in args.variations] # build a cartesian product of dimensions and convert those back into cmd-line arg strings, # while stripping white space for inputs that were empty _a = list(map(str.strip , map(''' '''.join , itertools.product(*__A)))) _a = max(len(__A) for x in variations) # split wanted keys _a = args.report_metric_keys.split() # capture prints into a log file for convenience _a = F'''benchmark-report-{datetime.datetime.now().strftime('%Y-%m-%d-%H-%M-%S')}.txt''' print(F'''\nNote: each run\'s output is also logged under {output_dir}/log.*.std*.txt''') print(F'''and this script\'s output is also piped into {report_fn}''') _a = Tee(__A) print(F'''\n*** Running {len(__A)} benchmarks:''') print(F'''Base command: {' '.join(__A)}''') _a = '''variation''' _a = [] for id, variation in enumerate(tqdm(__A , desc='''Total completion: ''' , leave=__A)): _a = base_cmd + variation.split() results.append( process_run( id + 1 , __A , __A , __A , __A , args.target_metric_key , __A , args.repeat_times , __A , args.verbose , )) process_results(__A , args.target_metric_key , __A , args.base_variation , __A) if __name__ == "__main__": main()
352
'''simple docstring''' lowercase_ = 256 # Modulus to hash a string lowercase_ = 1_000_003 def lowerCAmelCase (__A , __A): """simple docstring""" _a = len(__A) _a = len(__A) if p_len > t_len: return False _a = 0 _a = 0 _a = 1 # Calculating the hash of pattern and substring of text for i in range(__A): _a = (ord(pattern[i]) + p_hash * alphabet_size) % modulus _a = (ord(text[i]) + text_hash * alphabet_size) % modulus if i == p_len - 1: continue _a = (modulus_power * alphabet_size) % modulus for i in range(0 , t_len - p_len + 1): if text_hash == p_hash and text[i : i + p_len] == pattern: return True if i == t_len - p_len: continue # Calculate the https://en.wikipedia.org/wiki/Rolling_hash _a = ( (text_hash - ord(text[i]) * modulus_power) * alphabet_size + ord(text[i + p_len]) ) % modulus return False def lowerCAmelCase (): """simple docstring""" _a = '''abc1abc12''' _a = '''alskfjaldsabc1abc1abc12k23adsfabcabc''' _a = '''alskfjaldsk23adsfabcabc''' assert rabin_karp(__A , __A) and not rabin_karp(__A , __A) # Test 2) _a = '''ABABX''' _a = '''ABABZABABYABABX''' assert rabin_karp(__A , __A) # Test 3) _a = '''AAAB''' _a = '''ABAAAAAB''' assert rabin_karp(__A , __A) # Test 4) _a = '''abcdabcy''' _a = '''abcxabcdabxabcdabcdabcy''' assert rabin_karp(__A , __A) # Test 5) _a = '''Lü''' _a = '''Lüsai''' assert rabin_karp(__A , __A) _a = '''Lue''' assert not rabin_karp(__A , __A) print('''Success.''') if __name__ == "__main__": test_rabin_karp()
352
1
def UpperCamelCase_( lowerCamelCase_ ) -> List[str]: _lowercase , _lowercase : Optional[int] = [], [] while len(lowerCamelCase_ ) > 1: _lowercase , _lowercase : List[str] = min(lowerCamelCase_ ), max(lowerCamelCase_ ) start.append(lowerCamelCase_ ) end.append(lowerCamelCase_ ) collection.remove(lowerCamelCase_ ) collection.remove(lowerCamelCase_ ) end.reverse() return start + collection + end if __name__ == "__main__": SCREAMING_SNAKE_CASE : int = input("Enter numbers separated by a comma:\n").strip() SCREAMING_SNAKE_CASE : Union[str, Any] = [int(item) for item in user_input.split(",")] print(*merge_sort(unsorted), sep=",")
89
'''simple docstring''' import unittest from transformers import is_torch_available from transformers.testing_utils import require_sentencepiece, require_tokenizers, require_torch, slow, torch_device if is_torch_available(): from transformers import AutoModelForSeqaSeqLM, AutoTokenizer @require_torch @require_sentencepiece @require_tokenizers class _SCREAMING_SNAKE_CASE ( unittest.TestCase ): """simple docstring""" @slow def _lowerCamelCase ( self ): """simple docstring""" __lowerCamelCase = AutoModelForSeqaSeqLM.from_pretrained('''google/mt5-small''' , return_dict=_snake_case ).to(_snake_case ) __lowerCamelCase = AutoTokenizer.from_pretrained('''google/mt5-small''' ) __lowerCamelCase = tokenizer('''Hello there''' , return_tensors='''pt''' ).input_ids __lowerCamelCase = tokenizer('''Hi I am''' , return_tensors='''pt''' ).input_ids __lowerCamelCase = model(input_ids.to(_snake_case ) , labels=labels.to(_snake_case ) ).loss __lowerCamelCase = -(labels.shape[-1] * loss.item()) __lowerCamelCase = -8_4.9_1_2_7 self.assertTrue(abs(mtf_score - EXPECTED_SCORE ) < 1E-4 )
316
0
import unittest import numpy as np from diffusers import LMSDiscreteScheduler, OnnxStableDiffusionInpaintPipeline from diffusers.utils.testing_utils import ( is_onnx_available, load_image, nightly, require_onnxruntime, require_torch_gpu, ) from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin if is_onnx_available(): import onnxruntime as ort class a__ ( A__ , unittest.TestCase ): # FIXME: add fast tests pass @nightly @require_onnxruntime @require_torch_gpu class a__ ( unittest.TestCase ): @property def __UpperCamelCase ( self : str ): """simple docstring""" return ( "CUDAExecutionProvider", { "gpu_mem_limit": "15000000000", # 15GB "arena_extend_strategy": "kSameAsRequested", }, ) @property def __UpperCamelCase ( self : Any ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Dict = ort.SessionOptions() SCREAMING_SNAKE_CASE_ : Any = False return options def __UpperCamelCase ( self : str ): """simple docstring""" SCREAMING_SNAKE_CASE_ : int = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE_ : Dict = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE_ : Tuple = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting",revision="onnx",safety_checker=_A,feature_extractor=_A,provider=self.gpu_provider,sess_options=self.gpu_options,) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Optional[Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE_ : str = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_ : Tuple = pipe( prompt=_A,image=_A,mask_image=_A,guidance_scale=7.5,num_inference_steps=10,generator=_A,output_type="np",) SCREAMING_SNAKE_CASE_ : str = output.images SCREAMING_SNAKE_CASE_ : Tuple = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Dict = np.array([0.2514, 0.3007, 0.3517, 0.1790, 0.2382, 0.3167, 0.1944, 0.2273, 0.2464] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3 def __UpperCamelCase ( self : Dict ): """simple docstring""" SCREAMING_SNAKE_CASE_ : Any = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo.png" ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = load_image( "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" "/in_paint/overture-creations-5sI6fQgYIuo_mask.png" ) SCREAMING_SNAKE_CASE_ : Optional[Any] = LMSDiscreteScheduler.from_pretrained( "runwayml/stable-diffusion-inpainting",subfolder="scheduler",revision="onnx" ) SCREAMING_SNAKE_CASE_ : Any = OnnxStableDiffusionInpaintPipeline.from_pretrained( "runwayml/stable-diffusion-inpainting",revision="onnx",scheduler=_A,safety_checker=_A,feature_extractor=_A,provider=self.gpu_provider,sess_options=self.gpu_options,) pipe.set_progress_bar_config(disable=_A ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = "A red cat sitting on a park bench" SCREAMING_SNAKE_CASE_ : Optional[Any] = np.random.RandomState(0 ) SCREAMING_SNAKE_CASE_ : Union[str, Any] = pipe( prompt=_A,image=_A,mask_image=_A,guidance_scale=7.5,num_inference_steps=20,generator=_A,output_type="np",) SCREAMING_SNAKE_CASE_ : Union[str, Any] = output.images SCREAMING_SNAKE_CASE_ : Optional[Any] = images[0, 255:258, 255:258, -1] assert images.shape == (1, 512, 512, 3) SCREAMING_SNAKE_CASE_ : Optional[int] = np.array([0.0086, 0.0077, 0.0083, 0.0093, 0.0107, 0.0139, 0.0094, 0.0097, 0.0125] ) assert np.abs(image_slice.flatten() - expected_slice ).max() < 1E-3
718
from typing import TYPE_CHECKING from ...utils import OptionalDependencyNotAvailable, _LazyModule, is_tokenizers_available, is_torch_available __lowerCamelCase : Optional[Any] = { '''configuration_biogpt''': ['''BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP''', '''BioGptConfig'''], '''tokenization_biogpt''': ['''BioGptTokenizer'''], } try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: __lowerCamelCase : Optional[int] = [ '''BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST''', '''BioGptForCausalLM''', '''BioGptForTokenClassification''', '''BioGptForSequenceClassification''', '''BioGptModel''', '''BioGptPreTrainedModel''', ] if TYPE_CHECKING: from .configuration_biogpt import BIOGPT_PRETRAINED_CONFIG_ARCHIVE_MAP, BioGptConfig from .tokenization_biogpt import BioGptTokenizer try: if not is_torch_available(): raise OptionalDependencyNotAvailable() except OptionalDependencyNotAvailable: pass else: from .modeling_biogpt import ( BIOGPT_PRETRAINED_MODEL_ARCHIVE_LIST, BioGptForCausalLM, BioGptForSequenceClassification, BioGptForTokenClassification, BioGptModel, BioGptPreTrainedModel, ) else: import sys __lowerCamelCase : List[Any] = _LazyModule(__name__, globals()['''__file__'''], _import_structure, module_spec=__spec__)
316
0
import torch from diffusers import UnCLIPScheduler from .test_schedulers import SchedulerCommonTest class A_ ( SCREAMING_SNAKE_CASE ): _UpperCAmelCase : int = (UnCLIPScheduler,) def lowerCAmelCase ( self : Union[str, Any] ,**SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Any = { 'num_train_timesteps': 1_0_0_0, 'variance_type': 'fixed_small_log', 'clip_sample': True, 'clip_sample_range': 1.0, 'prediction_type': 'epsilon', } config.update(**SCREAMING_SNAKE_CASE__) return config def lowerCAmelCase ( self : Optional[Any]): for timesteps in [1, 5, 1_0_0, 1_0_0_0]: self.check_over_configs(num_train_timesteps=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[Any]): for variance in ["fixed_small_log", "learned_range"]: self.check_over_configs(variance_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Union[str, Any]): for clip_sample in [True, False]: self.check_over_configs(clip_sample=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Tuple): for clip_sample_range in [1, 5, 1_0, 2_0]: self.check_over_configs(clip_sample_range=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : List[Any]): for prediction_type in ["epsilon", "sample"]: self.check_over_configs(prediction_type=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Dict): for time_step in [0, 5_0_0, 9_9_9]: for prev_timestep in [None, 5, 1_0_0, 2_5_0, 5_0_0, 7_5_0]: if prev_timestep is not None and prev_timestep >= time_step: continue self.check_over_forward(time_step=SCREAMING_SNAKE_CASE__ ,prev_timestep=SCREAMING_SNAKE_CASE__) def lowerCAmelCase ( self : Optional[int]): __lowerCamelCase : Optional[int] = self.scheduler_classes[0] __lowerCamelCase : Any = self.get_scheduler_config(variance_type='fixed_small_log') __lowerCamelCase : Dict = scheduler_class(**SCREAMING_SNAKE_CASE__) assert torch.sum(torch.abs(scheduler._get_variance(0) - 1.00_00E-10)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(4_8_7) - 0.0549625)) < 1E-5 assert torch.sum(torch.abs(scheduler._get_variance(9_9_9) - 0.9994987)) < 1E-5 def lowerCAmelCase ( self : Any): __lowerCamelCase : Dict = self.scheduler_classes[0] __lowerCamelCase : List[str] = self.get_scheduler_config(variance_type='learned_range') __lowerCamelCase : int = scheduler_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Tuple = 0.5 assert scheduler._get_variance(1 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -10.1712790 < 1E-5 assert scheduler._get_variance(4_8_7 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -5.7998052 < 1E-5 assert scheduler._get_variance(9_9_9 ,predicted_variance=SCREAMING_SNAKE_CASE__) - -0.0010011 < 1E-5 def lowerCAmelCase ( self : List[str]): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : str = self.get_scheduler_config() __lowerCamelCase : List[str] = scheduler_class(**SCREAMING_SNAKE_CASE__) __lowerCamelCase : Optional[Any] = scheduler.timesteps __lowerCamelCase : Union[str, Any] = self.dummy_model() __lowerCamelCase : Optional[Any] = self.dummy_sample_deter __lowerCamelCase : List[str] = torch.manual_seed(0) for i, t in enumerate(SCREAMING_SNAKE_CASE__): # 1. predict noise residual __lowerCamelCase : int = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) # 2. predict previous mean of sample x_t-1 __lowerCamelCase : Optional[int] = scheduler.step(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__).prev_sample __lowerCamelCase : Optional[Any] = pred_prev_sample __lowerCamelCase : Union[str, Any] = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : Tuple = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__)) assert abs(result_sum.item() - 252.2682495) < 1E-2 assert abs(result_mean.item() - 0.3284743) < 1E-3 def lowerCAmelCase ( self : str): __lowerCamelCase : str = self.scheduler_classes[0] __lowerCamelCase : List[Any] = self.get_scheduler_config() __lowerCamelCase : int = scheduler_class(**SCREAMING_SNAKE_CASE__) scheduler.set_timesteps(2_5) __lowerCamelCase : int = scheduler.timesteps __lowerCamelCase : Tuple = self.dummy_model() __lowerCamelCase : Any = self.dummy_sample_deter __lowerCamelCase : Any = torch.manual_seed(0) for i, t in enumerate(SCREAMING_SNAKE_CASE__): # 1. predict noise residual __lowerCamelCase : Optional[Any] = model(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) if i + 1 == timesteps.shape[0]: __lowerCamelCase : Optional[Any] = None else: __lowerCamelCase : Union[str, Any] = timesteps[i + 1] # 2. predict previous mean of sample x_t-1 __lowerCamelCase : int = scheduler.step( SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,prev_timestep=SCREAMING_SNAKE_CASE__ ,generator=SCREAMING_SNAKE_CASE__).prev_sample __lowerCamelCase : Union[str, Any] = pred_prev_sample __lowerCamelCase : Tuple = torch.sum(torch.abs(SCREAMING_SNAKE_CASE__)) __lowerCamelCase : int = torch.mean(torch.abs(SCREAMING_SNAKE_CASE__)) assert abs(result_sum.item() - 258.2044983) < 1E-2 assert abs(result_mean.item() - 0.3362038) < 1E-3 def lowerCAmelCase ( self : List[Any]): pass def lowerCAmelCase ( self : Union[str, Any]): pass
652
import itertools import json import linecache import os import pickle import re import socket import string from collections import Counter from logging import getLogger from pathlib import Path from typing import Callable, Dict, Iterable, List import git import torch from torch.utils.data import Dataset from transformers import BartTokenizer, RagTokenizer, TaTokenizer def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=True , lowerCamelCase__="pt" ) -> Dict: __lowerCamelCase : Any = {'add_prefix_space': True} if isinstance(lowerCamelCase__ , lowerCamelCase__ ) and not line.startswith(' ' ) else {} __lowerCamelCase : int = padding_side return tokenizer( [line] , max_length=lowerCamelCase__ , padding='max_length' if pad_to_max_length else None , truncation=lowerCamelCase__ , return_tensors=lowerCamelCase__ , add_special_tokens=lowerCamelCase__ , **lowerCamelCase__ , ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=None , ) -> List[str]: __lowerCamelCase : List[str] = input_ids.ne(lowerCamelCase__ ).any(dim=0 ) if attention_mask is None: return input_ids[:, keep_column_mask] else: return (input_ids[:, keep_column_mask], attention_mask[:, keep_column_mask]) class A_ ( SCREAMING_SNAKE_CASE ): def __init__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : List[str] ,SCREAMING_SNAKE_CASE__ : Dict ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[Any] ,SCREAMING_SNAKE_CASE__ : Optional[int]="train" ,SCREAMING_SNAKE_CASE__ : Tuple=None ,SCREAMING_SNAKE_CASE__ : Dict=None ,SCREAMING_SNAKE_CASE__ : int=None ,SCREAMING_SNAKE_CASE__ : List[Any]="" ,): super().__init__() __lowerCamelCase : Optional[Any] = Path(SCREAMING_SNAKE_CASE__).joinpath(type_path + '.source') __lowerCamelCase : Any = Path(SCREAMING_SNAKE_CASE__).joinpath(type_path + '.target') __lowerCamelCase : List[Any] = self.get_char_lens(self.src_file) __lowerCamelCase : List[Any] = max_source_length __lowerCamelCase : List[str] = max_target_length assert min(self.src_lens) > 0, F"found empty line in {self.src_file}" __lowerCamelCase : Any = tokenizer __lowerCamelCase : Optional[int] = prefix if n_obs is not None: __lowerCamelCase : Dict = self.src_lens[:n_obs] __lowerCamelCase : str = src_lang __lowerCamelCase : Any = tgt_lang def __len__( self : Tuple): return len(self.src_lens) def __getitem__( self : Optional[Any] ,SCREAMING_SNAKE_CASE__ : str): __lowerCamelCase : Dict = index + 1 # linecache starts at 1 __lowerCamelCase : Any = self.prefix + linecache.getline(str(self.src_file) ,SCREAMING_SNAKE_CASE__).rstrip('\n') __lowerCamelCase : int = linecache.getline(str(self.tgt_file) ,SCREAMING_SNAKE_CASE__).rstrip('\n') assert source_line, F"empty source line for index {index}" assert tgt_line, F"empty tgt line for index {index}" # Need to add eos token manually for T5 if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__): source_line += self.tokenizer.eos_token tgt_line += self.tokenizer.eos_token # Pad source and target to the right __lowerCamelCase : Dict = ( self.tokenizer.question_encoder if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__) else self.tokenizer ) __lowerCamelCase : Optional[int] = self.tokenizer.generator if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__) else self.tokenizer __lowerCamelCase : List[str] = encode_line(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.max_source_length ,'right') __lowerCamelCase : Any = encode_line(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,self.max_target_length ,'right') __lowerCamelCase : List[Any] = source_inputs['input_ids'].squeeze() __lowerCamelCase : Tuple = target_inputs['input_ids'].squeeze() __lowerCamelCase : Tuple = source_inputs['attention_mask'].squeeze() return { "input_ids": source_ids, "attention_mask": src_mask, "decoder_input_ids": target_ids, } @staticmethod def lowerCAmelCase ( SCREAMING_SNAKE_CASE__ : int): return [len(SCREAMING_SNAKE_CASE__) for x in Path(SCREAMING_SNAKE_CASE__).open().readlines()] def lowerCAmelCase ( self : Dict ,SCREAMING_SNAKE_CASE__ : List[Any]): __lowerCamelCase : Optional[Any] = torch.stack([x['input_ids'] for x in batch]) __lowerCamelCase : Any = torch.stack([x['attention_mask'] for x in batch]) __lowerCamelCase : Union[str, Any] = torch.stack([x['decoder_input_ids'] for x in batch]) __lowerCamelCase : Optional[int] = ( self.tokenizer.generator.pad_token_id if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__) else self.tokenizer.pad_token_id ) __lowerCamelCase : int = ( self.tokenizer.question_encoder.pad_token_id if isinstance(self.tokenizer ,SCREAMING_SNAKE_CASE__) else self.tokenizer.pad_token_id ) __lowerCamelCase : int = trim_batch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__) __lowerCamelCase , __lowerCamelCase : int = trim_batch(SCREAMING_SNAKE_CASE__ ,SCREAMING_SNAKE_CASE__ ,attention_mask=SCREAMING_SNAKE_CASE__) __lowerCamelCase : Union[str, Any] = { 'input_ids': source_ids, 'attention_mask': source_mask, 'decoder_input_ids': y, } return batch a =getLogger(__name__) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Any: return list(itertools.chain.from_iterable(lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> None: __lowerCamelCase : str = get_git_info() save_json(lowerCamelCase__ , os.path.join(lowerCamelCase__ , 'git_log.json' ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__=4 , **lowerCamelCase__ ) -> List[str]: with open(lowerCamelCase__ , 'w' ) as f: json.dump(lowerCamelCase__ , lowerCamelCase__ , indent=lowerCamelCase__ , **lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Tuple: with open(lowerCamelCase__ ) as f: return json.load(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( ) -> List[str]: __lowerCamelCase : str = git.Repo(search_parent_directories=lowerCamelCase__ ) __lowerCamelCase : Any = { 'repo_id': str(lowerCamelCase__ ), 'repo_sha': str(repo.head.object.hexsha ), 'repo_branch': str(repo.active_branch ), 'hostname': str(socket.gethostname() ), } return repo_infos def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> List: return list(map(lowerCamelCase__ , lowerCamelCase__ ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Optional[int]: with open(lowerCamelCase__ , 'wb' ) as f: return pickle.dump(lowerCamelCase__ , lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> str: def remove_articles(lowerCamelCase__ ): return re.sub(R'\b(a|an|the)\b' , ' ' , lowerCamelCase__ ) def white_space_fix(lowerCamelCase__ ): return " ".join(text.split() ) def remove_punc(lowerCamelCase__ ): __lowerCamelCase : Dict = set(string.punctuation ) return "".join(ch for ch in text if ch not in exclude ) def lower(lowerCamelCase__ ): return text.lower() return white_space_fix(remove_articles(remove_punc(lower(lowerCamelCase__ ) ) ) ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> int: __lowerCamelCase : str = normalize_answer(lowerCamelCase__ ).split() __lowerCamelCase : Optional[int] = normalize_answer(lowerCamelCase__ ).split() __lowerCamelCase : Union[str, Any] = Counter(lowerCamelCase__ ) & Counter(lowerCamelCase__ ) __lowerCamelCase : Any = sum(common.values() ) if num_same == 0: return 0 __lowerCamelCase : List[Any] = 1.0 * num_same / len(lowerCamelCase__ ) __lowerCamelCase : int = 1.0 * num_same / len(lowerCamelCase__ ) __lowerCamelCase : Optional[Any] = (2 * precision * recall) / (precision + recall) return fa def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: return normalize_answer(lowerCamelCase__ ) == normalize_answer(lowerCamelCase__ ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ ) -> Dict: assert len(lowerCamelCase__ ) == len(lowerCamelCase__ ) __lowerCamelCase : Dict = 0 for hypo, pred in zip(lowerCamelCase__ , lowerCamelCase__ ): em += exact_match_score(lowerCamelCase__ , lowerCamelCase__ ) if len(lowerCamelCase__ ) > 0: em /= len(lowerCamelCase__ ) return {"em": em} def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ ) -> Tuple: return model_prefix.startswith('rag' ) def SCREAMING_SNAKE_CASE__ ( lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) -> Optional[Any]: __lowerCamelCase : Optional[int] = {p: p for p in extra_params} # T5 models don't have `dropout` param, they have `dropout_rate` instead __lowerCamelCase : List[str] = 'dropout_rate' for p in extra_params: if getattr(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ): if not hasattr(lowerCamelCase__ , lowerCamelCase__ ) and not hasattr(lowerCamelCase__ , equivalent_param[p] ): logger.info('config doesn\'t have a `{}` attribute'.format(lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) continue __lowerCamelCase : List[Any] = p if hasattr(lowerCamelCase__ , lowerCamelCase__ ) else equivalent_param[p] setattr(lowerCamelCase__ , lowerCamelCase__ , getattr(lowerCamelCase__ , lowerCamelCase__ ) ) delattr(lowerCamelCase__ , lowerCamelCase__ ) return hparams, config
652
1
import unittest from transformers import ( MODEL_FOR_OBJECT_DETECTION_MAPPING, AutoFeatureExtractor, AutoModelForObjectDetection, ObjectDetectionPipeline, is_vision_available, pipeline, ) from transformers.testing_utils import ( is_pipeline_test, nested_simplify, require_pytesseract, require_tf, require_timm, require_torch, require_vision, slow, ) from .test_pipelines_common import ANY if is_vision_available(): from PIL import Image else: class a : @staticmethod def SCREAMING_SNAKE_CASE__ ( *SCREAMING_SNAKE_CASE_ : Tuple , **SCREAMING_SNAKE_CASE_ : str ): pass @is_pipeline_test @require_vision @require_timm @require_torch class a ( unittest.TestCase ): UpperCAmelCase__ : Any = MODEL_FOR_OBJECT_DETECTION_MAPPING def SCREAMING_SNAKE_CASE__ ( self : str , SCREAMING_SNAKE_CASE_ : Dict , SCREAMING_SNAKE_CASE_ : List[str] , SCREAMING_SNAKE_CASE_ : Any ): __lowerCamelCase: List[Any] = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ , image_processor=SCREAMING_SNAKE_CASE_ ) return object_detector, ["./tests/fixtures/tests_samples/COCO/000000039769.png"] def SCREAMING_SNAKE_CASE__ ( self : List[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] , SCREAMING_SNAKE_CASE_ : Optional[Any] ): __lowerCamelCase: Optional[int] = object_detector("""./tests/fixtures/tests_samples/COCO/000000039769.png""" , threshold=0.0 ) self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) , 0 ) for detected_object in outputs: self.assertEqual( SCREAMING_SNAKE_CASE_ , { """score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ ), """box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE_ ), """ymin""": ANY(SCREAMING_SNAKE_CASE_ ), """xmax""": ANY(SCREAMING_SNAKE_CASE_ ), """ymax""": ANY(SCREAMING_SNAKE_CASE_ )}, } , ) import datasets __lowerCamelCase: List[Any] = datasets.load_dataset("""hf-internal-testing/fixtures_image_utils""" , """image""" , split="""test""" ) __lowerCamelCase: Any = [ Image.open("""./tests/fixtures/tests_samples/COCO/000000039769.png""" ), """http://images.cocodataset.org/val2017/000000039769.jpg""", # RGBA dataset[0]["""file"""], # LA dataset[1]["""file"""], # L dataset[2]["""file"""], ] __lowerCamelCase: Dict = object_detector(SCREAMING_SNAKE_CASE_ , threshold=0.0 ) self.assertEqual(len(SCREAMING_SNAKE_CASE_ ) , len(SCREAMING_SNAKE_CASE_ ) ) for outputs in batch_outputs: self.assertGreater(len(SCREAMING_SNAKE_CASE_ ) , 0 ) for detected_object in outputs: self.assertEqual( SCREAMING_SNAKE_CASE_ , { """score""": ANY(SCREAMING_SNAKE_CASE_ ), """label""": ANY(SCREAMING_SNAKE_CASE_ ), """box""": {"""xmin""": ANY(SCREAMING_SNAKE_CASE_ ), """ymin""": ANY(SCREAMING_SNAKE_CASE_ ), """xmax""": ANY(SCREAMING_SNAKE_CASE_ ), """ymax""": ANY(SCREAMING_SNAKE_CASE_ )}, } , ) @require_tf @unittest.skip("""Object detection not implemented in TF""" ) def SCREAMING_SNAKE_CASE__ ( self : List[Any] ): pass @require_torch def SCREAMING_SNAKE_CASE__ ( self : Tuple ): __lowerCamelCase: int = """hf-internal-testing/tiny-detr-mobilenetsv3""" __lowerCamelCase: Optional[int] = AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: str = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Optional[Any] = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Union[str, Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=0.0 ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ] , ) __lowerCamelCase: Any = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] , threshold=0.0 , ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], [ {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, {"""score""": 0.3376, """label""": """LABEL_0""", """box""": {"""xmin""": 159, """ymin""": 120, """xmax""": 480, """ymax""": 359}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : Optional[int] ): __lowerCamelCase: Dict = """facebook/detr-resnet-50""" __lowerCamelCase: List[str] = AutoModelForObjectDetection.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: str = AutoFeatureExtractor.from_pretrained(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Union[str, Any] = ObjectDetectionPipeline(model=SCREAMING_SNAKE_CASE_ , feature_extractor=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: int = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __lowerCamelCase: List[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : int ): __lowerCamelCase: Tuple = """facebook/detr-resnet-50""" __lowerCamelCase: Optional[int] = pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Dict = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) __lowerCamelCase: Optional[Any] = object_detector( [ """http://images.cocodataset.org/val2017/000000039769.jpg""", """http://images.cocodataset.org/val2017/000000039769.jpg""", ] ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], [ {"""score""": 0.9982, """label""": """remote""", """box""": {"""xmin""": 40, """ymin""": 70, """xmax""": 175, """ymax""": 117}}, {"""score""": 0.9960, """label""": """remote""", """box""": {"""xmin""": 333, """ymin""": 72, """xmax""": 368, """ymax""": 187}}, {"""score""": 0.9955, """label""": """couch""", """box""": {"""xmin""": 0, """ymin""": 1, """xmax""": 639, """ymax""": 473}}, {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ], ] , ) @require_torch @slow def SCREAMING_SNAKE_CASE__ ( self : List[str] ): __lowerCamelCase: Optional[Any] = 0.9985 __lowerCamelCase: Dict = """facebook/detr-resnet-50""" __lowerCamelCase: Optional[int] = pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: Optional[Any] = object_detector("""http://images.cocodataset.org/val2017/000000039769.jpg""" , threshold=SCREAMING_SNAKE_CASE_ ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9988, """label""": """cat""", """box""": {"""xmin""": 13, """ymin""": 52, """xmax""": 314, """ymax""": 470}}, {"""score""": 0.9987, """label""": """cat""", """box""": {"""xmin""": 345, """ymin""": 23, """xmax""": 640, """ymax""": 368}}, ] , ) @require_torch @require_pytesseract @slow def SCREAMING_SNAKE_CASE__ ( self : str ): __lowerCamelCase: Optional[int] = """Narsil/layoutlmv3-finetuned-funsd""" __lowerCamelCase: Dict = 0.9993 __lowerCamelCase: Any = pipeline("""object-detection""" , model=SCREAMING_SNAKE_CASE_ , threshold=SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: List[str] = object_detector( """https://huggingface.co/spaces/impira/docquery/resolve/2359223c1837a7587402bda0f2643382a6eefeab/invoice.png""" ) self.assertEqual( nested_simplify(SCREAMING_SNAKE_CASE_ , decimals=4 ) , [ {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, {"""score""": 0.9993, """label""": """I-ANSWER""", """box""": {"""xmin""": 294, """ymin""": 254, """xmax""": 343, """ymax""": 264}}, ] , )
703
import logging import math from functools import partial from typing import Any, Callable, Dict, Iterable, List, Optional, Sequence, Tuple, Union import torch from .tensor_utils import tensor_tree_map, tree_map def __lowerCAmelCase ( snake_case : Union[dict, list, tuple, torch.Tensor] ) -> List[Tuple[int, ...]]: __lowerCamelCase: Dict = [] if isinstance(snake_case , snake_case ): for v in tree.values(): shapes.extend(_fetch_dims(snake_case ) ) elif isinstance(snake_case , (list, tuple) ): for t in tree: shapes.extend(_fetch_dims(snake_case ) ) elif isinstance(snake_case , torch.Tensor ): shapes.append(tree.shape ) else: raise ValueError("""Not supported""" ) return shapes @torch.jit.ignore def __lowerCAmelCase ( snake_case : int , snake_case : Tuple[int, ...] ) -> Tuple[int, ...]: __lowerCamelCase: Union[str, Any] = [] for d in reversed(snake_case ): idx.append(flat_idx % d ) __lowerCamelCase: Optional[int] = flat_idx // d return tuple(reversed(snake_case ) ) @torch.jit.ignore def __lowerCAmelCase ( snake_case : Sequence[int] , snake_case : Sequence[int] , snake_case : Sequence[int] , snake_case : Optional[Sequence[bool]] = None , snake_case : Optional[Sequence[bool]] = None , ) -> List[Tuple[slice, ...]]: # start_edges and end_edges both indicate whether, starting from any given # dimension, the start/end index is at the top/bottom edge of the # corresponding tensor, modeled as a tree def reduce_edge_list(snake_case : List[bool] ) -> None: __lowerCamelCase: List[Any] = True for i in range(len(snake_case ) ): __lowerCamelCase: str = -1 * (i + 1) l[reversed_idx] &= tally __lowerCamelCase: List[Any] = l[reversed_idx] if start_edges is None: __lowerCamelCase: str = [s == 0 for s in start] reduce_edge_list(snake_case ) if end_edges is None: __lowerCamelCase: Union[str, Any] = [e == (d - 1) for e, d in zip(snake_case , snake_case )] reduce_edge_list(snake_case ) # Base cases. Either start/end are empty and we're done, or the final, # one-dimensional tensor can be simply sliced if len(snake_case ) == 0: return [()] elif len(snake_case ) == 1: return [(slice(start[0] , end[0] + 1 ),)] __lowerCamelCase: List[Tuple[slice, ...]] = [] __lowerCamelCase: List[slice] = [] # Dimensions common to start and end can be selected directly for s, e in zip(snake_case , snake_case ): if s == e: path_list.append(slice(snake_case , s + 1 ) ) else: break __lowerCamelCase: Tuple[slice, ...] = tuple(snake_case ) __lowerCamelCase: Dict = len(snake_case ) # start == end, and we're done if divergence_idx == len(snake_case ): return [path] def upper() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase: Dict = start[divergence_idx] return tuple( path + (slice(snake_case , sdi + 1 ),) + s for s in _get_minimal_slice_set( start[divergence_idx + 1 :] , [d - 1 for d in dims[divergence_idx + 1 :]] , dims[divergence_idx + 1 :] , start_edges=start_edges[divergence_idx + 1 :] , end_edges=[True for _ in end_edges[divergence_idx + 1 :]] , ) ) def lower() -> Tuple[Tuple[slice, ...], ...]: assert start_edges is not None assert end_edges is not None __lowerCamelCase: List[Any] = end[divergence_idx] return tuple( path + (slice(snake_case , edi + 1 ),) + s for s in _get_minimal_slice_set( [0 for _ in start[divergence_idx + 1 :]] , end[divergence_idx + 1 :] , dims[divergence_idx + 1 :] , start_edges=[True for _ in start_edges[divergence_idx + 1 :]] , end_edges=end_edges[divergence_idx + 1 :] , ) ) # If both start and end are at the edges of the subtree rooted at # divergence_idx, we can just select the whole subtree at once if start_edges[divergence_idx] and end_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] + 1 ),) ) # If just start is at the edge, we can grab almost all of the subtree, # treating only the ragged bottom edge as an edge case elif start_edges[divergence_idx]: slices.append(path + (slice(start[divergence_idx] , end[divergence_idx] ),) ) slices.extend(lower() ) # Analogous to the previous case, but the top is ragged this time elif end_edges[divergence_idx]: slices.extend(upper() ) slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] + 1 ),) ) # If both sides of the range are ragged, we need to handle both sides # separately. If there's contiguous meat in between them, we can index it # in one big chunk else: slices.extend(upper() ) __lowerCamelCase: List[str] = end[divergence_idx] - start[divergence_idx] if middle_ground > 1: slices.append(path + (slice(start[divergence_idx] + 1 , end[divergence_idx] ),) ) slices.extend(lower() ) return slices @torch.jit.ignore def __lowerCAmelCase ( snake_case : torch.Tensor , snake_case : int , snake_case : int , snake_case : int ) -> torch.Tensor: __lowerCamelCase: Any = t.shape[:no_batch_dims] __lowerCamelCase: Dict = list(_flat_idx_to_idx(snake_case , snake_case ) ) # _get_minimal_slice_set is inclusive __lowerCamelCase: Optional[int] = list(_flat_idx_to_idx(flat_end - 1 , snake_case ) ) # Get an ordered list of slices to perform __lowerCamelCase: str = _get_minimal_slice_set( snake_case , snake_case , snake_case , ) __lowerCamelCase: Tuple = [t[s] for s in slices] return torch.cat([s.view((-1,) + t.shape[no_batch_dims:] ) for s in sliced_tensors] ) def __lowerCAmelCase ( snake_case : Callable , snake_case : Dict[str, Any] , snake_case : int , snake_case : int , snake_case : bool = False , snake_case : Any = None , snake_case : bool = False , ) -> Any: if not (len(snake_case ) > 0): raise ValueError("""Must provide at least one input""" ) __lowerCamelCase: Optional[int] = [shape[:no_batch_dims] for shape in _fetch_dims(snake_case )] __lowerCamelCase: int = tuple([max(snake_case ) for s in zip(*snake_case )] ) def _prep_inputs(snake_case : torch.Tensor ) -> torch.Tensor: if not low_mem: if not sum(t.shape[:no_batch_dims] ) == no_batch_dims: __lowerCamelCase: Optional[Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) __lowerCamelCase: Union[str, Any] = t.reshape(-1 , *t.shape[no_batch_dims:] ) else: __lowerCamelCase: Union[str, Any] = t.expand(orig_batch_dims + t.shape[no_batch_dims:] ) return t __lowerCamelCase: Dict[str, Any] = tensor_tree_map(_prep_inputs , snake_case ) __lowerCamelCase: Optional[Any] = None if _out is not None: __lowerCamelCase: List[Any] = tensor_tree_map(lambda snake_case : t.view([-1] + list(t.shape[no_batch_dims:] ) ) , _out ) __lowerCamelCase: List[Any] = 1 for d in orig_batch_dims: flat_batch_dim *= d __lowerCamelCase: int = flat_batch_dim // chunk_size + (flat_batch_dim % chunk_size != 0) def _select_chunk(snake_case : torch.Tensor ) -> torch.Tensor: return t[i : i + chunk_size] if t.shape[0] != 1 else t __lowerCamelCase: List[Any] = 0 __lowerCamelCase: Optional[Any] = prepped_outputs for _ in range(snake_case ): # Chunk the input if not low_mem: __lowerCamelCase: int = _select_chunk else: __lowerCamelCase: Optional[int] = partial( _chunk_slice , flat_start=snake_case , flat_end=min(snake_case , i + chunk_size ) , no_batch_dims=len(snake_case ) , ) __lowerCamelCase: Dict[str, Any] = tensor_tree_map(snake_case , snake_case ) # Run the layer on the chunk __lowerCamelCase: Union[str, Any] = layer(**snake_case ) # Allocate space for the output if out is None: __lowerCamelCase: Dict = tensor_tree_map(lambda snake_case : t.new_zeros((flat_batch_dim,) + t.shape[1:] ) , snake_case ) # Put the chunk in its pre-allocated space if isinstance(snake_case , snake_case ): def assign(snake_case : dict , snake_case : dict ) -> None: for k, v in da.items(): if isinstance(snake_case , snake_case ): assign(snake_case , da[k] ) else: if _add_into_out: v[i : i + chunk_size] += da[k] else: __lowerCamelCase: List[str] = da[k] assign(snake_case , snake_case ) elif isinstance(snake_case , snake_case ): for xa, xa in zip(snake_case , snake_case ): if _add_into_out: xa[i : i + chunk_size] += xa else: __lowerCamelCase: Optional[int] = xa elif isinstance(snake_case , torch.Tensor ): if _add_into_out: out[i : i + chunk_size] += output_chunk else: __lowerCamelCase: Optional[Any] = output_chunk else: raise ValueError("""Not supported""" ) i += chunk_size __lowerCamelCase: Union[str, Any] = tensor_tree_map(lambda snake_case : t.view(orig_batch_dims + t.shape[1:] ) , snake_case ) return out class a : def __init__( self : Dict , SCREAMING_SNAKE_CASE_ : int = 512 , ): __lowerCamelCase: Any = max_chunk_size __lowerCamelCase: Optional[int] = None __lowerCamelCase: Optional[tuple] = None def SCREAMING_SNAKE_CASE__ ( self : Tuple , SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : int ): logging.info("""Tuning chunk size...""" ) if min_chunk_size >= self.max_chunk_size: return min_chunk_size __lowerCamelCase: List[int] = [2**l for l in range(int(math.log(self.max_chunk_size , 2 ) ) + 1 )] __lowerCamelCase: Optional[Any] = [c for c in candidates if c > min_chunk_size] __lowerCamelCase: Union[str, Any] = [min_chunk_size] + candidates candidates[-1] += 4 def test_chunk_size(SCREAMING_SNAKE_CASE_ : int ) -> bool: try: with torch.no_grad(): fn(*SCREAMING_SNAKE_CASE_ , chunk_size=SCREAMING_SNAKE_CASE_ ) return True except RuntimeError: return False __lowerCamelCase: List[str] = 0 __lowerCamelCase: Any = len(SCREAMING_SNAKE_CASE_ ) - 1 while i > min_viable_chunk_size_index: __lowerCamelCase: List[str] = test_chunk_size(candidates[i] ) if not viable: __lowerCamelCase: Optional[int] = (min_viable_chunk_size_index + i) // 2 else: __lowerCamelCase: Optional[Any] = i __lowerCamelCase: List[str] = (i + len(SCREAMING_SNAKE_CASE_ ) - 1) // 2 return candidates[min_viable_chunk_size_index] def SCREAMING_SNAKE_CASE__ ( self : int , SCREAMING_SNAKE_CASE_ : Iterable , SCREAMING_SNAKE_CASE_ : Iterable ): __lowerCamelCase: int = True for aa, aa in zip(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): assert type(SCREAMING_SNAKE_CASE_ ) == type(SCREAMING_SNAKE_CASE_ ) if isinstance(SCREAMING_SNAKE_CASE_ , (list, tuple) ): consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) elif isinstance(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ): __lowerCamelCase: int = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] __lowerCamelCase: Dict = [v for _, v in sorted(aa.items() , key=lambda SCREAMING_SNAKE_CASE_ : x[0] )] consistent &= self._compare_arg_caches(SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) else: consistent &= aa == aa return consistent def SCREAMING_SNAKE_CASE__ ( self : Optional[int] , SCREAMING_SNAKE_CASE_ : Callable , SCREAMING_SNAKE_CASE_ : tuple , SCREAMING_SNAKE_CASE_ : int , ): __lowerCamelCase: int = True __lowerCamelCase: tuple = tree_map(lambda SCREAMING_SNAKE_CASE_ : a.shape if isinstance(SCREAMING_SNAKE_CASE_ , torch.Tensor ) else a , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ ) if self.cached_arg_data is not None: # If args have changed shape/value, we need to re-tune assert len(self.cached_arg_data ) == len(SCREAMING_SNAKE_CASE_ ) __lowerCamelCase: List[str] = self._compare_arg_caches(self.cached_arg_data , SCREAMING_SNAKE_CASE_ ) else: # Otherwise, we can reuse the precomputed value __lowerCamelCase: Optional[int] = False if not consistent: __lowerCamelCase: str = self._determine_favorable_chunk_size( SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , SCREAMING_SNAKE_CASE_ , ) __lowerCamelCase: Optional[int] = arg_data assert self.cached_chunk_size is not None return self.cached_chunk_size
189
0
def __lowerCAmelCase ( ) -> int: '''simple docstring''' return 1 def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pence(x - 2 ) + one_pence() def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return 0 if x < 0 else five_pence(x - 5 ) + two_pence(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return 0 if x < 0 else ten_pence(x - 10 ) + five_pence(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return 0 if x < 0 else twenty_pence(x - 20 ) + ten_pence(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return 0 if x < 0 else fifty_pence(x - 50 ) + twenty_pence(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return 0 if x < 0 else one_pound(x - 1_00 ) + fifty_pence(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int ) -> int: '''simple docstring''' return 0 if x < 0 else two_pound(x - 2_00 ) + one_pound(_UpperCamelCase ) def __lowerCAmelCase ( _UpperCamelCase : int = 2_00 ) -> int: '''simple docstring''' return two_pound(_UpperCamelCase ) if __name__ == "__main__": print(solution(int(input().strip())))
439
import argparse import os import re a_ : List[str] = "src/transformers/models/auto" # re pattern that matches mapping introductions: # SUPER_MODEL_MAPPING_NAMES = OrderedDict or SUPER_MODEL_MAPPING = OrderedDict a_ : Optional[Any] = re.compile(R"[A-Z_]+_MAPPING(\s+|_[A-Z_]+\s+)=\s+OrderedDict") # re pattern that matches identifiers in mappings a_ : Optional[int] = re.compile(R"\s*\(\s*\"(\S[^\"]+)\"") def __lowerCAmelCase ( _UpperCamelCase : Tuple , _UpperCamelCase : bool = False ) -> Optional[int]: '''simple docstring''' with open(_UpperCamelCase , 'r' , encoding='utf-8' ) as f: SCREAMING_SNAKE_CASE = f.read() SCREAMING_SNAKE_CASE = content.split('\n' ) SCREAMING_SNAKE_CASE = [] SCREAMING_SNAKE_CASE = 0 while line_idx < len(_UpperCamelCase ): if _re_intro_mapping.search(lines[line_idx] ) is not None: SCREAMING_SNAKE_CASE = len(re.search(R'^(\s*)\S' , lines[line_idx] ).groups()[0] ) + 8 # Start of a new mapping! while not lines[line_idx].startswith(' ' * indent + '(' ): new_lines.append(lines[line_idx] ) line_idx += 1 SCREAMING_SNAKE_CASE = [] while lines[line_idx].strip() != "]": # Blocks either fit in one line or not if lines[line_idx].strip() == "(": SCREAMING_SNAKE_CASE = line_idx while not lines[line_idx].startswith(' ' * indent + ')' ): line_idx += 1 blocks.append('\n'.join(lines[start_idx : line_idx + 1] ) ) else: blocks.append(lines[line_idx] ) line_idx += 1 # Sort blocks by their identifiers SCREAMING_SNAKE_CASE = sorted(_UpperCamelCase , key=lambda _UpperCamelCase : _re_identifier.search(_UpperCamelCase ).groups()[0] ) new_lines += blocks else: new_lines.append(lines[line_idx] ) line_idx += 1 if overwrite: with open(_UpperCamelCase , 'w' , encoding='utf-8' ) as f: f.write('\n'.join(_UpperCamelCase ) ) elif "\n".join(_UpperCamelCase ) != content: return True def __lowerCAmelCase ( _UpperCamelCase : bool = False ) -> Dict: '''simple docstring''' SCREAMING_SNAKE_CASE = [os.path.join(_UpperCamelCase , _UpperCamelCase ) for f in os.listdir(_UpperCamelCase ) if f.endswith('.py' )] SCREAMING_SNAKE_CASE = [sort_auto_mapping(_UpperCamelCase , overwrite=_UpperCamelCase ) for fname in fnames] if not overwrite and any(_UpperCamelCase ): SCREAMING_SNAKE_CASE = [f for f, d in zip(_UpperCamelCase , _UpperCamelCase ) if d] raise ValueError( f"""The following files have auto mappings that need sorting: {', '.join(_UpperCamelCase )}. Run `make style` to fix""" ' this.' ) if __name__ == "__main__": a_ : Union[str, Any] = argparse.ArgumentParser() parser.add_argument("--check_only", action="store_true", help="Whether to only check or fix style.") a_ : List[str] = parser.parse_args() sort_all_auto_mappings(not args.check_only)
439
1
'''simple docstring''' import time import unittest from transformers import is_torch_available from transformers.testing_utils import require_torch, torch_device from ..test_modeling_common import ids_tensor if is_torch_available(): import torch from transformers.generation import ( MaxLengthCriteria, MaxNewTokensCriteria, MaxTimeCriteria, StoppingCriteriaList, validate_stopping_criteria, ) @require_torch class UpperCAmelCase ( unittest.TestCase): """simple docstring""" def UpperCamelCase__ ( self : List[str] , UpperCamelCase__ : Any ) -> Any: _UpperCamelCase =3 _UpperCamelCase =250 _UpperCamelCase =ids_tensor((batch_size, length) , UpperCamelCase__ ) _UpperCamelCase =torch.ones((batch_size, length) , device=UpperCamelCase__ , dtype=torch.float ) / length return input_ids, scores def UpperCamelCase__ ( self : Dict ) -> List[str]: _UpperCamelCase , _UpperCamelCase =self._get_tensors(5 ) _UpperCamelCase =StoppingCriteriaList( [ MaxLengthCriteria(max_length=10 ), MaxTimeCriteria(max_time=0.1 ), ] ) self.assertFalse(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase , _UpperCamelCase =self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase , _UpperCamelCase =self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) def UpperCamelCase__ ( self : Optional[Any] ) -> Union[str, Any]: _UpperCamelCase =MaxLengthCriteria(max_length=10 ) _UpperCamelCase , _UpperCamelCase =self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase , _UpperCamelCase =self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase , _UpperCamelCase =self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) def UpperCamelCase__ ( self : List[Any] ) -> List[str]: _UpperCamelCase =MaxNewTokensCriteria(start_length=5 , max_new_tokens=5 ) _UpperCamelCase , _UpperCamelCase =self._get_tensors(5 ) self.assertFalse(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase , _UpperCamelCase =self._get_tensors(9 ) self.assertFalse(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase , _UpperCamelCase =self._get_tensors(10 ) self.assertTrue(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase =StoppingCriteriaList([criteria] ) self.assertEqual(criteria_list.max_length , 10 ) def UpperCamelCase__ ( self : Optional[Any] ) -> Tuple: _UpperCamelCase , _UpperCamelCase =self._get_tensors(5 ) _UpperCamelCase =MaxTimeCriteria(max_time=0.1 ) self.assertFalse(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) _UpperCamelCase =MaxTimeCriteria(max_time=0.1 , initial_timestamp=time.time() - 0.2 ) self.assertTrue(criteria(UpperCamelCase__ , UpperCamelCase__ ) ) def UpperCamelCase__ ( self : Any ) -> str: validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 10 ) with self.assertWarns(UpperCamelCase__ ): validate_stopping_criteria(StoppingCriteriaList([MaxLengthCriteria(10 )] ) , 11 ) _UpperCamelCase =validate_stopping_criteria(StoppingCriteriaList() , 11 ) self.assertEqual(len(UpperCamelCase__ ) , 1 )
271
'''simple docstring''' import inspect import os import torch from transformers import AutoModel from transformers.testing_utils import mockenv_context from transformers.trainer_utils import set_seed import accelerate from accelerate.accelerator import Accelerator from accelerate.state import AcceleratorState from accelerate.test_utils.testing import ( AccelerateTestCase, TempDirTestCase, execute_subprocess_async, require_cuda, require_fsdp, require_multi_gpu, slow, ) from accelerate.utils.constants import ( FSDP_AUTO_WRAP_POLICY, FSDP_BACKWARD_PREFETCH, FSDP_SHARDING_STRATEGY, FSDP_STATE_DICT_TYPE, ) from accelerate.utils.dataclasses import FullyShardedDataParallelPlugin from accelerate.utils.other import patch_environment set_seed(42) __lowerCamelCase : List[Any] = 'bert-base-cased' __lowerCamelCase : str = 'fp16' __lowerCamelCase : Optional[int] = 'bf16' __lowerCamelCase : List[Any] = [FPaa, BFaa] @require_fsdp @require_cuda class UpperCAmelCase ( lowercase_): """simple docstring""" def UpperCamelCase__ ( self : Tuple ) -> Union[str, Any]: super().setUp() _UpperCamelCase =dict( ACCELERATE_USE_FSDP='''true''' , MASTER_ADDR='''localhost''' , MASTER_PORT='''10999''' , RANK='''0''' , LOCAL_RANK='''0''' , WORLD_SIZE='''1''' , ) def UpperCamelCase__ ( self : int ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import ShardingStrategy for i, strategy in enumerate(UpperCamelCase__ ): _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =F'''{i + 1}''' _UpperCamelCase =strategy with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.sharding_strategy , ShardingStrategy(i + 1 ) ) def UpperCamelCase__ ( self : Union[str, Any] ) -> Any: from torch.distributed.fsdp.fully_sharded_data_parallel import BackwardPrefetch for i, prefetch_policy in enumerate(UpperCamelCase__ ): _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =prefetch_policy with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() if prefetch_policy == "NO_PREFETCH": self.assertIsNone(fsdp_plugin.backward_prefetch ) else: self.assertEqual(fsdp_plugin.backward_prefetch , BackwardPrefetch(i + 1 ) ) def UpperCamelCase__ ( self : Optional[Any] ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import StateDictType for i, state_dict_type in enumerate(UpperCamelCase__ ): _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =state_dict_type with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.state_dict_type , StateDictType(i + 1 ) ) if state_dict_type == "FULL_STATE_DICT": self.assertTrue(fsdp_plugin.state_dict_config.offload_to_cpu ) self.assertTrue(fsdp_plugin.state_dict_config.ranka_only ) def UpperCamelCase__ ( self : Any ) -> List[Any]: _UpperCamelCase =AutoModel.from_pretrained(UpperCamelCase__ ) for policy in FSDP_AUTO_WRAP_POLICY: _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =policy if policy == "TRANSFORMER_BASED_WRAP": _UpperCamelCase ='''BertLayer''' elif policy == "SIZE_BASED_WRAP": _UpperCamelCase ='''2000''' with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCamelCase__ ) if policy == "NO_WRAP": self.assertIsNone(fsdp_plugin.auto_wrap_policy ) else: self.assertIsNotNone(fsdp_plugin.auto_wrap_policy ) _UpperCamelCase =self.dist_env.copy() _UpperCamelCase ='''TRANSFORMER_BASED_WRAP''' _UpperCamelCase ='''T5Layer''' with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() with self.assertRaises(UpperCamelCase__ ) as cm: fsdp_plugin.set_auto_wrap_policy(UpperCamelCase__ ) self.assertTrue('''Could not find the transformer layer class to wrap in the model.''' in str(cm.exception ) ) _UpperCamelCase =self.dist_env.copy() _UpperCamelCase ='''SIZE_BASED_WRAP''' _UpperCamelCase ='''0''' with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() fsdp_plugin.set_auto_wrap_policy(UpperCamelCase__ ) self.assertIsNone(fsdp_plugin.auto_wrap_policy ) def UpperCamelCase__ ( self : Any ) -> List[Any]: from torch.distributed.fsdp.fully_sharded_data_parallel import MixedPrecision from torch.distributed.fsdp.sharded_grad_scaler import ShardedGradScaler for mp_dtype in dtypes: _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =mp_dtype with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =Accelerator() if mp_dtype == "fp16": _UpperCamelCase =torch.floataa elif mp_dtype == "bf16": _UpperCamelCase =torch.bfloataa _UpperCamelCase =MixedPrecision(param_dtype=UpperCamelCase__ , reduce_dtype=UpperCamelCase__ , buffer_dtype=UpperCamelCase__ ) self.assertEqual(accelerator.state.fsdp_plugin.mixed_precision_policy , UpperCamelCase__ ) if mp_dtype == FPaa: self.assertTrue(isinstance(accelerator.scaler , UpperCamelCase__ ) ) elif mp_dtype == BFaa: self.assertIsNone(accelerator.scaler ) AcceleratorState._reset_state(UpperCamelCase__ ) def UpperCamelCase__ ( self : Dict ) -> Tuple: from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload for flag in [True, False]: _UpperCamelCase =self.dist_env.copy() _UpperCamelCase =str(UpperCamelCase__ ).lower() with mockenv_context(**UpperCamelCase__ ): _UpperCamelCase =FullyShardedDataParallelPlugin() self.assertEqual(fsdp_plugin.cpu_offload , CPUOffload(offload_params=UpperCamelCase__ ) ) @require_fsdp @require_multi_gpu @slow class UpperCAmelCase ( lowercase_): """simple docstring""" def UpperCamelCase__ ( self : Union[str, Any] ) -> List[str]: super().setUp() _UpperCamelCase =0.82 _UpperCamelCase =[ '''fsdp_shard_grad_op_transformer_based_wrap''', '''fsdp_full_shard_transformer_based_wrap''', ] _UpperCamelCase ={ '''multi_gpu_fp16''': 3200, '''fsdp_shard_grad_op_transformer_based_wrap_fp16''': 2000, '''fsdp_full_shard_transformer_based_wrap_fp16''': 1900, # Disabling below test as it overwhelms the RAM memory usage # on CI self-hosted runner leading to tests getting killed. # "fsdp_full_shard_cpu_offload_transformer_based_wrap_fp32": 1500, # fp16 was leading to indefinite hang } _UpperCamelCase =160 _UpperCamelCase =160 _UpperCamelCase =inspect.getfile(accelerate.test_utils ) _UpperCamelCase =os.path.sep.join(mod_file.split(os.path.sep )[:-1] + ['''scripts''', '''external_deps'''] ) def UpperCamelCase__ ( self : int ) -> str: _UpperCamelCase =os.path.join(self.test_scripts_folder , '''test_performance.py''' ) _UpperCamelCase =['''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp'''] for config in self.performance_configs: _UpperCamelCase =cmd.copy() for i, strategy in enumerate(UpperCamelCase__ ): if strategy.lower() in config: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "fp32" in config: cmd_config.append('''--mixed_precision=no''' ) else: cmd_config.append('''--mixed_precision=fp16''' ) if "cpu_offload" in config: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in config: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--performance_lower_bound={self.performance_lower_bound}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) def UpperCamelCase__ ( self : Optional[Any] ) -> Any: _UpperCamelCase =os.path.join(self.test_scripts_folder , '''test_checkpointing.py''' ) _UpperCamelCase =[ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', '''--use_fsdp''', '''--mixed_precision=fp16''', '''--fsdp_transformer_layer_cls_to_wrap=BertLayer''', ] for i, strategy in enumerate(UpperCamelCase__ ): _UpperCamelCase =cmd.copy() cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) if strategy != "FULL_SHARD": continue _UpperCamelCase =len(UpperCamelCase__ ) for state_dict_type in FSDP_STATE_DICT_TYPE: _UpperCamelCase =cmd_config[:state_dict_config_index] cmd_config.append(F'''--fsdp_state_dict_type={state_dict_type}''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', '''--partial_train_epoch=1''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) _UpperCamelCase =cmd_config[:-1] _UpperCamelCase =os.path.join(self.tmpdir , '''epoch_0''' ) cmd_config.extend( [ F'''--resume_from_checkpoint={resume_from_checkpoint}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() ) def UpperCamelCase__ ( self : Dict ) -> int: _UpperCamelCase =os.path.join(self.test_scripts_folder , '''test_peak_memory_usage.py''' ) _UpperCamelCase =[ '''accelerate''', '''launch''', '''--num_processes=2''', '''--num_machines=1''', '''--machine_rank=0''', ] for spec, peak_mem_upper_bound in self.peak_memory_usage_upper_bound.items(): _UpperCamelCase =cmd.copy() if "fp16" in spec: cmd_config.extend(['''--mixed_precision=fp16'''] ) else: cmd_config.extend(['''--mixed_precision=no'''] ) if "multi_gpu" in spec: continue else: cmd_config.extend(['''--use_fsdp'''] ) for i, strategy in enumerate(UpperCamelCase__ ): if strategy.lower() in spec: cmd_config.append(F'''--fsdp_sharding_strategy={i+1}''' ) break if "cpu_offload" in spec: cmd_config.append('''--fsdp_offload_params=True''' ) for policy in FSDP_AUTO_WRAP_POLICY: if policy.lower() in spec: cmd_config.append(F'''--fsdp_auto_wrap_policy={policy}''' ) break if policy == "TRANSFORMER_BASED_WRAP": cmd_config.append('''--fsdp_transformer_layer_cls_to_wrap=BertLayer''' ) elif policy == "SIZE_BASED_WRAP": cmd_config.append('''--fsdp_min_num_params=2000''' ) cmd_config.extend( [ self.test_file_path, F'''--output_dir={self.tmpdir}''', F'''--peak_memory_upper_bound={peak_mem_upper_bound}''', F'''--n_train={self.n_train}''', F'''--n_val={self.n_val}''', ] ) with patch_environment(omp_num_threads=1 ): execute_subprocess_async(UpperCamelCase__ , env=os.environ.copy() )
271
1
'''simple docstring''' import inspect import unittest from math import floor from transformers import CvtConfig from transformers.file_utils import cached_property, is_torch_available, is_vision_available from transformers.testing_utils import require_torch, require_vision, slow, torch_device from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, floats_tensor, ids_tensor from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import CvtForImageClassification, CvtModel from transformers.models.cvt.modeling_cvt import CVT_PRETRAINED_MODEL_ARCHIVE_LIST if is_vision_available(): from PIL import Image from transformers import AutoImageProcessor class lowerCAmelCase ( __UpperCAmelCase): def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.config_class(**self.inputs_dict ) self.parent.assertTrue(hasattr(lowerCamelCase__ , '''embed_dim''' ) ) self.parent.assertTrue(hasattr(lowerCamelCase__ , '''num_heads''' ) ) class lowerCAmelCase : def __init__( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE=13 , __SCREAMING_SNAKE_CASE=64 , __SCREAMING_SNAKE_CASE=3 , __SCREAMING_SNAKE_CASE=[16, 48, 96] , __SCREAMING_SNAKE_CASE=[1, 3, 6] , __SCREAMING_SNAKE_CASE=[1, 2, 10] , __SCREAMING_SNAKE_CASE=[7, 3, 3] , __SCREAMING_SNAKE_CASE=[4, 2, 2] , __SCREAMING_SNAKE_CASE=[2, 1, 1] , __SCREAMING_SNAKE_CASE=[2, 2, 2] , __SCREAMING_SNAKE_CASE=[False, False, True] , __SCREAMING_SNAKE_CASE=[0.0, 0.0, 0.0] , __SCREAMING_SNAKE_CASE=0.02 , __SCREAMING_SNAKE_CASE=1E-12 , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=True , __SCREAMING_SNAKE_CASE=2 , ) -> str: '''simple docstring''' __snake_case = parent __snake_case = batch_size __snake_case = image_size __snake_case = patch_sizes __snake_case = patch_stride __snake_case = patch_padding __snake_case = is_training __snake_case = use_labels __snake_case = num_labels __snake_case = num_channels __snake_case = embed_dim __snake_case = num_heads __snake_case = stride_kv __snake_case = depth __snake_case = cls_token __snake_case = attention_drop_rate __snake_case = initializer_range __snake_case = layer_norm_eps def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' __snake_case = floats_tensor([self.batch_size, self.num_channels, self.image_size, self.image_size] ) __snake_case = None if self.use_labels: __snake_case = ids_tensor([self.batch_size] , self.num_labels ) __snake_case = self.get_config() return config, pixel_values, labels def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return CvtConfig( image_size=self.image_size , num_labels=self.num_labels , num_channels=self.num_channels , embed_dim=self.embed_dim , num_heads=self.num_heads , patch_sizes=self.patch_sizes , patch_padding=self.patch_padding , patch_stride=self.patch_stride , stride_kv=self.stride_kv , depth=self.depth , cls_token=self.cls_token , attention_drop_rate=self.attention_drop_rate , initializer_range=self.initializer_range , ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Union[str, Any]: '''simple docstring''' __snake_case = CvtModel(config=lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __snake_case = model(lowerCamelCase__ ) __snake_case = (self.image_size, self.image_size) __snake_case , __snake_case = image_size[0], image_size[1] for i in range(len(self.depth ) ): __snake_case = floor(((height + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) __snake_case = floor(((width + 2 * self.patch_padding[i] - self.patch_sizes[i]) / self.patch_stride[i]) + 1 ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.embed_dim[-1], height, width) ) def lowerCAmelCase ( self , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ) -> Tuple: '''simple docstring''' __snake_case = self.num_labels __snake_case = CvtForImageClassification(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() __snake_case = model(lowerCamelCase__ , labels=lowerCamelCase__ ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.num_labels) ) def lowerCAmelCase ( self ) -> Any: '''simple docstring''' __snake_case = self.prepare_config_and_inputs() __snake_case , __snake_case , __snake_case = config_and_inputs __snake_case = {'''pixel_values''': pixel_values} return config, inputs_dict @require_torch class lowerCAmelCase ( __UpperCAmelCase , __UpperCAmelCase , unittest.TestCase): __lowercase : Any = (CvtModel, CvtForImageClassification) if is_torch_available() else () __lowercase : Dict = ( {"""feature-extraction""": CvtModel, """image-classification""": CvtForImageClassification} if is_torch_available() else {} ) __lowercase : Dict = False __lowercase : Any = False __lowercase : Dict = False __lowercase : Any = False __lowercase : Optional[Any] = False def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = CvtModelTester(self ) __snake_case = ConfigTester(self , config_class=lowerCamelCase__ , has_text_modality=lowerCamelCase__ , hidden_size=37 ) def lowerCAmelCase ( self ) -> List[str]: '''simple docstring''' self.create_and_test_config_common_properties() self.config_tester.create_and_test_config_to_json_string() self.config_tester.create_and_test_config_to_json_file() self.config_tester.create_and_test_config_from_and_save_pretrained() self.config_tester.create_and_test_config_with_num_labels() self.config_tester.check_config_can_be_init_without_params() self.config_tester.check_config_arguments_init() def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' return @unittest.skip(reason='''Cvt does not output attentions''' ) def lowerCAmelCase ( self ) -> Tuple: '''simple docstring''' pass @unittest.skip(reason='''Cvt does not use inputs_embeds''' ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass @unittest.skip(reason='''Cvt does not support input and output embeddings''' ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' pass def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = model_class(lowerCamelCase__ ) __snake_case = inspect.signature(model.forward ) # signature.parameters is an OrderedDict => so arg_names order is deterministic __snake_case = [*signature.parameters.keys()] __snake_case = ['''pixel_values'''] self.assertListEqual(arg_names[:1] , lowerCamelCase__ ) def lowerCAmelCase ( self ) -> Optional[int]: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*lowerCamelCase__ ) def lowerCAmelCase ( self ) -> Optional[Any]: '''simple docstring''' def check_hidden_states_output(__SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE , __SCREAMING_SNAKE_CASE ): __snake_case = model_class(lowerCamelCase__ ) model.to(lowerCamelCase__ ) model.eval() with torch.no_grad(): __snake_case = model(**self._prepare_for_class(lowerCamelCase__ , lowerCamelCase__ ) ) __snake_case = outputs.hidden_states __snake_case = len(self.model_tester.depth ) self.assertEqual(len(lowerCamelCase__ ) , lowerCamelCase__ ) # verify the first hidden states (first block) self.assertListEqual( list(hidden_states[0].shape[-3:] ) , [ self.model_tester.embed_dim[0], self.model_tester.image_size // 4, self.model_tester.image_size // 4, ] , ) __snake_case , __snake_case = self.model_tester.prepare_config_and_inputs_for_common() for model_class in self.all_model_classes: __snake_case = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) # check that output_hidden_states also work using config del inputs_dict["output_hidden_states"] __snake_case = True check_hidden_states_output(lowerCamelCase__ , lowerCamelCase__ , lowerCamelCase__ ) def lowerCAmelCase ( self ) -> int: '''simple docstring''' __snake_case = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_for_image_classification(*lowerCamelCase__ ) @unittest.skip('''Will be fixed soon by reducing the size of the model used for common tests.''' ) def lowerCAmelCase ( self ) -> str: '''simple docstring''' pass @slow def lowerCAmelCase ( self ) -> Union[str, Any]: '''simple docstring''' for model_name in CVT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]: __snake_case = CvtModel.from_pretrained(lowerCamelCase__ ) self.assertIsNotNone(lowerCamelCase__ ) def _UpperCamelCase ()-> List[Any]: '''simple docstring''' __snake_case = Image.open('''./tests/fixtures/tests_samples/COCO/000000039769.png''' ) return image @require_torch @require_vision class lowerCAmelCase ( unittest.TestCase): @cached_property def lowerCAmelCase ( self ) -> List[Any]: '''simple docstring''' return AutoImageProcessor.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ) @slow def lowerCAmelCase ( self ) -> Dict: '''simple docstring''' __snake_case = CvtForImageClassification.from_pretrained(CVT_PRETRAINED_MODEL_ARCHIVE_LIST[0] ).to(lowerCamelCase__ ) __snake_case = self.default_image_processor __snake_case = prepare_img() __snake_case = image_processor(images=lowerCamelCase__ , return_tensors='''pt''' ).to(lowerCamelCase__ ) # forward pass with torch.no_grad(): __snake_case = model(**lowerCamelCase__ ) # verify the logits __snake_case = torch.Size((1, 1000) ) self.assertEqual(outputs.logits.shape , lowerCamelCase__ ) __snake_case = torch.tensor([0.9_285, 0.9_015, -0.3_150] ).to(lowerCamelCase__ ) self.assertTrue(torch.allclose(outputs.logits[0, :3] , lowerCamelCase__ , atol=1E-4 ) )
24
'''simple docstring''' def _A ( lowercase__ ): assert ( isinstance(lowercase__ , lowercase__ ) and number_of_steps > 0 ), f'''number_of_steps needs to be positive integer, your input {number_of_steps}''' if number_of_steps == 1: return 1 lowercase__ , lowercase__ = 1, 1 for _ in range(number_of_steps - 1 ): lowercase__ , lowercase__ = current + previous, current return current if __name__ == "__main__": import doctest doctest.testmod()
325
0
"""simple docstring""" import unittest from parameterized import parameterized from transformers import OpenLlamaConfig, is_torch_available, set_seed from transformers.testing_utils import require_torch, torch_device from ...generation.test_utils import GenerationTesterMixin from ...test_configuration_common import ConfigTester from ...test_modeling_common import ModelTesterMixin, ids_tensor, random_attention_mask from ...test_pipeline_mixin import PipelineTesterMixin if is_torch_available(): import torch from transformers import OpenLlamaForCausalLM, OpenLlamaForSequenceClassification, OpenLlamaModel class _a : """simple docstring""" def __init__( self : Dict , __UpperCamelCase : int , __UpperCamelCase : Tuple=1_3 , __UpperCamelCase : Union[str, Any]=7 , __UpperCamelCase : Union[str, Any]=True , __UpperCamelCase : Dict=True , __UpperCamelCase : Union[str, Any]=False , __UpperCamelCase : Optional[int]=True , __UpperCamelCase : Tuple=9_9 , __UpperCamelCase : Union[str, Any]=3_2 , __UpperCamelCase : str=5 , __UpperCamelCase : Union[str, Any]=4 , __UpperCamelCase : Union[str, Any]=3_7 , __UpperCamelCase : Any="gelu" , __UpperCamelCase : List[Any]=0.1 , __UpperCamelCase : Optional[Any]=0.1 , __UpperCamelCase : Optional[Any]=5_1_2 , __UpperCamelCase : Tuple=1_6 , __UpperCamelCase : Optional[Any]=2 , __UpperCamelCase : str=0.0_2 , __UpperCamelCase : List[Any]=3 , __UpperCamelCase : Optional[int]=4 , __UpperCamelCase : List[Any]=None , )->int: _UpperCAmelCase = parent _UpperCAmelCase = batch_size _UpperCAmelCase = seq_length _UpperCAmelCase = is_training _UpperCAmelCase = use_input_mask _UpperCAmelCase = use_token_type_ids _UpperCAmelCase = use_labels _UpperCAmelCase = vocab_size _UpperCAmelCase = hidden_size _UpperCAmelCase = num_hidden_layers _UpperCAmelCase = num_attention_heads _UpperCAmelCase = intermediate_size _UpperCAmelCase = hidden_act _UpperCAmelCase = hidden_dropout_prob _UpperCAmelCase = attention_probs_dropout_prob _UpperCAmelCase = max_position_embeddings _UpperCAmelCase = type_vocab_size _UpperCAmelCase = type_sequence_label_size _UpperCAmelCase = initializer_range _UpperCAmelCase = num_labels _UpperCAmelCase = num_choices _UpperCAmelCase = scope def lowercase__ ( self : Tuple )->Dict: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.vocab_size ) _UpperCAmelCase = None if self.use_input_mask: _UpperCAmelCase = random_attention_mask([self.batch_size, self.seq_length] ) _UpperCAmelCase = None if self.use_token_type_ids: _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.type_vocab_size ) _UpperCAmelCase = None _UpperCAmelCase = None _UpperCAmelCase = None if self.use_labels: _UpperCAmelCase = ids_tensor([self.batch_size] , self.type_sequence_label_size ) _UpperCAmelCase = ids_tensor([self.batch_size, self.seq_length] , self.num_labels ) _UpperCAmelCase = ids_tensor([self.batch_size] , self.num_choices ) _UpperCAmelCase = self.get_config() return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels def lowercase__ ( self : List[str] )->List[Any]: return OpenLlamaConfig( vocab_size=self.vocab_size , hidden_size=self.hidden_size , num_hidden_layers=self.num_hidden_layers , num_attention_heads=self.num_attention_heads , intermediate_size=self.intermediate_size , hidden_act=self.hidden_act , hidden_dropout_prob=self.hidden_dropout_prob , attention_probs_dropout_prob=self.attention_probs_dropout_prob , max_position_embeddings=self.max_position_embeddings , type_vocab_size=self.type_vocab_size , is_decoder=__UpperCamelCase , initializer_range=self.initializer_range , use_stable_embedding=__UpperCamelCase , ) def lowercase__ ( self : Tuple , __UpperCamelCase : Dict , __UpperCamelCase : int , __UpperCamelCase : Optional[int] , __UpperCamelCase : Dict , __UpperCamelCase : Dict , __UpperCamelCase : Optional[int] , __UpperCamelCase : List[Any] )->List[Any]: _UpperCAmelCase = OpenLlamaModel(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) _UpperCAmelCase = model(__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : Any , __UpperCamelCase : int , __UpperCamelCase : Dict , __UpperCamelCase : Tuple , __UpperCamelCase : int , __UpperCamelCase : Tuple , __UpperCamelCase : Any , __UpperCamelCase : Optional[Any] , )->str: _UpperCAmelCase = True _UpperCAmelCase = OpenLlamaModel(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , ) _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , ) _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase ) self.parent.assertEqual(result.last_hidden_state.shape , (self.batch_size, self.seq_length, self.hidden_size) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Dict , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : str , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : List[str] , __UpperCamelCase : Optional[int] , __UpperCamelCase : int , __UpperCamelCase : str , __UpperCamelCase : str , )->Tuple: _UpperCAmelCase = OpenLlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.parent.assertEqual(result.logits.shape , (self.batch_size, self.seq_length, self.vocab_size) ) def lowercase__ ( self : Optional[Any] , __UpperCamelCase : Any , __UpperCamelCase : str , __UpperCamelCase : Optional[int] , __UpperCamelCase : Union[str, Any] , __UpperCamelCase : Dict , __UpperCamelCase : List[str] , __UpperCamelCase : Tuple , __UpperCamelCase : List[Any] , __UpperCamelCase : Tuple , )->Dict: _UpperCAmelCase = True _UpperCAmelCase = True _UpperCAmelCase = OpenLlamaForCausalLM(config=__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() # first forward pass _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , use_cache=__UpperCamelCase , ) _UpperCAmelCase = outputs.past_key_values # create hypothetical multiple next token and extent to next_input_ids _UpperCAmelCase = ids_tensor((self.batch_size, 3) , config.vocab_size ) _UpperCAmelCase = ids_tensor((self.batch_size, 3) , vocab_size=2 ) # append to next input_ids and _UpperCAmelCase = torch.cat([input_ids, next_tokens] , dim=-1 ) _UpperCAmelCase = torch.cat([input_mask, next_mask] , dim=-1 ) _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )['''hidden_states'''][0] _UpperCAmelCase = model( __UpperCamelCase , attention_mask=__UpperCamelCase , encoder_hidden_states=__UpperCamelCase , encoder_attention_mask=__UpperCamelCase , past_key_values=__UpperCamelCase , output_hidden_states=__UpperCamelCase , )['''hidden_states'''][0] # select random slice _UpperCAmelCase = ids_tensor((1,) , output_from_past.shape[-1] ).item() _UpperCAmelCase = output_from_no_past[:, -3:, random_slice_idx].detach() _UpperCAmelCase = output_from_past[:, :, random_slice_idx].detach() self.parent.assertTrue(output_from_past_slice.shape[1] == next_tokens.shape[1] ) # test that outputs are equal for slice self.parent.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-3 ) ) def lowercase__ ( self : Optional[int] )->Any: _UpperCAmelCase = self.prepare_config_and_inputs() ( ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ( _UpperCAmelCase ) , ) = config_and_inputs _UpperCAmelCase = {'''input_ids''': input_ids, '''attention_mask''': input_mask} return config, inputs_dict @require_torch class _a ( lowerCAmelCase , lowerCAmelCase , lowerCAmelCase , unittest.TestCase): """simple docstring""" UpperCamelCase__ = ( (OpenLlamaModel, OpenLlamaForCausalLM, OpenLlamaForSequenceClassification) if is_torch_available() else () ) UpperCamelCase__ = (OpenLlamaForCausalLM,) if is_torch_available() else () UpperCamelCase__ = ( { """feature-extraction""": OpenLlamaModel, """text-classification""": OpenLlamaForSequenceClassification, """text-generation""": OpenLlamaForCausalLM, """zero-shot""": OpenLlamaForSequenceClassification, } if is_torch_available() else {} ) UpperCamelCase__ = False UpperCamelCase__ = False def lowercase__ ( self : Dict )->Optional[int]: _UpperCAmelCase = OpenLlamaModelTester(self ) _UpperCAmelCase = ConfigTester(self , config_class=__UpperCamelCase , hidden_size=3_7 ) def lowercase__ ( self : Optional[int] )->List[Any]: self.config_tester.run_common_tests() def lowercase__ ( self : Tuple )->Dict: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : str )->List[str]: _UpperCAmelCase = self.model_tester.prepare_config_and_inputs() for type in ["absolute", "relative_key", "relative_key_query"]: _UpperCAmelCase = type self.model_tester.create_and_check_model(*__UpperCamelCase ) def lowercase__ ( self : List[Any] )->Dict: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = OpenLlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : Optional[int] )->List[str]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = '''single_label_classification''' _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor([self.model_tester.batch_size] , self.model_tester.type_sequence_label_size ) _UpperCAmelCase = OpenLlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) def lowercase__ ( self : List[str] )->Any: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = 3 _UpperCAmelCase = '''multi_label_classification''' _UpperCAmelCase = input_dict['''input_ids'''] _UpperCAmelCase = input_ids.ne(1 ).to(__UpperCamelCase ) _UpperCAmelCase = ids_tensor( [self.model_tester.batch_size, config.num_labels] , self.model_tester.type_sequence_label_size ).to(torch.float ) _UpperCAmelCase = OpenLlamaForSequenceClassification(__UpperCamelCase ) model.to(__UpperCamelCase ) model.eval() _UpperCAmelCase = model(__UpperCamelCase , attention_mask=__UpperCamelCase , labels=__UpperCamelCase ) self.assertEqual(result.logits.shape , (self.model_tester.batch_size, self.model_tester.num_labels) ) @unittest.skip('''Open-Llama buffers include complex numbers, which breaks this test''' ) def lowercase__ ( self : List[str] )->Tuple: pass @parameterized.expand([('''linear''',), ('''dynamic''',)] ) def lowercase__ ( self : int , __UpperCamelCase : Union[str, Any] )->List[Any]: _UpperCAmelCase , _UpperCAmelCase = self.model_tester.prepare_config_and_inputs_for_common() _UpperCAmelCase = ids_tensor([1, 1_0] , config.vocab_size ) _UpperCAmelCase = ids_tensor([1, int(config.max_position_embeddings * 1.5 )] , config.vocab_size ) set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase = OpenLlamaModel(__UpperCamelCase ) original_model.to(__UpperCamelCase ) original_model.eval() _UpperCAmelCase = original_model(__UpperCamelCase ).last_hidden_state _UpperCAmelCase = original_model(__UpperCamelCase ).last_hidden_state set_seed(4_2 ) # Fixed seed at init time so the two models get the same random weights _UpperCAmelCase = {'''type''': scaling_type, '''factor''': 1_0.0} _UpperCAmelCase = OpenLlamaModel(__UpperCamelCase ) scaled_model.to(__UpperCamelCase ) scaled_model.eval() _UpperCAmelCase = scaled_model(__UpperCamelCase ).last_hidden_state _UpperCAmelCase = scaled_model(__UpperCamelCase ).last_hidden_state # Dynamic scaling does not change the RoPE embeddings until it receives an input longer than the original # maximum sequence length, so the outputs for the short input should match. if scaling_type == "dynamic": self.assertTrue(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) else: self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) ) # The output should be different for long inputs self.assertFalse(torch.allclose(__UpperCamelCase , __UpperCamelCase , atol=1e-5 ) )
95
"""simple docstring""" import functools def lowercase ( _SCREAMING_SNAKE_CASE : list[int] , _SCREAMING_SNAKE_CASE : list[int] ): '''simple docstring''' if not isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for day in days ): raise ValueError('''The parameter days should be a list of integers''' ) if len(_SCREAMING_SNAKE_CASE ) != 3 or not all(isinstance(_SCREAMING_SNAKE_CASE , _SCREAMING_SNAKE_CASE ) for cost in costs ): raise ValueError('''The parameter costs should be a list of three integers''' ) if len(_SCREAMING_SNAKE_CASE ) == 0: return 0 if min(_SCREAMING_SNAKE_CASE ) <= 0: raise ValueError('''All days elements should be greater than 0''' ) if max(_SCREAMING_SNAKE_CASE ) >= 366: raise ValueError('''All days elements should be less than 366''' ) _UpperCAmelCase = set(_SCREAMING_SNAKE_CASE ) @functools.cache def dynamic_programming(_SCREAMING_SNAKE_CASE : int ) -> int: if index > 365: return 0 if index not in days_set: return dynamic_programming(index + 1 ) return min( costs[0] + dynamic_programming(index + 1 ) , costs[1] + dynamic_programming(index + 7 ) , costs[2] + dynamic_programming(index + 30 ) , ) return dynamic_programming(1 ) if __name__ == "__main__": import doctest doctest.testmod()
95
1
'''simple docstring''' import qiskit def _SCREAMING_SNAKE_CASE ( lowerCamelCase__ : int , lowerCamelCase__ : int ): '''simple docstring''' A: Union[str, Any] = qiskit.Aer.get_backend("""aer_simulator""" ) # Create a Quantum Circuit acting on the q register A: List[str] = qiskit.QuantumCircuit(lowerCamelCase__ , lowerCamelCase__ ) # Map the quantum measurement to the classical bits circuit.measure([0] , [0] ) # Execute the circuit on the simulator A: str = qiskit.execute(lowerCamelCase__ , lowerCamelCase__ , shots=1000 ) # Return the histogram data of the results of the experiment. return job.result().get_counts(lowerCamelCase__ ) if __name__ == "__main__": print(f"""Total count for various states are: {single_qubit_measure(1, 1)}""")
135
'''simple docstring''' import json import os import unittest from transformers import BatchEncoding, LEDTokenizer, LEDTokenizerFast from transformers.models.led.tokenization_led import VOCAB_FILES_NAMES from transformers.testing_utils import require_tokenizers, require_torch from transformers.utils import cached_property from ...test_tokenization_common import TokenizerTesterMixin @require_tokenizers class SCREAMING_SNAKE_CASE__ ( snake_case_ , unittest.TestCase ): """simple docstring""" A__ : Optional[int] = LEDTokenizer A__ : List[str] = LEDTokenizerFast A__ : List[Any] = True def a__ ( self ) -> Optional[Any]: super().setUp() A: Union[str, Any] = [ """l""", """o""", """w""", """e""", """r""", """s""", """t""", """i""", """d""", """n""", """\u0120""", """\u0120l""", """\u0120n""", """\u0120lo""", """\u0120low""", """er""", """\u0120lowest""", """\u0120newer""", """\u0120wider""", """<unk>""", ] A: Dict = dict(zip(A , range(len(A ) ) ) ) A: List[str] = ["""#version: 0.2""", """\u0120 l""", """\u0120l o""", """\u0120lo w""", """e r""", """"""] A: Tuple = {"""unk_token""": """<unk>"""} A: Tuple = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""vocab_file"""] ) A: Optional[int] = os.path.join(self.tmpdirname , VOCAB_FILES_NAMES["""merges_file"""] ) with open(self.vocab_file , """w""" , encoding="""utf-8""" ) as fp: fp.write(json.dumps(A ) + """\n""" ) with open(self.merges_file , """w""" , encoding="""utf-8""" ) as fp: fp.write("""\n""".join(A ) ) def a__ ( self , **A ) -> Tuple: kwargs.update(self.special_tokens_map ) return self.tokenizer_class.from_pretrained(self.tmpdirname , **A ) def a__ ( self , **A ) -> str: kwargs.update(self.special_tokens_map ) return self.rust_tokenizer_class.from_pretrained(self.tmpdirname , **A ) def a__ ( self , A ) -> Optional[Any]: return "lower newer", "lower newer" @cached_property def a__ ( self ) -> Dict: return LEDTokenizer.from_pretrained("""allenai/led-base-16384""" ) @cached_property def a__ ( self ) -> Any: return LEDTokenizerFast.from_pretrained("""allenai/led-base-16384""" ) @require_torch def a__ ( self ) -> Dict: A: Union[str, Any] = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] A: str = [0, 2_50, 2_51, 1_78_18, 13, 3_91_86, 19_38, 4, 2] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A: Optional[Any] = tokenizer(A , max_length=len(A ) , padding=A , return_tensors="""pt""" ) self.assertIsInstance(A , A ) self.assertEqual((2, 9) , batch.input_ids.shape ) self.assertEqual((2, 9) , batch.attention_mask.shape ) A: Any = batch.input_ids.tolist()[0] self.assertListEqual(A , A ) @require_torch def a__ ( self ) -> Union[str, Any]: A: str = ["""A long paragraph for summarization.""", """Another paragraph for summarization."""] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A: int = tokenizer(A , padding=A , return_tensors="""pt""" ) self.assertIn("""input_ids""" , A ) self.assertIn("""attention_mask""" , A ) self.assertNotIn("""labels""" , A ) self.assertNotIn("""decoder_attention_mask""" , A ) @require_torch def a__ ( self ) -> Optional[Any]: A: List[Any] = [ """Summary of the text.""", """Another summary.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A: Optional[int] = tokenizer(text_target=A , max_length=32 , padding="""max_length""" , return_tensors="""pt""" ) self.assertEqual(32 , targets["""input_ids"""].shape[1] ) @require_torch def a__ ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A: Any = tokenizer( ["""I am a small frog""" * 10_24, """I am a small frog"""] , padding=A , truncation=A , return_tensors="""pt""" ) self.assertIsInstance(A , A ) self.assertEqual(batch.input_ids.shape , (2, 51_22) ) @require_torch def a__ ( self ) -> Any: A: int = ["""A long paragraph for summarization."""] A: Optional[int] = [ """Summary of the text.""", ] for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A: str = tokenizer(A , return_tensors="""pt""" ) A: Optional[Any] = tokenizer(text_target=A , return_tensors="""pt""" ) A: Union[str, Any] = inputs["""input_ids"""] A: Optional[Any] = targets["""input_ids"""] self.assertTrue((input_ids[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((labels[:, 0] == tokenizer.bos_token_id).all().item() ) self.assertTrue((input_ids[:, -1] == tokenizer.eos_token_id).all().item() ) self.assertTrue((labels[:, -1] == tokenizer.eos_token_id).all().item() ) @require_torch def a__ ( self ) -> List[str]: for tokenizer in [self.default_tokenizer, self.default_tokenizer_fast]: A: List[Any] = ["""Summary of the text.""", """Another summary."""] A: int = [[0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, -1, -1]] A: List[Any] = tokenizer(A , padding=A ) A: Tuple = [[0] * len(A ) for x in encoded_output["""input_ids"""]] A: List[Any] = tokenizer.pad(A ) self.assertSequenceEqual(outputs["""global_attention_mask"""] , A ) def a__ ( self ) -> Optional[int]: pass def a__ ( self ) -> Tuple: for tokenizer, pretrained_name, kwargs in self.tokenizers_list: with self.subTest(f'{tokenizer.__class__.__name__} ({pretrained_name})' ): A: List[Any] = self.rust_tokenizer_class.from_pretrained(A , **A ) A: Any = self.tokenizer_class.from_pretrained(A , **A ) A: Tuple = """A, <mask> AllenNLP sentence.""" A: str = tokenizer_r.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) A: int = tokenizer_p.encode_plus(A , add_special_tokens=A , return_token_type_ids=A ) self.assertEqual(sum(tokens_r["""token_type_ids"""] ) , sum(tokens_p["""token_type_ids"""] ) ) self.assertEqual( sum(tokens_r["""attention_mask"""] ) / len(tokens_r["""attention_mask"""] ) , sum(tokens_p["""attention_mask"""] ) / len(tokens_p["""attention_mask"""] ) , ) A: int = tokenizer_r.convert_ids_to_tokens(tokens_r["""input_ids"""] ) A: List[Any] = tokenizer_p.convert_ids_to_tokens(tokens_p["""input_ids"""] ) self.assertSequenceEqual(tokens_p["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual(tokens_r["""input_ids"""] , [0, 2_50, 6, 5_02_64, 38_23, 4_87, 2_19_92, 36_45, 4, 2] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] ) self.assertSequenceEqual( A , ["""<s>""", """A""", """,""", """<mask>""", """ĠAllen""", """N""", """LP""", """Ġsentence""", """.""", """</s>"""] )
135
1
"""simple docstring""" from typing import Dict, Optional import numpy as np import datasets SCREAMING_SNAKE_CASE_ : Tuple = '\nIoU is the area of overlap between the predicted segmentation and the ground truth divided by the area of union\nbetween the predicted segmentation and the ground truth. For binary (two classes) or multi-class segmentation,\nthe mean IoU of the image is calculated by taking the IoU of each class and averaging them.\n' SCREAMING_SNAKE_CASE_ : Optional[int] = '\nArgs:\n predictions (`List[ndarray]`):\n List of predicted segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n references (`List[ndarray]`):\n List of ground truth segmentation maps, each of shape (height, width). Each segmentation map can be of a different size.\n num_labels (`int`):\n Number of classes (categories).\n ignore_index (`int`):\n Index that will be ignored during evaluation.\n nan_to_num (`int`, *optional*):\n If specified, NaN values will be replaced by the number defined by the user.\n label_map (`dict`, *optional*):\n If specified, dictionary mapping old label indices to new label indices.\n reduce_labels (`bool`, *optional*, defaults to `False`):\n Whether or not to reduce all label values of segmentation maps by 1. Usually used for datasets where 0 is used for background,\n and background itself is not included in all classes of a dataset (e.g. ADE20k). The background label will be replaced by 255.\n\nReturns:\n `Dict[str, float | ndarray]` comprising various elements:\n - *mean_iou* (`float`):\n Mean Intersection-over-Union (IoU averaged over all categories).\n - *mean_accuracy* (`float`):\n Mean accuracy (averaged over all categories).\n - *overall_accuracy* (`float`):\n Overall accuracy on all images.\n - *per_category_accuracy* (`ndarray` of shape `(num_labels,)`):\n Per category accuracy.\n - *per_category_iou* (`ndarray` of shape `(num_labels,)`):\n Per category IoU.\n\nExamples:\n\n >>> import numpy as np\n\n >>> mean_iou = datasets.load_metric("mean_iou")\n\n >>> # suppose one has 3 different segmentation maps predicted\n >>> predicted_1 = np.array([[1, 2], [3, 4], [5, 255]])\n >>> actual_1 = np.array([[0, 3], [5, 4], [6, 255]])\n\n >>> predicted_2 = np.array([[2, 7], [9, 2], [3, 6]])\n >>> actual_2 = np.array([[1, 7], [9, 2], [3, 6]])\n\n >>> predicted_3 = np.array([[2, 2, 3], [8, 2, 4], [3, 255, 2]])\n >>> actual_3 = np.array([[1, 2, 2], [8, 2, 1], [3, 255, 1]])\n\n >>> predicted = [predicted_1, predicted_2, predicted_3]\n >>> ground_truth = [actual_1, actual_2, actual_3]\n\n >>> results = mean_iou.compute(predictions=predicted, references=ground_truth, num_labels=10, ignore_index=255, reduce_labels=False)\n >>> print(results) # doctest: +NORMALIZE_WHITESPACE\n {\'mean_iou\': 0.47750000000000004, \'mean_accuracy\': 0.5916666666666666, \'overall_accuracy\': 0.5263157894736842, \'per_category_iou\': array([0. , 0. , 0.375, 0.4 , 0.5 , 0. , 0.5 , 1. , 1. , 1. ]), \'per_category_accuracy\': array([0. , 0. , 0.75 , 0.66666667, 1. , 0. , 0.5 , 1. , 1. , 1. ])}\n' SCREAMING_SNAKE_CASE_ : int = '\\n@software{MMSegmentation_Contributors_OpenMMLab_Semantic_Segmentation_2020,\nauthor = {{MMSegmentation Contributors}},\nlicense = {Apache-2.0},\nmonth = {7},\ntitle = {{OpenMMLab Semantic Segmentation Toolbox and Benchmark}},\nurl = {https://github.com/open-mmlab/mmsegmentation},\nyear = {2020}\n}' def _snake_case ( UpperCAmelCase_ : str , UpperCAmelCase_ : int , UpperCAmelCase_ : Optional[Any] , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): if label_map is not None: for old_id, new_id in label_map.items(): A__ = new_id # turn into Numpy arrays A__ = np.array(UpperCAmelCase_ ) A__ = np.array(UpperCAmelCase_ ) if reduce_labels: A__ = 255 A__ = label - 1 A__ = 255 A__ = label != ignore_index A__ = np.not_equal(UpperCAmelCase_ , UpperCAmelCase_ ) A__ = pred_label[mask] A__ = np.array(UpperCAmelCase_ )[mask] A__ = pred_label[pred_label == label] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = np.histogram(UpperCAmelCase_ , bins=UpperCAmelCase_ , range=(0, num_labels - 1) )[0] A__ = area_pred_label + area_label - area_intersect return area_intersect, area_union, area_pred_label, area_label def _snake_case ( UpperCAmelCase_ : int , UpperCAmelCase_ : List[str] , UpperCAmelCase_ : Any , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) A__ = np.zeros((num_labels,) , dtype=np.floataa ) for result, gt_seg_map in zip(UpperCAmelCase_ , UpperCAmelCase_ ): A__ , A__ , A__ , A__ = intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) total_area_intersect += area_intersect total_area_union += area_union total_area_pred_label += area_pred_label total_area_label += area_label return total_area_intersect, total_area_union, total_area_pred_label, total_area_label def _snake_case ( UpperCAmelCase_ : Optional[int] , UpperCAmelCase_ : Any , UpperCAmelCase_ : Tuple , UpperCAmelCase_ : bool , UpperCAmelCase_ : Optional[int] = None , UpperCAmelCase_ : Optional[Dict[int, int]] = None , UpperCAmelCase_ : bool = False , ): A__ , A__ , A__ , A__ = total_intersect_and_union( UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ , UpperCAmelCase_ ) # compute metrics A__ = {} A__ = total_area_intersect.sum() / total_area_label.sum() A__ = total_area_intersect / total_area_union A__ = total_area_intersect / total_area_label A__ = np.nanmean(UpperCAmelCase_ ) A__ = np.nanmean(UpperCAmelCase_ ) A__ = all_acc A__ = iou A__ = acc if nan_to_num is not None: A__ = {metric: np.nan_to_num(UpperCAmelCase_ , nan=UpperCAmelCase_ ) for metric, metric_value in metrics.items()} return metrics @datasets.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION ) class a ( datasets.Metric ): """simple docstring""" def UpperCamelCase ( self: str ): """simple docstring""" return datasets.MetricInfo( description=_DESCRIPTION , citation=_CITATION , inputs_description=_KWARGS_DESCRIPTION , features=datasets.Features( # 1st Seq - height dim, 2nd - width dim { """predictions""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), """references""": datasets.Sequence(datasets.Sequence(datasets.Value("""uint16""" ) ) ), } ) , reference_urls=[ """https://github.com/open-mmlab/mmsegmentation/blob/71c201b1813267d78764f306a297ca717827c4bf/mmseg/core/evaluation/metrics.py""" ] , ) def UpperCamelCase ( self: str , UpperCamelCase: Union[str, Any] , UpperCamelCase: Optional[Any] , UpperCamelCase: int , UpperCamelCase: bool , UpperCamelCase: Optional[int] = None , UpperCamelCase: Optional[Dict[int, int]] = None , UpperCamelCase: bool = False , ): """simple docstring""" A__ = mean_iou( results=UpperCamelCase , gt_seg_maps=UpperCamelCase , num_labels=UpperCamelCase , ignore_index=UpperCamelCase , nan_to_num=UpperCamelCase , label_map=UpperCamelCase , reduce_labels=UpperCamelCase , ) return iou_result
500
"""simple docstring""" def _snake_case ( UpperCAmelCase_ : int ): A__ = 1 for i in range(1 , num + 1 ): fact *= i return fact def _snake_case ( UpperCAmelCase_ : int ): A__ = 0 while number > 0: A__ = number % 10 sum_of_digits += last_digit A__ = number // 10 # Removing the last_digit from the given number return sum_of_digits def _snake_case ( UpperCAmelCase_ : int = 100 ): A__ = factorial(UpperCAmelCase_ ) A__ = split_and_add(UpperCAmelCase_ ) return result if __name__ == "__main__": print(solution(int(input('Enter the Number: ').strip())))
500
1
import argparse import logging import pickle import random import time import numpy as np from transformers import BertTokenizer, GPTaTokenizer, RobertaTokenizer logging.basicConfig( format='%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt='%m/%d/%Y %H:%M:%S', level=logging.INFO ) UpperCamelCase = logging.getLogger(__name__) def _A ( ): """simple docstring""" lowerCAmelCase__ = argparse.ArgumentParser( description="Preprocess the data to avoid re-doing it several times by (tokenization + token_to_ids)." ) parser.add_argument("--file_path" , type=lowerCAmelCase_ , default="data/dump.txt" , help="The path to the data." ) parser.add_argument("--tokenizer_type" , type=lowerCAmelCase_ , default="bert" , choices=["bert", "roberta", "gpt2"] ) parser.add_argument("--tokenizer_name" , type=lowerCAmelCase_ , default="bert-base-uncased" , help="The tokenizer to use." ) parser.add_argument("--dump_file" , type=lowerCAmelCase_ , default="data/dump" , help="The dump file prefix." ) lowerCAmelCase__ = parser.parse_args() logger.info(F'Loading Tokenizer ({args.tokenizer_name})' ) if args.tokenizer_type == "bert": lowerCAmelCase__ = BertTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `[CLS]` lowerCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `[SEP]` elif args.tokenizer_type == "roberta": lowerCAmelCase__ = RobertaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["cls_token"] # `<s>` lowerCAmelCase__ = tokenizer.special_tokens_map["sep_token"] # `</s>` elif args.tokenizer_type == "gpt2": lowerCAmelCase__ = GPTaTokenizer.from_pretrained(args.tokenizer_name ) lowerCAmelCase__ = tokenizer.special_tokens_map["bos_token"] # `<|endoftext|>` lowerCAmelCase__ = tokenizer.special_tokens_map["eos_token"] # `<|endoftext|>` logger.info(F'Loading text from {args.file_path}' ) with open(args.file_path , "r" , encoding="utf8" ) as fp: lowerCAmelCase__ = fp.readlines() logger.info("Start encoding" ) logger.info(F'{len(lowerCAmelCase_ )} examples to process.' ) lowerCAmelCase__ = [] lowerCAmelCase__ = 0 lowerCAmelCase__ = 1_0000 lowerCAmelCase__ = time.time() for text in data: lowerCAmelCase__ = F'{bos} {text.strip()} {sep}' lowerCAmelCase__ = tokenizer.encode(lowerCAmelCase_ , add_special_tokens=lowerCAmelCase_ ) rslt.append(lowerCAmelCase_ ) iter += 1 if iter % interval == 0: lowerCAmelCase__ = time.time() logger.info(F'{iter} examples processed. - {(end-start):.2f}s/{interval}expl' ) lowerCAmelCase__ = time.time() logger.info("Finished binarization" ) logger.info(F'{len(lowerCAmelCase_ )} examples processed.' ) lowerCAmelCase__ = F'{args.dump_file}.{args.tokenizer_name}.pickle' lowerCAmelCase__ = tokenizer.vocab_size if vocab_size < (1 << 16): lowerCAmelCase__ = [np.uintaa(lowerCAmelCase_ ) for d in rslt] else: lowerCAmelCase__ = [np.intaa(lowerCAmelCase_ ) for d in rslt] random.shuffle(rslt_ ) logger.info(F'Dump to {dp_file}' ) with open(lowerCAmelCase_ , "wb" ) as handle: pickle.dump(rslt_ , lowerCAmelCase_ , protocol=pickle.HIGHEST_PROTOCOL ) if __name__ == "__main__": main()
61
from __future__ import annotations def _A ( lowerCAmelCase_ : list , lowerCAmelCase_ : int , lowerCAmelCase_ : int , lowerCAmelCase_ : int ): """simple docstring""" lowerCAmelCase__ = [] lowerCAmelCase__ , lowerCAmelCase__ = input_list[low:mid], input_list[mid : high + 1] while left and right: result.append((left if left[0] <= right[0] else right).pop(0 ) ) lowerCAmelCase__ = result + left + right return input_list def _A ( lowerCAmelCase_ : list ): """simple docstring""" if len(lowerCAmelCase_ ) <= 1: return input_list lowerCAmelCase__ = list(lowerCAmelCase_ ) # iteration for two-way merging lowerCAmelCase__ = 2 while p <= len(lowerCAmelCase_ ): # getting low, high and middle value for merge-sort of single list for i in range(0 , len(lowerCAmelCase_ ) , lowerCAmelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = i + p - 1 lowerCAmelCase__ = (low + high + 1) // 2 lowerCAmelCase__ = merge(lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ , lowerCAmelCase_ ) # final merge of last two parts if p * 2 >= len(lowerCAmelCase_ ): lowerCAmelCase__ = i lowerCAmelCase__ = merge(lowerCAmelCase_ , 0 , lowerCAmelCase_ , len(lowerCAmelCase_ ) - 1 ) break p *= 2 return input_list if __name__ == "__main__": UpperCamelCase = input('Enter numbers separated by a comma:\n').strip() if user_input == "": UpperCamelCase = [] else: UpperCamelCase = [int(item.strip()) for item in user_input.split(',')] print(iter_merge_sort(unsorted))
61
1
# XXX: we want transformers master here - in the absense of conftest manipulating sys.path: # hack it in for now: import sys from pathlib import Path a_ : Optional[int] = Path(__file__).resolve().parents[3] / 'src' sys.path.insert(1, str(git_repo_path)) import dataclasses # noqa import io # noqa import itertools # noqa import json # noqa import os # noqa import unittest # noqa from copy import deepcopy # noqa from parameterized import parameterized # noqa from transformers import TrainingArguments, is_torch_available # noqa from transformers.deepspeed import is_deepspeed_available # noqa from transformers.file_utils import WEIGHTS_NAME # noqa from transformers.testing_utils import ( # noqa CaptureLogger, ExtendSysPath, TestCasePlus, execute_subprocess_async, get_gpu_count, mockenv_context, require_deepspeed, require_torch_gpu, require_torch_multi_gpu, slow, ) from transformers.trainer_utils import set_seed # noqa set_seed(4_2) a_ : Union[str, Any] = {'base': 'patrickvonplaten/wav2vec2_tiny_random', 'robust': 'patrickvonplaten/wav2vec2_tiny_random_robust'} a_ : Union[str, Any] = 'zero2' a_ : Optional[Any] = 'zero3' a_ : Any = [ZEROa, ZEROa] def __lowercase( UpperCAmelCase__ , UpperCAmelCase__ , UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = parameterized.to_safe_name("_".join(str(UpperCAmelCase__ ) for x in param.args ) ) return F"""{func.__name__}_{param_based_name}""" # Cartesian-product of zero stages with models to test a_ : Dict = list(itertools.product(stages, models.keys())) @slow @require_deepspeed @require_torch_gpu class lowerCamelCase__ ( UpperCAmelCase_): """simple docstring""" @parameterized.expand(__a , name_func=__a ) def _a (self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def _a (self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @parameterized.expand(__a , name_func=__a ) def _a (self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) @require_torch_multi_gpu @parameterized.expand(__a , name_func=__a ) def _a (self , __a , __a ): '''simple docstring''' self.run_and_check( stage=__a , model=__a , distributed=__a , fpaa=__a , ) def _a (self , __a ): '''simple docstring''' pass def _a (self , __a , __a , __a = 10 , __a = True , __a = True , __a = True , ): '''simple docstring''' lowerCamelCase = models[model] lowerCamelCase = self.run_trainer( stage=__a , model_name=__a , eval_steps=__a , num_train_epochs=1 , distributed=__a , fpaa=__a , ) self.do_checks(__a ) return output_dir def _a (self , __a , __a , __a = 10 , __a = 1 , __a = True , __a = True , ): '''simple docstring''' lowerCamelCase = self.get_auto_remove_tmp_dir("./xxx" , after=__a ) lowerCamelCase = F""" --model_name_or_path {model_name} --dataset_name hf-internal-testing/librispeech_asr_dummy --dataset_config_name clean --train_split_name validation --validation_split_name validation --output_dir {output_dir} --num_train_epochs {str(__a )} --per_device_train_batch_size 2 --per_device_eval_batch_size 2 --evaluation_strategy steps --learning_rate 5e-4 --warmup_steps 8 --orthography timit --preprocessing_num_workers 1 --group_by_length --freeze_feature_extractor --report_to none --save_steps 0 --eval_steps {eval_steps} --report_to none """.split() if fpaa: args.extend(["--fp16"] ) # currently ds_config_wav2vec2_zero.json requires "zero_optimization.find_unused_parameters": true, # hence the separate config files lowerCamelCase = F"""--deepspeed {self.test_file_dir_str}/ds_config_wav2vec2_{stage}.json""".split() lowerCamelCase = [F"""{self.examples_dir_str}/research_projects/wav2vec2/run_asr.py"""] lowerCamelCase = self.get_launcher(__a ) lowerCamelCase = launcher + script + args + ds_args # keep for quick debug # print(" ".join([f"\nPYTHONPATH={self.src_dir_str}"] +cmd)); die execute_subprocess_async(__a , env=self.get_env() ) return output_dir def _a (self , __a=False ): '''simple docstring''' lowerCamelCase = min(2 , get_gpu_count() ) if distributed else 1 return F"""deepspeed --num_nodes 1 --num_gpus {num_gpus}""".split()
712
def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = [] lowerCamelCase = [] lowerCamelCase = { "^": 3, "*": 2, "/": 2, "%": 2, "+": 1, "-": 1, } # Priority of each operator lowerCamelCase = len(UpperCAmelCase__ ) if (len(UpperCAmelCase__ ) > 7) else 7 # Print table header for output print( "Symbol".center(8 ) , "Stack".center(UpperCAmelCase__ ) , "Postfix".center(UpperCAmelCase__ ) , sep=" | " , ) print("-" * (print_width * 3 + 7) ) for x in infix: if x.isalpha() or x.isdigit(): post_fix.append(UpperCAmelCase__ ) # if x is Alphabet / Digit, add it to Postfix elif x == "(": stack.append(UpperCAmelCase__ ) # if x is "(" push to Stack elif x == ")": # if x is ")" pop stack until "(" is encountered while stack[-1] != "(": post_fix.append(stack.pop() ) # Pop stack & add the content to Postfix stack.pop() else: if len(UpperCAmelCase__ ) == 0: stack.append(UpperCAmelCase__ ) # If stack is empty, push x to stack else: # while priority of x is not > priority of element in the stack while len(UpperCAmelCase__ ) > 0 and priority[x] <= priority[stack[-1]]: post_fix.append(stack.pop() ) # pop stack & add to Postfix stack.append(UpperCAmelCase__ ) # push x to stack print( x.center(8 ) , ("".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=" | " , ) # Output in tabular format while len(UpperCAmelCase__ ) > 0: # while stack is not empty post_fix.append(stack.pop() ) # pop stack & add to Postfix print( " ".center(8 ) , ("".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , ("".join(UpperCAmelCase__ )).ljust(UpperCAmelCase__ ) , sep=" | " , ) # Output in tabular format return "".join(UpperCAmelCase__ ) # return Postfix as str def __lowercase( UpperCAmelCase__ ): """simple docstring""" lowerCamelCase = list(infix[::-1] ) # reverse the infix equation for i in range(len(UpperCAmelCase__ ) ): if infix[i] == "(": lowerCamelCase = ")" # change "(" to ")" elif infix[i] == ")": lowerCamelCase = "(" # change ")" to "(" return (infix_2_postfix("".join(UpperCAmelCase__ ) ))[ ::-1 ] # call infix_2_postfix on Infix, return reverse of Postfix if __name__ == "__main__": a_ : str = input('\nEnter an Infix Equation = ') # Input an Infix equation a_ : List[Any] = ''.join(Infix.split()) # Remove spaces from the input print('\n\t', Infix, '(Infix) -> ', infix_2_prefix(Infix), '(Prefix)')
484
0